
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2017

Maintaining High Performance Across All Problem
Sizes and Parallel Scales Using Microkernel-based
Linear Algebra
Md Rakib Hasan
Louisiana State University and Agricultural and Mechanical College, mailtorakib@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Hasan, Md Rakib, "Maintaining High Performance Across All Problem Sizes and Parallel Scales Using Microkernel-based Linear
Algebra" (2017). LSU Doctoral Dissertations. 4486.
https://digitalcommons.lsu.edu/gradschool_dissertations/4486

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/4486?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4486&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

MAINTAINING HIGH PERFORMANCE ACROSS ALL PROBLEM SIZES
AND PARALLEL SCALES USING MICROKERNEL-BASED LINEAR ALGEBRA

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Science
The Division of Computer Science and Engineering

by
Md Rakib Hasan

B.S., Bangladesh University of Engineering and Technology, 2009
August 2017

ACKNOWLEDGMENTS

I want to express deep gratitude to my advisor, Dr. R. Clint Whaley, for his excellent guidance

and tremendous effort that enabled my research. I also want to thank Dr. Sukhamay Kundu,

Dr. Ramachandran Vaidyanathan, Dr. Qingyang Wang and Dr. Hongchao Zhang for serving

on my Ph.D. committee.

I am thankful to Eric Van Hensbergen and Wade Walker for giving me the opportunity

to work on ARM architecture and guiding me at every step. I also want to thank Wooseok,

Dan, Essan for their help for all the research work on ARM architecture.

This research was supported in part by the National Science Foundation (NSF) grant No.

OCI-1149303, the NSF EPSCoR Cooperative Agreement No. EPS-1003897, with additional

support from the Louisiana Board of Regents and the Department of Energy and Lawrence

Livermore National Security, LLC (“LLNS”) under contract number DE-AC52-07NA27344

as part of the Fast Forward 2 (“FF2”) program.

Lastly, I am deeply grateful to my parents and my wife for their continuous support and

encouragement.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xii

NOMENCLATURE . xv

ABSTRACT . xvi

CHAPTER 1: INTRODUCTION . 1
1.1 Basic Introduction to the Libraries/APIs Optimized by this Research 1
1.2 Introducing the Microkernel Concept . 2
1.3 Sequence of Research . 14
1.4 Organization of Paper . 18

CHAPTER 2: PERFORMANCE OPTIMIZATION OF BLAS ROUTINES 19
2.1 GEMM-based BLAS . 19
2.2 gemmµ-based Triangular Matrix-matrix Multiply (TRMM) 25
2.3 gemmµ-based Triangular Solve of Matrix (TRSM) 49
2.4 Performance Results . 70
2.5 Summary and Future Research . 78

CHAPTER 3: PERFORMANCE OPTIMIZATION OF LAPACK ROUTINES 79
3.1 LU Factorization . 79
3.2 Cholesky Factorization . 88
3.3 Summary and Future Research . 92

CHAPTER 4: PERFORMANCE OPTIMIZATION OF PARALLEL LU FACTORIZA-
TION . 94
4.1 Introduction . 94
4.2 Experimental Details . 95
4.3 History, Motivation and Related Work . 96
4.4 Our Approach . 99
4.5 Our Approach in Detail . 106
4.6 Prioritizing the Complex Optimizations . 116
4.7 Future Work . 117
4.8 Summary and Conclusion . 118

CHAPTER 5: PERFORMANCE OPTIMIZATIONS FOR ARM ARCHITECTURES 120

iii

5.1 Developing gemmµ for ARM 64-bit Architectures 120
5.2 Adapting ATLAS for Heterogeneous Architectures 129
5.3 Reliable Performance Auto-tuning in Presence of DVFS 135
5.4 Summary and Future Research . 144

CHAPTER 6: SUMMARY, FUTURE WORK AND CONCLUSIONS 146

REFERENCES . 148

APPENDIX A: HANDLING TRAPEZOIDAL UNROLL BLOCKS IN trmmµ 155
A.1 trmmµ for LLN-variant . 155
A.2 trmmµ for LUN-variant . 157
A.3 trmmµ for RLN-variant . 157
A.4 trmmµ for RUN-variant . 159

APPENDIX B: COMPUTATIONAL MODEL FOR MICROKERNEL-BASED BLAS
AND LAPACK OPERATIONS . 162
B.1 Computational Model for Parallel LU Factorization 162
B.2 Motivation for Modeling Serial Routines . 167
B.3 Computational Model for gemmµ- and trmmµ-based TRMM 169
B.4 Computational Model for gemmµ- and trsmµ-based TRSM 177
B.5 Computation Model for Serial Cholesky Factorization 180
B.6 Computation Model for Serial LU Factorization 183

APPENDIX C: COPYRIGHT PERMISSIONS . 187

VITA . 189

iv

LIST OF TABLES

1.1 Actual operation performed α, β, op(), and direction settings for gemmµ’s copy
routines for the (a) output array C (left) and (b) input arrays A or B (right).
’X’ means set to any value not indicated in prior element of this column. Note
that α = 0 is not supported. 7

1.2 gemmµ operation dictated by compile-time macro definition 12

2.1 Summary for supporting transpose and conjugate-transpose variants of TRMM
through reuse of no-transpose variants . 35

2.2 Summary for supporting transpose and conjugate-transpose variants of trmmµ
through reuse of no-transpose variants . 48

5.1 Experimental methodology for research on ARM 64-bit architectures 126

v

LIST OF FIGURES

1.1 Mathematically equivalent pseudocodes for GEMM α = β = 1 case: (a) MNK
loop order (b) KNM loop order . 7

1.2 GEMM with register blocking for C: (a) K-loop rolled and (b) K-loop unrolled
to 4 (uk = 4) . 9

1.3 um = 3, un = 2 unroll & jammed GEMM: (a) no register blocking and (b) with
register blocking for A, B, and C. 11

1.4 Complete gemmµ with um = 3, un = 2 and uk = 1. 13

2.1 An example of TRMM with upper-triangular Matrix 21

2.2 Computational steps of Superscalar TRMM for first column-panel of Z 22

2.3 An example of recursive TRMM with upper-triangular matrix 23

2.4 Computational steps of gemmµ-based TRMM for first column-panel of Z . . . 24

2.5 Computational steps of gemmµ-based TRMM for second column-panel of Z . . 26

2.6 Basic computational steps for the LLN-variant of TRMM 28

2.7 An example of TRMM: LLN-variant . 28

2.8 Computational steps of gemmµ-based LLN-variant of TRMM for first column-
panel of Z . 30

2.9 Basic computational steps for the LUN-variant of TRMM 30

2.10 Basic computational steps for the RLN-variant of TRMM 31

2.11 An example of TRMM: RLN-variant . 31

2.12 Computational steps of gemmµ-based RLN-variant of TRMM for first row-panel
of Z . 33

2.13 Basic computational steps for the RUN-variant of TRMM 33

2.14 An example of TRMM: RUN-variant . 34

2.15 Computational steps of gemmµ-based RUN-variant of TRMM for first row-panel
of Z . 34

2.16 LLN-variant: partitioning and zero-padding the lower-triangular A 37

2.17 An example for LLN-variant trmmµ . 39

vi

2.18 LUN-variant: partitioning and zero-padding the upper-triangular A 40

2.19 An example for LUN-variant trmmµ . 42

2.20 RLN-variant: partitioning and zero-padding the lower-triangular A 43

2.21 An example for RLN-variant trmmµ . 45

2.22 RUN-variant: partitioning and zero-padding the upper-triangular A 46

2.23 An example for RUN-variant trmmµ . 47

2.24 Computational steps for forward substitution method for LLNN-variant of TRSM 51

2.25 Computational steps for LLNN-variant of TRSM of Superscalar BLAS 51

2.26 Computational steps for gemmµ-based LLNN-variant of TRSM for one column
panel of Z . 53

2.27 Example unroll-blocked gemmµ-based trsmµ (a) picture and (b) steps 54

2.28 Partitioning of the triangular matrix for LLN-variant depicting the data used by
gemmµ updates (gray blocks): (a) um = 12 and (b) um = 3. 57

2.29 An example for LLN-variant of trsmµ . 58

2.30 Basic computational steps for the LLN-variant of trsmµ 59

2.31 An example for LUN-variant of trsmµ . 60

2.32 Basic computational steps for the LUN-variant of trsmµ 61

2.33 An example for RLN-variant of trsmµ . 62

2.34 Basic computational steps for the RLN-variant of trsmµ 64

2.35 An example for RUN-variant of trsmµ . 64

2.36 Basic computational steps for the RUN-variant of trsmµ 66

2.37 Basic computational steps for the LLN-variant of full TRSM 68

2.38 Basic computational steps for the LUN-variant of full TRSM 68

2.39 Basic computational steps for the RLN-variant of full TRSM 69

2.40 Basic computational steps for the RUN-variant of full TRSM 69

2.41 Performance of double-precision real TRSM on O32 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN 73

vii

2.42 Performance of double-precision real TRSM on O32 for fat problems with con-
stant triangle size of (120 × 120) for variants: (a) LLNN (b) LUNN (c) RLNN
(d) RUNN . 73

2.43 Performance of double-precision real TRSM on X12 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN 74

2.44 Performance of double-precision real TRSM on X12 for fat problems with con-
stant triangle size of (120 × 120) for variants: (a) LLNN (b) LUNN (c) RLNN
(d) RUNN . 74

2.45 Performance of double-precision real TRSM on X24 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN 76

2.46 Performance of double-precision real TRSM on X24 for fat problems with con-
stant triangle size of (120 × 120) for variants: (a) LLNN (b) LUNN (c) RLNN
(d) RUNN . 76

2.47 Performance of double-precision real TRMM on X24 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN 77

2.48 Performance of double-precision real TRMM on X24 for fat problems with con-
stant triangle size of (120 × 120) for variants: (a) LLNN (b) LUNN (c) RLNN
(d) RUNN . 77

3.1 Basic steps for left-looking LU factorization for square matrices 83

3.2 Computational steps of a left-looking LU factorization: (a) Initial state of A after
pan0 and pan1 are factorized. (b) Apply row-swaps and TRSM using D0 on top
block of pan2 to make it U20. (c) Apply GEMM updates on A2 using L0 and
U20. (d) Apply row-swaps and TRSM using D1 on top block of A20 to make it
U21. (e) Apply GEMM updates on A21 using L1 and U21. (f) Perform the panel
factorization on A2f . (g) Final state of A after pan2 is factorized. 84

3.3 Basic steps for gemmµ-based left-looking LU for square matrices 87

3.4 Basic steps for recursive LU factorization of a panel: (a) partitioning of the panel.
(b) updates on the second half of the panel after first panel is factorized. . . . 87

3.5 Basic steps for Lower Cholesky factorization of a panel: (a) Initial state of A after
pan0 and pan1 are factorized. (b) Apply SYRK on A2S using the corresponding
row panel (L20) on the left. (c) Factorize the updated diagonal block A2f . (d)
State of A after factorizing the diagonal block A2f . (e) Apply GEMM updates
on below-diagonal blocks (A2) using the corresponding row panels on left (L21)
and the diagonal row panel (L20). (f) Solve the updated below-diagonal blocks
(AT) using the lower-triangular part of the diagonal block (D2). (g) Final state
of A after pan2 is factorized. 91

viii

3.6 Basic steps for left-looking Lower Cholesky factorization 92

3.7 Basic steps for gemmµ-based left-looking Lower Cholesky factorization 93

4.1 Performance of LU factorization for netlib lapack (yellow circles), ATLAS (green
diamonds), FLAME (orange point-right triangles), PLASMA (red x), empirically
tuned PLASMA (dark red +), and MKL (black point-up triangles): (a) 12-core
Intel Xeon E5-2620 (b) 32-core AMD Opteron 6128. 97

4.2 LU factorization efficiency for netlib lapack (yellow circles), ATLAS (green di-
amonds), PLASMA (red x), empirically tuned PLASMA (dark red +), ACML
(brown, point-down triangles) MKL (black point-up triangles), and our approach
(blue squares): (a) For 12-core Intel Xeon E5-2620 and (b) For 32-core AMD
Opteron 6128. 104

4.3 Serial blocked LU factorization . 107

4.4 Understanding parallel left-looking LU factorization: (a) 2×3 process grid (pgrid)
(b) Block cyclic LU factorization on a 2 × 3 process grid (c) Straightforward
parallel algorithm . 109

4.5 Infinite lookahead: (a) pcol0 (cores 0 & 3) apply updates to panel6 while panel2 is
being factored by pcol2; (b) pcol0 moving back to panel3 after panel factorization
complete on panel2 . 115

5.1 An example of gemmµ with unroll factors um and un in M and N dimensions,
respectively . 121

5.2 Instruction scheduling of gemmµ K-loop for Cortex-A53 architecture 125

5.3 Performance comparison of GEMM for original ATLAS (gray circle), BLIS (green
diamond) and new ATLAS (orange upward-triangle) on Cortex-A57 architecture
(a) DGEMM and (b) SGEMM . 127

5.4 Performance comparison of GEMM for original ATLAS (gray circle), BLIS (green
diamond) and new ATLAS (orange upward-triangle) on Cortex-A53 architecture
(achievable peak is shown with the solid red line) (a) DGEMM and (b) SGEMM 128

5.5 Performance of parallel GEMM Using our gemmµ on Juno board with unmodi-
fied ATLAS: (a) DGEMM (orange right-downward diagonal patterned bars i.e.
DATL0) (b) SGEMM (green dot-patterned bars i.e. SATL0) 130

5.6 Basic idea of parallel GEMM for heterogeneous systems with two Clusters: (a)
partitioning the input (b) basic steps for the implementation 132

5.7 Performance comparison of parallel DGEMM using our gemmµ on Juno board:
unadapted ATLAS (DATL0) and adapted ATLAS (DATL-bL) 134

ix

5.8 Performance comparison of parallel SGEMM using our gemmµ on Juno board:
unadapted ATLAS (SATL0) and adapted ATLAS (SATL-bL) 134

5.9 Performance of parallel DGEMM on A57 cluster after ATLAS installations with
simulated DVFS and using walltime as the performance metric: sub-optimal
gemmµ (TK) and sub-optimal block size (TB). 137

5.10 Time (gray circle) and total energy consumption (green diamond) of a parallel
DGEMM at different frequencies on Cortex-A57 cluster for a square input with
M = N = K = 1200. 139

5.11 Performance of parallel DGEMM on A57 cluster after ATLAS installations with
simulated DVFS and using the product of walltime and total energy consumption
as the performance metric: sub-optimal gemmµ (TK) and sub-optimal block size
(TB). 139

5.12 Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A57 cluster for a square input with M = N = K = 1200. 141

5.13 Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A57 cluster for a square input with M = N = K = 2400. 141

5.14 Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A53 cluster for a square input with M = N = K = 1200. 142

5.15 Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A53 cluster for a square input with M = N = K = 2400. 142

5.16 Performance of parallel DGEMM on A57 cluster after ATLAS installation with
simulated DVFS and using the scaled walltime as the performance metric: non-
linear estimator (SP) and linear estimator (SL) 144

A.1 LLN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 um 155

A.2 LUN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 um 157

A.3 RLN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 un 159

A.4 RUN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 un 159

B.1 Performance loss of our parallel gemmµ-based LU factorization on X12 166

B.2 Performance loss of our parallel gemmµ-based LU factorization on X24 166

B.3 Performance loss of our parallel gemmµ-based LU factorization on O32 166

B.4 Triangle partitioning for an example of LLN-variant of TRMM: (a) BM = 240
(b) BM = 120 . 168

B.5 Computational steps of LLN-variant of TRMM for first column of Z 170

x

B.6 An example of LLN-variant of GEMM-based TRMM: M = 36 and N = 12. . . 172

C.1 Reuse permission from IEEE for the paper on LU factorization 187

C.2 Consent form submitted to ACM: poster and extended abstract ownership re-
tained by author . 188

xi

LIST OF ALGORITHMS

2.1 Pseudocode of looping and pointer updates for LLN-variant of trmmµ (changes
from a gemmµ are highlighted in bold) . 38

2.2 Pseudocode of looping and pointer updates for LUN-variant of trmmµ (changes
from a gemmµ are highlighted in bold) . 41

2.3 Pseudocode of looping and pointer updates for RLN-variant of trmmµ (changes
from a gemmµ are highlighted in bold) . 44

2.4 Pseudocode of looping and pointer updates for RUN-variant of trmmµ (changes
from a gemmµ are highlighted in bold) . 47

A.1 Pseudocode of looping and pointer updates for LLN-variant of trmmµ for uk =
i× um (changes from a gemmµ are highlighted in bold) 156

A.2 Pseudocode of looping and pointer updates for LUN-variant of trmmµ for uk =
i× um (changes from a gemmµ are highlighted in bold) 158

A.3 Pseudocode of looping and pointer updates for RLN-variant of trmmµ for uk =
i× un (changes from a gemmµ are highlighted in bold) 160

A.4 Pseudocode of looping and pointer updates for RUN-variant of trmmµ for uk =
i× un (changes from a gemmµ are highlighted in bold) 161

xii

NOMENCLATURE

Informal descriptions to aid readers outside the area in understanding this dissertation. For
topics of greater importance to this work, we provide the page number for more substantive
coverage.

Abbreviations

gemmµ Microkernel for GEMM. See page 5.

trmmµ Microkernel for handling diagonal blocks of the triangular matrix in
TRMM. See page 35.

trsmµ Microkernel for handling the diagonal blocks of the triangular coeffi-
cient matrix in TRSM. See page 52.

ATLAS Automatically Tuned Linear Algebra Software. Empirical tuning frame-
work used in this research. See page 1.

BLAS Basic Linear Algebra Subprograms. API and kernel library hiding
most architecture-specific optimizations so that higher-level libraries
may be written largely independent of the computing platform. See
page 1.

DVFS Dynamic Voltage and Frequency Scaling. See page 135.

FLOP FLoating point OPeration.

FLOPs Plural of FLOP.

GEMM GEneral Matrix-matrix Multiply, a L3BLAS routine. See page 5.

GEMV GEneral Matrix-Vector multiply, a L2BLAS routine.

GER GEneral Rank-1 update (update a matrix with the outer product of
two vectors), a L2BLAS routine.

GETRF GEneral TRiangular Factorization, a LAPACK routine for performing
the LU factorization. Factorizes rectangular matrix into PLU , where
P performs pivoting, and L and U are Upper and Lower triangular
matrices, respectively. See page 79.

GFLOPS Billions of floating point operations per second, a measure of speed.

HEMM HErmitian Matrix-matrix Multiply, a L3BLAS routine.

HER2K HErmitian Rank-2K update, a L3BLAS routine.

xiii

HERK HErmitian Rank-K update version of matrix-matrix multiply, a L3BLAS
routine.

IAMAX Index of Absolute-value MAXimum within a vector, a L1BLAS rou-
tine.

L1BLAS Level 1 BLAS, comprised mainly of routines for performing vector-
vector computations. Includes many routines, but only IAMAX, SCAL,
and SWAP mentioned explicitly in this paper. See page 1.

L2BLAS Level 2 BLAS routines, comprised of routines for performing matrix-
vector computations. Includes many routines, but only GEMV, GER,
TRSV mentioned explicitly in this paper. See page 1.

L3BLAS Level 3 BLAS, comprised of routines for performing matrix-matrix
computations. Includes GEMM, HEMM, SYMM, HERK, SYRK, HER2K,
SYR2K, TRMM and TRSM. See page 2.

LAPACK Linear Algebra PACKage. See page 2.

LASWP An auxiliary routine in LAPACK to apply a series of row-swaps.

POTRF POsitive definite TRiangular Factorization, a LAPACK routine for
performing the Cholesky factorization. Cholesky is the LU factoriza-
tion specialized for symmetric positive definite matrices; when this is
known we can exploit the facts U = LT and that no pivoting is re-
quired to perform LU in roughly half the number of computations.
See page 88.

SCAL SCALe a vector by a scalar, a L1BLAS routine.

SIMD Single Instruction, Multiple Data.

SWAP SWAP values held in two vectors, a L1BLAS routine.

SYMM SYmmetric Matrix-matrix Multiply, a L3BLAS routine.

SYR2K SYmmetric Rank-2K update, a L3BLAS routine.

SYRK SYmmetric Rank-K update version of matrix-matrix multiply, a L3BLAS
routine.

TRMM TRiangular Matrix-matrix Multiply, a L3BLAS routine. See page 19
and 25.

TRMV TRiangular Matrix-Vector multiply, a L2BLAS routine

TRSM TRiangular Solve of a Matrix of right-hand sides, a L3BLAS routine.
See page 49.

xiv

Definitions

Back solve Triangular solve (TRSM) when coefficient matrix is LOWER triangu-
lar.

Column-panel A group of columns in a matrix. The number of columns typically
depend on the block factor along the N-dimension.

Core Independent CPU (ALUs+FPUs+vector units, etc) sharing a chip/die
with other cores.

