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Abstract. Research on the variability in travel behavior, hew individuals repeat or change
their travel behavior over time, has a long histduy understanding of variability not only
facilitates behavior modeling efforts but also pd@s insights into the complex factors
underpinning people’s travel behaviors. Previousliss of behavioral variability have mostly
concentrated on non-spatial aspects. This disgertabntributes to the existing literature by
examining the spatial variability of activity logah choices. Activity locations are a set of
spatially dispersed places where individuals penfactivities. They play a critical role in
structuring human travels, as individuals’ demamtifavelling in space is derived from the
demand for activity participation. Specifically,dwesearch questions are of interest: 1) how is
location variability affected by time-of-day? 2)w@an the knowledge of location variability be
used to inform the development of location predittnodels?

Analyses are performed with a mobile phone data@egisting of the traces of 120,435
individuals over two months. Significant time-ofyddependence of location variability is

identified. Time-of-day effect is found to take aaat for 36% of the total variations in location



variability. The results emphasize the importanicenee-of-day in shaping one’s location choice
behavior and provide a basis for future modelirigref on location variability.

Location variability is found to be an instrumentadicator of the amount of input
information required for location prediction. Sdezally, given 100 historical (not necessarily
unique) locations, an accuracy level marginallyrd@@% can be achieved for people with low
location variability. In contrast, for those indivals with a high level of location variability,
prediction accuracy can hardly reach 50% with 1i@fkhical locations. This finding has
significant implications on making more efficienthtion predictions. It will allow us to
customize the amount of information input in looatprediction for subpopulations differing in
location variability by removing redundant inforneett. Being able to discard some data without
compromising model prediction accuracy is one veagdal with an overwhelming amount of

data.
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CHAPTER 1

INTRODUCTION

1.1 RESEARCH QUESTIONS

Current data collection and modelling practicegavel behavior still largely rely on the
assumption of highly repetitious behavior. Themr@asons to expect repetition in travel
behavior. First, human beings are regulated byogio&l clocks that prefer conducting certain
activities on a regular basis (e.g. sleeping dunigdpt time every day). Second, human travel is
subject to constraints (1) and recurring constsangicessitate repetitive behavior. For instance,
morning commute is repeated at approximately theesime every day because the start time of
work remains the same from one day to anotherdT piople tend to avoid repetitive decision-
making and thus repeat the same behavioral rouf@)eEmpirical studies also provide solid

support for the existence of repetitive travel heda(3, 4, 5).

While the existence of repetitious behavior is ewtd variability in individuals’ travel
behaviors is also well recognized (6). The reasorexpect variability are as compelling as those
for repetition. People are found to seek for ugrie order to avoid the boredom of complete
repetition (7). Also, unexpected circumstancesroake routinized behavior impossible. Other
reasons can result in variable travel behavior et (@.g. learning process in adaption to a new
environment) (2). Empirical results show considéramount of variability in human travel

behavior (2, 8, 9, 10).

Although the existence of variability in individgatravel behavior is well acknowledged
(2, 11), our knowledge of variability remains liedk Variability in travel behavior has received

little attention in the literature, primarily bec@most data sets used for analyzing and modeling



urban travel comprise information for just a sindéy for each sampled individual and thus
preclude examination of variability (12). This digstion is devoted to the study of variability in
travel behavior and its implications. Although sasdhave consistently shown that people
exhibit distinct travel patterns between weekday® \weekends (13), this dissertation limits its

scope to weekday travel only.

In this dissertation, variability in travel behavie examined using mobile phone data.
Mobile phone data sets can contain spatio-temparsitions of hundreds of thousands, even
millions of mobile phone users, over an extendexg tperiod. It possesses enormous potential in
behavioral research. While its application in bebastudies has seen great success, it remains
to be explored by the travel behavior research conity. This dissertation serves as one
valuable addition to the existing literature on lgpmm mobile phone data to travel behavior

research.

Despite the spatial nature of human travel, previ@search on variability in travel
behavior has been largely focusing on non-spatiaets of travel behavior. The amount of
variability in travel behavior has been studiederms of the number of trips, travel distance and
travel time. These results do not necessarily sgmiethe amount of variability in individuals’
spatial behaviors. For instance, an individual lsammbserved to make the same number of trips
on two days, though to completely different acyivdcations. Activity locations are a set of
spatially dispersed places where individuals perfactivities. They structure human travel in
space in that individuals’ demand for travellingsppace is derived from the demand for activities
participation (14). The primary purpose of thisséigation is to understand the variability in

activity location choices, which is termed as loaatvariability for short hereafter.



Location variability characterizes individuals’ Bt@n choice behaviors and location
choice has been shown to be affected by time o3y The first research question then arises
is whether location variability depends on timalaf. Different time periods in a day are filled
with activities with different levels of fixity (16 Level of fixity is a measure reflecting the
extent to which activities are constrained in spawe time. Activities characterized with higher
level of fixity are more difficult to be relocateshd rescheduled. Therefore, participation in
activities with a higher level of fixity tends tesult in less variable activity location choices.
Since daily activities vary in their level of fiyittime-of-day variations in location variabilityea

anticipated.

In this dissertation, the dependence of locatiarabdity on time-of-day is analyzed by
comparing individuals’ location variability betwedifferent time periods of a day. In order to
study possible population heterogeneity in thistoftday effect, individuals are clustered into
groups based on their levels of location variapilitastly, the time-of-day dependence of
location variability is quantified by introducingrie periods as independent variables in

explaining location variability.

One of the major reasons for understanding actlgitgtion choice is to develop more
accurate and efficient location prediction mod&lserefore, a second research question asks
whether knowledge of location variability can bediso inform the development of location
prediction models. Many location predictors requmdividuals’ location history as input
information. Longer history usually leads to mocewate predictions, but less computational
efficiency. As model efficiency is becoming increggy important for numerous applications
relying on real-time location prediction, curretteanpts for improving prediction efficiency

have been focusing on building more efficient pcéalis.



Little consideration has been given to reducingléimgth of input location history due to
the concern of possible information loss. Howeitaran be shown that the amount of
information carried by each observed location lacation history varies among individuals: for
an individual who has lower location variabilitgpeated location choices contain little
information that can be used to improve predicdcauracy. This observation suggests
removing partial location history of those who ardikely to vary their location choices would
have negligible effects on prediction accuracyuilntely, for an individual who tends to repeat
the same set of location choices every day, hitiog history on one day is sufficient to make
an accurate prediction of his location choiceshanrtext day and including additional location
observations on previous days does not improvedadigtion accuracy. In summary, it is
hypothesized that location variability can servaasndicator of the required amount of

information in predicting individuals’ activity l@tion choices.

This hypothesis is tested by examining the corigiabetween history length and
prediction accuracy. For subpopulations charaadrizith different levels of location variability,
accuracy levels of a location prediction model@mputed based on a set of input location
histories with varying lengths. Variations in tleeé¢ls of prediction accuracy with respect to the

length of location history are then compared betwsépopulations.

1.2 ORGANIZATION OF DISSERTATION

Examining location variability represents a dynapeespective in studying human travel
behavior. Most of the existing data collection amaldeling practices in travel behavior domain

are grounded in the conviction of highly repetitiv@vel behavior: few data sets used in



empirical studies have a length over one or twasdad the majority of the models is static, i.e.
models with no explicit time dimension. The assuompdf routine travel behavior would be
challenged if a considerable amount of variabilitjhhuman travel behavior is identified. An
insightful discussion of the significance of vailap in travel behavior can be found in Jones

and Clark (17).

Chapter 2 is included in this dissertation as agarbackground. This chapter is
developed based on a paper recently submittédasportation Research Part C—Wang, M.
and Chen, C., “Mobile Phone Data as an Alterndlia&a Source for Travel Behavior Research”.
In this chapter, | evaluate the potential of ugimgpile phone data as an alternative data source
for travel behavior studies. Firstly, | briefly iew current practices of using mobile phone data
in travel behavior research. Secondly, | providiescription of mobile phone data sets in
empirical studies, including their structure, inf@tion included and characteristics of the
information, aimed at helping travel behavior reskars to develop an expectation for the type
of information to be obtained from this type ofalathirdly, | assess the advantages and
limitations of mobile phone data within the contektravel behavior research to facilitate the
evaluation of its appropriateness in specific aggtions. Lastly, | conclude that mobile phone
data shows enormous potential for travel beha@search and remains to be exploited by the

travel behavior community.

In Chapter 3, a detailed description of the dataised for analysis in this dissertation is
provided. Various statistics are provided at ddferlevels (i.e. individual level and population
level), for a variety of measurements (e.g. nunabesightings). These statistics provide us with
valuable insights into the distinct nature of melphone data sets. Also detailed in this chapter

is techniques used to process the data. MobilegHata differs from conventional travel data in



multiple dimensions and, thus, requires non-tradél techniquésfor data processing. The
techniques described in this chapter can servevaliable reference for future efforts focusing

on mobile phone data mining.

In Chapter 4, the first research question is anssireihow time of day affects location
variability. This chapter is formulated as a mampsco be further developed as an journal
article. Individuals are found to be more likelyary their location choices in the afternoon
than in the morning and evening. Yet, it is nottihee-of-day dependence of location variability
that | find surprising. Rather, it is how signifitdy time-of-day effect shapes individuals’
location choice behaviors. Time-of-day takes actéamapproximately 36% of the total

variations in location variability.

These findings emphasize the importance of time fastor in influencing individual's
travel and location choices. Even though its sigaifce is well recognized, time has rarely been
explicitly accounted for in location choice moded)i(15). Only limited attempts exploiting the
value of temporal information in location choiceaeting (18, 19) can be identified. These
studies have shown that location choice exhibgsoaninent temporal pattern and characterizing
location choice with time-of-day can potentiallygrove the power of location choice prediction.
This part of my dissertation serves as a valuadhtitian to the research on the impacts of time
on location choice behavior through quantified tiaielay effect on location variability and is

expected to facilitate future efforts of locatidmae modeling and prediction.

Chapter 5 focuses on the second research questpplieadion of knowledge of location

variability for more efficient location predictioithis chapter also adopts a research paper

! Traditional techniques for travel behavior analysis are predominantly regression models.



format. Result show that levels of prediction aecyrdiffer for subpopulations differing in
location variability, given the same length of ltoa history. With only a dozen of historical
locations, we can achieve an accuracy level maltgioaer 60% for people with low location
variability. When the length of location historyamhes 50 historical (not necessarily unique)
locations, accuracy level climbs to over 70%. kp®increasing to 80% as history length
reaches 100 locations. In contrast, for those iddals with a high level of location variability,
prediction accuracy starts at around 40% giverpter locations and slowly increases to

approximately 50% after 100 historical locations abserved.

These results have important implications on theeldgpment of more efficient location
predictors. There is always a trade-off betweenlipti®n accuracy and model efficiency. More
accurate prediction often requires more informathoet, more information leads to higher
processing cost. This trade-off becomes more dahearcent development of online location
prediction applications emphasizing algorithm eéincy (20, 21). My results indicate that
location variability can serve as an indicatortfoe amount of information used in location
prediction models. Especially for individuals chaesized with low location variability, location
prediction model can perform well based on verytheh history. Therefore, it is possible to
improve prediction efficiency by removing a portiohinput location history without
compromising prediction accuracy. This will benefiany applications relying on both accurate

and efficient location prediction.



CHAPTER 2
MOBILE PHONE DATA ASAN ALTERNATIVE DATA SOURCE FOR

TRAVEL BEHAVIOR STUDIES

21 MOBILE PHONE ASA RESERCH INSTRUMENT

Mobile phones are becoming increasingly ubiquittbmsughout the world. Recent market
surveys show that mobile phone penetration ratedashed 100% in many industrialized
countries (22). With mobile phone as sensors, studave obtained novel insights into human
mobility behavior. Mobile phone data has been engulon a variety of applications, including
inferring social network structures (23, 24, 25), 2hderstanding relationships between social
interactions and physical locations (27, 28, 29, Bnitoring population mobility (31, 32, 33,

34, 35), managing tourism (36, 37, 38, 39), aneéd@tg social events (34, 40, 41).

In the transportation field, mobile phones havenbesed as probes for estimation of
aggregate level traffic parameters, such as ttawel (42, 43), travel speed (42), mode share (44,
45), origin-destination matrix (46, 47, 48, 49) draffic volume (50, 51). Reviews of current
practices using mobile phone as traffic probestmafound in (52, 53, 54, 55). On the other hand,
mobile phone data also started to see its sucodssviel behavior research (56, 57). Travel
behavior research is becoming increasingly impoitarecent years, as the focus of sustainable
transportation is shifting from meeting travel demhdy building more capacity to managing
travel demand in order to maximize the use of tireent transportation systems. Mobile phone
data has allowed behavioral researchers to ob#dirakile insights into travel behaviors from
multiple levels, such as individual mobility patier(56, 57), spatial interactions of socially

connected people (23, 24), and population movemendésge-scale space (58, 59).



Mobile phone data contains spatio-temporal locatioimillions of mobile phone users
over an extended period of time and provides anrrative way of colleting travel data. Before
the advent of mobile phone data, travel diaries@lwthal Positioning System (GPS) tracking are
two primary approaches of collecting disaggregated] data and studying individual travel
behavior. Both approaches are fraught with probJem®ng which prohibitive cost is the most
commonly mentioned (60). The primary objectivetos tchapter is to introduce mobile phone
data as an alternative data source for studyinvgltizehavior. This objective is pursued from

multiple dimensions.

First, studies on travel behavior with mobile phdag¢a are reviewed and their most
prominent behavioral findings are synthesized geoto inform travel behavior researchers with
the most recent advancements. These studies, asaangxamples, illustrate the extent to
which mobile phone data can facilitate behavioeaesh and may potentially open up new
avenues in travel behavior research. Moreoveretbasglies reviewed come from a diverse range
of disciplines, including statistical physics (%4,), sociology (27, 30) and computer science (62,
63) and thus present travel behavior researcheénsngiv interdisciplinary research opportunities

with the use of mobile phone data.

Secondly, a description of mobile phone data se&sripirical studies in provided, in
terms of their structure, information included, @w@eristics of the information and current
techniques for data cleaning. Mobile phone datesislly collected and owned by private-sector
cellular network operators and researchers nepdrthase the access the data. It is important
for travel behavior researchers to develop an @afien for the type of information contained in

mobile phone data sets before they take a senbeest in acquiring the data.
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Lastly, the advantages and limitations of mobilenghdata are accessed within the
context of travel behavior research. It is impadrtamnote that collecting data is never an end
unto itself, rather it serves as input into variapglications. Therefore, the pros and cons of each
type of data highly depend on the applicationsaaids. Though some advantages and limitations
of mobile phone data have been recognized in pusvstudies (64), their implications on travel
behavior study remain unclear. For this purposectiaracteristics of mobile phone data against
travel data from alternative data sources are coedpand an in-depth discussion on the

potential issues with utilizing mobile phone datdravel behavior research is provided.

The rest of this chapter is organized as followsSéction 2, a review of recent studies
investigating travel behavior with mobile phoneadist presented. Section 3 provides a detailed
introduction to empirical mobile phone data setfipfved by Section 4 discussing both the
advantages and the limitations of mobile phone ftataavel behavior studies. The chapter is
completed by conclusions on the prospects of mgihitene data in travel behavior studies in

Section 5.

2.2RECENT STUDIESWITH MOBILE PHONE DATA

In this section, recent developments in travel bEltaesearch made with mobile phone data are
reviewed. To facilitate our review, the existingtature is categorized into three groups based
on the level at which travel behavior is investeghatnamely microscopic study, mesoscopic
study and macroscopic study. Studies employingaascopic view focus on the characteristics

of individual travel behavior; analyses carriedregsoscopic level make efforts to uncover the
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interactions among the travel of a group of coneatdividuals; researchers adopting a

macroscopic view are interested in aggregate tr@ivelpopulation.
221 Microscopic: Characteristics of Individual Travel

Cellular network operators track the location oftiedevices to provide them voice and data
services. Since people keep a phone near themahthst time, location of mobile device can be
used to approximate individuals’ trajectories imag@and time. This line of research
characterizes individuals’ travel based on theaifetrtories reconstructed from location updates

of mobile phone devices.
2.2.1.1 Travel Distance

Individuals differ in daily distance travelled. 8tas (65, 66) show that the cumulative
probability distribution of people’s daily traveistnce exhibited a skewed decay over larger
travel distances. Specifically, while the majontythe sample covered a daily distance up to 10
km, some people regularly traveled as far as 1(D@km each day. Difference in travel
distance seems to be related to city structureplEeo Los Angeles were found to have a

median daily travel distance two times greater thaw Yorkers (67, 68).

