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Abstract
Field Programmable Gate Arrays (FPGAs) have many modern applications. A feature

of FPGAs is that they can be reconfigured to suit the computation. One such form of

reconfiguration, called partial reconfiguration (PR), allows part of the chip to be altered.

The smallest part that can be reconfigured is called a frame. To reconfigure a frame, a

fixed number of configuration bits are input (typically from outside) to the frame.

Thus PR involves (a) selecting a subset C ⊆ S of k out of n frames to configure and (b)

inputting the configuration bits for these k frames. The, recently proposed, MU-Decoder

has made it possible to select the subset C quickly. This thesis involves mechanisms to

input the configuration bits to the selected frames.

Specifically, we propose a class of architectures that, for any subset C ⊆ S (set of

frames), constructs a path connecting only the k frames of C through which the configu-

ration bits can be scanned in. We introduce a Basic Network that runs in Θ(k log n) time,

where k is the number of frames selected out of the total number n of available frames; we

assume the number of configuration bits per frame is constant. The Basic Network does not

exploit any locality or other structure in the subset of frames selected. We show that for

certain structures (such as frames that are relatively close to each other) the speed of recon-

figuration can be improved. We introduce an addition to the Basic Network that suggests

the fastest clock speed that can be employed for a given set of frames. This enhancement

decreases configuration time to O(k log k) for certain cases. We then introduce a second

enhancement, called shortcuts, that for certain cases reduces the time to an optimal O(k).

All the proposed architectures require an optimal Θ(n) number of gates.

We implement our networks on the CAD tools and show that the theoretical predictions

are a good reflection of the network’s performance.

Our work, although directed to FPGAs, may also apply to other applications; for

example hardware testing and novel memory accesses.

ix



Chapter 1
Introduction

Reconfigurable devices, notably Field-Programmable Gate Arrays (FPGAs) have grav-

itated to a mainstream role in the modern computing landscape, for example, in image

and video processing [1, 2, 3, 4], networking and network security [5], embedded systems

[6, 7, 8], high-speed trading [9, 10], and as accelerators in high-performance computing

[11, 12, 13, 14]. One important feature of some FPGAs is (dynamic) partial reconfigura-

tion, where a portion of the FPGA can be reconfigured during run-time [15, 16]. A key

determinant of the usefulness of dynamic partial reconfiguration is its speed [17]. In this

work we propose an approach and a set of methods that could significantly speed up partial

reconfiguration.

For the purpose of partial reconfiguration, the configurable fabric of an FPGA is divided

into frames [18]; in this thesis we will use the term “frame” to mean the smallest unit that

can be partially reconfigured; that is, even if a portion of a frame is to be reconfigured, the

entire frame must be reconfigured. In an FPGA each frame is divided into configuration

units and the number of these units determines the size of that frame. Frame size can

(theoretically) be from one single configuration element to several thousand units per frame

[19]. Configuration elements can be thought as ON/OFF switches that are reconfigured to

change the function and/or connectivity of the chip. A frame is reconfigured by applying

a configuration bit to each of its configurable elements. The configuration bits originate

outside the frame (often outside the chip). Since the number of configuration bits needed

(even for a single frame) is much larger than the number of wires/pins available to convey

them, a large number of these bits are serially shifted in through a scan path traversing

the configurable elements of a frame.

Typically a software interface maps each user-defined partially reconfigurable (PR)

module to a set of frames. Usually, at most one PR module may be associated with
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a frame; however, a single PR module may span across multiple frames. This, coupled

with the fact that frame sizes and shapes many not be well-matched to the PR module’s

ideal proportions, often causes a somewhat loose fit between the PR modules and frames

encompassing them. Consequently, many more elements may need to be reconfigured than

are directly associated with the PR module.

In general, the smaller the frame (lower granularity/higher resolution), the better the

fit between frames and the PR region. Figure 1.1 illustrates the effect of frame’s shape and

size on the efficiency of the reconfiguration. The PR region colored as blue, is constant

(15%) for all the cases. It is important to note that although cases (b) and (c) have the same

number of total frames (8 frames), the total configuration area is different in each case;

solely due to difference in the shape of the frames. Clearly as the size of a frame decreases,

the overall configuration area decreases while keeping the PR area constant (compare cases

(c), (d), and (e).)

Thus, using smaller frames could alleviate the problem of such an “unfocused” recon-

figuration. However, this would result in a larger number of frames being selected. For all

practical purposes, a typical FPGA selects and reconfigures one frame at a time; in this

approach, using a large number of small frames would not be economical.

The MU-Decoder [21, 22], proposed recently, allows for multiple frames to be selected

simultaneously. It uses knowledge of the computation to speedily (in O(log n) time) se-

lect a subset of frames for reconfiguration. In particular, if a subset C with k elements

is to be selected out of n frames of S for reconfiguration, then the MU-Decoder could

select all k frames in a handful of iterations; in contrast, the standard method (using a

one-hot-decoder) uses k iterations to select all frames. We now illustrate the benefit of

simultaneously configuring small frames.

Suppose an FPGA has f configurable bits divided into n1 frames (with d1 =
f

n1

bits per

frame). Suppose an instance of partial reconfiguration changes b configurable elements and

on an average a fraction α1 of a frame is used. Then the b configurable elements occupy

2



(a) PR area: 15% (b) PR area: 15%
Config. area: 75% (6/8 frames)

(c) PR area: 15%
Config. area: 100% (all 8 frames)

(d) PR area: 15%
Config. area: 39% (7/18 frames)

(e) PR area: 15%
Config. area: 24% (17/72 frames)

Figure 1.1: An illustration showing the effect of frame granularity on partial reconfiguration.
The two colored regions show the area that needs partial reconfiguration which remains
the sames for all cases. The shape and size of the frames is altered for each case and the
reconfigured area and the number of reconfigured frames are reported. Figure is taken with
permission from [20].
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k1 =
b

α1d1
frames. Let c1 be the overhead for configuring each frame (frame address,

checksum bits etc.). Then in a regimen that accesses one frame at a time the bitstream

size is roughly

B1 = (d1 + c1) k1 = d1

(
b

α1d1

)
+ c1k1 =

b

α1

+ c1k1.

On the other hand if the f bits are divided into a much larger number n2 of frames each

with d2 =
f

n2

bits, the the average utilization of the frame in partial reconfiguration will be

a much higher fraction α2. Moreover, if all k2 =
b

α2d2
frames are configured simultaneously

with one-time overhead c2, then the bitstream size for partial reconfiguration here is roughly

B2 = d2k2 + c2 = d2

(
b

α2d2

)
+ c2 =

b

α2

+ c2.

To compare the two cases we first observe that c2 and c1k1 are comparable. This is because

the overhead has an approximately linear relationship with the size of the bitstream. Now,

B1 can be significantly larger than B2 based on how much the number of frames has

increased and their size decreased. That is,

B1 −B2
∼= b

(
1

α1

− 1

α2

)
, α1 � α2

The bitstream size is a good measure of the time needed for partial reconfiguration [17].

That is B1 − B2 is a measure of how much faster the system with smaller frame size can

be. The difference in the two approaches could be further amplified by the fact that the

MU-Decoder [21, 22], used to simultaneously access all frames requiring reconfiguration

has small time overheads (compared to multiple single-frame accesses in the conventional

approach).

To utilize this capability of the MU-Decoder to quickly select multiple frames for re-

configuration, however, the configuration bitstream should be directed to only those frames

that need reconfiguration. Specifically if a subset of k frames (from a total of n frames)

4



need to be reconfigured, then the problem is to generate a scan path that weaves through

just the k elements requiring reconfiguration. In addition, this path must be generated

quickly, and it must allow fast clocking of the configuration bitstream. Finally, the scan

path must be generated automatically in hardware, given just the subset of frames to be

reconfigured.

Contribution of this work: In this thesis, we propose several networks that generate

such scan paths. For a system with n frames, all of these networks have O(n) size1 (asymp-

totically the best possible). In broad terms the networks we propose work as follows. Given

a subset of frames to reconfigure, the network autonomously constructs a path through the

selected frames, in some cases also determines the maximum clocking speed for this path.

This phase of the networks’ operation is called “preprocessing.” In the next phase (con-

figuration phase) the configuration bits of the k selected frames are input. The simplest

network (the Basic Network) scans in the bitstream in O(k log n) time, where k is the

number of frames to be configured. More complex networks (those with Clock Recommen-

dation and Shortcuts) run in O(log n log log log n+ kT0) time, where T0 can be quite small,

depending on the distribution of the k elements over the n elements; here log n log log log n

is the preprocessing time and kT0 is the time for inputting bits. These networks also pro-

duce a clock speed recommendation (consistent with T0) that the bitstream source can use.

Table 1.1 at the end of this chapter summarizes the results in this thesis. It should be

noted that typically log n� k � n. Therefore, the preprocessing times of Table 1.1 or the

O(log n) delay of the MU-Decoder are not very significant overheads when compared to the

Ω(k) reconfiguration time. In particular, with log n � k � n the PR time converges to

O(k) for the networks with Clock Recommendation and Shortcuts which is asymptotically

optimal. Moreover, if the selected frames for reconfiguration are close to each other (as is

usually the case), the clock period T0 becomes constant. We also present results from an

1In this thesis we assume a gate with constant fan-in and fan-out has constant delay and size. Likewise
a flip-flop or latch is also assumed to have constant delay and size. The delay of a network is the delay
along its longest path. The size of the network is the number of gates and flip-flops in it.
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implementation on the the Cadence suite of CAD tools to back our theoretically derived

performance estimates (reconfiguartion time and hardware cost).

Related work: There is not much related work on selecting subset of frames, other than

the one-hot-decoder [23] (which is a folklore logic component) and the MU-Decoder [21].

On scan paths, there is a lot of work in the context of hardware testing [24, 25, 26, 27];

however, generate scan paths that are relatively static and are not suitable for the
(n
k

)
possibilities associated with the problem we address, where n is in millions and k potentially

in hundreds. More broadly, reconfigurable computing itself is discussed in detail [28]. It has

recognized the benefit of fast reconfiguration from the power of theoretical models to self

reconfiguration [29, 30, 31]. Other ideas such as configuration compression [32, 33, 34] also

reduce the time to input bits, but spend additional time to expand the bits out before actual

reconfiguration is performed. We are not aware of any work on a dynamically configurable

scan path, as proposed in this work.

Organization of thesis In the next chapter we define the problem and describe the

overall structure of our solution. In Chapter 3 we describe the Basic Network constructed

on an underlying binary tree. In Chapter 4 we augment the tree in the Basic Network with

shortcut connections across leaves. This admits faster clock speeds for the configuration

bitstream, without significant network cost. Chapter 5 deals with the clock recommenda-

tion network. We first analyze two extreme situations for the distribution of the k elements

to be configured among the set of n elements. For the first of these, a random distribution,

there is not much improvement in the clock speed. The second, contiguous distribution,

admits (on an average) a clock speed that is independent on n. Chapter 5 introduces a

hardware method to output a clock speed recommendation that is customized to the par-

ticular set of k elements to be configured. Chapter 6 details the Header Network that is

essential to exploiting faster clock speeds; Chapter 2 explains the need for the Header Net-

work. Chapter 7 details the implementation of the networks, presents simulation results,

6



and derives model equations for network performance. In Chapter 8 we summarize our

results and identify directions for future work.
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Table 1.1: A summary of the results in this thesis for constructing a scan path of k elements out of n elements.