Forward solve Triangular solve (TRSM) when coefficient matrix is UPPER triangu-
lar.

Kernel Performance-centric code section operating on arbitrarily-sized data
that may perform high-overhead optimizations like operand copy. Mostly
refers to BLAS routines in this paper. See page 1.

Loop Unrolling Replicating the body of a loop some number of times (unroll fac-
tor). An optimization technique to reduce loop overhead, increase
instruction-level parallelism, etc.

Microkernel Performance-centric code section operating on cache-blocked data that
does only part of a kernel computation, and applies only low-overhead
optimizations. See page 2.

Nanokernel Performance-centric code section doing O(1) computations used in the
building of a microkernel. Usually a cpp macro or inline function to
avoid function call overhead. See page 55.

Parallel scale Measure of explicit parallelism. Usually either core count, or core count
× SIMD vector length.

Row-panel A group of rows in a matrix. The number of rows typically depend on
the block factor along the M-dimension.

SIMD vectorization Using instructions that operate on a vector of values, rather than only
a scalar. At the hardware level, relatively easy to increase parallelism
by duplicating functional units. Typical vector lengths vary between
2-32 depending on machine and scalar data size.

Unroll & Jam Unrolling of an outer-loop and fusing the copies of the inner-loop back
together.

xv

ABSTRACT

Linear algebra underlies a large proportion of computational problems. With the contin-

uous increase of scale on modern hardware, performance of small sized linear algebra has

become increasingly important. To overcome the shortcomings of conventional approaches,

we employ a new approach using a microkernel framework provided by ATLAS to improve

the performance of a few linear algebra routines for all problem sizes. Our initial research

consists of improving the performance of parallel LU factorization in ATLAS for which we

were able to achieve up to 2.07x and 2.66x speedup for small problems, up to 91% and 87% of

theoretical peak performance for asymptotic problems on a 12-core Intel Xeon and a 32-core

AMD Opteron machine, respectively, outperforming all the state-of-the-art libraries at the

time. Such performance was achieved via an exhaustive search of all the tuning parameters,

which could take days. This motivated us to try to develop a computational model for our LU

factorization that could predict those parameters by combining some basic empirical timings

and a theoretical model based on the amount of required computations. While our model

provided good prediction for mid-to-asymptotic sized problems, there were some unknown

factors for small problems that could possibly be answered by extending the ATLAS tuning

framework. While this extension is underway, we decided to pursue the model research using

simpler serial BLAS-based approach. We investigated and implemented two Level-3 BLAS

routines: TRSM and TRMM that are widely used primarily by LAPACK operations like

the aforementioned LU factorization. With the microkernel-based approach, we were able to

improve the performance of both routines by up to 15% and 73% for square and fat prob-

lems, respectively, over prior ATLAS implementations on modern hardware. Finally, with a

collaborative research with ARM Inc., we improved the performance of the most important

Level-3 BLAS operation GEMM in ATLAS by up to 53% via implementing microkernels

xvi

for two 64-bit ARM architectures. This automatically improves other BLAS and LAPACK

routines that rely on GEMM for high performance.

xvii

CHAPTER 1

INTRODUCTION

1.1 Basic Introduction to the Libraries/APIs Optimized by this Research

The goal of this research is to provide linear algebra computational kernels that maintain

high efficiency for a wide range of problem sizes and parallel scales. We performed this work

using the ATLAS [71, 72, 73, 76] (Automatically Tuned Linear Algebra Software) empirical

tuning research framework.

The ATLAS project uses automated timings and code transformations to produce portably

and persistently optimal linear algebra libraries for scientists and engineers worldwide [76]. It

provides support for two widely used HPC (High Performance Computing) APIs (Application

Programming Interfaces), the BLAS [35, 51, 23, 24, 22] (Basic Linear Algebra Subprograms),

and LAPACK [3] (Linear Algebra PACKage).

The BLAS is a basic linear algebra kernel library. A kernel is a mathematically simple

routine whose main purpose is to provide a high performance building block operation for

higher level algorithms (e.g. computing the Eigenvalues). The BLAS are split into three lev-

els, indicating the type of operation they do. The Level 1 BLAS [35, 51] (L1BLAS) perform

vector-vector operations (e.g. dot product), and thus they perform O(N) computations on

O(N) data. The L2BLAS [23, 24] handle matrix-vector computations, and thus perform

O(N2) operations on O(N2) data. The L2BLAS include things like matrix-vector multipli-

cation (GEMV), rank-1 update of a matrix (GER), forward- and back-solve on a vector

(TRMV), etc.

Because the data and computation is of the same order for the L1 and L2BLAS, their

performance is overwhelmingly limited by the speed of memory, which is multiple orders

of magnitude slower than compute speed on almost all modern computing systems. Due to

their inherently low performance, these kernels are only used when there are no other ways

of doing the operation, and so they are not the focus of our research here.

1

The Level 3 BLAS (L3BLAS) perform matrix-matrix operations [22], which can be cate-

gorized as doing O(N3) operations on O(N2) data. This allows them to be cache blocked,

and when well-tuned they can get very close to the theoretical peak of the hardware on many

machines. The most important L3BLAS operation is GEMM (GEneral Matrix-matrix Mul-

tiply), which updates an optionally scaled output matrix with the optionally scaled product

of two matrices. Due to its lack of strong dependencies and high data reuse potential, a tuned

matrix multiply is one of the most efficient operations that the architecture can perform. For

this reason, its performance underlies the majority of high performance linear algebra.

Probably the next most important L3BLAS routine is TRSM (TRiangular Solve to a

Matrix of right-hand sides), which performs a highly stable and efficient triangular solve

(e.g. forward- and back-solve using an upper or lower triangular matrix). Section 2.3 will

discuss TRSM in detail. TRMM (TRiangular Matrix-matrix Multiply) is also an important

L3BLAS kernel, and is particularly important for the QR (Householder) factorization [8, 9,

28]. Section 2.2 will discuss TRMM in detail.

The average computational scientist will usually be calling the BLAS directly only when

doing fairly low level development. Most will instead call LAPACK [3], which provides higher

level operations such as matrix factorization, inversion, and a host of routines related to

Eigenvalues. The performance of LAPACK is largely determined by the BLAS performance

on the target machine. In this research, we mainly concentrated on the LAPACK LU &

Cholesky factorizations (LAPACK API names GETRF and POTRF, respectively). GETRF

is essentially Gaussian factorization for general rectangular matrices, while POTRF is the

same but optimized for symmetric positive definite matrices. These factorizations underlie a

host of linear algebra operations.

1.2 Introducing the Microkernel Concept

One major way that ATLAS was different from its empirical tuning predecessor PHiPAC [7]

was that it used a microkernel strategy. The idea is that even kernels that are mathematically

2

simple like GEMM are computationally quite complex due to the number of modern archi-

tectural features that must be addressed to achieve high performance. ATLAS’s approach

was to hide the vast majority of code transformations inside a much simpler routine that

could be tuned in isolation under known conditions. This simple microkernel could hide all

optimizations that require actually rewriting the code, so that only a small section of code

need be heavily adapted to the target architecture. Since the microkernel is much simpler,

it is easier to generate, time, and hand-tune than a more general kernel like GEMM.

Optimizations that require only changing run- or compile-time constants, such as blocking,

can be handled with fixed code implementing the higher-level kernel, while the microkernel is

generated and handles transformations like loop unrolling, register exploitation, scheduling,

efficient looping and indexing that require changes to the compiled code.

A modern GEMM performs a host of optimizations to achieve high performance. Cache

blocking is the most important, and on many machines cache blocking actually requires

copying to more cache-friendly formats to consistently achieve maximal performance. As

long as the problem size is large, this O(N2) data copy overhead more than pays for itself

during the course of the O(N3) computation, but if the kernel is instead repeatedly called

with small problems, this low-order overhead can become vitally important.

Due to architectural trends, ATLAS has become even more heavily oriented towards mi-

crokernels. Whereas the original ATLAS had one primary microkernel, the current releases

have hundreds of them. One of the primary drivers of this is increasing parallel scale, which

has repercussions that have greatly increased the importance of microkernels.

As parallel scale increases, problems that were considered large are distributed over enough

cores that the individual problems all become small. This means that problems must be

scaled by the increased core count just to achieve the same efficiency as they did on prior

machines. Since clock rates have stagnated, users with fixed-size problems may actually run

slower than they did on older machines!

3

The second problem with increasing parallel scale is that it becomes much harder to keep

cores in sync: it takes longer for all cores to become active, longer for them to report finishing,

and the OS often fails to manage them efficiently. This leads to the need to dynamically

schedule all parallel operations, but as you increase the job size to ensure that low-order

costs like data copy are overcome, the job granularity becomes too great for effective dynamic

scheduling.

Therefore, for extreme-scale computing, we need a way to directly control overheads, so

that we incur them the minimum number of times, rather than repeatedly across many

calls. The ATLAS microkernels have been designed to facilitate this control. In particular,

all of the data copying, which can cause implicit performance effects (e.g. cache flushing) in

addition to the explicit cost of the copy computation, are done above the microkernel layer.

This allows the knowledgeable user to manage this high-overhead optimization manually, and

thus potentially reduce it to the theoretical minimum. Reducing this overhead, and carefully

managing the cache for maximum parallel benefit was a major feature of this research, and

is discussed in detail in Chapter 4.

1.2.1 General Features of Microkernels

Kernel libraries like the BLAS try to provide high performance for a broad class of use-cases

and user experience. They feature easy-to-understand APIs, error checking for safety, and

general usefulness.

A microkernel on the other hand can afford almost no overhead, and so its APIs are

dictated by performance concerns, its usefulness is very narrow, and its successful use requires

a sophisticated understanding of both the particular microkernel and some of the features

typically hidden within a kernel library like the BLAS (e.g. blocking and its related data

copying). So choosing a microkernel over kernel usage is usually trading ease-of-use and error

checking for increased expert control. Because modern parallel scale has made many low-

4

overhead costs important, this has resulted in a hugely expanded need to control all details

of jobs, which has produced our greatly expanded reliance on microkernels within ATLAS.

1.2.2 ATLAS Main Microkernel Family: the GEMM Microkernel, gemmµ

The BLAS routine GEMM performs the operation C ← αAB + βC, where A is an M ×K

matrix, B is a K ×N matrix, and C is an M ×N matrix. This BLAS kernel is itself built

out of a much simpler microkernel whose efficiency dictates the performance of the entire

L3BLAS and most of LAPACK. We call this simplified microkernel gemmµ, and it assumes

that the matrix operands fit in some level of cache, and are stored in cache-friendly access-

major storage. A gemmµ implementation will be compiled three times in order to support

differing β cases:

β = 0: C ← AB

β = 1: C ← AB + C

β = −1: C ← AB − C

In this discussion, it will be necessary to differentiate the matrix from the storage array (or

more simply, the array). The matrix is a mathematical entity, and is used in the operation

definitions above. However, the array is how we store the numbers from the matrix in the

memory of the computer, and as we will see this is not simple for gemmµ. Most Fortran

programmers are familiar with column-major arrays, which store columns of the matrix

contiguously in memory, while matrix rows are strided, while C-family programmers may be

more used to row-major arrays. The arrays used by gemmµ have a more complex storage

pattern, where the matrix has been permuted so that all arrays are naturally accessed in a

purely sequential fashion when the computation is being performed. Completely sequential

access allows us to minimize cache line conflicts, maximize cache line packing & hardware

prefetch accuracy, and ensures that our bus access is as “smooth” as possible (i.e. it minimizes

the number of cache misses that happen at any one time). The earliest discussion of this

rough idea is probably [38]. To facilitate such sequential access, each gemmµ is associated

with copy microkernels for all three A, B, and C matrices. These copy microkernels can

5

optionally scale the matrices with α and/or β, and for A or B, it can also optionally transpose

(and for complex types, conjugate or conjugate-transpose) the data during the copy process.

ATLAS provides copy microkernels for both directions: standard to access-major format

and access-major to standard format for copying-in the input and copying-back the result,

respectively.

More specifically, to understand what the gemmµ copy microkernels can do in detail,

assume Ac refers to any general column-major array, while Wµ refers to any optimized

microkernel workspace. Assume α and β are scalars, and the op(X) produces X, or XT . For

complex numbers, op(X) can also produce X (conjugate of X, or X with negated imaginary

components) or XT = XH (Hermitian transpose of X). With this notation all Ac arrays

have the same data structure (column-major array), while the structure of any two Wµ’s

may be unrelated. We can therefore say that all three operands to GEMM are in Ac format,

while all three operands to gemmµ are in (possibly differing) Wµ formats. Note also that

AT
c is essentially a row-major array. Given this notation, Table 1.1a shows the supported

copy operations for gemmµ’s C (output) array, while Table 1.1b shows the supported copy

operations for the input (A or B) arrays.

1.2.3 Implementation Overview and Loop Ordering for gemmµ

Figure 1.1a shows pseudocode for a simple GEMM implementation (there are many ways to

write GEMM, this is MNK loop order). The compute cost of GEMM is 2 ×M × N × K

floating point operations, which can legally be computed in any order. We often simplify

this analysis by considering the “square” case, where M = N = K, which allows us to say

it performs 2N3 FLOPs, and is therefore an O(N3) algorithm. To understand this FLOP

count notice that if M = N = K, then the body of the innermost loop is executed N3 times,

and in each iteration it does 2 floating point operations (1 add and 1 multiply). One of the

interesting features of GEMM is that its correctness does not depend on the order of the

6

Table 1.1: Actual operation performed α, β, op(), and direction settings for gemmµ’s copy
routines for the (a) output array C (left) and (b) input arrays A or B (right). ’X’ means set
to any value not indicated in prior element of this column. Note that α = 0 is not supported.

Wµ ← Ac Ac ← Wµ

β α Operation Operation

0 1 Wµ ← Ac Ac ← Wµ

1 1 Wµ ← Wµ + Ac Ac ← Ac +Wµ

-1 1 Wµ ← Ac −Wµ Ac ← Wµ − Ac

X 1 Wµ ← βWµ + Ac Ac ← βAc +Wµ

0 -1 Wµ ← −Ac Ac ← −Wµ

1 -1 Wµ ← Wµ − Ac Ac ← Ac −Wµ

-1 -1 Wµ ← −Ac −Wµ Ac ← −Wµ − Ac

X -1 Wµ ← βWµ − Ac Ac ← βAc −Wµ

0 X Wµ ← αAc Ac ← αWµ

1 X Wµ ← Wµ + αAc Ac ← Ac + αWµ

-1 X Wµ ← αAc −Wµ Ac ← αWµ − Ac

X X Wµ ← βWµ + αAc Ac ← βAc + αWµ

(a)

Wµ ← Ac Ac ← Wµ

op() α Operation Operation

N 1 Wµ ← Ac Ac ← Wµ

N -1 Wµ ← −Ac Ac ← −Wµ

N X Wµ ← αAc Ac ← αWµ

T 1 Wµ ← AT
c Ac ← W T

µ

T -1 Wµ ← −A
T
c Ac ← −W

T
µ

T X Wµ ← αAT
c Ac ← αW T

µ

C 1 Wµ ← Ac Ac ← Wµ

C -1 Wµ ← −Ac Ac ← −Wµ

C X Wµ ← αAc Ac ← αWµ

H 1 Wµ ← AT
c Ac ← W T

µ

H -1 Wµ ← −AT
c Ac ← −W T

µ

H X Wµ ← αAT
c Ac ← αW T

µ

(b)

operations, so it is perfectly legal to reorder the loop nesting. Therefore, Figure 1.1b shows

a mathematically equivalent implementation using the KNM loop ordering.

In addition to all the combinatoric loop orders, you can intermix them, by for instance,

doing multiple iterations at once (this corresponds to loop unrolling), or only going part way

through K (or any other dimension) in one set of loops, and then doing another set of loops

later to finish the computation off (this is the basis of blocking).

So, we see we have enormous degrees of freedom for this simple operation; all of these

varying implementations are equivalent mathematically, but they can have very different

performance aspects due mainly to their different memory access profiles. To reduce memory

for (i=0; i < M; i++)

for (j=0; j < N; j++)

for (k=0; k < K; k++)

C(i,j) = C(i,j) + A(i,k) * B(k,j);

(a)

for (k=0; k < K; k++)

for (j=0; j < N; j++)

for (i=0; i < M; i++)

C(i,j) = C(i,j) + A(i,k) * B(k,j);

(b)

Figure 1.1: Mathematically equivalent pseudocodes for GEMM α = β = 1 case: (a) MNK
loop order (b) KNM loop order

7

costs, the innermost loop will always be over the K dimension. To understand why, we have

to look at the access of each of the operands as dictated by the above loops.

Examining this code, we can see that, at least on a machine without registers, all three

operands (A, B, and C) are all also accessed O(N3) times. There are N3 reads of A, B

and C, but C additionally experiences (N3) writes. When registers are considered, the loop

order has a strong effect on the number of memory accesses required by the algorithm. In

particular, registers can be used to reduce one (and only one) of the array access from O(N3)

to O(N2). Which array is reduced to O(N2) memory accesses is determined by which loop

is placed innermost. Notice that the input matrices are only read, while C is both read and

written (due to cache effects, C will likely be read even in the C ← AB formulation). If we

make the naive assumption that all accesses count the same (not true; due to architectural

issues, some writes are cheaper than reads, and some are much more expensive), this gives

us the estimate that C has twice the access cost as either A or B, and so we should choose

the innermost loop that reduces C’s access to O(N2), and leave the less expensive input

arrays at the original O(N3) access cost. Iterating over the K dimension in the innermost

loop accomplishes this.

To see how, assume that any scalar variable gets assigned to a register (a register is

a special storage area on a computer that has room to hold only a single value, and is

the fastest way to store and access variables; you can think of it as essentially free when

compared to memory or cache access), while any matrix access in the pseudo-code will be

understood to use memory reads and writes. Figure 1.2a shows how the memory accesses of

C can be reduced to only 2MN references (the theoretical minimum of 1 read & 1 write per

element). The total number of C references is unchanged, but now innermost-loop accesses to

the memory locations of C have been transformed into register accesses, so we have 2MNK

accesses of the register c00 (ignoring the zeroing of c00), but only 2MN accesses of the

elements of C.

8

1 for (i =0; i < M; i++)
2 for (j =0; j < N; j++)
3 {
4 register c00 = 0 . 0 ;
5 for (k=0; k < K; k++)
6 c00 = c00 + A(i , k) ∗ B(k , j) ;
7 C(i , j) = C(i , j) + c00 ;
8 }

(a)

1 for (i =0; i < M; i++)
2 for (j =0; j < N; j++)
3 {
4 register c00 = 0 . 0 ;
5 for (k=0; k < K; k += 4)
6 {
7 c00 += A(i , k) ∗ B(k , j) ;
8 c00 += A(i , k+1) ∗ B(k+1, j) ;
9 c00 += A(i , k+2) ∗ B(k+2, j) ;

10 c00 += A(i , k+3) ∗ B(k+3, j) ;
11 }
12 C(i , j) += c00 ;
13 }

(b)

Figure 1.2: GEMM with register blocking for C: (a) K-loop rolled and (b) K-loop unrolled
to 4 (uk = 4)

This simple analysis is enough to understand why K is the innermost loop. With this

fixed, we could choose for the microkernel to use NMK or MNK loop order. ATLAS’s

gemmµ mostly use the MNK order for slightly improved cache effects in some particularly

important gemmµ use cases.

1.2.4 Reducing Loop Overhead Through Loop Unrolling

We can reduce the overhead of looping via loop unrolling (loop overhead includes the cost

of updating the loop variable, doing the loop-exit comparison, and executing the branch).

Figure 1.2b shows our C register-blocked GEMM where the loop over the K dimension has

been unrolled four times. For any dimension D, we will use ud to indicate the unroll factor,

so this listing shows uk = 4 (for simplicity, we assume K is a multiple of 4).

We can see that this reduces the number of branches, k updates and comparisons by a

factor of 4; if branches are costly, we can increase the unroll factor until they are no longer

significant. There are other optimization benefits to loop unrolling, mostly due to the fact

that it results in extra instructions in the loop body, which leads to greater opportunity

for instruction scheduling as well as a host of related techniques. In Chapter 5, we will

see examples of such optimization techniques for implementing gemmµ for ARM 64-bit

architectures.

9

1.2.5 Reducing A and B Access Using Unroll and Jam with Register Blocking

The outer loops can be unrolled as readily as the innermost. If an outer loop is unrolled

mechanically it would duplicate any loop inside of it, which is not usually helpful. For

increased performance we therefore jam the contents of the outer loop into any inner loop(s),

performing an operation called unroll and jam [5]. Figure 1.3a shows pseudocode for an unroll

and jammed GEMM implementation where the M loop has been unrolled by 3 (i.e. um = 3),

while the N loop is unrolled by 2 (un = 2), assuming M is a multiple of 3 and N is a multiple

of 2.

