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Abstract
Accelerated parallel computing techniques using devices such as GPUs and Xeon Phis

(along with CPUs) have proposed promising solutions of extending the cutting edge of high-

performance computer systems. A significant performance improvement can be achieved

when suitable workloads are handled by the accelerator. Traditional CPUs can handle those

workloads not well suited for accelerators. Combination of multiple types of processors in

a single computer system is referred to as a heterogeneous system.

This dissertation addresses tuning and scheduling issues in heterogeneous systems. The

first section presents work on tuning scientific workloads on three different types of proces-

sors: multi-core CPU, Xeon Phi massively parallel processor, and NVIDIA GPU; common

tuning methods and platform-specific tuning techniques are presented. Then, analysis is

done to demonstrate the performance characteristics of the heterogeneous system on dif-

ferent input data. This section of the dissertation is part of the GeauxDock project, which

prototyped a few state-of-art bioinformatics algorithms, and delivered a fast molecular

docking program.

The second section of this work studies the performance model of the GeauxDock com-

puting kernel. Specifically, the work presents an extraction of features from the input data

set and the target systems, and then uses various regression models to calculate the perspec-

tive computation time. This helps understand why a certain processor is faster for certain

sets of tasks. It also provides the essential information for scheduling on heterogeneous

systems.

In addition, this dissertation investigates a high-level task scheduling framework for het-

erogeneous processor systems in which, the pros and cons of using different heterogeneous

processors can complement each other. Thus a higher performance can be achieve on hetero-

geneous computing systems. A new scheduling algorithm with four innovations is presented:

Ranked Opportunistic Balancing (ROB), Multi-subject Ranking (MR), Multi-subject Rela-

tive Ranking (MRR), and Automatic Small Tasks Rearranging (ASTR). The new algorithm

xii



consistently outperforms previously proposed algorithms with better scheduling results,

lower computational complexity, and more consistent results over a range of performance

prediction errors.

Finally, this work extends the heterogeneous task scheduling algorithm to handle power

capping feature. It demonstrates that a power-aware scheduler significantly improves the

power efficiencies and saves the energy consumption. This suggests that, in addition to

performance benefits, heterogeneous systems may have certain advantages on overall power

efficiency.
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Chapter 1
Introduction

1.1 THE LANDSCAPE OF HETEROGENEOUS COM-

PUTING

The increasing complexities of scientific models and big data applications demand ex-

treme scale of computing power. Parallel high-performance computers (HPC) currently

handle these requirements. The TOP500 list is a list released twice a year, which details

the 500 most powerful computers in the world. For example, see the 46th HPC TOP500

list released in November 2015 [1, 2]. In that list, the top spot was taken by Tianhe-2

cluster supercomputer; Tianhe-2 has 16,000 compute nodes where each node has 2 “Ivy

bridge-EP” Xeon multi-core CPUs as well as 3 “Knights Corner” Xeon Phi co-processors.

Tianhe-2 achieves a performance of 33.8 petaFLOPS on the HPL benchmark; but Tianhe-2

uses a lot of energy. As much as 24 megawatts (MW) power (with cooling) is consumed

by the whole system. Actually, the number one spot on the TOP500 list has been held by

Tianhe-2 for six consecutive times.

The research and practice of building the powerful HPCs faces three main challenges.

These challenges come from three directions, which are commonly called three “walls.”

The first wall that blocks the performance progress is the single-core performance ceiling

that emerged a decade ago [3]. The researchers can hardly implement higher clock rate

through advancing circuit technologies, and have difficulty extracting more performance per

clock cycle. This problem was addressed by the advent of the chip multiprocessor (CMP) or

multi-core CPUs techniques. The cores of the processor are not designed to grow faster, but

to replicate and grow in number. In addition to programmability challenges, contemporary

multi-core CPUs suffer a burden from power constraints.

The second wall is right ahead of the computing research community. The dark silicon
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model [4] showed that regardless of chip organization and topology, multi-core scaling is

increasingly power-limited. “Even at 22nm, 21% of a chip must be powered off, and at

8nm, this number grows to more than 50%” [4]. Given this scenario, more power-efficient

architectures are badly needed.

The desire for power optimization also comes from the economics of energy usage, which

is the third wall. Tianhe-2 computer consumes 24 MW power in total, and each megawatt

watt of electric power cost approximately 1 million U.S dollar per year [5]. The budget

to pay the electric bill is right at the boundary of even the most demanding facilities are

willing to afford. The HPC community has long been planning for an exascale computer

(1 exaFLOPS = 1000 petaFLOPS) at 30 megawatts power budget. This means the new

supercomputer must improve its power efficiency by at least 15 times over the current

generation. To achieve this goal, heterogeneous systems with CPUs and accelerators play

a major role.

In principle, a heterogeneous accelerator means an attached computing device on top

of the traditional CPU and RAM (denoted as host). Unlike a homogeneous system, such

as the Symmetric multiprocessing (SMP) or Massively Parallel Processor Array (MPPA),

the architectures of accelerators are different from that of the host processor. This implies

the programmer cannot freely partition workloads on heterogeneous computers without

any performance consequences. nfortunately, no architecture is ultimately efficient for all

workloads. To program an accelerated heterogeneous computer system, the programmer

must strive to design the optimal partition of the program to maximize the suitability, and

at the same time minimize the overheads from data transfers and synchronization. The

process of moving a workload from host to accelerator is usually called offloading.

There are two types of heterogeneous accelerators. One is special-purpose hardware.

Application-specific integrated circuits (ASICs) are commonly deployed in network and en-

cryption applications, and recently have demonstrated successful experience in accelerating

neural network modeling [6]. Field-programmable gate arrays (FPGAs) are a lower cost
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alternative to ASICs, and have recently been utilized for machine learning [7] and image

processing applications [8]. There is on-going research on quantum computing devices [9]

that could also be considered as a special kind of heterogeneous computing system. Another

type of heterogeneous accelerator is built on the concept of massively parallel processing.

In contrast to traditional CPU architectures designed to minimize the execution latency on

serial codes, this kind of accelerator features massive amount of highly simplified cores, and

are generally optimized for high-throughput computations. Therefore, their performance

on latency-sensitive applications is often poor. Consequently, the common programming

strategy is to leave control-intensive irregular code on the CPU, and offload highly paral-

lel highly regular computations onto these devices for acceleration. This genre of massive

parallel accelerator is currently more mature and widely adopted in HPC. In this work, I

will exclusive discuss this type of accelerators. Section 2.1 gives background information

on their architectures and programming models.

1.2 CHALLENGE I: PERFORMANCE TUNING

The architectures of heterogeneous accelerators require extensive performance tuning,

where the combination of tuning techniques remain highly application-specific and is sen-

sitive to input data. In the first part of my dissertation, I describe my efforts of tuning

multi-core CPUs, Xeon Phi and NVIDIA GPUs, using the newly developed GeauxDock

modular docking software as a case study. I’ll present the performance tuning methodolo-

gies and algorithms, as well as a detailed analysis of the performance characteristics.

1.3 CHALLENGE II: PERFORMANCEMODELING

AND PREDICTION

In the second part of this dissertation, I’ll be resolving the performance prediction

problem. My work on this leverages machine learning models and the architectures of

heterogeneous computers. It helped better understand why a certain task would be favored
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on a certain processor.

1.4 CHALLENGE III: SCHEDULING FORHETERO-

GENEOUS SYSTEMS

Thirdly, programming for contemporary heterogeneous computers relies on the intu-

ition of programmers for code decompositions. Specifically, programmers need to explicitly

construct the partition of the code as well the partition of the data. A few research projects

try to automate this process. However, some [10, 11, 12, 13, 14] ignore performance het-

erogeneity, simply partitioning the data into various sized chunks. Others [15, 16] select

only the most suitable heterogeneous processor for work and let the other processors idle

all the time. None of them achieve system-wise optimization. My research is based on the

view that in order to fully unleash the computational capabilities and maximize efficiency,

a good system must consider the heterogeneity of both possessor characteristics and work-

load characteristics. Meanwhile, activating more processors is always better if power is

not a constraint. Accordingly, I’ll be resolving the following problem: Let there be many

independent computational tasks and many heterogeneous processors. Assuming each task

could run on any processor, how does one minimize the overall computation wall time?

In section 4, I propose a scheduling algorithm to optimize the computational throughput.

Additionally, in section 5, I study power and energy as additional metrics. The scheduling

algorithm is also extended to optimize for power efficiency.
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Chapter 2
Performance Tuning For
Heterogeneous Processors

2.1 PROGRAMMINGHETEROGENEOUS COMPUT-

ERS

A CPU core is a fully functional module that could execute one instruction streams at

a time. Traditional CPU has one core, whereas, multi-core CPUs systematically integrate

more than one cores and therefore simultaneously support multiple instruction streams.

Modern CPU cores deploy both Single Instruction Single Data (SISD) [17] computation

model and Single Instruction Multiple Data (SIMD) [17] computation mode. Thus a core

is able to operate on scalar data or vector data. Intel “Ivy Bridge” Xeon E5 2680 v2 is

an example of modern multi-core CPU. It has 10 cores, each core features two 256bit wide

SIMD unites. On every cycle, it could compute one 256 bit AVX addition instruction

coupled with one 256 bit AVX multiplication instruction.

GPUs evolve from the dedicated hardware to accelerate graphics processing Applica-

tion Programming Interfaces (APIs) like OpenGL [18] and DirectX [19]. GPUs use many

vector operations and offer up to hundreds of times more raw computation power than con-

temporary CPUs. The result is that GPU has been redirected from graphics processing to

general-purpose computations. The community use the terminology “GPGPU computing”

to describe this kind of practice in the early day when re-targeting graphics oriented APIs.

In the current era, numerous languages (such as CUDA, OpenCL), libraries and tools are

specifically built for this purpose; as a result, the term “GPU programming” is used to

describe this activity.

Many Integrated Core (MIC) is the initial result of Intel’s effort in pushing its x86

architecture for graphics computing. Their effort later adapted towards the HPC market,
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with the feature set quite similar to traditional CPUs. The Intel Xeon Phi is the band

name of Intel’s MIC offering.

Heterogeneous computing is a major player in today’s HPC community, and is cur-

rently dominated by two vendors: NVIDIA GPU and Intel Xeon Phi. These two offerings

share some common features, but also have unique characteristics. With respect to hard-

ware, both accelerators as well as contemporary multi-core CPUs share a two-level parallel

architecture principle. The coarse-grained outer level constructs a computation cluster

whose processing elements provide the fine-grained inner level of parallelism. For example,

from the perspective of GPU computing, the GPU can be viewed as a cluster of vector pro-

cessors. Each GPU contains an array of Streaming Multiprocessors (SMs), each of which

consists of many Scalar Processors (SPs), transcendental function units, registers, and fast

on-chip memory. I can closely match GPU’s hierarchical architecture model to that of the

multi-core CPU. Just as the core is the building block unit of a CPU, a SM is a building

block of a GPU. Similar to the lanes in a CPU core’s SIMD unit, SPs are SM’s vector lanes.

With regard to software, each coarse-grained cluster handles its own programming con-

text known as a thread on CPU and Xeon Phi, and a thread block defined by the GPU

Compute Unified Device Architecture (CUDA) [20] paradigm. On the CPU and Xeon

Phi, the inner level exposes data parallelism, viz. SIMD operations. NVIDIA GPU uses

CUDA threads inheriting a similar principle of vector processing. For instance, a bundle of

32 consecutive CUDA threads, denoted as a warp, are scheduled together. Consequently,

CUDA threads may go to predication when a small, conditionally protected piece of code is

encountered, forcing the execution of all instructions. When different CUDA threads take

different paths in multiple-path branches, more cycles are consumed leading to a lower

device utilization. Although SIMD instructions on CPU and Xeon Phi have similar char-

acteristics, the vector width is about one-quarter to one-half of that on GPU and the code

generation heuristic can vary significantly. Therefore, irregular codes may perform dra-

matically differently on these platforms. Another major difference between CPU and Xeon
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Phi, and GPU is that the former implement hardware multi-threading at the outer level,

whereas multi-threading on GPU is at the inner level demanding more data parallelism.

Comparing Xeon Phi with CPU, it delivers roughly equal amount of raw compute power

per core in terms of the number of data operations per cycle. However, because of a larger

number of computing cores, Xeon Phi offers certain advantages over CPU in processing

regular, highly parallel workloads. On the other hand, CPU cores typically perform better

for irregular workloads.

In addition, the compute performance is also affected by memory operations. CPU and

Xeon Phi heavily rely on caches that enforce coherence, and are easy to program. Since

cache implementations are costly, they are hard to scale and can lead to low performance.

On the other hand, GPUs expose their fast on-chip memory to programmers, known as the

CUDA shared memory. This design makes life harder for programmers. But if done right,

it could be highly efficient.

Parallel programming models fall into two broad categories: 1) small groups of tightly

coupled processors sharing a common memory space, and 2) large, scalable systems that do

not share a common memory. Both models often coexist in a high-performance computing

(HPC) environment; for instance, many HPC systems use the distributed memory model

to scale up to thousands of multi-processor nodes, each employing the shared memory

model. Common programming practices to program multi-core CPU in the shared memory

systems are to use libraries or parallel programming languages (extensions) or compiler

pragmas. Examples are Pthreads [21], TBB [22], HPX [23], Boost::thread [24]. OpenMP

[25]. In contrast, distributed memory systems require manually implemented message-

passing procedures, e.g., using Message Passing Interface (MPI) protocols [26]. In the

HPC community, OpenMP and MPI completely dominate because they are open standards,

language neutal, and can be applied to existing code commonly implemented in Fortran,

C, or C++.

In the early stages, GPGPU computing was achieved using graphics oriented APIs like
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OpenGL shader [18] or Cg [27]. The emergence of GPU computing introduce stream pro-

gramming model such as StreamIt [28], Sh [29], RapidMind [30], Brook[31], and PeakStream[32].

These low level APIs have evolved into two contemporary dominant languages. CUDA is

NVIDIA’s extension to C, and lately includes C++ features like template, range-based

iterators, auto type, and lambda function. CUDA GPU code is officially supported only by

NVIDIA’s compiler, and only targets NVIDIA GPUs. OpenCL [33] is a widely supported

open standard, which offers a similar model and usage like CUDA. But different from

CUDA handled by specific compiler, OpenCL is a library based solution. Low level GPU

programming typically comprises several stages, (1) identify parallel workloads, (2) copy

data from the host to the device, (3) map workloads to computing cores, (4) determine a

suitable memory access for CUDA threads, (5) synchronize the execution between GPU

and CPU, and (6) copy data back to the host. Significant efforts are directed at automating

these steps. Compiler pragma solutions includes CUDA-lite [34], hiCUDA [35], OpenMPC

[36], HMPP [37] and PGI accelerator [38]. The last two have merged into OpenACC [39]

as an open standard, and is most influential today. Besides OpenACC, OpenMP has been

extended for heterogeneous platforms by introducing similar features since OpenMP ver-

sion 4 [40]. Transparent GPU code generation research projects, such as Par4All [41] and

PPCG [42] concentrate on regular codes in synthetic benchmarks, and without significant

additional effort are difficult to generate good performance on real applications in gen-

eral. Overall, high-level GPU programming languages are not yet versatile enough to fully

unleash the power of GPU for complex applications.

In contrast, Xeon Phi is designed to provide massive parallelism at considerably reduced

programming effort. Xeon Phi programming could be done in low level using OpenCL. The

high level programming model, promoted by Intel, uses a handful of Intel’s proprietary

pragmas [43] to denote the desired code transformation. With the pragmas supported

by Intel compilers, Xeon Phi accelerated binaries can be generated in a similar way as

compiling traditional CPU codes [43]; therefore, programming Xeon Phi could be fairly
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comparable to coding for multiple-core CPUs. This is denoted as native mode. Similar

to GPU, Xeon Phi also offers the offload mode, where only selected portions of the code

marked by compiler pragmas are executed on the accelerator. OpenMP can be used in

both native and offload modes alleviating the need for hand-coded parallelization.