Another commonly employed measure of travel disgaacadius of gyration. Radius of
gyrationr,2 measures the size of an individual’s trajectory also exhibits population
heterogeneity. In (57), the authors found thatdis&ibution ofr, followed a truncated power

law: although most people’s travel is confined torated area, some of us could regularly cover

2LetL; = {l,1,,...1,,} be the sequence of visited locations of individudliring the period of data collection. Then

1, is defined byr, (i) = EZ};l |; — 1|2, wherel = %Zj l; is the center of mass of the trajectory.



12

an area up to hundreds of kilometers. This resaft subsequently reproduced in (56, 57, 61, 65,

66) showing that the distribution gf was fat-tailed.

2.2.1.2 Regularity

Individuals’ travel is found to contain significaatountof spatial and temporal regularity from
multiple dimensionskirst, human beings tend to return to previous$ited location (57). In

(56), the authors investigated the number of locativisited for various windows of time.
Though individuals tended to visit additional ldoas over time, a decrease in the rate of
additional locations was evident and saturation idestified after three months. Song et al. (61)
corroborated this finding by quantifying the retetship between the number of unique locations
visited and time. They found the number of uniqueation visited followed a power function of
time with a scaling factor smaller than 1, whicham that the growth in the number of unique

location slows down at large time scales.

Second, people devote most of their time to orfgwalocations and visit other locations
with decreasing regularity. Gonzalez et al. (59vetd that, after each location visited by an
individual was ranked by its visit frequency, threlpability of finding this individual at a
location was the inverse of its rank. Song et@il) (eproduced this result by showing that the
frequency of an individual visiting theh most visited locatioif, could be approximated as
fie~k~¢, wheref ~ 1.2 + 0.1. Furthermore, Song et al. (56) examined the foactif time a user
spent at his top-visited locations. The user wasidoto spend about 60% of his time at his top
two locations. This number was reported to be 99% subsequent study (66). Lu et al. (65)
elaborated these results by showing these perasntayld differ depending on the number of

unique locations visited. On average, those whibedsnore than 10 locations spent
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approximately 75% of their time at the top two lio@as, while this percentage could be as high

as 95% for those who only visited four distinctdtons.

Third, human travel has a periodical nature. Garzat al. (57) measured the return
probability for each individual—the probability tha user returns to the position he/she was first
observed after hours. The authors found this probability peak&4ah, 48h and 72 h, which
highlights the daily rhythm of human mobility. Soegal. (56) aggregated the location visiting
information for a sample over a course of six merghd identified the most visited location for
each of the 168 hours in a week. They observed dhadverage, individuals would return to this
most visited location during the same hour on #maesday 70% of the time—a strong piece of

evidence for weekly rhythm in human travel.
2.2.1.3 Predictability

Individual’s travel has been proven to be highlgdictable. Recent studies measured the
predictability of human mobility with two relatedrcepts: entropy and maximum
predictabilitylI™%*3, EntropysS is a fundamental concept in measuring disordartime series
and characterizes the degree of predictabilityséris trajectory witls = 2 can be interpreted
as the uncertainty in this user's whereabou®s is- 22 = 4 locations. Maximum predictability
[1™%* is the probability that an appropriate predict@dgorithm can predict correctly a user’s
whereabouts. In other word$*** = 0.2 means we cannot predict a user’'s whereaboutsanith

accuracy level higher than 20%, no matter how gbedorediction algorithm is.

* The relationship betweehandIl is subject to Fano’s inequality: if a user wittirepy S moves betweeN
locations,[T™** s given byS = H(IT™%*) + (1 — I™*)log, (N — 1) with H(II™%*) = —[1™%**[og, (1™**) — (1 —
Hmax)logz(l _ HmaX)'
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Song et al. (56) showed, for 50,000 individualst their entropys peaked at 0.8 and
correspondingly, the maximum predictability*** peaked around 0.93, which means the
uncertainty in a typical user's whereabout3%§ = 1.74 locations and the predictability can be
as high as 93%. Moreover, the distribution of bo#asures exhibited little variations across
different subgroups defined by age, gender, hormatilon and language. Under a different
setting, Lu et al. (65) arrived at similar conctrss by showing the entropy of a typical user’s
was as low as 0.71, which leads to an uncertagwgl las low ag%’! = 1.64 locations. Not
surprisingly, this low level of uncertainty resulte a high level of predictabilitii™** = 0.88.
These results were proven to be rather robust endar extreme conditions. Lu et al. (66)
investigated the mobility patterns of users affédig the earthquake in Haiti in 2010 and
identified a slightly higher, even though stilllrat low, uncertainty level in human trajectories.
They reported an uncertainty 2f = 21> = 2.8 locations and a maximum predictability

[1me** = (.85 for a typical user.

While maximum predictability sets the theoretigalit of prediction accuracy, a myriad
of practical mobility prediction models have be@&veloped in empirical studies and
experimented with mobile phone data (19, 65, 69,/1). These studies have reported a

prediction accuracy level ranging from 60% to 09@%o.

2.2.2 Macroscopic: Population Mobility

Location of individual mobile device, when aggreghtcan be used to approximate the presence
and flow of population in space. A significant nuenlof studies have applied mobile phone data

to study population mobility.
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2.2.2.1 Urban Dynamics

Urban dynamics—research focusing on the temporati@ns of population distribution in
urban environment—has experienced significant agraents aided by mobile phone data.
Different experiments have been found in Romey(Jtéd2, 73), Milan (ltaly) (59, 74), Shenzhen
(China) (75) and Estonia (35). Mobile phone dalheen proven to be a promising tool in
monitoring population mobility in large urban spatealifferent time scales. Population flow in
urban environment was found to follow repetitioesporal patterns (e.g. daily pattern).
Moreover, these temporal patterns possess sumgpssimlarities across different urban
environments: for four cities in Northern Italyettotal population in the city reached maximum

on Tuesday and the minimal total population wasoled on Sunday (76).

It is also possible to target the movements of epbfations with mobile phone data.
Ahas et al. (32) monitored the movements of subudmenmuters’ in the city of Tallinn, Estonia.
Girardin et al (77) used mobile phone data to ihgate the movements of visitors to a major
exhibit in New York, 2008. Ahas et al. (37) analyzke mobility of foreign tourists’ in Estonia
based on their mobile traces. Wesolowski and EZ@¥78)(78)(78)(78)(78)(78)(78) paid

special attention to the mobility of slum dwellearKenya.

2.2.2.2 Urban Sructure

A series of studies were able to produce valuatsights into the functional configuration of
urban space with mobile phone data (79, 80). Asxample, in a study conducted at Morristown,
New Jersey (31), the authors applied mobile phate @ identify the set of residential areas
that contribute most workers to a city. As an aapdéxample, Vieira et al. (81) proposed a new

algorithm to identify dense areas in an urbanremvnent, i.e. areas that are intensively used
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within a time period, with mobile phone data. Mareg multiple studies show that it was
possible to identify home and work locations of aithabitants from mobile phone data (64, 82,

83, 84).

2.2.2.3 Special Events

It is possible to use mobile phone data in detgaecial events (75, 85), from social events to
natural disasters. Specifically, Sagl et al. (7&dumobile phone data to detect soccer matches
and Traag et al. (40) further showed examples foivkball games and musical festival. Mobile
phone data is also a promising tool to learn humabhility during special events. Bengtsson et
al. (86) validated the use of mobile phone dat@determining population displacement after
Haiti earthquake and monitoring population moversehiring a disease outbreak. Bagrow et al.
(87) applied mobile phone data to study populatnaiility and interaction during eight real-

world emergencies, such as bomb attacks.

2.2.3 Mesoscopic: Travel and Social Interaction

Since mobile phone serves as one of the major keshod communication, social interactions
can be captured via calling activities. Therefonepile phone data has also intrigued research
interest in the interplay between individuals’ mments in the physical world and their

interactions in cyberspace.

2.2.3.1 Interplay between Mobility and Social Interaction

Individuals’ mobility is greatly shaped by the mawvents of others in his social network. Eagle
et al. (24) investigated the temporal and spaa#tiepns of physical proximity of friends and

found that friends were more likely to spend offrlvbours at non-work places. In (30), the
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authors found that 80% of individuals’ mobile phdraces were within the 20 km proximity of
their nearest social ties’ residential locationalaBrese et al. (28) defined a co-location event as
two mobile phone users being found at the sameitocat the same time. They found that there
was a strong positive correlation between calldssgpy between two individuals and the
frequency of co-location occurrences. SimilarlygBav and Lin (88) found that many of
locations frequented by a mobile phone user wes@ faéquently visited by their most contacted

social ties.

2.2.3.2 Mobility Prediction based on Social Interaction

Many attempts have been made to exploit the clels¢ionship between the mobility of an
individual and that of his social ties to facilganobility prediction. Cho et al. (89) constructed
mobility model accounting for travel due to sodrdgeraction and reported an order of magnitude
better performance than existing mobility modelthawuit social network effect. Zhang et al. (90)
proposed an algorithm to predict mobile phone u$etsre movements exploiting their social
interplay—a concept capturing social interactiotwaen pairs of users. Their predictor achieved
20% performance improvement over a baseline algorivithout social interplay effect.
Domenico et al. (91) showed using the trajectofgrimation of friends of the individual to be
predicted greatly improved the prediction accuremypared to the case where the trajectory of

a randomly selected person was used.

23 MOBILE PHONE DATA

2.3.1 Mobile Phone Positioning
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One type of mobile phone data that is of particirgerest to travel behavior researchers is

probably mobile phone positioning data. Mobile ph@ositioning refers to the attaining of the
position of a mobile phone in a cellular networkcélular network is one that enables mobile
phones to communicate with each other; it compthsse stations. The area served by a base

station is called a cell (Fig. 2.1). Each cell hasique cell ID.

FIGURE 2.1 An example cellular network

There are many approaches of locating mobile phaiitegn a cellular network. Many of
them require additional infrastructure to be iHsthbr normal mobile devices to be modified.
For instance, in the System for Traffic Informatimd Positioning (STRIP) project (92),
location estimates of mobile phones were obtainek$talling monitoring devices along
freeway segments to monitor signaling messagesaeged between mobile phones and cellular
network. In other examples (93, 94, 95), accumatations of phones were acquired through
built-in GPS receivers in the phones. Yet, thefmgtructures and technologies were developed

for specific studies and not always available. Thssertation limits its scope to mobile phone
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positioning data that is automatically stored bjuta network operators. Hereafter, all mobile

phone data in this dissertation refers to this ifipegpe of data.

Cellular network operators don’t maintain positiafisisers at all times due to network
performance and bandwidth saving reasons. Positiaeionly considered necessary when a
user communicates with the network (96). When a insttates a network connection event (e.g.
a voice-call), the cellular network operator netedknow his location in order to determine the
cell tower used to channel this event. Therefdms, positioning data only describes users’
locations in space when an event occurs. Suchislateomatically and passively generated for
cellular network operators’ own purposes, includintjecting billing information and network

management.

2.3.2 Data Structure

Each time a phone is positioned it generates desnegord in a mobile phone data set, i.e. a row
in the data set. Each record contains three bastep of information: an ID number—a unique
number associated with the device generating t@dea location indicating the device’s
location when this record is generated and a tndeating when the record is generated (Table
2.1). For privacy purpose, the real ID of a devicalways encrypted by network operators. The
format of location information varies dependingtba technique network operators use to
perform positioning. The implications of these éifint technologies on data quality are
discussed in the next section. Format of time mfaiton can vary as well. Apart from common

time formats, Unix time is frequently used in melgdhone data sets.

Mobile data sets can be augmented by other infoomatetwork operators may

maintain datasets called Call Detail Records (CDdRyyhich each record corresponds to a call
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activity of mobile phone users. In addition to lbea and time, each record may also include

information about the ID of caller, the ID of caleduration of the call, etc.

Table 2.1 A Hypothetical Sample Mobile Phone Daga S

ID TIME® LOCATION®
3X35E90 1319242582 34.044162|-112.454400
3X35E90 1319242583 34.044059|-112.455550
3X35E90 1319301785 34.044392|-112.453519
3X35E90 1319339560 34.040538|-112.453760
5YU86I10 1315093092 33.948195|-112.170318
5YU86I10 1315093145 33.961547|-112.165304
5YU86I10 1315093169 33.977657|-112.175295
5YU86I10 1315093992 34.057944|-112.178316

Note: ®Time is Unix timestamp-defined as the number of seconds that have elaisesl
00:00:00 Coordinated Universal Time, Thursday, rduday 1970.
®Location is the longitude and latitude coordinatemobile phones.

2.3.3 Spatial Resolution

Depending on the positioning technique adoptedchbynetwork operator who provides the data,

the spatial resolution of mobile phone data setsveay.

It is common for network operators to record theateoon of mobile phones in terms of
the cell tower they are currently connected. Ylegome cases, due to privacy issues, only the ID
of the connected tower is provided. Mobile useratés are, therefore, represented by time-
ordered sequences of cell tower IDs, which candeel tio infer the topology of cell towers (19).

However, since the geographical locations of theets remain unknown, the spatial resolution
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can’'t be determined in this case. In other cadesgeographical locations of cell towers are
known and can be presented in two alternative wiigscoordinates of the tower or the
geographical area where the tower is located. Mbtte time, coordinates of towers—their
latitude and longitude—are used (56). The spadisblution of these data sets is determined by
the density of cell towers, which varies from diddias a few hundred meters in metropolitan
areas to a few kilometers in rural regions. In otherds, we could be dealing with an
uncertainty level of a few kilometers if the locatiof users in rural area is considered. In the
case where geographical area is used, the studysafiest divided into smaller zones (e.qg.
subprefectures), each of which is served with anaare cell towers. Any phone activity routed
through a tower within a zone will result in a regtavith location represented by the location of
this zone (e.g. the centroid of the zone). In tlaise, spatial resolution of location records highly

depends on the size of these zones.

It is also possible for network operators to detaatthe location of a mobile phone by
triangulation, transmission delay from multiple &asations or other more advanced positioning
techniques. These techniques can identify theilmtaf phones anywhere in a cell (55) and thus
usually result in finer spatial resolution than te#i-tower-based methods, though their accuracy

levels of positioning varies as well.

2.34 Temporal Resolution

Temporal resolution of mobile phone data sets caldd vary substantially depending on the
specific mobile phone data set. A general categbaa of these data sets based on the
mechanism triggering records may help to developesexpectations. One type of data sets are

Call Detail Records (CDR) as mentioned above. $8idmploying this type of data set identify
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a ‘burst’ pattern of time intervals between consweurecords/calls: while most subsequent calls
are placed soon after a previous call, it is atsssfple to identify long periods without any call
activity. Gonzalez et al. (57) identified an averagterevent time as 8.2 hours for 100,000

individuals over a course of six months.

A second type of data sets can be viewed as asatpwrthe first type of data sets. A
record is generated each time an activity is peréal on the cell phone, including calling,
texting and Internet browsing. It is not surpristhgt this type of data sets has a finer temporal
resolution compared to the first one. Calabrese. €48) identified an average interevent time of
260 minutes, which was much lower than that in Géezzet al. (57). They further characterized
time interval between consecutive phone activiigds first, second and third quartiles. The
authors reported the arithmetic average of the amsdas 84 minutes and found the temporal
resolution of their data was fine enough to detbeinges of location where the user stops for as

little as 1.5 hours.

2.3.5 DataProcessing Techniques

As is the case for almost all raw data sets, mqihiene data sets contain noises, which could
have significant implications on study resultstHis section, two major types of noises are
discussed and some of current data processingiteEmused to mitigate the noises are

reviewed.

2.3.5.1 Uncertainty in Location Estimation

As discussed above, advanced positioning techniguel as triangulation, are capable of
estimating the locations of mobile phones withited and produce data sets with finer spatial

resolution than the cell-tower-based positioninghod. In (97), an uncertainty range with an
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average of 320 m and median of 220 m was repadvecke sophisticated approaches can further
reduce localization errors. Zang et al. (98) prepos technique based on Bayesian inference to
locate mobiles in cellular networks. They were ablenprove localization accuracy by 20%
comparing to a baseline approach with a randomécted location. For a full review of
positioning techniques in cellular network, intéeesreaders are referred to (99, 100). Despite
these attempts, uncertainty of location estimategnains. Due to the uncertainty in location
estimation, multiple nearby, but distinct, locatestimates can occur when a device actually

remains at the same location. Thus, these locaticords need to be aggregated.