The interesting thing about this is that our innermost loop now has additional opportuni-

ties for reducing memory access. We can use register assignment to reduce the access of C as

before, but if we look at this loop, we see that elements of both A and B are used multiple

times, which means we can save time by storing them in registers. To see this explicitly,

Figure 1.3b shows register blocked code with unroll & jam performed as before.

Assuming register access is free, we can now compute the reduced memory cost of this

algorithm. Our C access is unchanged, and is still at the minimum, though this may not be

obvious at first glance. To show this, note that C is no longer accessed inside the K loop, so

we need only worry about the first 2 loops. Since we have unrolled them, we don’t execute

them as many times as before. We execute the M loop only M
3
times, and the N -loop only

N
2
times. At the top of the N loop we read 6 elements of C (due to unrolling and jamming

of the outer two loops), and at the end of the N loop we write those same 6 elements back

out. Therefore, total access costs is: M
3
× N

2
× (6 + 6) = 2×M ×N , just as before.

Let us now count the reads of A. For A we now have 3 reads in the innermost loop, giving

as total accesses of: M
3
× N

2
×K × 3 = M×N×K

2
, which for M = N = K means N3

2
, meaning

we have cut our A accesses in half.

10

1 for (i =0; i < M; i += 3)
2 for (j =0; j < N; j += 2)
3 for (k=0; k < K; k++)
4 {
5 C(i , j) += A(i , k)∗B(k , j) ;
6 C(i +1, j) += A(i +1,k)∗B(k , j) ;
7 C(i +2, j) += A(i +2,k)∗B(k , j) ;
8

9 C(i , j +1) += A(i , k)∗B(k , j +1);
10 C(i +1, j +1) += A(i +1,k)∗B(k , j +1);
11 C(i +2, j +1) += A(i +2,k)∗B(k , j +1);
12 }

(a)

1 for (i =0; i < M; i += 3)
2 for (j =0; j < N; j += 2)
3 {
4 register c00 , c10 , c20 , c01 , c11 , c21 ;
5 c00=c10=c20=c01=c11=c21 =0.0 ;
6 for (k=0; k < K; k++)
7 {
8 register a0=A(i , k) , a1=A(i +1,k) ;
9 register a2=A(i +2,k) ;

10 register b0=B(k , j) , b1=B(k , j +1);
11

12 c00 += a0 ∗ b0 ;
13 c10 += a1 ∗ b0 ;
14 c20 += a2 ∗ b0 ;
15

16 c01 += a0 ∗ b1 ;
17 c02 += a1 ∗ b1 ;
18 c03 += a2 ∗ b1 ;
19 }
20 C(i , j) += c00 ;
21 C(i +1, j) += c10 ;
22 C(i +2, j) += c20 ;
23 C(i , j +1) += c01 ;
24 C(i +1, j +1) += c11 ;
25 C(i +2, j +1) += c21 ;
26 }

(b)

Figure 1.3: um = 3, un = 2 unroll & jammed GEMM: (a) no register blocking and (b) with
register blocking for A, B, and C.

Finally we count the reads of B. For B we now have 2 reads in the innermost loop, giving

as total accesses of: M
3
× N

2
×K × 2 = M×N×K

3
, which for M = N = K means N3

3
, implying

we have made only one third as many B accesses as our original implementation performed.

1.2.6 Generalizing Register Blocking Understanding

We now overview terminology to allow us to talk about the various unrolling factors. For

each dimension, we indicate the unrolling factor with u subscripted by the dimension, so

Figure 1.3a uses um = 3, un = 2, and uk = 1 (K is not unrolled). From the simple counts

given in the previous section, it is clear register blocking can reduce memory access strongly.

Prior discussions should suffice to understand C, but to what degree can A or B access be

improved?

The reason total A and B could be reduced it was that in jamming theM and N unrollings

into the innermost loop, we exposed the opportunity to reuse a given element of these

matrices multiple times, which allows us to load it to a register (requiring our normal memory

11

read) and then for every subsequent use, reuse it from the register (which we are counting

as free).

Inside our innermost loop, each element of A is used un times, while each B element is

used um times. Therefore, unrolling B’s loop allows us to reuse elements of A, and vice versa.

If M = N , then A and B have the same number of elements, and therefore it is typically

true that the best register blocks are ones that are roughly square (um ≈ un).

Note that uk > 1 has no effect on memory usage, since we moved the accesses of C (that

are controlled by the K loop) out of the innermost loop in a prior step!

With all this in mind, we can say that a register blocked GEMM requires 2N2 C memory

accesses, while A requires N3

un
memory reads, and B requires N3

um
reads.

1.2.7 Example of a Complete and Correct gemmµ Implementation

Figure 1.4 shows a full and valid gemmµ implementation where um = 3, un = 2 and uk = 1.

One major difference between this implementation and our prior pseudo-code is that the

loops indexed the rows and columns of the matrix in our pseudocode, but in gemmµ we are

simply accessing all three storage locations in a purely sequential fashion. This is because

prior to the invocation, the original column- (or row-) major array has been copied into a

storage format to allow for purely sequential access.

We note that the framework automatically defines TYPE to be float for single precision

real and complex, and double otherwise. The framework will also automatically compile

each microkernel three times with differing BETA macro definitions in order to generate the

required gemmµ variants, as shown in Table 1.2. We see that we use these compile-time

Table 1.2: gemmµ operation dictated by compile-time macro definition

CPP MACRO DEFINED KERNEL RESULT

BETA0 C ← AB

BETA1 C ← AB + C
BETAN1 C ← AB − C

12

1 #define SZT s i z e t
2 #define CTYPE const TYPE
3 #define RTYPE register TYPE
4 void ATLUSERMM(SZT nmu, SZT nnu , SZT K, CTYPE ∗pA, CTYPE ∗pB, TYPE ∗pC,
5 CTYPE ∗pAn , CTYPE ∗pBn , CTYPE ∗pCn)
6 {
7 CTYPE ∗pB0 = pB;
8 int m, n ;
9 const int incA = 3∗K; /∗ um∗K ∗/

10

11 for (m=0; m < nmu; m++)
12 {
13 for (n=0; n < nnu ; n++, pC += 6)
14 {
15 RTYPE rC00=0.0 , rC10=0.0 , rC20=0.0 ;
16 RTYPE rC01=0.0 , rC11=0.0 , rC21=0.0 ;
17 for (k=0; k < K; k++, pA += 3 , pB += 2)
18 {
19 RTYPE rA0=(∗pA) , rA1=pA [1] , rA2=pA [2] ;
20 RTYPE rB0=(∗pB) , rB1=pB [1] ;
21 rC00 += rA0 ∗ rB0 ;
22 rC10 += rA1 ∗ rB0 ;
23 rC20 += rA2 ∗ rB0 ;
24 rC01 += rA0 ∗ rB1 ;
25 rC11 += rA1 ∗ rB1 ;
26 rC21 += rA2 ∗ rB1 ;
27 }
28 pA −= incA ; /∗ rewind 3 rows t rave r s ed in K−l oop ∗/
29 #i f d e f BETA0
30 ∗pC = rC00 ; pC [1] = rC10 ; pC [2] = rC20 ;
31 pC [3] = rC01 ; pC [4] = rC11 ; pC [5] = rC21 ;
32 #e l i f de f i n ed BETA1
33 ∗pC += rC00 ; pC [1] += rC10 ; pC [2] += rC20 ;
34 pC [3] += rC01 ; pC [4] += rC11 ; pC [5] += rC21 ;
35 #else /∗ BETA = −1 ∗/
36 ∗pC = C00 − ∗pC; pC[1]= rC10−pC [1] ; pC[2]= rC20−pC [2] ;
37 pC[3]= rC00−pC [3] ; pC[4]= rC10−pC [4] ; pC[5]= rC20−pC [5] ;
38 #end i f
39 }
40 pB = pB0 ; /∗ rewind pB to beg inning ∗/
41 pA += incA ; /∗ done with the s e 3 rows o f A ∗/
42 }
43 }

Figure 1.4: Complete gemmµ with um = 3, un = 2 and uk = 1.

13

macros in lines 29-38 of Figure 1.4. In the rest of this document, we refer to the computational

components of the loop body of the of the innermost jammed loop (lines 19-26 of Figure 1.4)

as the “unroll block”.

1.3 Sequence of Research

In this dissertation the topics are ordered roughly by dependence. So, since the BLAS are

used by everything we do, we discuss our research on BLAS first in Chapter 2. This seems

to be the best approach for reader understanding, but it can be confusing to understand

how things tie together since this was not the order in which we undertook the research.

This section therefore serves to explain both our selection of topics, and what motivated the

actual sequence of our investigation.

The main topic of my PhD research is using microkernels for increased parallelism, with

particular emphasis on small- and medium-range problems. Therefore, the first topic inves-

tigated was parallel LU factorization, originally published in [37] and expanded on here in

Chapter 4. While I was doing this research, my PhD advisor (Dr. Whaley) was working

on redesigning the ATLAS tuning infrastructure for increased scale. The LU work was a

proof-of-concept code to show the promise of increased microkernel usage for extreme-scale

parallelism, and these two prongs of research had to be undertaken somewhat together, as

our research results from LU provided guidance to keys and pitfalls for the general tuning

framework.

We were next invited to extend our IPDPS paper for a special issue the Journal of Parallel

and Distributed Computing (JPDC). We agreed, and looked to extend our parallel approach

to the Cholesky factorization (we did not complete this parallel Cholesky research, but the

fact that we started it is the reason for the Cholesky-related work reported in Section 3.2 and

Appendix B.5), while also formalizing our microkernel definition and tuning so that others

could use it. We were almost forty pages into this new paper when we ran into results we did

not understand. In the time since the original paper, we had acquired a 24-core count Intel

14

Haswell-EP machine (X24 as described in Section 2.4). On this machine for the first time

our algorithm did not outperform the commercial library MKL. The question then became

why? All our work is based on gemmµ, and on this machine our gemmµ seemed slower than

MKL, though it was hard to be sure since our performance results had huge variance. In the

end, we had to pull the paper, because we could not publish a journal article with results

we ourselves couldn’t explain; we needed more time to investigate them than could be had

with the special issue deadline.

It took quite some time to understand that the problematic results were coming from

a complex combination of factors. The instability of our timings were mostly coming from

the power savings that Haswell-EP does regardless of the user settings. We eventually real-

ized that the timing instability that kept us from repeatable experiments could be reduced

(though not eliminated) by substantially underclocking the machine.

Once this was taken care of, it was clear that our tuning framework had to be updated

to better handle parallel scale. Our original framework tried to use serial timings to find the

best case, and this was no longer adequate. This along with some lessons from my parallel

LU research caused Dr. Whaley to significantly change the ongoing tuning redesign.

We needed a proven design before we could finish our interrupted JPDC paper, so in the

meantime I began research on one of our most important future work ideas from the parallel

LU effort. For our parallel LU, we statically block the matrix and distribute its blocks across

the cores in a 2-D grid in order to fully exploit the cache. This requires us to choose a

(r × c) process grid, and a block factor B. In our first publication, we simply wrote an

almost exhaustive empirical search to find the best settings. This produces good results, but

for large scale it could take several days of tuning, which would be untenable when added

to ATLAS’s already substantial tuning time.

Therefore the next area I worked extensively on was trying to build a model to predict the

best (r, c, B) settings based on ATLAS’s microkernel timings plus a rough computational

15

model. Our initial work on building computational models for microkernel-based routines

is presented in Appendix B. Our first work in this area was for our parallel LU, and it is

presented in Section B.1. As our results in this section show, our initial model was largely

successful for asymptotic problems, but at smaller sizes where lower order terms like thread

synchronization and communication time are important it could fail. Part of the parallel

tuning framework redesign plan was to empirically measure and tune these parallel overheads,

but that work had been put on hold for the gemmµ parallel tuning our previous research had

mandated. Since this new parallel tuning required the fundamental redesign to finish before

it could be added, the finishing of the parallel model had to be delayed until the package

could provide the underlying empirically determined parallel communication cost estimates.

Microkernels can produce large wins for serial computation too, and so our next thought

was to explore the modeling idea first in serial, which would allow us to build up the exper-

tise necessary to tackle the parallel model with increased confidence. In the much simpler

serial case, we could attempt to address a second problem highlighted by our initial work

from Section B.1: In addition to areas where we suspected low-order parallel costs caused

mispredicts, we had significant performance loss by modeling the affects of nearing the cache

boundary too poorly. The problem is that most hardware uses pseudo-random replacement,

and this cannot be modeled from first principles given easily established methods. However,

it may be possible to do much better job with some combination heuristics and empirical

timings, and we could investigate these cache affects in the simpler serial case. This would

allow us to work with only one set of unknowns at a time, and we could return to the attempt

to model parallel once we had established to what extent we could improve our models of

behaviour around cache boundaries.

The only problem with this idea is that we had done all our main microkernel prototyping

using parallel code, and didn’t have a serious effort underway in serial. However, the ATLAS

project provides widely-used serial BLAS, and this was the obvious place to investigate fully

16

using microkernels and then predicting the best block factor based on install-time timings.

The serial BLAS could be written using our gemmµ microkernel using the GEMM-based

BLAS [45, 46, 18, 32, 33, 47] approach. However, to address the small-case problems we

were interested in, we would need to show that we could develop a series of BLAS-specific

microkernels that could be so strongly based on our gemmµ work that this approach would

be practical from a tuning and code maintenance perspective.

This then led to the chronologically last part of our research. Chapter 2 demonstrates the

effectiveness of this approach, while Appendix B discusses some of our initial modeling work.

Our goal in this research was to establish the feasibility of the research, and so we started

with the hardest BLAS to write efficiently using a GEMM-based approach, which is TRSM

(Section 2.3). TRSM has more dependencies and stability restriction than any other BLAS,

and so if we could be affective here, we were sure this approach would work in general.

Also, the exact TRSM case we were most optimizing here would be of enormous benefit to

our ongoing parallel LU work when we had the tuning framework in place to finish it. We

came up with an approach that requires almost no extra microkernel support, and yet still

produces the extremely promising results reported in 2.4.

TRSM is very different from the rest of the BLAS, and so the microkernel approach we

adopted for TRSM was qualitatively different than what we would want for the rest of the

BLAS. As our last step we therefore did the work on TRMM (Section 2.2). With these two

critical BLAS supported we believe we have demonstrated the validity of this new approach,

and as soon as the new tuning framework research is complete, we should be able to present

it in a publication.

This chronology has contextualized all the research activity presented here with the ex-

ception of Chapter 5. This work was a result of my taking an internship at ARM for a

summer. ARM was interested in ATLAS performance on ARM processors, and determin-

ing if ATLAS-style tuning could be in the face of dynamic voltage and frequency scaling

17

(DVFS). These are topics of great interest for ATLAS research in general as well. This work

was mostly done at ARM, and resulted in a poster presentation at SC15 [36].

1.4 Organization of Paper

The remainder of this paper is organized in the following way:

• Chapter 2 discusses how we can utilize ATLAS’s gemmµ framework to optimize the

performance of two Level-3 BLAS routines (TRMM and TRSM).

• Chapter 3 provides an introductory overview for optimizing the performance of two

LAPACK routines (LU and Cholesky factorizations).

• Chapter 4 provides the details for our approach to improving the performance of par-

allel LU factorization using the gemmµ framework.

• Chapter 5 discusses implementing gemmµ for ARM 64-bit architectures, improving

ATLAS performance for heterogeneous architectures, and an attempt to reliably auto-

tuning in the presence of CPU frequency scaling.

Finally, we conclude this paper by summarizing the findings and the potential impact of this

research on the computational sciences.

18

CHAPTER 2

PERFORMANCE OPTIMIZATION OF BLAS ROUTINES

In this chapter, we will discuss how we can optimize Level-3 BLAS routines using the GEMM

microkernel (gemmµ) framework discussed in Section 1.2.2. Recall that the research pre-

sented in this chapter is not the first that we worked on, rather it serves as the basic block

for understanding our overall research on microkernel-based linear algebra.

2.1 GEMM-based BLAS

From the mathematical point of view, all Level-3 BLAS routines e.g. triangular matrix-

matrix multiply (TRMM), triangular solve (TRSM), etc. can be implemented using GEMM.

The idea is to reuse the highly optimized GEMM routine to optimize other BLAS routines

with minimum effort. This approach is known as GEMM-based BLAS which first appeared

in a library called Superscalar BLAS [46, 47, 33]. We will overview the GEMM-based BLAS

approach with TRMM and will later see that all Level-3 BLAS routines work in a similar

fashion. As described in BLAS documentation [11], TRMM is a Level-3 BLAS routine that

performs one of the following matrix-matrix operations:

B = alpha× op(A)×B, for (SIDE =Left)

or

B = alpha×B × op(A), for (SIDE =Right)

Where alpha is a scalar, A is a unit or non-unit, lower or upper triangular matrix and B

is an (M ×N)-sized general matrix. The size of A is M ×M in the first case or N ×N in the

second case and op(A) is one of the following: op(A) = A or op(A) = AT or op(A) = AH (only

for complex data types), where AT is the transpose of A and AH is the conjugate-transpose

of A. The multiplication result is written to the storage for B (i.e. the storage for B is used

for both input and output). SIDE is one of four parameters that denote all these variants of

the TRMM operation. The four parameters are (descriptions from BLAS documentation):

19

1. SIDE: Specifies whether op(A) is on the left or right side of B.

If SIDE = L, then the equation is: B = alpha× op(A)×B.

If SIDE = R, then the equation is: B = alpha×B × op(A).

2. UPLO: Specifies whether the matrix A is an upper or lower triangular.

If UPLO = U , then A is an upper triangular matrix.

If UPLO = L, then A is a lower triangular matrix.

3. TRANSA: Specifies the form of op(A) to be used in the multiplication.

If TRANSA = N , then op(A) = A.

If TRANSA = T , then op(A) = AT .

If TRANSA = C, then op(A) = AH (only for complex datatype).

4. DIAG: Specifies whether the diagonal of A is unit or not.

If DIAG = U , then A is assumed to be unit triangular (diagonal elements are assumed

to be unit).

If DIAG = N , then A is not unit triangular (diagonal elements must be read during

computation).

Each BLAS routine supports two datatypes: real and complex and for each datatype,

there are two precisions: single and double. For TRMM, there are 16 variants for each real

precision and 24 variants for each complex precision. We will refer to each of these variants

using the values of these parameters. For example, the LUNN variant of TRMM will denote

op(A) is on the Left side of B, A is Upper triangular, No-transposed (op(A) = A), and Non-

unit-triangular. Since the B matrix is overwritten with the multiplication result, to avoid

any confusion, we will use Z to specify the storage containing the result. The basic idea of

GEMM-based TRMM in the Superscalar BLAS library is to statically partition the input

20

BM BM BM BM

BM

A11 A12 A13 A14

BM

A22 A23 A24

BM

A33 A34

BM

A44

BN BN

BM B11 B12

BM B21 B22

BM B31 B32

BM B41 B42

BN BN

BM Z11 Z12

BM Z21 Z22

BM Z31 Z32

BM Z41 Z42

= î

Z A B

Figure 2.1: An example of TRMM with upper-triangular Matrix

matrices into blocks and compute the result one block at a time. Figure 2.1 shows an example

of such blocking for LUNN-variant of TRMM. Blocks in matrix A are of size BM ×BM and

blocks in matrix B are of size BM × BN . Note that A is partitioned as square blocks (i.e.

BK = BM). If we use non-square blocking for A, we end up with trapezoidal diagonal blocks

which significantly complicates the implementation. These blocking factors BM and BN in

the Superscalar BLAS are selected based on the cache size of the system to maximize data

reuse. We will later see that for the best performance, these block factors should be selected

based on the combination of the features including the parallel scale, the cache size and

the given problem size. Using such partitioning, the basic computational steps for the first

column-panel of Z (i.e. [Z11 Z21 Z31 Z41]
T) are shown in Figure 2.2. In steps 1, 3, 5, and 7,

the operation is TRMM itself but only on a block. These operations can be done by using

reference BLAS implementations (i.e. an unblocked, element-wise multiplication) or can be

separately optimized (discussed in Section 2.2.2). Considering the GEMM updates in steps 2,

4, and 6, note that we use the block B41 in all the GEMM updates. Similarly, we use the block

B31 in steps 2 and 4. A highly optimized GEMM routine usually copies the input operands

to a cache-friendly storage format and then performs the multiplication. As shown in the

above steps, the blocks B31 and B41 will possibly be copied two and three times, respectively.