2.2 GEAUXDOCK

The goal of drug discovery is to identify, optimize and clinically validate those com-

pounds that bind and modulate the function of a target protein implicated in a disease

state. A drug molecule must possess certain geometry and physicochemical properties in

order to have a sufficiently high binding affinity toward a given macromolecular target. As

a result, the number of bioactive compounds is very small compared to a vast collection

of candidate compounds. For example, the ZINC database of commercially available small

molecule entities consists of 17,900,742 drug-like compounds collected from 243 vendors as

of January 2016 [44]. Considering molecules yet to be synthesized, the chemical universe

comprises an estimated novemdecillion (1060) of small organic compounds [45]. At the

outset of drug discovery, this large number of candidates need to be downsized to hundreds

or thousands of the most promising compounds. Experimental high-throughput screen-

ing is a conventional approach used by the pharmaceutical industry to identify bioactive

molecules, however, it suffers from high costs and relatively low hit rates [46]. For instance,

a recent study by the Tufts Center for the Study of Drug Development estimates that the

development of a new prescription medicine typically continues for longer than a decade

with the total costs of over 2.5 billion US dollars [47]. Not surprisingly, modern drug dis-

covery is increasingly supported by computational modeling to reduce the overall costs,

improve the efficiency and speed up the development time. As an example, a fast drug de-

velopment is critical in combating the Ebola virus, therefore, computational approaches are

expected to significantly contribute to Ebola research through protein structure modeling

and large-scale docking of small molecule libraries against viral proteins [48].
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One of the most widely used techniques for ligand virtual screening is structure-based

molecular docking to model the binding pose of a ligand in the binding site of the receptor

protein followed by the prediction of binding affinity and/or free energy [49]. In contrast to

ligand-based approaches that require an initial set of bioactive compounds, structure-based

docking requires only the 3D structure of the protein target. Moreover, these methods are

well positioned to take advantage of the continuously growing structure databases, such

as the Protein Data Bank (PDB) [50], providing opportunities to discover novel biophar-

maceuticals. Because of the importance of ligand docking in modern drug development, a

number of programs have been developed to date [51]. In general, using large compound

databases increases the chances of finding bioactives, however, large-scale virtual screening

typically requires a long computing time. In addition to the database size, computing time

also increases with the increasing accuracy of the modeling of drug-protein interactions.

Although sophisticated models outperform simple approaches, these algorithms often have

high demands for computational resources. For example, docking accuracy can be improved

by incorporating the plasticity of biomolecules, e.g., using pre-generated ensembles of the

target protein structure [52]. Since ensemble-based docking requires conducting docking

simulation for each target conformation, the computational complexity increases linearly

with the number of conformers. Another approach to improve ligand docking incorpo-

rates the configurational entropy. This property can be approximated by clustering ligand

binding poses generated by a docking program to calculate the conformational similarity

between each pair of ligand modes, leading to O(n2) complexity, where n is the total num-

ber of binding poses. Mining Minima provides a more accurate way to calculate entropy

by integrating potential energies as a function of coordinates, however, at a significantly

increased computational cost [53]. Finally, the simulation time can also affect the dock-

ing accuracy for those docking programs relying on stochastic methods to sample the free

energy landscape, where longer simulations are more likely to reach the global minimum

[54]
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Undeniably, achieving a good balance between the docking accuracy and the computa-

tion time represents a major challenge in structure-based virtual screening. To address this

problem, parallel computing is often used to accelerate docking simulations. For instance,

AutoDock Vina [55] supports multi-threading on CPU using the Boost::thread library yield-

ing significant speedups on multi-core processors compared to a serial version. Moreover,

a CUDA implementation of MolDock [56] accelerates both the evolution search algorithm

and its two-element scoring functions on GPU , whereas PLANTS [57] employs a system-

atic grid search with an accelerated scoring function on GPU using a high-level shading

language. A few projects take the heterogeneous concept one step further by developing a

hybrid docking framework that can be executed on different computer architectures. For

example, non-bonded interactions in molecular dynamics kernels were parallelized for both

GPU (using CUDA) and CPU (using OpenMP), and further extended to fully utilize dis-

tributed platforms through MPI protocols [58]. The docking engine BUDE [59] employs

the OpenCL language to maintain a parallel implementation of the genetic search algo-

rithm for CPU, Xeon Phi and GPU. Nonetheless, to the best of our knowledge, an efficient

multiple-backend implementation of the docking kernel based on Metropolis Monte Carlo

(MMC) has not been reported yet.

Recently, LA-SiGMA team developed GeauxDock, in which I leads the code design

and performance practice. GeauxDock is a new molecular docking package to model drug-

protein complexes using a mixed-resolution molecular representation and the MMC search

engine [60]. GeauxDock uses non-hydrogen atoms for ligands, whereas proteins are de-

scribed at the coarse-grained, sub-residual level. Such a mixed-resolution description not

only helps tolerate structural deformations in the target binding sites caused by using pro-

tein models as docking targets, but also speeds up calculations by decreasing the number

of interaction points on macromolecules. Furthermore, GeauxDock employs an ensemble-

based approach to effectively model the flexibility of ligands and proteins. Ligand ensembles

comprise up to 50 low-energy conformations generated at the pairwise root-mean-squared
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distance (RMSD) greater than 1 , whereas non-redundant ensembles of 11 conformations

are used for proteins. The latter are constructed to mimic the flexibility of drug binding

regions in the target receptors. The descriptor-based force field implemented in Geaux-

Dock includes nine energy terms carefully optimized to drive docking simulations toward

native-like conformations using a multi-replica MMC sampling.

Although GeauxDock simulations typically converge in less than 1,000 MMC cycles

on standard datasets, its large-scale virtual screening applications remain computationally

challenging due to a large number of candidate molecules to be evaluated. On that account,

this chapter of the thesis describes my efforts porting GeauxDock to multi-core CPUs and

massively parallel accelerators, Xeon Phi and GPU. Computational models and perfor-

mance patterns are analyzed in detail for different architectures. I also discuss various

code characteristics as well as general and platform-specific optimization techniques used

to turn GeauxDock into an ultra-fast docking tool for large-scale drug virtual screening.

2.3 PERFORMANCE TUNINGS

GeauxDock is designed for virtual screening applications, where a given protein target

is screened against a large library of small organic compounds. A docking simulation of a

single ligand is an independent computational task. Figure 2.1 shows four stages of virtual

screening using GeauxDock. The procedure starts with reading the input data and creating

a pool of tasks (Figure 2.1A). Protein and ligand files provide the initial coordinates of the

target protein and library compounds. The parameter file specifies various parameters,

such as coefficients to calculate energy terms, weight factors to linearly combine individual

energy components, as well as the length of rotation and translation vectors to perturb

ligand conformations during MMC simulations. Other files contain data to calculate a

pseudo-pharmacophore using the Kernel Density Estimation (KDE), restraints on family-

conserved anchor substructures using the Maximum Common Substructure (MCS), and

a pocket-specific potential (PSP). The KDE component of the scoring function describes
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the likelihood of target ligand atoms to be at certain positions with respect to template-

bound ligand atoms, whereas the MCS term imposes RMSD restraints according to a

chemical matching between the target ligand and template-bound ligands collected from

the PDB [60, 61]. Further, PSP is a contact-based statistical potential derived from weakly

homologous holo-templates identified by threading rather than all protein-ligand complexes

present in the PDB [60, 62]. Once the required input data are read and pre-processed, a

computing device is initialized and the data is copied to the accelerator (Figure 2.1B).

Subsequently, docking calculations are performed for individual tasks (Figure 2.1C) and

finally, the output files are generated on the host (Figure 2.1D).

Figure 2.1: Workflow of virtual screening using GeauxDock. (A) The front-end reads input
data and creates a pool of docking tasks. The back-end carries out three consecutive oper-
ations: (B) device initialization and data transfer, (C) docking calculations for individual
tasks, and (D) saving output data.

Preliminary testing of this workflow reveals that the redundant loading and parsing of

the same target protein when docking different ligands consumes up to 90% of the total

I/O time (Table 1). As a consequence of these excessive I/O operations, the execution of

MMC kernels on GPU makes for only 52% of the total simulation time. Furthermore, the
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repetitive GPU memory allocation and de-allocation performed for each task takes almost

as much time as running the MMC kernel. Although the code for Xeon Phi is expected

to have similar issues, the compiler pragmas are placed inside the MMC kernel code, thus

the entire offload procedure combines data transfer and core calculations. The memory

management for the code offload is not required in the CPU implementation. To address

the problem of the excessive I/O operations particularly for GPU-based platforms, the four-

step workflow for GeauxDock is arranged into two parts. The front-end consists of data

loading, pre-processing and creating a pool of tasks (Figure 2.1A), whereas the back-end

fetches tasks, initializes a computing device, executes the docking kernel, and periodically

saves the output data (Figure 2.1B-D). With this design, the memory allocation and de-

allocation on GPU occur only once at the beginning and the end of the back-end process,

respectively.

Docking simulations with GeauxDock can be conducted on three platforms, multi-core

CPU, GPU and Xeon Phi. Therefore, the source code is modularized for an easy mainte-

nance across different architectures (Figure 2.2). All three platforms share a common code

for front-end computations, whereas back-end codes have two versions, one for CPU and

Xeon Phi, and one for GPU. The C++ kernel employing OpenMP and Intel SIMD prag-

mas is shared between CPU and Xeon Phi. Using the “-Doffload” flag enables additional

pragmas protected by the “#ifdef offload” macro, which instruct the compiler to generate

object files for Xeon Phi instead of CPU. In contrast, the GPU version comprises a C++

launcher and a docking kernel implemented in CUDA. This design allows for maintaining

a single front-end code and two versions of the back-end code. Compiling the source codes

(Figure 2.2A) generates architecture-specific object files (Figure 2.2B), which are linked to

create different versions of the binary (Figure 2.2C).
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Figure 2.2: Implementation of GeauxDock. (A) The code repository is divided into three
modules, a common front-end module for the CPU host and two back-end modules, one for
GPU and one for CPU and Xeon Phi. (B) Compiling the source codes produces a series of
architecture-specific object files. (C) Linking object files creates three binary versions for
GPU, CPU and Xeon Phi.

2.3.1 PARALLELIZATION LEVELS

GeauxDock features an enormous task-level parallelism, where different library com-

pounds docked against the target protein correspond to individual tasks. In addition, the

docking kernel exploits coarse- and fine-grained parallelism. Docking calculations for a sin-

gle task involve multiple protein and ligand conformations, where each unique combination

of protein-ligand conformations is regarded as a replica of the system. Although replicas can

be subjected to MMC simulations at different temperatures, only one temperature is cur-

rently used. For a given docking task, the corresponding ensembles of independent replicas

are suitable for coarse-grained parallel computing. Moreover, a fine-grained parallelization

takes place at the level of pairwise interactions between data points within each replica.

These interactions are computed as three matrices, proteinColumnV ector × ligandRowV ector

(PRT ), KDEColumnV ector × ligandRowV ector (KDE), and MCSMatrix × ligandColumnV ector

(MCS). Here, a fairly large number of computations are subjected to fine-grained paral-

lelization; the analysis of input data reveals up to 104 data points for a single replica, which

is sufficient to saturate computing resources available on modern CPUs and accelerators.

Back-end calculations start when a task is fetched from the task pool. Figure 2.3 and
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Table 2 explain mapping between the docking algorithm and computing resources. First,

replicas within each task are mapped to coarse-grained resources, GPU streaming multipro-

cessors (SMs) as well as CPU and Xeon Phi cores (Figure 2.3A and Table 2, Coarse-grained

parallelism). When multiple GPUs are available, replicas within a given task are evenly

assigned to the attached GPU cards. Second, interaction-level calculations (Figure 2.3B)

are mapped to fine-grained resources, where computing 2D matrices utilizes SIMD lanes on

CPU and Xeon Phi, and CUDA threads on GPU (Figure 2.3C and Table 2, Fine-grained

parallelism). Code 1 in S1 Codes illustrates loop operations on PRT, KDE, and MCS matri-

ces involving a number of summation reductions. For instance, five energy terms calculated

using the PRT matrix (Esoft
ele , Esoft

vdW , EHB, ECP , and EPS
CP ) are directly reduced from a 2D

array to a scalar value. Another type of reduction is hierarchical, where a 2D array a[i][j] is

first reduced to a 1D array b[i] along the j-dimension, and then to a scalar value along the

i-dimension. This technique is applied to selected data across all three matrices, e.g., EHP

in the PRT matrix, EKDE in the KDE matrix, and EMCS in the MCS matrix. In order

to implement hierarchical reductions on GPU, I made adjacent GPU threads efficiently

exchange data by scheduling the i-dimension as the outer loop, and the j-dimension as

the inner loop. Specifically, the outer (inner) loop iterates over ligandRowVector (protein-

ColumnVector) for the PRT matrix, ligandRowVector (KDEColumnVector) for the KDE

matrix, and rows of MCSMatrix (columns of MCSMatrix) for the MCS matrix.

2D CUDA thread blocks are responsible for calculations on GPU (Figure 2.3A, green

rounded boxes). The shape and size of CUDA thread blocks are flexible and can be tuned

for the optimal performance. Given that the CUDA warp size is fixed at 32, the x-dimension

of the CUDA thread block is best defined as a multiple of 32. Also, the maximum number of

1,024 threads per CUDA thread block restricts the y-dimension, for example, the size of the

y-dimension cannot be greater than 32 when x-dimension is 32, because 32 × 32 = 1024.

However, the shapes of 2D interaction matrices do not always perfectly match those of

CUDA thread blocks. For instance, the x-dimension is always greater than the y-dimension
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in PRT and KDE matrices, whereas a typical MCS matrix has the y-dimension greater than

the x-dimension. Therefore, boundary conditions require a careful design of CUDA thread

blocks to leave a certain number of idle threads for the thread management. This procedure

is illustrated in Figure 2.4, where processing a small, 70-element data matrix (outlined in

red) requires at least six cycles of a 4 × 4 CUDA thread block (each cycle is outlined

in blue). With this setup, 70 parallel threads are fully utilized (gray cells), leaving 26

threads idle (white cells). Overall, the number of CUDA threads is fixed at the compiling

time, but the optimal shape of the thread block is defined at the runtime, when the input

data become available. Here, the objective is to find the best combination of x- and y-

dimensions consuming the least amount of computing cycles to traverse the data matrix,

where a computing cycle is defined as follows:

cycle = ceiling

(
data sizex

cuda threadsx

)
× ceiling

(
data sizey

cuda threadsy

)
(2.1)

In practice, only a handful of configurations are valid; I enumerate and evaluate these

configurations to find the optimal solution. As an example, using Tesla K20Xm GPU with

1,024 threads per thread block, a typical configuration for PRT, KDE, MCS matrices is

128× 8, 128× 8, and 32× 32, respectively.

Different from the GPU version, the back-end for CPU implemented in C++ with

OpenMP pragmas assigns processor threads to carry out computations for individual repli-

cas (Figure 2.3A, blue rounded boxes). In order to avoid thread migration and ensure

the best cache locality, the environment variable “OMP PROC BIND” is set to “true.”

In addition, inner loops in data computations iterating over proteinColumnVector (PRT

matrix), KDEColumnVector (KDE matrix), and columns of MCSMatrix (MCS matrix) are

marked with vector pragmas to assist Intel compiler in generating an efficient, vectorized

code. Note that the same CPU code can be used on Xeon Phi since almost all performance

tuning techniques for CPU apply to this accelerator as well. The major difference is that

the code for Xeon Phi is required to be offloaded to the accelerator, which is conceptually
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similar to GPU programming. The offload is accomplished using compiler pragmas, i.e.

“#pragma offload target (mic) in (data in) out (data out). However, the present pragma-

based Xeon Phi programing model was designed to offload a block of code to only one

device. The current implementation of GeauxDock works only with a single Xeon Phi

card. Although replicas could be distributed manually across multiple accelerators, one

should keep in mind that at least 240 replicas are required to effectively utilize Xeon Phi.

Since docking tasks have no more than 550 replicas, splitting the workload among multiple

Xeon Phi cards would inadvertently decrease the overall performance. In addition, any code

modification targeting the Xeon Phi platform would complicate the code maintenance. In

fact, workload sharing at the task level represents a more practical and scalable approach,

which will be implemented in the future release of GeauxDock.

Figure 2.3: Two levels of parallelism in the docking kernel. (A) At the coarse-grained
level, individual replicas are assigned to different CUDA thread blocks on GPU streaming
multiprocessors (SMs) and different threads on CPU/Xeon Phi cores. (B) At the fine-
gained level, data points for each replica are organized as Structure of Arrays containing
Cartesian coordinates x, y, z, and parameters p associated with atoms, such as type, charge,
and etc. Parameters for neighboring atoms are placed closely in memory to ensure the best
execution efficiency. (C) Data points at the fine-gained level are accessed in parallel by
CUDA threads on GPU and SIMD lanes on CPU and Xeon Phi.
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Figure 2.4: Example of parallel calculations for a data matrix. A small, 96-element matrix
ligandColumnVector × proteinRowVector is outlined in red, whereas the 4 × 4 CUDA
thread block iterating over the matrix is outlined in blue. Here, at least 6 cycles are required
to process the data matrix utilizing a total of 70 parallel threads (gray cells), while the
remaining 26 threads are idle (white cells). An optimal shape of CUDA thread blocks can
be constructed dynamically to improve the computational performance by reducing the
number of cycles required to traverse the data matrix.