Network Distribution
Network

cost
Preprocessing

time

Scan time
per bit

Partial reconfiguration
time (total)

Basic Network (Chapter 3) O(n) O(log n) O(log n) O(k log n)

Clock Recommendation
Network (Chapter 5)

Random (average time) O(n) O(log n log log log n) O(log n) O(log n log log log n+ k log n)

Contiguous (avg. time) O(n) O(log n log log log n) O(log k) O(log n log log log n+ k log k)

Shortcuts Network
(Chapter 4)

Random (avg. time) O(n) O(log n log log log n) O(log n) O(log n log log log n+ k log n)

Contiguous O(n) O(log n log log log n) O(1) O(log n log log log n+ k)



Chapter 2
Problem and Approach

In this chapter we describe the problem addressed in this thesis and outline the tradi-

tional approach and the proposed solution.

Consider an FPGA with n frames with d bits per frame (each of which requiring one

configuration bit). Let S = {0, 1, 2, . . . , n− 1} be the set of frames. Given a subset C ⊆ S

of k frames, the goal is to configure the frames of C by sending in kd configuration bits

from outside the chip through a small number of input lines (bandwidth limited interface).

This “partial reconfiguration” must be done as quickly as possible.

2.1 Scanning in Bits

A frame may be viewed as a collection of d flip-flops each holding one configuration

bit; we will call them configuration flip-flops. One way to input these d configuration bits

through a single input pin is to connect the configuration flip-flops as a d-bit shift register

and then clock in the d configuration bits through the input. We will call this a d-bit scan

of width 1. This can be generalized to use w ≥ 1 pin as follows. Let m = d/w be an

integer. Simply send the bits in through w = d/m pins each scanning an m-bit scan of

width 1. This, more general approach is called a d-bit scan of width w. Figure 2.1 shows

6-bit scans of width 1 and 2. The key feature of a scan is that there must be a logical path

that connects the appropriate configuration flip-flops as a shift register for a d-bit scan of

width w; we will call this set of shift registers as the d-bit scan-path of with w.

2.2 FPGA Partial Reconfiguration (PR)

Coming back to an FPGA with n frames and d bits per frame, partial reconfiguration

of an FPGA amounts to reconfiguring the configuration flip-flops of a selected subset of
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(a) (b)

d = 6

bitstream bitstream
w = 2

[0]

[1]

clk clk

Figure 2.1: A 6-bit scan of width (a) w = 1 and (b) w = 2 pins. Dashed line shows the
boundary of a frame.

k frames (where 1 ≤ k ≤ n). We seek to perform this quickly and cost-effectively. This

involves the following two steps:

(a) Selecting a subset C of k frames for reconfiguration;

(b) Inputting kd configuration bits for the selected frames.

We now describe the traditional approach to partial reconfiguration and contrast it

with the proposed approach.

2.3 Traditional Method

The traditional method for partial reconfiguration uses a one-hot decoder to select one

frame at a time. Assuming that the FPGA can use only one pin for partial reconfiguration

(i.e. w = 1), a d-bit bitstream is then shifted in in d clock cycles through a scan path

inside the selected frame. When all bits are in their intended location (flip-flops), a signal
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instructs the frame to read the bits for reconfiguration. The data path from the input pin

to the selected frame is similar to those used in memory to access an addressed location

[35]. If the one-hot decoder requires tsel for selecting a frame, then the total time needed

for reconfiguring k frames with this method is

k (tsel + d) . (2.1)

With w pins, PR can be done in d
w

clock cycles as explained earlier. Here, the total time

needed to perform PR on k frames is

k

(
tsel +

d

w

)
. (2.2)

In an FPGA, the total number of frames, n, can be in order of millions and the number

of reconfigured frames k in order of thousands. The number of pins of an FPGA, on the

other hand, is very limited (w � k) due to packaging limitations. Therefore, it is not

possible to perform PR on a substantial number of frames in parallel (all at the same

time). On the other hand, we have seen that allowing w pins does not fundamentally

change the standard process of PR and we can reconfigure the internal flip flops in parallel.

As a result, without loss of generality, we will assume that the FPGA has one pin allocated

(w = 1) for partial reconfiguration.

2.4 Proposed Approach

The proposed approach uses a MU-Decoder instead of a one-hot-decoder to simulta-

neously select a subset of k frames to reconfigure. The operation of the MU-Decoder is

described in earlier work [22]. In this thesis, we assume the availability of the MU-Decoder

and describe the problem of inputting configuration bits.

This capability of the MU-Decoder to quickly select a subset of frames to reconfigure

can be utilized to speed up PR by eliminating the overheads of selecting each frame, one
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by one, using a one-hot decoder. This, however, creates the problem of delivering the

reconfiguration bitstream to only those selected frames. A static method to send bits to

the selected frames amounts to total reconfiguration as the unselected frames would not be

distinguished from the selected.

The proposed method involves an architecture constructs a dynamic physical scan path

that “weaves” through only those frames that have been selected. Now we describe the

proposed approach in detail.

Let S = {0, 1, · · · , n− 1} be a set of configurable elements (frames) and let C ⊆ S be a

k-frame subset requiring partial reconfiguration. The strategy is to construct a “primary”

k-bit scan path that traverses only the selected frames (see Figure 2.2); we will detail this

later. For simplicity and without loss of generality, let us assume that each frame requires w

configuration bits (w is the width of the scan path). To accommodate d > w configuration

bits per frame of C, we could use secondary scan d-bit scan path as shown in Figure 2.2.

As noted earlier, the objective is to construct a circuit that connects (only) the k elements

of C in a k-bit scan path in which elements of C represent flip-flops (sequential elements)

and all hardware between flip-flops is combinational (see Figure 2.3). The circuit has k

flip-flops (say F0, F1, · · ·Fk−1) connected serially with πi as the combinational path from

Fi−1 (if it exists) to Fi; 0 ≤ i < k. Let ti denote the delay of path πi. Then ignoring

flip-flop set-up/hold times and safety margins, the minimum time between two clock pulses

for this circuit is

T0 = max{t0, t1, · · · , tk−1} (2.3)

and the maximum clock frequency is f = 1
T0

. On such a circuit, k bits can be scanned in

in kT time. We will call T , the delay of the scan path. We will also call sets S and C as

the scan set and the configuration set, respectively. We have assumed that |S| = n and

|C| = k.

We propose an architecture that, when given set C ⊆ S, configures itself to dynamically

form a scan path with small delay that traverses the elements of C. Figure 2.4 shows the
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bitstream

bitstream

primary scan path

secondary scan paths

complete scan path

Figure 2.2: A schematic illustrating the primary and secondary scan paths. The paths
marked as red and green in the upper schematic are the primary and secondary paths,
respectively. The path marked as blue in the lower schematic is the complete scan path
consisting of the primary and the secondary paths.

overall structure of the architecture. The scan-path network establishes the combinational

paths π1, π2, · · · , πk−1 based on the scan set C. In fact it can also establish π0. However for

the particular network proposed in Chapter 3, T0 = Θ(log n) and this causes the delay of

the entire scan path to be Θ(log n) because the length of all possible combinational paths

in that network is O(log n). If this delay is acceptable, then the header path network is

not necessary. Otherwise, the header path network establishes a fast path π0 to the first

element of C. This, in turn, opens up the possibility of speeding up the configuration

bitstream clock.

Each of the scan-path and header-path networks has two “planes,” the data and control

planes. The data plane is what is highlighted in Figure 2.4. This plane is entirely combi-

national (except for the configuration flip-flops) and has the path connecting the flip-flops

corresponding to elements of C, through which the configuration bitstream is to be scanned
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bitstream π0 π1 π2 π3 π4

F0 F1 F2 F3 F4

Figure 2.3: A schematic of the scan path for an example, in which k = 5 out of 16 elements
have been selected; π0–π4 represent combinational paths.

π0

π1

π2
π3 π4

clock speed recommendation

scan path network

header path network

bitstream

Figure 2.4: Structure of the proposed architecture; the example of Figure 2.3 has been used
here. The data path is shown highlighted. Control connections are shown dashed.

in. The control plane primarily generates signals to set up the path(s) in the data plane.

The control plane of the scan-path network may, optionally, also generate a clock speed

recommendation based on the path-lengths in the data plane which will be covered later

in Chapter 5. The control plane may contain sequential elements, but the configuration

bitstream does not traverse this plane.

The main tasks performed by these networks are (a) configure header path π0, (b)

configure the scan path π1, π2, · · · , πk−1 (c) generate clock recommendation. The bitstream

can be scanned in as soon as these actions are completed. While the header and scan paths

can be established in parallel, the clock recommendation cannot be generated until the

scan path has been established. This is because the clock rate depends on the delays of the
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combinational segments of the scan path. If the three tasks above require th, ts, tc time,

respectively (for header, scan and clock), then the minimum time before the bitstream can

be scanned in is max{th, ts + tc}. If the clock recommendation is to have clock cycle of

duration T0, then the total time needed for partial reconfiguration is

max{th, ts + tc}+ kT0. (2.4)

Here, max{th, ts + tc} is the preprocessing time and kT0 is the time to scan in the k

bits. Preprocessing time is the time to set up the scan path and generate the clock speed

recommendation, but, in general, any time spent to initialize the network and prepare it

for the data is considered as the preprocessing or initialization time. In this work, the

total time to input kd configuration bits will be used as the performance measure for the

proposed architectures. For certain cases, our method achieves the “optimal” O(kd) time.

The proposed architectures also have a gate cost of Θ(n) which is optimal considering that

n configuration flip-flops are needed.

The various parts of the networks described in following chapters are coordinated by a

“Master Controller” whose function includes the following:

(1) Start the preprocessing once a request to partially reconfigure is received after

frames have been selected for reconfiguration; and

(2) Detect the end of preprocessing and send a signal to the configuration server to

send in the configuration bits.
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Chapter 3
The Basic Network

The Basic Network is the underlying architecture that makes the dynamic reconfig-

uration possible using our approach. Given a subset of frames to reconfigure, the Basic

Network provides a physical path that “weaves” through only those frames that need re-

configuration. The configuration bitstream can then be shifted in through the path to

reconfigure the selected frames. Later on, we will propose other modifications to the Basic

Network (such as the networks with clock recommendation and shortcuts); therefore, the

Basic Network is a crucial building block for our proposed designs. The Basic Network (as

the other proposed networks) has two planes: the data plane and the control plane. As we

discussed in the previous chapter, the data plane is responsible for delivering the configu-

ration bits to the flip-flops corresponding to the selected frames and the control plane is

responsible for providing the control signals to set up the data path in the data plane. We

now describe the data and control planes.

