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ABSTRACT 

The computational modeling of clothing has received increasing attention since 

the late 1980’s with the desire to study and animate clothing-wearer interactions.  Within 

a clothing modeling framework, it is necessary to model the mechanical behavior of 

woven fabrics.  An important aspect of modeling the mechanics of woven fabrics is 

capturing realistic stress-strain behaviors which are invariably anisotropic, nonlinear, and 

hysteretic in that they feature irrecoverable deformation when loadings are removed from 

the fabric.  The objective of this research is to develop a fabric constitutive model that 

captures the primary features of anisotropy, nonlinearity, and hysteresis, and that can be 

easily implemented in a nonlinear, large deformation shell finite element framework for 

general clothing-wearer interaction modeling.   

To achieve the objective, biaxial responses of four different woven fabrics were 

experimentally measured under a battery of load-unload uniaxial stress tests performed in 

the fabrics’ warp, weft, and bias 45° directions.  Axial deformations were measured 

precisely using LVDTs, and transverse deformations were measured less precisely using 

photogrammetric methods.  Such measurements yielded insight on the different fabrics’ 

membrane properties such as nonlinear Young’s moduli in the warp and weft directions, 

shear moduli, and Poisson’s ratios.  These membrane behaviors were captured in an 

incremental constitutive model that uses polynomial fitting of a fabric’s loading warp and 

weft Young’s moduli, and polynomial fitting of the membrane shear modulus.  Measured 

membrane Poisson’s ratios of the different fabrics were found to be asymmetrical and 

highly variable between fabric types.  All of these effects were integrated in a 

nonsymmetrical incremental constitutive model that relates Piola-Kirchhoff stress to 

Green-Lagrangian strain.   

For numerical implementation in a shell finite element framework, the woven 

fabric’s warp and weft directions relative to an individual element’s lamina coordinate 
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system are specified in the undeformed configuration of the fabric and are denoted as the 

local material coordinate system.  As the fabric undergoes arbitrary deformations, the 

local Piola-Kirchoff stress, the Green-Lagrange strain, and its increment at a point in the 

fabric are transformed to the material coordinate system in which the stress is updated.  

The updated state of Piola-Kirchoff stress in the material coordinate system is then 

rotated back into the local lamina coordinate system for usage in finite element force and 

stiffness calculations.     

This new realistic material model for woven fabrics is successfully implemented 

and tested in a variety of computations such as simulation of quasi-static material tests, 

and dynamic fabric “drape” and “poke” tests. 
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ABSTRACT 

The computational modeling of clothing has received increasing attention since 

the late 1980’s with the desire to study and animate clothing-wearer interactions.  Within 

a clothing modeling framework, it is necessary to model the mechanical behavior of 

woven fabrics.  An important aspect of modeling the mechanics of woven fabrics is 

capturing realistic stress-strain behaviors which are invariably anisotropic, nonlinear, and 

hysteretic in that they feature irrecoverable deformation when loadings are removed from 

the fabric.  The objective of this research is to develop a fabric constitutive model that 

captures the primary features of anisotropy, nonlinearity, and hysteresis, and that can be 

easily implemented in a nonlinear, large deformation shell finite element framework for 

general clothing-wearer interaction modeling.   

To achieve the objective, biaxial responses of four different woven fabrics were 

experimentally measured under a battery of load-unload uniaxial stress tests performed in 

the fabrics’ warp, weft, and bias 45° directions.  Axial deformations were measured 

precisely using LVDTs, and transverse deformations were measured less precisely using 

photogrammetric methods.  Such measurements yielded insight on the different fabrics’ 

membrane properties such as nonlinear Young’s moduli in the warp and weft directions, 

shear moduli, and Poisson’s ratios.  These membrane behaviors were captured in an 

incremental constitutive model that uses polynomial fitting of a fabric’s loading warp and 

weft Young’s moduli, and polynomial fitting of the membrane shear modulus.  Measured 

membrane Poisson’s ratios of the different fabrics were found to be asymmetrical and 

highly variable between fabric types.  All of these effects were integrated in a 

nonsymmetrical incremental constitutive model that relates Piola-Kirchhoff stress to 

Green-Lagrangian strain.   

For numerical implementation in a shell finite element framework, the woven 

fabric’s warp and weft directions relative to an individual element’s lamina coordinate 
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system are specified in the undeformed configuration of the fabric and are denoted as the 

local material coordinate system.  As the fabric undergoes arbitrary deformations, the 

local Piola-Kirchoff stress, the Green-Lagrange strain, and its increment at a point in the 

fabric are transformed to the material coordinate system in which the stress is updated.  

The updated state of Piola-Kirchoff stress in the material coordinate system is then 

rotated back into the local lamina coordinate system for usage in finite element force and 

stiffness calculations.     

This new realistic material model for woven fabrics is successfully implemented 

and tested in a variety of computations such as simulation of quasi-static material tests, 

and dynamic fabric “drape” and “poke” tests. 
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CHAPTER1.  INTRODUCTION 

1.1  Motivation 

In today’s digital world, it is commonplace to see clothed virtual humans, or 

avatars, which must interact with their surrounding environment.  As part of this digital 

realm, the computational modeling of clothing has seen increased attention since the late 

1980’s when Terzopoulus et al developed continuum-based models that allowed for 

dynamic simulations of elastic [4] and inelastic [5] materials for a variety of loadings.   

From a modeling perspective, clothing is treated as a layered shell consisting of multiple 

plies of fabric.  As the human body moves, the clothing is subjected to a variety of 

deformations such as stretching, shearing and bending, all of which occur concurrently 

[6].  As is shown in Figure 1-1, the motivation for such clothing modeling is quite varied, 

ranging from computer animation to virtual fashion design to the study of the how 

clothing interacts with the wearer, the latter being of particular interest for this research.  

Noting the limited number and subjectivity of available approaches for studying the 

mechanical performance of protective clothing, Man and Swan [3, 7, 8] developed an 

analysis framework that aimed to quantify the effects that a garment of a particular fabric, 

size, and fit had on the mobility, dexterity and range-of-motion of a virtual human in 

order to better understand the clothing-wearer interaction problem.  Their framework 

separates the clothing-wearer interaction problem into three main areas:  (1) finite 

element modeling of fabric garments; (2) human modeling; and (3) contact interactions 

between the clothing and the body and self-contact of the clothing.    
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Figure 1-1.  Examples of the uses of virtual clothing: (a) computer animation [1], (b) 
virtual clothing design [2], and (c) clothing-wearer interaction [3]. 

In regards to fabric modeling, House and Breen [9], Choi and Ko [10] and Hearle 

[11] note that in the computer graphics industry, visual realism takes precedence over 

mechanical realism, and that in order to quantify performance and compare to real cloth, 

special attention must be paid to the physical properties of fabrics in developing new 

constitutive models.  While the mechanical behavior of fabrics is highly nonlinear, 

anisotropic and hysteretic [12], many authors, such as [3, 13-17], have assumed linear 

elastic behavior.  Constitutive models that include only linear elastic deformation suffice 

for quasi-static models such as fabric draping where deformations are small and only the 

load due to gravity is considered; however, for realistic clothing simulations, the 
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constitutive model needs to account for a wide range of loadings induced from the 

movement of the virtual human and various forms of contact and should include 

nonlinear mechanical behavior [10, 18].   

In addition to material non-linearity, the type of deformation (i.e. linear or 

nonlinear geometric assumptions) is also an issue.  Since this research concerns itself 

with clothing-wearer interaction, it is important to have an idea of the maximum strains 

to which the clothing is subjected.  In an effort to understand the relationship between 

fabric stretch and anthropometric requirements, Kirk and Imbrahim [19] determined that 

convex regions of high curvature such as the knees, seat, back and elbows, are the critical 

strain areas of the body.  Of these, the front of the knee and the outside of the elbows 

exhibited the largest amounts of biaxial stretch, which have an absolute maximum fabric 

stretch of about 52%, if garment slip is neglected and the fabric is snug against the skin. 

Another study by Bassett et al [20] note that tensile strains in most woven garments are 

small, but that stretch and knitted fabrics can experience tensile strains up to 25%; and 

loosely woven shirt fabrics can undergo shear angles up to 0.5 radians (~30°).  As the 

strains in the previous studies are quite substantial, a large deformation approach is 

justified in developing constitutive models for fabric.   

Thus, there is a need for a constitutive model that exhibits the complex behavior 

of fabrics while undergoing large deformations.  While a model that includes these 

features will enhance the physical realism of clothing animations, Hearle [11] notes that 

the inherent difficulty has led many researchers to “retreat”.  With that being stated, the 

motivation for this research is to develop a new fabric constitutive model that exhibits the 

nonlinear, anisotropic, and hysteretic behavior that can then be implemented in whole 

body shell finite-element clothing simulations as part of the Man and Swan’s framework.   
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 1.2 Objectives and Organization 

The purpose of this research is to develop a new constitutive model that closely 

matches the phenomenological response of fabrics under a variety of loadings and that 

will aid in the clothing-wearer interaction study.  While there are numerous types of 

fabrics (i.e. woven, nonwoven, knit), the research here is focused on plain-woven fabrics.  

To this end, the following objectives are declared:  (1) use available experimental 

procedures to study the behavior of  a variety of woven fabrics as a continuum and glean 

appropriate physical parameters from the data for use in the constitutive model; (2) 

develop an constitutive model that features incremental loading and  unloading, thereby 

capturing the nonlinear, anisotropic and hysteretic behavior (further discussed in the next 

chapter) and employ it in a shell finite element analysis; (3) compare results from the 

finite element model to experimental data; and (4) employ the constitutive model in a 

dynamic shell finite element simulation.  While a few nonlinear and anisotropic 

constitutive models exist for woven fabrics, the current research: (1) addresses the 

symmetry assumption of orthotropic fabric models; (2) develops a novel approach for 

shear parameter estimation for large deformations; and (3) includes the hysteresis 

exhibited by fabrics when being unloaded. 

This dissertation is organized as follows.  The physical structure of woven textiles 

and common behavior is presented and common terminology is presented in Chapter 2.   

Chapter 3 introduces the experimental procedures used to study fabric behavior and 

experimental data is generated that is later used to determine appropriate material 

parameters.  In Chapter 4, different types of models for predicting the behavior of woven 

fabrics are summarized and reviewed.  Chapter 5 reviews the geometrically nonlinear 

shell finite element used in the clothing-wearer interaction study.  An incrementally 

elastic constitutive model that is anisotropic, nonlinear and includes hysteresis is 

developed in Chapter 6 and the results of which are compared to experimental data.  The 

incremental model is verified with experimental data and applied to some biaxial and 
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dynamic tests in Chapter 7.  Finally, the dissertation is summarized and future work is 

proposed in Chapter 8. 
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CHAPTER 2.  WOVEN FABRIC STRUCTURES 

Fabric, or textile, garments are inherently hierarchical structural systems, an 

example of which is shown in Figure 2-1.  At the smallest length scale are microscopic 

fibers, which are combined to make larger yarns that can then be woven into a bolt of 

fabric made up of repeating structural patterns that depend on the type of weave.   Using 

patterns, woven fabrics can then can be cut and sewn into garments that exhibit complex 

behavior.   In this chapter, woven textiles are described on the fiber, yarn and fabric 

scales and common textile terminology is defined from an engineering perspective.  From 

a mechanical perspective, it will be shown how the properties of one length scale affect 

the properties of the next larger length scale. 

 

Figure 2-1.  Different hierarchical length scales that comprise functional fabric garments. 

Macroscale

(b) Transverse section of fibers

(c) Yarn cross-section

(g) Garment

(d) Idealized  

textile unit cell

(a) Wavy crimped fibers
(f) Patch of fabric for 

garment

Microscale Mesoscale

(e) Woven-ply of fabric
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2.1 Fibers 

Although it can be hard to distinguish individual fibers with the naked eye, the 

characteristics of each type of fiber greatly affect the ultimate behavior of the final textile 

product via strength, friction, weight, and permeability.  Fibers are broken down into two 

main categories: natural and man-made.  Natural fibers are those that are a product of 

agriculture and include such protein-based fibers like silk and wool, and cellulose-based 

fibers such as cotton and linen [21].  All natural fibers are characterized as having a large 

variability in size, length, shape, and number of imperfections with the exception of silk, 

which is an extruded protein fiber that is chemically and structurally uniform.  Man-made 

fibers are engineered materials that can be produced from a variety of sources and 

techniques.  They are typically manufactured by extruding a chemical compound into 

continuous filaments that can be optimized for particular shape, size and performance 

criteria. Due to the nature of man-made fibers, there are several sub-categories that 

consist of specialty fiber types that are usually patented by the manufacturer (i.e. 

Coolmax® polyester, Lycra™ spandex, and Kevlar® aramid).  Figure 2-2 shows two 

images from a scanning electron microscope (SEM). The image on the left is a close-up 

of the cotton fibers that make up the exterior of cotton-polyester blend yarns showing the 

variability of natural fibers, while the image on the right shows man-made fibers that are 

formed into a non-woven mat. 
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Figure 2-2.  SEM photographs of (a) natural and (b) man-made fibers. 

The macroscopic features of fibers include size, length, density, and crimp while 

the microscopic features include its microstructure [6, 22, 23].  These are described as 

follows: 

Fiber size is also known as diameter or fineness.  It can either be specified 

in terms of its actual diameter, or in terms of linear density.  The actual 

diameter is usually measured using units of microns (μm).  Linear density 

is the weight per unit length, where the less the fiber weighs, the finer it is.  

Common units are denier, which is the mass in grams of 9000 meters of a 

fiber; and tex, which is the mass in grams of 1000 meters of a fiber.  One 

tex is one-ninth of one denier.  Denier is the typical unit in the US, while 

tex is more common in Europe.  Typical fiber sizes are listed in Table 2.1. 

Fiber length is important in the translation of fiber strength to yarn 

strength, for which longer fibers are preferred.  Textile fibers are 

considered either staple length (2 to 46 cm – most natural fibers) or 

filament length (infinite length – silk and man-made fibers).  Typical fiber 

lengths are listed in Table 2.1. 
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Density is the ratio of mass to unit volume.  For fibers, density is usually 

expressed as grams per cubic centimeter, or g/cc.  Another common term 

to describe a fiber is specific gravity, which is the ratio of the fiber’s 

density to the density of an equal volume of water at 4°C. 

Fiber crimp includes waves, bends, twists and curls in individual fibers 

and is expressed as crimps per unit length.  Fibers can be linear or can 

exhibit 2-D or 3-D crimp (many natural fibers).  Typically, the more crimp 

a fiber has the more that fiber can elongate.  An extensive review of fiber 

crimp may be found in [24]. 

Microstructure of a fiber includes the cross-sectional shape (i.e. round, 

triangular, flat, dog-bone, and kidney-bean); and the surface (i.e. smooth, 

serrated, scaly, and convoluted). 

Table 2.1.  Typical fiber size and length [22, 23] 

Fiber Type Diameter(μm) Linear Density (DPF
†
) Typical Length 

Cotton 12-20 1.5 0.32-6.35 cm 

Wool 14-45 4 5-12 cm 

Silk 12-30 1 ~300 m 

Polyester 12-25 2 any 

†Denier per filament. 

 

All of these factors have a great affect on the mechanical behavior of the fibers.  

Tensile tests show that fibers exhibit a viscoelastic load response that typically includes 

work-hardening.  The strength of fibers can be greatly influenced by time (rate of loading 

and the fibers load history), temperature and moisture.  The surfaces of fibers also dictate 

the amount of friction present as the fibers are spun into yarns, which influences yarn 
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strength, elongation and abrasion resistance among other properties [21, 23].  Mechanical 

properties of fibers are described as follows: 

Tensile strength is the tensile stress, or force per area, required to cause a 

material to fail.  Cross-sectional area of a fiber is difficult to determine, 

therefore fiber strength is measured relative to the linear density and is 

referred to as tenacity. Common units for tenacity are grams per denier, or 

gpd.  The tenacity can be affected by the presence of moisture as some 

fibers might be stronger when wet while others may be stronger when dry.   

Elongation is the stretching of a fiber under a tensile force and is 

expressed as a percentage of the original length.  The published values of 

elongation are actually the breaking elongation which is the elongation at 

failure.  

Elastic recovery is a measure of how much of the original length is 

recovered after a particular stretch is applied and released.  

Elastic modulus is the ratio of stress to strain in the elastic range of a 

fiber.   

Resiliency is the ability of a fiber to return to its initial position after being 

bent, twisted or compressed. 

Table 2.2 contains these mechanical properties for some common natural and man-made 

fibers. 
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Table 2.2.  Tensile properties of common fibers [21, 25]. 

Property Cotton Wool Silk Rayon
†
 Nylon

†
 Polyester

†
 

Tenacity 

(gpd)
‡
 

  Standard 

  Wet 

 

 

3.0-4.9 

3.3-5.4 

 

 

1.0-1.7 

0.9-1.4 

 

 

2.4-5.1 

1.8-4.0 

 

 

1.9-2.3 

1.0-1.4 

 

 

4.0-7.2 

3.7-6.2 

 

 

2.8-5.6 

2.8-5.6 

Breaking 

Elongation 

(%) 

  Standard 

  Wet 

 

 

 

3-7 

 

 

 

25-35 

25-50 

 

 

 

10-25 

 

 

 

20-25 

24-29 

 

 

 

17-45 

20-47 

 

 

 

24-42 

24-42 

Elastic 
Recovery 

(%) 

74 at 2% 

45 at 5% 

99 at 2% 

63 at 20% 

92 at 2% 

51 at 10% 

NA 98-100 at    
1-10% 

76 at 3% 

Specific 
Gravity 

1.54 1.30 1.34 1.52 1.14 1.38 

Tensile 
Strength 
(ksi) 

59.5-97.0 16.5-28.0 38.5-88.0 NA 73.0-100.0 50.0-99.0 

Average 
Elastic 
Modulus 
(gpd)

 ‡
 

60-70 4.5 60-116 NA 18-23 10-30 

†Filament length/regular tenacity ‡ grams per denier 

2.2 Yarns 

Bundles of fibers are usually combined to produce larger yarns that are more 

suitable for working into the various types of fabrics.  Staple fibers, such as most natural 

fibers, are typically combined by spinning, which uses three main mechanisms to make a 

yarn: drafting, fiber coherence and winding [21, 23].  In drafting, fibers are slid over one 

another without stretching them in order to reduce the fiber strands into the desired yarn 

size.  In fiber coherence, cohesive forces are introduced by such methods as twisting, 

winding, or adhesive bonding to hold the fibers together, utilizing the microstructure of 

the fibers, which are responsible for the strength of the overall yarn.  Finally, in winding, 

the continuous yarn is wound onto a bobbin or cone with particular attention paid to yarn 
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tension and appearance.  Due to the small cross-sectional area in relation to their extreme 

length, filament fibers, such as silk and man-made fibers, are usually combined into 

producer’s yarns by twisting together the requisite number of fibers to produce the 

desired yarn size.  Producer’s yarns can then be twisted into even larger yarns at textile 

mills for the appropriate application.  For clarification, in the composite textile industry, 

textiles can be manufactured using yarns, as are described here, or with roving, which are 

similar but instead of the fibers being twisted together, the fibers are aligned.  