2.3.2 DATA STRUCTURE

A docking task contains complex data, including read-only protein and ligand con-

formations, MMC simulation parameters, MCS, KDE and PSP force field parameters, as

well as the dynamic configuration and output data from individual replicas. GeauxDock

employs the Structure of Arrays (SoA) to store the data ensuring the best data locality.

For example, the SoA for the ligand conformation shown as Code 2A in S1 Codes con-

tains elements x[L], y[L], z[L], t[L], and c[L], representing x, y, z coordinates, the type, and

electric charge for all ligand atoms, respectively. L defines the maximum number of ligand

atoms and it is set at the compiling time. Figure 2.3B shows that the data associated

with neighboring atoms are stored in consecutive memory addresses in order to maximize

the efficiency of memory operations required for the fine-grained parallelization. With this
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design, CUDA threads on GPU and SIMD lanes on CPU and Xeon Phi access these data

in a stride-1 pattern as illustrated in Figure 2.3C. Data structures for protein conforma-

tions, MMC simulation parameters, and PSP, KDE and MCS force field parameters are

created in a similar fashion. These data constitute the first-level SoA providing read-only

information, and are used as building blocks to construct the multiple-replica simulation

context.

To systematically assemble replicas from these raw data, I created a data structure

called “ReplicaInfo,” whose purpose is to assemble a replica from the raw data using in-

direct references to various arrays. The concept of ReplicaInfo is presented in Figure 2.5,

where two example replicas, (L1, P1, T1) and (L1, P3, T2), are created using indexes to the

same ligand conformation (L1), but different protein conformations (P1 and P3) and simu-

lation temperatures (T1 and T2). ReplicaInfo was designed to yield a high computational

efficiency of data exchange between replicas during parallel tempering MMC simulations

[63], which requires swapping only a few indexes rather than the associated large data ar-

rays. Further, the ReplicaInfo structure is used to store the temporary simulation status,

including energy values and ligand orientations with respect to the target protein pocket.

Simulation logs are saved in the “Simlog” data structure, whose entry can also be found in

ReplicaInfo. I note that the ReplicaInfo can be modified during MMC simulations, while

the associated data are read-only.

In addition to the first-level SoA, I designed the second-level SoA called the “Complex”

(Code 2B in S1 Codes) providing the outermost container for the computation data. The el-

ements of Complex are various data structures, including protein and ligand conformations,

MMC simulation parameters, MCS, KDE and PSP force field parameters, ReplicaInfo, and

the data size. Essentially, a single instance of Complex SoA and Simlog hold all data asso-

ciated with a computation task. Because the memory for Complex and Simlog is allocated

only once, when either the CPU/Xeon Phi or GPU version of GeauxDock is initiated, it

must be large enough to hold data for any docking tasks from the task pool. Docking cal-
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culations for the CCDC/Astex dataset require about 5 MB of memory for each Complex,

whereas the entire Simlog would allocate about 1.5 GB of memory. In practice, only about

100 MB of Simlog data need to be transferred to the host and saved on disk.

Figure 2.5: Data indexing for multi-replica Monte Carlo simulations. Individual replicas
are multi-dimensional objects comprising different combinations of ligand (L) and protein
(P) conformations, and temperatures (T), as well as the same set of PSP, KDE, MCS
potentials and force field (FF) parameters. All these data are read-only, labeled with tags,
and accessible through indexes as depicted by arrows.

2.3.3 DATA REARRANGEMENT

Irregular code patterns caused by dynamic data may significantly affect the perfor-

mance. The docking kernel code contains conditional branches and indirect memory ref-

erences, for example, calculating a branch path depends on the distance between a ligand

atom and a protein point, which is changing in the course of MMC simulations. Although

it is difficult to speed up the code containing these dependencies, I improved the code

regularity for certain cases. For instance, incrementally sorting KDE data elements by the

atomic type t helps improve the regularity of the conditional code “if (lig-¿t[index] ==

kde-¿t[index])”

in a loop iterating over hundreds of KDE data points. Another example is the indirect
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memory reference, such as “d = array[ligand-¿t[index]][protein-¿t[index]].” Here, sorting

ligand and protein objects by t greatly improves the locality of accessing array elements.

Altogether, data rearrangement enhances the performance of GeauxDock by 9.6%, 12.2%

and 8.2%, on CPU, Xeon Phi and GPU, respectively.

2.3.4 STRENGTH REDUCTION

In order to further speed up calculations within the docking scoring function, the

strength reduction technique is applied to reduce its computation complexity. Original

mathematical formulas for various energy terms in the MMC kernel are divided into pre-

processing and computation groups. The pre-processing combined with data transforma-

tion is conducted within the front-end of GeauxDock. An example is shown as Code 3 in S1

Codes, where the indirect memory reference “prtconf.r[index]” is removed from the original

kernel (Code 3A) and included in the pre-processing stage (Code 3B), leading not only to

a better memory locality, but also to fewer instructions in the optimized kernel. Another

technique used to accelerate computations within the docking kernel is the reduction of the

arithmetic intensity. For instance, Code 4A in S1 Codes shows a part of the original kernel

computing the soft van der Waals potential, which includes 6 loads, 9 multiplications, 3

division and 5 power functions. To speed up the MMC kernel, some calculations are either

moved to the pre-processing step or executed between certain blocks of the code and then

reused when calculating the potential. As the result, the optimized code shown as Code

4B in S1 Codes has only 2 loads, 6 multiplications, 3 divisions and no power functions.

2.3.5 GPU-SPECIFIC TUNING

The power of accelerators can be fully utilized only when time is primarily spent on

computations rather than data communication. GeauxDock is implemented based on this

principle by moving compute-intensive MMC simulations to Xeon Phi and GPU. Code 5

in S1 Codes shows the MMC conformational sampling in ligand docking. First, a new
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configuration of a ligand is generated by randomly perturbing the present configuration.

Next, the energy of the new configuration is calculated and compared to the energy of the

old configuration using the Metropolis algorithm [64]; the new configuration is accepted

with a certain probability to be used in the next iteration, otherwise it is rejected. Even

though some components of the docking kernel, such as evaluating the Metropolis criterion,

are less suitable for the parallelization on GPU and Xeon Phi, this approach yields a better

overall performance than offloading parts of the docking kernel. For instance, offloading

only energy calculations could potentially generate an excessive communication between

the host and the accelerator. In that case, advanced optimization techniques such as the

asynchronous kernel execution and data copying between multiple tasks would have to be

applied for a better performance. However, because extra communication is avoided in the

MMC kernel, the code requires no further optimization of data transfer.

For GPU, the memory is carefully managed within the GeauxDock code with heavily

reused variables, such as interaction distances, placed in registers. Moreover, the shared

memory is used for those frequently reused data, such as ligand coordinates and energy

parameters, which may have an irregular access pattern. Large arrays with the stride-1

parallel access pattern are defined as SoA, sorted for improved regularity, and saved in the

global memory. Importantly, level 1 data cache on Tesla K20Xm GPU does not buffer the

global memory traffic by default. The docking kernel has a good reuse pattern for PRT and

KDE matrices, therefore, inserting ldg intrinsic enables the level 1 data cache mechanisms

to enhance memory operations. This technique improves the GPU performance by 4%

for PRT and KDE matrices. In contrast, the cache optimization cannot be applied to

computations for the MCS matrix, which have no global data reuse at all.

Since the docking kernel invokes reduction operations, partial results in each CUDA

thread need to be added to a scalar value. Here, a simple implementation stores temporary

data in the shared memory, where the amount of the required memory scales linearly with

the number of CUDA threads. In the early version of GeauxDock, the capacity of the
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shared memory limited the maximum number of CUDA threads per thread block to 768.

Since using more CUDA threads per block generally delivers a better performance on Tesla

K20Xm GPU, the current docking kernel uses shfl and shfl xor intrinsic instructions

for reduction operations. This technique enables a direct data exchange between CUDA

threads without consuming the shared memory. Not only is the new reduction code 3

× faster, but it also allows to use 1,024 CUDA threads per block improving the overall

performance by 40%. Finally, many elementary functions, exp, log, sin, cos, etc., are

frequently used in the docking kernel. The CUDA math library offers accelerated versions

of these math functions [20], which are enabled by the “-use fast math” compiler flag. This

tuning yields a 30% performance boost, however, the fast math intrinsic for GPU is not

guaranteed to be fully compatible with the IEEE floating point standard. Nonetheless, a

careful comparison of the results against the CPU code shows that the error rate is smaller

than 0.0001

2.4 RESULTS

The performance of MMC kernels in GeauxDock is evaluated on several computing

platforms using diverse input data. I conducted benchmarking calculations using four

Linux computers listed in Table 3, including a mainstream PC desktop, a PC desktop with

the latest consumer grade GPU, a heterogeneous HPC cluster node with both GPU and

Xeon Phi accelerators, and an HPC cluster node with two GPU cards. I set the optimiza-

tion level to “-O3” with the following additional flags for the Intel compiler: “-fno-fnalias

-ansi-alias -fargument-noalias” (to safely remove pointer aliases), “-ipo” (to enable inter-

procedural optimization), “-vec-threshold0” (to enable vectorization whenever possible),

and “-fma” (to enable the fused-multiplication-add code generation). Architectural events

listed in Table 4 were recorded by hardware counters using the Performance Application

Programming Interface (PAPI) library version 5.4.0 [65]. In addition, I implemented timers

directly in the code in order to measure the execution time of an arbitrary segment of the
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code. I noticed that time measurements have minor fluctuations of nearly 5%, therefore,

all timings are reported as the average over 8 independent runs.

Benchmarking calculations are carried out for a single target protein, the pp60(c-src)

SH2 domain complexed with ace-malonyl Tyr-Glu-(N,N-dipentyl amine) (PDB-ID: 1a07)

[66] and a set of 204 drug compounds selected from the CCDC/Astex dataset [67]. 1a07

represents a typical docking target with 344 protein effective points and an ensemble of

11 protein conformations. Depending on the number of rotatable bonds, up to 50 con-

formations are generated for ligands, thus the ensemble-based docking employs up to 550

replicas (11×50) of individual systems. In addition to this default protocol, I test the code

scalability using a varying number of replicas at multiple temperatures. Other parameters

affecting the computational complexity are the number of non-hydrogen ligand atoms and

the number of points to compute the evolution-based components of the GeauxDock force

field, KDE and MCS. Although both KDE and MCS scoring terms are used to calculate

various restraints derived from homology rather than physical interactions, these points are

iterable from the computing point of view. Therefore, KDE and MCS interacting points

are equivalent to ligand atoms and protein effective points in the physics-based components

of the GeauxDock force field.

The distributions of the number of replicas, ligand atoms, as well as KDE and MCS

points are shown in Figure 2.6. GeauxDock employs multiple replicas to account for the

flexibility of protein-ligand complexes, where each replica contains a unique combination

of protein and ligand conformations. The highest peak in Figure 2.6A at around 550

replicas corresponds to highly flexible compounds with multiple rotatable bonds, whereas

the smaller peak at around 11 replicas represents those rigid complexes having only a single

conformer. Given that the hydrogen atoms are omitted when counting atoms, the range

between 6 and 62 heavy atoms presented in Figure 2.6B agrees well with the qualifying range

for drug molecules according to the extended version of Lipinski’s rule-of-five [68]. Because

KDE points and rows in MCSMatrix are calculated using template-bound ligands detected
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by the eFindSite algorithm [61], their distributions (Figures 2.6C and 2.6D, respectively)

depend on the number and size of ligands extracted from holo-templates.

Another important simulation parameter is the number of MMC cycles. I found that

1,000 MMC cycles is sufficient for production runs to converge. Since these calculations

require 4.8 to 61 minutes on various platforms, the average wall time for the docking kernel

is 1.4 seconds on the fastest machine (platform D2, Table 3) and 18 seconds on the slowest

computer (platform D1, Table 3). Because the number of replicas (up to 550) is multiplied

by the number of temperatures (up to 240) in our benchmarks, and several versions of

the docking code needed to be tested, the time required to complete simulations could be

hundreds times longer than that for production runs. Therefore, shorter simulations with

100 MMC cycles are used for benchmarking purposes.

2.4.1 PERFORMANCEWITH ANAMPLE COARSE-GRAINED

PARALLELISM

The execution time for docking kernels includes not only computations but also time

required for the data transfer to and from accelerator devices. Moreover, the kernel perfor-

mance can be affected by the ensemble size (the number of replicas), because those docking

systems containing rigid ligands provide insufficient coarse-grained parallelism to fully uti-

lize computing resources. On that account, I first need to determine the ideal performance

as well as a performance penalty caused by the meager coarse-grained parallelism. To

address this problem, I conducted a series of simulations providing a sufficient number of

replicas to deliver an ample coarse-grained parallelism. Specifically, I used 400 replicas for

a dual CPU with 20 cores and 20 threads, 2,400 replicas for Xeon Phi with 60 cores and

240 threads, and 280 replicas for GPU with 14 streaming multiprocessors and 14 CUDA

thread blocks.

The performance of docking kernels on CPU is assessed using the C1 computing sys-

tem (Table 3). I first evaluate the serial performance by enabling only 1 thread on a
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Figure 2.6: Distribution of various parameters affecting docking time for the dataset of 204
CCDC/Astex compounds. The number of (A) replicas, (B) ligand non-hydrogen atoms,
(C) KDE points, and (D) rows in the MCS matrix. KDE (Kernel Density Estimation)
and MCS (Maximum Common Substructure) points are used to calculate evolution-based
components of the docking force field.

single processor core. Using the total number of CPU cycles according to the PAPI event

PAPI TOT CYCLES (Table 4) and the computing time measured by either the PAPI timer

or our timer, the average dynamic CPU clock rate is 3.58 ± 0.02 GHz. Figure 2.7 shows

several characteristics assessing the overall computational performance of the docking code.

In most cases, the number of level 1 data cache misses per 103 instructions is less than

7 (Figure 2.7A), which is lower compared to a broad distribution of 5-30 misses reported

for thoroughly tuned SPEC CPU2006 benchmark kernels [69] tested on the same CPU

microarchitecture. Similarly, the number of branch mis-predictions per 103 instructions

28



for the SPEC CPU2006 kernels is between 1 and 10 [69], therefore, the docking code is

superior with no more than 2 branch mis-predictions (Figure 2.7B). Moreover, GeauxDock

achieves an average instruction throughput rate of about 2, which is notably higher than

1.43 instructions per cycle reported for the most efficient SPEC CPU2006 kernel [69]. This

comparison with the SPEC CPU2006 benchmark suite demonstrates that the serial, CPU

version of the docking kernel in GeauxDock is indeed highly optimized.

Next, using the optimized serial CPU code as a baseline, I measure the performance of

the parallel versions of GeauxDock on a dual multi-core CPU, Xeon Phi and GPU using the

C1 computing system (Table 3). Enabling 20 threads on a dual CPU triggers the dynamic

frequency scaling and decreases the average CPU clock rate to 3.07 ± 0.11 GHz. Figure

2.8A shows that the average speedup of multi-threaded GeauxDock over its serial version is

17.22± 0.06, which actually corresponds to the maximum theoretical speedup accounting

for the lower clock rate ( 20× 3.07GHz
3.58GHz

).

Further, compared to the serial code, the parallel docking kernel runs from 22 × to

56 × faster on Xeon Phi 7120P (Figure 2.8B) and 10 × to 38 × faster on Tesla K20Xm

GPU (Figure 2.8C). Despite these impressive speedups, the irregular portions of the docking

code are handled differently by various devices because of their architectural characteristics

causing significant variations across the dataset. As I mentioned in the introduction section

when discussing hardware design, the simpler computing units of Xeon Phi and GPU are

more susceptible to dynamic branches compared to sophisticated CPU cores.

2.4.2 PERFORMANCE ON REAL DATA

Next, I test the parallel performance of each platform against realistic workloads. Fig-

ures 2.8D and 2.8F show that multi-threaded CPU and GPU versions of the docking kernel

generally maintain their high performance on real data. In contrast, the performance of

Xeon Phi is significantly affected by the lack of an ample coarse-grained parallelism (Figure

2.8E). Although the co-processor is twice as fast as a dual CPU in 71.1% of the cases (a
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Figure 2.7: Performance characteristics for a single-threaded docking kernel on CPU. The
number of (A) level 1 data cache misses per 103 instructions, (B) branch miss-predictions
per 103 instructions, and (C) instructions per cycle.