Typically, such copy overheads are only amortized when the operands are large. In this case,

however, the output operand is only one block and the size of these blocks is limited by

21

1. Z11 = A11B11 . // TRMM

2. Z11 = Z11 + A12B21 + A13B31 + A14B41 .// GEMM

⇒ may internally copy A12, A13, A14, B21, B31, and B41

3. Z21 = A22B21 . // TRMM

4. Z21 = Z21 + A23B31 + A24B41 . // GEMM

⇒ may internally copy A23, A24, B31, and B41

5. Z31 = A33B31 . // TRMM

6. Z31 = Z31 + A34B41 . // GEMM

⇒ may internally copy A34 and B41

7. Z41 = A44B41 . // TRMM

Figure 2.2: Computational steps of Superscalar TRMM for first column-panel of Z

the constraint that if block factors are increased with a fixed problem size, the block-sized

TRMM performance become more important than the GEMM updates. On the other hand,

the block factors cannot be too small either, since decreasing block size beyond a certain

point can strongly reduce GEMM performance. Due to such constraints on the block factor,

the copy overheads in steps 2, 4, and 6 can be significant and have noticeable impact on the

overall performance. Note that all these steps are repeated for each column-panel of B and the

GEMM steps will repeatedly copy the blocks of A. As the size of the input for TRMM grows,

these repeated copy overheads put a limit on the maximum performance achievable by this

GEMM-based TRMM (true for any statically blocked GEMM-based BLAS routines). This

limitation can be overcome by using recursive blocking which is used in ATLAS [76, 74, 75].

The idea is to partition the input problem into two sub-problems and recursively multiply

the sub-problems as shown in Figure 2.3. If the recursion is continued until the problem

size becomes 1, the recursion overhead becomes too high [74]. To minimize this recursion

overhead, the stopping criteria is set to a size where the entire problem can fit into some

level of cache (e.g. Level-1 cache) but now the performance of these block-sized TRMM

22

M/2 M/2

M/2
A11 A12

M/2
A22

N

M/2 Z1

M/2 Z2

Z A

N

M/2 B1

M/2 B2

B

= î

Figure 2.3: An example of recursive TRMM with upper-triangular matrix

will be important for small sized problems. The benefit of this recursive approach over the

statically blocked GEMM-based approach is that the GEMM update required at the top level

of recursion consists of large operands (M
2
×N for the example) instead of fixed sized blocks

and as the input problem size grows, the size of these operands grows as well. For a TRMM

of size 10000× 10000, the top level GEMM update (5000× 10000) performs 50% of the total

required computations. The two GEMM updates (2500× 10000) in the next recursion level

perform another 25% of the total required computations. Due to GEMM’s high performance

with such large operands, for asymptotic sized problems, the recursive approach outperforms

the statically blocked iterative approach. However, both these approaches suffer from low

performance for small sized problems due to significant copy overhead. Our approach to

improve the performance of BLAS routines for all problem sizes is similar to GEMM-based

statically blocked approach, except that instead of calling GEMM (that includes the copy),

we will manage the copy ourselves to avoid duplicating it and use the ATLAS gemmµ for

the updates. Figure ?? shows the computational steps for the first column-panel of Z for

the example shown in Figure 2.1 but now using gemmµ. Note that the GEMM updates in

steps 2, 4, and 6 are explicitly broken into sub-steps. In step 2(a), we copy the blocks A12,

A13, and A14 only if we are working on the first column-panel of B. In step 2(b), we copy

the blocks B21, B31, and B41. Then we call the gemmµ instead of GEMM routine on the

copied storage to apply the GEMM update. Note that the step of copying the result back

to Z after the multiplication may or may not be needed depending on the implementation

and the selected microkernels. Since different BLAS libraries implement GEMM in different

23

1. Z11 = A11B11 . // TRMM

2. Z11 = Z11 + A12B21 + A13B31 + A14B41 . // GEMM†

(a) copy A12, A13, and A14 to gemmµ’s required storage format

(b) copy B21, B31 and B41 to gemmµ’s required storage format

(c) three calls to gemmµ on the copied storage

(d) may need to copy-back and accumulate the result to Z11

3. Z21 = A22B21 . // TRMM

4. Z21 = Z21 + A23B31 + A24B41 . // GEMM

(a) copy A23 and A24 to gemmµ’s required storage format

(b) two calls to gemmµ on the copied storage

(c) may need to copy-back and accumulate the result to Z21

5. Z31 = A33B31 . // TRMM

6. Z31 = Z31 + A34B41 . // GEMM

(a) copy A34 to gemmµ’s required storage format

(b) one call to gemmµ on the copied storage

(c) may need to copy-back and accumulate the result to Z31

7. Z41 = A44B41 . // TRMM

Figure 2.4: Computational steps of gemmµ-based TRMM for first column-panel of Z

†In actual implementation, the copies and the gemmµ updates are intermixed for better
performance.

24

ways, this copy-back step may or may not be needed for a GEMM-based approach as well.

Going back to the discussion, in step 4(a), we copy the next row-panel (i.e. blocks A23 and

A24) required for the GEMM. Note that for this update, we don’t need to copy the blocks B31

and B41 since we already copied those in gemmµ’s required format in step 2(b). Therefore,

we can directly call the gemmµ using the newly copied A blocks and our previously copied

B blocks. Similarly, in step 6, no copy is needed for B blocks. After we are done with the

first column-panel of B (i.e. [B11 B21 B31 B41]
T), we move on to the next column-panel

and repeat the above steps with the exception that copy steps for the A blocks are now not

needed since the all these blocks were copied during the operations for the first column-panel

of Z. Figure 2.5 shows the steps for computing the second column-panel of Z. As we can

see, that the steps 9, 11, and 13, only copy the current column-panel and no blocks of A,

since they can reuse the previously copied blocks of A for the gemmµ computations. Note

that these steps would be the same for any later column-panels of Z.

Since each Level-3 BLAS routine can be implemented using GEMM, we can use a similar

approach to implement any Level-3 BLAS routine using gemmµ. In this chapter, we discuss

two of such implementations in detail. Section 2.2 provides details about how each variant of

TRMM is implemented using the gemmµ framework. In Section 2.3, we discuss how we can

similarly improve the performance of triangular solve (TRSM), another widely used Level-3

BLAS operation, using the gemmµ framework.

2.2 gemmµ-based Triangular Matrix-matrix Multiply (TRMM)

In Section 2.1, we discussed how one variant of triangular matrix-matrix multiply (TRMM)

works and how we can use the gemmµ framework to reduce overhead for small case perfor-

mance. In this section, we discuss each of its variants in detail and how we can optimize each

variant’s performance using the gemmµ framework. As before, since B is also used for the

output, we will use Z to denote the storage containing the multiplication results to avoid

any confusion with input B.

25

8. Z12 = A11B12 . // TRMM

9. Z12 = Z12 + A12B22 + A13B32 + A14B42 .// GEMM

(a) Copy B22, B32 and B42 to gemmµ’s required storage format

(b) three calls to gemmµ on the copied storage

(c) may need to copy-back and accumulate the result to Z12

10. Z22 = A22B22 . // TRMM

11. Z22 = Z22 + A23B32 + A24B42 . // GEMM

(a) two calls to gemmµ on the copied storage

(b) may need to copy-back and accumulate the result to Z22

12. Z32 = A33B32 . // TRMM

13. Z32 = Z32 + A34B42 . // GEMM

(a) one call to gemmµ on the copied storage

(b) may need to copy-back and accumulate the result to Z32

14. Z42 = A44B42 . // TRMM

Figure 2.5: Computational steps of gemmµ-based TRMM for second column-panel of Z

26

2.2.1 Our Statically Blocked Iterative TRMM

In this section, we discuss in detail on how we optimize each variant of TRMM using the

gemmµ framework to provide high performance for problem sizes. Recall that in the example

given in Section 2.1, we still needed an optimized microkernel for performing TRMM with the

diagonal blocks. For this section, we assume that we already have an optimized microkernel

for our discussion and we refer to those as TRMM microkernels (trmmµ). The details of

the trmmµ are given in Section 2.2.2. Note that since the DIAG parameter only changes

the computation for the diagonal blocks for which we use the trmmµ, we will ignore this

parameter for now and discuss how it is handled in Section 2.2.2.

2.2.1.1 Implementing LLN-variant of gemmµ-based TRMM

LLN denotes the operation: B = alpha×A×B, where A is a lower triangular matrix and B

is a general matrix. Recall that we need a gemmµ to apply the GEMM updates as described

in Section 2.1. Using the gemmµ framework, we need to find the best performing gemmµ

and block factors BM , BN , and BK with a restriction of BM = BK (A is triangular: M = K).

Recall that this restriction is not necessary but it simplifies the implementation (avoiding

trapezoidal blocks) while providing very good performance for almost all problems. The

selection of the block factors BM , BN , and BK are dictated by the gemmµ and architecture

features (e.g. parallel scale and cache size) of the system. For now, we can assume that

only one combination of BM , BN , and BK are selected. In Section B.3, we will discuss how

multiple combinations can be helpful for small sized problems. Now, to perform the TRMM

operation, the basic idea is to process one column-panel of B at a time while reusing the

previously copied data with gemmµ. The basic implementation is shown in Figure 2.6.

To understand the implementation, consider the example shown in Figure 2.7. Note that

we assume alpha = 1 to simplify the discussion. The triangular matrix A is partitioned into

(BM × BM)-sized blocks and the matrix B is partitioned into (BM × BN)-sized blocks. As

before, we will use Z to denote the storage, thus avoiding any confusion with the input B.

27

• foreach column-panel Bcpan in B/Z

1. copy each block of Bcpan except the bottom-last to gemmµ
storage

2. foreach block Bblk of Bcpan from bottom to top
→ requires access of A from bottom row-panel to the top

(a) call trmmµ to multiply the diagonal block of current
row-panel Arpan to Bblk

(b) if first B-column-panel, copy the Arpan omitting the
diagonal block

(c) call gemmµ to multiply copied Arpan to copied part of
Bcpan

(d) copy back (accumulate) the result to Bblk

Figure 2.6: Basic computational steps for the LLN-variant of TRMM

BM BM BM

BM A11

BM A21 A22

BM A31 A32 A33

BN BN

BM B11 B12

BM B21 B22

BM B31 B32

BN BN

BM Z11 Z12

BM Z21 Z22

BM Z31 Z32

= î

Z A B

Figure 2.7: An example of TRMM: LLN-variant

28

The computational steps are shown in Figure 2.8 for the first column-panel of B. Note that

in step 4, we reuse the previously copied B11. For next column-panels of B, we repeat the

same steps except reuse the previously copied blocks of A, instead of copying it again.

2.2.1.2 Implementing LUN-variant of gemmµ-based TRMM

LUN denotes the operation: B = alpha×A×B, where A is an upper triangular matrix and

B is a general matrix. Like LLN case, we need a gemmµ to apply the GEMM updates and

we use the gemmµ framework to find the best performing gemmµ and block factors BM ,

BN , and BK with the same restriction of BM = BK . The basic implementation steps are

shown in Figure 2.9. The implementation is similar to LLN-case except we start with the top

block of every column-panel B. We already discussed in detail on how this approach works

in Section 2.1.

2.2.1.3 Implementing RLN-variant of gemmµ-based TRMM

RLN denotes the operation: B = alpha×B×A, where A is a lower triangular matrix and B is

a general matrix. Like LLN and LUN variants, we use the gemmµ framework to find the best

performing gemmµ and the block factors BM , BN , and BK . In this case, however, we impose

a restriction of BN = BK since A is on the right side of B and triangular (N = K). The

idea for this case is to process one row-panel of B at a time. Note that accessing row-panels

of B is not optimal for column-major storage (this is what ATLAS uses) but this allows us

to only use one row panel of workspace for B, while copying the entire triangular matrix A

into workspace. In the cases we are most trying to optimize with this new approach, the size

of A is dominated by the size of B, so this approach makes sense. The basic implementation

is shown in Figure 2.10.

To understand the implementation, consider the example shown in Figure 2.11. The

triangular matrix A is partitioned into (BN×BN)-sized blocks and the matrixB is partitioned

into (BM × BN)-sized blocks. Again, since B is reused for result, we use Z to avoid any

confusion. We assume alpha = 1 to simplify discussion. The computational steps for the

29

1. Z31 = A33B31 .// trmmµ

2. Z31 = Z31 + A31B11 + A32B21 . // GEMM

(a) copy A31 and A32 to gemmµ’s required storage format

(b) copy B11 and B21 to gemmµ’s required storage format

(c) two calls to gemmµ on the copied storage

(d) may need to copy-back and accumulate the result to Z31

3. Z21 = A22B21 .// trmmµ

4. Z21 = Z21 + A21B11 . // GEMM

(a) copy A21 to gemmµ’s required storage format

(b) one call to gemmµ on the copied storage

(c) may need to copy-back and accumulate the result to Z21

5. Z11 = A11B11 .// trmmµ

Figure 2.8: Computational steps of gemmµ-based LLN-variant of TRMM for first column-
panel of Z

• foreach column-panel Bcpan in B

1. copy each block of Bcpan except the top block to gemmµ
storage

2. foreach block Bblk of Bcpan from top to bottom
→ requires access of A from top row-panel to the bottom

(a) call trmmµ to multiply the diagonal block of current
row-panel Arpan to Bblk

(b) if first B-column-panel, copy the Arpan omitting the
diagonal block

(c) call gemmµ to multiply copied Arpan to copied part of
Bcpan

(d) copy back (accumulate) the result to Bblk

Figure 2.9: Basic computational steps for the LUN-variant of TRMM

30

• foreach row-panel Brpan in B

1. copy each block of Brpan except the left-most block to
gemmµ storage

2. foreach block Bblk of Brpan from left to right
→ this requires access of A from left column-panel to the
right

(a) call trmmµ to multiply the diagonal block of current
column-panel Acpan to Bblk

(b) if first B-panel, copy the Acpan except the diagonal
block

(c) call gemmµ to multiply copied part of Brpan to copied
Acpan

(d) copy back (accumulate) the result to Bblk

Figure 2.10: Basic computational steps for the RLN-variant of TRMM

BN BN BN

BN A11

BN A21 A22

BN A31 A32 A33

BN BN BN

BM B11 B12 B13

BM B21 B22 B23

= î

A
B

BN BN BN

BM Z11 Z12 Z13

BM Z21 Z22 Z23

Z

Figure 2.11: An example of TRMM: RLN-variant

31

first row-panel of B is shown in Figure 2.12. Again, in step 4, we reuse the block B13 that

we copied in step 2. For next row-panels of B, we repeat the same steps except reuse the

previously copied blocks of A, instead of copying it again.

2.2.1.4 Implementing RUN-variant of gemmµ-based TRMM

RUN denotes the operation: B = alpha×B×A, where A is an upper triangular matrix and B

is a general matrix. Like RLN case, we use the gemmµ framework to find the best performing

gemmµ and the block factors BM , BN , and BK with the same restriction of BN = BK . Similar

to RLN case, we process one row-panel of B at a time. The basic implementation is shown

in Figure 2.13.

To understand the implementation, consider the example shown in Figure 2.14. Similar to

RLN case, the triangular matrix A is divided into (BN ×BN)-sized blocks and B is divided

into (BM × BN)-sized blocks. Again, to avoid confusion with B, we use Z to denote the

storage for the result. Also to simplify discussion, we assume alpha = 1. The computational

steps for the first row-panel of B is shown in Figure 2.15. For next row-panels of B, we repeat

the same steps except reuse the previously copied blocks of A, instead of copying it again.

2.2.1.5 Other Variants of TRMM Using Reflection

Ignoring the DIAG parameter1, there are eight other variants of TRMM (including complex-

only variants). Among these eight variants, the four variants: LLT, LUT, RLT, and RUT

denote the same operations as LLN, LUN, RLN, and RUN respectively with the exception

that the triangular A is stored in a transposed storage. Since the gemmµ copy routines allow

us specify the input matrix as stored in a transposed storage, we can utilize the reflecting

case (e.g. use LUN implementation for LLT) except that when we copy the blocks of A, we

specify that A is stored as transposed. We can use the same technique to support the other

four variants: LLC, LUC, RLC, RUC by specifying that A is stored in transpose-conjugate

format during copy. Table 2.1 summarizes the variants and the copy settings to use to support

1The changes for the DIAG parameter are discussed in Section 2.2.2.

32

1. Z11 = B11A11 .// trmmµ

2. Z11 = Z11 + B12A21 + B13A31 . // GEMM

(a) copy A21 and A31 to gemmµ’s required storage format

(b) copy B12 and B13 to gemmµ’s required storage format

(c) two calls to gemmµ on the copied storage

(d) may need to copy-back and accumulate the result to Z11

3. Z12 = B12A22 .// trmmµ

4. Z12 = Z12 + B13A32 . // GEMM

(a) copy A32 to gemmµ’s required storage format

(b) one call to gemmµ on the copied storage

(c) may need to copy-back and accumulate the result to Z12

5. Z13 = B13A33 .// trmmµ

Figure 2.12: Computational steps of gemmµ-based RLN-variant of TRMM for first row-panel
of Z

• foreach row-panel Brpan in B

1. copy each block of Brpan except the right-most block to gemmµ
storage

2. foreach block Bblk of Brpan from right to left
→ requires access of A from right column-panel to the left

(a) call trmmµ to multiply the diagonal block of current
column-panel Acpan to Bblk

(b) if first B-panel, copy the Acpan omitting the diagonal block

(c) call gemmµ to multiply copied part of Brpan to copied
Acpan

(d) copy back (accumulate) the result to Bblk

Figure 2.13: Basic computational steps for the RUN-variant of TRMM

33

BN BN BN

BN

A11 A12 A13

BN

A22 A23

BN

A33

BN BN BN

BM B11 B12 B13

BM B21 B22 B23

= î

A
B

BN BN BN

BM Z11 Z12 Z13

BM Z21 Z22 Z23

Z

Figure 2.14: An example of TRMM: RUN-variant

1. Z13 = B13A33 .// trmmµ

2. Z13 = Z13 + B11A13 + B12A23 . // GEMM

(a) copy A13 and A23 to gemmµ’s required storage format

(b) Copy B11 and B12 to gemmµ’s required storage format

(c) two calls to gemmµ on the copied storage

(d) may need to copy-back and accumulate the result to Z13

3. Z12 = B12A22 .// trmmµ

4. Z12 = Z12 + B11A12 . // GEMM

(a) copy A12 to gemmµ’s required storage format

(b) one call to gemmµ on the copied storage

(c) may need to copy-back and accumulate the result to Z12

5. Z11 = B11A11 .// trmmµ

Figure 2.15: Computational steps of gemmµ-based RUN-variant of TRMM for first row-panel
of Z

34

all these variants. In Section 2.2.2, we will see that to support all the variants of trmmµ, we

can use the same technique thus having only 4 variants of trmmµ and supporting all 16 (or

24 for complex) variants by only changing the copy microkernels for the triangular matrix.

2.2.2 Implementing All Variants of trmmµ

A naive implementation of trmmµ would be to zero-pad the triangular block to make it a

full block and just use gemmµ to multiply it to the block of B. However with this approach,

50% of the computations done by the gemmµ are useless because they are known to be zero.

Note that a microkernel can be made for each Level-3 BLAS operation in a similar way (i.e.

incurring useless computations) with the exception of triangular solve (TRSM), discussed

in Section 2.3. Our idea is to achieve high performance from these microkernels with much

reduced zero-padding and useless computations. As described in Section 1.2.2, ATLAS has

a gemmµ generator that produces architecturally optimized microkernels that ATLAS uses

to build its full GEMM. We adapted this generator to produce all variants of trmmµ. These

microkernels are then used to build the full TRMM as described in Section 2.2. This section

provides implementation details of our trmmµ generator. We will describe in detail how

we adapt the gemmµ generator and the data copy microkernel generator to support all

variants of TRMM. Recall that the DIAG parameter denotes whether A is a unit or non-

unit triangular matrix. In our trmmµ for unit-triangular variants, we put ones on the diagonal

Table 2.1: Summary for supporting transpose and conjugate-transpose variants of TRMM
through reuse of no-transpose variants

TRMM Variants Variant to use Transpose settings for copy

LLT LUN Transpose
LUT LLN Transpose
RLT RUN Transpose
RUT RLN Transpose
LLC LUN Conjugate-transpose
LUC LLN Conjugate-transpose
RLC RUN Conjugate-transpose
RUC RLN Conjugate-transpose

35

elements during copy and treat them as non-unit elements during multiplication. Although

this simplification incurs an extra multiplication for each diagonal element, it also halves the

number of different microkernel variants required. Due to this trivial difference among these

unit and non-unit variants (e.g. LLNN vs. LLNU), we will ignore the DIAG parameter in

our discussions for all variants of trmmµ. Note that all the microkernels discussed here are

supposed to perform block-sized TRMM operation i.e. the output is at most an (BM ×BN)-

sized matrix.

2.2.2.1 trmmµ for LLN-variant

LLN denotes the operation: B = alpha×A×B, where A is the lower triangular matrix and B

is a general matrix. For the trmmµ, we need to select a combination of um, un and uk which

denotes the unroll factor of the microkernel in the M , N , and K dimensions (respectively)

as ATLAS does for the gemmµ. This selection can be done using a smart search that can

exploit architectural features and limitations e.g. the number of registers available, the type

of the available floating point unit (FPU). Since A is a triangular matrix, BK = BM . To

limit the number of corner cases for keeping track of the diagonals, we impose a restriction

that either um is a multiple of uk or uk is a multiple of um. We will discuss the case where

um is a multiple of uk i.e. um = i × uk where i ≥ 1. The implementation of the other case

(i.e. uk = i×um where i > 1) is slightly more complicated as it requires handling trapezoidal

unroll-blocks and is discussed in Appendix A.