Like individual fibers, yarns are classified according to their size and density.  

Yarn number and count refer to the relationship between yarn weight and length.  There 

are two common systems used in the textile industry:  the direct yarn number and the 

indirect yarn number.  The direct yarn number is the mass per unit length system and is 

derived from the fact that the heavier the yarn, the greater the mass per unit length.  The 

direct yarn number uses units of tex or denier and is more conducive to the metric 

measurement system where the length is in meters and the mass in grams.  The indirect 

yarn number is the length per unit weight and uses units of various counts and is typically 

used where the British Standard form of measurement is dominant where length is in 

yards and weight is in pounds (i.e. cotton with a count of 840 means that a pound of yarn 

is 840 yards long) [21, 25]. 

The mechanical properties of yarns are dependent on the stress-strain properties 

of the fibers, the inter-fiber friction and the compressive properties of the fiber mass.  

Fiber stress-strain relationships usually focus on the tensile behavior, described in the 

previous section, which can be tested on several individual fibers and then averaged.  

Simple expressions to estimate the yarn specific stress and yarn elastic modulus from the 

fiber properties are given, respectively, as: 

  2cosyfy E  (2.1) 

 2cosfy EE   (2.2) 
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where α is the angle between the orientation of the fiber and the axis of the yarn [26]. 

Fibers and yarns buckle easily in compression due to the long and slender 

geometry; therefore, only very small strain elasticity is considered when compressive 

forces are present.  Bending, shear and torsional behavior relate to yarn flexibility.  

Frictional forces are introduced as fibers move relative to one another as a load is applied 

to the yarn.  This is most apparent in staple yarns where there is more slippage due to the 

fibers being discontinuous.  Compression of the fiber mass is how much a yarn can 

compact laterally when loaded, which has an effect on the slippage of fibers.  It is 

regarded as a function of fiber crimp, density, orientation and packing [23].   

2.3 Fabrics 

Fabrics are the primary materials that are used to fabricate garments and other 

textiles.  While fabrics can be woven, braided, knitted or non-woven, the emphasis in this 

research is on woven fabrics made up of two families of yarns: the warp and the weft.  

Warp yarns are those that run the length of the fabric, usually longitudinally between 

beams on a loom.  Weft yarns, sometimes referred to as fill yarns, run transversely to the 

warp yarns.  In the weaving process, a loom is used where the weft yarn is attached to a 

shuttle that is sent back and forth across the warp yarns that raise or lower at various 

intervals to create a weave pattern as shown in Figure 2-3.  Figure 2-4 shows four 

common weave patterns.  From left to right, they are plain, twill, satin and basket weaves. 
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Figure 2-3.  Typical weaving loom [21]. 

 

Figure 2-4.  Common weave patterns:  (a) plain, (b) twill, (c) satin, and (d) basket [21]. 

The most general terms in which a fabric’s mechanical properties are described in 

the textile community are: drape, which is the manner in which a fabric bends over and 

conforms to three-dimensional forms; elasticity, the ability of a material to recover its 

original dimensions and shape after the removal of load; elongation, the ability of a fiber 

to be stretched; modulus, the resistance to strain from stress to which a fabric is exposed; 

and resiliency, the ability of a textile to return to its original shape after bending, twisting, 

compressing, or a combination of loads [6].  Fabric mechanical properties are governed 

by the yarn mechanical properties and other geometric considerations such as the yarn 

count, degree of thread packing within the structure, weave pattern, as well as the yarn 
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crimp.  The yarns are the source of a fabric’s strength.  In a weave pattern having two 

families of yarns in orthogonal directions, the properties will be anisotropic with 

relatively high strength and stiffness in either yarn direction and much lower strength and 

stiffness at intermediate angles.  Yarn count is the number of warp or weft yarns per inch.  

In principle, the higher the yarn count, the more dense the fabric, and the lower the count, 

the more open space will exist between yarns.  In other words, for a given material, a 

fabric with a higher yarn count will be stronger than one with a lower count.  Yarn count 

can also be described in terms of ends and picks; where ends refer to warp yarns and 

picks refer to weft yarns.  If the yarn count is the same for warp and weft yarns, the 

weave is said to be balanced, meaning that the strength properties in either principle 

direction are the same. The degree of thread packing is similar to the yarn count in that it 

measures the density of a fabric where the higher the density, the stronger the fabric.  

Degree of thread packing also allows the porosity, or amount of open space, in the fabric 

to be calculated.   

Finally, the weave pattern and yarn crimp have a large influence on the behavior 

of fabrics.  The fact that fabrics consist of interlacing families of yarns that are woven 

together means that either the warp, weft, or usually both yarns assume a “wavy” shape 

in order to be accommodated within the fabric such as in Figure 2-5.  Yarn crimp results 

in changes in the fabric geometry as it is loaded and unloaded which can have 

advantageous or adverse affects on properties such as elongation, breaking strength, tear 

strength, energy absorption and crease resistance.  The weave pattern has a large 

influence on the yarn crimp.  As shown in Figure 2-5, a plain weave has more crimp than 

a satin weave, meaning that there will be substantially more elongation in the plain 

weave.  Basic yarn crimp geometry is shown in Figure 2-6, where p is the warp or weft 

thread spacing, d is the diameter of a warp or weft yarn, D is the sum of the diameters for 

the warp and weft yarns, L is the yarn length, h is the crimp height, and α is the crimp 

angle [27].   
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Figure 2-5.  Yarn crimp in two different weave patterns:  (a) plain and (b) satin. 

 

Figure 2-6.  Peirce’s basic yarn geometry in a plain weave [27].  

Stretching occurs under tensile loads exerted on the fabric.  Fabrics are able to 

support only small compressive forces before they buckle.  Figure 2-7(a) shows typical 

non-linear tensile behavior of fabrics.  Initially, the behavior is from the result of inter-

fiber friction, inter-yarn friction and decrimping of the yarns, which results in compound 

behavior that exhibits relatively high elongation, though the overall tensile stress remains 

quite small, as shown as region A.  Decrimping is the straightening of a yarn when under 

tensile load.  Due to the interaction between the two families of yarns, when one family is 

under tensile load, its yarn crimp will decrease in amplitude while the other family’s yarn 

crimp will increase in amplitude.  After the fibers and yarns reconfigure/compact, 
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decrimping of the yarns become dominant until they reach a point of yarn lock shown in 

Figure 2-7(b), at which point the contact forces between the intersecting yarns become 

high enough where they can no longer move relative to one another.  After the yarn lock 

occurs, the rest of the behavior is dominated by the mechanical properties of the 

constituents, shown in region B.  The recovery of the fabric as it is unloaded exhibits 

hysteresis due to energy dissipation and residual friction between fibers and yarns, shown 

in region C.   Hysteresis in this context is defined as the permanent set, or deformation, 

resulting of the loading history [9, 12].   Further, if the weave is unbalanced for a specific 

fabric, the tensile properties are generally different in the warp and weft directions 

leading to anisotropy of the material [12, 23].   

 

Figure 2-7.  Idealization of fabric behavior due to (a) stretching where region A exhibits 
decrimping of the yarns until they lock as shown in (b) at which the material 
properties of the yarns dominate and a stiffer response is experienced in 
region B.  Region C shows the hysteresis upon unloading. 

Shear behavior is also highly non-linear.  Resistance to shear deformation is low 

compared to the deformation in tension because there is slippage of fibers and yarns at 
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yarn intersections.  In region D of Figure 2-8(a), the deformation is governed by frictional 

forces that are resisting the relative rotation of the yarns and the elastic bending 

deformation of the yarns.  Shear deformation  in region E is due to the slippage and 

bending of the yarns at the yarn intersection.  Shear forces in region F increase rapidly 

due to the jamming, also known as shear lock, of the yarns, shown in Figure 2-8(b).  Due 

to the presence of friction between fibers and yarns, hysteresis is also present with a 

decreasing shear angle [12, 23].   

 

Figure 2-8.  Idealization of fabric behavior (a) due to shearing [23]. In region D, the shear 
angle is governed by friction resisting rotation.  Slippage and bending of the 
yarns at the yarn intersection occurs in region E, and shear force increases 
rapidly in region F due to yarn jamming, shown in (b). 

The ability for fabrics to buckle gracefully in rounded folds when subjected to 

bending moments allow for them to be draped over any object.  The bending rigidity is 

typically less than 1/100
 
of the tensile rigidity of the same fabric [12].  Figure 2-9 shows 

initial bending in region G that is governed by a frictional restraint produced mainly by 

contact forces at the yarn intersections.  Once the friction is overcome, free elastic 
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bending occurs as shown in region H.  Again, due to inter-fiber and inter-yarn friction, 

bending behavior also exhibits hysteresis [23].   

 

Figure 2-9.  Idealization of fabric behavior due to bending where frictional constraints at 
yarn intersections account for behavior in region G, and free elastic bending 
occurs in region H once the frictional constraints are overcome [23]. 

In general, tensile behaviors of fabric are dependent on end and pick density (the 

number of warp or weft yarns per unit length), weave crimp, and yarn linear density, 

which affects fiber extension and yarn compression.  A rough estimate of the tensile 

strength and stiffness of a fabric may be found by multiplying the strength or stiffness of 

a fiber by the volume fraction of the fibers in the fabric for a given yarn direction: 
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. (2.1) 

For example, if it is known that the fabric is a balanced weave, one can assume that 50% 

of the yarns run in the warp direction and 50% of the yarns run in the weft direction.  If 

the volume fraction of the fibers in the yarn is known, then the strength and stiffness 



20 
 

 

2
0
 

found using (2.1) can be used as a reality check for measured values.  Bending behavior 

is dependent on fabric thickness, weight per unit area, weave crimp, and yarn density.  

However, it has been found that such structural variables have much less influence on the 

shear behavior, which is dependent on the resistance to rotation between the two families 

of yarns [26, 28]. 

2.4 Summary 

The aim of this chapter was to introduce the structural hierarchy that makes up a 

woven fabric, each level’s characteristics, and some of the terminology used in the textile 

field.  The behavior of woven fabrics relate directly to the material properties of the fibers 

via complex structural interactions at both the yarn and fiber scales.  This results in 

complex behavior that is anisotropic, nonlinear, and shows irrecoverable deformation, or 

hysteresis, when loaded in tension, shear and bending.   
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 CHAPTER 3.  EXPERIMENTAL METHODS 

In the textile community, many researchers use one of two common systems of 

experimental testing to obtain relevant material parameters:  the Kawabata Evaluation 

System (KES-F), which measures the parameters listed in Table 3.1; or the Fabric 

Assurance by Simple Testing (FAST) system, which measures the parameters listed in 

Table 3.2 [12].  Both systems are able to provide a wide variety of parameters relating to 

the various forms of deformation of fabrics [12].  While the parameters determined by  

either the KES or FAST tests are conducive for analytical yarn models, trying to 

incorporate them into an anisotropic continuum model is much more difficult [29].  For 

this reason, more traditional structural material testing methods are used in this research 

to develop appropriate material parameters for various fabrics samples.  

 

Table 3.1.  Parameters measured by KES-F system [12]. 

Property Symbol Parameter Measured 

Tensile EMT Extensibility 

 LT Linearity of the tensile load-extension curve 

 WT Tensile energy per unit area 

 RT Tensile resilience  

Shear G Shear rigidity 

 2HG Shear hysteresis (width of loop at  0.5 shear angle) 

 2HG5 Shear hysteresis (width of loop at  5 shear angle) 

Bending B Bending rigidity 

 2HB Bending hysteresis (width of loop at  0.5 cm
-1

 curvature) 

Surface MIU Coefficient of fabric surface friction 

 MMD Mean deviation of MIU 

 SMD Geometric roughness 

Compression LC Linearity of compression-thickness curve 

 WC Compression energy per unit area 
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Table 3.1.  Continued 

 RC Compression resilience 

Thickness T Fabric thickness 

Weight W Fabric weight per unit area 

 

Table 3.2.  Parameters measured by FAST system [12]. 

Property Symbol Parameters Measured 

Tensile E5 Extension at 5N/m 

 E20 Extension at 20 N/m 

 E100 Extension at 100 N/m 

 EB5 Bias extension 

Shear G Shear rigidity 

Bending C Bending length 

 B Bending rigidity 

Compression T2 Thickness at 2 gf/cm
2
 

 T100 Thickness at 100 gf/cm
2
 

 ST Surface thickness 

 STR Released surface thickness 

Dimensional stability RS Relaxed shrinkage 

 RC Hygral expansion 

Derived parameter F Formability 

 

3.1 Objectives 

A series of experimental tests were carried out in this research to become familiar 

with the behavior of a four different woven fabrics:  Cotton-polyester blend, cotton duck, 

cotton muslin, and cotton denim; which are shown in Figures 3-1 through 3-4, 

respectively.  Cotton-polyester blend fabric is commonly used for military battle dress 

uniforms (BDUs) and has an unbalanced plain weave architecture that includes periodic 

larger yarns that help retard fabric tearing.  The yarns themselves are made up of a 
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polyester core with a cotton fiber exterior.  Cotton duck, also known as duck canvas, is a 

tightly woven heavyweight fabric that has an unbalanced 2×1 basket weave, meaning that 

two yarns run together side-by-side in the warp direction with only one yarn in the weft.  

Cotton muslin is a loosely, plain woven medium-weight fabric made up of white or 

unbleached cotton yarns.  Denim is a yarn-dyed cotton fabric that has twill weave 

architecture.  Denim usually has a blue dyed warp yarn, while the weft yarn is white [6].  

Various tests, including uniaxial tensile tests were performed in three different 

orientations of the warp fiber direction with respect to the load direction: 0°, 45° and 90°.  

Objectives of these tests were to generate stress and strain data in order to investigate the 

tensile and shear behavior. 

 

Figure 3-1.  Cotton-polyester blend:  (a) macroscopic and (b) SEM photographs.  
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Figure 3-2.  Cotton duck: (a) macroscopic and (b) SEM photographs. 

 

 

Figure 3-3.  Cotton muslin:  (a) macroscopic and (b) SEM photographs. 
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Figure 3-4.  Cotton denim:  (a) macroscopic and (b) SEM photographs. 

3.2 Specimen Preparation 

Test specimens are cut from the middle region of a swath of fabric using a rotary 

cutting tool and a measuring guide (Figure 3-5a).  The middle region is defined here as 

being the area of the fabric that is at least 10% of the total bolt width away from either 

selvage [25] to ensure uniformity of the weave structure (Figure 3-5b).  The longitudinal 

axis of the specimens included three different orientations:  0°, 45° and 90° (Figure 3-5c).  

Based upon guidelines from ASTM D5035-95 [30], specimens are cut so that the starting 

geometry is 1.0 inch wide and approximately 7.5 inches long.  Using a sewing machine, 

the specimens are finished by being sewn into loops that are 6.75 inches in circumference 

(Figure 3-5d), so that they may be used with our gripping method, described later. 
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Figure 3-5.  Woven fabric samples.  (a) Sample preparation, (b) definition of middle 
region, (c) orientation of specimens, and (d) completed specimens. 

3.3 Fabric Tests, Procedures, and Results 

3.3.1 Fabric Thickness and Density 

The fabric thickness is measured using a procedure based upon ASTM D1777 

[31] using several specimens of each fabric.  Each specimen is placed between two thin 

acrylic plates with a minimal applied compressive pressure.  Using a digital caliper, the 

fabric thickness is determined by subtracting the thickness of the two plates with the 
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specimen between them by the thickness of only the two plates, shown in Figure 3-6.  

The average thicknesses of the tested fabrics are listed in Table 3-3.  

 

Figure 3-6.  Test method for determining fabric thickness using two acrylic plates and a 
digital caliper. 

The fabric density is found using the aforementioned fabric thickness and the 

mass per unit area, which is determined using ASTM D3776-Option C [32].  The density 

is then found by dividing the average mass per unit area by the corresponding fabric 

thickness.   The mass densities for the four fabrics are presented in Table 3-3.  
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Table 3.3.  Density and thickness data for tested fabrics. 

Fabric Label Material Weave Thickness, 
mm 

Mass per 
Unit Area, 

g/m
2
 

Mass 
Density 
kg/m

3
 

Blend CRS8 Cotton/Poly Plain 0.38 230 590 

Duck WD10 Cotton Basket 0.62 290 470 

Denim BD11 Cotton Twill 1.12 390 350 

Muslin WM12 Cotton Plain 0.28 100 370 

 

3.3.2 In-plane Tensile Behavior 

Experimental Setup 

 Uniaxial and biaxial extension tests are the most common methods to determine 

tensile moduli for fabrics in the warp and weft directions.  While the presence of 

transverse loadings has been shown to have a large effect on the apparent stiffness of 

fabric in the longitudinal direction due to decrimping [33, 34] and would have a 

significant effect on the apparent Poisson’s ratio [35], the tests conducted for this 

research are limited to uniaxial tests.  Many researchers, including [17, 29, 36, 37], have 

utilized uniaxial tests; and two ASTM standards [38, 39] are available for determining the 

breaking force and elongation of textile fabrics.  For these tests, a gripping method 

similar to the one used by [40, 41] is employed where fabric specimen loops are loaded 

into the grips around the two stainless steel pins shown in Figure 3-7a.   
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Figure 3-7.  Experimental pin grips (a) without and (b) with fabric specimen loaded. 

In order to determine the tensile behavior of the fabric in the warp and weft 

directions, specimens were loaded into the two grips shown in Figure 3-7b, so that the 

gage length between the centers of the pins was 3.0 inches and that the specimens were 

taut but with negligible pre-stress.  A MTS
®
 servo-hydraulic load frame with Multi-

Purpose Testware
™

 software was used for all mechanical tests.  Monotonic and cyclic 

tests for each orientation were carried out in displacement control, where force was 

measured using a load cell mounted on the load frame and the displacement was 

measured using the internal LVDT connected to the actuator.  Tests were carried out at 

20° ± 3°C and 50% ± 5% RH.  The strain rate for each test was 0.003 /s.  Photographs 

using a Canon PowerShot SD400 digital camera were taken during tests to help 

determine local longitudinal and transverse strains.  The full experimental setup is shown 

in Figure 3-8. 
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Figure 3-8.  Experimental setup: (a) photograph and (b) schematic including MTS load 
frame, secondary monitor, and digital camera. 

Upon completion of each test, Microsoft Excel was used to convert the uniaxial 

force and displacement data into the corresponding components of 2nd Piola-Kirchhoff 

stress and Green-Lagrange strain using the following equations [42]: 
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where Sii is the tensile stress in the loading direction in MPa, P(t) is the force at time t in 

N, A0 is the initial cross-sectional area of each fabric in mm
2
, Eii is the tensile strain in the 

loading direction, l(t) is the displacement at time t in mm and l0 is the original gage length 

in mm, and ii is the either the warp (11) or weft direction (22) with no summation 

implied.  A derivation of Equations (3.1) and (3.2) can be found in Appendix A.  It is 

noted here that the experimental measurements are limited to the plane of the fabric and 

therefore the out-of-plane deformation is neglected.  