3.1 Basic Network Data Plane

As described in Chapter 2, a key attribute of the network is to allow for paths connecting

elements of all 2n−1 possible non-empty subset of frames, while keeping the combinational

delay of the path segment between frames low. To this end, the approach used is similar to

that of Roy et al. [36]. Consider the binary tree shown in Figure 3.1. It consists of “internal

nodes” and “leaf nodes” through the subset of which the final configuration bitstream is

going to pass. In Figure 3.1, internal nodes are shown as triangles and leaf nodes as circles

at the bottom. Leaves that have been selected for reconfiguration are highlighted. We will

call them “active” leaf nodes.
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bitstream

π0

π1

π2

π3

π4

Figure 3.1: An example path in the Basic network. The underlying tree is shown dotted.
The header path π0 is shown separately (starting at the root). A “trailer” path terminating
at the root is also shown dashed; this has no impact on the scan path delay. However,
allowing this path restricts the number of internal configurations of a tree node to the ones
shown in bold.

Each internal node x in the underlying tree has three pairs of ports, pi(x), po(x), `i(x),

`o(x), ri(x), ro(x) (see Figure 3.3); one pair connects to the parent of x and the remaining

pairs connect to the left and right children of x. Let x be the left child of node y; that is, y

is the parent of node x. Then port pi(x), that represents the input port of x from its parent

y, connects from `o(y), the output port of y to its left child x. Similarly po(x) connects

to `i(y) and ports `i(x), `o(x), ri(x), ro(x) to the left and right children of x. By internally

connecting input ports to output ports within each node, a path can be established within

the tree (much like buses are constructed on a Reconfigurable Mesh [28]). For example

in Figure 3.1, the root internally connects pi to `o for path π0 to be constructed from the

input bitstream down to root’s left child.

The internal nodes of the Basic Network make internal connections to establish paths

between leaves. Figure 3.2 shows the configurations of the internal nodes of the Basic

Network needed for our purpose. Figure 3.2 (a) represents a node where descendants are

not part of any path. Figure 3.2 (b) and (c) represent a situation where all selected frames
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(a) (b) (c) (d)

Figure 3.2: The different configurations of the internal nodes. These variations are shown
in bold in Figure 3.1.

lie to one of the “sides” of the node. In Figure 3.2 (d) both sides of the node have selected

frames, so the path needs to traverse the left side first and then cover the right before

returning to the parent. It should be noted that other possible internal configurations

(such as traversing from the parent to the right and then the left, or making a U-turn at

an internal node) will not be needed for our approach (see Section 3.2).

Figure 3.3 shows a possible design for the internal structure of a tree node in the data

plane that accommodates the four configurations of Figure 3.2. For an output port on the

top (to parent) and right (to right child) “sides” of the node, there is a multiplexer that

selects at most one of the two inputs from the other two sides of the node; this includes

the possibility of selecting neither input port through a tri-state gate.

As shown in Table 3.1, by appropriately setting the control lines, c0(x), c1(x), c2(x),

c3(x), and c4(x), the four configurations for the internal connections can be realized. It is

clear that once the multiplexers and tri-state gates are properly configured, the scan path

is ready (see Figure 3.1) to shift in the bitstream; we will show later in Section 3.2 that

the path traverses only the selected leaves.

So far we have seen this tree structure constructs a datapath that is completely com-

binational. The leaf nodes at the bottom of the tree are the only sequential elements in

this architecture. Each leaf node is implemented using a simple D flip-flop in order to be

able to store the final values when the bitstream is completely shifted in; meaning the first

configuration bit has reached the last active leaf of the network. Each stored bit will then
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pi(x) po(x)

ro(x)

�i(x)

c4(x) c0(x)

c2(x)
ri(x)

c3(x)

�o(x)
c1(x)

0

1

0 1

Figure 3.3: Internal structure of data plane of a tree node (data node x). The multiplexers
and tri-state gates allow for the connections shown in Table 3.1.

reconfigure the corresponding frame. As a result, we might interchangeably use the term

“frame” to refer to the leaf nodes and vice versa.

Recall that we assumed (without loss of generality) that each frame needs only one

configuration bit. If a frame needs more than one configuration bit, we can still employ a

similar idea as stated below. Let each leaf node require d configuration bits. Now, there

are two options for sending in the configuration bitstream to a frame, while utilizing the

same Basic Network architecture: the serial bits option and parallel bits option. Figure 3.4

shows these methods. In the first method, the configuration bits of each frame are placed

one after another in a sequence and the bitsream entering each frame is serially shifted

through in d clock cycles (see Figure 3.4 (a)). In order to accomplish reconfiguration, the

length of the required bitstream in this case is Bs = B · d, where B is the length of original

bitstream. In the parallel method, the width of original bitstream has to increase to d bits
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so they can be delivered in parallel, d at a time per clock cycle (Figure 3.4 (b)). Clearly,

one could have a hybrid method where the d bits of a frame are sent b bits at a time where

1 ≤ b ≤ d.

(a) (b)

d = 4

bitstream bitstream

d

[0]

[1]

[2]

[3]

clk clk

Figure 3.4: An example of the two proposed methods for implementing frames with more
than one configurable bits (d = 4). Dashed line shows the boundary of a frame. The
two methods are (a) serial method where the bitstream is a 1-bit data line and is shifted
through each flip-flop of the frame, (b) parallel method where the bitstream has a width
of d and configures the flip-flops all at once in 1 clock cycle.

3.2 Basic Network Control Plane

The control plane of the scan-path network too has an underlying tree of the form

shown in Figure 3.1. At the leaves are the n elements of the scan set S. The k elements of

the configuration set C are distinguished by a flag fi that is 1 if and only if i ∈ C meaning

that frame i needs reconfiguration. Consider any internal node x in the underlying binary

tree. Notice from Figure 3.1 that if none of the leaves of x are in C, then none of the

ports of x are internally connected. The other three internal configurations of interest can

also be similarly categorized as shown in Table 3.1. We use the following notation in the
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table. We denote by Tx, T `
x , T r

x , the subtrees rooted at x, its left child and its right child,

respectively. A tree T will be said to be active if and only if there is a leaf i in T such

that i ∈ C; recall that the leaves of the tree are elements of S. The global conditions that

Table 3.1: Control plane operation; “∗” indicates a don’t care.

global local condition control signals internal
condition αx βx γx c0 c1 c2 c3 c4 configuration

Tx is not active 0 0 0 0 ∗ ∗ 0 0

T `
x is not active, but T r

x is 0 1 1 1 1 1 1 0

T r
x is not active, but T `

x is 1 0 1 1 0 ∗ 0 1

Both T `
x and T r

x are active 1 1 1 1 1 0 1 1

characterize the internal configurations of a node can be reduced to simple local conditions

by propagating “indicator bits,” described below.

Each leaf i sends its flag fi as the indicator bit to its parent; recall that fi = 1 if and

only if i ∈ C (simply meaning that the frame needs to be reconfigured). We call a node

active iff it receives a 1 indicator bit. Let each control node x receive indicator bits αx
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and βx from its left and right children. Then it uses the internal configuration shown in

Table 3.1 to generate the values of the control signals c0(x), c1(x), · · · , c4(x) of Figure 3.3

and also sends indicator bit γx = (αx OR βx) to its parent. In this case, it is obvious that

a 1 will propagate through the control nodes’ OR gates up to the node x even if fi = 1

for only one of x’s descendant leaves. Therefore, the local conditions of Table 3.1 reflect

the global condition and the scan path will be constructed. Figure 3.5 shows the internal

αx βx

γx c0 c1 c2 c3 c4

Figure 3.5: Internal structure of the control node x.

structure of the Basic Network’s control node x. Table 3.1 was used as a truth table to

derive the control signals ci(x) for this circuit. The values marked with “∗” are “don’t care”

which have no effect on the output if take either value of 0 or 1 but are chosen in a way to

result in a simpler circuit.

The Basic Network also has a control. This unit, as the name suggests, is a module that

orchestrates the operation of the whole network. It provides an interface between different

modules of an architecture and also to the outside. The term “outside” in this context can

mean any other module with which the main module is interacting. In Basic Network, the

controller is a part of the control plane and has three inputs start init, reset, clk, and an

output done init (see Figure 3.6). Its main function is to generate a done init when the
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paths in the tree have been completely set and the network is ready for the data to be

shifted. In other words, done init will be set to 1 when the initialization phase is done.

To achieve this function, the controller can be implemented using a Finite State Machine

(FSM) that operates as follows. In its initial state, the FSM waits for a start init signal

(that initiates PR) to begin the operation. Upon receiving start init, an internal log log n-

bit counter starts counting and the FSM stays in this state until the counter counts up to

log n. The reason behind designing such counter is that the time it takes for the indicator

bits to propagate to the root of the scan tree has a O(log n) combinational delay. That is

because the longest combinational path that the indicator bits of the control plane, namely

fi flags, have to pass to reach the root of the tree from the leaves is proportional to log n

OR gate delays. Therefore, the time it takes for a log log n-bit counter to count up to log n

(with a carefully chosen clock to be slightly greater than an OR gate delay) is going to

give a good estimate of initialization time. After the counter finishes the count, the FSM

goes to its final state where it sets the output signal done init to 1 indicating that the

Basic Network is ready for the bitstream. The done init signal is passed on to the unit

responsible for dispensing the configuration bitstream. Figure 3.6 shows a block diagram of

the Basic Network. Tree nodes of the data plane (“data nodes”) are labeled as “DNi” and

those of the control plane (“control nodes”) “CNi” where i is node index. The connection

between CNi and DNi consists of the five control signals c0(i), c1(i), · · · , c4(i). Leaf nodes

are labeled as “DFFi” (as it consists of a D flip flop).

Observe that each node of the control and data planes uses a constant amount of logic,

so its cost and delay are both constants meaning they do not change with the number of

frames n (which we call the size of the network). Since the number of internal nodes in the

network is n− 1, the hardware cost of the Basic Network is Θ(n). Note that the height of

a binary tree with size n is log n. Therefore, the control plane determines all the control

inputs with O(log n) combinational delay as said earlier. The scan path also generates a

path out of the last element of C (shown dashed in Figure 3.1), but as observed earlier, it
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tree in

tree out

start init

done init

reset

clk

clk c

ci

ci ci

flag config

Basic Network

scan path network

internal node[0]

internal node[1] internal node[2]

leaf nodes

DFF0 DFF1 DFF2 DFF3

f0 f1 f2 f3

CN0

CN1 CN2

DN0

DN1 DN2

MU-Decoder

Controller

Figure 3.6: Block diagram of the Basic Network of size n = 4. Notice that the MU-Decoder
mentioned in Chapter 1 is used at the input of the Basic Network and it allows for random
selection of flag bits fi when provided with (for example) a log n-bit input flag config.
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is of no consequence to the speed of operation of the scan-path because this path is placed

after the last sequential element of the logic; it exists only due to the uniformity in the

internal node design.