There are generally two classes of approachesgiegagte spatial points. One is to
impose a grid over the space and aggregate poitiisieach grid cell. In (101), the authors
discretized the Seattle area into 16841 km square cells and converted sequencé&zR$
points to sequences of cells by replacing the doatds of a point by the index of the cell
containing the point. This method highly dependshanlayout of the grid (e.g. grid cell size and
grid cell shape). As the authors pointed out ttiet,choice of the layout of the grid was heuristic
and they could have chosen a different one. Yé €1@2) described another problem of this
grid-based technique: grid boundaries could belproétic when points corresponding to the

same place falls in different grids.

The other class of approaches to aggregating spaiias is through clustering.
Clustering-based approaches allow points to beeggged with arbitrary shape and oftentimes
require a distance threshold as input. Ye et @R)hggregated a sequence of points into one
location if 1) the temporal difference betweenfing point and the last point was more than 30

minutes and 2) all the points were within a rang20® meters. Similarly, in a series of studies
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with mobile phone data from the Boston area (34, g&juences of points were fused into one

location if the distance between any two of thens \eas than 1 km.

General procedure of clustering-based approachebecaummarized as following. First,
it starts with the series of location records forrdividual ordered by time stamps, denoted as
= {l¢,, -, 1, } . Second, the first location recadyd is chosen to be the center of the first cluster
and the distance between the second location régoadd!, is calculated. If the distance is
less than a threshold, thenl,, is fused into this cluster and the cluster ceisteipdated as the
geometric center df, andl,,. If the distance is greater thanl,, becomes the center of a new
cluster. Third, the second step is repeated fdhalfemaining location records., ..., [, } until
all the points are assigned to a cluster. All tbm{s within a cluster are then analyzed as a

virtual location for subsequent analysis. Fig.iBuatrates this procedure graphically.

The distance threshold in above studies was detednio a large extent, heuristically. It
is recommended that, if clustering-based approaateeto be adopted, sensitivity analysis needs

to be performed in order to fully evaluate the iigtions of different distance thresholds on

location detection.

Location records

FIGURE 2.2 Clustering location records
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2.3.5.2 Oscillation

At any given location in a cellular network, thenay be several cell towers whose radio signals
reach a device. If these multiple cell towers hsimalar signal strengths, the connection of a
device may hop between multiple towers even wherd#vice is stationary. In this case, it may
appear that the user travels for several kilometejsst a few seconds. This phenomenon is
known as oscillation in a cellular network. Fig3 Zlustrates the potential impacts of this
oscillation phenomenon on the detection of a dévioeation. A device is on the boundary of
cell A and cell B and the signal strengths receivgdhis device from tower A and tower B are
equal. This device can be registered to either téwer tower B depending on the real-time
traffic through these two towers. When it is regjisetl to tower A, its location will be recorded as
location A. Similarly, its location will be recordes location B when it is handed over to tower
B. Distinct location records—Ilocation A and locatiB—resulting from oscillation need to be

consolidated. A few methods have been proposeddress this oscillation problem.

Location A

Location B

FIGURE 2.3 Oscillation in a cellular network
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lovan et al. (103) proposed a speed-based methlodation B is recorded in the middle
of two location A records and the switch speed ffooation A to location B is larger than a
predetermined threshold, oscillation was deteciéts method is based on the observation that
oscillation results in a location change charazéstiwith an abnormally high speed. Yet, a
critical question involved in this method is theowe of a speed threshold that distinguishes
‘normal speed’ and ‘abnormal speed’. On the otlaedh a pattern-based method has been
applied in some studies. This method recognizesitigue pattern in location updates
associated with oscillation—frequent switches betwpairs of locations. Lee and Hou (104)
identified the occurrence of oscillation as eaoftetthree consecutive mutual switches between a
pair of locations were observed. Once oscillat®identified, all the locations involved in these
switches are replaced with that location in the péth which the user has been associated most

of the time. A similar method was also adopted18) (

Procedure used to perform this pattern-based meath@d®4) can be described as
following. A sequential scan starts from the begigrof location records of a mobile phone user
ordered by time stamps. If a sub-sequence of lmcacords contains mutual switches between
two locations for at least three times, suchXs{A;,, Be,, A¢, » B, Ve J(t1<ty < -+<tg),
oscillation is considered present. This sub-segeénthen updated so that all location records in
this sub-sequence would indicate just one locatittre-ene which the user has been associated
with most of the time. In the same sub-sequencegeahbthe user is found to be associated with
tower A for more time than tower B, then locatiomsBeplaced by location A, which results in

an updated sub-sequence &g {A;,, A¢,, A¢, Aty Ye }-

This pattern-based method has the risk of mistattiegactual movements of a user who

frequently travels between two locations for oatitin. Here, it is considered that a combination
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of the speed-based and pattern-based approachegnugy more reliable results: firstly, sub-
sequences seemingly resulting from oscillationdatected based on pattern-based approaches;
secondly, switching speeds between pairs of logati® determined for each sub-sequence;
lastly, sub-sequences are only updated if the bmigcspeed is beyond a speed threshold as

determined in speed-based approaches.

24 PROSPECTSAND ISSUESOF MOBILE PHONE DATA

24.1 Relative Advantages

As an alternative approach for travel data colectmobile phone data has several major

advantages over travel diary/GPS tracking data.

1) Much larger sample size: Studies show that tratilioravel surveys usually have
a sample size less than 10,000 (105), while, withite phone data, a sample size of ~1 million
iS not uncommon.

2) Longer duration: Theoretically, mobile phone daa be collected for as long as
necessary. Currently, mobile phone data sets sparfi@im a few months to several years have
been found in empirical studies (28, 56). In castirenost of the large-scale (regional or national)
travel diary data sets are of one-day only witkw being two days; those studies that last more
than a few days are typically smaller-scale unregmeative ones (106). Recent advancements in
GPS tracking technology have made feasible thecdin of multi-day travel data (107, 108).
Yet, rarely can one identify GPS data sets lastivey one month.

3) Cost-effectiveness: Travel surveys on average®st,000 (105) with multi-day

surveys costing more. On the contrary, mobile phaata is automatically collected by the
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cellular network operators with no additional calsgugh there will be cost of purchasing the
datasets from the network operators.

4) No human errors: Human errors can be introducexdtratel diaries in many
ways (109). During mobile phone data collectiorbjeats have no active participation, which
precludes the possibility of any human error.

5) No non-response: Non-response rate is one of thar m@ncerns in travel
surveys. This problem becomes more salient in ralalyi travel data collection as subjects are
required to record and enter information over aemded period (109). Subjects in mobile
phone data sets, however, are automatically indladecellular network subscribers. Thus, there
IS no concern of non-response.

6) No fatigue/attrition: One of the most important cems with multi-day travel
data sets is reporting fatigue, evidenced as dsedeaumber of days with at least one trip and/or
decreased number of trips reported over time (1hApngitudinal studies, attrition can be a
severe problem, with participants’ opting out ie thiddle of a survey. While reporting fatigue
always occurs in multi-day travel diary, GPS tracgkdata can suffer from similar problems
when participants forgot to turn on or charge GB@aks later in the study period. Without
being actively involved, subjects in mobile phomadsets don’t experience fatigue.

2.4.2 Unresolved | ssues

Though the advantages of mobile phone data seevatent, several issues remain in applying

mobile positioning data to study travel behavior.

1) Proximity of mobile phones: Studying travel behawidgth mobile phone data
implicitly assumes that individuals would alwaysrgaheir devices around and thus the

positions of these devices serve as a reasonaitg pf the users’ locations. Studies have
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recently raised questions about this assumptiofiLlf), the authors categorized the proximity
of mobile phone to its user into three levels: withrm’s reach (1-2 meters), within the same
room (5-6 meters), and unavailable (beyond 6 metResults show that proximity levels varied
substantially for different users and under différeircumstances (e.g. in or out of home). For
one of the study participants, his mobile phone wesvailable for more than 70% of the time.
Yet, the authors also showed individuals tendddetp their phones close when travelling (out
of home). Clearly, if mobile positioning data islie used for large-scale, regional travel
behavior studies, more studies understanding htfereint population segments carry and use
their mobile phones are needed.

2) Multiple mobile phones: Surveys (22) have showrt ithanany countries, the
penetration rate of mobile phones is over 100%¢ckwvheans some individuals are likely to
carry multiple devices. Implicitly in many existisgudies is the assumption that each device
uniquely represents one individual. These indivislaae over-represented in a mobile
positioning dataset and may overshadow the belswiosthers. Studies are needed to
understand this particular segment of the populatiderms of their size as well as their
carrying and phone use behaviors.

3) Penetration rate: Mobile phone data sets can stuffer unrepresentativeness
depending on mobile phone penetration rate intilndyspopulation. Though this may not seem
to be a problem in developed countries, mobile pare far from ubiquitous in many
developing countries. Recent news shows that tha@lenphone penetration rate just reached 55%
in Rwanda (112). Individuals who don’t own mobilegpes are precluded in studies. It is
expected, though, this will be resolved as the fratien rate keeps rising throughout the world.

Second, depending on the cellular network operstarfio provides the positioning data, non-
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subscribers are precluded and thus underrepresé&ddhde biggest cellular network operator in
U.S., Verizon only holds a market share of 32% JXEiRI there are dozens of other operators in
the U.S. Little is known about whether there exssigie systematic difference in the travel
behaviors of subscribers with different cellulatwark operators.

4) Sample selection: It is common for researcherglecs a study sample from all
the subscribers included in a raw mobile phone settg@rovided by the network operator, and
this selection can be non-random and renders tlaé §ample unrepresentative. As an example,
in (56), a sample of mobile phone users who madksaat one call every two hours was selected.
Recent studies (103, 114, 115) show that user mph#dd a strong correlation with phone usage:
more active users are more mobile. Therefore, sasglection based on phone usage would
potentially result in an overestimation of mobiligwels. On the other hand, some studies (103)
also suggested that some mobility measures seemitomune to this sampling bias. In
summary, great caution should be exercised whenlityabformation derived from mobile
phone data are to be generalized to the generalgam.

5) Positioning accuracy: Mobile phone data has a nimekr positioning accuracy
level compared to GPS tracking data (usually witleaor range of less than 10 meters).
Mobility measures derived from mobile phone dateelaeen compared to those from GPS
tracking data (116) and the validity of these measdiffers: average daily travel distance
estimated with mobile phone data is less thandbaved from GPS tracking data, while
frequent activity locations detected with both dsgés are highly consistent. More studies aimed
at cross-checking mobility measures from mobilerghdata are much needed (117).

6) Socio-demographic information: Mobile phone dataally doesn’t contain users’

socio-demographic information. If the researchregeis to explain mobility measures derived
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from mobile phone data with socio-demographic \@es, mobility measures can be aggregated
to a geographic level where socio-demographic médion is publicly available. In (97),
individuals’ daily trip lengths derived from mobitgone data were aggregated to block-groups
level and associated with socio-demographic infeilonarom U.S. Census. Many more studies
are needed to check the validity of such procedamescomparability across regions. It is worth
to note that, even though such procedures canllaated, individual level socio-demographic
information remains unavailable as required in @mwnal disaggregate travel behavior
modeling.

7) Privacy: Usually privacy protection is achievedrbgearchers receiving an
anonymous data set from cellular network operatslsn, research results are supposed to be
published at aggregated level (54). Researchaershalge the choice to adopt an ‘opt in’ policy
so that individuals’ permission is guaranteed betbeir data is used for research purpose (55).
This ‘opt in’ policy would potentially reduce saremize. In (32), the authors asked 576
individuals’ agreement for monitoring their phoriesresearch purpose. 231 of them agreed and
the main reason for refusal was not privacy relébed because they don’'t have a contract with a

specific cellular network operator). Only 10% shdveeserious concern of surveillance.

2.5 CONCLUSIONS

Data generated from the ubiquitous mobile phontesygrovides an alternative data source for
research and is yet to be explored by the travehtier research community. Advantages of
mobile phone data over travel data collected thinduaditional approaches are evident in many
aspects. Certainly, mobile phone data is not withioitations. Among others, its coarse

granularity in space and time prevents us to oliterground-truth of users’ trajectories. There
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is vast uncertainty of a user’s whereabouts wheis het communicating with the network (96).
Therefore, mobility information extracted from migyphone data still needs to be carefully
evaluated depending on specific applications. Despese unresolved issues, mobile phone data
has seen its success in many travel behavior stadie it possesses enormous potential to be
continuously exploited by the travel behavior rese@ommunity. A few possible directions are

discussed below.

First, validation of techniques used to infer bebeal measures from mobile phone data
is in imperative need. Current techniques usecetivel behavioral measures from mobile phone
data are largely exploratory and requires validgatiexisting validation is mostly implemented
by comparing the derived behavioral measures tssta recorded by independent sources. For
instance, Becker et al. (118) proposed a new tgalertio determine the commute route taken by
individuals into Morristown, New Jersey based ogirtimobile phone traces. A correlation
coefficient of 0.77 between their traveler counteach commute route and the traffic counts
published by the New Jersey Department of Tranaport was reported. Though this number
seems promising, discrepancy remains. And rar@ycéses that further insights and discussions
are provided for the discrepancy: 1) what are tiedying causes of this discrepancy? 2) what
implications this discrepancy have on final resuBtudies looking at these questions should
provide us with more information on techniques we to derive behavioral measures from
mobile phone data and the generalizability of @suits. Further question arises in the case that
no reliable reference is available for validatibn(73), for instance, the authors noted that there
was a temporal gap between individuals’ residefdiztion derived from mobile phone data

and those as a reference and no other better nefepain be locatedhis necessitates an
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accumulation of validation studies so that thedrfiof certain techniques can be assured even

without references.

Second, more research should be directed to extigloer-level behavioral knowledge
from mobile phone data. As mentioned above, manyilmphone data sets only contain basic
information as location and time. Yet, location dimae constitute only a small part of a person’s
state (119). As travel behavior researchers, wénseeested in other behaviors, such as travel
mode, and the context of such behaviors, sucheaadtivities performed. These kinds of
information are not explicit in mobile phone dagtiss Some early efforts have been made to
infer activity information from mobile phone data.(120) and (121), the authors identified the
most probable activity type associated with a dpeldcation based on surrounding points of
interest. However, the activity type derived wabteageneral (i.e. eating, shopping,
entertainment and recreational) and no other &gtinformation, such as activity duration, was
available. Discovery of higher level knowledge frtonation history requires dedicated

techniques worth more detailed studies (102).

A related issue is the combination of mobile phdata with other travel survey data. It
has been recognized that mobile phone data wilt ikedy be complemented by other travel
data in performing travel behavior analysis. Yeis also desirable to exploit information in
mobile phone data to minimize complementary dali@ction efforts. As pointed out in previous
section, one major drawback associated with manyilsmmphone data sets is the lack of socio-
demographic information. Previous studies addretgssgroblem by integrating socio-
demographic information from census (97). In faetent studies have shown that it is possible
to infer some socio-demographic variables basedfonmation contained in mobile phone data

(122, 123). These efforts will definitely expan@ tcope of application of mobile phone data.
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Third, mobile phone data provides us with the oppuoty to revisit many research topics
that have been hampered by the lack of data. ldereuple of examples is provided here in the
hope of stimulating further discussions. For starteobile phone data can facilitate the study of
social influence on travel behavior. There has beereasing interest in integrating social
dimensions in understanding travel behavior inmegears (124). It is hypothesized that social
interaction is an underlying cause of travel bebauiowever, the lack of data on individuals’
social network structure has inhibited researcfrera uncovering a reliable link between social
network and travel behavior (125). Since phone campation serves as a primary vehicle of
information diffusion in social network, the comnication information contained in mobile
phone data sets can be used to infer social netstar&ture, and is expected to significantly

enrich our knowledge on the social context of tréehavior.

Another research area that can benefit from theotiseobile phone data is the study of
dynamics of travel behavior. Previous studies endynamics of travel behavior are generally
performed with two types of data sets: multi-datadsets and panel data sets (9). Multi-day data
sets contain records of behavior for a period magngiom a couple of days to a few weeks. Panel
data sets contain behavioral data of a sampleghmapeatedly surveyed in multiple waves at
distinct points in time, usually months or yearargpBoth have limited ability in capturing the
complexity of temporal dynamics in travel behavidulti-day data sets are limited in their
length, which prevents us to discover behaviorgpa$t relying on long-term observations (126).
Panel data sets suffer from its discontinuity, whiould leave out many critical moments in
behavior evolution (127). Mobile phone data, ondtieer hand, can be continuously collected

for a prolonged time period and allow us to idgniffrequent travel behaviors (e.g. long-
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distance travels) and understand the behaviorhltpatards behavioral changes. In (35), mobile
phone data was used to identify individuals’ restd# locations and approximately 5% of the
population in Estonia was found to change theidegial locations seasonally. Very recently,
Jarv et al. (128) has applied mobile phone dastudy the monthly variability in individuals’
activity space. Aided by mobile phone data, Be&kal. (129) was able to characterize long-

distance travel of the population of Israel at oz level.

