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Abstract

In this dissertation, we show numerically that a compact structure, consisting of multiple

optical microcavities at both the entrance and exit sides of a subwavelength plasmonic slit, can

lead to greatly enhanced directional transmission through the slit. The microcavities increase the

resonant enhancement of the emission in the normal direction and/or the coupling between free

space waves and the slit mode. An optimized structure with two microcavities on both the entrance

and exit sides of the slit leads to ∼16 times larger transmission cross section per unit angle in the

normal direction compared to the optimized reference slit without microcavities.

We then introduce highly-compact resonant-cavity-enhanced magneto-optical switches for metal-

dielectric-metal (MDM) plasmonic waveguides. The static magnetic field induced asymmetry,

which enhances or reduces the coupling between the waveguide and a side-coupled resonator,

and the relatively large induced wave vector modulation are used to design a Fabry-Perot cavity

magneto-optical switch, consisting of a MDM waveguide side-coupled to two MDM stub resonators.

The on and off states correspond to either the presence or the absence of the externally applied

static magnetic field.

We then investigate the influence of Rabi splitting tuning on the dynamics of strongly cou-

pled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting is tuned

by modifying the J-aggregate molecule concentration while a polaritonic system is provided by a

nanostructure formed by holes array in a golden layer. From the periodic and concentration changes

we identify, through numerical and experimental steady-state analyses, the best geometrical config-

uration for maximizing Rabi splitting, which is then used for transient absorption measurements.

We finally study the combination of scanning probe technology with photonic nanojets. Here,

by using advanced 3D fabrication techniques we integrate a microbead on an AFM cantilever thus

realizing a system to efficiently position nanojets. This fabrication approach is robust and can

be exploited in a myriad of applications, ranging from microscopy to Raman spectroscopy. We

demonstrate the potential of portable nanojets by imaging different sub-wavelength structures.

vii



We also show that finite-difference time-domain (FDTD) simulations are in good agreement with

experiments.
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Chapter 1
Introduction

1.1 Introduction

Nanophotonics is the science and engineering of light-matter interactions at the nanoscale. Di-

electric nanophotonic structures and devices, such as photonic crystal devices, enable wavelength-

scale manipulation of light. In addition, light-guiding structures which allow subwavelength con-

finement of the optical mode are important for achieving compact integrated photonic devices [1].

However, the minimum confinement of a guided optical mode in dielectric waveguides is set by the

diffraction limit and is of the order of λ0/n, where λ0 is the wavelength in free space and n is the

refractive index. As opposed to dielectric devices, plasmonic devices have shown the potential to

guide subwavelength optical modes, the so-called surface plasmon polaritons, at metal-dielectric

interfaces [2].

1.1.1 Light Beaming

The existence of 100 million similar holes on the surface of a gold film was observed in the

early 90’s by Thomas Ebbesen at the NEC Research Institute at Princeton, New Jersey under

an electronic microscope. Standard aperture theory predicts that the transmission efficiency of a

single subwavelength cylindrical aperture scales as (r/λ)4, where r is the aperture radius, and λ is

the wavelength. Since the hole radius in the experiment was 150 nm, based on standard aperture

theory less than 0.05 percent of the light incident on the holes could go through them for λ>1000

nm. However, Ebbesen found out that the transmission efficiency exceeded unity (when normalized

to the area of the holes) for specific wavelengths. Thus, the metal film behaved as a funnel which

steered the incoming light to the holes. At that time he could not find any theoretical explanation

for these phenomena and did not publish his strange results [3].
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Later in 1998 Peter Wolff joined NEC and became interested in Ebbesen’s old experiments.

He considered more deeply the behavior of the free electrons in metals and showed that, because

electrons can move freely in the surface of metals like a two-dimensional ocean, the incident light

can interact with them. Furthermore, if the frequency of the light is the same as the resonant

frequency of the electrons, it will cause the phenomena observed by Ebbesen in his experiments.

Wolff showed that electrons on a metal surface excited by the incoming light can vibrate and make

waves called surface plasmons [3].

Wolff and Ebbesen demonstrated that, when light and surface plasmons have the same energy

and momentum, they can convert to each other. The reason for more than 100% transmission

of light through the subwavelength apertures in the gold film is that for specific wavelengths the

incident light after hitting the surface converts to surface plasmons and directs to the holes, where

it can excite new surface plasmons on the other side of the foil and convert to light again [4].

This observation, in addition to making the scientists reconsider their theories, has opened the

new field of nanoplasmonics dealing with the interaction of light with nanoscale metallic structures,

which could lead to truly novel photonic devices. Surface plasmons have been predicted since

around 1900. However, it was only in recent years that fabrication of nanometallic structures made

it possible to investigate the interaction of such structures with light.

Different nanostructures have been used around the apertures on the input side such as cor-

rugations, arrays of grooves or gratings to excite the surface plasmons, as well as confine them

and lead them through the apertures [Fig. 1.1(a)]. In addition, corrugated metal films on the exit

side of the apertures, where regenerated surface plasmons travel, can be used for beaming of light

[5]. The excitation of surface plasmons enhances the coupling of incident light into the aperture

[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Through accurate design of the geometrical parameters of

the grooves, the beam direction and width, as well as the wavelength of the beaming light can be

tuned. However, the period of such gratings on the entrance and exit sides of the aperture has

to be equal to the surface plasmon wavelength, and several grating periods are required. Thus,
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when operating at optical frequencies, such structures need to be several microns long to lead to

enhanced directional transmission through the aperture.

The large number of potential applications for this enhancement of transmission led to a lot of

interest for new fabrication methods and technologies with improved accuracy which could enable

the realization of the designed nanostructures. A schematic of cylindrical grooves formed around

a subwavelength aperture, and a SEM image of the fabricated structure are shown in Figs. 1.1(b)

and 1.1(c), respectively. Several design parameters should be considered and accurately controlled

during the fabrication process: the film thickness, the depth and width of the grooves as well as

the distance between consecutive grooves, the radius of the central hole, and the distance between

the central hole and its nearest groove. The concentration and extraordinary transmission of

light through small apertures can be used in various applications including photodetectors, optical

lenses, and solar cells. A metal-dielectric-metal (MDM) plasmonic focusing cavity was designed

to be integrated on an InGaAs/InP avalanche photodiode [17]. The cavity could concentrate light

of specific wavelength to enhance its transmission. Through the MDM cavity, light from a large

incident area is efficiently coupled to a small output area. The cavity could effectively couple light

from an incident area as large as 33.6 µm into two subwavelength holes, with the output light

intensity per unit area nine times bigger than that of the input light [17].

One would like to be able to get higher transmission out of these structures and also to control

the directivity of transmitted light. Lezec et al. overcame this problem by using periodic texture

on the input and exit sides of a single aperture [8]. They used a periodic structure in order to

couple the free propagating light to surface plasmons on the surface. Thus, a single aperture

surrounded by a periodic corrugation in a metal surface was used to enhance the transmission

[18]. Free-standing films were used in order to have the capability of pattering the input and exit

sides of the films simultaneously as shown in Fig. 1.2(a). The corresponding transmitted light

was measured at various angles [Fig. 1.2(b)]. When there were periodic grooves around the hole

only in the input side, the output light pattern was fully diffracted. However, when grating of the

same period was patterned around the exit side of the hole, beaming was observed and the angular
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dependence was clear. The light is more directive at specific angles. A plot of the transmission

intensity as a function of angle is illustrated in Fig. 1.2(d). An optical image of the exit surface of

a bull’s eye structure at its peak transmission wavelength is shown in Fig. 1.2(c).

Figure 1.1: (a) Enhancement of the optical transmission through a subwavelength aperture by cylin-
drical grooves formed around the aperture. (b) Schematic of groove arrays around a subwavelength
aperture. (c) SEM image of the fabricated structure designed to enhance optical transmission at a
wavelength of 660 nm. The scale bar corresponds to 2 µm [4].

It was previously demonstrated that the use of a single microcavity at the entrance and exit

sides of a subwavelength plasmonic slit, can enhance the transmission cross section of the slit

4



Figure 1.2: (a) FIB micrograph image of a bull’s eye structure surrounding a cylindrical hole in a
suspended Ag film (groove periodicity, 500 nm; groove depth, 60 nm; hole diameter, 250 nm; film
thickness, 300 nm). (b) Transmission spectra recorded at various collection angles for a bull’s eye
structure on both sides of a suspended Ag film (groove periodicity, 600 nm; groove depth, 60 nm;
hole diameter, 300nm; film thickness, 300 nm). The tail above 800 nm is an artifact of the spectral
measurement. The structure is illuminated at normal incidence with unpolarized collimated light.
The spectra were measured using a Nikon TE200 microscope coupled to an Acton monochromator
and a Princeton Instruments CCD (charge-coupled device) camera. (c) Optical image of the sample
of (a) illuminated from the back at its wavelength of peak transmission (λmax = 660 nm) using a
50-nm band-pass filter. (d) Angular transmission-intensity distribution derived from the spectra of
(b) at λmax. (Inset) Schematic diagram of the structure and the beam divergence and directionality
of the transmitted light at λmax in the far field [8].

5



[19, 20]. Min and Gordon used highly reflective gold as a simple mirror to enhance the optical

transmission through a subwavelength slit [20]. They showed numerically, using the finite-difference

time-domain (FDTD) method, and experimentally that the optical transmission through the slit

was resonantly enhanced by a factor of 2, by forming a surface plasmon microcavity around the

slit. By varying the geometrical parameters of the microcavity such as its width, the wavelength

of maximum transmission was tuned [20]. In addition, it was shown that a microcavity can greatly

enhance the coupling efficiency between a MDM waveguide of wavelength-sized width and a MDM

waveguide of subwavelength width [21].

It was also shown that the use of multiple microcavities at the entrance and exit sides of

a subwavelength slit filled with an absorbing material can greatly enhance the absorption cross

section of the slit [22]. Min et al. showed that the microcavity greatly enhances the incident light

coupling into the slit by means of improving the impedance matching between the input plane wave

and the slit mode [22]. They also used microcavities at the exit side of the slit, and found that

these microcavities result in larger reflectivity and therefore larger resonant field enhancement. It

was found that by optimizing two microcavities at each of the input and exit sides of the slit results

in ∼9.3 times absorption enhancement at the optical communication wavelength compared to an

optimized slit without microcavities [22].

1.1.2 Active Magneto-plasmonics

Achieving active control of the flow of light in plasmonic devices is of fundamental interest in

plasmonics for designing modulators, couplers, add-drop filters, switches, and active multiplexers.

Numerous passive plasmonic devices such as waveguides with different shapes and lengths have been

designed. However, transporting information is not enough, we also need to be able to process it.

For this reason, one of the targets for plasmonic circuits is to develop active components such as

modulators and switches [23, 24, 25]. A possible route to actively control plasmons is to use an

externally applied magnetic field [26, 27]. As an example, external magnetic fields could be used

to control plasmonic devices through analogies of the Kerr and Faraday effects [28, 29]. Compared
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to electro-optics or thermo-optics, magneto-optics could lead to faster modulation speeds [27].

While in electro-optics the permittivity of dielectric materials is modified, in magneto-optics an

externally applied magnetic field is able to modulate surface plasmons by changing the permittivity

of conductors.

In the interaction of incident electromagnetic waves with the free electrons of a conductor, the

free electrons respond collectively by oscillating resonantly with the incident waves. The resonant

oscillation is characterized by a characteristic frequency, the bulk plasmon frequency ωP , which

sets the scale of the free electrons’ response to time-varying perturbations [30]. The Lorentz force

on the free electrons of a conductor as a result of the applied external magnetic field will influence

the properties of surface plasmons. In the case of an applied external magnetic field, another

characteristic frequency called cyclotron frequency and defined as ωB = eB
m

is important. Here, e

is the electron charge, and m is the electron mass. The cyclotron frequency is proportional to the

strength of the applied magnetic field B [31]. In the presence of a static magnetic field B in the z

direction, the dielectric permittivity of the metal is described by a tensor [32, 33]:

ε = 1− ω2
P

(ω + i/τ)2 − ω2
B

×


1 + i 1

τω
iωB

ω
0

−iωB

ω
1 + i 1

τω
0

0 0
(ω+i/τ)2−ω2

B

ω(ω+i/τ)

 , (1.1)

where the decay time τ characterizes the material loss in the metal.

There are numerous devices based on surface magneto-plasmons. As an example, a tunable

planar plasmonic slit lens was proposed in 2012 [34]. The tunable planar plasmonic slit lens consists

of metallic slab with several appropriately designed nano-slits as shown in Fig. 1.3(a). The focusing

of light with this lens can be tuned by adjusting the geometric parameters and the materials of

the slits. By replacing the metal with a semiconductor, a tunable THz lens was designed. With

the intensity of the external magnetic field increased to 1 T, the focal length was tuned by 3λ, as

shown in Fig. 1.3.
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Figure 1.3: A tunable plasmonic lens (from [34]). (a) Schematic structure of the lens. The structure
consists of an InSb slab tunable by an external magnetic field B, and perforated with 2N-1 sub-
wavelength slits. (b) The relative phase retardation of the slits under magnetic fields of 0, 0.5, 0.8
and 1 T. (c), (d) Field distributions of the structure when the external magnetic field is 0 T and
1 T, respectively.

By using various magneto-optical materials, non-reciprocal propagation effects have been re-

alized which can be used in integrated optoelectronic applications [35]. Mathew et al. studied

numerically the propagation properties of the surface plasmon polariton modes in metal-strip plas-

monic waveguides with magneto-optic substrate material [36]. Different subwavelength waveguide

components based on gyrotropic materials have been studied, enabling subwavelength guiding and

tunable non-reciprocal plasmon propagation [37, 33, 38]. The enhancement of magneto-optical

8



Kerr effects in multilayers of noble and ferromagnetic metals has been reported in the literature

[39, 40, 41]. Sepulveda et al. investigated the magneto-optical effects in surface plasmon polariton

modes guided by metallic layers as a function of the metallic thickness for different orientations

of the magnetization [37]. It was shown that strong magneto-optical effects can be realized for

long-range surface plasmon modes [37]. In addition, a new type of high-speed modulators based

on magneto-optical effects has been investigated [42, 43], in which the dimensions of the device

have been reduced by employing the capabilities of surface plasmon polariton propagation [43].

Khatir and Granpayeh proposed a wide-band high-speed magneto-optical switch. The operation

of the proposed structure is based on the variations of the magnetic bias condition by altering the

magnetization within an yttrium iron garnet (YIG) layer [44]. Bonanni et al. proposed the use of

nickel nanodisks as a good candidate for biosensing devices [45]. They showed that nickel nanofer-

romagnets act as a magneto-plasmonic material, by demonstrating strong and tunable correlation

between the localized plasmons and magneto-optics. Their findings point out the capability to

actively control plasmons for magneto-optical light modulation [45].