Notice that the header path π0 of the scan path has Θ(log n) delay. Other paths πj

(for 0 < j < k) have O(log n) delay in the worst case, but can be substantially shorter

(for example, path π2 of Figure 3.1); we also address path lengths in Chapters 4, 5, and 6.

Therefore, we have the following result.

Lemma 1 For any 1 ≤ k ≤ n, let scan set S and configuration set C have n and k elements,

respectively. There exists a scan-path network that can generate a scan-path through the

elements of C, such that its hardware cost is Θ(n), its delay is Θ(log n) and the scan-path

clock cycle time is Θ(log n).

This result is without the header-path network and clock recommendation (Chap-

ters 5 and 6). Lemma 1, coupled with the fact that th = tc = 0 in Equation (2.4), gives the

following result.

Theorem 2 There exists a scan-path network of size Θ(n) that can configure any set of

k elements out of a set of n elements in Θ(k log n) time.

Remark: The above results are for the Base Network described in this chapter.
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Chapter 4
The Shortcuts Network

In Chapter 3 (the Basic Network), we used a balanced binary tree as the underlying

structure. This has the disadvantage of a large O(log n)-delay path when two adjacent

elements of C lie on different halves of S, even if the indices differ by a small amount (for

example, if n
2
− 1, n

2
∈ C, then the topological distance between them would be 2 log n).

In this chapter, we augment the tree in the Basic Network by adding an edge between

adjacent leaves ( see Figure 4.1). This requires additional “leaf switches” that determine

whether a path is going up the tree or directly moving right to the next leaf (using the

shortcut). This would, for example, reduce the distance between n
2
− 1 and n

2
to 1. In fact,

π2

π1 π4π3

Figure 4.1: An example path in the Shortcuts Network. The underlying tree is shown
dotted. The new set of switches at the leaves are shown as squares (see also Figure 4.2)
and the connection between these switches is shown in green. The header path π0 is omitted
for clarity. Observe that the first two leaves and the last three leaves in the configuration
set are connected by shortcut edges. The connection from leaf 2 to leaf 3 traverses the tree
edges (length 10 from “circle-to-circle”); in contrast, the shortcut path between these two
leaves has length 13.
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for the case where C has contiguous elements of S (see Section 5.1), the scan path delay

is a constant. However, for other pairs of leaves, for example n
3

and n
2
, the path in the

original tree is better. Note that adding a shortcut network does not change the worst case

delay since there is still uncertainty about how the elements of C are distributed among

the leaves of the tree; the worst case delay is still 2 log n and consequently we will need a

O(log n)-cycle clock. However, having shortcuts added to the Basic Network improves the

probability of a faster clock in some cases. In Chapter 5, we will introduce yet another

augmentation to the Basic Network that will enable it to detect such situations in which

the clock can be improved.

4.1 Shortcuts Network Data Plane

As said earlier, the Shortcuts Network is an enhancement to the Basic Network to

improve its performance. The Shortcuts Network’s data plane consists of n leaf switches

at the base of a tree structure (Figure 4.1). Whenever appropriate, these switches enable

the data path to skip the “tree path” and instead use a faster route through the “shortcut

path” to reach the next active leaf. The rest of the data plane is identical to that of

the Basic Network including the tree structure and the leaf nodes. Figure 4.2 shows the

structure of the switch at each leaf x. The switch receives three inputs pi(x) (from its

parent), si(x) (the shortcut input from its left) and fi(x) (from the “frame” that the leaf

represents). Table 4.1 shows the eight configurations of leaf switches that are required in

order to satisfy all the possible states of the datapath; all except the case in Table 4.1(g) are

illustrated in Figure 4.1. By appropriately setting the control signals ci(x) for 0 ≤ i ≤ 4,

the eight configurations of a leaf switch can be realized. The proper values of these control

signals are also shown in Table 4.1. The value shown as “∗” is a don’t care value and can

be chosen arbitrarily. Also, for the cases (b) and (c) (the first and the last leaves), there are

two possible cases depending on the configuration set. The control signals for both cases

(i.e., shown with solid and dashed lines) are written before and after a slash. Furthermore,
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0
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Figure 4.2: Internal structure of the data plane of a leaf switch x.

for cases (a) and (h) in which the corresponding leaf is inactive, the signal c0 is chosen to

be a don’t care instead of a zero. That is because the parent of this switch is an internal

node with already “disconnected” ports, therefore, choosing “∗” for c0 would not affect

the function of the switch. In the Section 4.3, we will cover how these control signals are

produced in the control plane.

4.2 Selecting the Right Path

In this section we describe a method by which a pair of selected adjacent leaves in C

can decide which path to use, the one with tree edges or the one with the, newly added,

shortcut edges.
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Table 4.1: Configurations of a leaf switch

Configuration
Remarks /

Control Signals
Configuration

Remarks/
Control Signals

shortcut passing through
end of shortcut path,
beginning of tree path

(a)
c0 = ∗, c1 = 1, c2 = 0,

c3 = ∗, c4 = 0
(e)

c0 = 1, c1 = 0, c2 = 1,
c3 = 1, c4 = ∗

last leaf
end of tree path,

beginning of shortcut
path

(b)
c0 = ∗, c1 = ∗, c2 = 1,
c3 = 1/0, c4 = ∗ (f)

c0 = 0, c1 = 1, c2 = 1,
c3 = 0, c4 = 1

first leaf
end and beginning of

tree paths

(c)
c0 = 0/1, c1 = 1/0,

c2 = ∗, c3 = ∗, c4 = 1/∗ (g)
c0 = 1, c1 = 0, c2 = 1,

c3 = 0, c4 = ∗

end and beginning of
shortcut paths

no path

(d)
c0 = 0, c1 = 1, c2 = 1,

c3 = 1, c4 = 1
(h)

c0 = ∗, c1 = 0, c2 = 0,
c3 = ∗, c4 = ∗
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The idea is to propagate control information through both the tree and shortcut paths

and select the shorter one. Let i1, i2 be a pair of adjacent elements of C. As in Chapter 3,

i1 and i2 each send an indicator bit up the tree until they meet at their lowest common

ancestor. Here, we also require these indicator bits to come back down the tree. That is,

the bit from i1 reaches i2 and vice versa. Additionally, i1 and i2 each also sends a different

indicator bit along its shortcut edge. Assume that the control plane of each internal node

has flip-flop(s) to shift information up and down the tree. Similarly, let each leaf have

flip-flop(s) to shift information along the shortcut edges. It is important to note that since

the flow of the bitstream (in the reconfiguration phase) is from i1 to i2 later, node i1 has

to decide how to set its switches (via control signals ci in Figure 4.2) in order to send the

data in the correct direction (i.e. via the shorter path); similarly, i2 has to properly set

its control signals to receive the data from the shorter path. That is why i1 and i2 both

need to send the control information to each other through the tree and shortcut edges.

Figure 4.3 illustrates this idea.

i1 i2 i1 i2 i1 i2

(a) (b) (c)

bitstream

tr
ee

shortcut

Figure 4.3: The procedure of selecting the right path between two adjacent elements of
C, i1 and i2; (a) i1 sends a bit forward along both tree and shortcut paths and based on
which one has arrived faster i2 sets its input switches accordingly; (b) i2 sends a bit in
the opposite direction along both paths and i1 sets its output switches accordingly; (c) the
path in the data plane has been set and is ready for the bitstream. In this illustration
the shortcut path has been shown to be shorter. The other path could also have been the
shorter one in a different example. Parts (a) and (b) need not be done one after the other.
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We now describe how i1 sends information to i2 along both paths, and how i2 picks the

shorter one; the reverse direction is similar. Let the lowest common ancestor of i1 and i2 be

x at level `. The tree path between i1 and i2 has length 2` and the shortcut path has length

|i2− i1|. Upon receiving a “start” signal from the master controller, leaf i1 sends a 1 to its

parent and this 1 shifts along the path through the lowest common ancestor node x and

then back down to i2. Note that the internal nodes have already been set up to construct

the paths in the tree using the same method as described in Section 3.2. Similarly, leaf i1

sends another 1 through the shortcut edge to neighboring leaf i1 + 1 and then to i2. Both

1’s shift through the path, one node at a time, through a sequence of flip-flops until they

reach i2 after 2` and |i2 − i1|, clock cycles, respectively. Node i2 has a finite-state machine

(FSM) (see Figure 4.4) that accepts inputs from the top (tree edge) and side (shortcut

edge); let these inputs be a and b, respectively. The FSM starts at an idle state where it

waits for a “start” signal to be issued. Upon receiving the start signal s, the FSM goes to a

wait state in which it waits for the two control signals from the top and the side to arrive.

It selects one of two states “tree” or “shortcut” depending on which 1 reaches i2 first. If

both 1’s reach at the same clock cycle, then the FSM can pick any one of the two states

(the FSM in Figure 4.4 selects the tree path). After selecting a state, the FSM stays in that

state regardless of any changes in the inputs. Additionally, there is a fourth asynchronous

input reset which takes the FSM back to its idle state. This is indicated as the starting

state in Figure 4.4. Clearly, this FSM (which is present at every leaf) has constant size

and delay and does not change the asymptotic network complexity.

4.3 Shortcuts Network Control Plane

Now that we covered the idea behind selecting the right paths, we will describe the

implementation of a circuit to perform this task. The process of selecting the right path

takes place in the control plane of the Shortcuts Network (the data plane is still combina-
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idle

reset

wait

tree

shortcutabs = ∗ ∗ 0 abs = ∗ ∗ ∗

abs = ∗ ∗ ∗

abs = 00∗

abs = 1 ∗ ∗

abs = ∗ ∗ 1 abs = 01∗

Figure 4.4: The FSM to select between the tree edges and shortcut edges. State transitions
are labeled with values for the inputs a, b, and s. A don’t care value is indicated by a “∗.”
For example abs = 01∗ indicates that the input can be abs ∈ {010, 011}.

tional.) As in the Shortcuts Network’s data plane, the control plane also consists of two

main components: a tree structure and a set of leaf switches.

Again, let i1 and i2 be a pair of adjacent elements of C. As stated earlier, the tree

structure is responsible for shifting indicator bits to give each one an estimate of the delay

of that path. Therefore, the tree has to have the ability to shift the indicator bits in

both directions; namely forward as in sending from i1 to i2 and backwards in the opposite

direction. The internal structure of each node in the tree is similar to that of Figure 3.3.

The only exception is that here we use flip flops at each output port in order to be able

to shift the information along the tree (see Figure 4.5); in contrast Section 3.1 used a

combinational circuit. Each internal node (labeled (f) as in “forward”) is accompanied by

a complementary circuit (marked with dashed boundary and labeled (b) as in “backward”)

which uses the exact same structure but in a reversed direction to enable sending the

indicator bits in both directions.