In summary, mobile phone data opens new opporasitr travel behavior research and
has already stimulated enormous research inter@sobility behavior from many other
disciplines, as evidenced by the number of stugieewed in this chapter. It is our hope that
this dissertation can help in synchronizing trabehavior research with research conducted in

the age of ‘big data’ and foster dialogues betweavel behavior research and other domains.
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CHAPTER 3

DATA

3.1 DATA OVERVIEW

The mobile phone data set used in this dissertabotains 128,412,557 sightings generated by a
sample of 120,435 individuals during the time pefietween September 1st and October 31st,
2011. Each time a phone communicates with a tawelyding calling, texting and Internet
browsing activities, a sighting is generated arlzeitomes a row in our data set. Each sighting is
composed of an ID number—a unique number assocrdtbdhe device generating the sighting,
a location estimate indicating the device’s loaatichen this sighting is generated and a time
indicating when the sighting is generated. Forgowpurpose, the real ID of devices has been
encrypted and the ID available in our data setren@om combination of numbers unique to
each device. The estimated location is in the foiwhéongitude and latitude coordinates. The

time stamp of each sighting is in Unix time.

3.1.1 Number of Sightings

Fig. 3.1 shows the variations in daily total numbgsightings generated by the sample. Though
the existence of variations over time is evideatlydtotal number of sightings fluctuates around
2,000,000. Daily total number of sightings exhil@tprominent weekly cycle. The total number

of sighting stays relatively stable (i.e. no ling@nd) from Tuesdays to Fridays and peaks on
Saturdays. After a significant decrease over Susidag total number of sightings hits its
minimum on Mondays corresponding to the dates pteeber 12, September 19, September 26,

October 3, October 10, October 17 and October @41 2
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FIGURE 3.1 Variations in daily total number of digiys

Fig. 3.1 reveals little about the distribution @iilgt total number of sightings among

individuals. Therefore, Fig. 3.2 is presented.
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FIGURE 3.2 Boxplot of daily number of sightings
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Fig. 3.2 is the box-and-whisker plot showing th&tiilbution of daily total number of
sightings among individuals. Green boxes coverdnge between the first quartile and the third
guartile with the median value clearly marked ia thiddle. The blue whiskers extend to 1.5
times the range between the first quartile andhhrid quartile and the red dots are outliers. In
general, it shows that daily total number of sighs is unevenly distributed among individuals
and contains significant amount of heterogeneitystnof individuals generated a few dozens of
sightings each day, while some generated as fdasaghan ten sightings. In addition, there are
a small number of individuals who generated extrérgh number (thousands) of sightings each

day, which is indicated by those outliers.
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FIGURE 3.3 Distribution of total number of sightsg

Fig. 3.3 shows the distribution of total numbesightings in two months. Similar to

what is observed for daily number of sightingsatoiumber of sightings also varies significantly
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among individuals: 21% (25,054) of the sample gateel fewer than 10 sightings; 29% of the
sample (34,939) generated a total number of sightianging from 10 to 100 and 49% of them
(58,463) generated sightings somewhere betweermid®@0,000; only a small portion (2%)

generated more than 10,000 sightings.

3.1.2 Total Number of Sightings Decomposition

The difference in the total number of sightings oesult from two sources: difference in average
daily number of sightings and/or difference in thiember of days observed. Therefore, for each
individual, two quantities, namely the averageydaiuimber of sightings and the number of days

observed, are subsequently investigated.

Fig. 3.4 shows the distribution of the number ofslabserved.
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FIGURE 3.4 Distribution of number of days observed



40

About 47% of the sample (56,113 individuals) wenég/@bserved for fewer than 5 days.
This number is followed by those observed for 2@alays (10,847 or 9% of the sample) and
more than 55 days (19,619 or 16% of the sample).rékt of the sample is almost evenly
distributed over the span from 10 to 55 days. ummary, this figure shows that individuals

differ substantially in terms of the number of dapserved.

If difference in the total number of sightings @pletely attributable to the difference in
the number of days observed (i.e. individuals gateethe same average daily number of
sightings), a perfect correlation (with a corredatcoefficient as 1) between the total number of
sightings and the number of days observed shoutibberved. However, the actual coefficient
computed is 0.54, which means that the differendbe total number of sightings is more likely
to be a convolution between the difference in thimber of day observed and the difference in
average daily number of sightings. Consequentstribution of average daily number of

sightings is examined in Fig. 3.5.
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On average, 62,919 individuals (52% of the samgédeerated a number between 10 and
100 of sightings every day. There are 49,541 inldigls (41% of the sample) who generated
fewer than 10 sightings per day. Only 7,975 (6%hefsample) individuals generated a daily

number of sightings more than 100, among whom d&viduals generated more than 1,000.

3.1.3 Timelntervals

Statistics of the number of sightings reveal lithout the time interval between consecutive
sightings. In order to reconstruct individualsjé&etories with sightings, sightings should have a
sufficiently fine temporal resolution. Thereforemé intervals between consecutive sightings are

examined.
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FIGURE 3.6 Time intervals between consecutive gigjst(left panel: all sightings; right panel:

daytime (6 a.m.-12 a.m. the next day) sightings)

For each individual, the mean and first, seconidd tipuartiles of time intervals are
computed and the distributions of these statistiesgraphically presented in the left panel in Fig.

3.6. The figure shows that the first, the secamdithe third quartiles peak at less than 1 minute,
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between 1 and 10 min, and 1 hour, respectivelylenthe means seem to spread over the range
between 10 min and a day (1,440 min). The dismchietween the distribution of the means and
that of the medians (i.e. the second quartile) sstggthat the distribution of time intervals are
positively skewed, which is characterized by some/ Yong time intervals. Long time intervals
would greatly hamper the reconstruction of indiatiitrajectories. It's suspected that most of
these long time intervals occur during night tinveen devices are relatively inactive. In order
to confirm this speculation, sightings from 12 atm6 a.m. of each day are removed and the
distribution of the same of set of statistics (mdaat, second and third quartiles) are
recalculated and shown in the right panel in Fi§. 3he distribution of means greatly shifts to
the left and is characterized with a single peadatind 1 hour. Though the distributions of
other statistics don’t alter much, their overallues become smaller with those bumps in the tail

of the original distribution removed.

3.2DATA PRE-PROCESSING

Of interest in this dissertation is the variabilttiyactivity locations. In the following, a procagu
is presented to extract individuals’ activity lacats from location estimates in our mobile phone

data set.

3.2.1 Clustering of Sightings

Due to uncertainty in the location estimation, nplét distinct location estimates can occur when
a device actually remains at the same locatiorerd@fbre, nearby location estimates are
clustered following the practice of previous stsdi48, 130). Firstly, all the distinct location

estimates for an individual, denotedlas: {l;, ..., y} are extracted\ is the total number of
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distinct location estimates). Secondly, the fiegtdtion estimaté, is chosen to be the initial
center of the first cluster and the distance betvibe second location estimdjeandl; is
calculated. If the distance is less tHakmn, thenl, is fused into this cluster and the cluster
center is updated as the geometric centéy ahdl,. If the distance is greater tharkm, thenl,
becomes the center of a new cluster. Thirdly, alaimprocedure to that in the second step is
repeated for all the remaining location estimdtes.., [y}. That is: the distances from location
estimatd; from each of the existing cluster centers areutated successively. If a distance is
less tharl km, thenl; is fused into this cluster and the cluster ceisteipdated as the geometric
center of all the points included. If all distantetween; and cluster centers are greater than
1 km, thanl; becomes the center of a new cluster. Lastly, &aiion estimate is replaced
with the cluster center of its associated clugach cluster center is considered to be a virtual
location where those sightings whose estimateditwtsfall into this cluster are generated and

these virtual locations are used in the followinglgsis.

The1 km threshold is chosen to take account for the lonagstimation errors in the data
set. Ideally, clusters should be apart by a digtdhat is larger than twice the location estimation
error so that location estimates in a distinctteluare less likely to be estimates of a single
location. In order to observe the change in theadise between clusters with respect to
increasing threshold distance, the minimum distdoeteeen clusters for each individual is
calculated for 500 m, 1000 m and 1500 m as threlstistance for clustering. Results are

presented in Table 3.1, along with the total nunddedusters.

The minimum distance between clusters increasdseabtreshold distance becomes
larger. For the 500 m threshold, a quarter of drae has a minimum distance between clusters

less than 280 m, which is comparable to the lonagstimation error in my data set with an
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average of 320 meters and a median of 220 met8@.(Larger threshold distance produces
better-separated clusters. For the 1000 m and dbB@Besholds, a large portion of the sample
(more than 75%) have a minimum distance larger thase the location estimation error.
Distances between clusters resulted from both H0@dd 1500 m thresholds are satisfactory.
On the other hand, the number of clusters decreastee threshold distance increases: distinct
clusters are merged together with larger threst@hnce. In order to better preserve the spatial

pattern in the data, a smaller threshold distancé&mthreshold is used for following analysis.

Table 3.1 Cluster Distance and Number of Clusters

1st 3rd
Min. Quartile Median Mean Quartile Max.

500m No. of clusters 1.00 5.00 20.00 47.32 65.00 6.02

Min. distance

between clusters (m) 2.10 280.00 451.50 836.20 7885. 71240.00
1000m  No. of clusters 1.00 4.00 13.00 26.22 37.00 82.®

Min. distance

between clusters (m) 2.94 562.00 919.10 1577.00 6.009 73150.00
1500m  No. of clusters 1.00 3.00 10.00 18.20 26.00 31.m™

Min. distance

between clusters (m) 4.19 870.60 1438.00 2268.00 64.08 83030.00

3.2.2 Ogscillation

At any given location, there may be several cellexs whose radio signals reach a device. If cell
towers have approximately equal signal strengtligvece may hop between cell towers even
when it is not moving. In this case, it may appéat the user travels for several kilometers in
just a few seconds. This phenomenon is known alatmn in cellular network. For instance, if
a device is assumed to be on the boundary of catidAcell B, the signal strength received by
this device from tower A and tower B is approxiniaequal. This device can be registered to

either tower A or tower B depending on the realetitraffic through these two towers. When it is
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registered to tower A, its location will be recoddst location A. Similarly, its location will be
recorded as location B when it's handed over teeto: Distinct location records—Iocation A
and location B—resulting from oscillation need ®dwonsolidated. Otherwise, it would lead to
an overestimation of the total number of activagdtions visited. This problem is addressed in
this dissertation by a two-phase approach: degcseillation location series and updating

oscillation location series.
3.2.2.1 Detecting oscillation series

When oscillation occurs, a unique pattern in lawmatiecords is observed. Specifically, there is a
series of location records which consist of frequvitches between a pair of locations. Take

location A and location B as an example. A seriesld appear like focation A, ,
location A, location By,, location A, , location By, location A;_, location A, }(t,<t, <

---<t,). This type of series is termed as an oscillasieries in this dissertation. Oscillation series
are prevalent in this dataset. The number of trajess (out of 120,435) contains 2-time switches,
3-time switches and 4-time switches between anygfdocations are found to be 83,463,

65,243 and 57,679, respectively.

A heuristic rule, similar to that in Bayir et al9), is used to detect oscillation series: if a
series of location records is observed to be switchetween two locations for at least 3 times,
it is qualified to be an oscillation series. In g@nme example, we observe the switch always
happens between location A and location B and taere¢otally 4 (>3) switches &f — t3,

t; — ty, ty — ts, ts — tg. Therefore, this series of location records i®sgillation series. In
addition to the 3-time switches threshold, 2-timgtches and 4-time switches thresholds in

identifying oscillation series are also testeddensitivity analysis purpose. Daily number of



46

activity locations visited resulting from differetitresholds is discussed in the next section

(Section 3.2.3).
3.2.2.2 Updating oscillation series

After an oscillation series is identified, it's uggdd so that all the location records in this serie
would indicate just one location—that one whichegus more frequently in the series. In the
same oscillation location series above, locatias 8bserved for 5 times and location B is
observed for 2 times. Thus, in this series, locaBds replaced by location A, which results in a

series asfocation A, location A, location A, location A, , location A;_, location A,

location A }.

3.2.3 Activity Location Selection

Only activity locations are of interest in this shstation. It's proposed that stay duration at a
location must exceed a threshold in order to qualifocation as an activity location. Stay
duration at a location is calculated as the tinfiedince between the first and the last record in a
sequence of consecutive records generated abttasdn. Following Bayir et al. (19), the stay
duration threshold distinguishing activity locatifsam non-activity location is set to be 10 min.

In Kim and Kwan (131), the authors also argued 1amin was the minimum duration required

for the meaningful participation in any activity.

In order to get a taste of the general pattermaiziduals’ activity location choices, the
distribution of the number of locations visited f@rious time periods is presented in Fig. 3.9

(left) with a comparison from Song et al. (56) ltig
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FIGURE 3.7 Distribution of number of locatioisvisited for various time periods (left panel:

data used for this dissertation; right panel: fisang et al. (2010))

The general trend in the two figures is consisterast of the people visited only dozens
of locations during the 8 weeks observed and tbbalility converges and becomes saturated
over time. Yet, curves based on our data (leftit shithe left, i.e. the number of location visited
is smaller. Two steps in our data processing praeedxplain this difference. First, our locations
are actually activity locations with stay duratioinat least 10 minutes and, intuitively, the
number of activity locations is fewer than the n@emof all the locations (including both activity
locations and transient locations) recorded in Sairgg. (56). Second, the oscillation problem
does not appear to be explicitly addressed in fhegder, which could lead an overestimation of
the total number of locations. It is also worthyntate that, in Song et al. (56), a location refers
the cell tower a device connected to, while, i thissertation, after the preprocessing

(clustering and addressing oscillation), it referan activity location.

Besides the total number of activity locationspalalculated is average daily number of

activity locations visited by each individual. $¢ts are presented for different thresholds in
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identifying oscillation series (i.e. 2-time, 3-timad 4-time switches), as well as for the default

case where oscillation effect is left unaddressed.

Table 3.2 Daily Number of Activity Locations

Min. 1st Quartile Median Mean 3rd Quartile Max.
Default 1.00 1.00 1.50 2.10 2.50 20.00
2-time 1.00 1.00 1.33 1.78 2.03 21.17
3-time 1.00 1.00 1.40 1.85 2.16 20.14
4-time 1.00 1.00 1.41 1.86 2.20 19.22

In general, numbers presented in Table 3.2 arerlowsidering the average 3.79 trips
per person reported in 2009 National Household dir&urvey (132). There are a few possible
reasons. First, the scope of dissertation is lianitedaytime travel (6 a.m. to 12 a.m. the next
day). So nighttime trips are excluded. SecondtHose individuals having sparse sightings,
activity locations visited between consecutive sigfs may not be captured, which resulted in
lower number of location visited. Third, stay dumatat one location is calculated as the time
difference between the first sighting at this lamatnd the last one. Since the first sighting and
the last sighing at a location usually occur dutimg stay, the stay duration calculated is
generally shorter than the actual stay time. fitassible some activity locations can be ruled out

if actual stay time is underestimated by the calmd stay duration.

As expected, daily number of activity location tesi decreases after oscillation effect is
removed. Moreover, it increases along with the nemab switches. It is suspected that, with
fewer number of switches, more actual trips ardaken for oscillation effects. Consider a
simple trip chain with 2 activity locations: workage—Ilunch place—work place. Computed

number of activity location visited would be 1 wRkswitches threshold as opposed to 2 with 3-
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switches or 4-switches thresholds. So a higher murobswitches is considered to be more
effective in detecting oscillation effect. Yet, fina3-switches to 4-switches thresholds, change in
daily number of activity locations visited is neghble. Therefore, the 3-time switches threshold

will continue to be used in this dissertation.
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CHAPTER 4

TIME-OF-DAY DEPENDENCE OF LOCATION VARIABILITY

4.1 INTRODUCTION

Although the existence of variability in individgatravel is well recognized (2, 11), Our current
understanding of variability in travel behavior &@ns limited. Variability in urban travel
behavior has received little attention in the atere, primarily because most data sets used for
analyzing and modeling urban travel comprise infation for just a single day for each sampled
individual and thus preclude the examination ofatality (12). Despite the spatial nature of
human travel, the limited research on variabilityravel behavior has been largely focusing on
non-spatial aspects, such as the number of digly, waily travel distance and daily travel time
(106). Lack of knowledge on variability in spatthinensions (e.g. activity locations) leads to a
potential gap in the current thinking on the relaship between activity-travel behavior and the
consumption of urban space (106). For instanc@dinidual can be observed to make the same
number of trips on two days, though to completétiecent sets of activity locations. This
dissertation makes an effort to quantify the valitgtin individuals’ spatial behaviors by
examining the spatial variability of activity logas, i.e. the extent to which individuals either

repeat or vary their location choices.