In systems with broken time-reversal symmetry, the effect of disorders can be suppressed with

the use of a one-way waveguide [33]. In this kind of waveguides, there is a one-way frequency range

where only a forward propagating mode is allowed. So as a result there is no radiation or backward

modes. Yu et al. proposed a one-way waveguide formed at the interface between a photonic crystal

and a free-electron metal subject to an external magnetic field [33]. They showed that, as long as

the surface plasmon frequency of the metal surface lies within the bandgap of the photonic crystal,

the waveguide acts as a one-way waveguide [33].

Montoya et al. designed a surface plasmon isolator using the non-reciprocal coupling between

a dielectric waveguide mode and a surface plasmon polariton mode at the interface between a

ferromagnetic metal (Fe) and air [46], as shown in Fig. 1.4. The confinement in the metal results in

an enhanced non-reciprocal response. An applied external magnetic field produces a non-reciprocal

effective index in the magneto-optical surface plasmon waveguide. When the external magnetic

field B is applied, weak coupling occurs between the dielectric waveguide and the surface plasmon

9



waveguide in the forward direction, while for the backward-propagating mode coupling into the

lossy surface plasmon mode results in large isolation, since the backward-propagating mode is

absorbed in the ferromagnetic metal.

Input Output

Dielectric
Waveguide

Surface Plasmon
Waveguide

Magnetic Field

Figure 1.4: Non-reciprocal coupling concept for a surface plasmon optical isolator. In the forward
direction, weak coupling occurs resulting in low insertion loss. In the reverse direction, the surface
plasmon mode and the dielectric waveguide mode are index matched and strong coupling occurs
resulting in large isolation [46].

Temnov et al. used a ferromagnetic layer (cobalt) in order to benefit from its stronger

magneto-optical response compared to conventional metals [26]. They fabricated a plasmonic

micro-interferometer consisting of a hybrid gold-cobalt-gold structure on a glass substrate, as shown

in Fig. 1.5. Cobalt by itself has higher ohmic loss so that it is not a good material option for sup-

porting surface plasmon polaritons over a long distance. However, if cobalt is integrated in a hybrid

gold-cobalt-gold geometry, the resulting structure could combine the low-loss surface plasmon prop-

agation on a gold surface with the large magneto-optical effect provided by a ferromagnetic layer.

As shown in Fig. 1.5, an oscillating external magnetic field B was applied to periodically switch

the magnetization of the cobalt layer and modulate the surface plasmon wave vector [26]. Temnov
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et al. were able to observe the wavevector modulation by means of a very small external magnetic

field.

Figure 1.5: Active magneto-plasmonic interferometry. A plasmonic micro-interferometer consisting
of a tilted slit-groove pair is milled in a gold-cobalt-gold multilayer film using a focused ion beam.
Surface plasmons are launched by the groove, propagate towards the slit, and interfere with the
directly transmitted light to produce a periodic interference pattern along the slit axes. The
oscillating magnetic field of an electromagnet is used to periodically switch the magnetization in
the thin cobalt layer and thus modify the wavevector of surface plasmons. An imaging nano-optical
set-up is used to record the magneto-plasmonic modulation signal [26].

1.2 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we investigate micro-

cavity enhanced directional transmission through a subwavelength plasmonic slit. In Chapter 3, we

introduce highly-compact resonant-cavity enhanced magneto-optical switches for MDM plasmonic

11



waveguides. As part of this dissertation research, we also collaborated with a research group at the

Istituto Italiano di Tecnologia (IIT) in Genoa, Italy. We performed all required numerical simula-

tions and theoretical analyses to support the experimental results of our collaborators at IIT. This

work is described in Chapters 4 and 5. More specifically, in Chapter 4, we investigate the influence

of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polari-

ton systems. In Chapter 5, we study the combination of scanning probe technology with photonic

nanojets. Finally, in Chapter 6 we summarize our conclusions and give some recommendations for

future work.
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Chapter 2
Microcavity enhanced directional
transmission through a subwavelength
plasmonic slit

2.1 Introduction

Resonant nanoscale metallic apertures can efficiently concentrate light into deep subwavelength

regions, and therefore greatly enhance the optical transmission through the apertures [6] or the

absorption in or below the apertures [7, 47, 19]. In addition, grating structures, consisting of

periodic arrays of grooves patterned on the metal film surrounding the entrance of the aperture,

can excite surface plasmons on the metal surface. The excitation of surface plasmons enhances the

coupling of incident light into the aperture [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 48, 49]. When a

grating structure is also formed on the exit side of the aperture, the transmission of light through

the aperture can be highly directional [8, 9, 48, 49, 50, 51, 52, 53]. Such beaming of light from

metallic nanoapertures can lead to numerous applications which include enhancing the performance

of near-field devices for microscopy and data storage, and reducing the beam divergence of light

sources such as lasers [8, 54]. However, the period of such gratings on the entrance and exit sides

of the aperture has to be equal to the surface plasmon wavelength, and several grating periods are

required. Thus, when operating at optical frequencies, such structures need to be several microns

long to lead to enhanced directional transmission through the aperture.

It was previously demonstrated that the use of a single microcavity at the entrance and exit

sides of a subwavelength plasmonic slit, can enhance the transmission cross section of the slit

[19, 20]. In addition, it was shown that a microcavity can greatly enhance the coupling efficiency

between a MDM waveguide of wavelength-sized width and a MDM waveguide of subwavelength

width [21]. It was also demonstrated that the use of multiple microcavities at the entrance and exit
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sides of a subwavelength slit filled with an absorbing material can greatly enhance the absorption

cross section of the slit [22].

Here, we show numerically that a compact structure, consisting of multiple optical microcav-

ities at both the entrance and exit sides of a subwavelength plasmonic slit, can lead to greatly

enhanced directional transmission through the slit [55]. Our reference structure is an optimized

subwavelength slit without microcavities. We show that the presence of the microcavities at the

entrance and exit sides of the slit can lead to significantly larger reflectivity at both sides of the slit,

and therefore to larger resonant transmission enhancement. In addition, the microcavities at the

entrance and exit sides of the slit can greatly improve the impedance matching, and therefore the

coupling between free-space waves and the slit mode. Such structures enhance both the incoupling

of normally incident light from free space into the slit mode, as well as the outcoupling of light

from the slit mode to free-space radiation in the normal direction. An optimized structure with

two microcavities on both the entrance and exit sides of the slit leads to ∼16 times larger trans-

mission cross section per unit angle in the normal direction compared to the optimized reference

slit without microcavities. We also show numerically that, while all structures were optimized at

a single wavelength, the operation frequency range for high emission in the normal direction is

broad.

The remainder of this chapter is organized as follows. In Section 2.2, we define the transmission

cross section and the transmission cross section per unit angle of the slit, and employ single-mode

scattering matrix theory to account for their behavior. The results obtained for the reference slit

without microcavities, as well as for the microcavity enhanced structures are presented in Section

2.3.

2.2 Transmission cross section and transmission cross section per unit angle

We consider a structure consisting of a single slit in a silver film with N microcavities at the

entrance side, and M microcavities at the exit side of the slit (Fig. 2.1). We use silver for the

metal film due to its relatively low material loss at near-infrared wavelengths. Other metals such
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as gold can also be used. The structures are compact with all microcavity dimensions limited to

less than 1.6 µm.

We use a two-dimensional finite-difference frequency-domain (FDFD) method [56] to calculate

the transmission through the structures as well as their radiation pattern. This method allows us

to directly use experimental data for the frequency-dependent dielectric constant of metals such as

silver [57], including both the real and imaginary parts, with no approximation. We use perfectly

matched layer (PML) absorbing boundary conditions at all boundaries of the simulation domain

[58]. We also use the total-field-scattered-field formulation to simulate the response of the structure

to incident plane waves from free space with the electric field in plane [59].

We consider symmetric structures having the same number of microcavities on the entrance

and exit sides of the slit (N = M), and the same microcavity dimensions (wTi = wBi , dTi = dBi , i =

1, ..., N). This is due to the fact that the optimized structures which lead to maximum emission

in the normal direction for a normally incident plane wave were found to be symmetric. In other

words, a multiple microcavities structure, which is optimum for incoupling normally incident light

from free space into the slit mode, is also optimum for outcoupling light from the slit mode to

free-space radiation in the normal direction.

Figure 2.1: Schematic of a structure consisting of a slit in a silver film with N microcavities at the
entrance side, and M microcavities at the exit side of the slit.
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Figure 2.2: (a) Schematic defining the transmission cross section σT1 of a silver-air-silver waveguide
through the structure above the entrance side of the slit of Fig. 2.1 for a normally incident plane
wave from air. (b) Schematic defining the reflection r of the fundamental TM mode of a silver-air-
silver waveguide at the interface of such a waveguide with the structures at the entrance and exit
sides of the slit of Fig. 2.1.

For comparison of different configurations, we define the transmission cross section σT of the

slit as the total power radiated from the slit (per unit length in two dimensions) normalized by

the incident plane wave power flux. In two dimensions, the transmission cross section has units of

length (m). We also define the transmission cross section per unit angle σ of the slit as the power
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radiated from the slit per unit angle normalized by the incident plane wave power flux. In two

dimensions, the transmission cross section per unit angle has units of length per angle (m/rad).

We develop a single-mode scattering matrix theory to account for the behavior of these systems

[60]. We define the transmission cross section σT1 of a silver-air-silver MDM waveguide of width

w (in the unit of length in two dimensions) as the transmitted power into the waveguide from the

structure above the entrance side of the slit of Fig. 2.1, normalized by the incident plane wave

power flux [Fig. 2.2(a)]. We also define r as the complex magnetic field reflection coefficient for

the fundamental propagating TM mode in a silver-air-silver MDM waveguide of width w at the

interface of such a waveguide with the structures at the entrance and exit sides of the slit of Fig.

2.1 [Fig. 2.2(b)]. Finally, we define the directivity D as the ratio of the radiation intensity in a

given direction from the slit to the radiation intensity averaged over all directions [61]. We use

FDFD to numerically extract σT1 and r [22, 60, 62]. We also use FDFD to numerically calculate

the directivity D(θ) at an angle θ with respect to the normal as

D (θ) =
SPW (θ) πrFF

Pout

, (2.1)

where SPW (θ) = 1
2
η0|HFF (θ) |2 is the far-field power density at a distance rFF above the slit, and

at an angle θ with respect to the normal, and Pout is the total power emitted through the slit (per

unit length in two dimensions). Here η0 is the free-space impedance, and HFF is the magnetic field

in the far-field. We choose rFF to be sufficiently far, so that the numerically calculated directivity

becomes independent of rFF [19]. The transmission cross section per unit angle of the slit at

an angle θ with respect to the normal can then be calculated using scattering matrix theory as

[22, 60, 62]:

σ (θ) = σT
D (θ)

π
= σT1ηresT

D (θ)

π
, (2.2)

where T = 1 − |r|2 is the power transmission coefficient of the slit, ηres =
∣∣∣ exp(−γL)
1−r2 exp(−2γL)

∣∣∣2 is the

resonance enhancement factor associated with the slit resonance, γ is the complex wave vector of

the fundamental propagating TM mode in a silver-air-silver MDM waveguide of width w, and L
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is the length of the slit. Based on Eq. 2.1, we observe that, for fixed slit dimensions, w and L are

fixed, so that the transmission cross section per unit angle of the slit σ is solely determined by σT1,

r, and D. These three parameters in turn can be tuned by adjusting the geometrical dimensions of

the microcavities at the entrance and exit sides of the slit.

2.3 Results

We first consider our reference structure consisting of a single subwavelength slit in a metal

film (Fig. 2.3). In Fig. 2.4 we show the transmission cross section per unit angle in the normal

direction σ (θ = 0o) for such a structure as a function of the slit length L calculated using FDFD.

The transmission cross section per unit angle is normalized with respect to w/π. A normalized

transmission cross section per unit angle of one [σ/(w/π) = 1] therefore corresponds to a structure

with transmission cross section equal to the geometric cross section of the slit (σT = w), which

radiates isotropically in all directions [D(θ)=1 for all θ]. We found that, as the slit length L

increases, the transmission cross section per unit angle in the normal direction exhibits peaks,

corresponding to the Fabry-Perot resonances in the slit. In Fig. 2.4 we also show the transmission

cross section per unit angle in the normal direction calculated using scattering matrix theory (Eq.

2.2). We observe that there is excellent agreement between the scattering matrix theory and the

exact results obtained using FDFD. Similarly, excellent agreement between the results of these two

methods is observed for all the structures considered in this chapter (Table 2.1). The maximum

normalized transmission cross section per unit angle for the slit is ∼7.25 (Fig. 2.4). For such a

structure the transmission cross section σT1 of the corresponding silver-air-silver MDM waveguide

with width w = 50 nm is ∼184 nm (Table 2.1), which is significantly larger than w. This is due

to the fact that subwavelength MDM plasmonic waveguides collect light from an area significantly

larger than their geometric cross-sectional area [63]. In addition, the resonance enhancement factor

associated with the slit resonance is ηres ∼ 4.97, and the maximum transmission cross section of

the slit is σT ∼ 382 nm (Table 2.1).
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The properties of resonant apertures, such as the subwavelength slit in a metal film that we

consider here, can be described using temporal coupled-mode theory [19]. Coupled-mode theory

describes the interaction between a resonator and the surrounding environment using channels

that couple to the resonance [64, 65, 66]. For the slit resonator one type of channel consists of

free space plane waves propagating in different directions above and below the film [19]. If the

metal is plasmonic, there are additional channels which consist of plasmonic modes at the top and

bottom metal film surfaces [19]. The theory also includes loss channels associated with material

absorption [19]. Based on temporal coupled-mode theory, the maximum transmission cross section

for a subwavelength slit in a perfect electrical conductor (PEC) film is λ0/π [19], which for λ0 = 1.55

µm gives λ0/π ∼ 493 nm. As expected, the maximum transmission cross section of the slit in a

plasmonic metal (σT ∼ 382 nm) is smaller than the maximum transmission cross section of a

similar slit in a PEC film due to the material losses in the plasmonic metal [19].

In Fig. 2.5, we show the profile of the magnetic field amplitude for the structure of Fig. 2.3,

normalized with respect to the field amplitude of the incident plane wave. The profile is shown

for a slit length of L=474 nm, which results in maximum transmission cross section per unit angle

in the normal direction. We observe that, as expected for a subwavelength slit in a metallic film,

the radiation pattern is almost isotropic [19]. The calculated directivity in the normal direction is

D(θ = 0o)∼0.969 (Table 2.1). The directivity is smaller than one due to the presence of surface

plasmon modes at the top surface of the metal film [19]. A portion of the light power exiting the

slit couples to these plasmonic modes. The calculated directivity of the structure D as a function

of the angle θ with respect to the normal is shown in Fig. 2.8.