Figure 2.8: The distribution of speedups of parallel GeauxDock over the serial CPU version
for the dataset of 204 CCDC/Astex compounds. Benchmarking calculations are conducted
using (A-C, red) modified input data providing an ample coarse-grained parallelism and
(D-F, green) unmodified input data. Three kernel implementations are tested for (A, D)
multi-core CPU, (B, E) Xeon Phi, and (C, F) GPU.
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speedup of 17× and more), Xeon Phi performs about twice as slow as a dual CPU for the

remaining docking systems. This double peak pattern matches the bimodal distribution

of the number of replicas shown in Figure 2.6A, demonstrating that the computational

throughput of Xeon Phi is significantly affected by those workloads providing insufficient

coarse-grained parallelism.

To further investigate the effect of the number of replicas on the parallel performance,

I compiled a separate testing dataset comprising a single conformation of the target pro-

tein 1a07 and a rigid ligand adamantanone (PDB-ID: 5cpp) [70]. This docking system is

replicated n times at different temperatures to strictly control the number of replicas in

docking simulations. The docking time for multi-core CPU, Xeon Phi and GPU kernels

are presented in Figure 2.9. Figures 2.9A and 2.9C show sets of horizontally parallel lines

with even vertical distances, whose width corresponds to the number of CPU cores and

GPU streaming multiprocessors, respectively. Here, replicas are processed in parallel by

independent computing units with the execution time equal to the number of replicas di-

vided by the core count. The width of horizontal lines for Xeon Phi shown in Figure 2.9B

is 240 because of the hardware multi-threading (60 cores × 4 threads per core). Clearly,

it is beneficial to place 4 threads on a single core in order to fully utilize the hardware.

Moreover, the kernel time for the first few data points at the beginning of each horizontal

line is somewhat shorter demonstrating that the co-processor performance is affected by

the global resource contention.

2.4.3 A RELIABLE MODEL FOR THE PERFORMANCE

To further understand the performance characteristics, I analyze various components

of the docking kernel including the time spent on computing PRT, KDE, and MCS inter-

action matrices. KDE and MCS data are used to calculate evolution-based components of

the docking force field, whereas the PRT matrix is used to calculate physics-based poten-

tials. The time spent on computing the remaining operations is measured using a modified
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Figure 2.9: Performance scaling of docking kernels with different numbers of system repli-
cas. Benchmarking calculations are performed using (A) multi-core CPU, (B) Xeon Phi,
and (C) GPU. The width of horizontal lines is 20 replicas for a dual 10-core CPU, 240 for
a 60-core Xeon Phi with 4-way multi-threading, and 14 for a 14-multiprocessor GPU.

kernel, in which PRT, KDE, and MCS calculations are disabled. Figure 2.10 shows time

contributions from these four components. Computing PRT contributes to 64.4%, 60.4%,

and 32.1% of the total execution time on CPU, Xeon Phi, and GPU, respectively (Figures

2.10A-C). The percentage of the kernel time for KDE is 33.9% on CPU, 28.2% on Xeon

Phi, and 46.3% on GPU (Figures 2.10D-F), whereas for MCS, it is 2.7% on CPU, 5.1%

on Xeon Phi, and 10.4% on GPU (Figures 2.10G-I). The remaining operations make up

about 10% of the total kernel time on Xeon Phi and GPU. In contrast, these computations

require almost no time on CPU because the sophisticated processor cores handle sequen-

tial workloads (e.g., updating ligand coordinates, generating random numbers, calculating

Metropolis acceptance criterion, etc.) as efficiently as highly parallel workloads. Further,

the CPU code has no data transfer between the host and the accelerator, which is required

only for Xeon Phi and GPU.

Next, I analyze the correlation between the computing time and the static data size.

In addition to the original docking code, I examine the performance impact of dynamic

branches by forcing the calculation of all operations; this modified implementation is re-

ferred to as a “regulated” code. Figure 2.11 shows the correlation between the execution

time and the data size for the original program in blue and the regulated code in red.

Figures 2.11A-F demonstrate that the time required to calculate the PRT (KDE) matrix
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strongly correlates with its size; the coefficient of determination, R2, for the original code

shown in blue is 0.996 (0.938) for CPU, 0.996 (0.987) for Xeon Phi, and 0.952 (0.981) for

GPU. This correlation is somewhat weaker for the MCS matrix with the R2 of 0.957, 0.720

and 0.793 for CPU, Xeon Phi and GPU, respectively. Forcing the execution of the entire

code by eliminating dynamic branches has two major effects on the kernel performance.

First, it improves the correlation between the computing time and the data size, for in-

stance, the R2 for the KDE matrix shown in red in Figures 2.11D-F is 0.999 for CPU and

Xeon Phi, and 0.983 for GPU. Second, the regulated code is slower, however, the relative

increase of the execution time is clearly architecture-dependent. In general, CPU skips exe-

cuting most of the instructions downstream of branches because their conditional outcome

can be accurately predicted, which yields a better performance (Figures 2.11A and 2.11D).

The performance of GPU (Figures 2.11C and 2.11F) is unaffected by branches indicating

that this accelerator always performs the predicated execution. Interestingly, the branch

behavior of Xeon Phi falls between CPU and GPU. For the PRT matrix (Figure 2.11B),

Xeon Phi performs the predicated execution similar to GPU, whereas the branch prediction

clearly helps reduce the execution time on Xeon Phi for the KDE matrix when the KDE

elements are sorted (Figure 2.11E). Nonetheless, the performance improvement for Xeon

Phi is not as large as that for CPU because its computing cores are simpler and the wider

SIMD vectors are generally less suitable for irregular data.

The original code improves the performance of computing PRT and KDE, however,

it negatively impacts the calculation of the MCS. This effect can be attributed to the

irregularity and shape of the MCS data structure containing a dense ligandColumnVector,

but a sparse MCSMatrix. Note that since proteinColumnVector (Figures 2.11A-C) and

KDEColumnVector (Figures 2.11D-F) data structures are 1D arrays, there is a branch

pattern between different elements, which can be further improved by data sorting. This

pattern is lost in the sparse MCSMatrix × ligandColumnV ector causing a significant

branch prediction penalty and longer execution times for CPU and Xeon Phi (Figures 2.11G
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and 2.11H). On the GPU platform, I analyzed two versions of the generated Streaming

ASSembly (SASS) code. The original SASS code always performs predicated execution,

while the regulated SASS code uses non-predicated instructions without testing branch

conditions. For that reason, the regulated docking code performs better for the irregular

MCS data.

As mentioned above, the correlation between the computing time and the size of the

MCS matrix also tends to be weaker than that for PRT and KDE matrices. For instance,

the R2 for the original (regulated) code shown in blue (red) in Figures 2.11G-I is 0.957

(0.946) for CPU, 0.720 (0.744) for Xeon Phi, and 0.793 (0.749) for GPU. This effect can be

explained by the fact that the MCS data matrix is limited by the number of ligand atoms,

which is between 6 and 62 for the CCDC/Astex dataset (Figure 2.6B). Consequently, the

MCS matrix is not wide enough to efficiently utilize vector lanes on CPU (8 elements) and

on Xeon Phi (16 elements) as well as the x-dimension of 2D CUDA thread blocks on GPU

(32 elements); see Table 2. Consider a ratio of the data size and the number of cycles

(Equation 2.2, 2.3:

ratio =
data sizex
cycles

(2.2)

with the number of cycles required to traverse the x-dimension of the MCS matrix

given by:

cycles = ceiling

(
data sizex

vector widthx

)
(2.3)

For PRT and KDE matrices, whose data size is much larger than the vector width,

the ratio in Equation 2 is close to the vector width yielding a strong linear correlation

between the computing time and data size. In contrast, performance fluctuations caused

by idle cycles created by the underutilized vector lanes (Equation 2.3) slightly decrease the

correlation for the MCS matrix.
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2.4.4 COMPARATIVE BENCHMARKS OF HETEROGENEOUS

PROCESSORS

Finally, I perform comparative benchmarks of all computing platforms listed in Table

3 using the 1a07 target protein and the dataset of 204 CCDC/Astex ligands. In these

simulations, I use the original GeauxDock code and the real data with respect to the

number of protein and ligand conformations. Timing reports include the total execution

time of the docking kernel for 204 tasks and the simulation wall time averaged over 8

independent docking runs for each task. GeauxDock is specifically designed for virtual

screening applications, therefore, it reads the target protein input data only once for a

given set of docking ligands. Indeed, GeauxDock spends from 95.4% (GeForce GTX 980)

to 99.7% (Xeon E5-2680 v2) of the total time executing docking kernels, while loading and

pre-processing input data take only about 10 seconds on average (Table 5). The reference

time required to complete docking calculations for the entire dataset is 61.31 minutes

using a multi-threaded CPU version running on Core i7-2600 multi-core CPU (platform

D1, Table 3). Figure 2.12 shows that high-performance servers and hardware accelerators

yield significant speedups over a mainstream PC desktop. GeForce GTX 980 is the fastest

computing device in our tests, which achieves a 12.6 × speedup and dramatically reduces

the wall time to only 4.84 minutes. Xeon Phi gives a a 6.8 × speedup corresponding to

the wall time of 9.00 minutes, whereas the performance of a single Tesla K20Xm card with

11.14 minutes of wall time is about 23% worse than Xeon Phi. It is noteworthy that I

obtained almost a perfect scaling on multiple GPU cards; using a pair of K20Xm GPUs

increases the performance by 98%, compared with a single K20Xm GPU. A dual Xeon

E5-2680 CPU needs 16.99 minutes to complete docking calculations, which is about 3.6 ×

faster than the baseline i7-2600 CPU running at a higher clock rate.

One should keep in mind that not only the theoretical peak performance, but also

the cost and the energy consumption vary greatly for the testing platforms, particularly

between consumer and server grade hardware (Table 5). For instance, a single Core i7
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2600 is 12 × less expensive and requires 59% less energy than a dual Xeon E5-2680 CPU,

whereas GeForce GTX 980 is more than 5 requires 27% less energy than Tesla K20Xm.

For that reason, in addition to evaluating a pure computational performance, I analyze the

performance with respect to the energy consumption and hardware cost. GeForce GTX 980

systematically outperforms other computing platforms, for example, it gives a benefit of 6.5

× per dollar and 7.3× per watt compared to the reference D1 platform (Figure 2.12). This

remarkable performance results from mapping massively parallel computations and data

structure to the GPU architecture. According to vendor specifications, GeForce GTX 980

has a higher core utilization and better energy efficiency than the previous generation Tesla

K20Xm. Its streaming multiprocessors have two-thirds of the number of scalar processors

of Tesla K20Xm, yet the number of registers and the shared memory size are the same.

Therefore, extra efforts were devoted to tune the CUDA docking kernel in order to take

advantage of the abundant resources per scalar processor on GeForce GTX 980. The

performance per dollar of K20Xm GPU is comparable to a server grade Xeon E5-2680 CPU

and Xeon Phi 7120P, but it is 2 × lower than a consumer grade Core i7 processor. Due to

advances in the semiconductor technology constantly improving the energy efficiency, the

performance per watt of a server grade hardware (Xeon E5 CPU, Xeon Phi and K20Xm)

is about twice as high as that for an inexpensive, yet two years older Core i7 processor.

2.4.5 CASE STUDY

To demonstrate how GeauxDock samples the conformational space when searching

for native conformations, in Figure 2.13, I present docking trajectories for several rep-

resentative examples. In addition to the target complex 1a07 used in the profiling and

benchmarking of parallel GeauxDock, I performed docking simulations of glutathione to

glutathione S-transferase (PDB-ID: 1aqw) [71], and a non-peptidyl, active site-directed

inhibitor LY178550 to human-thrombin (PDB-ID: 1d4p) [72]. Docking ligands were ini-

tialized at random orientations within target binding pockets to mimic a real application,
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where the native conformations are unknown. Solid lines in Figure 2.13A show the trajec-

tories of the pseudo-energy E1, E2 and E3 for 1a07, 1aqw and 1d4p, respectively. In all

cases, the MMC sampling reached low-energy states with the fastest convergence for E3.

On the other hand, pseudo-energy variations for E1 and E2 are smaller compared to E3,

suggesting that the underlying energy surfaces for 1aqw and 1d4p are smoother.

In general, the convergence of molecular docking simulations is complicated by the

fact that a large fraction of the search space may be sterically forbidden [54] and sophis-

ticated scoring functions are often too sensitive to conformational changes in the binding

regions [73]. To further investigate docking trajectories, I calculated the Contact Mode

Score (CMS) for each accepted MMC step during the docking process of 1a07. CMS is a

contact-based measure to assess the native-likeness of ligand binding poses, ranging from

1 for the exact native conformation down to about 0 for random configurations [60]. En-

couragingly, the dashed black line in Figure 2.13A shows that the CMS increased as the

pseudo-energy decreased owing to the fact that both quantities are strongly inversely cor-

related (Figure 2.13B). Altogether, these results demonstrate that the scoring function in

GeauxDock effectively drives docking simulations toward native-like conformations.
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Figure 2.10: Time breakdowns for docking kernels running on different platforms. Kernel
implementations for (A, D, G) multi-core CPU, (B, E, H) Xeon Phi, and (C, F, I) GPU are
tested. Three major operations compute the following interaction matrices: proteinColum-
nVector × ligandRowVector (PRT, green), KDEColumnVector × ligandRowVector (KDE,
red), and MCSMatrix × ligandColumnVector (MCS, blue). Purple areas correspond to the
remaining operations. KDE (Kernel Density Estimation) and MCS (Maximum Common
Substructure) points are used to calculate evolution-based components of the docking force
field, whereas the PRT matrix is used to calculate the majority of physics-based potentials.
Results collected for the dataset of 204 CCDC/Astex compounds are sorted on the x-axis
with respect to increasing time of computing (A, B, C) PRT, (D, E, F) KDE, and (G, H,
I) MCS matrices.
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Figure 2.11: Correlation between computing time and static data size. Blue points are
collected from original GeauxDock, whereas red points correspond to a modified docking
code, where dynamic branches are turned off forcing the execution of all instructions. Three
major operations compute (A-C) proteinColumnVector × ligandRowVector (PRT), (D-F)
KDEColumnVector × ligandRowVector (KDE), and (G-I) MCSMatrix × ligandColumn-
Vector (MCS) matrices. Three kernel implementations are tested for (A, D, G) multi-core
CPU, (B, E, H) Xeon Phi, and (C, F, I) GPU.
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Figure 2.12: Benchmarks of GeauxDock against the dataset of 204 CCDC/Astex com-
pounds using 6 platforms. Three measures are included, a pure computational performance,
the performance divided by the energy consumption, and the performance divided by the
hardware cost. Measurements for different platforms are normalized by the performance of
Core i7-2600 CPU.

Figure 2.13: Examples of docking calculations using GeauxDock. Three cases are pre-
sented, a peptide ligand and C-src tyrosine kinase (PDB-ID: 1a07, black), glutathione and
glutathione S-transferase (PDB-ID: 1aqw, green), as well as LY178550 and human-thrombin
(PDB-ID: 1d4p, red). (A) Solid lines show the pseudo-energy plotted as a function of the
accepted Metropolis Monte Carlo (MMC) step; a trajectory of the Contact Mode Score
(CMS) is plotted for 1a07 (dashed black line). (B) Scatter plot of the CMS and pseudo-
energy for 1a07.
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Chapter 3
Performance Modeling

Heterogeneous processors perform differently on different data input data. Take Geaux-

Dock computing Astex data set as an example. For this case, a Dual socket Xeon E5 CPU

is generally the slowest. A Tesla K20Xm GPU offers 1.3 × speed-up on average, and a

Xeon Phi 7120P yields 1.9× improvement on average (Figure 2.12). However, the average

speedups on a bunch of tasks do not reliably reflect the speedup on a particular individual

task due to the significant fluctuations. Figure 3.1 shows that each of the three kinds of

processors could perform significantly better or worse depends on different inputs.