The magnitude of location variability has importanplications for location prediction.
Most of location choice models in the transportafield are built with location choice
information on a ‘typical’ day. In order to applyese models to predict one’s location choices,
individuals are assumed to repeat the same setafibn choices over time. The likely existence

of location variability raises the question thathadividuals’ location choices observed within
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on this typical day can really be used to typifgiiinduals’ location choices in the long run. That
is how much individuals are committed to the sapteo§locations over time. While current
location choice models may produce satisfactordipt®ns in the case of low location

variability, they could also yield rather distortexbults for variable location choices.

Location variability characterizes individuals’ ety location choice behavior which
has been shown to be affected by time of day (%.question that then arises is whether
individuals’ location variability depends on timéday. One rationale for expecting time-of-day
dependence of location variability relates to theaept—Ilevel of fixity. Level of fixity is a
concept on the extent to which activities are aansed in the time and space. Activities
characterized with a higher level of fixity are radaifficult to relocate and reschedule.
Researchers have generally agreed that activiiibstine highest level of fixity are those
compulsory ones, such as work or school (133).€65lihe various activities performed by an
individual differ in their levels of fixity, it's onceivable that the location choices observed
during time slots filled with activities with a Hgr level of fixity are less variable. The primary
objective of this chapter is to examine the timaeday dependence of location variability.
Understanding time-of-day dependence of locatiarafdity will allow us not only to observe
the variations in location variability with respéottime-of-day but also to quantify the impact of

time-of-day on location variability.

In this chapter, first, individual temporal profibé location variability is constructed, i.e.
individuals’ location variability is measured foiffdrent time periods in a day. Sample means of
location variability for different time periods asbown to be statistically different. In general,

location choices are found to be the most variabtbe afternoon and relatively stable in the
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morning and evening. For each time period, sigarfiheterogeneity in location variability is

also observed.

In order to further explore this population hetemoegity, people are clustered into groups
based on their temporal profiles of location vaitigh In this dissertation, model-based
clustering is used to cluster relatively homogeseemporal profiles together. Clustering based
on the temporal files of location variability remgéwo distinct groups of people. The trend of
location variability across the day is rather sanilor the two groups, but one group of people
consistently exhibit a higher level of variabilifyurther analysis shows that the between-group
difference in level of location variability stem®in the difference in the relative frequency of

visits among locations instead of the total nundfemique location visited.

Lastly, the magnitude of time-of-day dependenasntified by introducing time period
as independent variables in explaining locatiomamlity. All time related variables demonstrate
significant explanatory power, although their maggeés vary. In general, afternoon periods
show a larger influence on location variabilitymi& variables collectively account for 36% of
the variations in location variability. These factsfirm that time of day is an important factor

that influences location variability.

The rest of this chapter is organized as followsSéction 2, relevant literature on
variability in spatial behavior and the conceptesel-of-fixity is reviewed. Section 3 provides
an introduction to the mobile phone data set, naghssed to extract location information and to
select a sample. In Section 4, methods used touresbcation variability and cluster

individuals based on their temporal profile of lboa variability are presented. Analysis results
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can be found in Section 5. The chapter is concliea discussion of the implications of

location variability on location choice models.

42 LITERATURE REVIEW

4.2.1 Location Variability

Typical approaches to evaluating location varigpitivolve measuring the frequency of repeat
visits to activity locations. Schonfelder (134) @éstigated people’s activity locations and found
the trips to the top two to four most visited laocas (including home) accounted for more than
70% of all trips. Schonfelder and Axhausen (135jhier showed that trips to the top 10 most
visited activity locations accounted for 80% oftak trips and among them 40% were home-
directed. Buliung et al. (106) found that, on agexrgreople performed 72% of their activities at
repeated locations and the remaining 28% wereethaut at locations occurring only once
during one week period. Most recently, Song etfl) examined the fraction of time a mobile
phone user spent at his top-visited locations. dde was found to spend about 60% of his time
at his top two locations. This number was repotteble 90% in a subsequent study (66). Lu et al.
(65) elaborated these results by showing that thesmentages could differ depending on the
number of unique locations visited. On averageseheho visited more than 10 locations spent
approximately 75% of their time at the top two lio@as, while this percentage could be as high
as 95% for those who only visited four distinctddons. These results consistently suggested
that individuals’ location choices presented a i$icgnt amount of repetition supplemented with
some variability (134). However, no dedicated stadythe impact of time-of-day on location

variability is identified.
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4.2.2 Levd of Fixity

People travel between spatially separated locatmpgrform activities and the choices of

activity locations are subject to the spatial craiats associated with these activities that can be
represented by level of fixity. Level of fixity & concept on the extent to which activities are
constrained in space and time and rooted in tinogpgghy (1). A key idea in time-geography is
that individuals’ activities and related travel atghject to spatial and temporal constraints. These
constraints vary for different activities and canilbustrated with the space-time prism in Fig.

4.1.

Time

4 T-Lunch Time
V-Walking Speed
t;

= [ Geuographical
. Space

Work Place -

FIGURE 4.1 lllustrative example of spatio-temparahstraints on activities

Adapted from Wu and Miller (136)

The three-dimensional volume bounded by the spaoe{irism is called thBotential

Path Space (PPS). In Fig. 4.1, the horizontal plane represspaice and the vertical axis
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represents time. This worker can’t leave work pliacdunch before; and he is obliged to be
back at work place at, simply because his work commitments need to bedaout at his

work place during specified working hours. On tbatcary, lunch lends him more flexibility.
Betweent; andt,, the position he could possibly occupy in spaaktane can be delineated by
the prism, assuming a constant walking speeebresented by the slope of the edges of a prism.
Within this prism, the place and time of lunch cendecided at his discretion. PPS is determined
by this individual's time budget (i.8, — t;), spatial constraints (work location that deteresin
travel origin/destination within lunch time), arftettravel speed. Cullen and Godson (16)

noted one of the features of this model as: thexdveo types of activities—fixed activities

which are fixed in space and time (e.g. work) anfixed activities which are relatively flexible

(e.g. lunch).

Cullen and Godson (16) further elaborated thiscdixefixed dichotomy of activities by
arguing that people tended to attach a subjeativel lof fixity according to the extent to which
an activity was constrained in time and space.\itets characterized with a high level of fixity
are difficult to be relocated and rescheduled. Reters have generally agreed that work and
in-home-activities (e.g. sleeping) were of the leigfievel of fixity in an individual’'s daily
activity-travel pattern (137, 138). ‘Spur of the ment’ activities (139, 140, 141) seem to have
the lowest level of fixity and, oftentimes, arermpt@d only a few minutes before they are actually
performed. It is then conceivable that, within adividual’'s daily schedule, time periods filled

with relatively fixed activities tend to lack looca variability than the others.
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4.3 METHODOLOGY

4.3.1 Entropy asa Measure of Location Variability

In this dissertation, location variability is mesast by Shannon’s entropy (142). Entropy is an
established measure of variability in a randomalda (143). Shannon’s entrogyfor a discrete

random variabl& can be mathematically written as:

SX) = _an(xn)logzp(xn)) [41]

whereP (x,,) is the probability of outcome,. S(X) only takes on non-negative values and
increases with greater variability.(X) measures variability i by capturing the number of
unique value& can take on and also the relative frequencyeddlvalues. Random variable
with completely repetitive outcomes results in zentropy, while a large number of outcomes

with comparable probabilities of occurrence yieldrger entropy.

Let the location choices of individuatluring time period be represented by a
random variablg®. Location variability of individual during time periode—S¥ (J¥)—can

then be measured as

SEU") = = Zn PEGMLoga PEG., [4.2]

whereP} (j¥) is the historical probability of individuals visiting locationj, during time period
k. Repetitive observations of individuabeing at a single location duritgwould result in
Sk(J*) being equal to zero, while regular visits to @éanumber of locations by individual

yield a largesf (J©).
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4.3.2 Temporal Profile of Location Variability

A temporal profile of location variability is a terordered sequence of location variability each
computed for a specific time interval in a dayohder to construct temporal profile of location
variability, a day is divided int& equal-length time intervals. For each time intekvél < k <
K), the location variability of individualis computed ass¥(J*) and this individual’s temporal
profile of location variability can be representess; = {S}, ..., S¥}—an ordered sequence of

entropy values each measuring the location vartgloiiring a time interval.

4.3.3 Model-Based Clustering

In this dissertation, model-based clustering islusecluster temporal profiles of location
variability. Conventional clustering algorithmsdehierarchical clustering and k-means
clustering) require a user-defined number of chgst& more flexible algorithm that allows the
number of clusters to be derived based on theatdtand is desired. Model-based clustering is a

compelling alternative in achieving this object{\id4).

Model-based clustering has seen its success rdift applications recently (145, 146,

147). In model-based clustering, the observed idaasumed to be generated from a statistical
model. Gaussian mixture model (GMM) is one of thestrapplied statistical models for model-
based clustering analysis (148). A GMM is a weigldem of a number of individual Gaussian
distributions with unknown parameters. Each indinaldGaussian distribution is a component of
the mixture model and mathematically representastar in clustering analysis. In determining
the number of clusters, a user-specific upper bairtde number of components in a GMM,

i.e. the maximum possible number of clusters undeglthe data, is selected. For each number

m from 1 toM, the parameters of a GMM with component are estimated with expectation-
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maximization algorithm (EM) (149) and the clustezmbership is determined. Among all the
estimated GMMs differing in number of components.(1M), the GMM with the highest
Bayesian Information Criteria (BIC) is selectedb®the best model generating the data.
Consequently, the number of components in this B&4&i¥ is the resultant number of clusters.
The resulting clustering membership from model-Hdadestering can be evaluated by an
‘uncertainty’ measure—the probability that a givaservation doesn’t belong to its assigned
cluster. The smaller this probability, the morefadent we are in the clustering results.

Interested readers in model-based clustering &ered to Fraley and Raftery (144).
4.3.4 Linear Regression on Panel Data

In order to further quantify the dependence of fiecavariability (S) on time of day, a linear
regression model is built regressing location \litg (S) on time of the day. Given the panel
data nature of our data (with each individual hgwimultiple entropy values calculated for
different time periods), the model is specifiechdmear regression with unobserved individual-
specific effectK time periods will be entered as indicator varial&/T1, ... INT (K — 1)) in

the model with the last time period as a reference.
The final model is specified as in equation [4.3].
SKF=a+ BINT1+ -+ Br_INT(K — 1) + u; + €z, [4.3]

wherei = 1, ...,n is the individual index ankl = 1, ..., K is the time period index. The
idiosyncratic errog;, is assumed to be well-behaved i.i.d. white noigkars an individual-
specific error term. Depending on the assumptioadaror the relationship betwegrand other

regressors (correlated vs. uncorrelated), the mzatebe either estimated as fixed-effect model
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and random-effect model. Fixed-effect model is emdsere, since the non-correlation between

u; and other regressors can’'t be guaranteed.

4.4 DATA AND SAMPLE SELECTION

44.1 DataOverview

Please refer to Section 3.1 in this dissertatiorafdetailed description of the data.

4.4.2 Data Prepossessing

Please refer to Section 3.2 in this dissertatiorafdetailed description of the procedure.

4.4.3 Sample Selection

As discussed above, entropy relies on the knowlefitjee probability of each location being
visited. Since the probability of an individual dsing a particular location is not directly
observable, it is approximated by the relative dietey of being visited in location history for

the calculation of entropy. In general, observed@iency should become a better approximation
as the study time period gets longer. This disgertdimits its scope to weekday travel. It is
desirable to determine entropy based on one’sltragerd on all 43 weekdays throughout the
whole study period, which is referred as real gntrg ) in this section. However, about 47%
of our sample is found to be observed for less thdays. Moreover, as sightings don’t spread
uniformly within a day, location information durirggrtain time intervals can be missing. As a
matter of fact, not a single individual in our sdenpas location choice information for each hour
on all days. In order to select a sample of redslersize to derive statistics, a concept of

operational entropygj is proposed here to resolve this problem.
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Operational entropy can be calculated based otidocaformation from those days
when an individual is observed. Operational entregaywes as a reasonable approximation of the
real entropy only if the number of days with migglacation information were within a certain
threshold. In other words, if an individual was eb&d forn days andt3 — n* < n < 43,
wheren” is the threshold to be determined (see next paphy the operational entropy
calculated based on the location choice informatiothesen days is considered to be a

reasonable representation of the real entropy.

In order to determine* the following experiment was conducted. Firstubasample of
10,533 individuals who were observed for all wesjlsdduring the study period are selected so
that their real entropy§ea) is known. Nextm (1 < m < 42) days are randomly removed from
these individuals’ records to simulate the circianses that the location choice information is
only available om = 43 — m days. Finally, operational entrop$) (s calculated based on
available information on thesedays. In order to evaluate the deviation of openal entropy
(S from real entropy$ea), ratios ofSto Sey with respect to the number of days remoweds

examined in Fig 4.2.
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Fig. 4.2 shows the boxplot for the ratio of opemaéil entropySto the real entrop$eqs. Green
boxes cover the range between the first quartitethe third quartile with the median value
clearly marked in the middle. The blue whiskerseagtto 1.5 times the range between the first
guartile and the third quartile and the red doésauitliers. A ratio of value one indicates that the
operational entrop$is equal to the real entrof@ey. When only 1-day data was removed, for

the majority of the sample, the real entr&hy is very well approximated by the operational

Wi s aes Rargeed
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entropyS the median of the rati®Sey is one and those values between first quartiletiaind
guartile are extremely close to one. In additianly@ few operational entropy values fall out of
the range between 0.9 and 1.1 times of the reeb@ntAs more days are removed, the medians
deviate further from one and there is more vangim the ratio as shown by the increasing box
size. More and more operational entropy valuesiarebeyond the [0.Sey , 1.1Sea | Window.

In general, operational entropy deviates farthemfreal entropy with larger number of days

removed.

Percentage
060 080 095
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020

0 10 20 30 40

MNumber of Days Remowed

FIGURE 4.3 Percentage of operational entropy witempercent range at real entropy

In this dissertation, entropy falling in a windo®:$S ey ,1.1Se | is considered as a
reasonable approximation of real entropy. Thisc®le is heuristic. A different window size
could have been selected. Then the percentage shthple having an operational entrofyas
a reasonable approximation of the real entr&y ) is identified for different numbers of days
removed(m). The results are shown in Fig. 4.3. Fig. 4.3 shthas the percentage of

operational entropy within the window decrease$ wibre days removed. With 1 day removed,
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99% of the sample have an operational entropy ifalilse window, while with 42 days removed,

this percentage drops to 4%.

It is desirable that a higher percentage of thecsetl sample has an operational entropy
falling in the window [0.%e ,1.1Sea ], I.€. @n unbiased representation of the reabemgt Yet,
the higher percentage, the fewer days removed.ighaigher percentage requires the selected
sample has fewer days with unknown location infdromeand thus results in a smaller sample
size. In this dissertation, it is decided that msi@ with 95% of the sample having operational
entropy within the range would suffice. The samgp]¢herefore, selected in a way such that
individuals in the sample have no more than 10 dats unknown location choice information
(because the maximum number of days associatedwatk than 95% of sample having

operational entropy within [0 ,1.1Seq ] in Fig. 4.3 is 10 days).

444 Number of Time Periods

Since sighting generation depends on phone actwitly for majority users, no phone activity is
performed during nighttime, the total number ofhtigne sightings is limited (less than 7% of
all sightings were generated during 12 am to 6 &a3ed on this observation, only individuals’
location choices during daytime are analyzed (6 sord2 a.m. the next day). Determining the
number of time periods requires the selection cdgpropriate interval length. Theoretically,
short time intervals are desirable in order to gaptariations of location variability over time.
Yet, too short a time interval would lead to a aramber of interval with missing location

information and thus too small a sample size.