We next consider a structure with a single microcavity at each of the entrance and exit sides

of the slit (Fig. 2.1 with N = M = 1). With such a structure we aim to increase both the

transmission of light through the slit as well as the directivity in the normal direction [19]. We

use a genetic global optimization algorithm in combination with FDFD [22, 63, 67] to optimize

the width and length of the two microcavities in the structure for maximum transmission cross
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Figure 2.3: Schematic of a structure consisting of a single slit in a silver film.

section per unit angle in the normal direction σ(θ = 0o). All structures are optimized at a single

wavelength of λ0=1.55 µm. However the structures can be designed to operate at other wavelengths

in the near-infrared and visible. As mentioned above, all microcavity dimensions are limited to

less than 1.6 µm, and we consider symmetric structures. The maximum normalized transmission

cross section per unit angle in the normal direction for such a structure is found to be ∼33.5 (Table

2.1). For such a structure the transmission cross section σT1 of the corresponding silver-air-silver

MDM waveguide is σT1∼169 nm (Table 2.1), which is slightly smaller than the cross section for a

slit without microcavities (σT1∼184 nm). Thus, for the optimized (N = 1,M = 1) structure the

presence of the microcavity at the entrance side of the slit does not severely affect the coupling of

the incident light into the slit mode. However, the presence of the microcavities at the entrance and

exit sides of the slit results in significantly larger reflectivity |r|2 at the sides of the slit compared to

a slit without microcavities (Table 2.1). Thus, the resonance enhancement factor for the optimized

(N = 1,M = 1) structure is ∼24.8 which is ∼5 times larger than the one of the optimized reference
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Figure 2.4: Normalized transmission cross section per unit angle σ in the normal direction (θ = 0o)
for the structure of Fig. 2.3 as a function of slit length L calculated using FDFD (black dots) and
scattering matrix theory (red solid line). Results are shown for w=50 nm and λ0=1.55 µm.

slit without microcavities. In addition, the increased reflectivity at the sides of the slit leads to

decrease of the power radiated from the slit. Thus, the power transmission coefficient of the slit

for the optimized (N = 1,M = 1) structure is ∼2.6 times smaller than the one of the optimized

reference slit without microcavities. Overall, the use of an optimized single microcavity at the

entrance and exit sides of the slit results in a slit transmission cross section σT∼671 nm (Table

2.1), which is ∼1.8 times larger than the transmission cross section of the optimized slit without

microcavities.

In Fig. 2.6, we show the profile of the magnetic field amplitude for the optimized (N =

1,M = 1) structure, normalized with respect to the field amplitude of the incident plane wave. We
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observe that for such a structure the directivity in the normal direction is increased compared to

the slit without microcavities (Fig. 2.5), and the radiation pattern is anisotropic. The calculated

directivity in the normal direction is D(θ = 0o)∼2.51 (Table 2.1), which is ∼2.6 times larger than

the one of the optimized slit without microcavities. Overall, such a structure, when optimized,

results in 1.8 × 2.6 ∼4.7 times larger transmission cross section per unit angle in the normal

direction compared to the optimized reference slit without microcavities (Fig. 2.3). The calculated

directivity of the optimized (N = 1,M = 1) structure D as a function of the angle θ with respect

to the normal is shown in Fig. 2.8.

We note that the (N = 1,M = 1) structure can be considered as a system of three coupled

resonators (the slit and the two microcavities at the entrance and exit sides of the slit). These

are also coupled to free space propagating plane waves above and below the structure as well as

to plasmonic modes at the top and bottom metal film surfaces. The two microcavities are MDM

waveguide resonators of width wT1 = wB1 and length dT1 = dB1. Due to the symmetry of the

structure, normally incident plane waves can only excite even MDM modes in the microcavities.

In addition, since the width of the optimized microcavities is smaller than the wavelength, only

the fundamental MDM mode is propagating in the microcavities [60]. Since the width of the slit

is much smaller than the width of the microcavities, the required length of the microcavities can

be roughly estimated if the effect of the slit is ignored. Then each microcavity can be considered

as a plasmonic transmission line resonator which is short-circuited on one side and open-circuited

on the other [60]. Thus, the sum of the phases of the reflection coefficients at the two boundaries

of the resonator is π. If we consider the Fabry-Perot resonance condition for the microcavities, we

therefore find that the first resonant length of the microcavities is λ0/4, which for λ0 = 1.55 µm

gives λ0/4 ∼ 388 nm. This rough estimate is close to the calculated optimized microcavity length

dT1 = dB1 = 430 nm (Fig. 2.6).

To further enhance the transmission cross section per unit angle of the slit in the normal

direction, we consider a structure with multiple microcavities at both the entrance and exit sides

of the slit (Fig. 2.1). More specifically, we use the genetic optimization algorithm in combination
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Table 2.1: Transmission cross sections σT1 and σT, reflection coefficient r, resonance enhancement
factor ηres, power transmission coefficient T , directivity in the normal direction D(θ = 0o), and
normalized transmission cross section per unit angle in the normal direction σ(θ = 0o)/(w/π)
calculated using scattering matrix theory and FDFD. Results are shown for the optimized structures
of Fig. 2.1 with (N,M) = (0, 0), (1, 1), (2, 2).

(0,0) (1,1) (2,2)
σT1 184 nm 169 nm 645 nm
r 0.763 exp(2.56i) 0.916 exp(2.62i) 0.786 exp(2.62i)
ηres 4.97 24.8 5.81
T 0.418 0.160 0.382
σT 382 nm 671 nm 1432 nm

D(θ = 0o) 0.969 2.51 4.00

S-Matrix

σ(θ = 0o)/(w/π) 7.40 33.7 115

FDFD

σ(θ = 0o)/(w/π) 7.25 33.5 113

with FDFD to optimize the widths and lengths of the microcavities in a (N = 2,M = 2) structure

for maximum transmission cross section per unit angle in the normal direction σ(θ = 0o). As

before, the dimensions of the structures at both the entrance and exit sides of the slit are limited

to less than 1.6 µm, and we consider symmetric structures. The maximum normalized transmission

cross section per unit angle in the normal direction is found to be ∼113 (Table 2.1). For such a

structure the transmission cross section σT1 of the corresponding silver-air-silver MDM waveguide is

σT1∼645 nm (Table 2.1), which is ∼3.5 larger than the cross section for a slit without microcavities

(σT1∼184 nm). Thus, for the optimized (N = 2,M = 2) structure the microcavities at the entrance

side of the slit greatly enhance the coupling between free space waves and the slit mode. This is

consistent with previous findings that optimized multisection structures can greatly improve the

impedance matching and therefore the coupling between optical modes [22, 63]. In addition, for

the optimized (N = 2,M = 2) structure the reflectivity |r|2 at the sides of the slit is only slightly

larger than the one of a slit without microcavities (Table 2.1). Thus, the resonance enhancement

factor ηres for the optimized (N = 2,M = 2) structure is only slightly increased with respect to

the optimized reference slit without microcavities (Table 2.1). Overall, the use of two optimized

microcavities at the entrance and exit sides of the slit results in a slit transmission cross section

σT1∼1432 nm (Table 2.1), which is ∼3.7 times larger than the transmission cross section of the
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optimized slit without microcavities. In addition, unlike the optimized single-microcavity structure

in which the increased transmission is associated with increased resonance enhancement in the slit,

for the optimized double-microcavity structure the increased transmission is mostly associated with

improved impedance matching between free space waves and the slit mode.

In Fig. 2.7, we show the profile of the magnetic field amplitude for the optimized (N = 2,M =

2) structure, normalized with respect to the field amplitude of the incident plane wave. We observe

that for such a structure the directivity in the normal direction is further increased compared to the

optimized slit without microcavities (Fig. 2.5), and single-microcavity structure (Fig. 2.6). The

calculated directivity in the normal direction is D(θ = 0o)∼4 (Table 2.1), which is ∼4.1 times larger

than the one of the optimized reference slit without microcavities. Overall, the double-microcavity

structure, when optimized, results in 3.7 × 4.1 ∼16 times larger transmission cross section per

unit angle in the normal direction compared to the optimized reference slit without microcavities

(Fig. 2.3). The calculated directivity of the optimized (N = 2,M = 2) structure D as a function

of the angle θ with respect to the normal is shown in Fig. 2.8. We observe that the radiation

pattern of the optimized double-cavity structure is more anisotropic than the one of the optimized

single-cavity structure.

All structures were optimized for maximum transmission cross section per unit angle in the

normal direction at a single wavelength of λ0=1.55 µm. In Fig. 2.9, we show the normalized

transmission cross section per unit angle in the normal direction as a function of frequency for

the optimized slit without microcavities (Fig. 2.5), single-microcavity (Fig. 2.6), and double-

microcavity (Fig. 2.7) structures. We observe that in all cases the operation frequency range

for high emission in the normal direction is broad. This is due to the fact that in all cases the

enhanced emission in the normal direction is not associated with any strong resonances. In other

words, the quality factors Q of the microcavity structures are relatively low. The full width at half

maximum for the optimized double-microcavity structure is larger than the one of the optimized

single-microcavity structure. This is due to the fact that, as mentioned above, for the optimized
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Figure 2.5: Profile of the magnetic field amplitude for the structure of Fig. 2.3, normalized with
respect to the field amplitude of the incident plane wave. Results are shown for L=474 nm. All
other parameters are as in Fig. 2.4.

single-microcavity structure the increased transmission is associated with a stronger slit resonance,

while for the optimized double-microcavity structure the increased transmission is mostly associated

with improved impedance matching. In Fig. 2.9 we also show the transmission cross section per

unit angle in the normal direction for the optimized double-microcavity structure, if the metal

in the structure is assumed to be lossless [εmetal =Re(εmetal), neglecting the imaginary part of the

dielectric permittivity Im(εmetal)]. As expected, in the presence of loss, the transmission through the
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Figure 2.6: Profile of the magnetic field amplitude for the structure of Fig. 2.1, normalized with
respect to the field amplitude of the incident plane wave. Results are shown for N=1, M=1, and
optimized parameters of (wT1, dT1, wB1, dB1) = (1140, 430, 1140, 430) nm. All other parameters
are as in Fig. 2.5.

structure decreases. However, this decrease is relatively small due to the compact wavelength-scale

size of the structures.
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Figure 2.7: Profile of the magnetic field amplitude for the structure of Fig. 2.1, normalized with
respect to the field amplitude of the incident plane wave. Results are shown for N=2, M=2, and
optimized parameters of (wT1, dT1, wT2, dT2, wB1, dB1, wB2, dB2) = (1560, 500, 1200, 380, 1200,
380, 1560, 500) nm. All other parameters are as in Fig. 2.5.
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Figure 2.8: Directivity D as a function of the angle θ with respect to the normal for the optimized
structures of Fig. 2.1 with N=M =0 (red line), N=M =1 (blue line), and N=M =2 (black line). All
other parameters for the N=M =0, N=M =1, and N=M =2 cases are as in Figs. 2.5, 2.6, and 2.7,
respectively.

28



Figure 2.9: Normalized transmission cross section per unit angle σ in the normal direction (θ =
0o) as a function of frequency for the optimized structures of Fig. 2.1 with N=M =0 (red line),
N=M =1 (blue line), and N=M =2 (black line). All other parameters for the N=M =0, N=M =1,
and N=M =2 cases are as in Figs. 2.5, 2.6, and 2.7, respectively. Also shown is the transmission
cross section per unit angle in the normal direction for the optimized N = M = 2 structure, if the
metal in the structure is assumed to be lossless (black dashed line).
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Chapter 3
Highly-compact magneto-optical
switches for metal-dielectric-metal
plasmonic waveguides

3.1 Introduction

Achieving active control of the flow of light in plasmonic devices is of fundamental interest in

plasmonics. A possible route to actively control plasmons is to use an externally applied magnetic

field [26, 27]. As an example, external magnetic fields could be used to control plasmonic devices

through analogies of the Kerr and Faraday effects [28, 29]. Compared to electro-optics or thermo-

optics, magneto-optics could lead to faster modulation speeds [27]. In addition, the magneto-optical

effect breaks the time-reversal symmetry, and the use of magneto-optical materials may therefore

lead to nonreciprocal plasmonic devices [68, 69, 33]. Surface plasmon polaritons propagating at

metal-dielectric interfaces in which one or both media are magneto-optical have been investigated

both theoretically and experimentally [70, 71, 72, 73, 74, 75, 76, 77].

In this Chapter, we introduce highly-compact resonant-cavity-enhanced magneto-optical switches

for MDM plasmonic waveguides [78]. Based on the dispersion relation of the optical modes sup-

ported by a MDM waveguide in which the free-electron plasmonic metal is subject to an externally

applied static magnetic field along the direction perpendicular to the plane of propagation, the field

amplitude profile of the fundamental mode of the waveguide is asymmetric. The static magnetic

field induced asymmetry, which can enhance or reduce the coupling between the waveguide and

a side-coupled resonator, and the relatively large induced wave vector modulation can be used to

design a Fabry-Perot cavity magneto-optical switch with a large modulation depth. The switch
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Figure 3.1: Schematic of a MDM waveguide. The metal is subject to an externally applied static
magnetic field, and has a bulk plasmon wavelength λP = 2πc

ωP
, where c is the speed of light in

vacuum.

consists of a MDM waveguide side-coupled to two MDM stub resonators, and the on and off states

correspond to either the presence or the absence of the externally applied static magnetic field.

3.2 Results

A schematic of a MDM waveguide in which the metal is subject to an externally applied static

magnetic field is shown in Fig. 3.1. Light in MDM waveguides can be coupled using a variety of

structures such as gratings and slit-based couplers [79]. We consider TM modes, with non-zero

field components Ex, Ey, and Hz. In the presence of a static magnetic field B in the z direction,

the dielectric permittivity of the metal is described by a tensor [32, 33]:

ε = 1− ω2
P

(ω + i/τ)2 − ω2
B

×


1 + i 1

τω
iωB

ω
0

−iωB

ω
1 + i 1

τω
0

0 0
(ω+i/τ)2−ω2

B

ω(ω+i/τ)

 , (3.1)
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Figure 3.2: Magnetic field distribution of propagating waves excited by a dipole source placed in the
MDM waveguide structure of Fig. 3.1, calculated using FDFD. Results are shown for w = 0.37λP ,
εd= 13.32, ω = 0.16ωP , ωB = 0.1ωP , and 1/τ = 0.002ωP .
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Figure 3.3: Magnetic field amplitude profile of the fundamental TM mode propagating in the
positive y direction, calculated using FDFD (solid black lines), and analytically (red dots).
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Figure 3.4: Magnetic field amplitude profile of the fundamental TM mode propagating in the
negative y direction, calculated using FDFD (solid black lines).
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Figure 3.5: Magnetic field amplitude profile of the fundamental propagating TM mode for ωB = 0.