As in the data plane, we have leaf switches at the base of the tree in the control

plane. These switches are responsible for shifting the indicator bits in both directions and

determining the shorter path by using the local FSM described in Section 4.2. Figure 4.6

illustrates the internal structure of the leaf switch x in the control plane of the Shortcuts
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Network. The module labeled as (f) is responsible for shifting the indicator bits forward

(to the right) through the shortcut path. It also uses the aforementioned FSM to determine

the shorter path between the tree path and its corresponding shortcut path entering from

the left. Like the internal control node of the tree, this module is also paired with an

identical switch but in the reverse direction; namely, the switch (b) shifts the bits from the

right to the left and also determines the shorter path between the incoming tree path and

the shortcut path on its right side.

Forward leaf switch xf at leaf x has two input ports “upper” (from tree) and “side”

(from shortcut), ufi (x) and sfi (x), respectively. It also has two output ports ufo(x) and

sfo(x) to the tree and the side, respectively. Port ufi (x) is connected to the input of the

FSM and sfi (x) is fed to a flip-flop before entering the FSM. That is because we want to

count x itself in contributing to the total delay. The FSM gets its start signal w when both

start and f(x) are asserted where start is the signal issued by the controller to initiate the

delay assessment phase; and f(x) is the flag indicating the corresponding frame is active.

If f(x) = 1, then the leaf switch initiates the indicator bits through the output ports

ufo(x) and sfo(x) and also determines the faster path using the FSM; otherwise, neither

is performed and the “inactive” switch just shifts along the incoming indicator bits. As

mentioned earlier, the function of leaf switch xb (marked as (b) in Figure 4.6) is identical to

xf but in the opposite direction. The leaf switch at leaf x in the control plane ultimately

generates two outputs gf and gb which along with the flag signal f(x) will determine the

values of the control signals ci(x) of the leaf switch x in the data plane (Figure 4.2) as

follows:

c0(x) = c1(x) = gb(x) + f(x)

c2(x) = c4(x) = f(x)

c3(x) = gf (x)
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The advantage of the Shortcuts Network will become clearer after the discussion of

Clock Recommendation in Chapter 5 (see Theorem 10). Additionally, preliminary analysis

of the tree structure showed that adding shortcuts at other levels of the tree is not beneficial.
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(f)

(b)

pfi (x) pfo(x)

`fi (x)

`fo(x)
rfi (x)

rfo (x)

pbi(x)pbo(x)

`bi(x)

`bo(x) rbi (x)

rbo(x)

clk
reset

clk
reset

cl
k

re
se

t

c0
c1

c2

c3

c4

Figure 4.5: The internal structure of node x in the control plane of the Shortcuts Network.
The module shown as dashed represents the internal node of a tree that shifts the indicator
bits “backwards,” from i2 to i1.
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(f)

ufi (x) ufo(x)

sfi (x) sfo(x)

f(x)start

gf (x)

FSM

clkreset

w

(b)

ubi(x)ubo(x)

sbi(x)sbo(x)

f(x)start gb(x)

Figure 4.6: The internal structure of leaf switch x in the control plane of the Shortcuts
Network. The module (b) represents the leaf switch that shifts the indicator bits “back-
wards” and its internal structure is the mirror image of (f). The leaf switch also generates
an output gf (x) (resp. gb(x)) which indicates the shorter path between the path coming
down from the tree and the shortcut path entering from the left (resp. right).
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Chapter 5
Clock Recommendation

Chapter 6 will effectively establish that the maximum clock rate for scanning in the

bitstream is independent of the header path, π0, depending only on the delays of the

remaining paths π1, π2, · · · , πk−1 in the scan path network. As the example in Figure 3.1

shows, some of these paths may be very short (length of 2 for π2) and others quite long

(length 2 log n for path π3); in fact any path between adjacent nodes of C that are in

separate halves of the tree is of length 2 log n in the Basic Network which is the longest

possible combinational path length in this architecture; however, in the Shortcuts Network

they could be closer. The maximum clock rate is inversely proportional to the length of

the longest path.

In this chapter we first identify situations where a lower clock rate can be employed

by investigating two cases of selecting a configuration set from the scan set, namely, (a)

“random distribution” and (b) “contiguous distribution” of the configuration set elements.

Then, we will derive a network that can prescribe the correct clock rate to use in bringing

in the configuration bits. We call this the “Clock Recommendation Network.” Both the

Basic and Shortcuts Networks are considered.

5.1 Random Distribution

There are

(
n

k

)
ways to select a k-element configuration set C from an n-element scan

set S. Here we assume that all these ways are possible with equal probability
1(
n
k

) ; that is,

the elements of the configurable set C are randomly distributed over the scan set S. For

any specific choice of C, the scan-path delay (when mapped as in Chapter 3) can range

from 2 to 2 log n; for simplicity, and without loss of generality, we assume the delay of each

path connecting two nodes (including a node on one end) to be 1. Otherwise, assuming
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this delay to be a constant value D will only scale the path delay by this constant value.

Therefore, assuming D = 1 does not affect the main principle here.

In this section we derive the average path length over all

(
n

k

)
choices for C. For any

given 2 ≤ k ≤ n, let the average maximum path length be A(n, k). If a particular C

includes elements from both halves of S, then the scan-path delay is 2 log n (as this path

must traverse the root of the tree). Let σn,k be the probability that C spans both halves

of S. Then

A(n, k) = σn,k (2 log n)︸ ︷︷ ︸
spans two halves

+ (1− σn,k) · A
(n

2
, k
)

︸ ︷︷ ︸
restricted to n

2
leaf tree

(5.1)

If k > n
2
, then clearly σn,k = 1 and A(n, k) = 2 log n. Suppose that 1 < k ≤ n

2
. The

probability that C is restricted to one of the halves of S is

1− σn,k = 2

(
n/2

k

)
(
n

k

) = 2
k−1∏
j=0

(
n− 2j

2n− 2j

)
≤ 1

2k−1 ;

the last inequality follows from the fact that for any x ≥ 2y ≥ 0,
x− 2y

2x− 2y
≤ 1

2
. That is,

σn,k ≥
(

1− 1

2k−1

)
≥ 1

2
.

From this and Equation (5.1) we have

A(n, k) ≥ σn,k (2 log n) ≥ log n.

Since the worst case delay is 2 log n, we have the following result.

Lemma 3 The average scan-path delay on the Basic Network for a random distribution

of configurable elements over an n-element scan set is Θ(log n).
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If a Shortcuts Network is used then for a random distribution, the average shortcuts

path between two elements of C is
n

k
. Thus, we have the following lemma.

Lemma 4 The average scan-path delay on the Shortcuts Network for a random distribu-

tion of configurable elements over an n-element scan set is Ω
(

min
(

log n,
n

k

))
.

Comment: Since k is typically quite small,

min
(

log n,
n

k

)
= Θ (log n) .

5.2 Contiguous Distribution

Lemma 3 shows that in the random case, there is little hope for significantly reducing

the scan-path delay. However in most applications, the configurable elements are placed

close to each other due to spatial locality of frames to be reconfigured. For example if a par-

tial reconfiguration module spans multiple frames, then these frames would be contiguous.

In this section we consider the case where all k elements of C are contiguous elements of S.

Here, there are only n − k + 1 possibilities with only k − 1 of these spanning both halves

of S. Figure 5.1 demonstrates the possible positions for the distribution of k contiguous

elements over the n elements of set S.

Therefore for k ≤ n

2
and with α = k − 1, here we have σn,k =

k − 1

n− k + 1
=

α

n− α
and

1− σn,k =
n− 2α

n− α
. From this and Equation (5.1) we have

A(n, k) = 2

(
α

n− α

)
log n+

(
n− 2α

n− α

)
· A
(n

2
, k
)

(5.2)

= 2

(
α

n− α

)
log n+

(
n− 2α

n− α

)
·
[
2

(
α

n
2
− α

)
log

n

2
+

( n
2
− 2α

n
2
− α

)
· A
(n

4
, k
)]

= 21

(
α

n− α

)
log n+ 22

(
α

n− α

)
log

n

2
+

(
n− 22α

n− α

)
· A
(n

4
, k
)

=
u∑

j=0

(
2j+1α

n− α

)
log

n

2j
+

(
n− 2u+1α

n− α

)
· A
( n

2u+1
, k
)
.
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n− k + 1

n

k − 1

midpoint
k

Figure 5.1: An illustration of the possible positions of k contiguous elements. The only
k − 1 cases that span both halves of S are enclosed in a gray box.

Let 2u ≤ n

k
< 2u+1. Then A

(
n

2u+1 , k
)
≤ 2 log k. Now Equation (5.2) can be written as the

following for n ≥ 4.

A(n, k) ≤
u∑

j=0

(
2j+1α

n− α

)
[(log n)− j] + 2 log k

≤
(

α

n− α

)[
2u+2 (log n− u+ 1)

]
+ 2 log k

For
√
n ≥ k ≥ 1, it is easy to show that

α

n− α
=

k − 1

n− k + 1
≤ k

n
. Additionally, since

u ≤ log n− log k < u+ 1 we have

(
α

n− α

)[
2u+2(log n− u+ 1)

]
≤ 4k

n
[2u(log n− u+ 1)]

≤ 4k

n

[n
k

(log n− u+ 1)
]

≤ 4k

n

[n
k

(log k + u+ 1− u+ 1)
]

≤ 4 log k + 8.
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Thus,

A(n, k) ≤ 6 log k + 8.

So far, we have assumed that k ≤
√
n. If k >

√
n, then A(k, n) ≤ 2 log n ≤ 4 log k. Thus

we have the following result.

Lemma 5 The average scan-path delay for a contiguous distribution of k configurable

elements over an n-element scan set in the Basic Network is O(log k).

Lemma 6 The average scan-path delay for a contiguous distribution of k configurable

elements over an n-element scan set in the Shortcuts Network is constant.

5.3 Clock Recommendation

Lemmas 3 through 6 illustrate extreme cases for the distribution of the configuration

elements. Many practical cases would lie in between, possibly closer to the contiguous

distribution case as argued earlier. Therefore, there is a good chance that a fast clock

could be used for many cases. This requires the module generating the clock to know the

acceptable clock speed for the scan-path. In this section, we derive a circuit that returns a

measure of the delay of the scan path; this can be used to select an appropriate clock rate

for scanning in the configuration bitstream.

Recall that the scan path consists of k flip-flops with combinational paths π0, π1, · · · , πk−1

to their inputs. Let ti denote the delay of path πi. As will be shown in Chapter 6, t0 can

be assumed to be 1. Therefore, the scan-path delay is ts = max{ti : 1 ≤ i < k}. It is easy

to observe from Figure 3.1 on page 17 that if the highest level that path πi reaches is `max ,

then its delay is 2`max ; here `max is the maximum height of a lowest common ancestor. Thus

by detecting a node x of the tree where the path connecting two adjacent elements of the

configuration set C turns from the left child to the right child, one can ascertain the level

of x, and hence, the delay of that path. Now, if a circuit can find the highest level at which

41



exists a node with such property exists, then that would indicate the maximum admissible

clock rate. Additionally, even though this level can be as large as log n (a log log n-bit

quantity), each node should remain of constant size so that the entire network can be of

size Θ(n). Now we will describe such a network that we call the Clock Recommendation

Network.