For each time intervad (k = 1, ..., K) on each day, it can be determined that whether an

individual has location choice information withimg interval. The number of days with missing
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location choice information during time intervals m;.. According to the threshold determined
in the last section, an individual is only seledfeall m,'s are no larger than 10. This approach
would produce samples of different sizes dependmthe number of time intervalgin a day.
Experiments withkk = 3,6 and 9 result in sample sizes of 12,483, 2,492 and 7@Widuals,
respectively. A comparison between these sampl@®@aginal sample is shown in Table 4.1 in

terms of the mean of average daily number of sigistand the mean of average time intervals.

Table 4.1 Sample Comparison

Average daily number of sightings Average time riviad (min)

Mean Mean
Original Sample 32.90 18.62
Sample
3-interval 90.13 13.56
6-interval 155.55 8.46
9-interval 195.38 8.00

Our samples generated a much larger number ofirsgghon a typical day compared to
the original sample and had much shorter time walsrbetween consecutive sightings. In
general, our samples represent those who had rhoreectivities in the population. These
attributes become more salient when smaller tirtervals are considere@iherefore, caution
should be exercised when extrapolating the retulise population. This issue will be discussed

in more detail in the last section of this chapter.

45RESULTS

45.1 SampleDistribution of Location Variability
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The distributions of entropy for different time enval divisions (i.e. three, six and nine interyals

are shown in Fig. 4.4.
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FIGURE 4.4c Distributions of entropy for nine intals in a day

In general, individuals’ entropy values fluctuatghm the range from O to 4 and the
distributions between different time intervals sigually distinct. As the time intervals become
shorter, more subtle variations in the entropyriistion with respect to time are revealed. In

Fig. 4.4c, for the time period from 6 a.m. to 1éhp.the distribution shifts to the right with time:
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most individuals have a low entropy value smalant2 from 6 a.m. to 8 a.m.; as time passes,
entropy increases; when it approaches noontimegitiebution peaks at around 2. For the time
period from 12 p.m. to 6 p.m., the distribution slo'® seem to change significantly from one
time interval to another: all the distributions aedl-shaped with a single peak around 2, though
a slight increase in entropy with time can be gabtContrary to that observed from 6 a.m. to 12
p.m., peaks of distributions gradually shift to te# during the time period from 6 p.m. to 12
a.m. next day: though the distribution during 6 pton8 p.m. is still comparable to those in the
afternoon period, for most of the people, entropgirdy 8 p.m. to 10 p.m. shows a significant

decrease and continues to decrease as it appraaat@ght.
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Fig. 4.5 illustrates the temporal profile of locativariability, i.e. the distribution of
entropy by time intervals. Green boxes cover tingesbetween the first quartile and the third
guartile with the median value marked in the middlee blue whiskers extend to 1.5 times the
range between the first quartile and the third tjleaand the red dots are outliers. Despite the
number of intervals specified, the temporal prafité location variability revealed are highly
consistent: entropy increases in the morning, reads maximum in the afternoon, and
decreases in the evening. This finding suggestsritleviduals are most likely to repeat their
previous activity location choices in the morninmgldend to be the most flexible in activity
location choices in the afternoon. These resuts siipport the hypothesis that there exist time-

of-day dependence in location variability.

45.2 Clustering Individual Temporal Profile

The temporal profile of location variability; observed at aggregate level could have two
alternative explanations: 1) individuals have samiemporal profiles characterized with highest
variability occurring in the afternoon and relativéow variability in the morning and evening; 2)
the observed temporal profile can be comprisedstindt profiles. Therefore, we further apply
model-based clustering to search for relatively bgemeous temporal profil&s. For the best
temporal resolution, the following are the resdisived based on the nine-interval division and
a sample including 774 individuals.

The maximum possible number of clusters underlyiregdata is selected to be 9 in this
dissertation. Consequently, for each numhdrom 1 to9, the parameters of a GMM with
component are estimated. Bayesian Information @i{®IC) of all these estimated GMMs
differing in number of components (1,.9), are -9393, -9359, -9395, -9438, -9391, -94171894

-9415 and -9430, respectively. Since the GMM whih highest Bayesian Information Criteria
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(BIC) is considered to be the best model generdhiaglata, model-based clustering yields 2
clusters of temporal profiles (with BIC equal t@59), i.e. 2 individual Gaussian distributions as
component of the mixture model.

The first group comprises 173 individuals and theosid group includes 601 individuals.
The resulted clustering membership resulted frordehbased clustering can be evaluated by an
‘uncertainty’ measure—the probability that a givaservation doesn’t belong to its current
assigned cluster. Quartiles of the ‘uncertainty’e{fitobability that a temporal profile doesn’t
belong to its current assigned cluster are 9.9084BL(first quartile), 9.056369e-03 (second
guartile) and 9.051605e-02 (third quartile), respety. Small values of these numbers indicate

that the majority of temporal profiles are wellsddied. Changes in mean entropy over time for

both groups are displayed in Fig. 4.6.
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FIGURE 4.6 Temporal profiles of location variahjllhty group

The overall trend of these two temporal profilesesy similar and resonates with what is

observed at aggregate level (Fig. 4.5). Individealsibit more repetitious location choices in the
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morning and evening and a relatively high levelafiability in the afternoon. It is also evident
that individuals in group 1 constantly exhibitsimeg entropy values, i.e. level of variability,
compared to those in group 2. As mentioned abaovepgy as a measure of location variability

is determined by both the total number of locati@mited and the visit frequency to each location.
These two quantities are further examined to ifiepttential cause of the difference in location
variability between groups. First, a t-test showssignificant difference in the total number of
location visited. Both groups visited an averageidjue locations during these two months. In
order to examine the visit frequency to each lacgtiocations visited by individuals are ranked
by their visit frequency and the visit frequencyoaf top L visited locations (i.e. the number of
visits to topL visited locations divided by the total number @Hitg to all locations) is plotted for

each group (Fig. 4.7).

06
|

Visit Frequency Ratio
04

02
!

i — Groaup1
’I; - — Group2

T T T T T T T
o] 10 20 30 40 50 60

L

FIGURE 4.7 Visit frequency ratio of tapvisited locations by group

It is clear that individuals in group 1 generalpesd more time at a few locations that are

frequented, while individuals in group 2 spendthiene more evenly at other less regularly
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visited locations. So the difference in locatiomi&hility between these two groups of people is
more likely to stem from the way people distribtiteir time among different locations, rather

than the number of locations they explored.

453 Regression Model

The graph above (Fig. 4.6) illustrates that, degpapulation heterogeneity, the effect of time-
of-day on entropy is very similar between groupshis section, a linear regression model is
specified with entropy explained by time periodsrakcator variables to further quantify this
time-of-day effect on location variability. Estint results of the model are presented in Table
4.2. The time period used as a reference is thentwo time period from 10 p.m. to 12 a.m. the
next day. The results show that, except for thet fime period (6 a.m. to 8 a.m.), other time
periods are associated with a level of locationamality that is significantly higher than that
during the reference period. Among them, locatianability in afternoon time periods is the
highest. This finding is consistent with what isetved in the descriptive analysis above. Time
variables collectively account for about 36% oatatariations in location variability. This

indicates time-of-day is an important factor thtuences location variability.
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Table 4.2 Estimation Results

Estimate Std. Error t-value p-value
(Intercept) 0.52* 0.05 10.29 <0.000
INT1 (6 a.m-8 a.m.) 0.03 0.03 1.19 0.23378
INT2 (8 a.m-10 a.m.) 0.48* 0.03 18.79 <0.000
INT3 (10 a.m-12 p.m.) 0.77* 0.03 30.39 <0.000
INT4 (12 p.m-2 p.m.) 0.94* 0.03 37.19 <0.000
INT5 (2 p.m-4 p.m.) 0.99% 0.03 38.81 <0.000
INT6 (4 p.m-6 p.m.) 0.95* 0.03 37.41 <0.000
INT7 (6 p.m-8 p.m.) 0.84* 0.03 33.15 <0.000
INT8 (8 p.m-10 p.m.) 0.48* 0.03 18.73 <0.000
R-squared 0.36
F-statistic 347.997
p-value <0.000

Note: * indicates a significance level at 0.05.

4.6 CONCLUSIONS AND DISCUSSIONS

In this chapter, the time-of-day dependence oftlonavariability is investigated. Individuals are
found to be more likely to vary their location cbes in the afternoon periods than in the
morning and evening. This result is consistent wrgavious findings in activities scheduling
behavior. Joh et al. (150) studied modificationg.(ehange of start and end time, location and
accompanying person) made by individuals on praexsd activities and showed that those
activities scheduled in mornings were the leastiyito be modified, followed by those

scheduled in evenings and then those in the aft@sidrhis high likelihood of modification on
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activities scheduled in afternoon will definitehterrupt some routine in location choice and

contribute to variability.

Yet, it is not the time-of-day dependence of lomatvariability that is surprising. Rather,
it is how significantly time-of-day effect shapeg&tion choice behavior. Despite population
heterogeneity, individuals exhibit similar tempopabfile of location variability and time-of-day
takes account for approximately 36% of the totalateons in location variability. This finding
confirms the importance of time as a factor thlltences human spatial behavior. The
importance of time in human spatial behavior catrédeed back to Hagerstrand’s time-
geography (1). Hagerstrand described three clagsemstraints on spatial activities: capability
constraints—Ilimitations on the activity of an indival “because of his biological structure
and/or the tools he can command”; coupling constisa+limitations that “define where, when,
and for how long, the individual has to join othadividuals, tools, and materials in order to
produce, consume, and transact”; authority comggaefer to “domain” or “a time-space entity
within which things and events are under the comtira given individual or a given group.”

The first class of constraints suggests that hulbesmgs are regulated by biological
clocks that prefer conducting certain activitieseoregular basis (e.g. sleeping during night time
every day). Consider an individual who must gekidamme before midnight. As time proceeds
to later in a day, the available time for travegjiadually reduces. Hence, this person is more
likely to visit locations in the proximity of hisdme in order to get home on time, which leaves
less flexibility in location choice. This wouldgdrably explain the low location variability
during the evening period. On the other hand, ¢tegtively low location variability in the
morning and early afternoon is more likely to belained by individuals’ needs to meet the

coupling constraints, i.e. the necessity of synotzag one’s behavior with others. Modern
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society is regulated by clock time (e.g. work hdwosn 9 a.m. to 5 p.m.). Since people need to
abide by these regulations in order to interach wthers (2, 151), they are left with limited
choices of location to perform activities that reegpredictable presence by others. For instance,

a worker is expected to be at his workplace dunwogk hours.

Studying the time dependence of location variahilie. how people repeat or vary their
location choices depending on time, has importaplications on predicting people’s location
choice behaviors. Recently, there has been muebesitin exploiting the repetitious nature of
human travel in location prediction (65, 152). Urigiag these location prediction models is the
assumption that people tend to repeat to the sabhwd kcations they visited before (121, 153).
Though the existence of repetitious visits is enid®6, 57), little is known about the temporal
characteristics of these repeated visits, i.e. ihege visits are most likely to be repeated. In
fact, the intensity of repeated visits greatly defgeon its temporal context. In Song et al. (56),
the authors noted that the probability of an indiixl returning to the most-visited activity
location during a specific hour differed acrossag.during nighttime, when most people tend to
be at home, this probability peaks at 0.9, whildrdusome transition periods during a day (e.g.

lunch time), e.g. from noon to 1 p.m., this proligbhits the minima at only a little over 0.5.

A few meaningful attempts have been made to fanttre temporal information in
making location predictions (18, 19) and have atgdipromising results. Taking account of
temporal dimension in modeling location choice batrawill yield a deeper understanding of
human spatial behavior and advance the developofémtation choice modeling. This
dissertation contributes to the research by dematnsg significant effects of time on location

variability.
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CHAPTER S

MORE EFFICIENT LOCATION PREDICTIONS

5.1 INTRODUCTION

Location prediction provides the basis for a widege of applications, including enhancing the
performance of cellular wireless communication reetn(154, 155, 156, 157), supporting
effective transportation management (119, 158)aarabling more intelligent location-based
services (159, 160). Over the past decades orrsgriad of location predictors have been
developed based on various modelling techniquek)(36ich as Markov chain-based predictors
(3, 162, 163, 164), data mining-based predictots 189, 165) and neural network-based

predictors (70, 166, 167, 168), to name a few.

Many of the above predictors rely heavily on indivals’ past location patterns as input
(169) based on the high degree of temporal andaspagularity (56, 57) in human mobility.
Explicitly or implicitly, these predictors are déoped based on the understanding that there are
patterns in individuals’ past movements, i.e. raogrcomponents, which they tend to repeat in
the future. Further developments are expected tadme to this class of predictors as the advent

of location-aware devices has greatly reduced filoet énvolved in location history collection.

In general, a longer location history results inrenaccurate predictions, simply because
recurring components, defined by its repetitiousuoence in individuals’ location history,
become more distinguishable from random compormréstime (170). Yet, it is also well
recognized that storing and processing a long ilmedtistory for a large number of people is
impractical in many aspects. First, it poses alehgk to data storage. A large amount of

memory needs to be reserved for this type of @sgaecially with the increasing popularity of
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location-aware applications. Location data can sbwam in at an unprecedented rate, data size
can easily become unmanageable. Second, proceébsrgipeer amount of data can be time
consuming and render poor computational efficie@ymputational efficiency in the location
prediction context describes the extent to whidoueces, including time and storage, are well
used to make location predictions. Location preainctharacterized with higher computational
efficiency is fast and space saving. Computatieffadiency is becoming more important as
there is an increased interest in making locati@aligtion with the limited memory of mobile

devices (71, 171).

Different strategies have been proposed to impooveputational efficiency in location
prediction in existing studies. Some strive to depanore efficient location prediction
algorithms (171) and others suggest to implementribre time-consuming and
computationally-costly predictor training phasemoffline manner (20, 172). Yet, little
attention has been directed to the possibilityeoiucing the size of input information, i.e. the
length of location history in the case of locatiostory as input. Removing partial history is tied
to the concern about loss of valuable informatiod enus less accurate predictions, as
researchers have always had the conviction thatikdsrmation would lead to a sacrifice in
accuracy (69). This is, however, not necessargyctise if that part of history contains little

information.

The amount of information carried by each obsefwedtion in location history varies
among individuals. If an individual’'s location cheiis thought as a random variable, the average
amount of information contained in an observedtiocacan be quantified by entropy. Entropy
(referring to Shannon’s entropy here) is an esthbll measure of the expected amount of

information one needs to determine the value ein@lom variable, or equivalently, the
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uncertainty in random variable (142). A random able with high entropy contains more
uncertainty and each observed outcome for thislkbricontains more information. Therefore, it
is hypothesized that an observed location in @dtajy of low entropy contains limited
information and thus removing some observations nmyender a significant effect on
prediction accuracy. Intuitively, for an individuaho tends to repeat the same set of location
choices every day and thus has little uncertalmgy|ocation history on the previous day is likely
sufficient to make an accurate prediction of haloon choices on the current day. This could
allow us to improve the efficiency of location pigitbn without compromising prediction

accuracy.

The primary objective of this chapter is to exantime correlation between the length of
location history and prediction accuracy for subgapons differing in the level of uncertainty
in their trajectories. The level of uncertaintytire trajectories of 3,568 mobile phone users (see
Section 5.3.4 for sample selection) is measured &ntropy, which is used to categorize them
into four groups. For these four groups of peogit@nges in prediction accuracy with respect to
increased history length are compared between grauig found that we can predict correctly
the next location approximately 70% of the timetfog most regular subgroup, given only 20 of
their recent (not necessarily unique) locationsti@nother hand, for those whose movements
are the most irregular, prediction accuracy levey oeaches a little over 50% given a hundred

of historical locations.

The location is predicted by order-1 Markov prealicMarkov predictor represents a
major family of the location prediction modelshls seen its success in many applications.
More importantly, in a recent comparison study efltiple location predictors (173), Markov

predictor was the best in terms of both predictioouracy and efficiency. This dissertation also
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serves as a valuable addition to the existingditee experimenting on the use of Markov

predictors to cellular network.

The rest of this chapter is organized as followsSéction 2, relevant literature is
reviewed. Section 3 provides an overview of ouaddata pre-processing procedure and sample
selection procedure. Analysis results are presant8ection 4. The chapter is completed by a

conclusion and some discussions in Section 5.