The specimens in the monotonic tests were loaded until failure.  The results of the 

monotonic tests for cotton-polyester blend are shown in Figure 3-9 and show the typical 

nonlinear fabric behavior caused by decrimping of the yarns as well as anisotropy 

between the warp and weft yarn directions.  The fabric shows higher ultimate strength in 

the warp direction, but a stiffer response in the weft direction.  The strain-to-failure in the 

warp direction is roughly twice that of the weft direction.  Both directions also show 

apparent yielding behavior before the eventual failure.  Figure 3-10 shows the results for 

cotton duck, where it is noted that both warp and weft directions show similar strain-to-

failure, however, the ultimate strength in the warp direction is about twice that of the 

weft.  The results for cotton muslin, shown in Figure 3-11, exhibit the highest degree of 

anisotropy of the tested fabrics, which is interesting since they are considered balanced 

weaves.  The strength and stiffness in the warp direction are much greater than those of 

the weft, though the weft direction exhibits a much greater strain-to-failure.  Finally, the 

results for cotton denim, shown in Figure 3-12, show that the ultimate strength in the 
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warp and weft directions is roughly equal, though the strain-to-failure in the warp 

direction is more than twice that of the weft.   

 

Figure 3-9.  Experimental data for cotton-polyester blend from three monotonic tests in 
the warp direction and three monotonic tests in the weft direction. 
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Figure 3-10.  Experimental data for cotton duck from three monotonic tests in the warp 
direction and three monotonic tests in the weft direction. 
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Figure 3-11.  Experimental data for cotton muslin from three monotonic tests in the warp 
direction and three monotonic tests in the weft direction. 
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Figure 3-12.  Experimental data for cotton denim from three monotonic tests in the warp 
direction and three monotonic tests in the weft direction. 

For cyclic tests, the tensile strain amplitude is selected from monotonic results as 

a strain that just precedes yielding or breakage of the fabric.  The corresponding 

displacements are found from the strain values and are listed in Table 3.4.  The test 

program was modified to load the specimen in displacement control until the maximum 

displacement was reached, after which, the specimen was then unloaded at the same 

strain rate until the displacement reaches zero.  Figures 3-13 through 3-16 display the 

stress-strain results for single-cycle tests, and feature nonlinear decrimping, anisotropy, 

as well as hysteresis upon unloading.  Here, hysteresis refers to the partial recovery of 

deformation upon unloading and is characterized by a steep slope from the point of 

unloading, which gradually decreases as some crimp is recovered and the specimen loses 
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contact with the pin grip (Figure 3-17).  Earlier tests using wedge grips instead of pins 

exhibited similar hysteresis, where instead of losing contact, the specimen buckled due to 

residual deformation. 

Table 3.4.  Maximum displacement for single-cycle tensile tests. 

Fabric Warp Displacement, mm Weft Displacement, mm 

C/P Ripstop 18.0 10.0 

Cotton Denim 20.0 9.00 

Cotton Duck 6.00 7.00 

Cotton Muslin 3.00 10.0 
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Figure 3-13.  Experimental load/unload data for cotton-polyester blend from multiple 
single-cycle tests in the warp and weft directions. 
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Figure 3-14.  Experimental load/unload data for cotton duck from multiple single-cycle 
tests in the warp and weft directions. 
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Figure 3-15.  Experimental load/unload data for cotton muslin from multiple single-cycle 
tests in the warp and weft directions. 
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Figure 3-16.  Experimental load/unload data for cotton denim from multiple single-cycle 
tests in the warp and weft directions. 
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Figure 3-17.  End of test cycle showing the resulting gap between the bottom pin and the 
specimen due to permanent deformation in the fabric. 

To test the effect of different strain rates, cotton-polyester blend warp specimens 

were loaded at three additional strain rates:  1.31×10
-3

 /s, 1.31×10
-2

 /s, and 1.31×10
-1

 /s.  

The results, shown in Figure 3-18, exhibit very little difference in the higher two strain 

rates with the slower strain rate giving slightly smaller stress values.  For this research, 

the strain rate is assumed to have little effect on the stress-strain results.   

In addition to the battery of displacement control tests, some tests cycled in force 

control were performed.  Figure 3-19 shows one such test of cotton-polyester blend 

loaded in the warp direction.  As the fabric is unloaded and subsequently reloaded, it 

follows a similar path that that is much steeper and more linear than the original loading 

path.  Once the fabric is loaded past a point of virgin strain, it continues on a trend that is 
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consistent with the original nonlinear loading path.  The figure also shows that multiple 

cycles exhibit hysteresis loops.  

 

Figure 3-18.  Strain rate comparison for cotton-polyester blend loaded in the warp 
direction. 
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Figure 3-19.  Load/unload cyclic behavior of a cotton-polyester blend specimen under 
force control in the warp direction. 

3.3.3 Poisson’s Ratios 

Like conventional homogenous materials such as metals and plastics, a fabric 

stretched uniaxially in either the warp or weft direction will feature a corresponding 

contraction in the lateral direction, even though there is no external loading in that 

direction.  However, unlike homogenous materials, this apparent Poisson’s ratio is a 

result of geometrical changes due to the crimp interchange [41].  In order to determine 

the apparent Poisson’s ratios of the fabric, an experimental setup similar to the one used 

by Bruniaux et al [29] was utilized in which a digital camera is used to determine 

longitudinal and transverse strains as a fabric specimen is loaded in uniaxial tension.  As 
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an extension of their technique, we use a grid of dots to determine the Poisson’s ratios 

throughout the gage length of the specimen as shown in Figure 3-17.   

3.3.3.1 Experimental Procedure 

As a specimen is loaded in uniaxial stress, a series of digital photos is taken, 

capturing the displacements of each dot.  Each series of photos is then imported into 

AutoCAD
®

 and scaled according to the dimensions of the known scale in the photo.  The 

dots are connected to create several rectangles.  The stretch and contraction of the 

respective sides of each rectangle are measured as shown in Figure 3-20, and the 

corresponding Green-Lagrange strains are calculated according to (3.2).  Using the total 

Green-Lagrange strain, the Poisson’s ratios for each box are then computed using 

 

 summednot index  repeated 
II

JJ
IJ

E

E


 (3.3) 

where I is the loading direction and J is the transverse direction.  Secant values of strain 

(total strain) are used, since the results are more stable. 
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Figure 3-20.  Measuring longitudinal and transverse strains in order to determine 
Poisson's ratio. 

Figures 3-21 through 3-26 show for each box, how the lateral strain varies as a 

function of longitudinal loading strain for cotton-polyester blend fabric when loaded in 

the warp or weft directions.  Linear trend lines were fit through the origin for each 

specimen.  Averaging the absolute values for each slope, the Poisson’s ratios for cotton-

polyester blend were found to be:  12 = 0.25 and 21 = 0.42. 

 



46 
 

 

4
6
 

 

Figure 3-21.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 01 of cotton-polyester blend. 

 

Figure 3-22.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 02 of cotton-polyester blend. 
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Figure 3-23.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 03 of cotton-polyester blend. 

 

Figure 3-24.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 04 of cotton-polyester blend. 
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Figure 3-25.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 05 of cotton-polyester blend. 

 

Figure 3-26.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 06 of cotton-polyester blend. 
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Figures 3-27 through 3-32 show for each box, how the lateral strain varies as a 

function of longitudinal loading strain for cotton-polyester blend fabric when loaded in 

the warp or weft directions.  Linear trend lines were fit through the origin for each 

specimen.  Averaging the absolute values for each slope, the Poisson’s ratios for cotton 

duck were found to be:  12 = 0.99 and 21 = 0.68. 

 

Figure 3-27.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 01 of cotton duck. 
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Figure 3-28.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 02 of cotton duck. 

 

Figure 3-29.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 03 of cotton duck. 
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Figure 3-30.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 04 of cotton duck. 

 

Figure 3-31.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 05 of cotton duck. 
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Figure 3-32.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 06 of cotton duck. 

Figures 3-33 through 3-38 show for each box, how the lateral strain varies as a 

function of longitudinal loading strain for cotton-polyester blend fabric when loaded in 

the warp or weft directions.  Linear trend lines were fit through the origin for each 

specimen.  Averaging the absolute values for each slope, the Poisson’s ratios for cotton 

muslin were found to be:  12 = 2.04 and 21 = 0.41. 
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Figure 3-33.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 01 of cotton muslin. 

 

Figure 3-34.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 02 of cotton muslin. 
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Figure 3-35.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 03 of cotton muslin. 

 

Figure 3-36.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 04 of cotton muslin. 
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Figure 3-37.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 05 of cotton muslin. 

 

Figure 3-38.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 06 of cotton muslin. 
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Figures 3-39 through 3-44 show for each box, how the lateral strain varies as a 

function of longitudinal loading strain for cotton-polyester blend fabric when loaded in 

the warp or weft directions.  Linear trend lines were fit through the origin for each 

specimen.  Averaging the absolute values for each slope, the Poisson’s ratios for cotton 

denim were found to be:  12 = 0.12 and 21 = 0.22. 

 

Figure 3-39.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 01 of cotton denim. 
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Figure 3-40.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 02 of cotton denim. 

 

Figure 3-41.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the warp monotonic specimen 03 of cotton denim. 
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Figure 3-42.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 04 of cotton denim. 

 

Figure 3-43.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 05 of cotton denim. 
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Figure 3-44.  Poisson's ratios found using lateral strain as a function of longitudinal strain 
for the weft monotonic specimen 06 of cotton denim. 

The Poisson’s ratios for the duck and muslin fabrics are noticeably very large.  

For isotropic elastic materials, the Poisson’s ratio must be between -1 and 0.5.   Sun et al 

[35] state that the Poisson’s ratios for fabrics are very different than those for 

conventional engineering materials and can have some peculiar values.  They developed 

a model based upon weave geometry and found that yarn spacing and yarn diameter have 

significant influence on the Poisson’s ratios.  The high values found here are related to 

the weaving process.  For example, muslin has very different behavior in the warp and 

weft directions although the weave is considered “balanced”.  While the weave geometry 

was not investigated for this research, it is inferred that one yarn direction must have 

more crimp than the other.  As the yarn with more crimp is loaded, the crimp is 

transferred to the “free” yarn (without load) such that the latter yarn is able to contract a 

considerable amount.  Further, the experimental procedures used in this research only 

consider membrane strains of the continuum.  Measuring the deformations in the 
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through-thickness direction and computing the corresponding Poisson’s ratios could 

provide more insight into the high Poisson’s ratios in the plane of the fabric. 

3.3.3.2 Experimental Verification 

The use of photographs to determine physical dimensions is an experimental 

method called photogrammetry.  There are several sources of error associated with the 

experimental procedure including: (1) random errors due to slight movements of the 

camera setup during testing; (2) random errors in the placement of nodes, or points, in 

AutoCAD; and (3) systematic errors due to the limited resolution of the digital 

photographs.  Here, the effect the errors have on the results is discussed and reconciled. 

The resolution of the digital photographs is determined by the number of pixels 

the camera is able to capture and process.  The camera used for these experiments was a 

Canon PowerShot SD400 which produces images consisting of 5.0 megapixels.  The 

physical dimensions of the fabric specimens that are represented by individual pixels is a 

function of the object distance (the distance between the fabric and the camera) as well as 

any associated camera parameters such as zoom.  The experimental setup  used for this 

research has the camera located approximately 55 centimeters from the fabric specimen 

along with a 3.0x digital zoom to ensure that the entire fabric specimen was visible 

throughout testing.  Using Adobe Photoshop CS4, the setup just described yields 

approximately 101 pixels per centimeter (shown in Figure 3-45), which translates to the 

height and width of a pixel being about 0.0099 centimeters.   
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Figure 3-45.  Close-up of scale showing pixels using Adobe Photoshop CS4. 

As is shown in the previous subsection, several of the strain measurements found 

using AutoCAD exhibit significant noise due to the error associated with the placement of 

the node.  It was found that AutoCAD has a few limitations when attempting to zoom in 

on the photograph to place individual nodes including a limit as to how far one can zoom 

in and see individual pixels, and an inherent “snapping” when trying to place a node.  In 

order to verify the experimental procedure and the subsequent results, measurements for 

a representative fabric specimen were also made using Adobe Photoshop CS4.  Using 

Photoshop, it was possible to zoom in and choose individual pixels for each fabric dot 

throughout the series of photographs, as shown in Figure 3-46.  Using the ruler tool 

(shown in Figure 3-47), measurements were made to determine the stretching and 

contracting between respective dots, which were, for each photograph, adjusted by 

dividing the measured number of pixels between dots by the respective number of pixels 
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per centimeter.  The resulting displacements (now in units of centimeters) were converted 

to longitudinal strains in the loading direction and the corresponding lateral strains.  The 

results found using Photoshop for a muslin weft specimen were plotted against the results 

found using AutoCAD and are shown in Figure 3-48.  It was concluded that the results 

using the two different software packages show a similar signal-to-noise ratio and in 

order to produce more precise data, one should use a camera with higher resolution and a 

better marker system.  

 

Figure 3-46.  Screenshot of Adobe Photoshop CS4 showing an individual pixel used for 
subsequent measurements. 
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Figure 3-47.  Measurements using "ruler tool" in Photoshop. 

 

Figure 3-48.  Chart showing the strain results for a muslin weft specimen using both 
AutoCAD and Photoshop. 

Ruler Line 
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3.3.4 In-plane Shear Behavior 

The ability of a woven fabric to easily drape over objects in complex shapes is a 

result of its shear rigidity being much lower than its tensile rigidity [12].  Shear behavior 

of fabrics consists of several modes of deformation, including deformation due to rigid 

intersections of yarns when the shear force is too small to overcome friction, yarn 

slippage when the shear force overcomes friction, elastic deformation when slipping is 

complete, and  yarn jamming [43].  In terms of shear rigidity, Kilby [41] notes that the 

shear modulus, G, is usually much less than the tensile moduli in either the warp or weft 

directions; and yet will have a significant contribution to the effective moduli in 

orientations other than the warp and weft.   There are three main types of experimental 

tests that researchers have used to determine shear behavior:  the pure-shear test such as 

the KES-F shear test [44], the picture-frame test [45], and the bias extension test [37] as 

shown in Figure 3-49.  Using the bias extension test, many researchers such as [17, 46-

48] have used the work of Kilby [41] to estimate the shear modulus in the plane of the 

fabric by measuring the linear elastic moduli and the Poisson’s ratios in the warp and 

weft direction, the tensile modulus determined from a uniaxial stress test in the bias 45 

direction and the equation: 
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Figure 3-49.  Common types of tests for determining shear properties of woven fabrics:  
(a) KES-F shear test, (b) picture frame test, and (c) bias extension test. 

For this research, the bias extension test is used to establish the shear properties of 

fabrics.   Differing from previous approaches that utilize linear approximations based on 

the Kilby approach, we adopt a new approach using large deformation continuum 

mechanics.  In order to compute the shear strain, we begin with the deformation of a an 

infinitesimal line element RdX  into idx , as follows:  

 RiRR

R

i
i dXFdX

X

x
dx 




 , (3.5) 

where FiR is the deformation gradient.  The Green-Lagrange strain tensor is defined as 
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






 , (3.6) 

where CRS is the right Cauchy-Green deformation tensor and δRS is the Kronecker delta. 

For the physical interpretation of in-plane shear, consider two differential line elements 

 1

RdX   and  2

RdX  which deform into  1

idx   and  2

idx  as shown in Figure 3-50, where dS 

and ds are the lengths of the line elements, and Φ and ϕ are the angles between the 
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differential line elements before and after deformation, respectively.  The unit vectors of 

the line element directions before and after deformation are defined, respectively, as 

 
ds

dx
n

dS

dX
N i

i
R

R  ,  , (3.7) 

and the stretch ratio is  

 
dS

ds
  . (3.8) 

 

Following the derivation found in [49], the off-diagonal terms of the Green-Lagrange 

strain tensor can be expressed as 
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If the two differential line elements are initially orthogonal, Φ = 90°, equation (3.9) is 

simplified to  
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 (3.10) 

Rearranging terms, an expression for in-plane shear strain is now defined as 
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Figure 3-50.  Shear deformation of an element. 

For the bias 45 extension tests, the applied stress (3.1) is in the loading direction.  

In order to determine the shear stress causing rotation of the line elements/yarns, the 2PK 

stress tensor must be transformed from the original coordinate system RX  (R = 1,2,3) to 

a material coordinate system RX̂  that is aligned with the original yarn directions, which 

are rotated counterclockwise by 45°, as shown in Figure 3-51.  Vectors and tensors in this 

rotated coordinate system are denoted with a “^” (hat).  The stress tensor is transformed 

according to 

 MNNJMIIJ SQQS ˆ  (3.12) 

where 

  IMMI XXQ ˆ,cos . (3.13) 
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The resulting stress tensor is 
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which leads to an in-plane shear stress of 
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Figure 3-51.  Transformation of stress tensor from original coordinate system to a rotated 
coordinate system. 
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During the bias 45 extension test, there are three distinct zones where different 

deformation modes occur as shown in Figure 3-52.  Identified by Sidhu et al. [50], these 

are: zone I near the specimen grips where there is no significant deformation; zone II, 

which frames the center region of the specimen and includes a mixture of extension and 

shearing; and the middle region, zone III, where the deformation is dominated by shear.  

The bias 45 extension tests performed for this research follow a similar experimental 

procedure as that of the uniaxial tension tests, the main differences being the orientation 

of the yarns and the markings on the front of the specimen.  As shown in Figure 3-53, 

two line elements are marked that correspond with a warp and weft yarn, respectively.  

The specimens were loaded at a strain rate of 0.003 /s until the total displacement of the 

ram was 20.00 mm at which point unloading took place until the displacement of the ram 

was 0.00 mm.  During the experimental test, a series of digital photos are taken for both 

loading and unloading of the specimen.  These photos are then imported into AutoCAD 

and scaled to the reference grid.  For each photo, the length of each line element is used 

to determine the corresponding stretch ratio [Eqn. (3.8)], and the angle between them, 

ϕ12, is recorded, as shown in Figure 3-54.  As the yarns and their coordinates axes are 

rotated 45° from the global coordinate system, the shear strain expression (3.11) is 

modified by including the “hat” notation to denote the rotated coordinate system: 

 
2

cosˆ 1221
12


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. (3.16) 
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Figure 3-52.  Deformation zones for a bias extension test: (I) no significant deformation, 
(II) mixed shearing and extension, and (III) shearing [50]. 

. 



71 
 

 

7
1
 

 

Figure 3-53.  Schematic showing dimensions of the reference configuration and those of 
the deformed configuration at time t. 
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Figure 3-54.  Photograph of bias 45 specimen showing dimensions. 

Yarn stretches and the angle between the two yarns were determined from the 

digital photographs.  It was found that stretch ratios in the warp and weft yarns for each 

fabric, shown in Figures 3-55 through 3-58, deviated little from 1.0, which the maximum 

for all fabrics 1.06.  This affirms the assumption that the deformation in the center of the 

specimen is dominated by pure shear.  The shear strain was determined from equation 

(3.16) and the shear stress by equation (3.15) and the force data from file and plots of the 

shear stress-shear strain relationship for each fabric were created.  To be consistent with 

engineering strain, the plots are a function of twice the shear strain, or 2E12.  Data for all 

tested fabrics exhibit the expected nonlinear behavior with hysteresis as shown in Figures 

3-59 through 3-62.   
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Figure 3-55.  Measured stretch ratios for warp and weft yarns of cotton-polyester blend 
fabric during bias tension tests. 