Figure 3.1: Distribution of relative performance of GeauxDock for the dataset of 204
CCDC/Astex compounds. Three kernel implementations are tested for multi-core CPU,
Xeon Phi and GPU. Relative performance between there three platfroms are plotted. (A)
Xeon Phi vs. multi-core CPU, (B) Xeon Phi vs. GPU, and (C) GPU vs. CPU

Understanding such performance trends helps utilize heterogeneous processors. With

performance prediction, it will be possible for an optimizing scheduler to match tasks to

processors in a heterogeneous system so that strength and weakness of different processors

can be leveraged. In this chapter of my thesis, I will be using regression models to achieve

this goal. Precise time consumption of a given task will be predicted before running.
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3.1 COARSE GRAINED MODEL

In section 2.4, I study some performance characteristics of Geauxdock by running

it with synthetic input data. I use a single conformation and replicated it n times to

strictly control the number of replicas in the docking simulation. Figure 3.3A-C shows

the performance versus the number of replicas on a multi-core CPU, Xeon Phi and GPU,

respectively. It reflects the resource utilization. Utilizations are very high when the number

of replicas is a multiple of 20, 240 and 14, respectively, for each of three platforms, CPU,

Xeon Phi and GPU. Otherwise, on the CPU (Figure 3.3A) and GPU (Figure 3.3C), one

suffers linear performance drop. Xeon Phi co-processor follow this overall trend, but the

performance is higher when the utilization is really low (Figure 3.3B). This is attributed

to resource contention as I had explained in Section 2.4.2.

The performance pattern in Figure 3.3 can be viewed from another angle, where the

Y-axis (Figure 3.2) represents per-complex computing. This representation shows a better

understandable and predictable pattern. CPU and GPU time patterns in Figure 3.2A,C

are sets of horizontal lines. The pattern for Xeon Phi (Figure 3.2B) is slightly irregular,

but is still predictable.

Figure 3.2: Coarse gained performance scaling, with computing time as the Y axis.

Comparing Figure 3.3 and Figure 3.2, the former has many flat lines. More importantly,

the values are non-decreasing. Thus the pattern in Figure 3.3 is mathematically simpler,

and could be something that a machine learning algorithm can learn with higher confidence,
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Figure 3.3: Coarse gained performance scaling, with computing time divided by the number
of complexes as the Y axis.

and I will be trying to predict this pattern. The problem of performance prediction is

defined as follows.

Figure 3.4: Defining the performance prediction problem on the coarse level

Giving a data point E ∈ R2, the value on the X axis is defined as Ex and is available.

The value on the Y axis, denoted as Ey, is to be resolved. Here Ex represents the number of

complexes and Ey represents the execution time. To make this prediction useful, I define a
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reference point C, which is the right end of the cyclic pattern in Figure 3.4. The processor

is underutilized at point E and fully utilized at point C. In other words, at point C, the

processor is on the highest efficiency. The performance at data point C can be learned

using linear regression, which I will discuss in Section 3.2. To calculate the performance

at data point C, The coefficient Eeff is defined in Equation 3.1 to describe the execution

efficiency on data point E as follows:

Eeff =

Eworkload

Etime

Cworkload

Ctime

=
Ex

Cx

× Cy

Ey

. (3.1)

It is easy to calculate Eeff for CPUs and GPUs, considering the regular patterns in

Figure 3.2 A,C. Ey and Cy should be is equal all the time. In the meantime, the relationship

of Ex and Cx can be expressed using modulo operators. The mathematical expression is

shown in Equation 3.2

n = 20(onCPU), or14(onGPU)

Cx = Ex( mod n)× n

Cy ≡ Ey

Eeff =
Ex

Cx

× Cy

Ey

=
Ex

Ex( mod n)× n

(3.2)

To resolve the performance pattern for Xeon Phi, (Figure 3.2 B), isotonic regression

(IR) is used. IR fits a non-decreasing function to data. It corresponds to the following

quadratic programming (QP) problem (Equation 3.3), where x ∈ Rn, and a ∈ Rn is the vec-

tor to be fitted. I carried out experiments using sklearn.isotonic.IsotonicRegression

provided in the Python scikit-learn package. The training data set (a ∈ Rn) is the set of

960 samples for replicated synthetic data (Figure 3.2B). The testing data set is the unmod-

ified 204 data samples presented in Section 2.4.4. Figure 3.5 demonstrates that isotonic

44



regression captures the pattern well. The training error is small, since the prediction (green

points) closely follow the trend of the input data (red points). The test data (blue points)

reflect the patterns of the training data. As these points generally overlap, it demonstrates

that the isotonic regression algorithm works well for predicting the performance on Xeon

Phi.

min
n∑

i=1

wi(xi − ai)2

subject to xi ≥ xj for all (i, j) ∈ E

(3.3)

Figure 3.5: Using isotonic regression to fit the Xeon Phi performance patterns.
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Cx = Ex( mod n)× n

Cy = IsoRegressor(Cx)

Ey = IsoRegressor(Ex)

Eeff =
Ex

Cx

× Cy

Ey

=
Ex

Ex( mod n)× n
× IsoRegressor(Ex( mod n)× n)

IsoRegressor(Ex)

(3.4)

3.2 FINE GRAINED MODEL

In this section, I will be resolving the performance model on the fine grain level. To

simplify the analysis, I feed the machine learning model with data that always has sufficient

coarse grained parallelism, i.e., data points like A, B, C and D in Figure 3.4

To review the computation in Monte Carlo kernels, three matrices are computed in

the Monte Carlo kernel: proteinColumnV ector × ligandRowV ector (P ), KDEColumnV ector ×

ligandRowV ector (K), and MCSMatrix × ligandColumnV ector (M). All of the computations

are subject to fine-grained parallelization. In Section 2.4.3, I conduct measurements trying

to isolate the computation time for P , K and M . The corresponding time is denoted as

TP , TK , TM . I also calculate the remaining time TR = Twalltime − TP − TK − TM Figure

2.11 shows that TP , TK and TM positively correlate with the size of the matrix. Though

the matrix is sparse, and I have not considered the valid data points or the data pattern,

the data presents a fairly strong linear model. The R2 for the unmodified P (K,M) code

shown in blue in Figure 2.11G-I is 0.996(0.938,0.957) for CPU, 0.996(0.987,0.720) for Xeon

phi, and 0.952(0.981,0.792) for GPU. It is useful to fit the execution time with the matrix

size using linear models. However, the matrix size can be regulated using architectural

features, and therefore improve the linear correlation.

The performance of computing P on GPU (Figure2.11C) shows a pattern similar to

what I have observed in coarse grained parallel performance scaling pattern (Figure 3.3).

It implies that GPU’s fine grained parallel execution resource is not always fully occupied.
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Since I implement parallel execution on both the row axis and column axis of the matrix, the

actual computation cycle should be regulated by the amount of parallelism in the execution

(Equations 2.2 and 2.3) Also, compiler loop transformations such as loop unrolling could

reduce the execution cycles on vector processors. To consider these facts, I am trying to

fit the data with different vector length on both X and Y axes. (size′ in Equation 3.5).

sizex′ = sizex ( mod tilex)

sizey′ = sizey ( mod tiley)

size′ = sizex′ × sizey′

(3.5)

To demonstrate how the parameter tilex and tiley affect the expected linear pattern of

computing time versus tile size, I regulated the GPU performance measurements (Figure

2.11C,F,I). The results are visualized using the scatter plot in Figures 3.6, 3.7 and 3.8.

These figures demonstrate that some patterns result in stronger linear correlations.

Then, using heat map to plot the R2 score versus different tile size, the quantified

scores of linear correlation is shown in Figures 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16,

and 3.17. For the task of P matrix computing (Figures 3.9, 3.10, and 3.11), the tiling

effect is insignificant. GPU tiley shows a better score at size 8, which agrees with the GPU

thread level parallelism on the Y axis. The K matrix heat maps (Figures 3.12, 3.13, and

3.14) are more interesting. The best shape of GPU tile is 128 × 8, perfectly matching the

shape of GPU thread. For CPU and Xeon Phi, the optimal tile shapes are both 64 × 4.

This implies the compiler may have adopted the same loop transfers for folding both the

x and y dimensions of the matrix, and generated vectored code. The M matrix heat map

(Figures 3.15, 3.16, and 3.17) show the optimal value for tilex is 64 for all processors. This

is because the size of x dimension is indeed smaller than 64. The code is also successfully

vectorized, so any of the heterogeneous processors could compute a row in a cycle. There

is no distinguished value for tiley. Any value range form 1 to 32 is equally good. Finally
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Figure 3.6: The patterns of GPU performance on P matrix versus different tile sizes

the best tile sizes are concluded in Table 3.1

CPU tilex CPU tiley Phi tilex Phi tiley GPU tilex GPU tiley
PRT 1 1 1 1 1 8
KDE 64 4 64 4 128 8
MCS 64 1 64 1 64 1

Table 3.1: Optimal values of tiley and tilex, that minimize R2 for the linear fitting.

It is encouraging to use a general linear regression model (Equation 3.6) to resolve the

compute time of a data point C, denoted as Cy. (see Figure 3.4). This data point has

sufficient coarse grained replicas (Section 3.1). The values sizeP ′, sizeK ′ and sizeM ′ are

the regulated data sizes (Equation 3.5) using the optimal tile parameters (Table 3.1). The

data is trained using 3 fold cross-validation. Table 3.2 shows the R2 across three processor.

The quality of fitting is improved after applying the tiling regulation. The GPU platform

shows the most significant improvement because it offers the highest amount of fine grained

parallelism. The fitted parameters are listed in Table 3.3
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Figure 3.7: The patterns of GPU performance on K matrix versus different tile sizes

Cy = w1 × sizeP ′+ w2 × sizeK ′+ w3 × sizeM ′+ c (3.6)

CPU Xeon Phi GPU
without using regulation 0.9638 0.9763 0.9163
with optimal regulation 0.9691 0.9817 0.9660

Table 3.2: Comparing the general liner regression fitting score R2 before and after applying
the tiling regulation.

w1 w2 w3 c
CPU 0.000764 0.01249 -0.000956 -0.481161
Xeon Phi 0.000239 0.001799 0.0018422 0.257347
GPU 0.001331 0.015900 0.010910 1.026985

Table 3.3: Fitted parameters of the general linear regression model (Equation 3.6)
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Figure 3.8: The patterns of GPU performance on M matrix versus different tile sizes

Figure 3.9: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis) Com-
puting P matrix on CPU.

3.3 RESULTS

Now I combine the coarse grained performance model (Section 3.1) with the fine grained

performance model (Section 3.2). Specifically, the linear model (Equation 3.6) predicts the

computing time Cy for data set with sufficient coarse-grained parallelism. This data point
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Figure 3.10: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing P matrix on MIC.

Figure 3.11: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing P matrix on GPU.

Figure 3.12: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing K matrix on CPU.

refers to the rightmost point (C for example) of one of the horizontal bars in Figure 3.4.

The coarse grained model (Equation 3.2 or 3.3) provides the slow down coefficient Eeff ,
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Figure 3.13: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing K matrix on MIC.

Figure 3.14: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing K matrix on GPU.

Figure 3.15: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing M matrix on CPU.
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Figure 3.16: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing M matrix on MIC.

Figure 3.17: Visualizing the R2 scores under different tilex (x-axis) and tiley (y-axis)
Computing M matrix on GPU.

for data point E, where E may not have sufficient coarse grained parallelism as data point

C. The compute time Ey is available using Equation 3.7

Ey =
Cy

Eeff
(3.7)

Using Equation 3.7, the performance prediction results from coarse grained performance

model (Section 3.1) and fine grained performance model (Section 3.2) are combined. The
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predicted valued is compared against the actual value. The R2 core is shown in Table 3.4

R2 CPU Xeon Phi GPU
0.974 0.994 0.980

Table 3.4: The R2 score of the comprehensive performance prediction

Figure 3.18: Correlation between the predicted and actual execution time for (A) multi-core
CPU, (B) Xeon Phi, and (C) GPU.

Figure 3.19: The histogram plots show the error of the execution time prediction versus
the actual value. The three sub-figures are for (A) multi-core CPU, (B) Xeon Phi, and (C)
GPU.
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Chapter 4
Task Scheduling

4.1 BACKGROUND

Scheduling is one of the essential aspects of achieving high levels of performance and

low energy consumption on heterogeneous systems. The case for efficient approaches to

scheduling a set of independent tasks on a set of heterogeneous worker processors is indeed a

common issue in high performance computing. The problem of independent task scheduling

is defined as the following optimization problem in Equation 4.1.

min
x

makespan = max
1≤i≤W

∑T
j=1(xij × tij)

s.t.
W∑
j=1

xij = 1 ∀x ∈ {0, 1}W×T
(4.1)

A pool of T independent tasks is scheduled to run on W worker processors. The

execution time of assigning task i to worker j is tij. An assignment is label by xij = 1 in

the binary matrix X ∈ {0, 1}W×T . If xij is 0, it means task i was not assigned to worker

j. The execution time of worker j is
∑T

j=1(xij × tij). The makespan is defined as the

maximum execution time among all workers, and should be minimized.

Scheduling problems can be classified by the properties of the task and the properties

of the workers. The simplest case of homogeneous tasks for homogeneous worker scheduling

has been discussed in few classic algorithms. List scheduling assigns the task to the ma-

chine whose load is the lowest. Scheduling with the Longest Processing Time rule (LPT)

sorts the tasks in decreasing order of execution time before the assignment and effectively

improves load balancing. Work stealing [74] allows migrating workload between workers

when starvation occurs. Projects implementing homogeneous scheduling includes the Cilk

[75] parallel programming language for CPUs. StarSs [10] is a library and runtime system

that partitions a large computational workload for multiple symmetric computational re-
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sources. Multiple CPUs, GPUs, and Sony’s Cell co-processors are supported, but not all

at the same time.

The seconds important problem is that of scheduling homogeneous tasks onto hetero-

geneous workers and must account for the differences between workers. Since an average

performance metric can reliably represent performance patterns, from the efficiency point

of view, it does not matter whether a processor chooses one task over another. There-

fore, scheduling algorithms for this problem focus on deriving more workload-balanced (or,

balanced) partitions. Examples of this model include StarPU [11]. A queue of tasks are

assigned to CPUs and GPUs from both end of the queue. Anthill [12] implements similar

features using queues and events.

Scheduling for heterogeneous tasks onto a set of heterogeneous workers has received

attention in the distributed computing research community. Various algorithms have been

proposed in this area. Linear programming (LP) [76] give precise optimal solution on small

size input data, but rarely scales to more than 20 tasks. Search algorithms explore the

solution space, trying all values of all parameters. Branch-and Bound search (BB) [77]

terminates the search when it concludes that the currently explored path is sub-optimal.

The performance of BB is still too slow for realistic large data sets. Monte Carlo Simulated

Annealing (SA) and Genetic Algorithms (GA) are used to randomly sample the solution

space. Tabu Search [78] and A* [79] are similar iterative search algorithms.

Several heuristics have been proposed in the literature to offer lower cost scheduling

solutions. Opportunistic Load Balancing (OLB) assigns tasks in arbitrary order to the next

available machine. This is essentially list scheduling and does not consider either the task

heterogeneity or the worker heterogeneity. Minimum execution time (MET), also known as

Limited Best Assignment (LBA) or User Directed Assignment(UDA), assigns tasks to the

fastest machine regardless of the machine’s availability. Minimal Completion Time (MCT)

assigns tasks to machine with the minimum expected completion time (CT). By definition,

the completion time is the summation of the execution time and the queueing time. MET

56



and MCT concentrate on two aspects of the scheduling problem: efficiency matching and

load balancing. Efficiency matching means a task is mapped to the fastest machine. Load

balancing means minimizing the machine idle time. MET and MCT algorithms stand on

opposite sides of the optimization goal. Switching algorithm [80] combines both MET and

MCT, and makes the switch between them periodically. Min-min [81] heuristic uses MCT

as the performance metric. It gives high priority to the task that can be completed at the

earliest. This heuristics begin with the pool of unmapped tasks. Before issuing a new task,

it scans through the task pool and compute the MCTs of tasks in the pool. The task with

the lowest CT is assigned to the corresponding worker. This procedure repeats until the

task pool is empty. Max-min [81] heuristic is very similar to Min-min and the metric used

is also MCT. It also searches all waiting takes for the minimal CT. However, the task with

the highest score is selected. Suffrage [82] heuristic also scans all candidate tasks in the

pool before assigning a new task. Its scoring function is the suffrage value, which is defined

as the difference between the best CT and the second best CT. The intuition is that a

larger suffrage value implies a higher relative performance.

A survey paper [83] concludes that OLB, MET, Max-min, SA, and Tabu Search do not

produce good schedules in general. Min-min, GA, and A* are good, however, the differences

are usually within 5%. A* produces better or worse results than Min-min for different cases.