5.2LITERATURE REVIEW

5.2.1 Entropy asaMeasure of Uncertainty

A number of recent studies have measured the w@ieBrin one’s trajectory with entroy A
user’s trajectory witl$ = 2 can be interpreted as the uncertainty in this'sisénereabouts is

25 = 22 = 4 |locations, that is, this user can be found in@i8° = 22 = 4 locations. Song et al.
(56) assigned three entropy measures to each cha@ivs trajectory:

1) the random entropy which assumes each locaiwgisited with equal probability,

srand = Jog,N;, [5.1]
whereN; is the number of unique locations visited by user

2) the temporal-uncorrelated entropy

§i™¢ = = )L pi(Dlogapi (), 5
wherep;(j) is the historical probability that locatigrwas visited by the usér

3) the actual entropy,

Si=-— ZTi'cTip(Ti,)logz p(T}), 3b.
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wherep(T;) is the is the probability of finding a particutane-ordered subsequenEgin the

useri's trajectoryT; = {X;, ... X, }—an time-ordered sequence of locations usasited.

While the random entropy assumes each locatiorsites with an equal probability, the
temporal-uncorrelated entropy takes account forekeive frequency of visiting all the
locations, but not the temporal order in whichltdations are visited. The real entropy captures
not only on the frequency of the visitation, bigaathe order in which the locations are visited.
They showed, for 50,000 individuals, while the ramdentropy peaked around six, the real
entropy peaked at 0.8, which indicated the reaktamty in a typical individual’s location is
only 2°8 = 1.74 locations. Yet, despite the entropy measure usgdeat amount of
heterogeneity was observed. The real entropy hradge from zero to more than 2. Lu et al. (65)
applied the same set of entropy measures unddiegedit setting. They arrived at similar
conclusions by showing the real entropy of a tylpis®r's was as low as 0.71, which leads to an
uncertainty level as low &97! = 1.64 locations. It's worth to note that the entropygamwas
also very close to that in (56). These results wemvn to be rather robust even under extreme
conditions. Lu et al. (66) investigated the mopipatterns of users affected by the earthquake in
Haiti in 2010 and identified a slightly higher, evinough still rather low, uncertainty level in
human trajectories. They reported an uncertainBfof 21> = 2.8 locations with the real
entropy peaks at 1.5. Heterogeneity in entropy alss evident with real entropy ranging from a

little over O to approximately 4.

5.2.2 Location Prediction in Transportation Field
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Location prediction has been addressed as a chodbéem modeled by discrete choice models
in the transportation field (174). The discreteiceanodel framework for location prediction
can be described as following: each individual &ngst of available locations—the choice set;
each alternative location is assigned a utility. @ satisfaction index) by the individual
depending on the attributes of the alternativetaedndividual, the context, the values the
individual attaches to these attributes, and aoandtility part capturing the unobserved factors.
In other words, the utility of each location isssadom variable whose value is based on two
parts: the systematic utility that can be obselsd the random unobserved utility; the location
with the highest utility is then selected as thedgeted location. Depending on the distribution
specified for the random utility term, a myriaddi$crete choice models have been developed.
Since introduced by McFadden (175), the multinonagit model (MNL) remains a popular
model in location prediction (176, 177) due tositeiple closed-form. In MNL, the random

utility term is assumed to be independent and idally Gumbel distributed. This specification
brings simplicity in estimation. However, this sp@ation requires independence among
alternatives (178). Therefore, MNL can lead to ee@us predictions when there are unobserved
similarities between alternatives, as is oftendhge in location choice. Unobserved similarities
among alternative locations can stem from spatigc@ncy (176). The reasons to expect
similarities among adjacent locations are: 1) theywide similar activity opportunities due to the
continuity of space; 2) they are aligned alonggame transportation corridor with similar
accessibility. Additionally, locations sharing commattributes (e.g. same land use type) are

also considered similar.

Earlier amendments to MNL in order to capture tiisbserved similarity among

alternative locations include competing destina{io®) model (78, 179, 180, 181, 182, 183,



82

184, 185) which argues that the discrete choiceainsca model originally developed in a non-
spatial scenario and thus reflects a differentadonaking process from that of spatial choice
(78). Specifically, individuals do not simultanetyuevaluate all location alternatives as assumed
in a traditional MNL. In contrast, they employ @tarchical decision making process in which a
cluster of locations is chosen prior to the setecof a single location from this cluster. In other
words, some alternative locations, in those ungatiedusters are not evaluated. CD models
were developed to model this hierarchy decisioningagrocess. Utilities of alternative

locations are weighted by the likelihood that aeralative actually falls into a selected cluster
and subsequently evaluated. This likelihood speatifon allows the modeler to avoid making
deterministic judgments regarding the cluster mastbp of location alternative. This type of
model differs from nested logit model (an advanioeth of MNL supporting hierarchical
selection) by embracing the notion that the contmosbf clusters of location alternatives
perceived by individuals is unknown to the modé€lé6, 187, 188). Although taking on a form
similar to the MNL, with the use of likelihood futh@n, CD models relax the IIA property of
MNL and recognize that similarities among altenwatlocations (78, 177). Though intended to
distinguish itself from aspatial discrete choiced®lpthe CD model was recognized as a
restrictive case of discrete choice model accogrftan individual’s limited knowledge on choice

set (189).

In fact, many enhancements to discrete choice mualed been made in recent years
allowing researchers to account for the unobsesuadarities among alternative locations (189).
Among them, models belonging to the Generalizeddax¢ Value (GEV) family are most
popular. All models in the GEV family nest MNL. é#nGEV model, the random utility of each

alternative location is decomposed into a commanpment shared among all the alternatives
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in one nest and a component unique to each alieendhis decomposition permits
interdependence of random utility among alternatimeone nest and thus it's possible to capture
unobserved similarity among alternative locatid®sveral models belonging to the Generalized
Extreme Value (GEV) family have been successfybiglied in a variety of transportation-

related choice problems (e.g. mode choice, routecerand departure time choice), including
ordered GEV (190), crossed-nested logit (191, 193, 194), MNL-ordered GEV (195), paired
combinatorial logit (196), Generalized Nested L¢@R7), generation logit (198) and distance-

based GEV (199).

However, limitations remain in applying GEV mod&sexplain the location choices of
individuals. One limitation relates to the spedfion of systematic utility. GEV models, same as
the MNL, specify the systematic utility as a detiristic weighted function of a set of observed
attributes and individual characteristics with dans coefficients. This practice assumes
homogeneous values that individuals attach totiinéates of alternatives. In other words,
random effects due to individual differences carb@accounted for. This problem has been
paid little attention in studies on location choigigh a few exceptions (178, 200). One common
approach to address this problem is to estimatxadtogit model, which allows the analyst to
capture the random effect. The number of studigd@ing mixed logit model has been rapidly
growing in recent years (201). Yet, a caveat resiaireat care must be taken to ensure
identification of these models (202). As noted ialkér (201), a large number of simulation
draws and multiple model estimation runs were neglio verify the identification and
parameter stability of a mixed logit model. There always trade-offs between the mixed logit
model and other closed-form models to be made (@nogit, probit, and GEV) regarding

computational and performance issues. A paral@memendation was made by Bhat (203):
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researchers must always explore alternative clés@a-models before turning to open-form

models.

Another limitation that is conventionally overloakan previous discrete choice models
of location prediction is time-dependent choicee Tdtation chosen at a current occasion is
assumed to be independent of the choices fromguewccasions. However, studies have
shown that individuals present a considerate amoiveriety-seeking and/or loyalty in location
choices (56, 57, 204). This observation necessithe integration of historical location choices
into discrete choice models. Few studies have @dgladdressed this issue. Keperman et al.
(204) added in a separate term representativeedfitpacts of the last location choice in the
utilities of location alternatives at current odoas Sivakumar and Bhat (205) devised the utility
function of each location alternative with an amtditof a term indicating whether the last
location choice is the same as a current alter@atim two papers concerning individuals’
residential location choices, Chen et al. (127) @hdn and Lin (206) specified the utility
function of each residential location alternativeéflect the influence of the attributes of prior
residential locations. However, these studies wpeificantly limited by the available
information in the data sets regarding individugiast location choices. Fortunately, the lack of
history-dependence in location choice models has bhedressed by many recently developed

location predictors, including the Markov predicthscussed in the next section.

It is also worthy to note that discrete choice nie@dee developed based on utility
maximization theory and inherently behavioral med@&he development of discrete choice
model reflects researchers’ understanding of tltketiying mechanism of location choice
behavior. On the other hand, the Markov predicyetgo be discussed in the next section rely

solely on the spatio-temporal information containedne’s trajectory. Though Markov
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predictors well serve location prediction purposkese models don’t necessarily reveal any

insights into complex behavior underpinnings.
5.2.3 Order-k Markov Predictor

Order4 Markov predictor belongs to one of the most widsgbplied predictor families—the
Markov chain family (207). Ordek-Markov predictor assumes that an individual’'s ckaf the
next location only depends on ksmost recent locations. Thkemost recent locations
correspond to the current state in an underlyiagiastary orderk Markov source with a

transition probability matrin/.

Consider an individual whose location history.is- {X; = a, X, = a,... X, = a,},
where eaclX; is a random variable representing the individuéPdocation and eachu;
belongs to a se#l comprised of all possible locations. Let substi(g j) = {X;, X;11, ... X;}
foranyl < i < j < n. The current state for ordérMarkov model is then
cn = {An_k+1an_kr+2..an}- The probability of the next location beinggiven location history.

is:
P(Xp41 =all) =P(X,p1 =alX(n—k + 1,n) = cy,), [5.4]
where the notatioR (X; = a;| ...) denotes the probability th&} takes the value af;.

This probability corresponds to an entry in thesition probability matrix¥ associated with

the order#« Markov source. That is
PXpi1=alX(n—k+1,n) =c,) = M(cp, Cpet), [5.5]

wherec, ;1 = {an,_k+2..ana} Which is the next state in the Markov chain.
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However, sincé/ is not known, it needs to be estimated. The evit’f—M (c,,, ¢,,+1)— can be

estimated based on location histérgnd current prediction context as

~ ~ N(cpa,L
P(Kpsr = alX(n—k +1,m) = ¢) = M(en, cuer) = T2 L2

whereN(t, s) is the number of times substringccurs in string.

The predictor then chooses the location havinditleest estimated probability as the next

location.

Orderk Markov predictor has found its application in aetse set of wireless networks
for location prediction. With wireless traces lieftthe Wi-Fi network on the campus of
University of North Carolina, Chinchilla et al. @0modelled the next location choice with both
order-1 and order-2 Markov predictor and showedlttigy could predict with a high accuracy of
more than 80%. In (173), multiple location predistwere evaluated with data collected on the
Wi-Fi network at Dartmouth College. In the predictiof next location of more than 6,000 users,
an order-2 Markov predictor achieved a predictiocuaacy level of 63%. Nicholson and Noble
(209) applied an order-2 Markov predictor to GR&és and reported an accuracy level over 70%
in next location prediction. An accuracy range fré@% to 95% for the next location was
reported by Gambs and Killijian (164) with an or@eMarkov predictor applied to three
different data sets comprised of GPS traces. Masntly, with the traces of 500,000 individuals
mobile users, Lu et al. (65) predicted the nexatimn with an average accuracy of 91% with an

order-1 Markov predictor.

In a number of studies focusing on the evaluaticalternative predictors, the order-

Markov predictor was marked by its high predictamturacy, easy implementation and low
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computational cost (173, 210, 211). Song et al3Y1Igund that an order-2 Markov predictor
performed as well or better than other more complek more space-consuming compression-
based predictors. Petzold et al. (211) compareat@er-2 Markov predictor with other next
location predictors, namely, Bayesian network, iailter perception, Elman net and state
predictor from multiple dimensions, including prettbhn accuracy, stability and computing cost.
In an experiment with real mobility data, the Markwedictor demonstrated comparable
prediction accuracy (about 80%) to other complgoalhms and, at the same time, was
characterized with fast learning and low computatlaost. Sigg et al. (210) proposed an
alignment approach for location prediction and eatdd it on an individual's GPS traces with
comparison to an order-2 Markov predictor, a ppatcomponent analysis-based and an
independent component analysis-based predictorMErkov predictor outperformed all other

predictors in producing the minimal mean squarererrlocation prediction.

One limitation of ordere Markov predictor is its incapability of predictimgy new
location that has not been observed before. Yedjet have shown that the probability of
individuals exploring new locations decreases twvee (212). Therefore, given some time, all
available location alternatives should have beesented. The performance of ordeMarkov

predictor is expected to improve as observatior ficomes longer.

5.24 Location History and Prediction Accuracy

Studies have consistently shown that predictiomay of location history-based predictors is
sensitive to the length of location history avdéalsong et al. (173) found that the prediction
accuracy of order-1 and order-2 Markov predictacseased with the length of location history.

Katsaros and Manolopoulos (207) showed that, fetaf predictors from the Markov family,
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prediction accuracy could be doubled when the lenfjinput location history increased from
100 to 500 (not necessarily unique) locations. Medls and Wietfeld (170) observed that, when
the input location history length increased froo B, prediction accuracy climbed from a little
over 50% to as high as 95%. In an investigatiothefcorrelation between prediction accuracy
and length of location history, Lu et al. (65) slealithere was a steady increase in prediction
accuracy for Markov predictors. No attempts havenb@ade to uncover the correlation between
length of location history and prediction accurémysubpopulations who may differ in their
travel characteristics. It is possible that somer treces are simply less predictable than others
and some intrinsic characteristics of a trace nedgrahine its predictability, such as entropy

(173).

5.3DATA

5.3.1 DataOverview

Please refer to Section 3.1 in this dissertatiorafdetailed description of the data.

5.3.2 Data Prepossessing

Please refer to Section 3.2 in this dissertatiorafdetailed description of the procedure.

5.3.3 Location Representation

A 220 x 180, two-dimensional grid of square cells is imposadlee study area, each cell 500
meters on a side. This particular discretizatiogpce is a heuristic choice, and a different size
of cells can be adopted. Trip length is consideéodae an important factor in determining the

cell size. The resultant spatial resolution shdaddigh enough to distinguish the origin cell and
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the destination cell of a trip. It's well recognizthat people live in denser area make shorter
trips (213). Therefore, we refer to location préidic studies conducted at populated U.S. cities
(101, 214). Their discretization resulted in celesranging from 500 m*500 m to 1000m *1000
m. A cell size of 500 m500 m is selected in this dissertation. Each of\the: 39,600 cells is
given an index = 1,2,3,..., N. After generating grids, locations represente¢htijude and

longitude coordinates in the location history aplaced by their corresponding cell ids.

5.34 Sample Selection

In determining prediction accuracy, predicted lawa are compared to those observed ones.
Sampled individuals should have sufficiently fieenporal resolution of sightings/location
updates. If sightings are too sparse and no latafpolate available for a long time period, the
correctness of the predicted location can’t be erigpevaluated. Therefore, our final sample is
selected as those who have at least 10 sightingjseotiays they were observed, that is, 3,568
individuals in total. Table 5.1 shows comparisotwieen our final sample and the original
sample in terms of some statistics characterizieg phone activities. From the table, it is
evident that individuals in our final sample getigrgenerated more sightings and
correspondingly had shorter interval between camsex sightings. In addition, selected
individuals also were observed for a longer timequks than a typical user in the original sample.

The implication of this selection will be discussednore detail in the last section.
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Table 5.1 Comparison between Original Sample andlBample

Mean of average daily Mean of average Mean of no. of Mean of total

number of sightings time interval (min)  days observed number of sightings
Original 32.90 18.62 20.47 1606
Final 168.90 14.04 52.88 8909
54 RESULTS

54.1 Sample Mobility Overview

Fig. 5.1 shows the cumulative distribution of tbeat number of activity locations visited by the
sample during the study period. The majority of sample only visited a few dozens of unique
locations and only a few cases were observed tbm@e than 60 locations. This result is
highly consistent with the findings in previousdies: individuals tend to return to a few
locations they frequently visited and in time, grebability of visiting a previously unobserved

location will decrease (56).

Fraction of Users
04 06
I

02

00
|
H
H
H
H
H
H
H
H
H
1
H
1
H

MNo. of Unigue Locations Visited

FIGURE 5.1 Cumulative distribution of no. of unigleeation visited
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Moreover, the cumulative distribution of historydgh is examined (Fig. 5.2). In this
dissertation, length of location history descrilwestion change. Location history is defined in a
way that it is a sequence of cells an individua sabsequently traversed and thus the next
location is not the same as the previous one. @ensi sequence of sights observed for an
individual as {ocation A, , location A;,, location B, location A;, , location B, _,
location Ay, location A, ..}(t;<t, < ---<t;). The location history of this individual would be
{location A, location B, location A, location B, location A ...}. Over half of our sample have
a location history of fewer than 100 locations hnapproximately another half with a history
length somewhere between 200 and 300. Only a fekersucan be spotted with over 300

location changes.
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FIGURE 5.2 Cumulative distribution of length of &mn history

5.4.2 Uncertainty and Groups

Fig. 5.3 shows the entropy distribution of our semplote that the entropy measured here
corresponds to the temporal-uncorrelated entropgsomed in (56). Entropy has a bell-shaped

distribution with a mean as 3.86 and a range fram ®little over 8. These numbers are highly
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consistent with those in (56). In order to achiav@lanced group size for comparison purpose,
our sample is categorized into four groups basethemjuartiles of entropy value. Entropy

ranges for these four groups §6e3.14), [3.14,3.87), [3.87,4.61), [4.61,8.59], respectively.