Copy microkernel changes: Since B is a general matrix, we can generate B-copy micro-

kernels to copy B to GEMM’s required storage format (we will generally call this GEMM-

storage) using GEMM’s own copy microkernel generator where the microkernel takes un-

columns of B at a time and packs them together to facilitate SIMD vectorized GEMM. For

the triangular A, we need to adapt GEMM’s copy microkernel generator for A where the

microkernel takes um-rows at a time and packs them together. The adaptation is required

since the number of elements is varying in consecutive rows of A. One way would be to pad

36

the rows with zeros so that each row will have same number of elements but as we discussed

before that this approach incurs nearly 50% useless storage. Instead, we will pad the rows

at the end only up to a number where it is a multiple of um. Consider the example shown in

Figure 2.16. The triangular matrix A is divided into um-sized row-panels, and each row-panel

consists of a triangular unroll-block (e.g. T1, T2, etc.) and a rectangular row-panel (e.g. A2,

A3, etc.). For each row-panel, we copy the rectangular row-panel (if any) just like a gemmµ

copy routine does. However, for the triangular unroll-blocks, we copy them specially to make

it a (um×um)-sized unroll-block with zero-padding. To maximize the cache utilization, these

varying (increasing) sized row-panels are packed together. So, in our example, the data are

copied in the following order: padded-T1, A2, padded-T2, A3, and padded-T3. Note that in

the actual implementations, the order we do the copy of these unroll-blocks may not be the

same as they are laid out spatially in memory (to minimize possible page faults accessing

A).

trmmµ changes: Once we copy the triangle A to microkernel-friendly compact storage

using our own triangular copy routine, the trmmµ changes are trivial. The pseudocode out-

lining the changes required from a gemmµ is shown in Algorithm 2.1. The key considerations

are:

• since row-panels (also known asK-panels) of A have increasing number of unroll-blocks,

the loop bound for K-loop also increases for each panel (lines 11 and 12).

BM

BM

A

um T1

um A2 T2

um A3 T3

A

0

0

0

Figure 2.16: LLN-variant: partitioning and zero-padding the lower-triangular A

37

Algorithm 2.1: Pseudocode of looping and pointer updates for LLN-variant of trmmµ
(changes from a gemmµ are highlighted in bold)

1 Function trmmµ-LLN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the triangular matrix
pB : pointer to the general matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB

/* Set the skips needed */

5 Askip← mu×mu

6 Bskip← nu× (K −mu)
7 for i← 1 to nmu do
8 {
9 for j ← 1 to nnu do

10 {
11 Kbound← min(K, i×mu)
12 for k← 1 to Kbound do
13 {
14 =⇒ perform one unroll-block multiplication
15 pA← pA+mu
16 pB ← pB + nu

17 }
18 pB ← pB + Bskip /* skip to correct column-panel */

19 pA← pA0
20 pC ← pC + (mu× nu)

21 }
22 pA0← pA0 + Askip /* skip to correct row-panel */

23 pA← pA0
24 pB ← pB0

/* update skips for next row-panel */

25 Askip← Askip + (mu×mu)
26 Bskip← Bskip− (mu× nu)

27 }

28 }

38

• at the end of each K-loop, we need to advance the B-pointer to skip the known-zero

unroll-blocks of A× B, so it points to the beginning of the correct column-panel of B

(line 18).

• at the end of each N -loop, we need to move the pointer to A to the beginning to the

correct row-panel (line 22), and we also need to update the amount of skip needed for

the next K-loop (lines 25 and 26).

In the example shown in Figure 2.17, to compute the result of Z11, only one unroll-block

multiplication (T1×B11) is needed in the K-loop. Note that after zero-padding T1 is treated

as a regular unroll-block during multiplication. After Z11 is computed, the pointer to A is

moved back to T1 and the pointer to B is skipped to B12. Note that the magnitude for this

skip starts with two unroll-blocks. After the end of first N -loop, we start using the second

row-panel (i.e. A2,T2) to compute Z21 and Z22. Note that for each of these unroll-blocks

require two unroll-blocks multiplications. So, the magnitude of the skip needed at the end

of next K-loop is decreased by one unroll-block.

2.2.2.2 trmmµ for LUN-variant

The operation is similar to LLN-variant except that A is an upper triangular matrix.

Copy microkernel changes: Like LLN-variant, B-copy microkernel can be generated

using GEMM’s own B-copy microkernel generator. Unlike LLN-variant, the triangle A has

decreasing number of elements on consecutive rows. Consider the example shown in Fig-

um um um

um T1

um A2 T2

um A3 T3

un un

um B11 B12

um B21 B22

um B31 B32

un un

um Z11 Z12

um Z21 Z22

um Z31 Z32

= î

Z A B

0

0

0

Figure 2.17: An example for LLN-variant trmmµ

39

ure 2.18. The triangular A is divided into um-sized row-panels and each row-panel is padded

at the beginning to the smallest multiple of uk to minimize zero computations. Then, these

decreasing sized row-panels are packed together (i.e. padded-T1, A1, padded-T2, A2 and

padded-T3) to maximize the cache utilization. Note, we imposed the same restriction on um

and uk as the LLN-variant to help keep track of the diagonal unroll-blocks.

trmmµ changes: Once we copy the triangle A to GEMM-friendly compact storage using

our own triangular copy routine, the trmmµ changes are trivial. The pseudocode outlining

the changes required from a gemmµ is shown in Algorithm 2.2. The key considerations are:

• since row-panels (also known as K-panels) of A have decreasing number of unroll-

blocks, the loop bound for K-loop also decreases for each panel (lines 11 and 12)

• at the end of each K-loop, we need to advance the B-pointer to to skip the known-zero

unroll-blocks of A×B, so it points to the beginning of the correct column-panel of B

(line 18).

• at the end of each N -loop, we need to advance the A-pointer to the beginning to the

correct row-panel (line 22), update the amount of skip needed for the next K-loop

(lines 25 and 26), and advance the B-pointer to the correct row-block for the next

K-loop (line 27).

T1 A1 um

T2 A2 um

T3 um

BM

BM

A A

0

0

0

Figure 2.18: LUN-variant: partitioning and zero-padding the upper-triangular A

40

Algorithm 2.2: Pseudocode of looping and pointer updates for LUN-variant of trmmµ
(changes from a gemmµ are highlighted in bold)

1 Function trmmµ-LUN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the triangular matrix
pB : pointer to the general matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB

/* Initialize the skips needed */

5 Askip← mu×K

6 Bskip← 0
7 for i← 1 to nmu do
8 {
9 for j ← 1 to nnu do

10 {
11 Kstart← (i− 1)×mu

12 for k← Kstart to K do
13 {
14 =⇒ perform one unroll-block multiplication
15 pA← pA+mu
16 pB ← pB + nu

17 }
18 pB ← pB + Bskip /* skip to correct column-panel */

19 pC ← pC + (mu× nu)
20 pA← pA0

21 }
22 pA0← pA0 + Askip /* skip to correct row-panel */

23 pA← pA0
24 pB ← pB0

/* update skips for next row-panel and advance pB to correct

block */

25 Askip← Askip− (mu×mu)
26 Bskip← Bskip + (mu× nu)
27 pB ← pB + Bskip

28 }

29 }

41

In the example shown in Figure 2.19, to compute the result of Z11, three unroll-blocks

multiplications (T1 × B11 + A1× [B21 B31]
T) are needed in the K-loop. After that the

pointer to A is moved back to T1 and the pointer to B in this case is already at the start of

the next column-panel (B12). So, the magnitude for the skip needed starts with zero and later

increased. After the end of first N -loop, like LLN, we start working on the second row-panel

(i.e. T2,A2) and each unroll-block of the result (i.e. Z21 and Z22) require two unroll-block

computations. Therefore, the magnitude of the skip needed at the end of next K-loop is

increased by one unroll-block.

2.2.2.3 trmmµ for RLN-variant

RLN denotes the operation: B = alpha×B×A, where A is the lower triangular matrix and

B is a general matrix. Like other trmmµ, we need to select a combination of um, un and uk

which denotes the unroll factor of the microkernel in M , N , and K dimensions (respectively).

The selection can be done by using a search similar to LLN-variant’s smart search. Since

A is a triangular matrix, BK = BN . So, in this case, since triangular A is treated as B for

GEMM, we impose a restriction that either un is a multiple of uk or uk is a multiple of un

to limit the number of corner cases for keeping track of the diagonal unroll-blocks.

Copy microkernel changes: Since B is a general matrix and it is treated as the A

operand for GEMM, we can generate A-copy microkernels to copy it to GEMM’s required

storage using GEMM’s own copy microkernel generator where the microkernel takes um-

um um um

um

T1 A1

um

T2 A2

um

T3

un un

um B11 B12

um B21 B22

um B31 B32

un un

um Z11 Z12

um Z21 Z22

um Z31 Z32

= î

Z A B

0

0

0

Figure 2.19: An example for LUN-variant trmmµ

42

rows of B at a time and packs them together to facilitate SIMD vectorized GEMM. For the

triangular A (it is treated as B operand for GEMM), we need to adapt GEMM’s copy mi-

crokernel generator for B where the microkernel takes un-columns at a time and packs them

together. The adaptation is required since the number of elements is varying (decreasing) on

consecutive columns of A. Analogous to LLN-variant, one way would be to pad the columns

with zeros so that each column will have same number of elements but as discussed before,

this incurs nearly 100% extra(zero) computations. Instead, we will pad at the beginning of

the columns only up to a number where it is a multiple of uk. Consider the example shown

in Figure 2.20. The triangular matrix A is divided into un-sized column-panels, and each

column-panel is padded at the beginning to the smallest multiple of uk to minimize the

zero computations. All these varying (decreasing) sized column-panels are packed together

to maximize the cache utilization.

trmmµ changes: Once we copy the triangle A to GEMM-friendly compact storage

(treated as B) using our own triangular copy routine, the trmmµ changes are trivial. The

pseudocode outlining the changes required from a gemmµ is shown in Algorithm 2.3. The

key considerations are:

• since column-panels (also known as K-panels) of triangular A (treated as B) have

decreasing number of unroll-blocks, the loop bound for K-loop also decreases for each

panel (line 11 and 12).

BN

BN

A

un un un

T1

A1

T2

A2 T3

A

0

0

0

Figure 2.20: RLN-variant: partitioning and zero-padding the lower-triangular A

43

Algorithm 2.3: Pseudocode of looping and pointer updates for RLN-variant of trmmµ
(changes from a gemmµ are highlighted in bold)

1 Function trmmµ-RLN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the general matrix
pB : pointer to the triangular matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB
5 Apan← mu×K /* size of one row-panel */

6 for i← 1 to nmu do
7 {

/* Set the skips needed */

8 Askip← 0
9 for j ← 1 to nnu do

10 {
11 Kstart← (j − 1)× nu

12 for k← Kstart to K do
13 {
14 =⇒ one unroll-block multiplication
15 pA← pA+mu
16 pB ← pB + nu

17 }
/* update skip for next column-panel */

18 Askip← Askip + (mu× nu)
19 pA← pA0 + Askip /* skip to correct block */

20 pC ← pC + (mu× nu)

21 }
22 pB ← pB0
23 pA0← pA0 + Apan /* move to next row-panel */

24 pA← pA0

25 }

26 }

44

• at the end of each K-loop, the pointer to B (pointing to the triangle) is already at the

correct location since the triangle is stored in a compact storage, so no skips needed

for pointer to B. However, the pointer to A (pointing to the general B matrix) cannot

move back to the original start of the panel. It needs to skip some unroll-blocks to the

correct part of the panel that are needed for the next computations (line 18). We also

need to update the amount of skip needed for the next iteration (line 19).

In the example shown in Figure 2.21, to compute the result of Z11, three unroll-blocks

multiplications (B11 × T1+ [B12 B13]
T ×A1) are needed in the K-loop. After that the

pointer to A is moved back to B11 and skipped to B12 and the pointer t o B (pointing to

the triangle A) is unchanged since it already points to T2 which is what we need for the

next multiplication. The skip magnitude for the pointer to A also needs to be increased by

one unroll-block here as well for the next iteration. After the end of first N -loop, the skip

magnitude is reset for the next row panel of Z.

2.2.2.4 trmmµ for RUN-variant

The operation is similar to RLN-variant except that A is an upper triangular matrix.

Copy microkernel changes: Like RLN-variant, B-copy microkernel can be generated

using GEMM’s own A-copy microkernel generator. Unlike RLN-case, the triangle A has

increasing number of elements on consecutive columns. Consider the example shown in Fig-

ure 2.22. The triangular A is divided into un-sized column-panels and each column-panel is

padded at the end to the smallest multiple of uk to minimize zero computations. Then, these

un un un

un T1

un

A1

T2

un A2 T3

un un un

um B11 B12 B13

um B21 B22 B23

= î

A
B

un un un

um Z11 Z12 Z13

um Z21 Z22 Z23

Z

0

0

0

Figure 2.21: An example for RLN-variant trmmµ

45

un un un

T1 A2

A3
T2

T3

BN

BN

A A

0

0

0

Figure 2.22: RUN-variant: partitioning and zero-padding the upper-triangular A

increasing sized column-panels are packed together to maximize the cache utilization. We

imposed the same restriction on un and uk as RLN-variant to help keep track of the diagonal

unroll-blocks.

trmmµ changes: Once we copy the triangle A to GEMM-friendly i compact storage

(treated as B) using our own triangular copy routine, the trmmµ changes are trivial. The

pseudocode outlining the changes required from a gemmµ is shown in Algorithm 2.4. The

key considerations are:

• since column-panels (also known as K-panels) of triangular A (treated as B) have

different number of unroll-blocks, the loop bound for K-loop is different for each panel

(line 10 and 11).

• at the end of each K-loop, the pointer to B (pointing to the triangle) is already at the

correct location since triangle is stored in a compact storage. So, no skips needed for

pointer to B. The pointer to A, in this case, can move back to the original start of the

panel without any skip. So, no changes needed for this either.

In the example shown in Figure 2.23, to compute the result of Z11, only one unroll-block

multiplication (B11× T) is needed in the K-loop. After that the pointer to A is moved back

to B11 and the pointer to B is unchanged since it already points to A2. Since no skip is

needed for any pointers in this case, pointer to A is moved to the next row-panel where

pointer to B is moved to the start of the triangle (like a regular gemmµ).

46

Algorithm 2.4: Pseudocode of looping and pointer updates for RUN-variant of trmmµ
(changes from a gemmµ are highlighted in bold)

1 Function trmmµ-RUN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the general matrix
pB : pointer to the triangular matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB
5 Apan← mu×K /* size of one row-panel */

6 for i← 1 to nmu do
7 {
8 for j ← 1 to nnu do
9 {

10 Kbound← min(K, j × nu)
11 for k← 1 to Kbound do
12 {
13 =⇒ perform one unroll-block multiplication
14 pA← pA+mu
15 pB ← pB + nu

16 }
17 pC ← pC + (mu× nu)
18 pA← pA0

19 }
20 pB ← pB0
21 pA0← pA0 + Apan /* move to next row-panel */

22 pA← pA0

23 }

24 }

un un un

un

T1 A2

A3

un

T2

un

T3

un un un

um B11 B12 B13

um B21 B22 B23

= î

A
B

un un un

um Z11 Z12 Z13

um Z21 Z22 Z23

Z

0

0

0

Figure 2.23: An example for RUN-variant trmmµ

47

2.2.2.5 Other trmmµ Variants Using Reflection

As discussed before, the unit-triangular cases are handled by putting one as the diagonal

elements and using the microkernels for non-unit-triangular cases. For the transpose and

conjugate-transpose variants, we will reuse the previously discussed four variants. For LLT-

variant, the operation is the same as the LLN-variant except that A is stored in a transposed

storage. Since A is in transposed storage, instead of rows of A, we need to copy and pad

columns of A. Recall that this is exactly what we did for the RLN-variant. As a result, to

copy the data, we can reuse the triangular copy generator for RLN-variant. Next, keep in

mind that A is a lower triangular but transposed matrix. If we could transpose the matrix A,

it would become a no-transpose, upper triangular matrix. Because of this, to do the actual

computations, we can reuse the trmmµ for the LUN-variant. So, the LLT-variant can be

implemented using the copy from RLN-variant and the trmmµ for the LUN-variant. Like

LLT-variant, LUT-variant can be implemented using the copy from RUN-variant and the

trmmµ for the LLN-variant. To support all the conjugate variants (i.e. LLC, LUC, RLC,

and RUC), a trivial sign change of the complex part of each element in the copy generators

is enough (similarly trivial to DIAG parameter changes). Table 2.2 summarizes which copy

microkernels and trmmµ can be reused for all the transpose and conjugate-transpose variants.

Table 2.2: Summary for supporting transpose and conjugate-transpose variants of trmmµ
through reuse of no-transpose variants

trmmµ Variants Copy Microkernel to Use trmmµ to Use

LLT RLN LUN
LUT RUN LLN
RLT LLN RUN
RUT LUN RLN
LLC RLC LUN
LUC RUC LLN
RLC LLC RUN
RUC LUC RLN

48

Note that the copy microkernels RLC, RUC, LLC, and LUC (mentioned in the table) are the

trivially modified versions of RLN, RUN, LLN, and LUN copy microkernels, respectively.

2.3 gemmµ-based Triangular Solve of Matrix (TRSM)

TRiangular Solve for Matrix (TRSM) is a widely-used Level-3 BLAS operation. It is used

to solve a triangular system of equations. It is also used by LAPACK operations like matrix

inversions, LU and Cholesky factorizations. As described by the BLAS documentation [11],

TRSM solves one of the matrix equations below for X:

op(A)×X = alpha×B, for (SIDE = Left)

or

X × op(A) = alpha×B, for (SIDE = Right)

Where alpha is a scalar, X and B are (M ×N)-sized general matrices and A is a unit or

non-unit, lower or upper triangular matrix. The size of A is M ×M for SIDE = Left or or

N ×N for SIDE = Right and op(A) is one of the following: op(A) = A or op(A) = AT or

op(A) = AH (only for complex data types), where AT is the transpose of A and AH is the

conjugate-transpose of A. The matrix X and B share the storage space, storing B on entry

and X on exit of the routine. B is often referred to as the right-hand-side matrix.

All these variations of TRSM operation are determined by the following four parameters

to the routine (description from BLAS documentation):

1. SIDE: Specifies whether op(A) is on the left or right side of X.

If SIDE = L, then the equation is: op(A)×X = alpha×B.

If SIDE = R, then the equation is: X × op(A) = alpha×B.

2. UPLO: Specifies whether the matrix A is an upper or lower triangular.

If UPLO = U , then A is an upper triangular matrix.

If UPLO = L, then A is a lower triangular matrix.

49

3. TRANSA: Specifies the form of op(A) to be used in the solve.

If TRANSA = N , then op(A) = A.

If TRANSA = T , then op(A) = AT .

If TRANSA = C, then op(A) = AH (only for complex datatype).

4. DIAG: Specifies whether the diagonal of A is unit or not.

If DIAG = U , then A is assumed to be unit triangular (diagonal elements are assumed

to be unit).

If DIAG = N , then A is not unit triangular (diagonal elements must be read during

computation).

Like TRMM, there are 16 variants for each real precision and 24 variants for each complex

precision. We will refer to each of these variants of TRSM using the values of these param-

eters. So, the LUTN variant of TRSM will denote op(A) is on Left side of X, A is Upper

triangular, Transposed (op(A) = AT), and Non-unit-triangular.

TRSM can be implemented using either forward or backward substitution method for lower

or upper triangular A, respectively. This is exactly what the original BLAS implementation

does which is often called the reference implementation. Consider the example in Equation 2.1

for LLNN-variant of TRSM where alpha = 1, M = 3, N = 1:

A11 0 0

A21 A22 0

A31 A32 A33

×

X1

X2

X3

=

B1

B2

B3

(2.1)

We can use the forward substitution method to solve for X for the problem shown in Equa-

tion 2.1. Since the storage for B is reused to store the result X, we will use Z to de-

note this common storage in our discussions. The computation consists of the steps shown

in Figure 2.24. If all above operands (i.e. A11, Z1, etc.) are blocks rather than elements

50

1. Z1 = Z1/A11 . // Solve for X1

2. Z2 = Z2 − A21 × Z1 .// Subtract contribution of X1

3. Z2 = Z2/A22 . // Solve for X2

4. Z3 = Z3 − A31 × Z1 − A32 × Z2 // Subtract contribution of X1 and X2

5. Z3 = Z3/A33 . // Solve for X3

Figure 2.24: Computational steps for forward substitution method for LLNN-variant of
TRSM

(cache-blocking optimization), then the above operations still work2. This statically blocked

GEMM-based TRSM is substantially the same as the original Superscalar BLAS, as dis-

cussed in Section 2.1. Then the computation consists of the steps shown in Figure 2.25. One

idea for the divisions of blocks in steps 1, 3, and 5 is to invert A blocks and multiply by

the corresponding Z block, but this approach introduces high backward error [60]. Instead,

notice that these steps are TRSM operations themselves but on block sized inputs. With

this approach, optimized BLAS libraries like Superscalar BLAS or ATLAS can achieve high

performance while maintaining low backward error. In our discussion, we will still use the

mathematical notation of inverting the blocks as short-hand notation of block sized TRSM

with the proviso that the inverse is not explicitly formed. As before, to overcome the draw-

2As long as the steps 1, 3, and 5 are done via TRSM, not matrix inversion.