35



where ωP is the bulk plasmon frequency, and ωB = eB
m

is the cyclotron frequency. The decay

time τ characterizes the material loss in the metal, e is the electron charge, and m is the electron

mass. Here we use 1/τ = 0.002ωP . By applying the boundary conditions at the metal-dielectric

interfaces, one can derive the following dispersion relation for the optical modes supported by the

structure of Fig. 3.1 [80]:

exp(2kdw) =

(
kεxy
εxxεm

)2
+ (kd/εd − km/εm)2(

kεxy
εxxεm

)2
+ (kd/εd + km/εm)2

, (3.2)

where εm = εxx + ε2xy/εxx, k is the y component of the wave vector, ki =
√
k2 − k20εi, i = d,m,

and w is the width of dielectric region (Fig. 3.1). [Equation (3.2) is proved in Appendix A]. We

observe that the above dispersion relation depends only on the square of the propagation constant

k. As a result, the propagation constants for the modes propagating in the positive and negative

y direction are the same.

We found, however, that the corresponding field profiles are different. In Fig. 3.2 we show the

magnetic field distribution of propagating waves excited by a dipole source placed in the MDM

waveguide structure of Fig. 3.1 calculated with the FDFD method [56]. We observe that, even

though the right-moving and left-moving modes have the same propagation constant, the field

amplitude of the right-moving (left-moving) mode is larger at the lower (upper) metal-dielectric

interface.

In the absence of an externally applied static magnetic field, the magnetic field amplitude

profile of the fundamental TM mode supported by the MDM waveguide has a maximum at the

two metal-dielectric interfaces, and is exponentially decaying in the metal. The profile is symmetric

with respect to the x = 0 mirror plane in the middle of the dielectric layer (Fig. 3.5).

However, in the presence of an externally applied static magnetic field B, the magnetic field

amplitude profile of the fundamental mode of the MDM waveguide becomes asymmetric. As in the

case of no externally applied static magnetic field, the profile has a maximum at the two metal-

dielectric interfaces, and the field amplitude is exponentially decaying in the metal. However, the
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maximum field amplitudes at the two interfaces are different, resulting in the asymmetry of the

profile [75] (Figs. 3.3, 3.4). In addition, because of the symmetry of the waveguide structure, the

magnetic field amplitude profile of the mode propagating in the negative y direction is the mirror

image with respect to the x = 0 plane of the profile of the mode propagating in the positive y

direction (Figs. 3.3, 3.4). Note that for applied magnetic field with opposite orientations below

and above the dielectric there is no asymmetry in the magnetic field amplitude profile.

In Fig. 3.3, in addition to the numerically calculated magnetic field amplitude profile obtained

with FDFD, we also show the analytically calculated profile, obtained by solving the dispersion

relation of the modes supported by the waveguide (Eq. 3.2). We observe that there is excellent

agreement between the analytical results and the numerical results obtained using the FDFD

method. This demonstrates that the FDFD method that we use to model the MDM waveguide,

in which the metal is subject to an externally applied static magnetic field, is indeed valid and

appropriate for investigating the properties of such structures.

We now consider the effect of the externally applied static magnetic field on the propagation

constant of the mode. In Fig. 3.6 we show the real part of the propagation constant in the absence

(ωB = 0) and presence (ωB = 0.1ωP ) of the static magnetic field as a function of frequency. We

observe that the real part of the propagation constant of the waveguide mode in the presence of

the magnetic field Re[k(ωB = 0.1ωP )] is larger than the real part of the propagation constant of

the mode in the absence of the magnetic field Re[k(ωB = 0)]. This is consistent with the dispersion

relation of the modes (Eq. 3.2). To see this, for simplicity we first consider the lossless case

(1/τ = 0). Since for metals εxx < 0, we have εm < 0. In addition, the amplitude of εm increases

when the external static magnetic field B is applied. As a result, the right hand side of Eq. 3.2

increases, and consequently kd, and therefore k also increase, when the external static magnetic

field B is applied. Similarly, if the effect of the loss is included (1/τ = 0.002ωP ), the real part of k

increases, when the magnetic field B is applied (Fig. 3.6).

We also define the magnetic field induced wave vector modulation as |∆k(ωB)/k|≡ |k(ωB)−k(ωB=0)
k(ωB=0)

|.

We observe that, as the frequency increases, both the magnetic field induced change in the prop-
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agation constant (Fig. 3.6), as well as the magnetic field induced wave vector modulation (Fig.

3.7) increase. This is associated with the fact that the fraction of the modal power in the metal

increases, as the frequency increases [81]. Thus, the effect of the magnetic field induced change in

the dielectric permittivity of the metal on the propagation constant of the mode becomes larger,

as the frequency increases.

In Fig. 3.7 we also show the effect of the dielectric permittivity εd of the material between

the two metal regions of the MDM waveguide on the wave vector modulation |∆k(ωB)/k|. It is

known that in a plasmonic MDM waveguide, as the permittivity of the dielectric increases, the

fraction of the modal power in the metal increases [81]. Thus, we expect that the wave vector

modulation |∆k(ωB)/k| will increase, as the dielectric permittivity of the material between the two

metal regions εd increases. This is indeed verified by the results shown in Fig. 3.7. The relatively

large magnetic field induced wave vector modulation obtained for large εd can be beneficial in

designing Fabry-Perot cavity magneto-optical switches [82], as we will see below.

As before, in Figs. 3.6 and 3.7, in addition to the numerically calculated results obtained

with FDFD for the propagation constant of the mode and the magnetic field induced wave vector

modulation, we also show the analytically calculated results, obtained by solving the dispersion

relation of the modes supported by the waveguide (Eq. 3.2). Once again, we observe that there

is excellent agreement between the analytical results and the numerical results obtained using the

FDFD method in the whole range of parameters considered. This further demonstrates that the

FDFD method that we use is appropriate for investigating the properties of such structures.

As a first step towards designing a Fabry-Perot cavity magneto-optical switch based on the

structure of Fig. 3.1, we investigate a MDM waveguide side-coupled to a MDM stub resonator,

when the metal is subject to an externally applied static magnetic field (Fig. 3.8). In Fig. 3.9

we show the transmission as a function of the stub length L1 for the structure of Fig. 3.8. We

excite the fundamental mode of the input waveguide using a point current source, and measure the

power of the transmitted optical mode in the output waveguide (Fig. 3.8). We perform a similar
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Figure 3.6: Real part of the y component of the wave vector, normalized by kP = ωP/c, as a
function of frequency, calculated using FDFD for ωB = 0.1ωP (black dots), and ωB = 0 (red dots).
Also shown are analytically calculated results for ωB = 0.1ωP (red solid line), and ωB = 0 (blue
solid line).
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Figure 3.7: Normalized amplitude of the change in the y component of the wave vector, when the
static magnetic field is applied to the metal, as a function of frequency, calculated using FDFD for
εd=1 (red dots), εd=3 (blue dots), εd=5 (light blue dots), εd=9 (black dots), and εd= 13.32 (green
dots). Also shown are analytically calculated results for εd=1 (solid green line), εd=3 (solid black
line), εd=5 (solid pink line), εd=9 (solid blue line), and εd= 13.32 (solid red line).
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Figure 3.8: Schematic of a MDM waveguide side-coupled to a MDM stub resonator. The metal is
subject to an externally applied static magnetic field. The dashed line indicates the flux measure-
ment plane.
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simulation in a straight waveguide and the ratio of the power measured in the structure with

respect to the power measured in the straight waveguide is the transmission of the structure. In

the absence of an externally applied static magnetic field (ωB = 0), the transmission exhibits a dip

when L1 is equal to one of the resonant lengths of the cavity [82]. The transmission at this length

is relatively low, since the incoming wave interferes destructively with the decaying amplitude into

the forward direction of the resonant cavity field [62]. In the presence of an externally applied static

magnetic field B, the transmission for the structure of Fig. 3.8 depends on the direction of the

static magnetic field. When the static magnetic field is in the positive z direction (ωB = 0.1ωP ),

the magnetic field amplitude of the fundamental mode of the MDM waveguide is larger at the

lower metal-dielectric interface (Fig. 3.3). Thus, the coupling between the waveguide and the stub

resonator, which is side-coupled at the upper metal-dielectric interface, is weaker compared to the

case of no externally applied static magnetic field. As a result, the on-resonance dip in transmission

is smaller (Fig. 3.9). We also observe a shift in the resonant lengths, associated with the change

in the propagation constant of the mode in the presence of the static magnetic field (Fig. 3.2). In

contrast, when the static magnetic field is in the negative z direction (ωB = −0.1ωP ), the magnetic

field amplitude of the fundamental mode of the MDM waveguide is larger at the upper metal-

dielectric interface (Fig. 3.4). Thus, the coupling between the waveguide and the stub resonator

is stronger. As a result, the transmission is lower compared to the case of no externally applied

static magnetic field both off-resonance and on-resonance (Fig. 3.9).

We now investigate a Fabry-Perot cavity structure consisting of a MDM waveguide side-coupled

to two MDM stub resonators, when the metal region between the two stubs is subject to an exter-

nally applied static magnetic field B (Fig. 3.10). Since only the fundamental mode is propagating

in each waveguide section, we can use a single-mode scattering matrix theory to account for the

behavior of this system. The transmission for the structure of Fig. 3.10 can be calculated using
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Figure 3.9: Transmission as a function of the stub length L1 for the structure of Fig. 3.8. Results
are shown for ωB = 0 (black line), ωB = 0.1ωP (red line), and ωB = −0.1ωP (green line). All
other parameters are as in Fig. 3.2. The vertical dashed lines correspond to L1 = 0.43λP , and
L1 = 0.67λP .
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Figure 3.10: Schematic of a Fabry-Perot cavity structure consisting of a MDM waveguide side-
coupled to two MDM stub resonators. The metal region between the two stubs is subject to an
externally applied static magnetic field.
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Figure 3.11: Transmission as a function of the distance L between the two stubs for the structure
of Fig. 3.10 calculated using FDFD (black solid line) and scattering matrix theory (red dots).
Results are shown for L1 = 0.43λP .
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Figure 3.12: Schematics defining the transmission and reflection coefficients when the metal region
to the right of the stub is subject to a static magnetic field.
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scattering matrix theory as [60]:

T = | t1t2e
−kL

1− r1r2e−2kL
|2, (3.3)

where t1 and r1 (t2 and r2) are the numerically extracted using FDFD [60] complex magnetic field

transmission and reflection coefficients, respectively, when the metal region to the right (left) of

the stub is subject to a static magnetic field (Fig. 3.12). [Equation (3.3) is proved in Appendix B].

We observe that there is excellent agreement between the scattering matrix theory results and the

exact results obtained using FDFD. The transmission as a function of the distance L between the

two stubs exhibits peaks, corresponding to the Fabry-Perot resonances of the cavity (Fig. 3.11).

For a MDM waveguide side-coupled to a single stub with a length of L1 = 0.43λP , there is

a significant difference between the transmission in the absence of an externally applied static

magnetic field (ωB = 0) and the transmission when the static magnetic field is in the positive z

direction (ωB = 0.1ωP ) (Fig. 3.9). This significant difference in transmission can be used to design

a Fabry-Perot cavity magneto-optical switch consisting of a MDM waveguide side-coupled to two

MDM stub resonators, in which the metal is subject to an externally applied static magnetic field

(Fig. 3.13). By using two stubs and properly tuning the length of the cavity L formed between

them, the difference in transmission between the on and off states [Fig. 3.14(a)], and therefore the

modulation depth of the switch, defined as [T (ωB = 0.1ωP ) − T (ωB = 0)]/T (ωB = 0.1ωP ) [Fig.

3.14(b)], can be resonantly enhanced compared to the single-stub structure. Thus, such a Fabry-

Perot cavity structure can act as a magneto-optical switch, in which the on/off states correspond

to the presence/absence of externally applied static magnetic field.

Similarly, for a waveguide side-coupled to a single stub with a length of L1 = 0.67λP , there

is a significant difference between the transmission in the absence of an externally applied static

magnetic field (ωB = 0) and the transmission when the static magnetic field is in the negative z

direction (ωB = −0.1ωP ) (Fig. 3.9). Again, this difference in transmission can be used to design

a Fabry-Perot cavity magneto-optical switch consisting of a MDM waveguide side-coupled to two
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Figure 3.13: Schematic of a Fabry-Perot cavity structure consisting of a MDM waveguide side-
coupled to two MDM stub resonators. The metal is subject to an externally applied static magnetic
field.
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Figure 3.14: (a) Transmission as a function of the distance L between the two stubs for the
structure of Fig. 3.13 calculated using FDFD for ωB = 0 (black line) and ωB = 0.1ωP (red line).
Results are shown for L1 = 0.43λP . All other parameters are as in Fig. 3.2. (b) Modulation depth
[T (ωB = 0.1ωP )−T (ωB = 0)]/T (ωB = 0.1ωP ) as a function of L for the structure of Fig. 3.13. All
parameters are as in Fig. 3.14(a).
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Figure 3.15: (a) Transmission as a function of L for the structure of Fig. 3.13 calculated using
FDFD for ωB = 0 (black line) and ωB = −0.1ωP (green line). Results are shown for L1 =
0.67λP . All other parameters are as in Fig. 3.2. (b) Modulation depth [T (ωB = 0) − T (ωB =
−0.1ωP )]/T (ωB = 0) as a function of L for the structure of Fig. 3.13. All parameters are as in
Fig. 3.15(a).
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MDM stub resonators (Fig. 3.13), in which the on/off states correspond to the absence/presence of

externally applied static magnetic field [Figs. 3.15(a), 3.15(b)]. Since the transmission for the single

stub structure for ωB = −0.1ωP , L1 = 0.67λP is smaller than the one for ωB = 0, L1 = 0.43λP

(Fig. 3.9), the transmission in the off state is smaller for the double stub structure corresponding

to Figs. 3.15(a), 3.15(b) compared to the one corresponding to Figs. 3.14(a), 3.14(b). As a result,

the modulation depth as a function of the length of the cavity L is more uniform for the structure

corresponding to Figs. 3.15(a), 3.15(b).