FIGURE 5.3 Entropy distribution

5.4.3 Correlation between History Length and Accuracy

The location predictor used in this dissertatioansorder-1 Markov predictor and prediction
accuracy is measured as the ratio of the correcdlglicted locations to the total predictions
made. Fig. 5.4 shows the changes in average piedextcuracy with respect to the length of
location history for each group. In general, ie¥gdent that prediction accuracy increases with a
longer location history, which is consistent witleyious findings (173, 207). Moreover, the
most significant improvement in prediction accuracgurs when the length of location history
increases from 10 to 20 historical locations. Afteat, growth in prediction accuracy gradually

slows down and sometimes shows temporary fallback.

The difference between groups is also evident. IGGilie same history length, groups
with low entropy can be predicted more accurat@lith only 20 historical locations, we can
already achieve an accuracy level over 60% fogtbep with lowest entropy. When the length

of location history reaches 50, accuracy level birto over 70%. It keeps increasing to 80% as
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history length reaches 100 locations. In contfasthose individuals who have the highest
entropy, prediction accuracy starts at around 408ésbowly increases to approximately 50%
after 100 historical locations are observed. Fos¢htwo groups with modest entropy values,
prediction accuracy falls somewhere between 0.60anavith an increasing trend towards

longer location history.

There are also some unexpected behaviors of tel&acribing the group with the
lowest entropy (the first group): when the lengthogation history is comprised of less than 40
historical locations, prediction accuracy for thieup doesn’t exhibit an improvement from that
for the group with the second lowest entropy (teosd group). A possible explanation is
provided here. The sample is grouped based onmntEmtropy captures the difference in the
level of uncertainty/regularity in people’s movertehased on two-month data. However, this
difference in the level of uncertainty/regularigncbe very hard to discern for the Markov
predicator given short location histories. Markagdgictor identifies regular movements by
tracking their relative frequency in location histowith limited location history, identification
of regular movements would be associated with bigtertainty and lead to inaccurate
predictions. But, as location history gets longeore recurring patterns in the travel of those
people can be detected and the difference betvineetwvb groups manifests. As shown in Fig.
5.4, a demonstrated improvement in prediction aagufor the first group over that for the
second group is evident after a history length@fEspecially when the length of location
history reaches 100, average prediction accuracthéofirst group has reached approximately

0.8, while prediction accuracy for the second grmarpains at around 0.7.
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In order to further examine the performance ofghrexlictor, the distance between the
predicted location and the observed location—tligetdistance—is measured and plotted in
Fig. 5.5. When a predicted location doesn’t makehdbserved location, a small offset distance
is desirable. If an offset distance is smaller gfpuhe predicted location can still serve as a
reasonable representation of the observed locafiom general trend in Fig. 5.5 resonates with
what is observed in Fig. 5.4. In general, with lenpcation history, offset distance becomes
smaller. The most noticeable difference betweenpmgas those offset distances observed for the
group having the highest level of uncertainty dmase for the rest of the sample. Those offset
distances for the highest-entropy group are aktgmre9,000 meters, while the rest of the sample
has offset distances generally under 80,000 mdtessems that, for those people having a high
level of uncertainty in their movements, it is diffit not only to pinpoint their locations but also

to obtain a close enough predicted location.

5.5 CONCLUSION AND DISCUSSIONS

In this chapter, a data set consisting of the s@fe3,568 mobile phone users is used to explore
the possibility of increasing the efficiency of &ion prediction. This issue is approached from
two aspects: supporting predictors requiring lesamutational resource and reducing redundant
input information in predictors. It is demonstratedt 1) Markov predictor, characterized with

its simple model structure and low computationalstonption, is a useful tool in location
prediction; 2) the movements of individuals who é&éaw uncertainty in their trajectories

require limited amount of input information for atisfactory prediction.

This dissertation serves as one of a few existoglieations of Markov predictor in

cellular network. A myriad of location predictiotgarithms have been proposed in the past a
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few years (20, 215, 216). Selection of predictaragls requires a balance between accuracy and
efficiency. Comparison studies would aid informexidions by providing detailed information
on computational cost and prediction accuracy lierative predictors. Song et al. (173) were
among the first to evaluate a set of predictor witeal data set. They showed that Markov
predictor, despite its simple model structure, etfrmed many more complex models in
location prediction accuracy. It is worth to ndtattthe data set from Song at al. (173) was from
a Wi-Fi network within a limited geographical ar@ag. campus), as from most of the existing
studies employing Markov predictors. The power @&rkbv predictor remains to be tested with

data from cellular network covering a large area.

One recent experiment of Markov predictor in calfuietwork can be found in Lu et al.
(65). In their study, the authors described, fdiedent order Markov predictors, the variations in
accuracy levels with respect to the length of limcahistories. One noticeable difference of this
study from ours is the definition of location. Léica in Lu et al. (65) is defined as a cell in
cellular network, without differentiating an actiiocation, where an individual can spend a
significant amount of time, from a transient looat{i.e. a cell traversed when an individual
travels to the next activity location). On the athand, of interest in this dissertation is acyivit
location. The distinction between activity locatiand transient location matters in many cases.
Consider the case that location prediction is usqatovide weather service. It is probably more
meaningful to forecast the weather at the nextviggtiocation than a location on the route there.
Another difference between these two studies islthat al. (65) didn’t report the correlation
between prediction accuracy levels and the lenftboation histories by subgroups differing in

the amount of uncertainty in their movements, whsch major contribution of this dissertation.
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Entropy, as a measurement of the amount of unogyidias been used to quantify the
degree of predictability of one’s whereabouts iacep Predictability sets the theoretical limit of
correct predictions can be made by a location ptedi model. Studies have identified rather
low entropy values in human trajectories and thbgh level of predictability (56). However,
these studies haven’t provided a practical locgpi@diction model (130). On the other hand, a
myriad of location prediction models have been ted driven by various applications.
However, efforts of quantifying predictability adéveloping location predication model have
been largely pursued separately, though predidiabérves as the scientific ground for the

development of practical predictive models (56).

There has been limited effort to connect entropwhe accuracy level of a practical
location prediction model. In Zhao et al. (62), thehors computed entropy values of individual
trajectories and divided the population into subigobased on their entropy values. A best
location prediction model was subsequently deteedhiior each subgroup. While Zhao et al. (62)
used entropy measure as an indicator for modettsate here, the entropy measure is applied as

an indicator of the amount of information inputie predictor.

Our results have important implications on the tlgy@ent of more efficient location
predictors. First, it suggests that it is possibleustomize the prediction by including varying
lengths of location history for different subgroupgshe population. It is possible to improve
prediction efficiency for those individuals whosewvements are fairly regular, as a large portion
of the information contained in their location bist is redundant and thus dispensable. Being
able to discard a significant amount of input infi@tion would greatly benefit a wide range of
applications relying on accurate and, more impaigagefficient location prediction. Secondly,

the Markov predictor is demonstrated to be a pawéobl in making location prediction in
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cellular environment. Markov predictor stands aubag other location prediction models due
to its minimum requirements of memory and compatsti resource. These two advantages
become prominent for location predictions perfornred distributed manner on individual
mobile devices with limited memory. In summaryisipossible to develop more efficient

location prediction models without compromisinggiction accuracy.

This study is not without limitations. One limitadi is that the length of the observation
period of the data set. For many subjects of oomda, only fewer than a hundred historical
locations were recorded, which has limited our gtig@tion on the long-term relationship
between history length and prediction accuracy, {etdiction accuracy tends to level off after
50 historical locations. There is no obvious reasoexpect any significant rise in the accuracy

level even a longer location history is not curkeatailable.

Another limitation relates to our sample selectida.discussed above, our findings are
derived for a sample who is more engaged in photeitées. This raises the question of
representativeness. It is common for researchessléat a non-random study sample from all
the subscribers included in a raw mobile phone set@rovided by the network operator. As an
example, in (56), a sample of mobile phone users nvade at least one call every two hours
was selected. Recent studies (103, 114, 115) shatwser mobility had a strong correlation
with phone usage: more active users are more mdbikerefore, sample selection based on
phone usage would potentially result in an ovemeaion of mobility levels. However, some
studies (114) also suggested that some mobilitysorea seemed to be immune to this sampling
bias, such as radius of gyration. While this is®eiires further studies, our primary objective

here is to compare the prediction accuracy achiéwegroups of people differing in the
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uncertainty level in their trajectories, ratherrtha derive an accurate measure to characterize

their mobility.
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CONCLUSIONSAND IMPLICATIONS

Data collection and modeling practices in traveddaor research rely heavily on the

assumption of repetitious travel behaviors (11}, ¥ar own reflection would suggest that we

are not repeating the same activity-travel pattesesyday. Though the interest in understanding
behavioral variability is not new, research effdrésre been greatly hampered by the lack of
longitudinal data (106). There has been a renemtedeast on this issue due to the availability of
new data collection technologies, such as Globaitidaing System (GPS)-based travel survey
and mobile phone-based data. Originally collectedbflling and network maintenance purposes,
mobile phone data contains location informatiom ¢tdrge portion of population over an
extended period of time. It provides travel behavésearchers with an unprecedented

opportunity of studying behavior variability.

Previous studies on behavioral variability haveasmmrated on day-to-day variations in
travel behavior, that is, behaviors under compare® aggregated on a daily basis, such as daily
trip rates or daily travel time. This practice pueles insights into behavioral variability at aefin
temporal resolution. Consider a person who makesadditional trip on a second day. This
observation could have resulted from various agtitravel decisions: it is possible that this
person makes an additional trip back home for luatatoon; it is also likely that this person
makes an additional stop at a grocery store béfeagling home in the evening. The former case
leads to an increased travel demand during lumeé, tiwhile an increase in travel demand occurs
during the evening in the latter case. Howevas, iinpossible to differentiate these two cases if
behavioral variability is examined on a daily ba3is discern behavioral variability with

temporal resolution finer than one day would regjain elaboration on the time of a day when
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behavioral variability occurs. There comes my fiestearch question—the time-of-day

dependence of location variability.

Research on the time-of-day dependence of locaaaability is driven by both
analytical and policy needs. First, time-of-dayygla critical role in shaping one’s location
choice behavior in that travel behavior is consgdiby not only how fast one can travel but also
by the amount of time available for activity anaviel (15). Explicitly taking account for the
time-of-day effect in modeling location variabiliyould enhance the explanatory power of these
models. Secondly, many transportation policies oglyan understanding the influence of time-
of-day on location variability, such as time-of-daycing on major corridors. Less variable
location choices in the morning would probably segjghat a higher price is required to alter

individuals’ location choices during the morning.

Analysis results in this dissertation not only ¢onfthe existence of time-of-day
dependence of location variability, but also idgniime-of-day as a variable explaining a
surprisingly large portion of variations in locatigariability. Individuals are found to be more
likely to vary their location choices in the afteam periods than in the morning and evening and
time-of-day takes account for approximately 36%heftotal variations in location variability.
These findings all suggest time-of-day is an imgatrfactor in influencing individuals’ location

choices and provide valuable insights into the ntade of time-of-day effect.

One of the major motivations for understanding\atgtiocation choice is to predict
individuals’ location choices. It is desirable fgpéy our knowledge of location variability to
facilitate location prediction in order to benefitvide range of practical applications. Therefore,

my second research question concerns the conndstareen location variability and prediction
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efficiency. Efficiency of current location histobased predictors is limited by the computational

resources used to process large amount of individoation history as model input.

The needs of continuously improving the efficielfyhese location predictors primarily
come from two aspects. First, location predictian be performed in two manners: through a
central infrastructure or through individual mokdevices. These days, of great concern is the
possibility of individuals’ location information beg compromised if the central infrastructure
performing location prediction experiences hardwaiere or hacker infiltration (71). There is
an increasing need of implementing location préalicin a distributed manner on individual
mobile devices. Yet, the limited memory of indivadumobile device also poses challenges to the
efficiency of location prediction. Second, a widage of location-based services value more
efficient location predictions which allow themdperate in a proactive manner. Imagine a
weather service would serve customers betteicdrit predict your next location well in advance

and save you the travel if the weather at yourrpanactivity location is not ideal.

In order to improve the prediction efficiency otadion history-based predictors, | ask
how much of the input location history is necessalernatively, to what extent can this
information be compressed. This question stems freonobservations. First, a significant
amount of regularity in human travel has been ifiedtin recent studies (57). If individuals’
travel is fairly regular, location choices obsendenling a short time period should be sufficient
to typify their travel decisions in the long rurec®nd, for the past decades or so, location
prediction in the transportation field has beegédy performed with cross-sectional data
recording individuals’ location information for jusne day. Similarly, there is a possibility, with
location history-based predictors, that a shoration history would suffice for a sufficiently

accurate location prediction, at least for those wate less likely to vary their location choices.
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A critical finding from this part of my dissertatios that location variability can serve as
an instrumental indicator of the amount of inpdbrmation in location prediction. Specifically,
given 100 historical locations, an accuracy levatgmally over 80% can be achieved for people
with low location variability. In contrast, for tee individuals with high level of location

variability, prediction accuracy level can harddach 50% with 100 historical locations.

My research results have important implicationsomation prediction practices. First,
research results can be used to customize the @ambunfiormation input in location prediction.
As is shown the Fig. 5.4, for individuals charaizted with different levels of uncertainty in their
movements, the length of location history requiedchieve certain prediction accuracy level
differs. For instance, if a prediction accuracyeleaver 60% is desired, 10 historical locations
would suffice for those individuals with lowest &hof uncertainty. In other words, it is possible
to estimate the exact time point to cut off a lmrahistory based on a desired accuracy level.
This finding allows us to discard redundant infotima input for those having little uncertainty
in their trajectory, which leads to more effici@mputation. Second, Fig. 5.4 shows prediction
accuracy levels off after 50 historical locatioRer those individuals with the highest level of
uncertainty in their trajectories, prediction a@my stabilizes between 50% and 60%. It appears
the high level of uncertainty contained in thes#ividuals’ travel would prevent us from making
a significant improvement on prediction accurasieleeven with a longer location history. If a
high level of uncertainty tends to fail any atteraptmaking highly precise predictions,
applications that rely on high location predictemcturacy are expected to be more productive by
focusing on those having less uncertainty in movemen this case, level of uncertainty may
serve as an instrumental indicator in helping udeti@rmine the target population for certain

applications.
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This dissertation induces some interesting worBeg@xplored in future research. First,
location variability can be quantified by many me&as. For instance, previous studies measured
location variability as the percentage of non-regpetactivity locations out of the total number
of activity location visited (106). In this dissatibn, location variability is measured with
entropy. Different quantities capture different dimsions of variability. Schlich & Axhausen
(217) compared three measures used to quantifyatt@bility in daily activity-travel patterns
and confirmed that the variability increases if theasurement captures more of the complexity
of the travel patternfhere is probably no single best measure of logatariability and the
selection may significantly depend on the kind mblacations. Given the limited number of
studies accumulated on the variability of spatefidvior, future efforts are needed to introduce
other measures of location variability in ordectmmprehensively characterize one’s location

variability and generate more insights into oneakion choice behavior.

While time-of-day is found to explain a significaarhount of variation in location
variability, a large portion of variation remainsaccounted for. Further efforts to explain the
remaining variation are expected to facilitate rin@deling of location variability and deepen our
understanding of the mechanisms underlying locatarability. A class of variables of
potential explanatory power is socio-demographitabdes. Subpopulations with varying socio-
demographic characteristics have been shown tdixtiiferent amount of variability in spatial
behavior, such as action space (218). Yet, previesits on the relationship between socio-
demographic variables and behavioral variabiligy mixed and the number of socio-
demographic variables examined in the context babioral variability is limited. As pointed by
Kitamura et al. (2006, pp. 269), “This scarcityeafplanatory variables is presumably because it

has not been customary in the travel behavior arsafield to measure variables that may be
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associated with day-to-day variability in travel..lri.order to bridge this gap in travel behavior
research, a meaningful next-step of this disserias to examine the impacts of socio-

demographic variables on location variability.
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