1. Z1 = A−1
11 × Z1 . // Solve for X1 (TRSM)

2. Z2 = Z2 − A21 × Z1 .// Subtract contribution of X1 (GEMM)

⇒ may internally copy A21 and Z1

3. Z2 = A−1
22 × Z2 . // Solve for X2 (TRSM)

4. Z3 = Z3 − A31 × Z1 − A32 × Z2 // Subtract contribution of X1 and X2 (GEMM)

⇒ may internally copy A31, A32, Z1 and Z2

5. Z3 = A−1
33 × Z3 . // Solve for X3 (TRSM)

Figure 2.25: Computational steps for LLNN-variant of TRSM of Superscalar BLAS

51

back of statically blocked Superscalar BLAS or even the recursively blocked ATLAS, we

will use the gemmµ framework to implement our optimized gemmµ-based TRSM. With

our gemmµ-based TRSM, the computational steps for the problem given in Equation 2.1

is shown in Figure ??. Note that in step 4, we are reusing the copy of Z1 from step 2. For

problems with multiple column panels of Z, we will be able to reuse all the copied A blocks

for each additional column panel.

In steps 1, 3, and 5, we need a routine to perform the block sized TRSM. Unlike TRMM,

we cannot zero-pad the triangular blocks. Our idea is to use gemmµ in a similar way to the

approach outlined in Figure ?? to perform the block-sized TRSM which we will refer to as

TRSMmicrokernels (trsmµ). We will discuss the implementation details of all trsmµ-variants

in Section 2.3.1. In Section 2.3.2, we use our high performance trsmµ to build gemmµ-based

TRSM for all variants.

2.3.1 Implementing trsmµ Using gemmµ

This section describes how to build trsmµ using our existing gemmµ framework. One obvious

way to do that would be to invert the diagonal blocks, and then essentially do a trmmµ

with the inverted matrix. However, inverting triangular matrices of more than one element

introduces the condition number of the inverted matrix into the backwards error [60]. This

means that this increased instability is observed in most cases, and so this method cannot

generally be used.

We will instead rely on a second level of static blocking to produce a gemmµ-based trsmµ.

Section 2.3.1.1 will explain the basic idea using the Left, Lower, No-transpose, Non-unit

diagonal case of TRSM, and Section 2.3.1.2 will describe how we handle the TRSMs from

this second level of blocking. Section 2.3.1.3 will then overview important information for

all variants, while Sections 2.3.1.5-2.3.1.8 discuss details of the trsmµ variants. Finally, Sec-

tion 2.3.1.9 discusses how the remaining cases are handled through reflection during the copy

step.

52

1. Z1 = A−1
11 × Z1 . // Solve for X1 (TRSM)

2. Z2 = Z2 − A21 × Z1 . // Subtract contribution of X1 (GEMM†)

(a) copy A21 to gemmµ’s required storage format

(b) copy Z1 to gemmµ’s required storage format

(c) one call to gemmµ on the copied storage

(d) subtract the result from Z2 during copy-back

3. Z2 = A−1
22 × Z2 . // Solve for X2 (TRSM)

4. Z3 = Z3 − A31 × Z1 − A32 × Z2 // Subtract contribution of X1 and X2 (GEMM)

(a) copy A31 and A32 to gemmµ’s required storage format

(b) copy Z2 to gemmµ’s required storage format

(c) two calls to gemmµ on the copied storage

(d) subtract the result from Z3 during copy-back

5. Z3 = A−1
33 × Z3 . // Solve for X3 (TRSM)

Figure 2.26: Computational steps for gemmµ-based LLNN-variant of TRSM for one column
panel of Z

†In actual implementation, like gemmµ-based TRMM, the copies and the gemmµ updates
are intermixed for better performance.

53

2.3.1.1 Overview of Implementing trsmµ Using gemmµ with LLN Example
Case

Our main goal is to leverage the existing gemmµ so that our trsmµ does not require a

whole new tuning framework. One simple way to achieve this is to simply do another step

of GEMM-based blocking, as shown in Figure 2.27a.

Note that in Figure 2.27a, the total size of the A matrix is bounded by BM , and that the

blocks are bounded by the unrolling factor! Note that this means our gemmµ is invoked with

M = um, N = un, K = i× um, with (1 ≤ i < BM

um
) for this LLN TRSM case. Note that only

the K loop will iterate more than once in this scheme, and it is therefore likely this approach

will achieve best performance for large block sizes where i < BM

um
is large enough to amortize

the cost of calling gemmµ and accessing the um × um portion of C. Building the trsmµ will

therefore require us to specially tune a gemmµ to have a run-time variable K loop, and to

force um = i× uk, i ≥ 1.

The basic steps for this picture are shown in Figure 2.27b. The first thing to note is that if

N > un, we can just iterate over all
⌈

N
un

⌉

un-wide column panels, each done as shown above,

to get an algorithm that can support any M ≤ BM and any N .

The first question is: how do we perform steps 1, 3, 5, and 7, of Figure 2.27b? These steps

all require a TRSM with M = um, N = un, which we will handle by generating a TRSM

nanokernel, as discussed in Section 2.3.1.2. The second question is: how can we perform

steps 2, 4, and 6, given that they clearly require a GEMM call with β = 1, alpha = −1,

um T1

um A2 T2

um A3 T3

um A4 T4

un

um B1

um B2

um B3

um B4

un

um X1

um X2

um X3

um X4

=î

XA B

(a)

1. X1 = T−1
1 B1

2. Z2 = B2 − A2X1

3. X2 = T−1
2 Z2

4. Z3 = B3 − A3 ×X1:2

5. X3 = T−1
3 Z3

6. Z4 = B4 − A4 ×X1:3

7. X4 = T−1
4 Z4

(b)

Figure 2.27: Example unroll-blocked gemmµ-based trsmµ (a) picture and (b) steps

54

while gemmµ always does α = 1? In our current code, the blocks of A shown in this figure

are scaled by α during the copy step.

2.3.1.2 The TRSM Nanokernel

Since we cannot invert the diagonal blocks, we still need some method to do the solves for the

T blocks of Figure 2.27a. Note that both um and un are compile-time constants discovered

during the trsmµ’s gemmµ tuning step, and so we could actually generate straightline code

fully solving the problem without branches. Currently, we fully unroll the loop over um so

that the triangle is handled without iteration, but keep the right-hand sides (known to be

un) as a runtime loop. This allows the nanokernel to be used safely for cleanup code (when

(N mod un) > 0), and minimizes code size. The main thing that distinguishes what we are

calling a nanokernel from a microkernel is the amount of work it expects to perform, and thus

the overhead it can amortize. The nanokernel is declared inline, and has only 1 loop for a

two dimensional operation. We can’t afford much overhead at this level, as we are doing only

O(1) operations. The values of um and un will vary by architecture, but on present machines

1 ≤ um ≤ 24 and 1 ≤ un ≤ 4 are typical ranges.

2.3.1.3 Handling Unit/Non-Unit Diagonal for All Variants

In this section, we describe the implementation details of four trsmµ that can support all

variants of TRSM. Recall that the DIAG parameter specifies whether A is unit or non-

unit triangular matrix. In our implementation, we will treat the unit diagonal as a non-unit

diagonal and perform the extra division by one3. Note that by doing this extra computation,

we halve the number of variants to implement. Due to this trivial implementation differences

between these variants (e.g. LLNN vs. LLNU), we will ignore this parameter in our discussion

of all variants of trsmµ.

3In actual implementation, the division of the diagonal is done once and the inverted
diagonal is stored to avoid repeating the expensive division operation.

55

2.3.1.4 Increasing gemmµ Exploitation via Transposition

From Section 2.3.1.1 it is clear that trsmµ’s performance will be a combination of the per-

formance of gemmµ and the TRSM nanokernel. On almost all systems gemmµ’s efficiency

will be much greater than that of the nanokernel. The nanokernel has low overhead, but the

level of optimization it achieves will be dictated by the native compiler (it will not even be

vectorized unless the compiler autovectorizes it).

The proportion of TRSM vs. GEMM is set by the block factor of the diagonal blocks: as

it increases, the percentage of TRSM goes up. To see how this can be problematic, consider

ATLAS’s best-case microkernel for a Intel Sandy Bridge architecture, which uses um = 12

and un = 3 If we assume BM = 36, this results in the A matrix shown in Figure 2.28a. Using

this partitioning results in gemmµ doing only around 66% of the computation for this case.

Now, imagine instead we could block A by un = 3 instead, as in Figure 2.28b. In this case

gemmµ would perform more than 90% of the computation, and almost certainly result in a

much higher performing trsmµ regardless of native compiler used. Fortunately, this can be

accomplished in a fairly straightforward manner using matrix transposition.

Assume we are doing step 6 from Figure 2.27b, and that we are putting the results of

the gemmµ call into the um × un matrix, C which we will then subtract from Z4 later.

Therefore, the gemmµ call would compute: C = A4 × X1:3. Mathematically, its perfectly

legal to transpose both sides of this equation, leading to CT = XT
1:3 × AT

4 . We are now

computing an un × um product, with the um and un blockings getting transposed as well,

leading to the picture shown in Figure 2.28b. Note that the result we are producing is of

fixed size, in this example either 12× 3 or 3× 12. We therefore generate a copy macro that

can perform a copy without and without transposition (and scaling) from gemmµ C storage

back into standard format. Using this, we can utilize this transposition technique anytime

the unroll factor that is naturally first (as determined by the TRSM variant) is significantly

larger than the unroll factor along the other dimension.

56

12 12 12

12

12

12

3 3 3 3 3 3 3 3 3 3 3 3

3

3

3

3

3

3

3

3

3

3

3

3

(a) (b)

Figure 2.28: Partitioning of the triangular matrix for LLN-variant depicting the data used
by gemmµ updates (gray blocks): (a) um = 12 and (b) um = 3.

2.3.1.5 trsmµ for LLN-variant

LLN denotes the following operation: X = alpha × op(A)−1 × B, where A is the lower

triangular and B is a general matrix. Since we want to utilize ATLAS’s gemmµ framework,

we need to select a gemmµ that we can use in our trsmµ implementation. The selected

gemmµ’s unroll factors um, un and uk in the M , N , and K dimensions (respectively) will

dictate the blocking of the input matrices of our trsmµ. Since A is triangular and it appears

on the left side of X in this case, we have BM = BK .

The idea is to partition the triangular A and the general matrix B into um-sized row panels

and un-sized column panels, respectively. For the computation, we apply a gemmµ-based

approach similar to the one shown in Figure 2.27. To better understand the implementation,

consider the example shown in Figure 2.29. For this example, we assume alpha=1 to simplify

the discussion. The triangular A is divided into um-sized row-panels and the right-hand-side

matrix Z is divided into um × un-sized blocks. Recall that Z initially stores the input B

which is transformed into X by the solve.

Each unroll-block of A is of size um × um and each unroll-block of Z (B or X) is of size

um×un. Since we work on one un-sized column-panel of Z at a time, we can start by solving

57

um um um

um T1

um A2 T2

um A3 T3

un un

um B11 B12

um B21 B22

um B31 B32

un un

um X11 X12

um X21 X22

um X31 X32

=î

Z (X)A Z (B)

Figure 2.29: An example for LLN-variant of trsmµ

the first column panel of Z(B) (i.e. [Z11 Z21 Z31]
T). In the first step, we copy the block T1

with the diagonal elements inverted and then solve Z11 using the copied T1 which is a TRSM

of size um× un. For the next block of Z (i.e. Z21), we need to copy A2 and previously solved

Z11 to gemmµ’s A and B storage format, respectively. These copies are done using the copy

routines provided by the framework specific to our selected um, un and uk combination. After

the copy is done, we can call the gemmµ once to use the copied A2 and Z11 and subtract the

result from Z21. At this point, Z21 is ready for the solve using T2. Again, we first copy T2 in

this step and then do the (um × un)-sized TRSM. For the next block Z31, we copy the next

row panel of A omitting the diagonal unroll-block (i.e. A3) and the previously solved Z21.

Then we call the gemmµ once to multiply A3 and [Z11 Z21]T and subtract it from Z31.

Note that we can reuse the copy of Z11 that was done to solve Z21. At this point, Z31 is ready

to be solved using T3. Once we are done with the first column-panel of Z, we move to the

next column-panel and repeat the same steps. Note that the copy steps of A are needed only

for the first column-panel of Z. For the rest of the panels of Z, we will reuse these copies of

A. As we can see, that each block is copied exactly once, and reused for as long as possible:

reuse of Z blocks of a column-panel ends at the end of the solve for that panel but reuse of

A blocks ends at the end of the solve for the entire input matrix. The basic implementation

of the LLN-variant of trsmµ is shown in Figure 2.30.

58

• foreach un-sized column-panel Zcpan in Z

1. if first Z-column-panel, copy the first (um × um)-sized diag-
onal unroll-block of A while inverting the diagonal elements

2. solve the top unroll-block Zblk0 of Zcpan with the copied
triangular unroll-block of A (nanokernel)

3. foreach unroll-block Zblk below Zblk0 of Zcpan from top
to bottom
→ requires access of um-sized row-panels of A from the top
to the bottom

(a) copy the last solved unroll-block of Zcpan to gemmµ’s
B storage format

(b) if first Z-column-panel, copy the um-sized row-panel
Arpan omitting diagonal unroll-block Adiag blk to
gemmµ’s A storage format

(c) one call to gemmµ to multiply copied Arpan to copied
part of Zcpan

(d) subtract the gemmµ result from Zblk during copy-back

(e) solve the Zblk using the copied Adiag blk (nanokernel)

Figure 2.30: Basic computational steps for the LLN-variant of trsmµ

2.3.1.6 trsmµ for LUN-variant

LUN denotes the following operation: X = alpha × op(A)−1 × B, where A is an upper

triangular matrix and B is a general matrix. We can select the best gemmµ thus the um, un

and uk combination using a search similar to the search for LLN-variant and with the same

restriction that um is a multiple of uk (i.e. um = i × uk, where i ≥ 1). For the microkernel

implementation, unlike LLN-variant, we need to start from the last triangle and move upward

to solve for LUN-variant.

To understand the implementation, consider the example in Figure 2.31. Again, we assume

alpha=1 to simplify the discussion. Each block of A is of size um×um and each sub block of

Z (B or X) is of size um × un. Since we work on one un-sized column-panel of Z at a time,

we can start by solving the first column panel of Z(B) (i.e. [Z11 Z21 Z31]
T). Since A is

upper-triangular, the algorithm follows the order of a backward-substitution method unlike

LLN-variant. In the first step, we copy the block T3 and then solve Z31 using the copied T3

59

um um um

um

T1 A1

um

T2 A2

um

T3

un un

um B11 B12

um B21 B22

um B31 B32

un un

um X11 X12

um X21 X22

um X31 X32

=î

Z (X)A Z (B)

Figure 2.31: An example for LUN-variant of trsmµ

which is a TRSM for size um × un (nanokernel). For the next block of Z (i.e. Z21), we need

to copy A2 and previously solved Z31 to gemmµ required storage format. These copies are

done using the copy routines provided by the framework specific to our selected um, un and

uk combination. After the copy is done, we can call the gemmµ to use the copied A2 and Z31

and subtract the result from Z21. At this point, Z21 is ready for the solve using T2. Again,

we copy T2 in this step and then do the (um × un)-sized TRSM. For the next block Z11, we

copy the next row panel of A except the diagonal block (i.e. A1) and the previously solved

Z21. Then we call the gemmµ to multiply A1 to [Z21 Z31]
T and subtract it from Z11. Note

that we can reuse the copy of Z31 that was done to solve Z21. At this point, Z11 is ready

to be solved using T1. Note that like the LLN-variant, the copies of A are needed only for

the first column-panel of Z. For the rest of the panels of Z, we will reuse these copies of A.

As we can see, that each block is copied exactly once, and reused for as long as possible:

reuse of Z blocks of a column-panel ends at the end of the solve for that panel but reuse of

A blocks ends at the end of the solve for the entire input matrix. The basic implementation

for LUN-variant is shown in Figure 2.32.

2.3.1.7 trsmµ for RLN-variant

RLN denotes the following operation: X = alpha×B×op(A)−1, where A is a lower triangular

matrix and B is a general matrix. Like the LLN- and LUN-variants, to utilize the gemmµ

framework, we need to select the best gemmµ that we can use in our trsmµ implementation.

60

• foreach un-sized column-panel Zcpan in Z

1. if first Z-column-panel, copy the bottom (um × um)-sized
diagonal unroll-block of A while inverting the diagonal ele-
ments

2. solve the bottom unroll-block Zblk0 of Zcpan with the
copied triangular unroll-block of A (nanokernel)

3. foreach unroll-block Zblk above Zblk0 of Zcpan from bot-
tom to top
→ requires access of um-sized row-panels of A from the bot-
tom to the top

(a) copy the last solved unroll-block of Zcpan to gemmµ’s
B storage format

(b) if first Z-column-panel, copy the um-sized row-panel
Arpan omitting diagonal unroll-block Adiag blk to
gemmµ’s A storage format

(c) one call to gemmµ to multiply copied Arpan to copied
part of Zcpan

(d) subtract the gemmµ result from Zblk during copy-back

(e) solve the Zblk using the copied Adiag blk (nanokernel)

Figure 2.32: Basic computational steps for the LUN-variant of trsmµ

61

The selected gemmµ’s unroll factors um, un and uk in the M , N and K dimensions (respec-

tively) will dictate the blocking of the input matrices of our trsmµ. Since A is triangle and

it is on the right side of X (i.e. A is treated as gemmµ’s B) in this case, we have BN = BK .

Therefore, we impose a restriction to the search for the best gemmµ for our TRSM that un

must be a multiple of uk (i.e. un = i× uk, where i ≥ 1).

The idea is to partition the triangular matrix A and the general matrix B into un-sized

column panels and um-sized row panels, respectively. Unlike the left-variants (e.g. LLN,

LUN, etc.), one row-panel (instead of column-panel) of B is solved at a time for the right-

variants. As discussed in Section 2.2.1, accessing a row panel at a time allows to reuse the

workspace for only one row panel for Z(B) (instead of having a workspace for the entire

matrix). Within each row-panel, for RLN, we start from the last block and move from right

to left direction. To understand the implementation details, consider the example shown in

Figure 2.33. Again, we assume alpha = 1 to simplify the discussion. Each block of A is of

size un× un and each block of Z (B or X) is of size um× un. Since we work on one um-sized

row-panel of Z at a time, we start by solving the first row-panel of Z (i.e. [Z11 Z12 Z13]

). In the first step, we copy the block T3 and then solve Z13 using the copied T3 which is

a TRSM of size um × un (nanokernel). For the next block of Z (i.e. Z12), we copy A2 and

previously solved Z13 to gemmµ’s required storage format. These copies are done using the

copy routines provided by the framework specific to our selected um, un and uk combination.

After the copy is done, we can call the gemmµ to multiply the copied A2 and Z13 and then

un un un

un T1

un

A1

T2

un A2 T3

un un un

um B11 B12 B13

um B21 B22 B23

=î

A
Z (B)

un un un

um X11 X12 X13

um X21 X22 X23

Z (X)

Figure 2.33: An example for RLN-variant of trsmµ

62

subtract the result from Z12. At this point, Z12 is ready for the solve using T2. Again, we

start by copying T2 and then applying (um×un)-sized TRSM on Z12. For the next block Z11,

we copy the next column panel of A except the diagonal block (i.e. A1) and the previously

solved Z12. Then we call the gemmµ to multiply [Z12 Z13] to A1 and then subtract the

result from Z11. Note that just like the left-variants, we reuse our previously copied Z13. At

this point, Z11 is ready to be solved using T1. Like the left-variants, we only need to copy

the blocks of A when solving the first row-panel of Z. For the other panels, we will reuse

the copied A blocks. So, each block is copied exactly once and reused for as long as possible.

The basic implementation of the RLN-variant is shown in Figure 2.34.

Recall that the triangle blocks, in this case, are of size nuxnu. If un > um, to use the

gemmµ to do most of the FLOPs needed, we can apply the same transposition technique

discussed in Section 2.3.1.4.