Again, we use a tree structure similar to that of the Basic Network (Figure 3.1 on

page 17). Each node x first sets a flag ρx to 1 if and only if the path turns from its left

child to its right child; all this requires is setting ρx = (αx AND βx) (see Table 3.1). For

subsequent discussion we will term these nodes as turn nodes. Care must also be taken to

ignore the dummy last path πk.

Next at clock cycle t ≥ 0, each node x, with left and right children y and z, respectively,

generates a bit ξtx as follows:

ξ0x = ρx and for t > 0, ξtx =
(
ξt−1x OR ξt−1y OR ξt−1z

)
.

Observe that if ξtx = 1, then for all t′ > t, we have ξt
′
x = 1.

Figure 5.2 shows the internal structure of node x. Note that at t ≤ 0 before the clock

assessment phase begins start = 0, therefore, the D flip flop stores the value of ρx on its

output. When signal start hits (t > 0), the circuit changes its mode to generate the output

ξtx as expected. Also, it is important to note that for every node located at the first level

above the leaves, ξt−1y = 0 and ξt−1z = 0 for every t. Since these signals are input to a

3-input OR gate, having this gate is unnecessary for the nodes at level(x) = 1 and the

output of the flip flop can be directly fed to the Multiplexer.

For any node x, let Desc(x) be the set of descendants of x (including x itself). Let

Turn(x) = {y ∈ Desc(x) : ρy = 1} be the subset of descendants of x that are turn nodes.

For any node x, let level(x) be its level. Let the turning level, L(x) = max{level(y) : y ∈
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start

clock
reset

ξtx

ξt−1
y ξt−1

z

βxαx

γx

ρx
1 0

Figure 5.2: The internal structure of node x in the Clock Recommendation Network..
Signals start and reset are the outputs of the controller unit which will be covered later in
this chapter.

Turn(x)}, of node x be the level of the highest turning descendant of x. The following

lemma is easy to prove by induction on the level ` of the nodes.

Lemma 7 For any node x with turning level L(x), bit ξtx = 1 iff t ≥ level(x)− L(x).

For the root r of the tree, L(r) = `max is the level reached by the highest delay path.

The sequence of bits produced by the root (ξtroot) over log n steps is

C = 0, 0, · · · , 0︸ ︷︷ ︸
log n− `max

zeroes

1, 1, · · · , 1.︸ ︷︷ ︸
`max

ones

Observe that C is a unary representation of `max . A separate O(log n)-state finite state ma-

chine (FSM) can accept a log n-bit sequential input C from the root and convert this to the
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corresponding log log n-bit binary number; this FSM is just a special purpose O(log log n)-

bit counter with C as its enable or clock. The log log n-bit output is a measure of the delay

of the scan-path and can be used to derive the maximum clock rate for scanning in the

configuration bitstream. Figure 5.3 shows the overall architecture of the Clock Recommen-

dation Network for n = 8. The flags fi entering the tree are the same as those in Figure 3.6

and indicate the active nodes. The sequence of bits produced by the root enters the Clock

Assessment module which is a special purpose FSM.

f0 f1 f2 f3 f4 f5 f6 f7

IN0

IN1 IN2

IN3 IN4 IN5 IN6

c
r
s

c
r
s

c
r
s

c
r
s

c
r
s

c
r
s

c
r
s

start init

clock

reset

done recom

clk recom

clock l

start recom

?

? done init
ξt0 = C

ξt−1
1 ξt−1

2

β0α0

γ0

EN

Clock
Recom.

Master
Controller

Clock Recommendation Network

clock recommendation tree

Figure 5.3: Block diagram of the Clock Recommendation Network of size n = 8. Internal
nodes are shown as INi. Signals shown as dashed with the same labels are all feeding
from the same source. Those labeled as c and r are connected to the global clock and
reset respectively; and those labeled as s are connected to the Master Controller’s output
done. The output of the Master Controller done init (marked with star) indicates that the
nodes in the Basic Network are all set and the Clock Recommendation unit should start
its operation.
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5.4 Clock Generation with Shortcuts

The clock generation network for the Basic Network tree can be modified as follows

to suit the Shortcuts Network (Chapter 4). First, the selected tree paths are processed as

in Section 5.3; that is, merged and pipelined out through the root of the tree. Next, the

shortcut paths are processed in a similar way (as explained below). The controller decides

on the faster of the two. To output the shortcuts clock we proceed as follows. All leaves in

a shortcut path are flagged with a 1 (initialization) and leaves that are not on a shortcut

path are initialized to 0. Since the shortcuts have already been determined (see Section 4.2

on page 28) we can readily flag them. Note that since we have selected the shorter among

tree and shortcut paths, a shortcut path cannot be longer than 2 log n; thus, 2 log n time

suffices for the process described here. The bit in each path (say from its beginning of the

path) is shifted up the tree with paths merged as before (see Section 5.3). After 2 log n

steps all bits of shortcut paths have departed from the leaves. After an additional log n

steps, the sequence of at most 2 log n bits representing the longest shortcut path has been

output through the root of the tree. This can be encoded as before using an O(log log n) bit

counter. The maximum of the lengths of the tree and shortcut paths determines the clock

speed. A separate global FSM sequences the Θ(log n) steps needed for clock generation.

The log log n-bit counter can be built with a clock cycle proportional to log log log n.

The cost of the FSM is clearly O(n). Thus we have the following result.

Lemma 8 For any n, there exists a O(log n log log log n)-delay, O(n) cost network that

outputs the scan-path delay for any configurable set of an n-element scan set.

Comment: This lemma holds for both the Basic and Shortcuts Networks.

From Equation (2.4) on page 15, Lemmas 1 (page 25) and 8 (page 45), we have the

following theorems.

Theorem 9 There exists a scan-path network of size Θ(n) that can configure any set of

k elements out of a set of n elements in Θ(log n log log log n + kT0) time, where T0 is the
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minimum clock cycle needed for the scan-path network. For a contiguous distribution of

the k elements of the configuration set, this network uses an average value of T0 = O(log k).

Remark: If the proposed techniques are used to reduce frame sized for a more focused re-

configuration, then n could be in the order of millions and k in the order of hundreds. Thus

k can be expected to be larger than log n log log log n. Thus the time given by Theorem 9

is of the order of kT0, the ideal number of cycles to input the bitstream on the proposed

network.

Theorem 10 There exists a scan-path network with shortcuts that is of size Θ(n) and

which can configure any set of k elements out of a set of n elements in Θ(log n log log log n+

kT0) time, where T0 is the minimum clock cycle needed for the scan-path network. For

any contiguous distribution of the k elements of the configuration set, this network uses a

constant value of T0.

Remark: In Theorems 9 and 10, the delay of header path π0 is omitted. As stated earlier,

π0 imposes a O(log n) delay and the network proposed in Chapter 6 (the Header Network)

addresses the problem of eliminating such a bottleneck delay.
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Chapter 6
Header Network

In this context, the header path is defined as a path that starts at the input of the

configuration bitstream and ends at the first element of the configuration set C (set of k

selected frames out of n total frames.) Recall that in the Basic Network’s data plane, the

header-path π0 is always of delay Θ(log n) (see Figure 3.1). That is because of the fact

that the number of levels from root to the leaves of an n-leaf binary tree is log n, causing

the header path to have the aforementioned combinational delay. Consequently, the delay

of the scan-path cannot be improved (even if other paths have a smaller delay) based on

Equation 2.3 from Chapter 2. In this section, we outline a method for reducing the delay

of the header path π0 to enable delays less than log n.

The approach is to (1) determine the first element of configuration set C (the header

leaf ), and then (2) use a fast network to broadcast the configuration bitstream to all leaves,

with the understanding that only the header leaf will accept it.

6.1 Determining the Header Leaf

Let ~F = 〈fi : 0 ≤ i < n〉, where fi = 1 if and only if i ∈ C; this is the characteristic

vector representing the configuration subset C ⊆ S. Suppose that ~G = 〈gi : 0 ≤ i < n〉

is the prefix OR vector of ~F , where g0 = f0 and for i > 0, gi = (fi OR gi−1). Consider

Figure 6.1 which shows a simple implementation of a prefix OR by cascading n OR gates.

Notice that any arbitrary picked output can be written as

gi =
i∑

i=0

fi.

It is easy to see that if i0 is the header leaf, then gi = 1 if and only if i0 ≤ i < k.

Therefore, the prefix OR vector of ~F will result in ~G =
{

00 . . . 00111 . . . 11
}

where the
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f0

f1
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fn−2

fn−1

g0

g1

g2

gn−2

gn−1

Figure 6.1: An example illustrating prefix OR of n bits by cascading n− 1 OR gates. The
worst case delay is n− 1 OR gate delays (critical path is highlighted).

first occurring 1 is gi0 . Notice that in this circuit, the worst case delay path starts at f0

and ends at gn−1 and has a combinational delay of n−1 OR gate delays which is considered

very slow.

Now, let h0 = g0 and for i > 0, hi = (gi EX-OR gi−1). Clearly given ~G, hi can be

determined with n − 1 EX-OR gates and one EX-OR gate delay. Figure 6.2 shows the

circuit of this function. It is obvious that hi = 1 if and only if i = i0. In other words, we

will have ~H = 〈hi : 0 ≤ i < n〉 =
{

00 . . . 00100 . . . 00
}

where the header leaf is the only bit

that is 1. As stated earlier, the delay of the circuit shown in Figure 6.1 is not acceptable

g0

g1

g2

gn−1

h0

h1

h2

hn−1

Figure 6.2: An illustration of EX-OR of n bits.

for our design since we desire to improve the delay of the header path from O(log n). As

a result, a better approach is needed to determine ~G, given ~F . This follows a well known

approach for solving recurrences [37] that is illustrated in Figure 6.3 for our context.
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Figure 6.3: An example illustrating prefix OR of n bits using a binary tree.

Consider a binary tree with n leaves at the bottom holding the values of ~F . The

computation proceeds in two phases on the tree. In the first phase, leaf i assumes the

value fi and each internal node x holds the logical OR γx (say) of the values of all leaves

in its subtree. The bits within circles in Figure 6.3 show these values for an example; we

have used a slightly different example than the ones used before to illustrate the procedure

better. This computation is identical to that used to generate the γx values and establish

the scan path (see Table 3.1).