 

Figure 3-56.  Measured stretch ratios for warp and weft yarns of cotton duck fabric 
during bias tension tests. 
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Figure 3-57.  Measured stretch ratios for warp and weft yarns of cotton muslin fabric 
during bias tension tests. 

 

Figure 3-58.  Measured stretch ratios for warp and weft yarns of cotton denim fabric 
during bias tension tests. 
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Figure 3-59.  Measured shear stress-shear strain data for cotton-polyester blend. 

 

Figure 3-60.  Measured shear stress-shear strain data for cotton duck. 
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Figure 3-61.  Measured shear stress-shear strain data for cotton muslin. 

 

Figure 3-62.  Measured shear stress-shear strain data for cotton denim. 
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3.4 Summary of Measured Fabric Behaviors 

Several experimental tests have been performed in order to evaluate the in-plane 

behavior of four woven fabrics.  Uniaxial tensile tests have shown that all the tested 

fabrics exhibit nonlinear decrimping behavior, anisotropy and hysteresis.  Using a novel 

approach, bias extension tests were used to determine the shear behavior, which was also 

found to be nonlinear and hysteretic.  To add mechanical realism to clothing simulations, 

constitutive models for woven fabrics should include these essential features, namely 

anisotropy, nonlinearity and hysteresis.  The experimental results of this section are used 

to guide the development of such a constitutive model and then for both material 

parameter estimation and model verification. 
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CHAPTER 4.  REVIEW OF FABRIC CONSTITUTIVE MODELS 

Since the 1930s, much work has been done in modeling the mechanical behavior 

of woven fabrics.  Early analytical work by such authors as Peirce [27, 51], Hearle et al 

[26], and Grosberg and Kedia [52], focused on simple stretching and shearing of fabrics 

based on the weave geometry of a unit cell. More recently, there has been an increasing 

interest in computational modeling of the behavior of fabrics, where more complicated 

loadings can be considered.  Much of the latter work was pioneered by the computer 

graphics industry in the 1980s; where the overall aim was visual realism, meaning that a 

simulation of the fabric should simply “look” real with no regard to the mechanical 

realism of the resulting behavior [10, 11].  In an attempt to address mechanical realism of 

fabric simulations, several approaches have been developed in regards to macroscopic 

behavior, which include yarn models, particle-spring models, and continuum models.  In 

this chapter, all three are discussed with emphasis on continuum models.  From the 

structural hierarchy present in woven fabrics, it is evident that their overall behavior is 

complex and is a function of many variables.  While work is ongoing in the mechanical 

behavior at each length scale such as fibers and yarns [11], we concern ourselves here 

with behavior at the fabric scale, namely in-plane tensile and shear behavior and out-of-

plane bending.   

4.1 Yarn Models 

Analytical yarn models have evolved from the work of Peirce, who defined the 

standard for the geometry of woven yarns [27, 51], which was shown in Figure 2-6.  

These models characterize the behavior of fabrics by studying the interactions of the 

yarns that make up the unit cell, or repeating pattern, of the weave.  Essentially, 

extensions and rotations of yarns were used to determine corresponding tensile, shear and 

contact forces acting on the yarns.  Once these forces in the yarns were calculated, they 

could be multiplied by the number of ends or picks per unit length to determine the force 



79 
 

 

7
9
 

per unit length of a fabric.  Grosberg and Kedia [52] derived an analytical solution for the 

initial load extension moduli due to decrimping in a plain-weave fabric.  For this 

decrimping region, they assumed the yarns to be inextensible and thin beams.  The shape 

of the yarn between two neighboring intersecting yarns was determined by the reactions 

at each intersection:  the force applied to extend the yarn, and the contact force between 

the two yarns at an intersection.  Grosberg and Kedia [52] used initial geometric 

parameters and yarn bending rigidity to determine how the shape of the yarn changed 

when a load at the end of the yarn was applied for cases in which crossing yarns were 

present and absent.  

In the early 1970s, Kawabata et al [33, 34, 44] presented seminal work 

investigating the deformation of fabrics under biaxial, uniaxial, and shear loads.   For all 

aspects of their theory, they assumed elastic bodies, but noted that this assumption does 

not require the properties to be linear.  For biaxial tension, they constructed a geometric 

model with parameters that included yarn densities, yarn crimp, and yarn spacing in the 

warp and weft directions, the angle between the yarn axis and the out-of-plane axis, yarn 

length in the unit cell, distance between the neutral line and the yarn axis along the out-

of-plane axis in the undeformed state, the deflection of yarn along the out-of-plane axis in 

the deformed state as well as the warp and weft yarn extension properties.   
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Figure 4-1.  Yarn interaction:  (a) the crossover point of two yarns and (b) the 
corresponding stretches and forces during loading. 

Based upon the original and deformed geometries, they formulated a procedure to 

calculate the tensile forces in the warp and weft yarns and the contact force at the 

intersection of the two yarn families from the stretch ratios of the fabric in the warp and 

weft directions as shown in Figure 4-1.  After initially assuming that the yarn thickness 

was inextensible, they then modified the procedure to include changes in yarn cross-

section.  To verify their model, they compared their theoretical results to experimental 

results under two loading conditions:  uniform biaxial extension, where the stretch ratios, 

1 and 2 were equal; and strip biaxial extension, where, while one stretch ratio was 

increased (1/2 > 1.0), the other was held constant (2/1=1.0).  The stretch ratio was 

defined as 
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strain1

state dunstretche in thelength 

state stretched in thelength 





.

 (4.1) 

Examples of the results of both tests are shown in Figure 4-2.  

 

Figure 4-2.  Comparison of Kawabata et al's [33] theory for a plain-weave cotton fabric 
versus experimental data for (a) uniform biaxial tension and (b) strip biaxial 
tension. 

For uniaxial tension, they note that according to their biaxial theory, since the 

tensile force in the transverse direction was zero, the contact force would also be zero, 

which was in contrast to the experimental results.  The biaxial theory was modified to 

include uniaxial tension by using a first-order approximation for the contact force, where 

the constants for the approximation were based upon material and geometric properties.  

The contact force was also shown to be the summation of the bending and shearing forces 

of the yarns at the crossover point.  Since this shear term can have positive or negative 

values depending on a state of loading or unloading, the model was able to capture the 
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hysteresis present in experimental data as shown in Figure 4-4a.  Finally, they further 

extended their theory to include shear deformation by using a linear approximation to 

estimate the torque required to change yarn intersection angle by an angle, , and as a 

function of contact force (Figure 4-3).  These torques, along with any present extensions, 

were then used to calculate the shear forces.  Again, the increase or decrease of the shear 

angle allowed for the modeling of the hysteretic behavior.  They modified their biaxial 

test machine to test for shear and an example of their experimental results was compared 

to their theory in Figure 4-4b.  Overall, the models developed by Kawabata et al give 

very realistic behavior for uniaxial, biaxial, and shear deformation by including 

nonlinearity and hysteresis.  The models, however, are not very conducive for clothing 

simulations in that number of parameters and computations is restrictive for the 

computational time that would be necessary. 

 

Figure 4-3.  Yarn shear interaction:  (a) the original configuration of a crossover point of 
two yarns and (b) the resulting deformation due to a shear load. 
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Figure 4-4.  Comparison of Kawabata et al's [34, 44] theory for a plain-weave cotton 
fabric versus experimental data for (a) uniaxial tension and (b) shear. 

More recently, Anandjiwala and Leaf [36, 53] developed a generalized yarn-

geometry model that was able to include hysteresis evident in cyclic loadings of fabrics, 

which they note was the result of the viscoelastic nature of fibers and the friction between 

fibers and yarns. The model consisted of determining the curvature of a yarn in the 

deformed state using the yarn’s bending, extension, and compression properties.  To 

produce the hysteretic effect, a recovered state was defined when the applied load was 

less than the maximum load of a given cycle, thereby changing the parameters used to 

determine the curvature.  Comparisons between their theoretical results and experimental 

results (Figure 4-5) showed generally good agreement during extension, but during 

recovery, their model greatly underestimates and amount of hysteresis.  
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Figure 4-5.  Comparison between hysteretic model and experimental data [36]. 

In addition to the previously mentioned analytical models, unit cell finite element 

analyses have also proven to be a very effective tool.  Cavallaro et al [54] used yarn unit 

cell finite element analysis to study the effects on mechanical properties due to plain-

weave yarn structure and various shear and biaxial loadings.  Unit cell studies of shear 

deformation were also presented by Sun and Pan [43] and Lin et al [45].  Hivet and 

Boisse [55] used unit cell analysis to study the behavior of different types of weaves.   

4.2 Particle-Spring Models 

Since the early 1990s, the computational modeling of fabric and clothing at the 

macroscale has evolved into two main approaches: particle-based modeling and 

continuum-based modeling.  Pioneered by Breen [9, 56], particle-based methods are 
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derived from the geometry of yarn models and essentially treat the intersections of warp 

and weft yarns as point masses, or particle nodes, connected to the surrounding nodes by 

springs and dashpots that can account for the stretching, shearing and bending of cloth as 

shown in Figure 4-6.  In terms of macroscopic deformation, particle-spring models are 

able to accurately predict fabric behavior by varying the spring and dashpot parameters 

until the results correlate with experimental data, usually determined by means of the 

Kawabata Evaluation System (KES) [12].  Boubaker et al have used particle-spring 

models to study the interaction between yarns and their effect on fabric behavior [57, 58] 

and extended their work to the macroscopic study of drape [59].  Zhou et al [60] recently 

used this method to simulate the out-of-plane buckling due to in-plane shear loads.  This 

method has been used extensively in drape and clothing simulations, especially in 

computer graphics applications due to its ease of implementation and visual realism of 

the results [12]. 

 

Figure 4-6.  Example of a particle-spring model for a plain-weave fabric showing three 
types of springs. 
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4.3 Continuum Models 

As has been demonstrated, woven fabrics are a discontinuous and heterogeneous 

material.  Continuum models, however, homogenize fabrics into a thin, continuous, and 

homogenous sheet.  For simulations of woven fabrics, many researchers have turned to 

finite element models.  Because the thickness of fabrics is so much smaller in relation to 

the other, in-plane dimensions, it is convenient to develop constitutive equations that 

utilize shell elements.  Figure 4-7 illustrates this homogenization where the material 

directors g1 and g2 correspond to the orientations of the warp and weft yarns, 

respectively.   

 

Figure 4-7.  Homogenization of (a) a fabric of woven yarns to (b) a corresponding 
anisotropic continua. 

Many continuum-based finite element models have been developed.  Collier et al 

[15] modeled the draping behavior of fabrics using a four-node shell element. Noting that 
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woven textiles are not easily stretched yet will bend through large displacements, 

membrane and bending strains were derived that included linear and nonlinear terms.  

Assuming that the fabric had a linear stress-strain relationship, their numerical and 

experimental analysis consisted of draping a circular fabric over a circular metal plate of 

a smaller area where the only external load was gravity.  Using three material parameters: 

the elastic moduli in the warp and weft directions and an assumed Poisson’s ratio, they 

compared the drape coefficient (the ratio of the difference between the projected area and 

the area of the metal plate to the difference between the original fabric area and the area 

of the metal plate) they found using their model to experimental values and determined 

that there was close agreement between the drape coefficients, though the deformed 

shape was highly dependent upon the Poisson’s ratio. 

Chen and Govindaraj [13] developed a shell formulation that included the 

coupling of the stretching and bending within each element.  Their model focused on 

calculating surface membrane shears, curvature change, and transverse shears and 

neglected any change in the shell’s thickness.  The model assumed a small strain linear-

elastic orthotropic constitutive relationship.   
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 (4.2) 

Where E1 is the elastic modulus in the warp direction, E2 is the elastic modulus in the 

weft direction, G12, G13, and G23 are shear moduli, and ν is the Poisson’s ratio. 

Simulations of their model showed a realistic 3D rendering of a square fabric 

draped over a square base of smaller area, shown in Figure 4-8.  Deformation and folds 

were in very close agreement with experimental results.  They followed this up by 
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investigating the influence of material parameters on fabric drape [14].  They found that 

(1) materials with higher elastic moduli have less drape, (2) higher shear moduli induce 

an orthotropic effect, (3) changes in fabric thickness have a large influence on bending 

stiffness, and (4) in contrast to Collier’s results, changes in Poisson’s ratio have little 

influence on the drape.   

 

Figure 4-8.  Animation of simulated fabric drape by Chen and Govindaraj [13]. 
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Similarly, Kang and Yu [16] derived a large deformation, anisotropic method to 

simulate the drape of woven fabrics.  Their shell model was formulated using Green-

Lagrange strain that was broken down into three parts that accounted for membrane 

strain, bending strain, and transverse shear strain.  The constitutive equations simplified 

down to the St. Venant-Kirchhoff model, which is an extension of the linear-elastic 

orthotropic constitutive model (4.2) to large deformation.  The internal work was 

calculated using these strains along with their corresponding 2
nd

 Piola-Kirchhoff stresses 

via an orthotropic elastic constitutive model and the external work was due to gravity.  

They verified their model against experimental results from deflection curves of fabric 

strips and drape results circular fabrics and found good agreement. 

Wu et al [17] developed a constitutive model for dynamic drape simulations that 

included collision detections for fabrics.  Their work mainly consisted of defining elastic 

moduli tensors for stretching and bending deformation in terms of the elastic, shear, 

bending, and twisting moduli, the Poisson’s ratios, and bending quantities analogous to 

the Poisson’s ratios.  Most of the parameters were measured for a particular fabric using 

the KES tests, while the remaining parameters were estimated using the known 

quantities.  Once these quantities were known, the strain energy density was found and 

the total energy was minimized to find the equilibrium state.  The acceleration was then 

computed in order to find the next state of deformation, while correcting for any possible 

collisions. 

While the preceding studies assumed anisotropic linear elasticity, others have 

aimed to include more of the material non-linearity in the constitutive modeling.  Peng 

and Cao [61] developed a continuum mechanics-based constitutive model that allowed 

for non-orthogonal material directors that correspond to the local orientation of warp and 

weft yarns.  They used a convected coordinate system in which the in-plane axes 

coincided with the warp and weft yarns of a woven composite fabric embedded in a shell 

element.  With the convected coordinate system, they were able to transform stresses, 
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strains, and elastic moduli from one set of coordinates to another, using basic rotation 

matrices.  Looking at load-strain curves from real fabric tests, they observed that there 

were three stages in the tension test:  a stage with very small tensile modulus due to the 

decrimping of yarns, a stage with an approximately linear high tensile modulus, and 

finally a stage where damage was taking place evident by a non-linear curve with a 

smaller tensile modulus than that of the second stage; and two stages in shear tests:  

initial compliance due to the decrimping and rotation of yarns followed by a dramatic 

increase in stiffness due to shear lock.  Using results from a specific test, they were able 

to form the components of the orthotropic elastic moduli by fitting a curve, which 

resulted in close agreement with that particular test as shown in Figure 4-9. 

 

Figure 4-9.  Comparison of (a) uniaxial warp/weft results and (b) bias 45° results for a 
woven composite fabric.  In both cases, moduli were developed by fitting a 
curve to the experimental data [61]. 

Ruiz and Gonzalez [62] investigated the use of different hyperelastic strain energy 

functions in the modeling of fabrics.  They considered several hyperelastic strain energy 

functions that were expressed as functions of the principle stretches of the strain tensor.  

In trying to minimize the number of experimental parameters, they considered two cases:  
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one in which only uniaxial tension test data were considered, and one including uniaxial 

tension, shear and biaxial tension test data.  Their methodology included selection a 

hyperelastic model, introducing the experimental data from either of the cases, employing 

a nonlinear regression scheme to determine the coefficients of the selected model and 

then utilizing a finite element analysis to solve a test problem.  They found that for the 

case considering only uniaxial tension test data, the Mooney-Rivlin, Yeoh, and Arruda-

Boyce models produced the best fit with the initial experimental data; however, only the 

Yeoh and Arruda-Boyce models were able to converge to solutions in the finite element 

analysis.  In the other case, only the Mooney-Rivlin model produced results that fit the 

experimental data well.   

A promising extension of continuum models is that of a multiscale analysis.  In 

this approach, the fabric is considered a continuum subjected to the applied macroscopic 

loads and boundary conditions.  Through the use of continuum mechanics and finite 

element modeling, the calculated deformation gradient at a particular integration point is 

used as input into a unit cell analysis.  There, methods such as those described earlier in 

the yarn modeling approach or the particle-spring approach are used to calculate the 

various forces acting on the yarns.  These forces are then averaged and used to determine 

the stress at the continuum, or macroscopic, scale.   Some interested work in this area has 

been done by King et al [63, 64] and Nadler et al [65]. 

Work by Reese [66] considered the anisotropic elastoplastic deformation of 

pneumatic membranes.  The membranes were modeled as woven fibers embedded in a 

rubber-like matrix.  A strain energy function that included a Neo-Hookean term for the 

matrix and anisotropic term for the woven fibers was proposed.  Noting that the 

plastification was limited to the fibers, an anisotropic yield function, hardening law, and 

flow rule were introduced that were based upon a multiplicative split of the deformation 

gradient.  Finite element results were compared to “experimental” data that was 

generated using a unit cell computer model and the results are shown in Figure 4-10. This 
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approach shows promise, however, they assumed that the behavior in the warp and weft 

directions was decoupled and the algorithm is computationally expensive. 

 

Figure 4-10.  Comparison of biaxial response of experiments and model.  Initially, 
behavior is controlled by the rubber matrix, resulting in very low stress.  As 
the load is taken up by the yarns, stress increases rapidly until it yields, 
where plastic behavior dominates [66]. 

4.4 Discussion 

In terms of general fabric modeling, all the described approaches have their 

advantages and disadvantages.  As the ultimate goal of this research is to develop 

constitutive models that will be used with dynamic clothing-wearer interactions, 

computational efficiency and stability as well as mechanical accuracy are crucial.  

Although the realism of fabric behavior demonstrated by yarn and multiscale models are 

very high, the computational expense of dynamic simulations at that resolution is just too 

great, and thus their use is not feasible at this time.  Particle-spring models have seen 

widespread use in computer graphics and have proven to be mechanically realistic; 
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however, the coefficients of the various springs and dashpots are set for particular mesh 

size and changing the mesh would require resetting all parameters.  While continuum-

based models are more computationally involved, they are resolution independent and are 

better suited to capture the physics of the clothing using constitutive equations [3, 67].   

Many current continuum models by researchers such as Collier et al [15], Chen and 

Govindaraj [13, 14], and Kang and Yu [16] assume linear elastic behavior, where the 

elastic and shear moduli are taken to be the initial moduli from experiments.  In order to 

determine the suitability of these models, we use a St. Venant-Kirchhoff (SVK) 

constitutive model with linear elastic and shear moduli that are estimated from the initial 

linear slope of the cotton-polyester blend experimental data shown in Chapter 3.  The 

results from the SVK model are compared to experimental data in Figure 4-11.  The St. 