2.3.1.8 trsmµ for RUN-variant

RUN denotes the operation: X×op(A) = alpha×B, where A is the upper triangular matrix

and B is a general matrix. Like RLN-variant, we need to select the best gemmµ (with the

unroll factors um, un and uk) that we can use in our trsmµ implementation with the same

restriction to the search that un must be a multiple of uk (i.e. un = i× uk, where i ≥ 1).

Like RLN-variant, the triangular matrix A and the general matrix B is partitioned into

un-sized column panels and um-sized row panels, respectively. We will solve one row-panel

of B at a time but unlike RLN, we start from the leftmost block of the row-panel and move

from left to right direction. To understand the implementation in this case, consider the

example shown in Figure 2.35. We assume alpha = 1 to simplify the discussion. Each block

of A is of size un × un and each block of Z (B or X) is of size um × un. Since we work on

one um-sized row-panel of Z at a time, we start by solving the first row-panel of Z (i.e. [Z11

Z12 Z13]). In the first step, we copy the block T1 and then solve Z11 using the copied T1

which is a TRSM of size um × un. For the next block of Z-panel (i.e. Z12), we copy A2 and

63

• foreach un-sized row-panel Zrpan in Z

1. if first Z-row-panel, copy the rightmost (un×un)-sized diag-
onal unroll-block of A while inverting the diagonal elements

2. solve the rightmost unroll-block Zblk0 of Zcpan with the
copied triangular unroll-block of A (nanokernel)

3. foreach unroll-block Zblk on left of Zblk0 of Zcpan from
right to left
→ requires access of un-sized column-panels of A from right
to left

(a) copy the last solved unroll-block of Zrpan to gemmµ’s
A storage format

(b) if first Z-row-panel, copy the un-sized column-panel
Acpan omitting diagonal unroll-block Adiag blk to
gemmµ’s B storage format

(c) one call to gemmµ to multiply copied Zrpan to copied
part of Acpan

(d) subtract the gemmµ result from Zblk during copy-back

(e) solve the Zblk using the copied Adiag blk (nanokernel)

Figure 2.34: Basic computational steps for the RLN-variant of trsmµ

un un un

un

T1 A2

A3

un

T2

un

T3

un un un

um B11 B12 B13

um B21 B22 B23

=î

A
Z (B)

un un un

um X11 X12 X13

um X21 X22 X23

Z (X)

Figure 2.35: An example for RUN-variant of trsmµ

64

the previously solved Z11 to gemmµ’s required storage format. These copies are done using

the copy routines provided by the framework for our selected um, un and uk combination.

After the copy is done, we can call the gemmµ to multiply the copied Z11 and A2 and then

subtract the result from Z12. At this point, Z12 is ready for the solve using T2. We copy the

diagonal block T2 and then apply (um × un)-sized TRSM on Z12. For the next block Z13,

we copy the next column-panel of A except the diagonal block (i.e. A3) and the previously

solved Z12. Then we call the gemmµ to multiply [Z11 Z12] to A3 and then subtract the

result from Z13. Note that just like other variants, we can reuse our previously copied Z11.

Next, we solve Z13 using T3 and we are done with the current row-panel of Z. Then we move

on to the next row panel of Z and repeat the same process. Like in other variants, we copy

A only for the first row-panel of Z and then reuse the same copy for later panels. The basic

implementation of RUN-variant is given in Figure 2.36.

2.3.1.9 Other trsmµ Variants Using Reflection

As discussed in Section 2.2.1.5, the other variants (i.e. LLT, LUT, RLT, etc.) of trsmµ

can be implemented by using the above discussed 4 variants and selecting the proper copy

microkernels. Therefore, Table 2.1 works for trsmµ as well. Note that even though we can

reuse the variants LLN, LUN, RLN, and RUN to support all other variants of trsmµ, we

still need 12 variants (ignoring DIAG parameter) of the TRSM nanokernels that are slightly

modified forward- and backward- substitution methods.

2.3.2 Our Statically Blocked Iterative TRSM

In this section, we will present our statically blocked iterative TRSM that also utilizes the

gemmµ framework but on a block level instead of unroll blocks and for its block-sized TRSM

on the diagonal blocks, it uses the trsmµ we developed in the Section 2.3.1. We only discuss

the four variants: LLN, LUN, RLN, & RUN and all other variants can be reduced to one of

these four variants like the TRMM variants as discussed in Section 2.2.1.5.

65

• foreach un-sized row-panel Zrpan in Z

1. if first Z-row-panel, copy the leftmost (un × un)-sized diag-
onal unroll-block of A while inverting the diagonal elements

2. solve the leftmost unroll-block Zblk0 of Zcpan with the
copied triangular unroll-block of A (nanokernel)

3. foreach unroll-block Zblk on right of Zblk0 of Zcpan from
left to right
→ requires access of un-sized column-panels of A from left
to right

(a) copy the last solved unroll-block of Zrpan to gemmµ’s
A storage format

(b) if first Z-row-panel, copy the un-sized column-panel
Acpan omitting diagonal unroll-block Adiag blk to
gemmµ’s B storage format

(c) one call to gemmµ to multiply copied Zrpan to copied
part of Acpan

(d) subtract the gemmµ result from Zblk during copy-back

(e) solve the Zblk using the copied Adiag blk (nanokernel)

Figure 2.36: Basic computational steps for the RUN-variant of trsmµ

2.3.2.1 Implementing LLN-variant of gemmµ-based TRSM

The idea is almost identical to the microkernel implementation for LLN-variant. Here, We

need to find a gemmµ that works with block factors BM , BN and BK (divides the dimensions

M , N , and K respectively) where we impose the restriction on the search so that BM = BK

instead of BM to be a multiple of BK like we did for the trsmµ. This significantly simplifies

the implementation while providing very good performance for most problems. With the

selected block factors, the matrix A is divided into (BM ×BM)-sized blocks and the matrix

B is divided into (BM × BN)-sized blocks. Like the microkernel implementation, here we

solve one BN -sized column panel of B at a time and for each of these panels, we solve one

BM×BN block at a time using the selected gemmµ and then calling our trsmµ (implemented

in Section 2.3.1) for LLN-variant. The basic implementation is shown in Figure 2.37. Recall

that we use Z to denote the storage holding B and the resultX. The key difference, compared

to the implementation in Figure 2.30, is that here we are performing the operations on blocks

66

instead of unroll blocks of data and the GEMM updates need to be done by calling the gemmµ

once for each block update (shown in step 3(c)).

2.3.2.2 Implementing LUN-variant of gemmµ-based TRSM

Like the LLN-variant, we need to find a gemmµ that works with block factors BM , BN

and BK where BM = BK . The matrix is similarly divided as the LLN-variant. However, as

described in the LUN trsmµ implementation, we start from the last block of each column-

panel of B and then move upward on the column panel solving one block at a time. The

basic implementation is shown in Figure 2.38.

2.3.2.3 Implementing RLN-variant of gemmµ-based TRSM

As we have seen in the microkernel implementation for RLN-variant, in this case, the triangle

A appears on the right side of B (X). So, for this case, we need a gemmµ where BN = BK .

Then we divide the matrix A into BN ×BN blocks and the matrix B into BM ×BN blocks.

Also, we solve one BM -sized row-panel of B at a time. In RLN-variant, for each panel, we

start by solving the last block and move from right to left direction solving one block at a

time. The basic implementation is shown in Figure 2.39. Again, the key difference compared

to the microkernel implementation is that here the GEMM update step requires multiple

calls to the gemmµ (step 3(c)).

2.3.2.4 Implementing RUN-variant of gemmµ-based TRSM

Similar to the RLN-variant, we need a gemmµ where BN = BK . Then we divide the matrix

A into BN × BN blocks and the matrix B into BM × BN blocks and we solve one BM -sized

row-panel of B at a time. Unlike RLN-variant, for each row-panel of B, we start by solving

the first block and then move from left to right direction solving one block at a time. The

implementation is shown in Figure 2.40.

67

• foreach column-panel Zcpan in Z

1. solve the top-most block Zblk0 of Zcpan using the diagonal block
of A (trsmµ)

2. foreach block Zblk below Zblk0 of Zcpan from top to bottom

→ requires access of BM -sized row panels of A from the top to
the bottom

(a) copy the last solved block of Zpan to gemmµ’s B storage
format

(b) if first Z-panel, copy the BM -sized row-panel Arpan of A
omitting the diagonal block Adiag blk to gemmµ’s A storage
format

(c) call gemmµ once for each block of copied Arpan to multiply
with the corresponding block of copied Bcpan and accumu-
late the result

(d) subtract the accumulated gemmµ result from Zblk

(e) solve the Zblk using the Adiag blk (trsmµ)

Figure 2.37: Basic computational steps for the LLN-variant of full TRSM

• foreach column-panel Zcpan in Z

1. solve the bottom block Zblk0 of Zcpan using the bottom diagonal
block of A (trsmµ)

2. foreach block Zblk above Zblk0 of Zcpan from bottom to top

→ requires access of BM -sized row panels of A from the bottom
to the top

(a) copy the last solved block of Zpan to gemmµ’s B storage
format

(b) if first Z-panel, copy the BM -sized row-panel Arpan of A
omitting the diagonal block Adiag blk to gemmµ’s A storage
format

(c) call gemmµ once for each block of copied Arpan to multiply
with the corresponding block of copied Bcpan and accumu-
late the result

(d) subtract the accumulated gemmµ result from Zblk

(e) solve the Zblk using the Adiag blk (trsmµ)

Figure 2.38: Basic computational steps for the LUN-variant of full TRSM

68

• foreach row-panel Zrpan in Z

1. solve the rightmost block Zblk0 of Zcpan using the rightmost
diagonal block of A (trsmµ)

2. foreach block Zblk above Zblk0 of Zcpan from right to left

→ requires access of BN -sized column panels of A from right
to left

(a) copy the last solved block of Zpan to gemmµ’s A storage
format

(b) if first Z-panel, copy the BN -sized column-panel Acpan of A
omitting the diagonal block Adiag blk to gemmµ’s B stor-
age format

(c) call gemmµ once for each block of copied Brpan to multiply
with the corresponding block of copied Acpan and accumu-
late the result

(d) subtract the accumulated gemmµ result from Zblk

(e) solve the Zblk using the Adiag blk (trsmµ)

Figure 2.39: Basic computational steps for the RLN-variant of full TRSM

• foreach row-panel Zrpan in Z

1. solve the leftmost block Zblk0 of Zcpan using the leftmost diag-
onal block of A (trsmµ)

2. foreach block Zblk above Zblk0 of Zcpan from left to right

→ requires access of BN -sized column panels of A from left to
right

(a) copy the last solved block of Zpan to gemmµ’s A storage
format

(b) if first Z-panel, copy the BN -sized column-panel Acpan of A
omitting the diagonal block Adiag blk to gemmµ’s B stor-
age format

(c) call gemmµ once for each block of copied Brpan to multiply
with the corresponding block of copied Acpan and accumu-
late the result

(d) subtract the accumulated gemmµ result from Zblk

(e) solve the Zblk using the Adiag blk (trsmµ)

Figure 2.40: Basic computational steps for the RUN-variant of full TRSM

69

2.3.2.5 Other Variants of TRSM Using Reflection

Since our gemmµ-based TRSM is almost identical to our approach for trsmµ, we can use the

same technique presented in Section 2.3.1.9 to support other variants of TRSM. Therefore,

as with trsmµ, Table 2.1 also applies to our gemmµ-based TRSM.

2.4 Performance Results

This section shows some preliminary results that demonstrate the benefits of our new gemmµ-

based BLAS approach. Note that we need to extend the ATLAS autotuning framework to

ensure we utilize the best possible optimization set for our trmmµ and trsmµ in order to get

final results. Unfortunately, ATLAS’s tuning framework is currently being redesigned as part

of other research efforts, and so we must await completion of that unrelated research prior to

finalizing our performance measurements. Therefore, the results presented here should serve

as a floor rather than as a ceiling for the performance of this approach.

For this preliminary performance measurement we chose gemmµ that are usually selected

for ATLAS’s GEMM and are compatible with the um, un, and uk restrictions of our gemmµ-

based TRMM and TRSM. As for the block factors BM and BN , we selected BM = BN

and used the best block factors that are selected by ATLAS’s GEMM for all our timings

presented in this section. We show the performance results for two commonly used test cases:

a) square sized inputs (M = N) and b) fat inputs with a small triangle and a large number

of right-hand sides4 i.e. N >> M for left variants and M >> N right variants (common for

right-looking LU, QR and Cholesky factorizations in LAPACK). For fat cases, we selected

M = 120 for the left variants (N = 120 for the right variants) and vary the right-hand

sides. Performance of different libraries can vary significantly depending on their own best

block factors. We chose 120 for the size of the degenerate dimension of the fat problems to

provide a fair comparison among the libraries as 120 is a multiple of most of the common

4Although the phrase “right-hand side” applies only to TRSM, we will use this to refer
to the rectangular matrix for both TRSM and TRMM in this section.

70

register-unrolling factors on modern machines. Note that 120 is not the best block factor for

either ATLAS or our gemmµ-based approach.

We timed our gemmµ-based routines on three different systems each having different

architecture for the floating point computations:

1. O32: AMD Opteron 6128, 32 cores, CPU Speed: 2.0 GHz,

Peak Performance / core: 8 GFLOPS

gemmµ for TRSM used with BM = BN = BK = 168

trsmµ used with um = 3, un = 6, uk = 3 for left-variants (with transpose technique)

trsmµ used with um = 6, un = 3, uk = 3 for right-variants

2. X12: Intel Xeon 2620 v2 (Ivy Bridge), 12 cores, CPU Speed: 2.1 GHz,

Peak Performance / core: 16.8 GFLOPS

gemmµ for TRSM used with BM = BN = BK = 192

trsmµ used with um = 3, un = 12, uk = 1 for left-variants (with transpose technique)

trsmµ used with um = 12, un = 3, uk = 1 for right-variants

3. X24: Intel Xeon 2670 v3 (Haswell-EP), 24 cores, CPU Speed: 1.7 GHz,

Peak Performance / core: 27.2 GFLOPS

gemmµ for TRSM and TRMM used with BM = BN = BK = 192

trmmµ used with um = 12, un = 4, uk = 1

trsmµ used with um = 4, un = 12, uk = 1 for left-variants (with transpose technique)

trsmµ used with um = 12, un = 4, uk = 1 for right-variants

For performance comparison with our approach, we used ATLAS’s current recursively

blocked approach using ATLAS 3.11.39. We also used Intel’s proprietary Math Kernel Library

(MKL 11.2.3) [43] which is considered one of the best linear algebra library for x86 hardware

by most computational researchers. All performance results are shown as the percentage

of the machine’s theoretical peak performance assuming the minimal FLOP count of the

71

algorithm in question5. In all the charts, the performance of recursive ATLAS (ATL), MKL

and our gemmµ-based approach (µK) are shown as green circle, red diamond and blue square,

respectively.

Figure 2.41 and 2.42 shows the double precision TRSM performance for square and fat

problems, respectively, for all four variants on O32. As shown in Figure 2.41, for square

problems our gemmµ-based TRSM outperforms both stock ATLAS and MKL for all problem

sizes and all variants by up to 15% and for fat problems, the improvement is up to 39% (shown

in Figure 2.42).

Figure 2.43 and 2.44 shows the double precision TRSM performance for square and fat

problems, respectively, for all four variants on X12. As shown in Figure 2.43, for square

problems our gemmµ-based TRSM outperforms prior ATLAS for all problem sizes and all

variants by up to 11%. When comparing to MKL, however, we lose for small problems, while

usually winning very slightly for large. We believe these small-case losses (which occur on X24

as well) are due to the aforementioned lack of autotuning. This preliminary implementation

is using a fixed B = 192 for any M >= 192, which is highly unlikely to be optimal for

small problems. We therefore believe once the full tuning framework is in place, we will be

competitive with MKL across the full range.

For fat cases on X12, as shown in Figure 2.44, our approach outperforms prior ATLAS

by up to 52% but it is inferior to MKL for left variants and competitive for right variants.

Notice that our approach gets roughly the same performance for both left and right variants,

but MKL’s left-case performance is around 15% higher than its right. It is probably not a

coincidence that the left case is used in many more benchmarks in general, and the LIN-

PACK benchmark in particular, while the right case is not. Our best guess is that a lot of

5It is therefore theoretically impossible for our algorithms to achieve peak with results
reported in this way, since we do extra FLOPs due to zero padding in TRMM and recip-
rocating the diagonal elements in TRSM. Using the minimal FLOP as the base means we
treat these extra computations as a performance loss against theoretical peak.

72

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
ATL MKL µK

(a)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
ATL MKL µK

(b)

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(c)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(d)

Figure 2.41: Performance of double-precision real TRSM on O32 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70
ATL MKL µK

(a)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(b)

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(c)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(d)

Figure 2.42: Performance of double-precision real TRSM on O32 for fat problems with con-
stant triangle size of (120× 120) for variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

73

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
ATL MKL µK

(a)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
ATL MKL µK

(b)

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
ATL MKL µK

(c)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
ATL MKL µK

(d)

Figure 2.43: Performance of double-precision real TRSM on X12 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70

75

80
ATL MKL µK

(a)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70

75

80
ATL MKL µK

(b)

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70
ATL MKL µK

(c)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70
ATL MKL µK

(d)

Figure 2.44: Performance of double-precision real TRSM on X12 for fat problems with con-
stant triangle size of (120× 120) for variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

74

concentrated hand-tuning has therefore been applied to MKL’s left case. This suggests there

is plenty of room for improvement for both cases for us (if adding TRSM to our autotuning

doesn’t already make this improvement). However, this hand-tuned optimization for the left

case used by MKL may be difficult and fragile, given that the MKL group did not add it to

their right case, despite their manpower advantage.

Figure 2.45 and 2.46 shows the double precision TRSM performance for square and fat

problems, respectively, for all four variants on X24. While we see similar speedups over prior

ATLAS, this machine is overall our worst-case when comparing to MKL. The main reason

for that is probably that our GEMM (and remember that our trsmµ is based on our gemmµ)

is around 2-4% slower than that of MKL’s on this architecture. This discrepancy is one of

the main reasons for ATLAS’s ongoing gemmµ tuning framework redesign. It is therefore

our expectation that the new framework will allow for improved gemmµ performance, which

will bring these results closer to those of the X12.

For our gemmµ-based TRMM, we have preliminary results for the X24 only6. Figure 2.47

shows the performance for square problems. For large problems, we are already faster than

MKL, and if we can improve our gemmµ performance as we hope, the gap should grow more

pronounced. We believe our small problem loss has the same explanation as for TRSM.

For fat problems, as shown in Figure 2.48, our approach outperforms both stock ATLAS

and MKL by up to 73%. MKL’s relatively poor performance seems to indicate that it has not

had near the tuning attention as the more widely used TRSM kernel (theoretically, TRMM

should always run at least as fast as TRSM, since TRMM has more degrees of optimization

freedom).

6TRMM was chronologically the last part of this dissertation research. Between achieving
the TRSM and TRMM results, both O32 and X12 machines experienced hard drive crashes
brought on by power outages. Both machines are now reinstalled, but we do not yet have
our prototype codes reinstalled and correctly autotuning on these machines yet.

75

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(a)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(b)

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(c)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(d)

Figure 2.45: Performance of double-precision real TRSM on X24 for square problem sizes for
variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70
ATL MKL µK

(a)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60

65

70
ATL MKL µK

(b)

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(c)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(d)

Figure 2.46: Performance of double-precision real TRSM on X24 for fat problems with con-
stant triangle size of (120× 120) for variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

76

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(a)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(b)

Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(c)
Matrix Order

400 800 1200 1600 2000 2400 2800 3200 3600 4000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

ATL MKL µK

(d)

Figure 2.47: Performance of double-precision real TRMM on X24 for square problem sizes
for variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(a)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(b)

Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(c)
Matrix Order

4000 6000 8000 10000 12000

%
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

20

25

30

35

40

45

50

55

60
ATL MKL µK

(d)

Figure 2.48: Performance of double-precision real TRMM on X24 for fat problems with
constant triangle size of (120× 120) for variants: (a) LLNN (b) LUNN (c) RLNN (d) RUNN

77

Given that these results should strongly improve when the autotuning framework is fully

online, we view these preliminary TRSM and TRMM results as extremely encouraging, and

a strong sign that this approach will ultimately prove effective.

2.5 Summary and Future Research

The purpose of this research is to improve the performance for all cases by reducing the

BLAS overheads and to do that we copy the blocks once and reuse the copy multiple times

throughout the entire algorithm. However, this optimization causes the approach to require

extra memory space to hold the copied data for the entire execution time. For our TRMM

and TRSM approach, we need a workspace for the entire triangle matrix and only one panel

(column panel for left and row panel for right variants) of the rectangular matrix. If the

required amount of memory is not available (which can happen for very large problems) our

approach will fail. Note that this limitation can be present in other approaches as well. On the

other hand, in a recursive approach like ATLAS, if the top level of recursion cannot allocate

the memory space it requires, it can just go into the next (deeper) level of recursion where

the problem size is half of that of the original problem size. It can continue recurring until the

required memory space is available in the system. Because of this, our plan is to merge our

gemmµ-based approach to the recursive approach so that recursion only happens until we can

allocate enough memory to use our iterative approach directly. With this hybrid approach:

a) for small problems, only our approach will be used thus providing high performance for

small problems and b) for asymptotic problems, ATLAS’s recursive approach will provide

high performance due to lion share of computations done by top level GEMM updates with

asymptotic sized operands. Another limitation of our approach is that it is statically blocked

which means we need to find and select best the block factors for a given input problem.