The GA implementation is seeded with the results from Min-min, thus is always slightly

better than Min-min. The drawback of GA is the speed. In their experiments, scheduling

512 tasks on 16 works requires 1 second computation time using Min-min, 100 seconds

using GA, and 1,200 seconds using A*.

Most of the previously proposed heuristic algorithms, with the exception of OLB and

work sealing, decouple the scheduling and execution aspects. The schedule table is com-

puted ahead of the execution of the tasks. The runtime system strictly follows the arrange-

ment in the scheduling table, and cannot apply any modifications. This implies that the

execution times of tasks must be perfectly predicted. Otherwise, the schedule might be
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sub-optimal. The complexities of the existing heuristic algorithms are still very high. The

Min-min, Max-min and Suffrage algorithm fall into the category of the two-round search

paradigm. To schedule a pool of T tasks on W workers, every newly issued task requires

the scheduler to scan through the entire combination, which has the complexity of O(WT ).

The complexity of the whole schedule is O(WT 2). The two-round search algorithms will

be too slow when the number of tasks is huge.

4.2 RANKEDOPPORTUNISTIC BALANCING (ROB)

One important component of my algorithm is Ranked Opportunistic Balancing (ROB).

This scheduling happens in a self-organized manner [84]. Both the work sharing model

and the competition method are deployed. The worker actively fetches a new task when

it becomes free. The newly fetched task must be suitable for the worker, and least little

computation effort. I utilize the static queueing method for this. The tasks are sorted by

the performance suitability scores. The exact scoring function and ranking method will be

discussed in Section 4.4. The queue is implemented with linked list data structure (Figure

4.1A). Each node in the list represents a task. At the head of the list is the task with

the highest score. When the head node is removed, the next node with the second highest

score becomes the new head of the list. Different from traditional linked list data structure,

where a node has only one previous pointer and one next pointer, the ROB linked list could

hold multiple chains. Figure 4.1A demonstrates a set of tasks A, B, C and D are arranged

in two linked lists. This can also be viewed in Figure 4.1B, where the tasks are organized

as two queues. Each heterogeneous worker watches only the head node of its associated

task queue(s). The run time complexity is of this scheme is extremely low.

One important issue in truly dynamic scheduling is the requirement of maintaining a

synchronized global status. When a task is fetched by a worker, another worker must be

able to see that this task is no longer available. This is implemented using a centralized

master server, which maintains the status of the task queues. The workers send request
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Figure 4.1: Arranging tasks in priority queues in the ROB algorithm.

messages to the server, and receive response messages which contain task information. In

practice, the overhead of sending and receiving messages is low. For the typical scenarios

where a task lasts for a few hundred milliseconds, the centralized management protocol

will never become the performance bottleneck.

4.3 MULTI-SUBJECT RANKING (MR)

The scoring functions of the popular Min-min and Suffrage algorithms are also prob-

lematic. Min-min algorithm searches for a task that delivers the minimal CT. This intuition

is trying to balance the CT at every step. A smaller CT does not reliably reflect the perfor-

mance suitability. Suffrage algorithm tries to calculate the relative performance. However,

the absolute difference between CTs is not an ideal metric.

Therefore, I propose Multi-subject Ranking (MR) heuristics to calculate the scoring

function. The fundamental idea is based on the ratio between two ETs. (Equation 4.2)

Sij =
ETi
ETj

(4.2)

In the multiple worker heterogeneous environment, however, it is not straight forward

to find a pair of data for fair comparison. For example if there were 3 heterogeneous

workers, the ETs of the jobs are a set of triples. To calculate the performance suitability
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score for worker 1, should we adopt ET2

ET1
or ET3

ET1
? One solution is to use a synthetic value

as the baseline. The choices include: (1) ETmin: minimal value of the task’s ETs, (2)

ETmax: maximum value of the task’s ETs, or (3) ETavg: average value of the task’s ETs.

Therefore, there are 3 variation of MR heuristics. (Equations 4.3)

MRmin heuristic : Si =
ETmin

ETi

MRmax heuristic : Si =
ETmax

ETi

MRavg heuristic : Si =
ETavg
ETi

(4.3)

4.4 MULTI-SUBJECT RELATIVE RANKING (MRR)

Intuitively, MRmin and MRmax heuristics do not seem to be fair. For example, the

score of worker 1 executing task A is SA = ET2

ET1
, and the score of worker 1 executing task

B is SB = ET3

ET1
. If SA > SB, can we conclude that task A is surely a better match? Is

is really fair when A and B are compared against two references. To resolve this issue,

I propose Multi-subject Relative Ranking (MRR). MRR is a relative scoring system. Let

there be w types of heterogeneous workers. One worker holds a vector of w − 1 scores.

Each score is calculated (see Equation 4.2) by comparing this performance of this worker

with another worker. Because every task now has w× (w− 1) scores, the tasks are ranked

into w × (w − 1) queues. Each queue gives the fair order of the comparing the relative

fitness between two workers. Now every worker will need to watch w − 1 priority queues,

and thus has w−1 tasks candidates. Which one should it choose? To answer this question,

I propose 4 heuristics.

MRR heuristic 1: longest time heuristic: The candidate with the longest execution

time wins. This is for the promotion of larger tasks.

MRR heuristic 2: highest local rank heuristic: I call the (w−1) lists the local queue.

Each local queue tries to promote a candidate, which also has ranks in other local queues.
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The summation of all the ranks in the local queues defines the overall fitness, and the task

with the largest of these values is selected. As illustrated in Figure 4.2, worker B has three

candidates in colors blue, green and red. In the scope of three local queues (BA, BC , and

BD), the red task has the overall lowest rank. Thus worker B should select the red task.

Figure 4.2: MRR heuristic 2: the node in red color hold the highest overall local rank, and
is therefore selected.

MRR heuristic 3: lowest remote rank heuristic: If the task is suitable for only one

type of worker, it should be unsuitable for the others. The design is demonstrated in Figure

4.3. The system has 4 workers A, B, C and D. Worker B is now ready to choose a task from

candidates in color blue, green and red. There candidates hold the highest performance

matching score for B versus A, B versus C, and B versus D. To evaluate the fitness of the

blue task on worker A, we look into A’s local queue. Based on the intuition that the highest

rank in A’s local queue may determine how soon the blue task is going to start executing

on worker A, we choose the highest as the fitness score.

Similarly, the remote fitness score of the green task and red task are calculated from

C’s local queue and D’s local queue. In this example, the red task has the lowest remote

fitness score. This implies the red task is the most unsuitable for other workers, and is

therefore selected.

MRR heuristic 4: improved lowest remote rank heuristic:

The MRR heuristic 3 can be slightly improved from more precisely calculating the

remote fitness scores. In Figure 4.3, worker A has three local queues, the blue task places
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Figure 4.3: MRR heuristic 3 and 4: the node in red color holds the lowest remote rank,
and is therefore selected.

the highest on queue Ab. If the task were consumed by worker A, the queueing time is in

proportion to the rank on queue Ab. Previously, only the rank is used to derive the score.

To improve the precision of the model, I have added the throughput metric. The scoring

function is the rank divided by the historic throughput of the queue. A smaller score means

a higher suitability. Everything else in this heuristics remains the same with MRR heuristic

3. Again, the most remotely unsuitable task should be selected. The historic throughput

can be implemented and measured using counters.

The MRR heuristics are quite moderate in terms of complexity. Let the number of

tasks be T . There are w types of heterogeneous worker, and total number of worker is W .

T is huge in real world scenarios. W could be large, however, w is typically small. The

computational complexity can be split into data preparation time and scheduling run time.

For data preparation, creating the task queue is O(T logT ). Preparing all tasks queues

demands the complexity of O(w2T logT ). At runtime, when the scheduler issues a task,

it compares w − 1 values on MRR heuristics 1 and 2, and w × (w − 1) values on MRR

heuristics 3 and 4. Thus, the execution time complexities are O(wT ) and O(w2T ), for these

two cases respectively. Because T is usually a large number, logT is much greater than 1.

The worst case complexity of MRR heuristics is O(w2T logT ). The MR heuristics are even

faster with the complexity of O(wTlogT ). In comparison, the complexity of two-round

searching paradigm is O(WT 2) (section 4.1).
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4.5 AUTOMATIC SMALL TASKS REARRANGING

(ASTR)

The MRR heuristic is designed for the sole purpose of optimizing the execution effi-

ciency. The load balancing is largely resolved by ROB. However, ROB is not sufficient

enough. If a few big tasks were scheduled in the end of the queue, load balancing may

become an issue. Inspired by LPT homogeneous scheduling algorithm, in addition to the

ROB and MR/MRR algorithms, I decided to a few small tasks onto the end of the task

queues. Since this procedure is automatic, I call it the Automatic Small Tasks Rearranging

(ASTR) heuristic.

The size of a task is defined by its maximum ET. If the size is below a threshold, I

consider it “small.” I first sort in decreasing order the task pool by the size. Then the task

pool is partitioned into two pieces: large task pool and small task pool. The large pool

must be consumed before the scheduler starts to issue tasks from the small task pool. The

scheduling algorithm for both pools is ROB + MR/MRR.

Finding the optimal partition is a challenge. If the small task pool does not hold

enough tasks, it may not resolve the load balancing issue. On the other hand, too much

rearrangement degrades the ranking quality. The relationship of the scheduling quality -

the makespan and rearrangement ratio should be a “U” shape curve. Automatic iterative

tuning helps to find the minimal point on this curve. The algorithm is fast. First of all, the

design space is one dimensional. Second, for each point in the design space, the optimizer

calls ROB + MR/MRR algorithm to calculate the score, which has been proved to be very

fast (Section 4.4). An iterative tuning framework has been implemented. The auto-tuner

slightly increases the rearrangement ratio, and terminates the tuning in one of the following

situations: (1) No better solution was found for a given number of tries; (2) The upper

bound of rearranging ratio is reached.
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4.6 RESULTS

Some of the previously published algorithms were implemented, including OLB, MET,

MCT, Min-min, Max-min, Suffrage, BB search, SA Monte Carlo search and GA search.

The GA search is seeded with random values. The newly proposed heuristic algorithms,

ROB + MR/MRR + ASTR are also implemented. In addition, I implemented a Parallel

Tempering Monte Carlo (PT) search [63, 85]. PT has been proven to very useful in find

global minimal/maximal value in rough energy landscape. The simulation programs are

implemented in C++ without explicit parallelism. They are compiled using GCC 5.4.0

with -O2 flag, and run on a Linux X86-64 host with an Intel Xeon E3-1225 v5 CPU.

The simulation programs reads the following input files. (1) The realistic time table

file: It consists of a w× T metrics, and represents the actual computing time of running T

tasks on W different types of heterogeneous workers. (2) The predicted time table file: It is

similar to the realistic time table, but the values are slightly mismatched due to the errors on

performance predictions. (3) The worker number file: It contains a w width vector, where

each vector element represents the number of workers. I use three data sets to prepare the

time tables. The first data set is a 204× 3 matrix, which is collected from the experiments

of running CCDC/Astex dataset on GeauxDock with multicore CPU, GPU and Xeon Phi

2.4.4. The second data set is a 176787×3 matrix. This is collected from running EDUD [86]

data set on GeauxDock with the same platforms. The third data set is randomly generated

following the method of previous publications [87, 88, 83, 89]. The size of the time table

matrix is 512×16, representing the times of computing 512 jobs on 16 workers. The elements

of the matrices are randomly generated following the equation e = r1 × r2. Where r1 is

a common value across all columns in the same row. r1 = uniform rand(1, r1max). r2 is

an independent random number. r2 = uniform rand(1, r2max). The heterogeneities are

varied by changing the values of r1max and r2max. The values for the experiments are set

to be r1max equals 100 or 3000, r2max equals 10 or 1000. Hence, four different 512 × 16

matrices are created. For each matrix, there are three variations. The “random copy”
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keeps the data untouched. The “sorted copy” arranges every row so that the values are

incrementally sorted. The “partial-sorted copy” only incrementally sort even columns of

every row, and keeps the odd columns untouched.

In the first phase of the benchmarks, I will ignore the performance prediction issues.

The same matrix will be fed to the simulation program as both the estimated execution

time and the actual execution time.

I first conduct experiments to show the overall characteristics of the scheduler. The

simulation program reads the 204 × 3 time table and a machine vector “1, 1, 1.” This is

to simulate scheduling 204 tasks on 3 heterogeneous workers. The scheduling is visualized

in Figure 4.4. The x axis denotes time. The 3-bar sets represent the execution status on 3

workers. Each color block is a task. The figure shows 5 algorithms: MCT, Max-min, Min-

min, Suffrage, OLB + LPT, and my algorithm (ROB + MR/MRR + ASTR). For those

algorithms not included in this figure, MET suffers from severe load balancing issue, and

the makespan is about 2 × worse than the others. BB search cannot finish the computation

due to the scalability issue. SA search and PT search deliver very close results compared

with my algorithms. Among the five algorithms in this figure, OLB + LPT algorithms

is the simplest. It does not optimize for performance heterogeneity at all, but the load

balancing is perfectly handled. Small tasks are placed at the end, and the workers finish

executing at almost the same time. I consider OLB + LPT performance as the baseline.

Max-min algorithm tries to address the load balancing issue by selecting the largest task

in every step. While this objective has been achieved, however, the performance is even

worse than OLB + LPT. The results show Max-min is a false optimization for matching

heterogeneous tasks, and should be discarded. MCT scheduling dispatches the tasks in

sequence order, although it is better OLB + LPT, there are space to improve. The min-

min heuristic and suffrage heuristics show better results over MCT, but either made a good

load balance. Comparatively, Min-min is slightly better on the makespan, but the execution

efficiencies on each worker are certainly better than that of the suffrage algorithm. This
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suggests the suffrage’s effort of heterogeneous matching may be no better than Min-min.

Finally, my ROB + MRR + ASTR algorithm presents a significant advantage over Min-

min heuristic. The makespan is shorter. At the same time, the load balance is perfectly

addressed. My algorithm presents 13.82% improvement of OLB + LPT algorithm. and

5.92% improvement over Min-min algorithm.

Figure 4.4: The scheduling results of using different algorithms. The experiment is carried
on 204 tasks on 3 workers. Each of the three horizontal bar is the time slot of of a worker.
Each colored clock is a task.

The quality of scheduling results and characteristics of the algorithms are further stud-

66



ied. I use the same input data as the last experiment. There are 7 variations of heuristics

for the scoring: MRmin, MRmax, MRavg, MRR1, MRR2, MRR3, MRR4. For each varia-

tion, the ASTR optimization is turned both off and on. Since the results are close for all

algorithms, plot in linear scale cannot make distinguishments. The time for each worker,

and the makespan time is shown in Table 4.1. For those with ASTR optimizations, the time

of the workers are very close, so these data are eliminated for better clarity. The simulation

of SA and PT scheduling takes 10,000,000 Monte Carlo cycles, and about 20 minutes of

runtime. The results of SA and PT are almost identical, and are a significant leap over

Suffrage and Min-min algorithms. In deep, the performance of Suffrage and Min-min is

worse than any of the other algorithms. My algorithm is able to deliver competitive results.

Interestingly, the result of the ROB + MRR2 + ASTR scheduling is actually slightly better

than SA and PT. My algorithms performs strongly even without the ASTR optimization.

This implies the heterogeneous matching is handled really well. ASTR further optimize

the result. Comparing the 7 different heuristics of my new algorithms, MRmin, MRavg,

MRR2 and MRR4 lead a small gap over the other 4 heuristics. They are likely to be better

matching heuristics than others. MRR4 show better result than MRR3, and this implies

that the consideration of the work queue throughputs helps improve the scoring function.