Venant-Kirchhoff model would be sufficient in simulations where the strains are small, 

say less than 5%, such as drape studies where the only load is that due to gravity; 

however, for clothing simulations where the local tensile strains may be as high as 25% 

[20] to 50% [19] the SVK model is clearly deficient.   
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Figure 4-11.  Comparison of SVK and experimental results for a monotonic uniaxial 
stress tensile test in the warp and weft directions for cotton-polyster blend 
fabric. 

Therefore, it is seen as advantageous to develop a continuum-based constitutive 

model to be incorporated with a 3-D bilinear degenerated continuum shell element.  

Continuing on the recent fabric modeling direction, the model developed in this research 

will be an incrementally elastic, orthotropic model whose moduli are functions of the 

current strain tensor.  In addition, a novel approach will be taken to include the 

substantial amount of hysteresis observed upon unloading of the fabric. 
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CHAPTER 5.  FINITE ELEMENT BACKGROUND 

In this chapter, the finite element analysis framework for fabric modeling is 

presented.  Since the thickness is much smaller than the other two physical dimensions of 

a textile, a macroscopic geometrically nonlinear shell element is a clear choice for 

modeling the behavior of fabrics.  Currently, a three-dimensional bilinear degenerated 

continuum shell element, modified for use with finite deformations by Man [3] is 

employed.  This shell element is degenerated, meaning that it must satisfy the vanishing 

normal stress condition. 

5.1 Problem Statement 

In order to develop a nonlinear shell formulation, the general problem statement is 

formulated through the use of energy methods following [68, 69].   In the energy 

approach, the equations of motion are derived by applying virtual displacements, δui, to 

the body that are consistent with the geometric constraints that the body is subjected to.  

This derivation not only provides the equations of motion, but also the sets up the natural 

and essential boundary conditions.  The use of virtual displacements can lead the body to 

take on an infinite number of configurations; however, of these, the only admissible 

configurations are those that satisfy the natural and essential boundary conditions.  

Finally, the true configuration is the one that satisfies the force equilibrium. 

To begin, the momentum equation for the original, or reference, configuration Ω0 

is given as:  

 iiJiJ ubP 
00,    (5.1) 

where 0   is the initial mass density, bi is the body force, iu  is the acceleration, and PiJ is 

the 1
st
 PK stress.  Natural (applied tractions) and essential (prescribed displacements) 

boundary conditions are prescribed, respectively, as: 
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0

000

on

on

i

i

uii

tiJiJ

uu

tnP




 (5.2) 

Where 
0

it
  and 

0

iu  are the locations on the boundary of 0  where the tractions 0

it  and 

displacements iu  are prescribed, respectively, and 0

Jn  is the outward normal to the 

boundary of 0 . 

The weak form is developed by multiplying the momentum equation in (5.1) by a 

test function, in this case a virtual displacement, δui, and then integrating over the initial 

configuration as follows: 

   
0

0000, dubPu iiJiJi  . (5.3) 

Distributing in the virtual displacement,  

   
0

0000, duubuPu iiiiJiJi  . (5.4) 

The derivative of the stress in the first term of the right hand side of (5.4) requires 

that the virtual displacement to be C
2
 (the second derivative of the virtual displacement is 

continuous).  For the weak form of the momentum equation, the virtual displacements 

need only be C
0
.  Therefore, the derivative of the stress can be eliminated using the 

derivative product rule: 

 
 

 
















000
000 dP

X

u
d

X

Pu
d

X

P
u iJ

J

i

J

iJi

J

iJ
i


 . (5.5) 

Using the divergence theorem, the first term on the left hand side of (5.5) is converted to 

a surface integral: 

 
 

 





0
int00

0

0

0

0

0 dPnudPnud
X

Pu
iJJiiJJi

J

iJi 


. (5.6) 

 

The interior continuity condition states that on 0, 00

int  iJJ Pn .  Using (5.2), (5.6) can be 

rewritten as 
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 

 





0

0
0

0

0
it

dtud
X

Pu
ii

J

iJi 


. (5.7) 

Substituting (5.5) and (5.7) into (5.4) and including a sign change, the weak form is: 

  


00
0

0
00000

0

0 duudbudtudPF iiiiJiiJiJ
it

 . (5.8) 

where JiiJ XuF  . 

For completeness, the strong form may be derived by eliminating the derivative of 

the test function on the left hand side.  Using (5.5) and (5.6), the left hand side of (5.8) 

may be rewritten as 

  


0
0
int

0
0

0

0

0

0

0

0

0 dtudPnudPnudPF iiiJJiiJJiiJiJ
it

 . (5.9) 

The strong form can now be written as 

      


0
int

0
0

00

0

0

00

000, dPnudtPnudubPu iJJiiiJJiiiJiJi
it

 ,(5.10) 

where the first term is the momentum equation, the second term is the traction boundary 

condition and the last term is the interior continuity condition. 

Since each term in (5.8) contains a virtual work increment (virtual displacement), 

the weak form may be rewritten in terms of the principle of virtual work: 

 
     ii

kin

ii

ext

ii uuWuuWuuW ,,,int  
 (5.11) 

where: 

  
0

0

int dPFW iJiJ  (5.12) 

  


0
0 000

0ext dbudtuW iiii
it

  (5.13) 

 and 
 

0
00

kin duuW ii


. (5.14) 

Because PiJ is not symmetric, it is advantageous to transform it to the symmetric second 

Piola-Kirchhoff tensor, SIJ.  Using the transformation rule 

 kJIkIJ PFS 1  (5.15) 
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and the virtual Green-Lagrange strain 

 
 KJ

T

IKKJ

T

IKIJ FFFFE  
2

1

, (5.16) 

the internal virtual work in (5.12) is rewritten as 

 
 

0
0

int dSEW JIIJ
. (5.17) 

5.2 Coordinate Systems 

Currently, four coordinate systems are utilized in the shell implentation: (1) a 

global Cartesian coordinate system  (X1, X2, X3) with orthonormal basis vectors (e1, e2, 

e3);  (2) a shell coordinate system (ξ, η, ζ) that is describes the physical domain of the 

shell element; (3) a lamina coordinate system defined at each integration point; and (4) a 

fiber Cartesian coordinate system at each node that is used as a reference frame for 

rotations. 

In general, shells are highly non-planar in form.  Each integration point in the 

element has a tangent plane with respect to the lamina.  The lamina Cartesian coordinate 

system that is constructed at each integration point and is defined by the orthonormal 

basis vectors lll

321 and, eee .  To define these basis vectors, the tangent vectors for the ξ and 

η directions are constructed as: 

 











,

,

,

,
and

i

i

i

i

x

x

x

x
 ee

 (5.18) 

The normal basis vector is then constructed as: 

 



ee

ee
e




l

3

, (5.19) 

and the tangent basis vectors are constructed as: 

 
    eeeeee 

2

2
and

2

2
21

ll

, (5.20) 
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where 

 

 

  









ee

ee
e

ee

ee

e










l

l

3

3and

2

1

2

1

. (5.21) 

In general, 



e3
l  is not tangent to the fiber direction.  It is used to invoke the plane 

stress condition at each integration point.  By enforcing the stress in the 



e3
l  direction to be 

zero, a reduced constitutive equation is derived where five independent components for 

the stress and strain tensors is all that is needed as is shown in Chapter 6.   

The fiber Cartesian coordinate system is constructed at each node with 

orthonormal basis vectors fff

321 and, eee , with the requirement that f

3e  is chosen to 

coincide with the fiber direction AX̂ , which is defined in the next section.  An algorithm 

for calculating the fiber basis vectors is given by Hughes [70].  The global, lamina, and 

fiber coordinate systems are shown in Figure 5-1. 
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Figure 5-1.  Geometric description of the shell element. 

5.3 Shell Geometry and Kinematics 

Using the approach of Hughes [70], Man [3, 8] developed a geometrical 

description for the initial and current configurations with respect to the lamina coordinate 

system according to the following relations, respectively: 

 

       

        A

nen

A

AAA

nen

A

A

A

nen

A

AAA

nen

A

A

zNN

zNN

xxx

XXX

ˆ,,,,

ˆ,,,,

11

11

















; (5.22) 

where AX  and Ax  are the initial and current position vectors of mid-surface node A, 

respectively; AX̂  and Ax̂  are the initial and current fiber directors emanating from node A 

in the fiber direction, respectively;  Az  is a thickness function;   ,AN  is a two 

dimensional shape function associated with node A and nen is the number of element 
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nodes.  The shell geometry is shown in Figure 5-1.  Individual terms in (5.22) are defined 

as: 

 

   

    







AAA

AAA

xxx

XXX





1
2

1
1

2

1

1
2

1
1

2

1

 (5.23) 

 



















AA

AA
A

AA

AA
A

xx

xx
x

XX

XX
X

ˆ

ˆ

 (5.24) 

 

     

 

  











AAA

AAA

AAA

z

z

zzz

XX

XX







1
2

1

1
2

1

1
2

1
1

2

1

 (5.25) 

where  1,1  is the natural coordinate of the reference surface ( 0  if the middle 

surface of the shell is chosen), and 

AX  and 

AX  are the coordinates of the top and bottom 

surfaces of the shell along each nodal fiber, respectively.  This shell element has five 

parameters:  three translational components in a Cartesian coordinate system and two 

rotations about the in-plane coordinate axes.  The rotation about the out-of-plane 

coordinate axis is neglected as explained later in this section. 

As a material deforms from the initial to the current configuration, the 

displacement vector for finite deformations is  

 Xxu  . (5.26) 

Using this relation, the current nodal position for node A is: 

 AAA uXx  , (5.27) 
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where Au  is the displacement of a nodal point on the reference surface; and the fiber 

director is updated as: 

 AA XRx ˆˆ  , (5.28) 

where R is an orthogonal matrix describing the finite rotations of the nodal fiber director.  

The matrix R is derived using Euler’s theorem, which states that in any rigid body 

rotation, there exists a line which remains fixed, about which the body rotates.   

 

 

Figure 5-2.  Finite rotation of a vector r about the axis 1ê . 

To illustrate and derive the rotation matrix R, we refer to Figure 5-2.  The vector r 

rotates about the unit vector e to r' by  
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 rRr ' , (5.29) 

and e is defined as 1ê  Using vector addition, (5.29) may be expressed as 

 PQrrr '
. (5.30) 

In the bottom diagram in Figure 5-2, the in-plane magnitude of both r and r' is a, where 

 sinra   (5.31) 

and r is the magnitude of r.  Using geometry and trigonometry, we find that  

  sinsinrb   (5.32) 

   cos1sin  rc . (5.33) 

Using (5.32) and (5.33), (5.30) is expressed as 

 
  32

ˆcos1sinˆsinsin' eerr   rr
. (5.34) 

From the definition of the cross product, we can write 

 ree 2
ˆsinr  (5.35) 

  reee 3
ˆsinr . (5.36) 

and express (5.34) as 

    reererr   cos1sin' . (5.37) 

To express (5.37) in matrix form, a skew-symmetric tensor is defined as  

 

   

kijk

kij

ae

a



aΩ

, (5.38) 

where eijk is the permutation symbol.  Equations (5.35) and (5.36) are now expressed, 

respectively, as 

  reΩre   (5.39) 

    reΩree 2 , (5.40) 

so that  
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      reΩreΩrr 2cos1sin'   . (5.41) 

For the rotation matrix, it is convenient to define a column matrix of rotations θ, with 

eθ  .  Substituting θ into (5.41),  yields 

 
 

 
 rθΩrθΩrr 2

2

cos1sin
'







 


. (5.42) 

Thus, the rotation matrix is defined as 

 
   

 
 θΩθΩθR 2

2

cos1sin







 
 I

, (5.43) 

where  

 

    2/1

12

13

23

 and 

0

0

0

θθθΩ 























 







. (5.44) 

In shell kinematics, the drilling degree of freedom, 3 , is usually excluded.  

Therefore, the new orientation of the normalized fiber director is dependent only upon 

nodal rotations about the two in-plane axes of the fiber basis, or f

A

f

A

f

A

f

AA 2211 eeθ   .  

The current normalized fiber director can now be defined as 

 
    f

A

f

A

f

A

f

A

f

AAA 32112 cos1
sinˆˆ eeeXx 





, (5.45) 

and the rotation of the fiber director tip is: 

 
    f

A

f

A

f

A

f

A

f

A

AAA

32112 cos1
sin

ˆˆˆ

eee

Xxu









, (5.46) 

Therefore, given a nodal displacement vector 

  TAAA θud  , (5.47) 

the current nodal configuration is expressed as: 
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 

    A
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AAA
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zNN XθRuX

dxx

ˆ

11


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



. (5.48) 

5.4 Explicit Linearized Kinematics 

Because the problem is geometrically nonlinear, it needs to be solved iteratively.  

In order to do this, (5.48) is linearized as 

 
  xxx d  *

*
A

L
, (5.49) 

where 
*x  is the trial displacement and x  is the directional derivative of x along an 

incremental nodal displacement  AAA θud  .  The directional derivative is 

defined as 

 

  

A

nen

A

A

A

AA

nen

A

AA

AA

AA

zNN

d

d

Xθ
θ

R
u

ddxx

θθ

ˆ

11

0

*

*


 





























. (5.50) 

In general, the fiber basis vectors f

ie  differ from the global basis vectors ei; therefore, a 

transformation matrix relating the two bases is defined as 
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njm
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imn eeT 
. (5.51) 

The second term on the RHS in (5.50) is now transformed as 
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where α = 1,2.  Equation (5.52) leads to two auxiliary vectors  21 ˆ ，D A u  defined as 
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and is the linearized displacement of the fiber director tip and 
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. (5.55) 

The directional derivative can be written as 

 A

A dHx   (5.56) 

where the incremental displacement is 

 
 Tf

A

f

AAAAA uuu 21321  d
 (5.57) 

and the generalized interpolation matrix is 
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H

. (5.58) 

5.5 Force Vectors and Tangential Matrices 

Since AD û  is a nonlinear function of θA, the generalized interpolation matrix for 

the degenerated shell element is deformation dependent, unlike a continuous element. 

Therefore, the variation of the shell configuration due to a virtual nodal displacement is  
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 
 A

A

ii dHx 
 (5.59) 

 JiiJ xF , 
 (5.60) 

 

 

 JkIkJkIk

kJkIkJkIIJ

xxxx

FFFFE

,,,,
2

1

2

1









 (5.61) 

  JkIkJkIkIJ xxxxE ,,,,
2

1
   (5.62) 

Using the linearized kinematics, the linearized variations, and the principle of 

virtual work described in section 5.1, the linearized force vectors are derived.  

Linearizing the internal virtual work in (5.17), we get 

 
   


000

* 000

int dSEdSEdSEWL JIIJJIIJJIIJ 
d . (5.63) 

The first term on the RHS of (5.63) leads to the internal force by 
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IJAJIIJ
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dSBddSE
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, (5.64) 

such that internal force is defined as 

 
 

0
0

int dSBf JI

A

IJA
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

, (5.65) 

where 

 kJ

A
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A

IJ FHB 
,

. (5.66) 

The second term on the RHS of (5.63) geometric stiffness by 

 












B

G

BAA

BJI

B

Jk

A

IkA

JIJkIkJIIJ

dKd

ddSHHd

dSxxdSE








 











0

00

0,,

0,,0

 (5.67) 

such that the geometric stiffness is defined as 
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. (5.68) 

Assuming an incremental constitutive model  

 KLIJKLIJ ECS  :
 (5.69) 

where CIJKL is the tangent material operator, the third term on the RHS of (5.63) leads to 

the material stiffness by  
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 (5.70) 

such that the material stiffness is defined as 
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. (5.71) 

The external virtual work is not linearized and from (5.13),  
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 (5.72) 

such that the external work is defined as  
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Finally, the kinetic virtual work from (5.14) is  
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such that the mass matrix is defined as 
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0
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and the assumption that 


A

A

ii dHu    is due to the fact that the actual acceleration is 

complicated due to the shell kinematics, which is discussed by Man in [3].  In the 

preceding equations, A and B are node numbers, and the indices i, k, m, I, J, K, and L = 1, 

2, 3 and  and  = 1, 2, 3, 4, 5.   

5.6 Solution Algorithms 

The following global system of equations is then established for a dynamic 

system: 

        dMfddKdKdf  ext*M*G*int  (5.76) 

where *d  is the trial displacement, d is the incremental displacement, and d  is the 

corresponding nodal acceleration.  For quasi-static problems, the inertial term on the RHS 

can be neglected.  The solution algorithms are discussed in great detail in [3] and are 

summarized here.  Box 1 shows the algorithm that solves for the quasi-static 

displacement using Newton iterations.  Newmark’s method, used to solve dynamic 

problems, is shown in Box 2. 

Box 5-1: Newton's Method 

1. Initialize: n = 0, 0* d  

2. Solve for load/time increment n+1 

a. Initial trial displacement: 
n

dd *
 

b. Calculate the residual:   ext*int
fdfr    

c. Calculate the tangential stiffness matrix:  *
dK   

d. Calculate the incremental displacement:   rdKd 
1*

 

e. Update the trial displacement: ddd  **
  

f. Check for convergence: 

i. Update residual:   ext*int
fdfr    

ii. If   RTOL*
dr  then go to 2(c) 

3. Update final displacement: 
*1

dd n
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Box 5-1:  Continued 

4. Set n = n+1 and go to 2 

 

 

Box 5-2: Newmark's Method 

1. Initialize: set n = 0 and state d
0
, v

0
 and a

0
 

2. Solve for load/time increment n+1 

a. Form predictors:  

 

  *2
2

*

*2*

*

2
21

1

0

aavdd

aavv

a

t
t

t

tt

nnn

nn












  

b. Calculate the residual:  

    ****intext*~ vdKvMaMdffr  n

Mba   

c. Calculate the tangential stiffness matrix:  

   n

Mtbtat dKMdKMK   *2*~
  

d. Calculate the incremental displacement:   *1* ~~
rKa 



 

e. Update the predictors:  

addavvaaa  2****** ;; tt    

f. Check for convergence: 

i. Update residual: 
*~r   

ii. If RTOL*~r  then go to 2(c) 

3. Update incremental solution: 
*1*1*1 ;; ddvvaa   nnn
  

4. Set n = n+1 and go to 2 

-- 

 and are Newmark’s parameters, and a and b are coeffictions from the damping 

matrix:   n

Mba dKMC   as discussed in [3]. 
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CHAPTER 6.  INCREMENTAL CONSTITUTIVE MODEL FOR 

FABRICS 

The behavior of woven clothing and its relationship with a digital human model is 

quite complex.  Areas of contact such as the knees, elbows, and the backside cause fabric 

to experience high strains where the deformation is highly anisotropic, hysteretic and 

nonlinear.  Here, we use large deformation continuum mechanics to describe the kinetics 

and kinematics required for a finite element analysis.  From a macroscopic perspective, 

there are two levels of motion that occur: (1) rigid body translations and rotations of the 

clothing due to the human model being able to move in the global reference frame; and 

(2) deformation of the clothing due to gravity, applied loads and the process of 

conforming to the moving body.  The two levels of motion are demonstrated in Figure 6-

1, where an element on an initially straight cylindrical sleeve of clothing, shown on the 

left, has a local coordinate system with one particular orientation to that of the global 

coordinate system and, shown on the right, the same element has rotated and deformed so 

that the current local coordinate system now has a different orientation with respect to the 

global coordinate system.  The strain tensor at a point in the element is computed using 

the deformation.  The corresponding stress is a nonlinear function of the strain.  In this 

chapter, an anisotropic constitutive model featuring incremental loading and unloading is 

developed to model the fabric behavior. 
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Figure 6-1.  Model of a sleeve at (a) the original configuration and (b) the current 
configuration in relation to a global coordinate Cartesian coordinate system. 