As final remarks, a free-electron plasmonic material with the required properties is indium

antimonide (InSb). For such a material the bulk plasmon frequency is ωP'12.57 × 1012 rad/sec

(λP'150 µm) [83], and thus ωB = 0.1ωP corresponds to an externally applied static magnetic field

of B = 0.1T. The corresponding dimensions of the structure are (w,L, L1)' (55.5,166.5,100.5)

µm. In addition, the loss parameter used in this Chapter (1/τ = 0.002ωP ) is appropriate for

indium antimonide [84, 83]. We also found that even for a significantly larger loss parameter

of 1/τ = 0.01ωP the modulation depth is ∼0.54 which is acceptable for switching applications

[12]. In addition, for the structure corresponding to Figs. 3.15(a), 3.15(b) the transmission for

ωB = −0.1ωP is close to zero for light incident from the left, while it is non zero for light incident

from the right. Thus, this structure could also be used for magneto-optical isolation [85].
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Chapter 4
The role of Rabi splitting tuning in the
dynamics of strongly coupled
J-aggregates and surface plasmon
polaritons in nanohole arrays

4.1 Introduction

Matter–light interaction is surely one of the most fundamental processes occurring in nature,

and the interaction between molecular excitons and surface plasmon polariton (SPP) modes is one

of its most effective forms. When the interaction is weak, the wave function of molecules and

the SPP modes can be treated as unperturbed, only leading to modification of the spontaneous

emission rate. On the other hand, when the interaction is strong enough, upon light irradiation

a reversible energy is exchanged between the excitons and SPP modes at a rate faster than their

respective damping processes. The result is the formation of a hybrid [86, 87] exciton–SPP state:

the system is in a strong coupling regime [88, 89, 90, 91, 92, 93, 94]. The new state is formed

by two energy bands (upper and lower band) separated by an energy value known as the Rabi

splitting energy }ΩR (}ΩR, the energy exchange rate between the hybrid bands). The hybrid

state is characterized by the mixed properties of molecules and SPPs, which is similar to the

behaviour of polaritons in an optical microcavity [95, 96, 97, 98, 99, 100, 101]. Such an intrinsic

peculiarity makes hybrid states interesting for both fundamental research and applications. It

has been demonstrated that the strong coupling with organic molecules can display a very large

vacuum Rabi splitting (up to 700 meV with SPPs; more than 1 eV in a cavity), comparable to a

significant fraction of the molecular transition energy [98, 102, 103]. The strong modification of

the energy levels of the hybrid system has been used to tune chemical reaction rates [104] and the

work function of organic materials [105]. In particular, due to the bosonic character of the hybrid

states, non-equilibrium Bose–Einstein condensation has been observed at room temperature [106].
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From a dynamics perspective, the Rabi oscillations between J-aggregate molecules and SPPs have

been recently measured in real time on a 10 fs timescale [107], the first step towards the realization

of next stage nano-plasmonic devices, such as all-optical switches and low threshold nanolasers

[96, 108, 109]. The choice of this kind of molecule is dictated by the need for realizing strong

coupling. Indeed, according to the definition, strong coupling is achieved if the Rabi splitting is

wider than the linewidths of both the SPP mode and the molecule absorption resonance. In this

regard, J-aggregates show a narrow absorption band, much narrower than standard dye molecules

(such as Rhodamine 6G, Sulforhodamine 101, Rhodamine 800, Nile red and beta-carotene) which

instead are characterized by inhomogeneously broad spectra. In the absence of dissipation, the Rabi

splitting energy }ΩR (i.e. the coupling strength) of an individual two-level oscillator at resonance

with the SPP vacuum field E, is given by [110]:

}ΩR = 2E · d
√
nph + 1 = 2

√
}ω

2ε0V
d
√
nph + 1, (4.1)

where d is the molecular transition dipole moment of the two level oscillator, }ω is the SPP

resonance energy, ε0 is the vacuum permittivity, V is the modal volume and nph refers to the

number of photons in the system. Importantly, energy splitting can still exist even under zero

photon conditions, that is nph = 0. This is indeed known as vacuum Rabi splitting (}ΩV RS),

attributed to electromagnetic vacuum fluctuations. In particular, quantum theory predicts that

}ΩV RS is proportional to the square root of the absorbance which, in turn, is proportional to the

concentration
√
N/V [89, 93], where N is the number of oscillators in the modal volume V . Hence,

increasing the molecule concentration, namely confining the molecules into a smaller volume, is an

effective way to increase the coupling strength.

In recent years there has been a great deal of effort towards understanding the dynamics of

strongly coupled systems by transient spectroscopy experiments [107, 111, 112, 113, 114, 115]. It

has been demonstrated that the lifetime of the upper hybrid band in exciton–SPP systems can

be much longer than the life of bare excited molecules. It was suggested that this result can be

caused by a trap state observed in the upper band [111, 113] or by the blockage of the vibrational
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relaxation modes due to the large Rabi splitting [116, 117, 118, 119]. In this work, we report a

comprehensive spectroscopic study of a prototypical SPP–molecule hybrid structure consisting of

a gold nanoholes array coated with different constructions of J-aggregate molecules [120]. The

dynamics of the aforementioned system is revealed by an ultrafast pump–probe approach under

resonant excitation. We demonstrate that the upper hybrid band shows a reduced lifetime upon

increasing of the coupling strength.

4.2 Sample Fabrication

Figure 4.1: Experimental absorbance spectra, at different concentrations of J-aggregate molecules,
dispersed inside a 300 nm thick PVA film (solid lines). Normalized-to-area transmission spectrum
of a gold hole array (period = 310 nm, white bar in the SEM image) covered with a 300 nm thick
PVA film showing the broad SPP feature (gray dashed line). The low and high wavelength peaks
correspond to the SPP orders (1,1) and (1,0), respectively. Inset: SEM image of the nano-patterned
gold layer. Light is impinging from the top with normal incidence.
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The samples were fabricated through the deposition of 200 nm of gold on a CaF2 substrate

followed by the milling of the holes array by focused ion beams (FEI/Helios Nanolab 650). The

total patterned area is 200 × 200 µm2. The ratio between the periodicity and the hole diameter was

kept at 2.5 while the period was varied from 260 to 360 nm. Afterwards, the samples were coated

with a 300 nm thick layer of J-aggregate molecules, previously dispersed in liquid PVA (polyvinyl

alcohol) with five different concentrations (from 0.5 to 4 mg/mL). To determine the absorbance

of the J-aggregate film, samples with no gold layer were fabricated; the corresponding absorbance

spectra are shown in Fig. 4.1 together with the scheme of the overall structure. The dye used in

the experiments was 3,3’ -disulfopropy1 -5,5’ -dichloro-9-ethylthia-carbocyanine triethylammonium

salt (Thia; Hayashibara Biochemical Laboratories, Inc.), which has a sharp absorbance at 623 nm

due to its large transition dipole moment upon J-aggregation. Such a feature is particularly suitable

to achieve strong coupling with SPPs. In order to prevent oxidization, the samples were sealed by

a glass slide under a nitrogen environment in a glove box with an oxygen concentration lower than

0.1 ppm.

4.3 Numerical Simulations

The numerical simulations were based on the Rigorous Coupled Wave Analysis (RCWA)

method [121]. This numerical approach uses the concept of a unit cell to handle both 2D and

3D periodic structures and is specifically tailored for multilayer structures. The unit cell definition

can have arbitrary geometry and the index distribution can consist of both standard dielectric ma-

terials and dispersive/lossy materials such as metals. The electromagnetic input can be an incident

plane wave with arbitrary direction and polarization. Various simulation results can be outputted

including far field components such as absorption, reflection and transmission. In particular, the

latter quantity was utilized for a straight comparison with the experimental data.

The gold permittivity was described following the model in Alabastri et al. [122], while PVA

and CaF2 permittivities were taken equal to 2.25 and 2.045, respectively, for all the wavelength

spectrum of interest. The J-aggregate permittivity is described by a Lorentz oscillator model with
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the main resonant energy at 1.99 eV, as reported by Wurtz et al. [123]. In order to match the

short-wavelength tail of the experimental absorption spectra (see Fig. 4.1), we slightly modified

this simple model by adding a second oscillator at 2.16 eV.

Finally, the impinging light was considered normal to the top surface with linear polarization

directed along the shortest distance between two adjacent holes.

4.4 Static Measurements

Periodic metallic hole arrays have the capability to convert impinging radiation into SPPs

modes resulting in a remarkable field confinement at the metal surface. Owing to the periodic

pattern of the array, the desired SPP mode can be chosen by tuning the period thus to match the

absorbance peak of the J-aggregates. Upon normal incidence radiation, the transmission spectrum

of the gold holes array with a period of 310 nm (gray dashed line) shows two peaks corresponding to

the SPP orders (1,1) and (1,0) [124, 125]. As illustrated in Fig. 4.1, the (1,0) SPP mode overlaps the

absorbance peaks of the J-aggregate molecules, shown at different concentrations, with the result

of maximizing the coupling strength. In Fig. 4.2(a) are plotted the simulated normal incidence

transmission spectra for a series of gold hole arrays, characterized by different periodicities, covered

by a 300 nm thick J-aggregate/PVA film (the latter manifesting an absorbance of 1.40 at 623 nm,

as shown in Fig. 4.1). Similarly, in Fig. 4.2(b) are illustrated the corresponding experiment. As

can be observed, the original plasmon peak illustrated in Fig. 4.1 (gray dashed line) splits into

two bands. In particular, in Fig. 4.3(a) and Fig. 4.3(b) (numerical simulations and experimental

characterization, respectively) the dispersion of the two bands is plotted as functions of both the

holes array period from 260 nm to 360 nm and absorbance, and the result shows the characteristic

feature of strong coupling: the anticrossing of energies. An optimal Rabi splitting of 245 meV was

experimentally measured at the resonance period of 310 nm for a concentration corresponding to

an absorbance equal to 1.40. The dispersion curves for lower concentrations of J-aggregates are

also represented in the figures. The decrease of the energy splitting magnitude upon lowering the

56



J-aggregate concentration is clearly shown. In particular, J-aggregate/PVA film absorbances of

0.70 and 0.14 correspond to Rabi splitting of 161 meV and 99 meV, respectively.

In Figs. 4.4(a), 4.4(b), the former corresponding to simulations the latter to experiments, is

highlighted the behaviour of Rabi splitting as a function of the absorbance for the resonant period

of 310 nm and under normal incident radiation. A remarkable match is noticed between the two

figures. The observed Rabi splitting displays a linear dependence on the square root of the J-

aggregate absorbance [Fig. 4.5(a) simulations, Fig. 4.5(b) experiment] which, in turn, depends

on the molecule concentration. Thus, the Rabi splitting observed in the normal transmission

spectrum follows a
√
N/V dependence, which is consistent with previous experimental results and

the quantum theory description of strong coupling [93, 104]. Above all, static measurements have

clearly indicated that the hybrid system is in a strong coupling regime. To gain further insight into

the corresponding dynamics of such a hybrid system with different coupling strengths, extensive

studies were focused on transient absorption spectroscopy.

4.5 Transient Absorption Experiments

Femto-second transient absorption (TA) spectroscopy was carried out with a 100 fs laser

pump–probe setup [126, 127, 128] based on a mode-locked Ti:sapphire laser/amplifier system (Sol-

stice, Spectra-Physics). The amplified output from the regenerative amplifier (RGA, Spitfire,

Spectra Physics), showing a 250 Hz repetition rate with a pulse energy of 1.5 mJ, 100 fs pulse

width and 800 nm wavelength, was split into two parts. The strongest signal was used to generate

the desired excitation pulse at 560 nm through a TOPAS system; the weakest part was focused on

a sapphire substrate to generate a broadband white light, from 450–800 nm, used as probe pulses.

The two beams were orthogonally and collinearly recombined by a dichroic mirror, and focused

on the sample at normal incidence through a microscope objective (NA 0.75, magnification 10).

Of particular note is that, due to the chromatic aberrations, the focal planes of the pump and

probe beams are indeed different. In this regard we had to apply a procedure to optimize the
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Figure 4.2: (a) Simulated transmission spectra of a set of gold hole arrays (period from 250 nm to
350 nm as indicated by the arrow) covered by a 300 nm-thick PVA film doped with J-aggregates
(chosen concentration such as the absorbance is 1.40 at 623 nm – see Fig. 4.1 black curve). (b)
Experimental normalized-to-area transmission spectra of a set of gold hole arrays (period from
260 nm to 360 nm as indicated by the arrow) covered by a 300 nm-thick PVA film doped with
J-aggregates (chosen concentration such as the absorbance is 1.40 at 623 nm – see Fig. 4.1 black
curve). The two dashed lines highlight the shift of the lower and upper bands.
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Figure 4.3: (a) Simulated energy dispersion curves associated with three J-aggregate doped samples
at different concentrations: 1.40 (blue and red triangles), 0.70 (light blue and pink squares) and
0.14 (green and violet stars). The gray dots represent the simulated dispersion curve for the J-
aggregate-free (undoped) configuration. (b) Experimental energy dispersion curves corresponding
to the undoped sample (no J-aggregate molecules, only gold holes array and PVA; gray dashed
line) and to three different samples, doped with J-aggregates, showing absorbance of 1.40 (blue
and red triangles), 0.70 (light blue and pink squares), and 0.14 (green and violet stars) calculated
at 623 nm. These three values of absorbance were obtained by tuning the period of the holes array
from 260 nm to 360 nm. The horizontal black dotted line corresponds to the J-aggregate 623 nm
absorbance energy.

59



focusing of the probe beam. Otherwise, the pump would be out of focus thus providing a spatially

uniform excitation pulse larger than the probed area. Finally, the reflected light from the sample

was collected by the same objective and, by blocking the excitation light through a filter, the

transient absorption data were collected by using a fibre-coupled sensitive spectrometer (Avantes

AvaSpec-2048 × 14). The detection window was from 575 nm to 800 nm due to the blockage of

the probe light by the dichroic mirror. To be noted is that the group velocity dispersion of the

transient spectra was compensated by a chirp program.

In TA experiments we measured the variation of the optical density ∆OD, here defined as

-log(Rpump,probe/Rprobe), where Rpump,probe is the reflection of the probe laser right after the pump

signal has hit the sample, namely the sample reflection upon perturbation induced by the pump

laser. Similarly, the Rprobe describes the probe reflectivity under conditions far from the pump

excitation. The three highest J-aggregate concentration samples, with absorbance values of 1.40,

1.10 and 0.70 calculated at 623 nm, were chosen for TA measurements. In Fig. 4.6(a) is shown

the response of the reference sample, formed by J-aggregate/PVA spin-coated on a flat gold film,

irradiated with a 560 nm laser pulse (upper band excitation). The result is a positive signal around

610 nm, which is attributed to excited state absorption, while the narrow negative signal at 623

nm, which is consistent with the steady-state absorption spectrum of Fig. 4.1, corresponds to the

ground state bleaching of J-aggregates. As can be seen in Fig. 4.6(b), the normalized bleaching

kinetics associated with the three aforementioned absorbance values show very similar behaviour,

namely fast decay, with no apparent dependence on the J-aggregate concentration.