Next I use the same 204 × 3 time table with the “10, 10, 10” a machine vector. This

simulates running 204 tasks on 30 workers. The average task per work is 6.8. The purpose

of this benchmarking is to observe the load balancing characteristics. Table 4.2 shows that

without ASTR, heuristic algorithms cannot match with the Monte Carlo search algorithms

when the number of tasks per workers is low. However, after the ASTR is added, the results

are really close. Precisely, the combination of ROB + MRavg + ASTR heuristics is 2.44%

close to the best result. Comparing two Monte Carlo search algorithms, SA delivers better

results than PT for this test case. Old heuristic algorithms suffrage and Min-min are indeed

worse than the baseline OLB + LPT due to severe load balancing issues. Interestingly, two
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Algorithms CPU queeu Xeon Phi equue GPU queue makespan
OLB + LPT 161.814 161.782 161.877 161.877
Suffrage 145.075 146.564 150.870 150.870
Min-min 137.131 148.055 150.645 150.645
SA 142.277 142.249 142.240 142.277
PT 142.273 142.290 142.291 142.291
ROB + MRmin 140.963 142.826 142.939 142.939
ROB + MRmin + ASTR 142.939
ROB + MRmax 144.361 144.375 144.376 144.693
ROB + MRmax + ASTR 144.376
ROB + MRavg 141.353 142.120 142.549 142.549
ROB + MRavg + ASTR 142.549
ROB + MRR1 143.965 144.693 143.682 144.693
ROB + MRR1 + ASTR 144.376
ROB + MRR2 143.451 142.951 1429.15 143.451
ROB + MRR2 + ASTR 142.218
ROB + MRR3 144.568 144.299 143.682 144.568
ROB + MRR3 + ASTR 144.329
ROB + MRR4 144.053 143.536 143.178 144.053
ROB + MRR4 + ASTR 143.196

Table 4.1: The makespans of scheduling 204 tasks on 3 workers.

of my algorithms, ROB + MRmin + ASTR and ROB + MRavg + ASTR did not perform

as good as they were in the previous benchmark. This should contribute to the random

effect by having smaller number of tasks per worker.

The third experiment uses a large task pool. The size of the time table is 176787× 3,

and the machine vector is “10, 10, 10.” This experiment simulates running 176, 787 tasks

on 30 workers. For this size of input data, Monte Carlo search algorithm can hard converge.

Heuristic algorithms are the only practical solutions. The baseline OLB + LPT algorithm

is still very fast, because its computational complexity is as low as O(T logT ). The suffrage

and Mini-min algorithms spend more than 4 hours computation time. My MR heuristics

are almost as fast as the OLB + LPT algorithm, and could deliver the result in less than 0.1

seconds. The MRR heuristics are slower than MR, because they need to prepare w×(w−1)

work queues instead of w work queues. However the run time of the MRR schedulers is

still under 0.3 seconds. Quality wise, my algorithms provide 13.6% lower makespan than
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Algorithms makespan
OLB + LPT 17.071
Suffrage 18.021
Min-min 18.242
SA 15.027
PT 15.261
ROB + MRmin 19.253
ROB + MRmin + ASTR 16.489
ROB + MRmax 17.383
ROB + MRmax + ASTR 15.513
ROB + MRavg 16.890
ROB + MRavg + ASTR 15.395
ROB + MRR1 17.338
ROB + MRR1 + ASTR 15.513
ROB + MRR2 18.111
ROB + MRR2 + ASTR 15.541
ROB + MRR3 17.265
ROB + MRR3 + ASTR 15.513
ROB + MRR4 17.262
ROB + MRR4 + ASTR 15.579

Table 4.2: The makespans of scheduling 204 tasks on 30 workers.

OLB + LPT, and is at least 3.06% better than suffrage and Min-min algorithms. Load

balancing is unimportant for this test case. The scheduler understands that the average

number of tasks per worker is a few thousand, so the ASTR feature is automatically turned

off.

Algorithm makespan execution time (seconds)
OLB + LPT 11657 0.055
Suffrage 10708 21660
Min-min 10571 14552
ROB + Smin 10258 0.087
ROB + Smax 10342 0.087
ROB + Savg 10257 0.087
ROB + MRR1 10342 0.253
ROB + MRR2 10307 0.262
ROB + MRR3 10363 0.257
ROB + MRR4 10264 0.261

Table 4.3: The makespans of scheduling 176787 tasks on 30 workers.

Finally, I test the scheduling algorithms on synthetic data set of 12 512 × 16 time
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tables. The machine vector is “1, 1, 1, ... 1.” Table 4.4 shows the normalized makespans.

The relative performance of the algorithms vary between data sets. However, it is clear

that variations of ROB + MR/MRR + ASTR algorithms outperform any other algorithms.

MRR heuristic is the best of all. It delivers the top performance in 6 out of 12 test cases, In

other cases, the result of MRR2 is very close to the best result. The performance of Min-

min algorithm is competitive too. Sufferage, as well as the other old heuristic algorithms

are significantly slower.
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r1max 100 100 100 100 100 100
r2max 1000 1000 1000 10 10 10
sorting columns no partial yes no partial yes
OLB + LPF 7.676 4.420 1.696 3.220 2.480 1.309
MET 1.304 4.125 5.498 1.471 5.843 7.669
MCT 1.199 1.247 1.342 1.191 1.252 1.169
Max-min 2.251 1.960 1.518 1.939 1.800 1.301
Min-min 1.064 1 1.051 1.059 1.060 1.058
Sufferage 1.622 1.511 1.324 1.424 1.402 1.164
ROB + MRmin + ASTR 1.010 1.003 1 1.054 1.029 1.027
ROB + MRmax + ASTR 1.053 1.047 1.061 1.054 1.025 1.024
ROB + MRavg + ASTR 1 1.029 1.016 1.013 1.034 1.020
ROB + MRR1 + ASTR 1.053 1.047 1.061 1.054 1.025 1.024
ROB + MRR2 + ASTR 1.008 1.043 1.003 1 1 1
ROB + MRR3 + ASTR 1.008 1.102 1 1.031 1.032 1.027
ROB + MRR4 + ASTR 1.036 1.095 1.060 1.063 1.045 1.055

r1max 3000 3000 3000 3000 3000 3000
r2max 1000 1000 1000 10 10 10
sorting columns no partial full no partial full
OLB + LPF 6.752 4.035 1.290 3.359 2.344 1.291
MET 1.412 4.992 7.608 1.239 5.840 7.608
MCT 1.250 1.310 1.171 1.223 1.215 1.171
Max-min 1.973 1.929 1.319 1.840 1.714 1.319
Min-min 1.022 1.047 1.040 1.057 1.032 1.040
Sufferage 1.509 1.436 1.130 1.391 1.333 1.130
ROB + MRmin + ASTR 1.057 1.076 1.015 1.012 1.029 1.015
ROB + MRmax + ASTR 1.043 1 1.021 1.008 1.016 1.021
ROB + MRavg + ASTR 1.024 1.226 1.011 1.013 1 1.011
ROB + MRR1 + ASTR 1.043 1 1.021 1.008 1.016 1.021
ROB + MRR2 + ASTR 1.014 1.150 1 1 1.002 1
ROB + MRR3 + ASTR 1.011 1.105 1.015 1.050 1.042 1.015
ROB + MRR4 + ASTR 1 1.047 1.055 1.061 1.053 1.055

Table 4.4: The normalized makespans of scheduling 512 tasks on 16 workers. 12 different
time matrices are tested.

So far, the experiments have demonstrated the performance of various scheduling al-

gorithms when they are feed with perfectly predicted data. In the real word, the execution

time of a program is not available at scheduling time. The error of the performance estima-

tion may significantly affect the quality of the schedules. In the last phase of this section,

I’m going to exam this fact. I feed the scheduling simulator with two time tables. One

represents the actual execution time of the tasks. The other represent the predicted run
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time. Since the scheduling problem is extract from a real world problem, the performance

predictions (Chapter 3) is also conducted from the real world. Other than that, I also add

synthetic performance prediction data. This will give finer control on different aspects of

the errors, and allows to examine how the schedulers respond to these errors. To generate

the synthetic performance prediction data, I take the original performance data, and add

uniformly distributed noise. The bias error is only applied to one of the three types of

heterogeneous workers. If the variation and bias in the noise are zeros, the generated data

and the original data are identical. This is called perfect prediction (See Equation 4.4).

Pred = Orig ∗ (Noiseuniform distribution(1− variation, 1 + variation) + bias) (4.4)

Two data sets are used. The first is 204 × 3 time tables plus the “1, 1, 1” machine

vector, for the case of running 204 task on 3 workers. The second test case utilize 176787

time tables and the “10, 10, 10” machine vector, which stands for running 176787 tasks on

30 workers. The results are listed in Table 4.5 and Table 4.6. The reference performance

numbers are those generated by OLB + LPT, which is always the slowest.

The results of the of suffrage and Min-min algorithms are shown in Table 4.5. They

offer equally 8.64% speedup over OLB + LPT algorithm, on the realistic case (the line

of “practical predictions”). However, are 6.36% slower compared with the best of my

schedule algorithms, the OLB + MRR4 + ASTR. Running the synthetic performance

prediction data, if 0.2 variations are added, the performance of suffrage algorithm drop

1.18%, and the performance of Min-min algorithm drops 2.78%. If I further add the bias of

“-0.1,” 2.21% and 5.96% slow down are observed respectively. My new heuristic algorithm

suffers from this problem too. However, the degradations are clearly smaller than Min-

min algorithm, but not as good as the suffrage algorithm. However, on the practical

performance prediction data, my algorithms, especially the MRR2 and MRR4 suffer the
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lowest performance impact. A clear trend can be observed by comparing the last two lines

of Table 4.5. When the bias as added, the performance impacts of my algorithms are

constantly smaller than suffrage and Min-min algorithms. This is because my algorithm

utilized the run time dynamic scheduling scheme. If one worker is faster than expected,it

will automatically fetch more tasks. The loads balancing are not impacted. On the other

size, the static scheduling such as suffrage and Min-min suffers severely from load balance

problem. A few workers will finish their tasks sooner and keep idle for the rest of time.

input data OLB+LPT suffrage Min-min MRmin MRavg MRR2 MRR4
perfect predictions 161.877 150.870 150.645 142.939 142.549 142.218 143.196
practical predictions 165.266 152.141 152.141 144.191 144.333 143.240 143.031
variation 0.2, bias 0 166.513 152.662 154.835 146.199 147.817 146.876 146.224
variation 0.2, bias -0.1 165.107 154.211 159.619 147.597 147.940 147.309 147.787

Table 4.5: The makespans of scheduling 204 tasks on 3 workers. The estimated perfor-
mances of the tasks are not always equal to the actual performance. As a result, the
qualities of the schedulings degrade.

Table 4.6 shows the makespans of scheduling 176787 tasks on 30 workers. The schedul-

ing time for such a problem is longer than 4 hours for suffrage and Min-min heuristics. I

skipped those impractical algorithms. The results of my 4 algorithms match closely. How-

ever, the MRmin heuristic shows advantage on almost all test cases. Meanwhile, MRmin

heuristic is very competitive in table 4.5. For any input data, MRmin heuristic algorithm

could archive no less than 12% speedup. Again, in table 4.6, the additional bias errors does

not impact the performance. It actually speedup a little bit. This is because the “-0.1”

bias means the worker is faster than the expectation. In fact, the constant bias does not

affect the task ranking. The matching mechanism in my algorithm still runs perfectly.
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input data OLB+LPT MRmin MRavg MRR2 MRR4
oracle predictions 11657 10259 10258 10307 10265
practical predictions 11593 10301 10310 10321 10330
variation 0.2, bias 0 11670 10493 10527 10552 10575
variation 0.2, bias -0.1 11663 10492 10523 10545 10571

Table 4.6: The makespans of scheduling 176787 tasks on 30 workers. The tasks estimated
performances are not always equal to the actual performance. Thereby the qualities of the
schedules degrade.
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Chapter 5
Optimizing for Power and Energy

5.1 BACKGROUND

Power and energy have become the major bottlenecks for developing high performance

computer systems (see Chapter 1.1). As a result, the effectiveness of a computer system

should not be solely quantified by the performance metrics, such as the makespan time of

executing a set of tasks. The power consumption and energy consumption should also be

considered as first-order metrics. In this chapter of my thesis, I’ll revisit the scheduling

problem for heterogeneous tasks and heterogeneous processors, with a new perspective from

power and energy efficiencies.

To begin with the study, the power characteristics of the processors must be modeled.

The power statistics of modern processors depends on the workload. When no workload is

present, the static power dominates the total power consumption. The number is typically

low. An increase in workload adds dynamic power, and causes the processor to burn more

power until the upper bound (i.e., maximum power) is reached. Thermal Design Power

(TDP) measures the maximum heat dissipation rate for typical workload. TDP is available

from the vendor specification, and could be used to estimate the maximum power if the

latter is hard to obtain. In practice, measuring the power has two possible methods. Analog

power meters are always reliable; however, it suffers from high expense and low flexibility.

A more practical method is using software regression models.

worker idle power (Watt) loaded power (Watt)
Xeon E5 2680 v2 CPU × 2 40 230
Xeon Phi 7120P × 1 103 185
Tesla K20Xm GPU × 1 19 110

Table 5.1: Typical power consumptions of heterogeneous processors running GeauxDock.

Running Average Power Limit (RAPL) [90] provides a set of counters for energy and

75



power consumption information on Intel CPUs. RAPL uses a software power model. It

estimates energy usage by using hardware performance counters and I/O models. Intel

claims the update rate of RAPL Machine Specific Registers (MSRs) is once every millisec-

ond. RAPL driver has been implemented in the Linux kernel, and could be accessed using

the perf [91] tool. Accessing RAPL MSRs needs super-user privilege. As a result, the

power metrics of Xeon E5 2680 v2 CPU installed on a public supercomputer is not directly

available. The closest matching CPUs are a pair of Xeon E5-2620 v3s, which are installed

on my workstation. Using the perf tool, I obtained their power metrics. The idle power

of a CPU is 20W, and its peak power is 90W when running GeauxDock, which closely

matches its 85W TDP. Therefore, I use 20W as the idle power for Xeon E5 2680 v2, and

use the TDP number (115W) to estimate the typical loaded power. See Table 5.1.

The power statistics of the Xeon Phi co-processor can be measured using 3 different

software tools. RAPL interface will be supported on the second generation of Xeon Phi

“KnightLanding.” It will provide the identical interface as its counterpart on Intel CPUs.

For older architecture, MPSS libraries and MPSS utilities [92] are the best measurement

tools, and they are shipped with the driver. Alternatively, PAPI provides the micpower

API since version 5.3.2 [93]. My experiment is carried with running GeauxDock on Xeon

Phi, while running the MPSS utility, micpower, to collect the power samples on an interval

of 100 milliseconds. The time sequence is plotted in Figure 5.1. The idle power and typical

loaded power us set to be 103W and 185W. See Table 5.1.

For NVIDIA GPUs, the power metrics is accessible via NVIDIA Management Library

(NVML) library [94]. NVIDIA claims the error rate of the power readings is no larger

than 5%, and the read period is in the microsecond scale. Utilizing the NVML library, I

implemented a utility that samples the GPU power statistics in 10 millisecond intervals.

The utility is coupled to launch with the GPU version of GeauxDock. Figure 5.2 shows the

time sequence data. The data show that the typical loaded power of the GPU is 110W,

and the idle power is 19W (Table 5.1).
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Figure 5.1: The power statistics of Xeon Phi 7120P running GeauxDock. The right figure
zooms into the beginning of the procedure.

Figure 5.2: The power statistics of Tesla K20m GPU running GeauxDock. The right figure
zooms into the beginning of the procedure.

5.2 POWER-CONSTRAINED TASK SCHEDULING

Optimized task scheduling problem without power constrains has been discussed in

Chapter 4. The fundamental idea is to make all workers busy all the time. Meanwhile,

when a worker fetches a new task, it should favor those with higher suitability scores. In

addition to this design, I have added the power capping feature, which makes sure the total

power consumption is under a certain threshold. Power capping ratio is used to quantify

the level of power capping. It means the ratio between the current threshold and the

maximum power of the system. If the power capping rate equals to 1, then the system is

not power capped at this configuration.
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The power and energy status of the system is modeled as follows. The execution time of

mapping task T on worker W is ttw. The workers have two power states: loaded power Pltw

and idle power Pitw. The dynamic power is Pdtw which equals to Pltw − Pitw. The total

energy consumption of the computer system is E =
∑

w(Pitw ∗makespan) +
∑

w,t(Pdtw ∗

ttw). The idle powers are available from the second column of Table 5.1. To simply the

experiments, I use the typical loaded powers for Pltw, which are shown in the third column

of Table 5.1.

The power-capping task scheduling algorithm inherits the scheduling principle from

ROB + MR/MRR + ASTR algorithm (Chapter 4.2). The tasks are arranged in many

priority queues. In each queue, the tasks are arranged for a specific type of heterogeneous

worker by sorting the performance suitability scores in decreasing order. Similar to the

implementation of ROB + MR/MRR + ASTR algorithm, the power capping task schedul-

ing system also utilizes the server-client model. The workers actively send requests to a

centralized scheduling server. Once the feedback message is received, the worker reads the

information and start computing the task. Otherwise, if no message is received, the worker

keeps idle and consumes the minimal amount of power. The server maintains the system

status, and issues tasks to the workers by replying their requests. In the non-power capping

scheduling, the requests are responded immediately. However, in power-capping schedul-

ing, the server intentionally holds some requests. In such a way, the scheduler could turn

down those less energy efficient workers. Thus the system achieves higher energy efficiency.