6.1 Initial Computations 

The model is derived using a Lagrangian description of motion at each point in 

the continuum fabric model.  The reference and current configurations are denoted as XI 

and xj, respectively.  Using the shell kinematics from the previous chapter, an incremental 

trial displacement,  trialn

iu 1  at the current (n+1)
th

 load/time step is used to compute the 

current configuration of the shell.  From this updated configuration, the deformation 

gradient at each integration point is calculated with respect to the lamina coordinate 

system by  

 
 

iJ

J

trialn

in

iJ
X

u
F 










1

1 . (6.1) 
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The deformation gradient is used to calculate the right Cauchy-Green deformation tensor 

at the point as 

 
111   n

kJ

n

iI

n

IJ FFC
; (6.2) 

from which the current and incremental Green-Lagrange strain tensors are calculated, 

respectively, as 

 
 IJ

n

IJ

n

IJ CE   11

2

1

 (6.3) 

 n

IJ

n

IJ

n

IJ EEE   11

.
 (6.4) 

It is noted here that the commonly used symbol for the right Cauchy-Green deformation 

tensor, C, is also often used to denote the stiffness modulus in the mechanics literature.  

Care is taken to make clear in which context the symbol C is used.   

6.2 Global to Material Frame Transformations 

It is assumed that at the n
th

 equilibrium configuration of the model, the strain in 

the lamina coordinate system 
n

E  , the stress in the material coordinate system n
Ŝ , 

maximum values of yarn stretch ratios, 
max

warp  and 
max

weft , a shear strain correction term in 

the material coordinate system 
*

5Ê , and a state variable used to determine the form of the 

shear modulus 
peak

n EE *

5

1

5
ˆˆ   are known at each integration point.  The previous stress 

and strain tensors are referenced to the local lamina coordinate system of the shell 

element in which the point resides.  In the original configuration (i.e. the 0
th

 

configuration), the warp and weft material directors, assumed to be orthogonal, may have 

any orientation with respect to the lamina coordinates in the plane of the shell element as 

shown in Figure 6-2.   
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Figure 6-2.  General orientation of the warp and weft material directors g1, g2, and g3 
relative to the lamina coordinates of the shell element. 

An orthogonal transformation matrix Q is constructed using the direction cosines 

between the lamina and material coordinate systems in the original configuration as 

 

 





















333231

232221

131211

,cos

QQQ

QQQ

QQQ

xxQ mat

J

lam

IIJ

 (6.5) 

In what follows, tensors that are referenced to the material coordinate system will be 

designated with a „^‟; whereas, corresponding tensors in the lamina coordinate system 

will not.  The (n+1)
th

 current and incremental strain tensors in the lamina coordinate 

system are transformed to the material coordinate system as 

 
11ˆ   n

KLLJKI

n

IJ EQQE
 (6.6) 
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11ˆ   n

KLLJKI

n

IJ EQQE
. (6.7) 

For use with the finite element equations, it is advantageous to convert the strain 

and stress tensors to vectors, respectively, using Voigt notation.  The Voigt notation for 

the stress and strain tensors for the degenerated shell element is, respectively,  
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The stress and strain vectors are length five due to the vanishing normal stress, S33.  For 

clarification, it is possible to compute the through-thickness strain, E33, but at this time, it 

is not used in the shell kinematics.  On the other hand, for computations requiring the 

strain and stress to be in tensor form, such as transformations, the strain and stress tensors 

are recovered as 
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The derivation in the rest of this chapter will use Voigt notation unless otherwise noted. 

6.3 Construction of Moduli 

Once the strain tensors are referenced with respect to the material coordinates, the 

challenge is to construct a tangent stiffness matrix, 
1ˆ nC , for the fabric that accounts for 

the nonlinear, anisotropic and hysteretic behavior.  The general form for the condensed 

stiffness matrix used for the incremental constitutive model shown in (5.69) is  
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We assume that the material behaves as a nonlinear anisotropic material, so that the 

number of nonzero components is reduced to  
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The individual components of (6.10) are explicitly stated as 
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C , (6.11) 

where, for the current time-step,  2,1ˆ 1  iDn

i  are the elastic moduli in the warp and weft 

directions, respectively, 1

12
ˆ nG  is the in-plane shear modulus, 

1

13

1

23
ˆandˆ  nn GG  are the 

transverse shear moduli, and 2112 and  are the Poisson‟s ratios.  The construction of the 

moduli in (6.11) that will produce the nonlinear and anisotropic behavior is discussed in 

the following subsections.    

6.3.1 Axial Moduli 

In order to produce nonlinear loading and hysteresis, the elastic loading moduli in 

the warp and weft directions are functions of the current Green-Lagrange strain in the 

material coordinate system for each respective yarn and state variables that determine if a 
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yarn direction is in tension or compression and loading or unloading.  The stretch ratios 

in the warp and weft directions are used in order to define when a particular yarn at a 

quadrature point is in a state of loading or unloading.  The current stretch ratios in the 

warp and weft yarn directions are defined as  

   1

1

1 ˆ21


 
n

n

warp E  (6.12) 

   1

2

1 ˆ21


 
n

n

weft E
.
 (6.13) 

With respect to the yarn direction, the fabric is said to be in a state of compression when 

the respective stretch ratio is less than 1.00 and in a state of tension when the stretch ratio 

is greater to or equal to 1.00.  To induce the hysteretic effects, the stretch ratios are 

compared to the maximum value each has experienced: 
maxmax  and warpwarp  ; which are both 

initially set to 1.00.   

When a particular yarn direction is subjected to a tensile load and the stretch ratio 

is larger than its previous maximum value, it is proposed that the elastic loading modulus 

in the corresponding direction be a function of the current state of strain by using a 

polynomial fit of the experimental data presented in Chapter 3.  The stress in the warp (1) 

and weft (2) directions are related to their respective strains (in tensor notation) by 
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By taking the derivative of each stress component by the respective strain, we are able to 

determine the corresponding loading moduli at the current time-step as  

       dEcEbEa
Ed

Sd
Dn 

11

2

11

3

11

11

111

1
ˆ2ˆ3ˆ4

ˆ

ˆ
ˆ  (6.16) 

       kEhEgEf
Ed

Sd
Dn 

22

2

22

3

22

22

221

2
ˆ2ˆ3ˆ4

ˆ

ˆ
ˆ

.

 (6.17) 
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Additional adjustments to the warp and weft moduli must be made when either 

the warp or weft yarn is in compression  01 n

i  or when it is being unloaded or 

reloaded  max1

i

n

i   .  When either yarn is in compression, it buckles almost 

immediately. Therefore, the elastic moduli are set to the initial moduli when the 

respective strain is zero. 

 dDn 1

1
ˆ  (6.18) 

 kDn 1

2
ˆ  (6.19) 

When the current stretch ratio is less than the maximum and greater than zero (see Figure 

3-18), the associated yarn direction is in a state of either unloading or reloading.  The 

behavior of fabrics shows a much stiffer response in this case and the corresponding 

unloading modulus is determined by fitting a linear trend line through the first three 

points upon unload from the experimental data (Figures 3-13 through 3-16) as  

 
unloadn DD 1

1

1
ˆˆ 

 (6.20) 

 
unloadn DD 2

1

2
ˆˆ 

. (6.21) 

One issue that arises in the model is that when a fabric transistions from a state of loading 

to a state of unloading, the elastic modulus is discontinuous.  This is addressed by using a 

linear interpolation between the unload modulus and the previous loading modulus when 

max1 999.0 i

n

i   .   The diagonal in-plane components of the stiffness matrix can now be 

constructed as 

 2112

1

11

11
1

ˆ
ˆ







n
n D

C

 (6.22) 

 2112

1

21

22
1

ˆ
ˆ







n
n D

C

 (6.23) 

Justification of equations (6.20) and (6.21) is based upon the following 

assumption:  when a material is loaded in uniaxial tension and then unloaded, no matter 
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the presence of residual strain, the slope of the stress-strain curve upon unloading is 

assumed to be the elastic modulus of the material.  Acknowledging the complex 

interaction between the fibers and yarns that make up woven fabric, we take the 

unloading slope to be the theoretical elastic modulus of the fabric in terms of warp, weft, 

and shear.  When the fabric is in a state of being loaded, the yarns are either trying to 

straighten out or rotate.  We assume that, for a particular load (i.e. uniaxial tension, 

shear), if the fabric were to continually decrimp, the loading modulus would approach the 

unloading modulus.  However, as can be seen in Figures 3-9 through 3-12, this will never 

be case because the fabric will either begins to yield, exhibiting elastoplastic behavior, or 

fail.   

6.3.2 Off-diagonal Moduli 

By definition, an orthotropic stiffness matrix is symmetric.  However, for fabrics, 

the deformation includes both material and geometric behavior, which means that, in 

general, the transverse behavior associated with the off-diagonal terms is not the same 

when loaded in the warp and weft directions.  As an example, the loading moduli of 

representative samples for the warp and weft monotonic tests of cotton-polyester blend 

were approximated using a quadratic fit.  Assuming constant warp and weft Poisson‟s 

ratios (discussed in detail in section 3.3.3), the off-diagonal components of the stiffness 

matrix, 1

12

1

21
ˆandˆ  nn CC were estimated and plotted against one another as a function of 

axial strain as shown in Figure 6-3. It is clear that the two lines do not lie upon one 

another as they would if they were truly symmetric.  Further, if one or both the yarn 

directions were in a state of unloading, where the stiffness is much higher and assumed to 

be linear, the disparity could be even greater.  Therefore, we allow the incremental 

stiffness tensor to be non-symmetric with the off-diagonal terms defined as 

 
1

2212

1

21

1

1121

1

12

ˆˆ

ˆˆ









nn

nn

CC

CC




. (6.24) 
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Figure 6-3.  Comparison of 1

12

1

21
ˆandˆ  nn CC  for cotton-polyester blend subjected to 

monotonic loading (uniaxial stress) using curve fit. 

6.3.3 Shear Moduli 

Like the axial behavior, shear behavior exhibits nonlinear loading and hysteresis.  

Additionally, fabrics are susceptible to cycles where stresses and strains may be positive 

and/or negative, as shown in Figure 6-4.  In order to approximate this behavior in the 

model, the in-plane shear modulus is constructed in a manner similar to the elastic 

moduli, where the nonlinear loading shear modulus is computed from a polynomial fit of 

the shear stress: 
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         rEqEpEnEmS  12

2

12

3

12

4

1212
ˆ2ˆ2ˆ2ˆ2ˆ  (6.25) 

       qEpEnEm
Ed

Sd
G n 

12

2

12

3

12

12

121

12
ˆ22ˆ23ˆ24

ˆ2

ˆ
ˆ  (6.26) 

and the unloading modulus to induce hysteresis is a linear approximation of the 

unloading behavior shown in Figures 3-28 through 3-31: 

 
unloadn GG 12

1

12
ˆˆ 

. (6.27) 

The challenge here is to determine which modulus is appropriate for the current 

state of strain.  First, the previous in-plane shear stress is multiplied by the current shear 

strain increment  1

55
ˆˆ  nn ES .  If this product is positive, then there is a loading condition; 

otherwise, it is in a state of unloading.  Further, if there is a state of loading, it must be 

determined if it is in “virgin” territory, where the behavior is nonlinear, or if it is being 

reloaded with a linear assumption.  This is accomplished by an additional state variable: 

  

 

 *

5

1

5
ˆˆ EESV n  

.

 (6.28) 

The value 
*

5Ê  (initially set to zero) is used to determine the relative shear strain so that 

the behavior may become nonlinear whenever the sign of the shear stress changes during 

any cyclic loadings.  The state variable in (6.28) is then the magnitude of the current 

relative shear strain.  If SV is greater than the peak value for that particular cycle, then 

nonlinear loading is taking place; otherwise, the fabric is reloading with the constant 

modulus (6.27).  When the state of loading/unloading/reloading is determined, the in-

plane shear component of the stiffness matrix is then defined as 

 
1

12

1

55
ˆˆ   nn GC

.
 (6.29) 

For out-of-plane bending, parameters have yet to be experimentally determined.  

Therefore, the transverse shear moduli are estimated in accordance with Timoshenko 

beam theory using a correction factor of 5/6 so that:   
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 1

12

1

44

1

33
ˆ

6

5ˆˆ   nnn GCC  (6.30) 

 

 

Figure 6-4.  Typical fabric behavior due to shear and different locations of values of 
*

5Ê  
depending on the cyclic loading. 

6.4 Stress Update 

Once the current stiffness matrix is constructed, the current stress is calculated as 

 
1111 ˆ:ˆˆˆ   n

J

n

IJ

n

I

n

I ECSS
 (6.31) 
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. (6.32) 

As mentioned in the previous section, when the fabric is subjected to cyclic shear 

loadings, we assume that the behavior is nonlinear upon its initial loading.  When the 

fabric is unloaded in shear, it is assumed that the behavior is linear until the sign of the 

shear stress changes.  When that happens, 
*

5Ê  is set to the current values of shear strain, 

1

5
ˆ nE ; and the peak value of SV is reset to zero for storage.  

6.5 Material to Global Frame Transformations 

As derived in Chapter 5, the material stiffness matrix, K
m

, is computed using the 

stiffness modulus.  Since the model is incremental and nonlinear, the consistent tangent 

operator (6.33) is computed to increase computational speed by increasing the rate of 

convergence.   

   1

1

1
1

1

1
1

ˆ:
ˆ

ˆ
ˆ

ˆ

ˆ
ˆ 











 n

n

n
n

n

n
n

cons

d

d

d

d
E

E

C
C

E

S
C  (6.33) 

The formulation of the finite element equations requires that the stress tensor and the 

tangent moduli be in the lamina coordinate system.  Therefore, these values must be 

transformed from the material coordinate system back to the lamina coordinate system 

using the same transformation matrix, QIJ, as before.  These transformations are computed 

as followed:  

 
11 ˆ   n

KLJLIK

n

IJ SQQS
 (6.34) 

 11 ˆ   n

MNPQLQKPJNIM

n

IJKL CQQQQC  (6.35) 
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6.6  Summary of Fabric Model 

A simple constitutive model for the anisotropic, nonlinear and hysteretic behavior 

of woven fabrics has been presented.  The algorithm for the fabric model described in the 

preceding sections is summarized in Box 2.  The algorithm for the computation of the 

consistent tangent operator is summarized in Box 3.   

Box 6-1: Algorithm for Fabric Model with Incremental Loading and Unloading 

 In shell FEA subroutine 

o Read in E
n
, 

nŜ , 
max

warp , 
max

weft , 
*

5Ê , and 
PeakSV  from storage 

o At (n+1)
th 

step: 

 Given a displacement, u
n+1

 

 Compute deformation gradient: 1
X

u
F 









1
1

n
n   

 Compute right Cauchy-Green deformation gradient: 

  111   nTnn
FFC   

o Send to fabric model: E
n
, 

nŜ , C
n+1

, 
max

warp , 
max

weft , 
*

5Ê , and 
PeakSV  

 In fabric model subroutine 

o Compute the current Green-Lagrange strain:  1CE   11

2

1 nn   

o Compute the incremental strain: nnn
EEE   11   

o Transform the current and increment strain tensors from the lamina to the 

material coordinate system:  

QEQE 11ˆ   nTn  

 QEQE 11ˆ   nTn  

o Compute stretches and state variables:   

  1

1

1 ˆ21


 
n

n

warp E
 

  1

2

1 ˆ21


 
n

n

weft E
 

1

55
ˆˆ  nn ES

 
*

5

1

5
ˆˆ EESV n    
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Box 6-1:  Continued 

o Compute: the stiffness matrix 
1ˆ nC  by equations (6.16) through (6.24), (6.26), 

(6.27), (6.29), and (6.30) 

o Compute: 
111 ˆ:ˆˆˆ   nnnn ECSS   

o Reset (if needed) 
*

5Ê  and 
PeakSV  

o Transform stress and tangent operator from material to lamina reference system: 

Tnn QSQS 11 ˆ    

o If computing the material stiffness, K
m
, need the consistent tangent operator in 

the lamina coordinate system:  

  1

1

1
1

1

1
1

ˆ:
ˆ

ˆ
ˆ

ˆ

ˆ
ˆ 











 n

n

n
n

n

n
n

cons

d

d

d

d
E

E

C
C

E

S
C  

    QQCQQC
T

n
consTncons

11 ˆ


  

o If: 

 
1maxmax1   n

warpwarpwarp

n

warp   

 
1maxmax1   n

weftweftweft

n

weft   

o Return to shell FEA subroutine: S
n+1

, 
nŜ ,   1nconsC , 

max

warp , 
max

weft , 
*

5Ê , and 

PeakSV  

 In shell FEA subroutine 

o Set (□)
n
 = (□)

n+1
, where (□) are the strain and stress tensors returned from the 

model. 

o Store E
n
, 

nŜ , 
max

warp , 
max

weft , 
*

5Ê , and 
PeakSV  

 

Box 6-2: Routine for the computation of consistent tangent operator  

 Do l = 1, nstress 

o Do I = 1, 5 

 Do j = 1, 5 

     11
ˆˆ




n

ij

n
cons

ij CC  

 Enddo 

o Enddo 

o If((
max1

warp

n

warp  
)AND( 0ˆ 1

1 nE ))Then 
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Box 6-2:  Continued 

         1

1

1

1

2
1

1

1

11

1

11
ˆ2ˆ6ˆ12ˆˆ 








  nnn

nn
cons EcEbEaCC  

         1

2

1

1

2
1

121

1

12

1

12
ˆ2ˆ6ˆ12ˆˆ 








  nnn

nn
cons EcEbEaCC   

o Endif 

o If((
max1

weft

n

weft  
)AND( 0ˆ 1

2 nE ))Then 

         1

2

1

2

2
1

2

1

22

1

22
ˆ2ˆ6ˆ12ˆˆ 








  nnn

nn
cons EhEgEfCC  

         1

1

1

2

2
1

212

1

21

1

21
ˆ2ˆ6ˆ12ˆˆ 








  nnn

nn
cons EhEgEfCC   

o Endif 

o 
If(nonlinear shear loading)Then

 

     1

5

*

5

1

5

2
*

5

1

5

1

55

1

55
ˆ2ˆˆ6ˆˆ12ˆˆ 










  nnn
nn

cons EpEEnEEmCC  

       1

55

1

44

1

33
ˆ

6

5ˆˆ



n

cons
n

cons
n

cons CCC  

o Endif 

 Enddo 
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CHAPTER 7.  MODEL VERIFICATION AND APPLICATIONS 

In this chapter, the incremental constitutive model developed in the previous 

chapter is employed in a 3D bilinear continuum degenerated shell finite element.  In 

section 7.1, trend lines are fit to the tensile and shear cyclic experimental data for the four 

fabrics in order to determine elastic and shear loading and unloading moduli.  The 

material parameters for the blend, duck, muslin and denim fabrics are then summarized.  