The second phase proceeds from the root down to the leaves in log n steps (one per

level) starting from the children of the root (level log n− 1). Let nodes x and y be the left

and right children of the root, respectively. In the first step of the second phase, x sends

γx to y. If γx = 1, then y instructs all leaves i of its subtree to set gi = 1; otherwise, nodes

at level log n − 2 or lower proceed recursively as described below. Consider a node x at

level log n− t (where 1 < t ≤ log n) that is the left child of its parent z. Let y be the right

child of z (that is, the sibling of x). If z has not instructed its leaves to set gi = 1, then at
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step t, nodes x and y proceed recursively as described earlier; namely, node x sends γx to

y, then if γx = 1, then y instructs its leaves to set gi = 1; otherwise level t − 1 proceeds

recursively. The value generated at the leaves after any sibling communication is gi. The

recursion terminates at the leaves.

Figure 6.3 illustrates the second phase. In level 3, the left child of the root sends a

1 to the right child, which instructs all its leaves to set gi = 1. (This is indicated in the

figure as tree edges, as opposed to an edge from a left child to its sibling. All leaves i for

which we set gi = 1 due to this step are enclosed in a box.) For level 2, the leftmost node

similarly sends a 1 to its sibling which too causes all its leaves to set gi = 1. At level 1,

the leftmost node sends a 0 to its sibling, and both their descendants proceed recursively.

For the first pair of leaves γ0 = γ1 = 0; leaf node 0 sets g0 = γ0 = 0 and sends a γ0 = 0

to leaf node 1, which sets g1 = γ1 = 0. The second pair of leaves have γ2 = 1 and γ3 = 0.

Here leaf node 2 sets g2 = γ2 = 1 and sends γ2 = 1 to leaf node 3. Because the received

bit γ2 = 1, leaf node 3 sets g1 = 1 (even though γ3 = 0). A formal proof of correctness of

this method in a more generalized form appears in Dharmasena and Vaidyanathan [37].

We observe that while the algorithm for Phase 2 is cast recursively, it can be easily

unfolded into a circuit with Θ(log n) delay and Θ(n) gates as outlined below. At the

end of Phase 1, each tree node x holds γx, the OR of the bits at the leaves of the subtree

rooted at x; Figure 6.3 shows these values within the circles representing nodes. Recall (see

Table 3.1) that node x receives αx and βx from its left and right children and determines

γx = αx OR βx. Phase 2 proceeds from the root down to the leaves and node x receives

an input δx from its parent; in addition, it has input αx received during Phase 1. Node x

produces outputs ζ`x, ζrx to its left and right child, respectively. In this notation, if the left

and right child of x are u and v, respectively, then ζ`x = δu and ζrx = δv. For the root,
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0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 fi

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 gi

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 hi

Figure 6.4: An example illustrating the non-recursive implementation of a prefix OR of n
bits. A node x drawn in bold is one with αx = 1. The bits on an edge from a node x to
its left and right children are the values of ζ`x and ζrx, respectively. Given the values of gi,
the circuit of Figure 6.2 is used to produce the hi values that gives the header leaf (marked
with red circle in the last row).

assume that δroot = 0. The outputs of node x are assigned as follows:

ζ`x = δx

ζrx = αx OR δx.

Let leaf i receive input ηi from its parent j; here ηi = ζ`j OR ζrj . Finally, leaf i computes

gi = fi OR ηi. Figure 6.4 illustrates these ideas. The internal structure of the internal

(tree) node x and leaf i of the prefix OR tree are shown in Figure 6.5.

Finally, by putting together the prefix OR tree and the EX-OR circuit shown in Fig-

ure 6.2, the Header Network can be constructed. Figure 6.6 shows the block diagram of a

simple Header Network with n = 4.
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figi

(a) (b)

Figure 6.5: Internal structure of (a) node x and (b) leaf i in the prefix OR tree.

6.2 Constructing the Header Path

It was noted earlier that once we have determined the header leaf i (indicated by flag

hi = 1) the bitstream can be broadcast to all leaves with the understanding that leaf i will

act on it if and only if hi = 1. Such a “broadcast network” would be no more complex

than the clock distribution network used to clock the chain of shift registers spanning the

scan path. Thus, if the header leaf can be determined, then the header path π0 can be

constructed to (virtually) have constant delay. Consequently, the delay of the scan path is

now independent of π0.

Figure 6.7 illustrates a modification that operates with lower power. Here all parts of

the broadcast network, except the one corresponding to π0, are disabled. The control signals

needed for this network can be generated alongside the generation of hi as the following.

Let d be the degree (number of children of each node) of the proposed network with n

leaves. This will result in a logd n-level tree. The process starts at the leaves which hold

the hi values. Each leaf sends its hi value to its parent. Each internal node x at the first

level generates a signal cx from the OR of the received bits from its d children. This signal

controls the tristate present at node x. Each node also sends cx to its parent and the process
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~F
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EX-OR

Prefix OR Tree

Header Network

Figure 6.6: Block diagram of the Header Network with n = 4. Internal nodes are labeled
as Ni and leaf nodes as Li. All the other signals are also labeled accordingly.

repeats for every level recursively until the croot is generated at the root; a process identical

to that of Basic and Header Networks for generating the γx values. Figure 6.7 shows this

network of tristate gates with fan-out 4 (the degree of the tree structure). In practice,

such a (non-broadcasting) network can support a fan-out that is larger than that of a clock

distribution (broadcast) network and can, as argued earlier, be assumed to be of constant

delay. Furthermore, although we elaborated on how to construct a fast header path in this

section, later on when we use Verilog HDL in order to implement the design, we will use

behavioral code to describe such a network. Therefore, the synthesis tool will decide on

how to construct the header path in the most efficient way. In most cases, the computer’s

solution for such broadcasting networks is similar to that of the clock distribution network
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: hi

Figure 6.7: An example of establishing the header path π0 using tristate buffers. The active
path is shown in bold.

(also known as the “Clock Tree”) spanning the designs to deliver the clock signals to those

elements with a clock input. Therefore, the synthesis tool will most probably use a similar

network for the header path in our case.

Lemma 11 For any set of k elements selected out of n elements, there exists a Header

Network that determines a constant delay path to the first of the selected elements. This

network uses Θ(n) gates and has a delay of Θ(log n).
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Chapter 7
Synthesis and Modeling

In the previous chapters, we developed the proposed ideas theoretically (algorithmi-

cally) and detailed possible logic level implementation. An analysis determined that the

cost of each of the proposed networks is O(n) with n being the total number of frames

or as we will simply call it, the “size” of the network. Additionally, we also argued that

for some cases the time to input k configuration bits is Θ(k). However, knowing only the

order of the cost and delay does not indicate the magnitude of the constants hidden by the

notation. To better estimate these constants and factor in practical constraints, we utilize

the available synthesis tools and implement the proposed ideas to derive equations that

model the cost and delay of the networks as a function of n. The networks we synthesize

are the following:

The Basic Network: This is the tree illustrated in Figure 3.6 (page 24). The MU-

Decoder shown in this figure is only for illustrating the idea of selecting a set of

k elements; but to simplify the synthesis that module is replaced by a standard de-

coder with log n inputs and n outputs.

The Basic Network with Clock Recommendation: This consists of the Basic Net-

work, the Header Network (Chapter 6), and the Clock Recommendation Network

(Section 5.3, page 41).

The Shortcuts Network: This includes the Basic Network augmented with shortcut

links (Chapter 4) along with the Header and the Clock Recommendation Network of

Section 5.4 (page 45).

The proposed networks are implemented using Verilog HDL and synthesized through

the Cadence environment described below. All digital implementations (synthesis) use
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tools from Cadence Design Systems suite, namely, (a) Cadence Encounter R© RTL Compiler

(version RC14.24) for netlist generation and (b) Cadence Encounter Digital Implementation

System (EDI) for Place and Route (PAR) [38]. The technology file used is the open

access 45nm Process Design Kit (PDK) and cell library “FreePDK45” jointly developed by

Oklahoma State University (OSU) and North Carolina State University (NCSU)[39]. Also,

MATLAB [40] is used for the interpolation of the data points and mathematical modeling.

We now describe the structure of this chapter. Section 7.1 discusses the implementation

(synthesis) of the various networks, whose aim is to determine the delay, area, and power of

implementations for different sizes. Section 7.2 includes plots of the derived data from the

synthesis phase. Section 7.3 details the modeling phase where the data from Section 7.2 is

fitted to obtain an equation modeling the performance of the different networks. Figure 7.1

shows an overarching view of the entire synthesis and modeling phases. To a large extent,

the approach in this chapter is similar to that of Raghavendra Kongari’s MS thesis [41].

7.1 Synthesis Architecture and Design Flow

The synthesis phase has two stages: (a) netlist generation and (b) place and route

(PAR). The top half of Figure 7.1 shows these stages. The netlist generation stage revolves

around the RTL Compiler which, given a Verilog code, produces a digital circuit represented

as a netlist accompanied by timing, area, and power reports. In particular, the timing report

is expressed in terms of a slack relative to a clocking constraint. For example, let the clock

period of a network be set to 500 ps. Now, assume that the RTL Compiler synthesizes the

network with a clock period of 480 ps and a slack of +20 is reported indicating that the

clock constraint could be tightened. Similarly, a negative slack indicates an estimate of

additional clocking time needed for proper implementation.

The number of synthesis runs for each network is in the order of hundreds (approxi-

mately 40 different sizes per each network and several iterations per each size); therefore, it

is not possible to perform them manually and without automation. Therefore, we use Tcl
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Figure 7.1: An illustration of the design flow.

57



scripts for each implementation phase. The RTL Compiler Tcl script presents the Verilog

code (say for the Basic Network) to the RTL Compiler successively for different network

sizes (n from 24 to 214). For each n it examines the timing report to determine if the clock

can be tightened. Using a binary search type of algorithm similar to that of Raghavendra’s

[41] (see Figure 7.2), the Tcl script initiates several synthesis trials for a fixed n until a slack

of 0 (or nearly 0 for some cases) is achieved. This ensures the best possible clock period

for the network, hence generating a “time-optimized” netlist. At the end of this stage, an

output netlist file (with “.v” extension) and a timing constraint file (with “.sdc” extension)

are generated and saved for the next stage. Figure 7.3 shows an example logic diagram

(i.e. the netlist) generated by RTL Compiler for the Basic Network with n = 16 excluding

the master controller and the decoder. Table 7.1 shows an example report produced by the

RTL Compiler Tcl script on the output terminal while performing synthesis on the Basic

Network with n = 16. Note that the synthesis tool uses the algorithm shown in Figure 7.2

to achieve zero slack after four iterations.

Table 7.1: Example report generated by the RTL Compiler Tcl script for the Basic Network
with n = 16.

Module Effort Size (n) Area (µm2) Power (mW ) Clock (ns) Slack (ns)

1 basic tree high 16 1509 15863 50000 49057
2 basic tree high 16 1935 1316403 471 -244
3 basic tree high 16 1857 910900 707 -32
4 basic tree high 16 1498 715040 825 0
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Figure 7.2: Flow chart of the algorithm used in the RTL Compiler Tcl script to optimize
the networks with respect to the clock period (i.e., time-optimized). [41].
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Figure 7.3: Example schematic for the Basic Network with n = 16. The master controller and the decoder are not included.