The next step was to perform TA experiments on hybrid systems formed by gold hole arrays

(period = 310 nm) covered by a film of PVA and J-aggregates at different concentrations (thickness

of the film around 300 nm). Similarly to the experiment shown in Fig. 4.6, the samples were

pumped by a pulsed laser at 560 nm corresponding to the upper hybrid band excitation. However,

with respect to the reference sample of Fig. 4.6, the transient absorption spectra of the hybrid

system show totally different features. Indeed, in Figs. 4.7, 4.8, and 4.9, all three transient spectra
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Figure 4.4: (a) Simulated transmission spectra of gold holes array (period = 310 nm) upon in-
creasing of the J-aggregate concentration (absorbance from 0.14 to 1.40 calculated at 623 nm). (b)
Experimental characterization as in (a).
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Figure 4.5: (a) Simulated Rabi splitting values as a function of the square root of the J-aggregate
molecule absorbance. The chosen period is 310 nm. (b) Corresponding experimental Rabi splitting.
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are characterized by two bleaching signals (to be noted that due to the limitation of the detection

window only a small part of the upper bands can be clearly detected). Especially for the highest

J-aggregate concentration sample (absorbance 1.40), the upper band undergoes a strong blue-shift

pushing it almost out of the detection window due to the very large Rabi splitting. Regardless, clear

evidence of the existence of lower and upper bands is provided by all the considered concentrations.

For J-aggregate concentrations with absorbance values of 1.10 and 1.40 (Figs. 4.7, 4.8), a

positive signal associated with thermal effects [129] is observed between the two bleaching minima.

Indeed, in the proposed configuration the resonant pump laser brings the system to an excited

condition where the energy is shared and oscillates between the SPP modes associated with the

gold nanoholes array and the excited state of J-aggregates. This leads to the hybrid states appearing

in the TA spectra once the probe laser shines into the system. In the first moments, after the pump

laser hits the sample (<1 ps), the system undergoes dephasing of the SPP resonances, namely the

excited electrons tend to thermalize via electron–electron scattering. This phenomenon determines

the creation of new energy levels which will contribute to the absorption of probe photons, namely

the transmission of the probe pulse is reduced with respect to the initial completely coherent (before

dephasing) coupled hybrid system. In turn, this means a positive peak in the TA measurements.

However, by considering the amplitude of the thermal peak with respect to the overall spectra,

we can argue that at these concentrations the hybrid system is probably dominated by a SPP-

related non-thermal process. With the J-aggregate concentration decrease, the lower and upper

bands gradually overlap with each other due to the Rabi splitting decrease (Fig. 4.9); meanwhile

the small positive signal submerges in the bleaching signals. Hence, for all the three samples under

resonant 560 nm excitation, the dynamics of the hybrid systems is dominated by a SPP-related

non-thermal process, in which the photophysics nature of strong coupling can be directly reflected.

In order to highlight the shift associated with different J-aggregate concentrations, the spectra

recorded at 0.5 ps are shown in Fig. 4.10 for all three concentrations. The observed shift of the

lower band (the upper band falls outside the detection window) confirms that the Rabi splitting
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Figure 4.6: (a) Transient absorption spectra of J-aggregates (absorbance of 1.10 at 623 nm) on a
flat gold film. The spectra were recorded at 0.3, 1, 2, 3, 5, 20, 100 and 1000 ps. (b) Normalized
bleaching dynamics of J-aggregates on a flat gold film at 623 nm with different concentrations
(measured from reference samples with no gold layer). For both figures, a 560 nm excitation was
considered (upper band excitation). ∆OD: optical density variation.
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increases with the J-aggregate concentration. This result is consistent with the static measurements

shown in Fig. 4.5(a).

Figure 4.7: Transient absorption spectra of PVA/J-aggregates with different concentrations for
absorbance of 1.40, deposited on a gold holes array under 560 nm excitation. The period of the
array is taken to be equal to 310 nm. The PVA thickness is around 300 nm. The spectra were
recorded at 0.5, 1, 2, 3, 5, 20, 100 and 1000 ps. ∆OD: optical density variation.

The kinetics of the lower [Fig. 4.11(a)] and upper [Fig. 4.11(b)] hybrid bands with different

coupling strengths (i.e. J-aggregate concentration) are compared with the kinetics of J-aggregates

on a flat gold film and a flat glass substrate. The choice of materials is dictated by the need

for ruling out any kind of strong coupling which might also occur between J-aggregates and a

flat gold film. In particular, due to the detection window limitations, the upper band of the

highest J-aggregate concentration sample (absorbance 1.40) cannot be detected. For the other two
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Figure 4.8: Transient absorption spectra of PVA/J-aggregates with different concentrations for
absorbance of 1.1, deposited on a gold holes array under 560 nm excitation. The period of the
array is taken to be equal to 310 nm. The PVA thickness is around 300 nm. The spectra were
recorded at 0.5, 1, 2, 3, 5, 20, 100 and 1000 ps. ∆OD: optical density variation.
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Figure 4.9: Transient absorption spectra of PVA/J-aggregates with different concentrations for
absorbance of 0.7, deposited on a gold holes array under 560 nm excitation. The period of the
array is taken to be equal to 310 nm. The PVA thickness is around 300 nm. The spectra were
recorded at 0.5, 1, 2, 3, 5, 20, 100 and 1000 ps. ∆OD: optical density variation.
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samples (absorbance 0.70 and 1.10) the kinetics of the upper bands are taken at the detection

window edge, namely 580 nm. The results clearly show that the hybrid bands have longer lifetimes

than the bleaching recovery of J-aggregates on flat gold films and glass substrates. Furthermore,

Fig. 4.11 also shows that the kinetics of the hybrid exciton–SPP state is significantly affected by

the J-aggregate concentration, namely the coupling strength. Indeed, the lifetime of both hybrid

bands is reduced by increasing the coupling strength (higher J-aggregate concentration). This

result is of particular interest especially when compared to the behaviour of J-aggregates on a flat

gold film where no dependence on the concentration was detected, as shown in Fig. 4.6(b) (similar

considerations also apply to J-aggregates on the glass substrate, see Fig. 4.11). This behaviour can

be explained by taking into account the phonon bottleneck effect, the phenomenon responsible for

suppressing vibrational relaxation levels, as already demonstrated in semiconductor quantum dots

[130] and also demonstrated in strongly coupled hybrid systems as a result of the large Rabi splitting

[118]. Indeed, under pump laser excitation the population density of plexitons (i.e. combination

of plasmons and excitons) in hybrid bands increases with the concentration of J-aggregates (the

amplitude of the bleaching signal is proportional to the J-aggregate concentration). With high

population density, the interaction among plexitons is expected to be especially significant, which

in turn means that energy is released to build up the population of phonons associated with different

energies. These new energy levels will then represent a channel for a relaxation from the upper to

the lower hybrid band and further to the ground state (namely removal of the bottleneck effect).

Such behaviour is consistent with the bottleneck suppression found at high pump powers [131], in

which a higher population density can be created. Thus we suggest that the bottleneck relaxation

mechanism can also play an important role in the dynamics of SPP-related systems and is strongly

suppressed in hybrid structures with large Rabi splitting values (i.e. high dye concentration). This

explains why the lifetime under high dye concentration approaches (i.e. shorten) the behaviour of

the dye on top of a flat metal layer or glass substrate.
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Figure 4.10: Transient absorption spectra recorded at 0.5 ps for PVA/J-aggregates deposited on a
gold holes array with period equal to 310 nm. Three different concentrations are considered. The
lower band red shift is highlighted by the gray dashed line. Excitation: 560 nm. ∆OD: optical
density variation.
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Figure 4.11: Comparison between normalized bleaching dynamics of PVA/J-aggregates with differ-
ent concentrations on gold hole arrays. (a) Lower hybrid bands, (b) upper hybrid bands measured
at the detection window edge (580 nm). The normalized bleaching dynamics of PVA/J-aggregates
(absorbance 1.40) on a flat gold film at 623 nm is shown as reference (gray dot line). Similarly,
the figures also show the normalized bleaching dynamics of PVA/J-aggregates on a glass substrate
with different concentrations (color dot lines). The excitation source is equal to 560 nm. ∆OD:
optical density variation. 70



Chapter 5
Enhanced resolution imaging by
portable microspheres

5.1 Introduction

In the quest for a fundamental understanding of the building blocks of nature, several op-

tical characterization approaches have been developed capable of resolving deep sub-wavelength

structures. A notorious strategy capable of breaking the optical diffraction limit is the use of

photo-switchable molecules in far field fluorescence microscopy [132]. By either employing a point

scanning system (RESOLFT), or using a stochastic wide field approach (PALM or STORM),

resolutions down to 40 nm can be obtained. These methods, though, strongly depend on the pho-

tophysics of the fluorescent dyes or proteins used for labeling, mainly limiting them to biological

applications [133]. Alternatively, near-field effects can produce deep sub-wavelength resolutions

by collecting evanescent waves. A well-known approach consists of using probes placed in close

proximity to the sample, such as in near-field scanning optical microscopy (NSOM) [134]. Despite

reported resolutions of 12 nm, the distance between probe and sample is extremely critical and

difficult to control in practice, and it generally suffers from poor signal to noise ratio (SNR). Other

super-resolution methods capable of projecting evanescent waves into the far field include super-

lenses [135], solid immersion lenses (SIL) [136, 137], or microspheres placed directly in contact with

the object to be imaged [138]. The latter is particularly interesting due to the wide availability

of microspheres with different size or refractive index, and the ease of implementation of this ap-

proach. Indeed, extensive literature on this subject has been recently published that demonstrate

the potential of sphere-mediated microscopy (SMM) for different optical configurations including

bright-field [139, 138] and fluorescence microscopy [140], or even confocal systems [141]. However,

SMM suffers a serious drawback inherent to its simplicity: microspheres are placed on the surface

of interest with no control. As a consequence, not a single microsphere may lay on top of the
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object to be imaged, rendering the concept unusable. A simple solution to this problem could be

to increase the number of microspheres on the sample, but at high concentrations microspheres

tend to aggregate and can axially overlap, deteriorating optical performance. Furthermore, even

if a microsphere is found on top of a region of interest, the field of view is limited by the size of

the microsphere, which is typically between 4 and 50 µm. Therefore, it would be highly benefi-

cial to gain control over the positioning of the microspheres for enhanced resolution imaging over

user-selectable areas. Previous attempts to achieve such control consisted of creating arrays of

microspheres embedded in an elastomeric matrix [139, 142] or using a microsphere glued on the

tip of a glass micropipette placed on an xyz stage [143]. Note that the displacement of the elas-

tomer with respect to the surface or the fragility of glass and the potential micropipette breakage

render these approaches difficult to implement in practice. As a consequence of the lack of control

in the positioning of the microspheres, a complete characterization of the optical performance of

SMM is still missing. Indeed, no systematic measurement of the enhancement in spatial resolution

induced by the microspheres -using the standardized resolution criteria appropriate for partially

coherent systems- has been performed so far [144]. Authors have also used different parameters to

define resolution including the distance between the edge of two features or the distance between

maximum and minimum contrast. As a result, there exists a large disparity in the data regarding

attainable resolution in SMM, with claimed values ranging from 25 nm to more than 300 nm. Even

if the full width at half maximum (FWHM) of the point spread function (PSF) has been measured

by deconvolution methods [142, 145], some a priori knowledge was required (shape of the PSF).

In fact, this has been the subject of recent controversy [146]. Therefore, a full description of the

optical response of SMM has not yet been provided.

5.2 Results

Here, we present a novel method to translate the microsphere at targeted positions on a sample

based on mounting a microbead on a tipless AFM cantilever. By using the piezoelectric stages

of a standard AFM, the lateral positioning of the microsphere can be easily carried out. Optical
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inspection of the microbead-cantilever systems enables monitoring the process in situ. In addition,

the measurement of deflection of the AFM cantilever could also be used to further control the

distance between microsphere and sample. With such a system, we performed a detailed mea-

surement of the spatial resolution in SMM by imaging a calibration target consisting of gratings

with different periodicity. Images of the gratings with and without the microsphere allowed a full

characterization of the spatial frequency response of our microscope (modulation transfer function

or MTF) and the consequent quantitative determination of the enhancement in resolution induced

by the microsphere. We show that, in agreement with FDTD simulations, SMM has a resolution

ultimately limited by the microsphere properties, and quite independent of the particular focusing

objective used. In the conditions reported herein, we were able to observe features with typical

length scales below 150 nm as previously reported in literature. However, when the collected images

are interpreted by using the standard resolution criteria, the maximum resolution was ∼260 nm

for 0.5 and 0.8 NA objectives. Even though microspheres do not break the Abbe diffraction limit

or produce super-resolution, they can be regarded as portable and cheap optical elements that can

enhance the effective NA of a system, making them of great interest for many applications ranging

from plasmonics [147] to micro or nano Raman spectroscopy [148].

SEM micrograph of a tip-less AFM cantilever with a microsphere electrostatically (Van der

Waals interaction) attached to it is illustrated in Fig. 5.1. A scheme of the imaging setup and

microsphere positioning system is presented in Fig. 5.2. All experiments were performed using a

bright-field microscope operated in transmission mode and coupled to an AFM system provided

with a XYZ piezoelectric actuator (WiTec Alpha 300 RA). The illumination source was a blue

LED with a wavelength of 405 nm. We selected this particular color since it offered higher contrast

and spatial resolution than white light. In order to position microspheres on targeted positions

of a sample, we used a specially designed AFM cantilever in which 3.5 µm holes were drilled by

means of focused ion beam (FIB) lithography (Helios FEI Dual Beam SEM-FIB). After placing the

cantilever into the AFM holder of our microscope, we proceeded with the trapping and positioning
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Figure 5.1: SEM micrograph of a tip-less AFM cantilever with a microsphere electrostatically (Van
der Waals interaction) attached to it. Scale bar is 100 µm.
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Figure 5.2: Scheme of the optical setup used for enhanced imaging with the microsphere. The
system could be operated in either reflection or transmission modes. In any case, partially coherent
light was used (white light or 405 nm wavelength) and the virtual image formed was collected with
a microscope objective.
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of individual beads. To this end, we selected a single microsphere from a reservoir of beads prepared

by drop casting. We then placed the hole of the cantilever on top of the bead to be captured, and

moved the cantilever axially until getting in contact with the microsphere. Electrostatic forces held

the bead within the hole and allowed the displacement of the bead/cantilever system to the area of

interest. Importantly, we could also detach the microsphere on a given point of interest by firmly

pressing the bead against the substrate. The displacement of the cantilever was monitored in real

time by means of the microscope camera (ImagingSource DFK72BUCO2). In all experiments, we

used silica microspheres with a diameter of 4.7 µm (Banglabs CS019, refractive index of 1.46), as

commonly used in literature [138, 149, 150]. Virtual image of a grating formed in reflection mode

with SMM is presented in Fig. 5.3.

Figure 5.3: Virtual image of a grating formed in reflection mode with SMM.