Detailed behaviors of the scheduler server are described in Algorithm 1. The key

component of the algorithm is to calculate the set of workers that are valid fora scheduling

for a certain power constraint. This is described in the procedure “find valid workers.”

Afterwards, using the workers as inputs, the scheduler applies ROB + MR/MRR + ASTR

algorithm (Chapter 4) to find their associated tasks. Among these tasks, only one task is to

be selected and issued. The selection procedure is guided by the energy efficiency scoring
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Algorithm 1 Power-constrained heterogeneous scheduling algorithm

1: procedure find valid workers() . find valid worker candidates
2: P ← the current power consumption of the system
3: W ← the set of idle workers
4: W1 ← deduplicate W by worker types
5: W2 ← filter W1 by condition (P + w1 < Pcapping) . power capping
6: return W2

7: procedure scheduling(T,W ) . Schedule task set T on worker set W
8: while T 6= ∅ do
9: Wc ← find valid workers()

10: if Wc 6= ∅ then
11: Tc ← find task candidates for Wc, using ROB + MR/MRR + ASTR algo-

rithm
12: t← select a task from Tc, by the largest energy efficiency score
13: issue task t to the corresponding worker w

function SE. Similar to the performance efficiency scoring function S 4.4, SE has many

variations. Previous experiments has proved MRmin, MRavg, MRR2 and MRR4 are

effective heuristics for S. Since the heuristics for optimizing energy metrics are no different

from that of optimizing performance, these four heuristics should also work well for SE.

Ultimately, I choose SEmin (Equation 5.1) as the energy scoring function because of the

simplicity. A higher score of SEmin implies that scheduling this task has better energy

efficiency, and therefore, should be selected.

SEmin i =
Energymin

Energyi
(5.1)

The computational complexity of power capping heterogeneous scheduler is also low.

Recall that in Chapter 4.4, I defined a few quantities. The number of tasks is T , the number

of heterogeneous worker types is w, and total number of workers is W . The complexity

of ROB + MRmin + ASTR algorithm is O(wTlogT ). The power capping scheduling

algorithm extends the ROB + MRmin + ASTR algorithm by adding extra computations

for selecting the most energy efficient workers at run time. The amount of computations

per task is in proportion to the number of workers. So, there is an additional O(WT )
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complexity. The overall computational complexity is O(wTlogT +WT ).

5.3 RESULTS

The energy capping scheduling algorithm is implemented in my scheduling simulator

(Chapter 4.6). I use SEmin (Equation 5.1) as the energy efficiency scoring function, and

Smin (Equation 5.1) as the performance scoring function. Experiments are carried out on

the same computer as the earlier scheduling experiments, a Linux X86-64 host with an

Intel Xeon E3-1225 v5 CPU. The data for scheduling is the heterogeneous implementations

of Geuxdock running EDUD [86] data set, which is a 176787× 3 matrix. The performance

prediction of the tasks are generated using regression models (Chapter 3).

In the first experiment, I simulated scheduling 176787 tasks on 30 workers consist of 10

dual-CPUs, 10 Xeon Phis, and 10 GPUs. The power capping scheduler spends 0.91 seconds

for the computation. Compared with the 0.087 seconds computation time of the non-power

capping scheduling algorithm (Table 4.3), the power capping scheduling algorithm is slower

but still very practical.

A range of power capping ratios are tested. Figure 5.3 plots the relative speedups

of the makespans and the energy consumptions. The figure shows that the makespan is

monotonically increasing, which means more aggressive power capping always slows down

the computation. The energy consumptions curve follows a U shape. It drops in the

beginning, then increases. In the most aggressive power capping case (where the power

capping ratio is 0.45), the energy consumption is even higher than the no capping case.

Overall, the 0.65 power capping ratio is a sweet spot, at which the heterogeneous computing

system saves 35.0% power as well as 31.5% energy, on the cost of 19.56% performance

slowdown. Interestingly, 0.65 power capping ratio is the turning point of energy efficiency

metrics. To understand this trend, I checked the utilization of each worker. It turns out

that the CPU workers are the least energy efficient ones, and the scheduler will always

turn off CPUs whenever possible. As far as the number of idle CPUs increase, the overall
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energy efficiency of the system also increases. However, when all the CPUs are turned

off, the scheduler starts to turn off Xeon Phis or GPUs. The idle power of the workers

will become increasingly dominant. As a result, the power efficiency drops. According

to Table 5.1, when the scheduler turn down all the CPUs, the power capping ratio is

(40+185+110)×10
(230+185+110)×10

= 0.638. This is very close to the number 0.65 in my test cases. In

conclusion, this experiment verifies that power capping heterogeneous scheduling algorithm

is able to select the best energy efficient workers, and boost the power efficiency and energy

efficiency.

Figure 5.3: The impact of the performance and energy consumption by applying different
power capping ratios.

Next, I compare the power efficiencies of different computing a system. The typical

loaded power of a Xeon Phi is 185W, and the number for a GPU is 110W.(Table 5.1). An

8140W power budget could supply 44 Xeon Phis, or 74 GPUs, or 22 Xeon Phis plus 37

GPUs. The three hypothetical computing systems are configured accordingly: (1) a pure

44 Xeon Phis system; (2) a pure 77 GPUs system, and (3) a heterogeneous 22 Xeon Phis +

37 GPUs system. All of the systems are loaded with the 176787 heterogeneous tasks. I used
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ROB + MRmin + ASTR scheduling algorithm without power capping. The metrics of this

experiment can be either makespan time or total energy consumption. However, since all

systems consume the same amount of power, these two metrics are in proportion with each

other. Ultimately, I select the energy consumption metrics, and normalized the values with

that of the best system. The results are shown in Figure 5.4. It is very clear that pure GPU

system delivers the best power efficiency. The pure Xeon Phi system is 92.15% worse than

the pure GPU system. This implies, on average, the GPUs deliver a stronger performance

across all the tasks. If GPU and Xeon Phi are combined without utilizing a good scheduler,

I’m expecting a linearly combined makespan time, which is 1.0+1.9215
2

= 1.4607. In contrast,

my heterogeneous scheduler is able to achieve a 1.1644 normalized makespan, which is

25.45% better than the result of linear combination. Indeed, this speedup is achieved by

taking care of the performance variations of different tasks, and mapping the tasks to the

most suitable workers. Although the performance of Xeon Phi + GPU system is lower

than pure GPU system. It didn’t suggest that the philosophy of heterogeneous system

is wrong. In contrast, this experiment suggests a performance potential of heterogeneous

systems. When the performance heterogeneities are high, and the average performance

between workers does not differ too much, a systematic combination of many heterogeneous

workers could improve the overall power efficiency.
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Figure 5.4: The comparison of three computer systems running the same tasks set. All of
the computer systems consume the same amount of power of 8140W.
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Chapter 6
Conclusion

Accelerated parallel computing using devices such as GPUs and Xeon Phis, along with

traditional CPUs, have great promise in extending the cutting edge of high-performance

computer systems. Such systems are referred to as heterogeneous systems. A significant

performance improvement can be achieved when suitable workloads are handled by the

accelerator. This thesis addressed four topics in the context of heterogeneous computing.

The first topic discussed is the acceleration and tuning techniques in the context of

GeauxDock, a molecular docking package featuring a novel scoring function and Monte

Carlo-based conformational space sampling. GeauxDock is designed for large-scale vir-

tual screening applications using heterogeneous computer architectures. Because of its

modular code framework, GeauxDock supports modern multi-core CPU, as well as Xeon

Phi and GPU accelerators. I devoted considerable effort to minimize the data commu-

nication leading to at least 95% of the time spent on executing MMC kernels. Various

tuning techniques have been applied to significantly accelerate the docking kernel based

on the performance characteristics obtained by a meticulous code profiling using diverse

input data. For instance, a systematic optimization of the serial CPU code brought about

not only a 6.5 × speedup on a single computing core, but also a perfect scaling with the

number of cores on modern shared-memory platforms equipped with multiple sockets of

multi-core CPUs. Docking benchmarks conducted on many-core accelerators show that

using Xeon Phi 7120P yields 1.9 × performance improvement over a dual-socket Xeon

E5 CPU, whereas the fastest GPU, GeForce GTX 980, achieves a 3.5 × speedup over a

dual CPU. It is important to note that in addition to hardware capabilities, a thorough

code tuning for accelerator devices plays an important role in increasing the computa-

tional performance. In addition to the evaluation of a purely computational performance, I

examined the energy consumptions and hardware costs. In conclusion, heterogeneous com-
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puting platforms, especially those equipped with the latest GPU cards, offer significant

advantages over traditional CPU-based systems. Using parallel codes optimized for mod-

ern heterogeneous HPC architectures can significantly accelerate structure-based virtual

screening applications. GeauxDock is open-source and publicly available from our website

at http://brylinski.cct.lsu.edu/geauxdock

The second topic analyzes the performance characteristics of heterogeneous processors.

Two models are developed for the analysis of correlations between the performance and the

input data. The coarse grained model addresses how replica scaling impacts core utilization.

Both the modulo line model as well as the isotonic regression model are utilized for the

coarse grained model. The fine-grained model deals with the heterogeneous performance

speed-ups on the three major components of the compute kernel. The result is that I have

figured out a set of parameters to regulate the feature set of each component. Then, linear

regression is used to predict the weight of each component. Finally, these two models are

combined to provide accurate performance predictions for heterogeneous tasks running on

heterogeneous processors.

The third topic of this thesis studies the batch scheduling of running independent

heterogeneous workloads on heterogeneous processors. The objective is to minimize the

wall time of the computation, a.k.a. makespan. All heterogeneous workers must be fully

utilized when power constraints do not exist. The system should achieve a good source

matching for execution efficiency, as well as a good load balancing. In my research, I

proposed a heuristic algorithm composed of four major components: Ranked Opportunistic

Balancing (ROB), Multi-subject Ranking (MR), Multi-subject Relative Ranking (MRR),

and Automatic Small Tasks Rearranging (ASTR). My algorithm consistently outperforms

previously proposed algorithms achieving better schedules and with lower computational

complexities. Additionally, it delivers more consistent results on imperfect performance

predictions. Not only does my algorithm deliver the best results, but also it is the only

practical method to resolve realistic large problems.
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Finally, I study the power and energy efficiencies of heterogeneous systems. I collected

the power characteristics of Xeon Phi and GPU. A power and energy model was then

derived for the heterogeneous task scheduling problem. Also, I designed a new algorithm

to resolve the scheduling problem under a certain power budget. It is proven to significantly

improve the power efficiencies and energy efficiencies for heterogeneous computing systems.
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[57] O. Korb, T. Stützle, and T. E. Exner, “Accelerating molecular docking calculations us-
ing graphics processing units,” Journal of chemical information and modeling, vol. 51,
pp. 865–76, apr 2011.

[58] G. D. Guerrero, H. E. Perez-Snchez, J. M. Cecilia, and J. M. Garcia, “Parallelization
of Virtual Screening in Drug Discovery on Massively Parallel Architectures,” 2012
20th Euromicro International Conference on Parallel, Distributed and Network-based
Processing, pp. 588–595, feb 2012.

[59] A. M.-S. Simon N, P. James R, S. Richard B, and Avila Ibarra, “High performance in
silico virtual drug screening on many-core processors,” International Journal of High
Performance Computing Applications, vol. 29, no. 2, pp. 119–134, 2014.

[60] Y. Ding, Y. Fang, W. P. Feinstein, J. Ramanujam, D. M. Koppelman, J. Moreno,
M. Brylinski, and M. Jarrell, “GeauxDock: A novel approach for mixed-resolution
ligand docking using a descriptor-based force field,” Journal of Computational Chem-
istry, vol. 36, no. 27, pp. 2013–2026, 2015.

[61] M. Brylinski and W. P. Feinstein, “eFindSite: improved prediction of ligand binding
sites in protein models using meta-threading, machine learning and auxiliary ligands,”
Journal of computer-aided molecular design, vol. 27, no. 6, pp. 551–567, 2013.

[62] M. Brylinski and J. Skolnick, “Q-Dock: Low-resolution flexible ligand docking with
pocket-specific threading restraints,” Journal of computational chemistry, vol. 29,
no. 10, pp. 1574–1588, 2008.

[63] D. J. Earl and M. W. Deem, “Parallel tempering: theory, applications, and new
perspectives,” Physical chemistry chemical physics : PCCP, vol. 7, no. 23, pp. 3910–
3916, 2005.

[64] H. G. Katzgraber, “Introduction to Monte Carlo Methods,” arXiv, 2009.

[65] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI : A Portable Interface to Hard-
ware Performance Counters,” Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10, 1999.

91



[66] P. S. Charifson, L. M. Shewchuk, W. Rocque, C. W. Hummel, S. R. Jordan, C. Mohr,
G. J. Pacofsky, M. R. Peel, M. Rodriguez, and D. D. Sternbach, “Peptide ligands
of pp60c-src SH2 domains: a thermodynamic and structural study,” Biochemistry,
vol. 36, no. 21, pp. 6283–6293, 1997.

[67] M. J. Hartshorn, M. L. Verdonk, G. Chessari, S. C. Brewerton, W. T. M. Mooij, P. N.
Mortenson, and C. W. Murray, “Diverse, high-quality test set for the validation of
protein-ligand docking performance.,” Journal of medicinal chemistry, vol. 50, pp. 726–
41, feb 2007.

[68] A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A Knowledge-Based Ap-
proach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discov-
ery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases,”
Journal of Combinatorial Chemistry, vol. 1, no. 1, pp. 55–68, 1999.

[69] E. Blem, J. Menon, and K. Sankaralingam, “A detailed analysis of contemporary arm
and x86 architectures,” UW-Madison Technical Report, 2013.

[70] R. Raag and T. L. Poulos, “The structural basis for substrate-induced changes in redox
potential and spin equilibrium in cytochrome P-450CAM,” Biochemistry, vol. 28, no. 2,
pp. 917–922, 1989.

[71] L.-N. Pouchet, “PoCC,” 2013.

[72] N. Y. Chirgadze, D. J. Sall, V. J. Klimkowski, D. K. Clawson, S. L. Briggs, R. Her-
mann, G. F. Smith, D. S. GiffordMoore, and J. Wery, “The crystal structure of human
α-thrombin complexed with LY178550, a nonpeptidyl, active site-directed inhibitor,”
Protein science, vol. 6, no. 7, pp. 1412–1417, 1997.

[73] D. Rognan, “Beware of Machine Learning-Based Scoring Functions-On the Danger
of Developing Black Boxes,” Journal of chemical information and modeling, vol. 54,
no. 10, pp. 2807–2815, 2014.

[74] T. T. Vu and B. Derbel, “Link-heterogeneous work stealing,” Proceedings - 14th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CC-
Grid 2014, pp. 354–363, 2014.

[75] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the Cilk-5
multithreaded language,” ACM SIGPLAN Notices, vol. 33, no. 5, pp. 212–223, 1998.

[76] S. Marcos and S. Marcos, “Task scheduling on multicores under energy and power
constraints,” pp. 9–12, 2013.

[77] K. Vivekanandarajah and S. K. Pilakkat, “Task mapping in heterogeneous MPSoCs for
system level design,” Proceedings of the IEEE International Conference on Engineering
of Complex Computer Systems, ICECCS, pp. 56–65, 2008.

[78] F. Glover, M. Laguna, and R. Mart, “Tabu search,” 1997.

92



[79] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd ed., 2001.

[80] M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, and R. Freund, “Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computing systems,”
Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99), 1999.

[81] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,
E. Keith, T. Kidd, M. Kussow, J. Lima, F. Mirabile, L. Moore, B. Rust, and
H. Siegel, “Scheduling resources in multi-user, heterogeneous, computing environments
with SmartNet,” Proceedings Seventh Heterogeneous Computing Workshop (HCW’98),
1998.

[82] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic Mapping
of a Class of Independent Tasks onto Heterogeneous Computing Systems,” Journal of
Parallel and Distributed Computing, vol. 59, no. 2, pp. 107–131, 1999.

[83] M.-y. Wu and W. Shu, “A High-Performance Mapping Algorithm for Heterogeneous
Computing Systems,” Simulation, vol. 00, no. C, pp. 8–13, 2001.
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