Computational results for cyclic uniaxial stress in a variety of material orientations using 

the incremental constitutive model are compared to corresponding experimental data in 

section 7.2.  The model is also applied in section 7.3 to some scenarios for which there 

were no experimental data with which to compare.  These include:  biaxial strain tests 

and dynamic drape and poke tests.  Finally, the determination of material parameters and 

the computational results are discussed in section 7.4. 

7.1 Material Parameters 

7.1.1 Axial Moduli 

While typical warp and weft stress-strain data for fabrics features a nonlinear 

relationship, the linear elastic constitutive models mentioned in Chapter 4 typically use 

the initial slopes (at very small strain values) as the elastic moduli in the respective 

directions.  Here, to capture the nonlinearity, the loading and unloading moduli in the 

principle (warp and weft) directions are based upon fitting curves to the representative 

experimental data from single-cycle uniaxial stress tests.  Figures 7-1 through 7-4 show 

the fitting of the warp and weft data for cotton-polyester blend, cotton duck, cotton 

muslin, and cotton denim, respectively.  In each case, either a quadratic or quartic 

polynomial, whichever ensures an initial positive modulus and is the best fit curve, is 

used to relate the stress and strain.  The first derivatives of these functions are the elastic 

loading moduli as a function of total strain in the corresponding warp or weft direction.  
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The unloading modulus is determined by fitting a linear trend line through the first three 

data points upon unloading.  Table 7.1 shows the corresponding loading and unloading 

moduli for the warp and weft directions.  The average Poisson’s ratios for the warp and 

weft directions found in section 3.3.3 and are listed in Table 7.2 along with the mass 

density for each fabric.    

 

Figure 7-1.  Curve fitting the loading and unloading behavior in order to determine 
tensile parameters in the warp and weft directions for cotton-polyester blend. 
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Figure 7-2.  Curve fitting the loading and unloading behavior in order to determine 
tensile parameters in the warp and weft directions for cotton duck. 
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Figure 7-3.  Curve fitting the loading and unloading behavior in order to determine 
tensile parameters in the warp and weft directions for cotton muslin. 
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Figure 7-4.  Curve fitting the loading and unloading behavior in order to determine 
tensile parameters in the warp and weft directions for cotton denim 
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Table 7.1.  Tensile loading and unloading moduli for the four tested fabrics (tensor 
notation). 

Fabric loadD1
ˆ  (MPa) unloadD1

ˆ  (MPa) loadD2
ˆ  (MPa) unloadD2

ˆ  (MPa) 

C-P Blend 8.26×10
2
E11 + 8 8.64×10

2
 1.65×10

3
E22 + 37 1.08×10

3
 

Cotton Duck 5.62×10
3
E11 + 9 1.57×10

3
 -7.92×10

4
 (E22)

3 
+ 

4.83×10
4
 (E22)

2
 – 

1.00×10
3
E22 +28 

8.87×10
2
 

Cotton Muslin 1.53×10
4
E11 + 9 1.57×10

3
 2.74×10

2
E22 + 6 2.05×10

2
 

Cotton Denim 1.81×10
3
(E22)

3 
– 

2.00×10
2
 (E22)

2
 

+ 3E22 + 7 

3.85×10
2
 3.04×10

3
(E22)

3 
+ 

6.24×10
3
 (E22)

2
 – 

1.84×10
2
E22 + 15 

4.02×10
2
 

 

Table 7.2.  Average Poisson’s ratios and mass densities for the four tested fabrics. 

Fabric ν12 ν21 ρ (kg/m
3
) 

C-P Blend 0.25 0.42 590 

Cotton Duck 0.99 0.68 470 

Cotton Muslin 2.04 0.41 350 

Cotton Denim 0.12 0.22 370 

 

7.1.2 Shear Moduli 

The in-plane shear moduli are determined using the shear stress and shear strain 

data, which themselves are calculated using results from the bias-45° tests.  Nonlinearity 

is introduced by fitting a 4
th

-order polynomial curve to the loading shear stress-shear 

strain data and a linear trend line through the first few data points upon unloading .  

Figures 7-5 through 7-8 show the fitting of the warp and weft data for cotton-polyester 
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blend, cotton duck, cotton muslin, and cotton denim, respectively.  Table 7.3 shows the 

corresponding shear moduli, which are found by taking the first derivative of the shear 

stress with respect to the shear strain. 

 

Figure 7-5.  Curve fit of shear stress-strain data for loading and unloading behavior from 
representative cotton-polyester bias-45 test. 
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Figure 7-6.  Curve fit of shear stress-strain data for loading and unloading behavior from 
representative cotton duck bias-45 test. 
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Figure 7-7.  Curve fit of shear stress-strain data for loading and unloading behavior from 
representative cotton muslin bias-45 test. 
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Figure 7-8.  Curve fit of shear stress-strain data for loading and unloading behavior from 
representative cotton denim bias-45 test. 

Table 7.3.  In-plane loading and unloading shear moduli for the four tested fabrics. 

Fabric loadG12
ˆ

 (MPa) 
unloadG12

ˆ
(MPa) 

C-P Blend -24(E12)
3 

+ 90(E12)
2
 – 18E12 + 2 12 

Cotton Duck -143(E12)
3 

+ 105(E12)
2
 – 10E12 +1 14 

Cotton Muslin 22(E12)
3 
+ 13(E12)

2
 - 8E12 +2 6 

Cotton Denim -53(E12)
3 

+ 33(E12)
2
 - 4E12 +1 2 
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7.2 Verification of Fabric Model 

In order to verify the results of the fabric constitutive model, simulations 

replicating the cyclic uniaxial stress tests are compared to the experimental data.  A finite 

element model was created to simulate the experimental tests described in section 3.3 for 

the tested fabrics.  The geometry of the model was 1.0 inch by 3.0 inches and consisted of 

twenty-seven 3-D degenerated bilinear continuum shell elements.  The boundary 

conditions were fixed on one end with a prescribed displacement on the opposite end to 

simulate the pin grips, with the out-of-plane displacements and rotations constrained for 

quasi-static simulations.  The material parameters for the fabrics are listed in the previous 

section.   

7.2.1 Axial Tests in Warp and Weft Directions 

The prescribed maximum displacements for the cyclic tests in the warp and weft 

directions are the same as those used for the experimental tests, and are listed in Table 

3.4.  Material directors for loading in the warp and weft directions, respectively, are 
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The finite element simulation of the cyclic uniaxial stress tests in the warp and weft 

directions produced visual results that were consistent with experiments in that there was 

a contraction in the transverse direction and the specimen experienced a buckling 

instability upon unloading as shown in Figure 7-9.  The stress-strain results from cyclic 

uniaxial stress tests in the warp and weft directions for the four fabrics are shown in 

Figures 7-10 through 7-13.  The cyclical results for the bias tests are also included in the 

figures to demonstrate the anisotropy of the fabric behavior.   
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Figure 7-9.  Snapshots of cyclic simulation in the warp direction of cotton-polyester 
blend at (a) the initial configuration, (b) the maximum displacement, and (c) 
the compressive buckling instability upon unloading. 

In each case, the fabric model exhibits nonlinear loading, linear hysteretic 

unloading and anisotropy as would be expected.  The results for cotton-polyester blend 
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and denim compare very well to the experimental data as shown in Figures 7-10 and 7-

11, respectively.  As expected, the computational results are consistent with the curve fits 

used to determine the loading moduli from section 7.1.  For the cotton-polyester blend, 

the greatest relative error in the warp direction during loading is 11% and occurs at the 

maximum strain.  This occurs because the actual experimental specimen started to exhibit 

tensile yielding, whereas the present model does not feature yielding behavior.  The 

maximum relative error in the weft direction is about 6% at a strain of approximately 

0.10.  The initial unloading behavior matches up with the linear unloading modulus 

estimated from the experiments and shows that the load decreases very rapidly leading to 

the eventual buckling instability seen in Figure 7-9c.  For the denim results, there is no 

visually discernible error, as the loading curves for the model and the experimental data 

lie essentially on top of one another. 

 

 



140 
 

 

1
4
0
 

 

Figure 7-10.  Comparison of computational and experimental results for cyclic uniaxial 
stress tensile tests loaded in the warp, weft and bias 45 directions for cotton-
polyester blend fabric. 
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Figure 7-11.  Comparison of computational and experimental results for cyclic uniaxial 
stress tensile tests loaded in the warp, weft and bias 45 directions for cotton 
denim fabric. 

Using the twenty-seven element model, shell finite element simulations for duck 

and muslin either experienced convergence issues or greatly over-estimated the stress.  In 

order to test the material model alone, a single element was loaded to the equivalent 

strain and the uniaxial stresses were calculated.  The results using the single-element 

model match the experimental data very well and are shown in Figures 7-12 and 7-13 

(denoted without an asterisk).   

It is hypothesized that the simulation issues for these two fabrics are due to the 

extremely large apparent Poisson’s ratios.  In order to test this hypothesis, a parametric 

study was conducted to determine the upper bounds for apparent Poisson’s ratios of these 



142 
 

 

1
4
2
 

two fabrics for this particular constitutive model and solution algorithm.  These bounds 

are shown in Table 7.4.  Using the modified Poisson’s ratios, simulations using the 

twenty-seven element model were executed and the obtained results (denoted with an 

asterisk) demonstrated much more reasonable stress-strain relationships in the warp and 

weft directions for both fabrics with maximum percent errors of 3% and 15% in the warp 

direction and 1% and 9% in the weft direction for duck and muslin, respectively.  If 

larger values of Poisson’s ratios than those listed in Table 7.4 are used, the stress at any 

given strain during loading is much greater than the corresponding experimental value. 

Table 7.4.  Upper bound for modified Poisson’s ratios for Duck and Muslin. 

Fabric ν12* ν21* 

Cotton Duck 0.40 0.40 

Cotton Muslin 0.40 0.40 
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Figure 7-12.  Comparison of computational and experimental results for cyclic uniaxial 
stress tensile tests loaded in the warp, weft and bias 45 directions for cotton 
duck fabric.  The model results without an asterisk are for a single-element 
simulation and the model results with the asterisk are the 27 element 
simulation with modified Poisson’s ratios. 
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Figure 7-13.  Comparison of computational and experimental results for cyclic uniaxial 
stress tensile tests loaded in the warp, weft and bias 45 directions for cotton 
muslin fabric.  The model results without an asterisk are for a single-element 
simulation and the model results with the asterisk are the 27 element 
simulation with modified Poisson’s ratios. 

Since the experiments and the simulations were subjected to uniaxial stress, the 

fabrics contracted in the direction transverse to that of the loading to ensure zero 

transverse stress.  Comparisons of the lateral strain as a function of longitudinal strain 

between the fabric model results and experimental data are shown in Figures 7-14 

through 7-17. The computational strain results for the cotton-polyester blend and cotton 

denim compare well to the measured experimental strains.  For cotton muslin and cotton 

denim, the computational strain results for the single-element simulations also compare 

well to the measured experimental data; however, the results for the twenty-seven 

element models feature large disagreements between the model and the experimental data 

due to the use of modified Poisson’s ratios.  
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Figure 7-14.  Comparison of the computational and experimental transverse strains as a 
function of loading strain for cotton-polyester blend fabric. 
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Figure 7-15.  Comparison of the computational and experimental transverse strains as a 
function of loading strain for cotton denim fabric. 

 

 



147 
 

 

1
4
7
 

 

Figure 7-16.  Comparison of the computational and experimental transverse strains as a 
function of loading strain for cotton duck fabric.  The model results without 
an asterisk are for a single-element simulation and the model results with the 
asterisk are the 27 element simulation with modified Poisson’s ratios. 
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Figure 7-17.  Comparison of the computational and experimental transverse strains as a 
function of loading strain for cotton muslin fabric.  The model results 
without an asterisk are for a single-element simulation and the model results 
with the asterisk are the 27 element simulation with modified Poisson’s 
ratios. 

As mentioned in section 3.3.2, when a fabric is loaded in tension, the behavior is 

nonlinear so long as the current strain value is greater than the previous maximum strain 

value.  When the fabric is unloaded and subsequently reloaded, the behavior is assumed 

to be linear if the current strain is less than the maximum value, which is supported by 

Figure 3-18.  To verify the fabric model with this assumption, a simulation of a cotton-

polyester blend specimen subjected to a cyclic uniaxial stress in the warp direction was 

carried out.  The specimen was loaded to 75% of the prescribed maximum displacement, 

unloaded to 70% of the maximum displacement and then reloaded to 100%.  The results 

of this test are shown in Figure 7-18 and are consistent with the expected behavior. 
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Figure 7-18.  Uniaxial stress loading, unloading and reloading of a cotton-polyester blend 
fabric in the warp direction. 

7.2.2 Bias and Simple Shear Tests 

Simulations to replicate the bias 45 tests were conducted to compare with the 

experimental data.  The geometry of the specimens and loading conditions were the same 

as those of the axial tests in the warp and weft directions, except that the boundary 

conditions were relaxed at the ends of the specimen to allow contraction in the lateral 

direction while experiencing uniaxial stress.  The prescribed displacement for each test 

was 20.0 mm.  The material directors for these tests are set as 



150 
 

 

1
5
0
 

 



























100

0
2

2

2

2

0
2

2

2

2

45bias

IJQ . (7.2) 

 Snapshots of a representative simulation at the initial configuration, 

maximum displacement and onset of buckling shown in Figure 7-19 and the stress-strain 

results for the four fabrics are shown in Figures 7-20 through 7-23.  The results for 

cotton-polyester blend show close agreement up to a strain of 0.15.  Beyond that strain 

level, the model gradually over-predicts the experimental data up to 44% at a strain of 

0.30.  The results for cotton denim are agree up to a strain of 0.10 with the model over-

predicting the experimental stress by 13% at a strain of 0.25.  Similarly, the results for 

cotton denim agree up to a strain of 0.10 with a maximum percent error of 26% at a strain 

of 0.25.  Finally, the results for cotton muslin are in agreement up to a strain of 0.15 with 

a maximum percent error of 75% at the maximum strain value of 0.30.  In each case, the 

model is also able to exhibit the hysteresis upon unloading.   
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Figure 7-19.  Snapshots of cyclic simulation in the bias 45 direction of cotton-polyester 
blend at (a) the initial configuration, (b) the maximum displacement, and (c) 
unloading. 
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Figure 7-20.  Comparison of the fabric model results of a bias 45 tension test to the 
experimental data for cotton-polyester blend. 
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Figure 7-21.  Comparison of the fabric model results of a bias 45 tension test to the 
experimental data for cotton denim. 
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Figure 7-22.  Comparison of the fabric model results of a bias 45 tension test to the 
experimental data for cotton duck. 
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Figure 7-23.  Comparison of the fabric model results of a bias 45 tension test to the 
experimental data for cotton muslin. 

In order to test the model in situations where the yarn directors are in more 

general orientations, experimental and computational tests were conducted for cotton-

polyester blend and cotton denim for two cases:  (1) the warp yarn is at an angle of 30° to 

the loading direction; and (2) the warp yarn is at an angle of 60° to the loading direction.  
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The duck and muslin fabrics are not included since the modified Poisson’s ratios used in 

the simulations lead to behavior that doesn’t necessarily correlate to the experiments. 

Displayed in Figures 7-24 and 7-25, the results show that the computational results 

compare reasonably well with the experimental data.  Discrepancies can be attributed to 

the experimental data consisting of stresses and strains in the loading direction only, 

whereas the computational simulation shows that the complex membrane behavior, due 

to the bias angle and the anisotropy (see Figure 7-26), results in additional lateral and 

shear stresses and strains that are not taken into account for this comparison; and which, 

when averaged over the whole domain, also exhibit small stress fluctuations in the 

loading directions. 

 

Figure 7-24.  Experimental and computational uniaxial stress results for cotton-polyester 
blend for warp yarn orientations of 30° and 60° to the loading direction. 
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Figure 7-25.  Experimental and computational uniaxial stress results for cotton denim for 
warp yarn orientations of 30° and 60° to the loading direction. 
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Figure 7-26.  Simulation results showing non-uniform behavior at (a) the beginning and 
(b) near the maximum displacement for cotton-polyester blend with the 
warp yarn oriented 30° to the loading direction. 

As discussed in section 2.3, the behavior of fabrics is further complicated in that 

trellising of the yarns can lead to cyclic shear behavior.  To see how the model handles 

cyclic shear loading, a square specimen consisting of nine elements was subjected to a 

simple shear test.  In this case, the model results are as expected and are shown in Figure 

7-27.  The initial loading of the specimen exhibits nonlinear behavior up to the point 

where unloading occurs.  The unloading is linear until the shear stress changes signs, at 

which point, nonlinear behavior is reintroduced using a relative shear strain value.  

Another simulation tested the loading, unloading and subsequent reloading of the simple 

(a) 

(b) 
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shear model.  For this test, the unloading was small so that the sign of the shear stress did 

not change, allowing to see if the reloading modulus was linear until the previous 

maximum relative strain.  Figure 7-28 shows the results of a simple shear test in which a 

cotton-polyester blend fabric was loaded, unloaded a small amount and reloaded 

producing the expected behavior. 

 

Figure 7-27.  Modeling the shear stress and strain behavior of a cotton-polyester blend 
fabric subjected to a cyclic simple shear test. 
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Figure 7-28.  Modeling the shear stress and strain behavior of a cotton-polyester blend 
fabric subjected to a simple shear test where the specimen is loaded, 
unloaded and then reloaded. 

7.3 Applications 

7.3.1 Biaxial Strain 

The presence of a biaxial strain, in which both the warp and weft yarns are 

extended, leads to a stiffer response since as both yarns are straightening, less decrimping 

takes place [33].  Here, the fabric model is tested in a quasi-static simulation in which 

25.4 cm by 25.4 cm fabric sheets of cotton-polyester blend and cotton denim are 

subjected to a single-cycle biaxial load.  The load consisted of a 1:1 strain ratio in which 

the maximum displacement was 3.0 cm.  The results, shown in Figures 7-29 and 7-30, 

affirm that the presence of transverse strains have a tremendous affect on the stress in 
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either yarn direction.  This suggests that biaxial loads would lead to fabric damage, such 

as tearing, at lower strains than if the fabric were only subjected to a uniaxial load.   

 

Figure 7-29.  Computational results for 1:1 biaxial strain of cotton-polyester blend. 
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Figure 7-30.  Computational results for 1:1 biaxial strain of cotton denim. 

7.3.2 Draping Fabric From Four Corners 

In order to test the fabric model in a dynamic simulation, a simple test problem is 

introduced in which a square piece of fabric is pinned at its four corners and held 

horizontally.  The load is that due to gravity and allows the fabric to deform into a 

concave shape.  The fabric is comprised of the cotton-polyester blend, for which the 

material properties are listed in section 7.1 and the dimensions are 2.0 meters by 2.0 

meters with the warp and weft directions aligned with the x and y axes, respectively.  The 

initial configuration of the dynamic test problem is shown in Figure 7-31(a).  The 

problem is solved explicitly using Newmark’s method where α = ½ and β = 0 and the 

time step is 1×10
-5

 seconds. 
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The visual results for the dynamic simulation are shown in Figure 7-31.  The 

simulation comes to equilibrium within 0.5 seconds, which seems well within reason. In 

order achieve these results, the shear hysteresis had to be switched off, otherwise the 

problem became unstable.  However, the dynamic simulation does utilize the fabric 

model in which the behavior is anisotropic, nonlinear and includes hysteresis in the warp 

and weft yarn directions.   