76



We first characterized the optical performance of our system without a microsphere. In par-

ticular, we imaged a customized calibration target fabricated with FIB lithography and consisting

of gold gratings on glass with periodicities ranging from 100 to 1000 nm. This calibration target

can be considered as the high resolution equivalent of the 1951 USAF test chart typically used to

measure resolution in partially coherent systems. Note that other test charts, such as a Siemens

start, could be used for the same purpose [144]. However, given the small field of view of the

microsphere, a target composed of periodic straight lines was considered more adequate. An image

of the calibration target acquired with a 50x long working distance objective (NA 0.5, Olympus

LMPLANFL) is presented in Fig. 5.4. Only structures with a grating period below 1630 line-pairs

(lp) per mm can be distinguished. To further refine the measurement of spatial resolution, we cap-

tured an image of a slant sharp edge. From this image we could directly extract the edge response

of our microscope, and by differentiation calculate the line spread function (LSF). Interestingly, the

LSF is the 1D equivalent of the PSF of a microscope (image of a point source or impulse response),

and thus from its Fourier transform we could retrieve the frequency response of our system, also

known as MTF (Fig. 5.7). The MTF intuitively indicates contrast and it illustrates the behavior

of a microscope as a filter, with the cutoff frequency (maximum resolution) conventionally consid-

ered at a 10% of the MTF (the Rayleigh resolution criterion corresponds to a 9% of the MTF).

Our particular microscope objective presented a maximum resolution of 580 nm (equivalent NA of

0.42). For comparison, the optical performance of a diffraction-limited system was plotted in Fig.

5.7. The decrease in performance at high frequencies of our system with respect to the ideal case

is expected due to imperfections in the design of “real” microscope objectives.

We repeated the above characterization for SMM, with a single microsphere placed on top of the

different gratings. To avoid any potential interference caused by the cantilever during image forma-

tion, experiments were performed with no cantilever (the microsphere was positioned at targeted

locations on the substrate and further detached from the cantilever, as detailed above). The pres-

ence of the cantilever, though, did not seem to affect the results. Remarkably, each microsphere
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Figure 5.4: Optical micrograph acquired with the 50x objective of gratings imaged without the
microsphere.

Figure 5.5: Details of three gratings imaged through the microsphere. Note that these frequencies
could not be resolved without the microsphere.
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Figure 5.6: The corresponding intensity profiles (normalized with respect to 2440 lp/mm) for three
gratings imaged through the microsphere shown in Fig. 5.5.
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formed a virtual image at a distance of 4.5 µm below the sample surface, with a magnification

factor of 2.8. Moreover, higher magnifications could be obtained by moving the objective focal

plane further below the surface (up to a distance of about 9 µm an image could still be distin-

guished). However, at these positions the contrast was poorer while no higher spatial frequencies

could be resolved, indicating a simple effect of “empty magnification” (magnification without gain

in resolution). Interestingly, the microsphere enables to resolve frequencies not accessible with the

conventional microscope, as shown in Figs. 5.5 and 5.6. Indeed, a grating with a spacing up to

3450 lp/mm could be clearly resolved. The corresponding MTF calculated using the slanted edge

method is plotted in Fig. 5.7. Notably, the range of accessible frequencies in SMM was significantly

extended compared to the microsphere-free microscope, with a maximum resolution of about 260

nm. Considering the Rayleigh criterion, this value indicates an enhancement in the effective nu-

merical aperture of our system of a factor of 2.3, from 0.42 NA to an equivalent 0.95 NA objective.

A similar behavior was observed with 2 additional objectives (20x 0.4 NA and 100x 0.8 NA). In

both cases, the microsphere produced an improvement in spatial resolution, but with different en-

hancement factors. The results are summarized in Table 5.1. We can interpret the observed trend

by considering the microsphere to act as a lens with a fixed numerical aperture of around 0.95.

Thus, the simple introduction of the microsphere can effectively turn a regular microscope into a

high NA system. Particular attention should be given to two different scenarios. First, when the

initial NA of our system is already high, the effects of the microsphere become less apparent. In

fact, the maximum resolution in our SMM system is limited to about 260 nm, even for the highest

NA lenses tested. Second, given a low NA objective, it may not be possible to fully exploit the

intrinsic high NA of the microsphere. In other words, the low NA objective may cutoff the high

frequencies that the microsphere inherently can transfer into the far field. This helps explaining

the lower effective NA of the 20x objective in the SMM configuration. Indeed, the initial objective

NA was 0.3 (cutoff frequency of 1200 lp/mm), but the maximum resolution of the 20x objective,

considering the 2.8 magnification factor, was only 2.8 × 1200 = 3400 lp/mm, which is equivalent

to a 0.81 NA. Therefore, the optimal objective to be used in SMM should have a NA low enough
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to allow the microsphere to significantly increase the optical performance of the microscope, but

sufficiently high to be able to resolve the highest frequencies that the microsphere couples into the

far field.

Figure 5.7: Frequency response of the microscope with and without microsphere. The response
from a diffraction limited system has also been included. The gray area indicates the 10% MTF
criterion used to define the maximum attainable resolution. The highlighted purple area indicates
the enhancement in resolution achieved with SMM with respect to a perfect diffraction-limited
system with a 0.5 NA. The cut-off frequency indicates the Abbe resolution limit for a 0.5 NA
system.

To validate the idea of the microsphere as a high NA lens, we performed three dimensional

FDTD simulations (Lumerical Solutions) of a simplified system consisting of two incoherent dipoles

oscillating in xyz with a wavelength of 405 nm and placed in close proximity to a silica microsphere.
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Table 5.1: Characterization of the effective NA of the different objectives used (10% MTF criterion),
and the effective NA when imaging through the microsphere (SMM). The resolution enhancement
is also included.

Effective NA SMM effective NA Enhancement
20x 0.4 NA 0.3 0.80 2.7
50x 0.5 NA 0.42 0.95 2.3
100x 0.8 NA 0.69 0.97 1.4

The diameter of the microsphere (refractive index 1.46) was set to be 4.6 µm while as background

material was chosen air. Perfect Matched Layer (PML) absorbing boundary condition was used

for the entire simulation window.

Furthermore, convergence analysis was performed in order to guarantee solutions with an error

below 5%. The schematic of the simulated layout, with two incoherent dipoles placed in contact

with the microsphere and separated a distance ∆d is shown in Fig. 5.8. More in detail, the

electromagnetic field generated by the dipoles was calculated at the collecting plane (5.35 µm

above the dipoles), namely after passing through the microsphere. Afterwards, the so calculated

field was back-propagated upon removing the microsphere, as illustrated in Figs. 5.9 and 5.10 for

∆d=250 nm and ∆d=300 nm respectively. The position of maximum intensity was taken at the

image plane, that is where the virtual image is formed [151]. As it can be observed in Fig. 5.11,

dipoles separated by 250 nm could not be resolved using the Rayleigh criterion. To be noticed that

the location of the image plane was at about 7.5 µm from the dipoles plane with a magnification

factor equal to 3.1, in close agreement with experiment. By increasing the separation distance of the

dipoles above 250 nm (Fig. 5.12), they become resolvable, as experimental results demonstrated.

Therefore, the anticipated behavior of the microsphere as an optical element with an effective NA

of about 0.95 is confirmed by the FDTD simulations.

82



Figure 5.8: Schematic of the simulated layout, with two incoherent dipoles placed in contact with
the silica microsphere with diameter of 4.7 µm, refractive index of 1.46 and separated a distance
∆d.
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Figure 5.9: The electromagnetic field generated by the dipoles for ∆d=250 nm is calculated in the
collecting plane and back-propagated. The position of maximum intensity is considered the image
plane.
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Figure 5.10: The electromagnetic field generated by the dipoles for ∆d=300 nm is calculated in
the collecting plane and back-propagated. The position of maximum intensity is considered the
image plane.
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Figure 5.11: Normalized intensity profile for two dipoles separated 250 nm.
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5.3 Discussion

It is important to discuss the implication of the results reported here and to put them in

perspective. Using a 4.6 µm silica microsphere with 405 nm transmission illumination, SMM

enhances the resolution of a microscope up to the limit imposed by an air focusing objective, but

it does not break the diffraction limit. In fact, with a high NA immersion objective, resolutions

below the 250 nm obtained in our SMM system can be achieved. This is in sharp contrast with

resolution claims from previous works. However, none of them provided an accurate measurement

of this parameter. For instance, a common imaged sample has been the periodic structures of

Blu-ray disks or other patterns, which consist of ∼100 nm stripes separated by distances above

200 nm [138, 143, 145, 149, 150, 152, 153]. Conventionally, people have used the width of the

stripes to claim super-resolution, which is misleading since it should be the total periodicity of the

structure (∼300 nm) the parameter to be considered. This stems from the definition of resolution

as the minimum distance at which two structures can be distinguished. Indeed, a point or line

emitter with sub-diffraction size will appear as a blur in the image plane (PSF or LSF), which can

be clearly distinguished, but this does not imply that the system resolution is given by the emitter

size. Thereby, the ∼300 nm structure of a Blu-ray disk can be resolved in SMM but also by using a

high NA objective. Other structures with deep sub-wavelength periodicities have been resolved in

SMM, including 50 nm [141], 100 nm [138] and ∼160 nm [142, 145]. We tried to image structures of

similar size with our system and could not resolve them. We believe there is a combination of effects

to account for this. One of them is the difference in the experimental conditions. For instance,

other imaging modalities such as a laser scanning confocal microscopy (LSCM) have been used

[95]. Furthermore, microspheres of a higher refractive index material (n=1.9), or with a larger size

(50 µm) and partially immersed in a fluid have been reported to further enhance the resolution in

SMM [140]. Note that LSCM, provided a large enough photon budget when the pinhole is below 1

Airy Unit, is already a super-resolution approach (factor of 2 enhancement compared to wide-field

microscopy) [154], whereas larger refractive index microspheres are expected to increase the light

collection efficiency (NA) [145]. In addition, the effects of the particular substrate used [155] (i.e.
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refractive index, plasmonic coupling, etc.) or the excitation of the electromagnetic modes [156]

could also affect the ability of SMM to resolve a given structure. Overall, strong attention must

be paid when claiming to reach a particular resolution in SMM, and the potential interferences

that any of the different parameters can play on this quantity. We also included the corresponding

simulation results for the case when we have hemisphere and protruded hemisphere in Appendix

C.

Figure 5.12: Normalized intensity profile for two dipoles separated 300 nm.
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Chapter 6
Conclusions

We first briefly reviewed the history of achieving extraordinary optical transmission through

subwavelength apertures and also the active control of the flow of light in plasmonic devices using

externally applied magnetic fields. We then numerically investigated compact structures, consisting

of multiple optical microcavities at both the entrance and exit sides of a subwavelength plasmonic

slit, with the goal to enhance the directional transmission through the slit. Our reference structure

consisted of a subwavelength slit in a metal film without microcavities. We found that for such a

structure, as the slit length increases, the transmission cross section per unit angle in the normal

direction exhibits peaks, corresponding to the Fabry-Perot resonances in the slit. As expected for

a subwavelength slit in a metallic film, the radiation pattern is almost isotropic.

To enhance the directional transmission through the slit, we first considered a structure with

a single microcavity at each of the entrance and exit sides of the slit. With such a structure we

aimed to increase both the transmission of light through the slit, as well as the directivity in the

normal direction. We found that the presence of the microcavities results in significantly larger

reflectivity at the sides of the slit compared to a slit without microcavities. Thus, the resonance

enhancement factor is greatly increased compared to the reference slit without microcavities. On

the other hand, the increased reflectivity at the sides of the slit leads to decrease of the power

radiated from the slit. Overall, the use of an optimized single microcavity at the entrance and

exit sides of the slit results in a slit transmission cross section which is ∼1.8 times larger than the

transmission cross section of the optimized slit without microcavities. We also found that for such

a structure the radiation pattern is anisotropic, and the directivity in the normal direction is ∼2.6

times larger than the one of the optimized slit without microcavities. Overall, such a structure,

when optimized, results in 1.8× 2.6 ∼4.7 times larger transmission cross section per unit angle in

the normal direction compared to the optimized reference slit without microcavities.
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To further enhance the transmission cross section per unit angle of the slit in the normal

direction, we considered a structure with multiple microcavities at both the entrance and exit

sides of the slit. We found that, unlike the optimized single-microcavity structure in which the

increased transmission is associated with increased resonance enhancement in the slit, for an opti-

mized double-microcavity structure the increased transmission is mostly associated with improved

impedance matching between free-space waves and the slit mode. Such a structure enhances both

the incoupling of normally incident light from free space into the slit mode, as well as the outcou-

pling of light from the slit mode to free-space radiation in the normal direction. The use of two

optimized microcavities at the entrance and exit sides of the slit results in a slit transmission cross

section which is ∼3.7 times larger than the transmission cross section of the optimized slit without

microcavities. We also found that for such a structure the directivity in the normal direction is

∼4.1 times larger than the one of the optimized reference slit without microcavities. Overall, the

double-microcavity structure, when optimized, results in 3.7 × 4.1 ∼16 times larger transmission

cross section per unit angle in the normal direction compared to the optimized reference slit with-

out microcavities. We also found that, while all structures were optimized at a single wavelength,

the operation frequency range for high emission in the normal direction is broad.

We then introduced highly compact resonant-cavity-enhanced magneto-optical switches for

MDM plasmonic waveguides. We applied the external static magnetic field to the metal and derived

the dispersion relation. We observed that the dispersion relation depends only on the square of the

propagation constant k. We found however that the corresponding field profiles are different. In

addition to the numerically calculated magnetic field amplitude profile obtained with FDFD, we

also showed the analytically calculated profile, obtained by solving the dispersion relation of the

modes supported by the waveguide. We observed that there is excellent agreement between the

analytical results and the numerical results obtained using the FDFD method. We also investigated

the effect of the externally applied static magnetic field on the propagation constant of the mode.

We observed that the real part of the propagation constant of the waveguide mode in the presence

of the magnetic field Re[k(ωB = 0.1ωP )] is larger than the real part of the propagation constant
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of the mode in the absence of the magnetic field Re[k(ωB = 0)]. We also defined the magnetic

field induced wave vector modulation as |∆k(ωB)/k|≡ |k(ωB)−k(ωB=0)
k(ωB=0)

|. We observed that, as the

frequency increases, both the magnetic field induced change in the propagation constant, as well

as the magnetic field induced wave vector modulation increase. As a final step, we investigated

a Fabry-Perot cavity structure consisting of a MDM waveguide side-coupled to two MDM stub

resonators. The metal was subject to an externally applied static magnetic field. By using two

stubs and properly tuning the length of the cavity L formed between them, the difference in

transmission between the on and off states, and therefore the modulation depth of the switch,

defined as [T (ωB = 0.1ωP )−T (ωB = 0)]/T (ωB = 0.1ωP ), can be resonantly enhanced compared to

the single-stub structure. Thus, such a Fabry-Perot cavity structure can act as a magneto-optical

switch, in which the on/off states correspond to the presence/absence of externally applied static

magnetic field.