At the end of the netlist generation stage, the netlist and timing constraint files are

generated for each size and stored so that the SoC Encounter Tcl script can access them

for the place and route stage. In the PAR stage, all the physical aspects of the circuit such

as wire lengths, parasitic elements (e.g. capacitances), voltage drops, power leaks, etc., are

considered while they are not taken into account in the previous stage. As in the netlist

generation, the PAR stage is also automated with a Tcl script that uses iterations to make

sure the final output meets the timing constraints. In particular, the SoC Encounter Tcl

script iterates through different network sizes and performs the following tasks automati-

cally (a) adjusts the paths of the input files and sets other applicable variables (e.g. the

distance between the power grids), (b) performs the steps of physical design (such as floor

planning, power planning, placing, routing, clock tree generation, timing analysis and op-

timization), (c) generates the reports and archives them properly, (d) extracts the desired

timing, area, and power values from report files, and ultimately (e) generates a report file

and accumulates all the extracted results for all sizes. Also for each size, the script checks

the value of the“worst negative slack” in the reports and initiates iterations to resolve the

negative slack by relaxing the clock period. Figure 7.4 shows an example layout of the

Shortcuts Network with n = 16, generated at the end of the PAR stage.

7.2 Synthesis Results

As detailed in Section 7.1, each network (Basic, Basic with Clock Recommendation,

and Shortcuts Network) was implemented for a range of values of n (network size)and

optimized for time using Tcl scripts. For each implementation we collected data on clock

period (T ), area (A), and power (P ) and plotted the each one with respect to size (n).

n is set by the script such that n ∈ {b2i/4c : 16 ≤ i ≤ 56}. This will result in the sizes

to be powers of 2 (from 24 to 214) plus three more data points distributed exponentially

in between each two powers of 2 (e.g. b28.25c = 304, b28.5c = 362, and b28.75c = 430

between 256 and 512). T plotted here is the best achievable clock period for each network.
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Figure 7.4: Example layout for the Shortcuts Network with n = 16 generated in SoC
Encounter.
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Considering the the worst case delay of O(log n) in our theoretical analysis, we expect all

our designs to have logarithmic delay with respect to size. Therefore, each of the timing

graphs are also expressed in logarithmic scale. Figures 7.5 to 7.16 show the results for the

proposed networks. Dashed lines show the curves fitted to the data from Section 7.3.

Although we will quantitatively examine the growth terms of these graphs in

Section 7.3, it is easy to see that the differences in cost and performance between the

Basic Network and the Basic Network with clock recommendation is reasonably small (see

Figures 7.17 to 7.19). This and other performance comparisons between networks are made

in the Section 7.4.

7.3 Modeling Stage

At the end of the synthesis stage, we have a set of reports containing data for clock

period, area, and power for each network and each n generated by the SoC Encounter Tcl

script. For example for the Basic Network with clock recommendation, Table 7.2 shows a

part of the data also captured in the plots of Figures 7.9 to 7.12. The idea is to use this data

to derive functions TB(n), AB(n), and PB(n) that indicate the clock period, area, and power

of the Basic Network as a function of its size n. We use the Curve Fitting Toolbox TM(CFT)

in MATLAB to curve fit this data. For the Basic Network, the theoretical estimate for the

clock period is O(log n). However, a layout with n leaves and log n levels could include

wires of length O(n) and O(log n) which could lead to a delay proportional to these terms.

Using a similar rationale, area and power may be proportional to n2, n log n, or log2 n.

Thus, we included 1, log n, n, log2 n, n log n, and n2 as target growth terms. After the first

attempt in the CFT, some of these growth terms had nearly 0 coefficients so we repeat the

curve fitting without them. Specifically for TB(n), the initial general equation was

TB(n) = a · n2 + b · n log n+ d · n+ c · log2 n+ e · log n+ f
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Figure 7.5: Clock period (T ) results for the Basic Network as a function of size n. Dashed
line shows the result of the curve fitting from Section7.3 (similar for Figures7.6 to 7.16).
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Figure 7.6: Clock period (T ) results for the Basic Network as a function of log n (logarithmic
x-axis).
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Figure 7.7: Area (A) results for the Basic Network as a function of size n.
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Figure 7.8: Power (P ) results for the Basic Network as a function of size n.
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Figure 7.9: Clock period (T ) results for the Basic Network with clock recommendation as
a function of size n.
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Figure 7.10: Plot for Basic Network with clock recommendation, clock period T vs. loga-
rithmic size log n.
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Figure 7.11: Area (A) results for the Basic Network with clock recommendation as a
function of size n.
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Figure 7.12: Power (P ) results for the Basic Network with clock recommendation as a
function of size n.
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Figure 7.13: Clock period (T ) results for the Shortcuts Network as a function of size n.
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Figure 7.14: Clock period (T ) results for the Shortcuts Network as a function of log n
(logarithmic x-axis).
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Figure 7.15: Area (A) results for the Shortcuts Network as a function of size n.
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Figure 7.16: Power (P ) results for the Shortcuts Network as a function of size n.
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Table 7.2: A part of the final report generated at the end of the synthesis stage for the
Basic Network with clock recommendation.

Size (n) Clock Period Area (µm2) Power (mW ) Slack (ns)

...
...

...
...

...
724 2.346 37566.0571 14.29416028 0.091
861 2.359 41111.1493 15.82467362 0.089
1024 2.368 46603.8365 17.81097354 0.002
1217 2.529 65977.0098 22.27043528 0.020
1448 2.694 76604.3083 24.78037995 0.022
1722 2.454 82379.5141 29.05829671 0.023
2048 2.644 89545.2558 31.89152006 0.006
2435 2.783 127298.5636 41.17718596 0.003
2896 2.832 145527.5835 45.48067184 0.067
3444 2.898 160145.3399 50.11557636 0.011
4096 2.920 183548.8616 54.78606798 0.006

...
...

...
...

...

which after curve fitting resulted in

TB(n) =
(
1.859× 10−12

)
n2 +

(
1.061× 10−9

)
n log n+ (0.009228) log2 n+

+
(
3.552× 10−14

)
n+ (0.09339) log n+ 0.357.

Its clear that the n2, n log n, and n terms have nearly 0 coefficients and TB(n) = c · log2 n+

e · log n+ f would be a better fit. Therefore, the updated equation was again run through

the CFT to obtain:

TB(n) = 0.01035 log2 n+ 0.08205 log n+ 0.3848. (7.1)

Similarly after adjustments of coefficients, the curve fitting for AB(n) and PB(n) yields the

following equations:

AB(n) = 35.73n+ 2.004 log2 n+ 176.1 (7.2)
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PB(n) = 0.01004n+ 0.05283 log2 n (7.3)

We repeat this process for the Basic Network with clock recommendation (BC) and

the Shortcuts Network (S) to obtain TBC(n), ABC(n), PBC(n), TS(n), AS(n), and PS(n)

as follows:

TBC(n) = 0.0168 log2 n+ 0.007154 log n+ 0.6665 (7.4)

ABC(n) = 46.96n+ 25.9 log2 n (7.5)

PBC(n) = 0.01126n+ 0.06487 log2 n (7.6)

TS(n) = 0.0008621n+ 0.3106 log n− 0.419 (7.7)

AS(n) = 298.2n− 585.9 log2 n+ 5656 log n− 1.363× 10+4 (7.8)

PS(n) = 0.06621n+ 1.08 log n+ 3.473 (7.9)

7.4 Comparison of Network Costs

From Equations 7.1 to 7.9, generally, we have the following results:

(a) the implemented networks have a polylogarithmic delay (clock period) as it was ex-

pected from the theoretical analysis. The only exception is the n term (with a rela-

tively small coefficient) that has appeared in Equation 7.7 for the Shortcuts Network’s
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clock period. The reason behind having such term is that the synthesis tool is not

aware of the network’s function. Specifically, the Shortcuts Network is designed so

that the length of a shortcut path cannot exceed log n. However, there exists a virtual

combinational shortcut path of length n that connects all the leaves. Therefore when

performing timing analysis, the synthesis tool will take into account those paths with

O(n) length.

(b) The area and power of the synthesized networks are O(n) (linear) as expected.

Note that the constants of the derived equations will change when synthesizing with

a different technology. Therefore, these equations only provide a sense of relative perfor-

mance and cost. For example from Equations 7.1 and 7.4, it can be seen that adding

the clock recommendation to the Basic Network has a relatively small effect on its delay.

Figures 7.17, 7.18, and 7.19 show comparative the plots for clock period (T ), area (A), and

power (P ) of the synthesized networks, respectively.
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Figure 7.17: Clock period T as a function of n for the synthesized networks.
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Figure 7.18: Area A as a function of n for the synthesized networks.
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Figure 7.19: Power P as a function of n for the synthesized networks.
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Chapter 8
Concluding Remarks

In this thesis, we addressed the problem of making a path to efficiently scan a con-

figuration bitstream into a set of k selected frames out of n total frames. As solutions to

this problem, we proposed a class of Θ(n) cost networks as the following: (a) the Basic

Network which uses an underlying binary tree to set a physical scan path connecting the

selected frames and scans in the bitstream in Θ(k log n), (b) the Shortcuts Network which

uses an additional path along the frames to shortcut the tree paths whenever appropriate

and can scan the k-bit configuration bitstream in Θ(log n log log log n + kT0) time, where

T0 can be as small as a constant and at most O(log n), (c) the Clock Recommendation

Network, an augmentation to the previous networks which gives an estimate of the best

possible admissible clock period, and (d) the Header Network, another enhancement to the

proposed networks which channels a direct path to the first selected frame and eliminates

the bottleneck of O(log n) delay. Without the Header Network, it is not possible to exploit

the benefits of the Shortcuts and Clock Recommendation networks.

We theoretically showed that the proposed networks work very well by having an

optimal cost of Θ(n); and in some cases, the optimal delay of Θ(k). We also synthesized

the proposed networks and confirmed having polylogarithmic delays and linear costs (area

and power) by deriving a mathematical model of delay and cost as a function of network

size. It is important to note that the control and data planes are not distinguished in the

synthesis. While the control plane includes detailed circuitry, for example, to choose the

shorter path between tree or shortcuts in the Shortcuts Network, the additional delay it

introduces should not be taken into account when measuring the reconfiguration speed.

Thus, the delays are expected to be even less for the data plane and it might be beneficial

to perform synthesis for the data plane and the control plane separately.
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The work opens up several directions for future research. For example, we can study the

same ideas on a non-binary tree (e.g. a ternary or even an m-ary tree). Also, investigating

a combination of random and contiguous distribution of k selected frames over n can be

helpful. Moreover, using latches instead of flip-flops in the path-length assessment phase of

the Shortcuts Network may be beneficial to give a better sense of the (combinational) path

delays due to tree and shortcut edges. Additionally, we can try optimizing the networks

with respect to area (or power) to include the cases where manufacturing cost is the primary

priority.
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