 

Figure 7-31.  The dynamics response of a cotton-polyester blend fabric falling with 
gravity but pinned at the four corners at (a) 0.0 seconds, (b) 0.1 seconds, (c) 
0.2 seconds, (d) 0.3 seconds, (e) 0.4 seconds, and (f) 0.5 seconds. 

7.3.3 Poking Fabric 

Another dynamic simulation consists of poking the center of a fabric.  For this 

problem, the central 16 elements of a 2.0 meter by 2.0 meter cotton-polyester blend fabric 

are displaced in the z-direction by 0.40 meters and then returned to zero displacement in 
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0.5 seconds.  All nodes along the boundary of the fabric are constrained and the warp and 

weft direction are aligned with the x and y axes, respectively.  The initial configuration of 

the poking problem with the element numbers is shown in Figure 7-32.  The problem is 

solved explicitly using Newmark’s method where α = ½ and β = 0 and the time step is 

1×10
-5

 seconds. 

 

Figure 7-32.  Original configuration of a square cotton-polyester blend fabric.  The 
elements in the blue square are displaced in the z-direction.  The stress-
strain data for the SVK model and the present model are compared for the 
elements highlighted in red. 
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The poking problem was solved using both the St. Venant-Kirchhoff (SVK) 

model and the fabric model developed in this dissertation.  It is noted that the shear 

behavior in this test did not include any hysteresis.  Visual results from the SVK model 

and the present fabric model are presented in Figures 7-33 and 7-34, respectively.  These 

visual results show that the simulation using the SVK model recovers the original 

configuration upon removal of the load, whereas the simulation using the present fabric 

model shows that the fabric has permanently stretched and thus wrinkles/buckles upon 

unloading, which is what one would expect.  The stress-strain data for both models were 

compared at two elements: 207 and 271, and are shown in Figures 7-35 and 7-36, 

respectively.  For both elements, there is little shear deformation.  For element 207, a 

majority of the deformation was in the warp direction and the corresponding stress using 

the present fabric model is nonlinear and a higher magnitude than that found using the 

SVK model.  Similar results are found for element 271, where the deformation was 

mostly in the weft direction.  For the simulation using the fabric model, the shear strains 

transverse to the loading direction for both elements are roughly zero, but still lead to 

significant stress values.  For unloading, the stress-strain graphs only show one data point 

for the present model due to the subsequent buckling of the fabric. 
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Figure 7-33.  The dynamics response of a cotton-polyester blend fabric poke test using 
the SVK model at (a) 0.0 seconds, (b) 0.15 seconds, (c) 0.25 seconds, (d) 
0.35 seconds, and (e) 0.50 seconds. 
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Figure 7-34.  The dynamics response of a cotton-polyester blend fabric poke test using 
the present fabric model at (a) 0.0 seconds, (b) 0.15 seconds, (c) 0.25 
seconds, (d) 0.35 seconds, and (e) 0.50 seconds. 
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Figure 7-35.  Poke test stress-strain results for element 207. 
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Figure 7-36.  Poke test stress-strain results for element 271. 

7.4 Discussion 

This dissertation research has involved measuring the mechanical behavior of 

woven fabrics and developing an incremental constitutive model with parameters gleaned 

from experimental data.  For measuring the mechanical behavior, a uniaxial load frame, a 

digital camera and a computer were used to determine loading/unloading Young’s 

moduli, shear moduli and Poisson’s ratios using monotonic and cyclic uniaxial stress 

tests.  The experiments themselves were simple to setup and execute; and the data 

collected features the expected behaviors for woven fabrics in that they contain strong 

anisotropy, nonlinearity, and hysteresis 
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In this research, the use of photogrammetry was found to be a moderately 

effective way to determine macroscopic fabric strains.  Although the procedure 

developed here is simple, the data analysis is cumbersome due to the manual nature of 

measuring the displacements of markers located on the fabrics.  Furthermore, the 

relatively low photograph resolution led to data that had a high signal-to-noise ratio, 

especially at low strain levels.  In order to fully utilize this procedure, the following 

recommendations are made: (1) a higher resolution digital SLR camera should be used so 

that measurements are more precise and random errors stemming from slight movements 

of the camera due to shutter actuation and focusing are minimized; and (2) more precise 

markers that can be tracked more accurately with computer software should be used.  

This procedure would be a natural choice for capturing macroscopic strain behavior for 

both uniaxial and biaxial tests in that it is simple and non-invasive, so long as the markers 

themselves do not affect the stiffness of the fabric. 

Using photogrammetry and a bias 45 tensile test, a novel method for determining 

the shear modulus of woven fabrics was developed.  This method involved measuring the 

stretch and the angle between two marked lines that coincide with the warp and weft 

directions using a series of digital photos.  These measurements were used to determine 

the shear strain present in the center of the fabric specimens.  A transformation of the 

tensile stress from the bias experiments produced the corresponding shear stress.  Taking 

the first derivative of the polynomial trend line fitted to the loading shear stress-strain 

data for each fabric led to the loading shear modulus.  In order to validate the shear 

moduli used in the new fabric model, the moduli from this new procedure are compared 

to the shear moduli estimated using the approach derived by Kilby and introduced in 

section 3.3.4.  The equation is restated here for convenience: 
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An immediate issue that arises when trying to compare the two sets of values is that the 

loading shear modulus developed here is a nonlinear function of shear strain whereas the 

moduli estimated using (7.3) are constant values.  To circumvent this issue, the elastic 

moduli in the warp, weft, and bias 45 directions are assumed to be the initial tangent 

moduli from the experimental stress-strain curves.  The estimated shear moduli for the 

four fabrics using Kilby’s approach and the initial tangent shear moduli determined from 

the present approach are listed in Table 7.5 along with and the percent difference between 

the two.  The moduli determined using the two methods compare very well with one 

another for cotton-polyester blend and cotton duck; however, there is a large difference 

between the two estimates for cotton muslin and cotton denim.  For these last two fabrics, 

the behavior is much more compliant than the blend and the duck, which could lead to 

more potential errors, such as pre-load, when installing the specimens into the grips and 

also less precise measurements due to the available load cell.  From the results, it is 

concluded that the present approach for estimating the in-plane shear modulus is valid 

and more applicable for determining a function for a nonlinear shear modulus, especially 

since the modulus relates directly to the experimental data instead of an estimate. 

Table 7.5.  Estimates of the constant shear modulus using Kilby’s equation and the 
corresponding estimate from the present approach. 

Fabric G12 (Kilby) G12 (present)
†
 % Difference 

C-P Blend 1.08 1.09 1.0 

Cotton Duck 0.87 0.82 5.5 

Cotton Muslin 0.29 0.76 62.2 

Cotton Denim 0.24 0.43 45.2 

†
Using initial moduli (zero shear strain) as constants 
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The constitutive model developed in this work has captured the anisotropic, 

nonlinear, and hysteretic behavior of woven fabrics, as shown in section 7.2.  Compared 

to the isotropic or orthotropic linear elastic models discussed in Chapter 4 [13-16], the 

present model is much more mechanically realistic.  To highlight these comparisons, 

results for cyclic uniaxial-stress tests in the warp and weft directions from the SVK 

model, using the initial moduli from the material parameters listed in section 7.1 for 

cotton-polyester blend, were plotted against the warp and weft results from the present 

incremental model and the experimental data and are shown in Figure 7-37.  In the warp 

direction, the stress values at 1%, 5%, and 10% strain for the present model differ from 

the experimental data by 14%, 45%, and 3%, respectively; compared to 67%, 75%, and 

94% for the SVK model.  The data in the weft direction shows a similar trend, where at 

the same strain values, the present model differs by 13%, 2%, and 6%, respectively, from 

the experimental data; and the SVK model differs by 33%, 10%, and 42%.  It would be 

possible to obtain more accurate results in the small strain region using a linear elastic 

model if the moduli were obtained using a secant method, but overall, since the state of 

strain in the critical areas mentioned in Chapter 1 undergo large strains, these models are 

not well suited for clothing modeling.   
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Figure 7-37.  Comparison of experimental, SVK and the present fabric model results in 
the warp and weft directions for cotton-polyester blend. 

Like the present fabric model, Peng and Cao [61] included non-linearity by 

determining the axial and shear moduli directly by fitting curves to the experimental 

load-strain data.  Their computational results for uniaxial warp, weft and bias 45 compare 

well to their data (see Figure 4-9); however, they do not consider any unloading behavior 

as we do here.  Further, their model assumes a very weak interaction between the two 

yarn families such that a biaxial load would not lead to significantly higher stress.  As 

was shown in section 7.3.1, the present model does account for this coupling behavior. 

Compared to multiscale analyses [63-65], the present model does not achieve the level of 

mechanical detail, but is better suited for dynamic analyses as it requires fewer 

computations. 
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One significant limitation of the model that has arisen is that fabrics with 

excessively large Poisson’s ratios (around 0.4 or greater, depending on the fabric) can 

lead to an over-prediction of stress or numerical instabilities.  In these cases, the 

Poisson’s ratios can be modified so that more reasonable stress-strain behavior is 

produced; however, this comes at the cost of accurate lateral strains.  Further, the 

experimental tests as well as the 3D degenerate shell elements neglect the through-the-

thickness deformation; so that it is unknown what affect the corresponding Poisson’s 

ratio would have on the parameters or the results. 

The hysteresis observed in the experimental data is present when fabrics are 

unloaded from any state of stress due to friction between fibers and/or yarns.  The model 

developed here has accounted for this hysteresis by assuming a constant “stiff” elastic 

modulus whenever a state of unloading or reloading is present.  The present model has 

assumed an “elastic” nature for simplicity and does not account for yielding, inelastic 

behavior, or damage from a theoretical standpoint.  As discussed in the first chapter, the 

large states of strain that fabrics may be subjected to could lead to inelastic behavior 

during loading, as evident in Figure 3-9, or breaking of yarns and the subsequent tearing 

of fabrics, such as in Figures 3-10 through 3-12.  Further development of fabric 

constitutive models could include plastic deformation and damage, which would surely 

have an effect on clothing-wearer interaction in terms of comfort, range-of-motion, and 

service life. 

Finally, the fabric model was tested in three applications.  In the first, cotton-

polyester blend and cotton denim fabrics were subjected to a biaxial strain.  While 

experimental data is not available to compare, the results did exhibit the expected 

behavior in that the presence of a lateral strain causes a stiffer response.  The second 

application consisted of a dynamic simulation where a cotton-polyester blend fabric, 

pinned horizontally at the four corners, was subjected to a gravity load.  The dynamic 

response of that hanging fabric was as expected, though the shear hysteresis in the model 



175 
 

 

1
7
5
 

had to be neglected.  The third application consisted of poking the center of a cotton-

polyester blend fabric using both the SVK model and the present fabric model 

(neglecting shear hysteresis). The results of this poke test show that compared to the SVK 

model; the present model exhibited the expected nonlinear behavior and permanently 

deformed fabric upon unloading.  Work continues to include the shear hysteresis in 

dynamics simulations.  Further, the dynamic test problems are very simple and do not 

include any sort of contact, which is another significant aspect of the clothing-wearer 

modeling framework.  In order to fully employ the present fabric model, more 

comprehensive dynamic testing must be carried out.  
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CHAPTER 8.  CONCLUSION AND FUTURE WORK 

8.1  Conclusion 

In this dissertation, the mechanical behavior of woven fabrics has been measured 

and a phenomenological constitutive model developed to capture the anisotropic, 

nonlinear and hysteretic behavior observed in experimental observations.  The research 

included a series of monotonic and cyclic experimental tests to study the behavior of four 

woven fabrics when subjected to uniaxial stress in the warp, weft, and bias 45 directions.  

The four fabrics were cotton-polyester blend, cotton duck, cotton muslin, and cotton 

denim.  The force and grip displacement data for each test was used to compute the 

Green-Lagrange strain and the 2
nd

 Piola-Kirchhoff stress in the loading direction.  Results 

from tests in the warp and weft directions led to stress-strain graphs from which loading 

and unloading elastic moduli were derived by taking the first derivative of trend lines fit 

to the experimental data.  Series of photographs from the warp and weft monotonic tests 

were used to determine longitudinal and lateral strains along the fabric specimen.  These 

strain values were used to estimate apparent Poisson’s ratios in the respective yarn 

directions of each fabric.  The tests in the bias 45 direction led to a new procedure that 

determined the shear behavior by taking a series of photographs from which the stretches 

and rotations of the warp and weft yarns could be measured.  The stretches and rotations 

of the yarns were then used to calculate the shear strain, whereas the shear stress was 

computed by a transformation of the stress in the loading direction.  The loading and 

unloading shear moduli were found by taking the first derivative of the trend line fit to 

shear stress-strain data.  Initial loading shear moduli from the new procedure were 

compared to shear moduli estimated using Kilby’s equation and were found to be 

appropriate values. The new procedure is a better way to determine the shear moduli 

from bias tests in that it is a direct measurement and is able to capture nonlinear shear 

behavior since they are functions of shear strain. 
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Using the material parameters from the experimental data, simulations replicating 

the experimental tests were conducted in the warp, weft and bias 45 directions for the 

four fabrics.  The stress and strain behavior produced by the fabric model in the warp and 

weft directions for cotton-polyester blend and cotton denim compared well with the 

experimental data; however, the Poisson’s ratios for the duck and muslin fabrics had to 

be greatly reduced in order to obtain realistic stress-strain behavior, which came at the 

cost of realistic lateral strains. Simulations of the four fabrics in the bias 45 direction 

were realistic below certain levels of strain, but gradually over-estimated the bias stress 

above the respective levels.  A biaxial strain simulation showed that the presence of a 

transverse strain has a tremendous affect on stiffness.  Dynamic simulations of a fabric 

draped from its four corners and a fabric being poked in the center both produced visually 

realistic results, though shear hysteresis was neglected in the model. 

Compared to the continuum models presented in Chapter 4, the fabric model 

developed in this dissertation has several advantages.  Many researches assumed linear 

elastic behavior, which can greatly under-estimate the stress at larger strains, whereas the 

present model is able to capture more realistic nonlinear fabric behavior.  While the 

model by Peng and Cao and the hyperelastic models investigated by Ruiz and Gonzalez 

are able to produce nonlinear results, they only considered fabric loading, so that the 

hysteresis evident upon unloading is not considered.  The current model accounts for this 

hysteresis by using a larger elastic modulus whenever the point of interest in the fabric is 

in a state of unloading or reloading.  While results from multiscale and elastoplastic 

models also produce realistic fabric behavior, the model developed here requires less 

computational effort.  The current model also comes with some limitations.  Due to the 

complex nature of woven fabrics, homogenizing them into a continuum and determining 

appropriate material parameters and developing a constitutive model that exhibits 

realistic behavior proves challenging, particularly when biaxial loads are present and 

when the apparent Poisson’s ratios are very large.   In the end, a fabric model was 
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developed that demonstrates stress-strain behavior that is much more realistic than the 

linear elastic constitutive models that have been used by many researchers. 

8.2 Future Work 

In order to further develop more realistic fabric and clothing simulations, there are 

many opportunities for future research.   For the current research, work continues in order 

to apply the fabric model to a variety of dynamics simulations so that more accurate 

clothing-wearer interaction studies may eventually be conducted.  In particular, dynamic 

simulations that include contact need to be performed.  Additional experimental tests 

should be conducted in order to verify the computational results.  A simple test would be 

to drop a ball onto the center of a square piece of fabric clamped along all sides.  Video 

showing the displacements of the fabric due the dropping ball could then be compared to 

the computational results.  Fabrics are also susceptible to plastic deformation and tearing 

at high strains.  The current model could be modified to account for plastic deformation, 

one of the challenges being how to construct an appropriate yield surface.   

Any macroscopic fabric model should be made as general as possible to 

accommodate a wide variety of fabrics and their respective properties. Since much of the 

complex behavior of fabrics is due to geometrical effects of the weaving process and 

friction, multiscale modeling could be used to estimate additional fabric properties that 

are either difficult or currently impossible to determine experimentally.  Further, this 

work did not investigate the out-of-plane behavior or fabrics.  Additional tests should be 

developed to study the transverse shear behavior through the thickness of the fabric, 

which could then be incorporated into the model.  Procedures and equipment to study the 

mechanical behavior of fabrics subjected to multi-axial loads should be further developed 

so that appropriate moduli may be derived from the overall state of strain instead of being 

a function of strain in associated yarn direction.   
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APPENDIX A 

In order to interpret the experimental data using large deformation continuum 

mechanics, expressions for the Green-Lagrange strain and the 2
nd

 Piola-Kirchhoff stress 

need to be derived according to the experimental procedure described in chapter 3.  

Figure A-1 summarized the uniaxial tensile test where the initial gage length, l0, between 

the two pins is 3.0 inches.  The square scribed into the center of the specimen has initial 

dimensions X1 and X2.  Since deformation in the out-of-plane dimension is not measured, 

the corresponding strain is neglected.  As the test commences, the two pins are separated 

in displacement control where the distance between the pins is l(t), therefore  creating the 

load P(t).  As the load increases, the scribed square becomes increasingly distorted into a 

roughly rectangular shape with current dimensions of x1(t) and x2(t).  The test program 

directly gives values of P(t) and Δl(t), where     0ltltl  .  Dimensions of the scribed 

square, Xi and xi(t) (i = 1,2) are measured from the digital photographs taken throughout 

each test.   
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Figure A-1.  Uniaxial tensile test schematic. 

 

Green-Lagrange strain is defined by the expression 
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For the uniaxial tensile test and neglecting any through-thickness changes, the 

deformation gradient is  

  
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with      Iii Xtxtu  .  By inserting (A3) into (A1) and simplifying, we get 

 

 
 

 
 

 

 
 

  

  

 
 







































































































































































000

00

00

000

01
2

1
0

001
2

1

100

010

001

100

00

00

2

1

100

010

001

100

00

00

100

00

00

2

1

22

11

2

2

2

1

2

2

2

1

2

1

2

1

tE

tE

t

t

t

t

t

t

t

t

tE

T

















 (A5) 

Using (A4), Eii(t) can be further simplified as 
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Since the experimental tests are uniaxial tension, the stress tensor will consist of 

all zeros except for the component corresponding to the loading direction.  For the 

uniaxial 2
nd

 Piola-Kirchhoff (2PK) stress, we first define the Cauchy stress as 
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where  is the uniaxial force at time t and  is the cross-sectional area in the current 

configuration.  Next, we express the 2PK stress as 

 TJ   FσFS
1 , (A8) 

Where S is the 2PK stress, F is the deformation gradient and J is the Jacobian, which is 

defined as 

  FdetJ . (A9) 

For the measured deformations, the current cross-sectional area (neglecting out-of-plane 

deformation) is related to original as 

 10AA  . (A10) 

In the case of these experiments, the inverse of the deformation gradient is 

 P t A
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By plugging (A7), (A10), and (A11) into (A8), we get 
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