We also showed that strong coupling can occur between J-aggregate molecules and SPPs sup-

ported by gold nanohole arrays. We investigated the dynamics of the formed hybrid state with

different coupling strengths by using a femto-second pump–probe approach. Under upper band

resonant excitation, two distinctive bleaching bands appeared in the transient absorption spectra

showing an increased Rabi splitting upon increase of the concentration of J-aggregate molecules.

This result was indeed confirmed by static measurements. Furthermore, the non-thermal kinetics

of the hybrid state indicates that the upper band has an intrinsic long lifetime that depends on

the Rabi splitting values as well. Our measurements suggest that the phonon bottleneck relax-

ation mechanism might play an important role in SPP-related dynamics processes. With stronger

coupling strength, the bottleneck effect is suppressed, leading to a shorter lifetime of the upper

hybrid band. This indicates that the coupling strength alters the dynamics of the hybrid system

and offers new insights into the intrinsic photophysics of strong coupling.

We also proposed a portable microsphere system and discussed the corresponding optical char-

acterization. We showed that microspheres can enhance the optical performance of bright-field

microscopes provided an initial low NA objective. Under conditions described herein, microspheres
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behave as optical lenses with a NA of around 0.95, capable to extend the response of a low NA

objective to higher spatial frequencies. In this sense, SMM is a simple and affordable alterna-

tive to traditionally expensive immersion objectives or other imaging modalities. Furthermore, the

integration of microspheres with an AFM system opens the door to correlative approaches for com-

bining optical characterization tools, such as imaging or Raman spectroscopy, with the different

AFM modalities (force mapping, topography), which could help getting further insights about the

intrinsic properties of materials.
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lenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanofer-
romagnets,” Nano Lett., vol. 11, no. 12, pp. 5333–5338, 2011.

[46] J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator
based on nonreciprocal coupling,” J. Appl. Phys., vol. 106, no. 2, p. 023108, 2009.

[47] J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma,
“Extraordinary optical absorption through subwavelength slits,” Opt. Lett., vol. 34, no. 5,
pp. 686–688, 2009.

[48] J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with
a plasmonic aperture antenna,” ACS Photonics, vol. 1, no. 4, pp. 365–370, 2014.

[49] J. Qi, T. Kaiser, R. Peuker, T. Pertsch, F. Lederer, and C. Rockstuhl, “Highly resonant and
directional optical nanoantennas,” J. Opt. Soc. Am. A, vol. 31, no. 2, pp. 388–393, 2014.

[50] W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-
assisted enhanced optical transmission through a seamless gold film,” Opt. Express, vol. 22,
no. 5, pp. 5416–5421, 2014.

[51] P. Kuang, J.-M. Park, G. Liu, Z. Ye, W. Leung, S. Chaudhary, D. Lynch, K.-M. Ho, and
K. Constant, “Metal-nanowall grating transparent electrodes: Achieving high optical trans-
mittance at high incident angles with minimal diffraction,” Opt. Express, vol. 21, no. 2,
pp. 2393–2401, 2013.

[52] Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on sub-
wavelength metallic grating with ellipse walls,” Opt. Express, vol. 21, no. 5, pp. 6139–6152,
2013.

[53] F. Garcıa-Vidal, L. Martın-Moreno, H. Lezec, and T. Ebbesen, “Focusing light with a single
subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett., vol. 83, no. 22,
pp. 4500–4502, 2003.

[54] N. Yu, Q. Wang, and F. Capasso, “Beam engineering of quantum cascade lasers,” Laser
Photon. Rev., vol. 6, no. 1, pp. 24–46, 2012.

[55] A. Haddadpour and G. Veronis, “Microcavity enhanced directional transmission through a
subwavelength plasmonic slit,” Opt. Express, vol. 23, no. 5, pp. 5789–5799, 2015.

96



[56] G. Veronis and S. Fan, “Surface plasmon nanophotonics,” Surface Plasmon Nanophotonics,
M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), Vol. 131, p. 169.

[57] E. D. Palik, Handbook of optical constants of solids, vol. 3. Academic press, 1998.

[58] J.-M. Jin, The finite element method in electromagnetics. John Wiley & Sons, 2002.

[59] A. Taflove and S. C. Hagness, “Computational electrodynamics: the finite-difference time-
domain method,” Norwood, 2nd Edition, MA: Artech House, 1995.

[60] S. E. Kocabas, G. Veronis, D. A. Miller, and S. Fan, “Transmission line and equivalent cir-
cuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron.,
vol. 14, no. 6, pp. 1462–1472, 2008.

[61] C. A. Balanis, Antenna theory: analysis and design. John Wiley & Sons, 2005.

[62] Y. Huang, C. Min, L. Yang, and G. Veronis, “Nanoscale plasmonic devices based on metal-
dielectric-metal stub resonators,” Int. J. Opt., vol. 2012, p. 372048, 2012.

[63] G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab
waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express,
vol. 15, no. 3, pp. 1211–1221, 2007.

[64] Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar
cells,” PNAS, vol. 107, no. 41, pp. 17491–17496, 2010.

[65] Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys.
Rev. Lett., vol. 105, no. 1, p. 013901, 2010.

[66] K. X. Wang, Z. Yu, S. Sandhu, V. Liu, and S. Fan, “Condition for perfect antireflection by
optical resonance at material interface,” Optica, vol. 1, no. 6, pp. 388–395, 2014.

[67] K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function op-
timization,” in 1989 Advances in Intelligent Robotics Systems Conference, pp. 289–296, In-
ternational Society for Optics and Photonics, 1990.

[68] H. Zhu and C. Jiang, “Nonreciprocal extraordinary optical transmission through subwave-
length slits in metallic film,” Opt. Lett., vol. 36, no. 8, pp. 1308–1310, 2011.

[69] J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett.,
vol. 89, no. 25, p. 251115, 2006.

[70] M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,”
Phys. Rev. B, vol. 36, pp. 5960–5967, 1987.

[71] K. Chiu and J. Quinn, “Magneto-plasma surface waves in solids,” Il Nuovo Cimento B (1971-
1996), vol. 10, no. 1, pp. 1–20, 1972.

[72] V. A. Dmitriev and A. O. Silva, “Nonreciprocal properties of surface plasmon-polaritons at
the interface between two magnetized media: Exact analytical solutions,” Prog. Electromagn.
Res., vol. 21, pp. 177–186, 2011.

97
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González-Dı́az, E. Ferreiro-Vila, and J. Torrado, “Magnetoplasmonic nanostructures: sys-
tems supporting both plasmonic and magnetic properties,” J. Opt. A, vol. 11, no. 11,
p. 114023, 2009.

[74] P. Haefner, E. Luck, and E. Mohler, “Magnetooptical properties of surface plasma waves on
copper, silver, gold, and aluminum,” Phys. Status Solidi B, vol. 185, no. 1, pp. 289–299, 1994.

[75] D. Nikolova and A. Fisher, “Switching and propagation of magnetoplasmon polaritons in
magnetic slot waveguides and cavities,” Phys. Rev. B, vol. 88, no. 12, p. 125136, 2013.

[76] B. Hu, Y. Zhang, and Q. J. Wang, “Surface magneto plasmons and their applications in the
infrared frequencies,” Nanophotonics, vol. 4, 2015.
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[110] P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emit-
ters: a review,” Rep. Prog. Phys., vol. 78, no. 1, p. 013901, 2015.
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Appendix A
Proof of Eq. 3.2

Figure A.1: Schematic of a MDM waveguide. The metal is subject to an externally applied static
magnetic field.

As we mention in Chapter 3, the dispersion relation for the optical modes supported by the

MDM waveguide, in which the metal is subject to an externally applied static magnetic field, can

be derived by applying the boundary conditions at the metal-dielectric interfaces. The boundary

conditions are that the tangential components of the electric and magnetic field (Ey and Hz) have

to be continuous at the two metal-dielectric interfaces at Fig. A.1.

The first step is to express the tangential components of the fields in the different regions of

the waveguide. Using Maxwell’s equations and the dielectric permittivity of the metal (Eq. 3.1),

we obtain the following expressions for the fields in the dielectric (−w/2 < x < w/2), and the

metal (x < −w/2 and x > w/2):
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H1z = (Cekdx +De−kdx)eiky, (A.1a)

E1y = −i kd
ε0ε1ω

(Cekdx −De−kdx)eiky, −w/2 < x < w/2 (A.1b)


H2y = Bekmx+iky, (A.2a)

E2y =
X−

ε0ω
H2z, x < −w/2 (A.2b)


H3z = Ae−kmx+iky, (A.3a)

E3y =
X+

ε0ω
H3z, x > w/2 (A.3b)

where A, B, C, D are constants, X± = ±ikm−kεxy/εxx
εm

, and εm = εxx+ε2xy/εxx, k is the y component

of the wave vector, and ki =
√
k2 − k20εi , i = d,m. Imposing the boundary conditions at x = w/2

(please see Fig. A.1 above), we obtain


H3z(y, x = w/2) = H1z(y, x = w/2)⇒ Ae−kmw/2 = Cekdw/2 +De−kdw/2, (A.4a)

E3y(y, x = w/2) = E1y(y, x = w/2)⇒ X+Ae
−kmw/2 =

ikd
εd

(−Cekdw/2 +De−kdw/2). (A.4b)

Imposing the boundary conditions at x = −w/2 (please see Fig. A.1 above), we obtain


H2z(y, x = −w/2) = H1z(y, x = −w/2)⇒ Be−kmw/2 = Ce−kdw/2 +Dekdw/2, (A.5a)

E2y(y, x = −w/2) = E1y(y, x = −w/2)⇒ X−Be
−kmw/2 =

ikd
εd

(−Ce−kdw/2 +Dekdw/2). (A.5b)

Eqs. A.4a, A.4b, A.5a, and A.5b form a system of four equations with four unknowns (A, B, C,

and D). We set the determinant equal to zero in order to have nontrivial solutions for A, B, C, and

D, and derive the following dispersion relation for the optical modes supported by the structure
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exp(2kdw) =

(
kεxy
εxxεm

)2
+ (kd/εd − km/εm)2(

kεxy
εxxεm

)2
+ (kd/εd + km/εm)2

. (A.6)
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Appendix B
Proof of Eq. 3.3

Figure B.1: Schematic of a Fabry-Perot cavity structure consisting of a MDM waveguide side-
coupled to two MDM stub resonators. The metal region between the two stubs is subject to an
externally applied static magnetic field.

We consider a Fabry-Perot cavity structure consisting of a MDM waveguide side-coupled to

two MDM stub resonators shown in Fig. B.1. The metal region between the two stubs is subject

to an externally applied static magnetic field. Such a system can be described by the following

equations


H+
t1 = t1H

+
i1 + r1H

−
i1, (B.1a)

H−
r2 = r2H

+
i2, (B.1b)

H+
t2 = t2H

+
i2, (B.1c)
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where t1 and r1 (t2 and r2) are transmission and reflection coefficients, respectively, when the metal

region to the right (left) of the stub is subject to a static magnetic field (Fig. 3.12). We also have

 H+
i2 = H+

t1e
−kL, (B.2a)

H−
i1 = H−

r2e
−kL. (B.2b)

Using the above equations we obtain

H+
t2 = t2e

−kL(t1H
+
i1 + r1e

−kLr2e
−kLH+

t1), (B.3)

H+
t1 = t1H

+
i1 + r1e

−kLr2e
−kLH+

t1, (B.4)

H+
t1 =

t1H
+
i1

1− r2r1e−2kL
. (B.5)

Substituting Eq. B.5 in Eq. B.3, we will have:

H+
t2

H+
i1

=
t1t2e

−kL

1− r2r1e−2kL
, (B.6)

so the transmission will be:

T = | t1t2e
−kL

1− r1r2e−2kL
|2. (B.7)
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Appendix C
Hemisphere and Protruded Hemisphere

Figure C.1: Schematic of the simulated layout, with two incoherent dipoles separated by a distance
∆d=250 nm placed in contact with the silica hemisphere with diameter of 4.7 µm and refractive
index of 1.46.

Here we consider two additional cases. In Fig. C.1, we show a hemispherical lens instead of

a microsphere. We replace the microsphere in our simulations by a hemisphere (Fig. C.1). In

Fig. C.3, we show a more protruded object. The dipoles are separated by a distance of ∆d=250
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nm, in contact with the flat part of the lens. The wavelength of the illumination source is 405 nm

corresponding to a blue LED . The corresponding field profiles are shown in Figs. C.2 and C.4.

We also show FDTD simulation results when the wavelength of the illumination source is 405

nm, 520 nm, and 633 nm. The dipoles are 300 nm apart. We use a silica microsphere with a

diameter of 4.7 µm and refractive index of 1.46. We observe that when the wavelength of the

illumination source is 405 nm the dipoles are more distinguishable compared to other cases. The

corresponding field profiles are illustrated in Figs. C.5, C.6, and C.7.
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Figure C.2: The electromagnetic field profile of the structure of Fig. C.1, generated by the dipoles
is calculated in the collecting plane and back-propagated. All other parameters are as in Fig. C.1.
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Figure C.3: Schematic of the simulated layout, with two incoherent dipoles separated by a distance
of ∆d=250 nm placed in contact with the silica protruded hemisphere with diameter of 4.7 µm
and refractive index of n=1.46.
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Figure C.4: The electromagnetic field profile of the structure of Fig. C.3, generated by the dipoles
is calculated in the collecting plane and back-propagated. All other parameters are as in Fig. C.3.
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Figure C.5: The electromagnetic field profile of the structure of Fig. 5.8, generated by the dipoles
is calculated in the collecting plane and back-propagated when the wavelength of the illumination
source is 405 nm. All other parameters are as in Fig. 5.8.
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Figure C.6: The electromagnetic field profile of the structure of Fig. 5.8, generated by the dipoles
is calculated in the collecting plane and back-propagated when the wavelength of the illumination
source is 520 nm. All other parameters are as in Fig. 5.8.
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Figure C.7: The electromagnetic field profile of the structure of Fig. 5.8, generated by the dipoles
is calculated in the collecting plane and back-propagated when the wavelength of the illumination
source is 633 nm. All other parameters are as in Fig. 5.8.

117



Vita
Ali Haddadpour was born in 1987 in Marand, Iran. He graduated from Taleghani High School

in 2005. He proceeded to get his B.Sc. and M.Sc. in electrical engineering from the University

of Tabriz in Tabriz in 2009 and 2011, respectively. In August 2012 he came to Louisiana State

University to pursue graduate studies. He is currently a candidate for the Doctor of Philosophy

degree in Electrical Engineering which will be awarded in May 2017.

118