In Appendix B, we will discuss how we can build a computational model to predict the

potentially best block factors for a given problem.

78

CHAPTER 3

PERFORMANCE OPTIMIZATION OF LAPACK ROUTINES

LAPACK provides various numerical algebra routines including matrix factorizations, eigen-

value problems etc. ATLAS provides optimized versions for some of the LAPACK routines.

In this chapter, we will discuss how we can improve the performance of two matrix factoriza-

tions that are widely used in computational sciences. Like TRMM and TRSM (discussed in

Chapter 2), we will use the gemmµ framework to achieve high performance for all problem

sizes. In Section 3.1, we will discuss the LU factorization which is widely used for solving

systems of linear equations and matrix inversions. In Section 3.2, we will briefly discuss the

Cholesky factorization which, unlike LU, only works for symmetric positive definite matrices.

Note that this chapter mainly provides an introductory discussion on improving the perfor-

mance of serial LAPACK routines as an aid in understanding for improving the performance

of parallel LAPACK routines, which is discussed in Chapter 4.

3.1 LU Factorization

LU factorization is a method of decomposing a matrix into the product of: a unit-lower-

triangular (L) and an upper-triangular (U) matrices. This factorization is done by perform-

ing Gaussian elimination on the input matrix. Depending on the pivoting strategy, there

are multiple variants of LU factorization. No-pivoting yields the least stable solution while

full-pivoting (finding the maximum element of the entire matrix) provides the most stable

solution but is too expensive to perform. LAPACK uses partial-pivoting (finding the maxi-

mum element of a column) which is sufficiently stable for most usage. In our gemmµ-based

implementations of LU factorization (both serial and parallel), we used partial-pivoting as

well. Even for LU factorization with partial pivoting, there are variants of implementations

depending on the order of computations. The two most common variants are right-looking

and left-looking. In this section, we will discuss both variants in detail. With partial-pivoting,

79

the LU factorization of a matrix A is defined as follows:

A = PLU

where L is a unit-lower-triangular matrix, U is an upper triangular matrix and P (called

the permutation matrix) contains the pivoting information (used to reorder the rows of A).

Note that L is a unit-triangular matrix (diagonal elements are unit). Omitting these unit

values, LAPACK implementation stores both L and U in the same storage as the input A

i.e. non-diagonal L is stored below the diagonal of A and U is stored above (and including)

the diagonal of A. Also, instead of having a permutation matrix where most of the elements

are known to be zero, it stores only the indices of the rows to pivot in the integer array ipiv.

To understand how an LU factorization works, consider the example of a 3× 3 matrix A

shown below.

A11 A12 A13

A21 A22 A23

A31 A32 A33

(3.1)

The columns of A are factorized one at a time from left to right. Let A31 be the maximum

element (also known as the pivot element) of the first column. For partial-pivoting, we need

to swap the first row with the third row (therefore the ipiv array will hold 3 at index 1).

The matrix after the pivoting is shown in below.

A31 A32 A33

A21 A22 A23

A11 A12 A13

Note that finding the maximum element is done by using a Level-1 BLAS operation called

IAMAX. Also note that after the swap, the first row has become the first row of U . At this

point, all the elements of the first column except the first (the pivot element) are scaled using

the pivot element with the Level-1 operation SCAL. Note that in the Gaussian elimination

method, the whole column is scaled using the pivot element which causes the diagonal

80

element to be 1. Since we are using the space for the diagonal element to store the pivot

(part of U), we only scale the elements below the diagonal. After the scaling, these elements

are transformed to be the first column of L as shown below.

U11 U12 U13

L21 A22 A23

L31 A12 A13

Next, we need to subtract the contribution of these new L and U elements (except the

diagonal) from the trailing matrix as shown below.

Â22 Â23

Â12 Â13

=

A22 A23

A12 A13

−

L21

L31

×

[

U12 U13

]

This subtraction is done by a Level-2 routine called GER (GEneral Rank-1 update). After

the GER, this updated trailing matrix (i.e. Â22, Â23, etc.) becomes a sub-problem of the

original LU factorization and we can repeat the same process on this trailing matrix to

factorize the whole A which results the following matrix:

U11 U12 U13

L21 U22 U23

L31 L32 U33

As shown above, after processing each column, we update all the columns to the right using

GER. Therefore, the above approach is called the right-looking variant of LU factorization.

For the left-looking variant, instead of updating the entire trailing matrix in all the steps

above, only the current column is updated and then factorized. With this approach, we end

up with the following matrix after processing the first two columns of the example input A

shown in Equation 3.1.

U11 U12 A13

L21 U22 A23

L31 L32 A33

81

Note that the third column is untouched at this point. First, we need to apply a series of

row-swaps on this column as indicated by the pivot array. Assuming the second column did

not need any pivoting, the third column will hold [A33 A23 A13]
T after the row-swaps are

done. Next we need to perform a triangular solve (TRSV) on the vector [A33 A23]
T to

transform it into part of U . This triangular solve uses L21 with the presumed unit-diagonal

in place of U11 and U22. The resulting matrix after the solve is shown below.

U11 U12 U13

L21 U22 U23

L31 L32 A13

Note that after the solve A13 is still the unmodified element of the input A. Therefore we need

to subtract the contribution of all the columns (i.e. Ls) on the left and the corresponding

Us from this unmodified A13. This subtraction is done by another Level-2 operation called

GEMV. The operation looks like the following:

[

Â13

]

=

[

A13

]

−

[

L31 L32

]

×

U13

U23

As we can see, we need to access (look at) all the columns to the left to update the current

column, hence this approach is known as left-looking. Since we work on one column at a

time, at the end of factorizing the last column, we need to apply a series of row-swaps to

each column to reflect the required pivoting from all the factorized columns on its right.

Note that both the right-looking and the left-looking variants discussed above worked on

one column at a time (commonly known as unblocked LU factorization). We can apply both

approaches with the cache-blocking optimization technique as discussed in Section 3.1.1.

3.1.1 Statically Blocked LU Factorization

For blocked LU factorization, a column-panel is factorized at a time instead of a column and

all the updates are performed with Level-3 operations TRSM and GEMM. After the required

TRSM and GEMM updates, we can factorize the trailing panel with the unblocked LU

82

factorization as discussed in Section 3.1. We will refer to this step as the panel factorization.

We will only discuss the left-looking variant of statically blocked LU factorization which we

use for our gemmµ-based serial and parallel LU factorization, presented in this section and

Chapter 4, respectively. The basic computational steps of a left-looking variant of GEMM-

based LU factorization (LAPACK’s implementation) is shown in Figure 3.1. To understand

the implementation, consider the example shown in Figure 3.2a where the first two panels are

already factorized. Note that the other panels of the input matrix A are unmodified at this

point. As we start working on the third panel (in general, we refer to this as the current-active

panel cpan), we need to apply the updates from all the panels on the left (pan0 and pan1

in this case) before we can perform the panel factorization. The steps required to factorize

cpan (i.e. pan2) of A are shown in Figure 3.2b-g.

The first step is to apply BN row-swaps to the top block (e.g. A20) of the cpan based on the

pivot array of pan0 factorization. After that we use the lower triangular part of the diagonal

block of the factorized pan0 (i.e. D0) to perform TRSM on the pivoted A20 to transform it

to a part of U (i.e. U20 as shown in Figure 3.2b). At this point, we subtract the contribution

of pan0 factorization from A2 using GEMM (i.e. A20 = A2L0×U20) as shown in Figure 3.2c.

The next step is to apply the updates for pan1 factorization on the modified A20 and we

repeat the same steps: apply pivots from pan1 factorization on the top block of A20 (note that

it is partitioned into a block and a trailing panel A21) and perform TRSM on the pivoted

• foreach active panel from left to right in matrix:

1. foreach panel to the left of active panel, update the active panel by:

(a) Apply pivots from diagonal block

(b) solve (TRSM) using diagonal block, creating block of U

(c) apply L (GEMM) below diagonal block to rest of panel

2. Perform panel factorization on remaining non-U blocks of active panel

• As last step, apply pivots (from panels to the right) to non-diagonal part of L

Figure 3.1: Basic steps for left-looking LU factorization for square matrices

83

0 1 2 3

U21

L1 A21

(e)

0 1 2 3

D1
U21

A21

(d)

0 1 2 3

U20

L0 A20

(c)

0 1 2 3

U

L

(a)

0 1 2 3

D0
U20

A2

(b)

0 1 2 3

A2f

(f)

0 1 2 3

U

L

(g)

Figure 3.2: Computational steps of a left-looking LU factorization: (a) Initial state of A after
pan0 and pan1 are factorized. (b) Apply row-swaps and TRSM using D0 on top block of
pan2 to make it U20. (c) Apply GEMM updates on A2 using L0 and U20. (d) Apply row-swaps
and TRSM using D1 on top block of A20 to make it U21. (e) Apply GEMM updates on A21

using L1 and U21. (f) Perform the panel factorization on A2f . (g) Final state of A after pan2
is factorized.

84

top block of A20 to transform it into U21 as shown in Figure 3.2d and then subtract the

contribution of pan2 factorization from A21 using GEMM i.e. A2f = A21L1×U21. Note that

we are referring to this trailing panel as A2f since after the last GEMM update, this trailing

panel of pan2 is finally ready to be factorized which can be performed by using an unblocked

LU factorization. Later we will see that instead of using an unblocked LU factorization, we

can use ATLAS’s recursive LU factorization or have another level of static blocking for better

performance. Recall that depending on the implementation of the BLAS library used, the

GEMM updates may copy the required data (i.e. L0, L1, etc.). Since similar steps are needed

for each of the later panels, these data may be copied repeatedly. If the number of panels is

Np, then L0 might be copied Np − 1 times, L1 might be copied Np − 2 times and so on. We

refer to these copies as Lcopy for GEMM updates. Note that there is another place where

duplicating copy might occur depending on the GEMM implementation. The result of the

GEMM updates i.e. A20 and A21 share common storage except for the block U21. If required,

the data in this common storage are possibly copied to GEMM’s required storage format

and then copied back out at the end of GEMM. We refer to these copies as Ccopy of GEMM.

These duplicating copies (both Lcopy and Ccopy) can be a significant overhead, particularly

for small sized problems and small block factors. ATLAS provides a recursively blocked LU

factorization that provides superior performance for asymptotic problems but still suffers

from poor performance for small sized problems due to significant BLAS overhead. We will

briefly discuss this approach in Section 3.1.2.

For our gemmµ-based approach, to avoid these duplicating copies, we will copy the required

data to the gemmµ required storage format and directly call the gemmµ to apply the GEMM

updates. The L blocks within a column panel are copied only once and we copy them (i.e.

Lcopy) right after the factorization on that panel is done, while they may still be cache

resident. Note that after all the required GEMM updates, the portion of the panel that

needs to be factorized is copied back to the original storage in column-major format to

85

avoid the complexity of performing the panel factorization on gemmµ storage. This copying

back to the original storage would still be needed if we perform the factorization on gemmµ

storage with a custom panel factorization because we need to copy back the result to the

original storage anyway. The basic steps of our gemmµ-based LU factorization are shown in

Figure 3.3.

Note that to avoid repeated Ccopy, as we start working on a new panel, we copy it

(omitting the topmost block) to the gemmµ required storage format in the first step. The

topmost block is omitted because it does not require any GEMM update before pivoting and

TRSM. Then as the other blocks become ready to be pivoted and solved (TRSM) we copy it

back to the column-major storage. Note that the copies of L0, L1, etc. are reused throughout

the entire algorithm while the Ccopy blocks are reused for all the GEMM updates on that

panel.

3.1.2 Improving the Panel Factorization

As discussed in Section 3.1.1, LAPACK uses the unblocked LU factorization to perform

the panel factorization steps. Recall that an unblocked LU factorization is performed using

Level-1 and Level-2 BLAS which are memory-bound operations with low serial and parallel

performance. To optimize the panel factorization, we can apply the blocking optimization

again on the panel with a smaller block factor which allows us to use Level-3 operations with

smaller operands. An alternative approach is to implement recursive blocking [31, 29] like

ATLAS does for its full LU factorization which can provide better performance for wider

panels. To understand the recursively blocked LU factorization, consider the example shown

in Figure 3.4 for factorizing a panel A is of size M × BN where M is the number of rows

in the panel and BN is the number of columns. In recursively blocked LU factorization, the

input panel A is partitioned into two sub-panels: A0 and A1. The first step is to recursively

factorize the sub-panel A0. Next is to apply pivots and perform TRSM on the top BN

2
× BN

2

sized block of the second sub-panel. After the TRSM, this block becomes a part of U . The

86

• foreach active panel from left to right in matrix:

1. copy all blocks except the topmost to gemmµ C-storage

2. foreach panel to the left of active panel, update the active panel by:

(a) if not first update, copy the top C-storage block to column-major
storage

(b) apply pivots from diagonal block

(c) solve (TRSM) using the diagonal block, creating a block of U in the
active panel

(d) copy the new block of U to gemmµ B-storage

(e) apply previously copied L (GEMM) below diagonal block to rest of
panel using gemmµ

3. copy-back the remaining non-U blocks to the original matrix and perform
panel factorization on it

4. copy the below-diagonal portion (L) of the factorized panel to gemmµ
A-storage

• As last step, apply pivots (from panels to the right) to non-diagonal part of L
in the original storage

Figure 3.3: Basic steps for gemmµ-based left-looking LU for square matrices

BN/2 BN/2

M A0 A1

BN/2 BN/2

BN U

L A T

D

(a) (b)

Figure 3.4: Basic steps for recursive LU factorization of a panel: (a) partitioning of the panel.
(b) updates on the second half of the panel after first panel is factorized.

87

next step is to subtract the contribution of the first factorized panel from the trailing panel

of (say A11) with a GEMM update i.e. AT = A11L × U . At this point, AT is ready to be

factorized which done recursively as before.

Note that we can implement our previously discussed gemmµ-based approach for panel

factorization as well. However, with the wide variety of widths needed, and the amount of

non-GEMM computation required, we have not yet found a way to approach this problem

without increasing code complexity beyond what is reasonable given the limited performance

improvement we have so far seen with this approach.

3.2 Cholesky Factorization

Cholesky factorization is a method to decompose a symmetric, positive-definite matrix. It

is commonly used in Monte Carlo simulations and inverting Hermitian/symmetric, positive-

definite matrices. An unblocked Cholesky factorization in LAPACK is done by a modified

Gaussian elimination method. There are two variants of Cholesky depending of the parameter

named UPLO. The factorization is defined as follows:

A = LLT if UPLO = L, i.e. the symmetric A is stored only in the lower-triangular part

or

A = UTU if UPLO = U , i.e. the symmetric A is stored only in the upper-triangular part

Note that depending on the order of the computations, both the above Lower and Upper

versions of Cholesky have variants such as right-looking, left-looking, etc. For this research,

we only explored the left-looking Lower Cholesky factorization using gemmµ-based approach

but the Upper version can be implemented using the similar approach.

Like LU, columns of the matrix A are factorized one at a time from left to right using a

modified Gaussian elimination method and the result is stored in the same storage as the

input. Unlike LU, only the lower-triangular part of A is accessed or updated with the result

88

for Lower Cholesky. For the factorization, the following steps are repeated for each column

from left to right:

1. Subtract the contribution of any previously factorized columns from the diagonal ele-

ment of the current column, using the L1BLAS routine DOT.

2. Take the square-root of the diagonal element to make it a part of the result L.

3. Subtract the contribution of any previously factorized columns from the below-diagonal

elements of the current column, using the L2BLAS routine GEMV.

4. Scale the rest of the column below the diagonal using the square rooted value computed

in the step 2, using the L1BLAS routine SCAL.

To understand how a Cholesky factorization works, consider the 4 × 4 triangular matrix

shown below where the first two columns are already factorized:

L11 − − −

L21 L22 − −

L31 L32 A33 −

L41 L42 A43 A44

(3.2)

Note that only the lower triangular part is shown since strictly upper triangular part is not

accessed during the factorization. For factorizing the third column, the following steps are

done:

1. Subtract the contribution of the left two factorized columns from A33 using DOT i.e.

Â33 = A33 −

[

L31 L32

]

×

L31

L32

2. Compute L33 = sqrt(Â33).

89

3. Subtract the contribution of the left two columns from below diagonal elements (only

A43 in this case) using GEMV i.e.

[

Â43

]

=

[

A43

]

−

[

L41 L42

]

×

L31

L32

4. Scale the below-diagonal elements of current column, L43 = Â43/L33.

After above steps, the third column is completely factorized as shown below.

L11 − − −

L21 L22 − −

L31 L32 L33 −

L41 L42 L43 A44

We can repeat the steps for the fourth column to fully factorize the matrix. Since this

approach factorizes one column at a time, it is commonly known as the unblocked Cholesky

factorization. As with LU factorization, we can use blocking (both static and recursive) to

improve the performance as discussed later.

3.2.1 Statically Blocked Cholesky Factorization

As in GEMM-based LU, cache blocking can be applied to improve the performance of the

Cholesky factorization. To understand the GEMM-based Cholesky factorization, consider the

example shown in Figure 3.5a where the first two panels are factorized. The first step is to

subtract the contribution of all the factorized panels on left (L20) from the diagonal block A2S

as shown in Figure 3.5b. At this point, the diagonal block is ready to be factorized (shown in

Figure 3.5c). Note that both the SYRK and the factorization only access the lower-triangular

part of the diagonal block. The matrix A after factorizing the diagonal block is shown in

Figure 3.5d. The next step is to subtract the contributions of all the factorized panels on left

from the rest of the current panel (A2) i.e. AM = A2−L21L
T
20 (shown in Figure 3.5e). Finally,

we need to perform the solve on AM using the lower-triangular part of the diagonal block D2.

90

0 1 2 3

AT

(f)

D2

0 1 2 3

A2

(d)

0 1 2 3

L20

(b)

0 1 2 3

(c)

0 1 2 3

L

(a)

0 1 2 3

L

(g)

0 1 2 3

L20

L21 AM

(e)

A2fA2S

Figure 3.5: Basic steps for Lower Cholesky factorization of a panel: (a) Initial state of A
after pan0 and pan1 are factorized. (b) Apply SYRK on A2S using the corresponding row
panel (L20) on the left. (c) Factorize the updated diagonal block A2f . (d) State of A after
factorizing the diagonal block A2f . (e) Apply GEMM updates on below-diagonal blocks (A2)
using the corresponding row panels on left (L21) and the diagonal row panel (L20). (f) Solve
the updated below-diagonal blocks (AT) using the lower-triangular part of the diagonal block
(D2). (g) Final state of A after pan2 is factorized.

91

The final state of A after pan2 is factorized is shown in Figure 3.5g. Note that the diagonal

blocks are updated using SYRK (Level-3 BLAS operation) that performs a symmetric rank-

K update on a triangular matrix. The basic steps for a GEMM-based left-looking Lower

Cholesky factorization for is shown in Figure 3.6.

As before, our approach is to use gemmµ framework to improve the performance of GEMM-

based Cholesky factorization for all sizes. The idea is to explicitly copy the factorized panels

to gemmµ required storage and directly call the gemmµ as needed for all the GEMM updates.

Note that the SYRK operation is similar to GEMM with the exception that it multiplies a

symmetric matrix with its transpose (which leads to less floating point operations required

than GEMM). For this research, we use gemmµ to perform the SYRK operation as well

which leads to extra computations. At the time of this research, ATLAS did not provide any

SYRK microkernel that could minimize these extra computations. In latest ATLAS release,

such SYRK microkernels are included in its framework which, in future research, we can

utilize to improve the performance of our gemmµ-based Cholesky factorization. The basic

steps for gemmµ-based Cholesky factorization are shown in Figure 3.7.

3.3 Summary and Future Research

In this chapter, we presented the basic idea for improving LAPACK operations with two

example routines: LU and Cholesky factorization. As mentioned before, our future research

plan includes utilizing the SYRK microkernel in the latest ATLAS release to further optimize

• foreach active panel from left to right in matrix:

1. Subtract the contribution from the diagonal block for all the factorized
panels on left using SYRK

2. Factorize the diagonal block

3. Subtract contribution from all the below-diagonal blocks for all the factor-
ized panels on left using GEMM

4. Solve the below-diagonal blocks using the lower-triangular part of the di-
agonal block

Figure 3.6: Basic steps for left-looking Lower Cholesky factorization

92

• foreach active panel from left to right in matrix:

1. Subtract contribution from the diagonal block for all the factorized panels
on left using gemmµ and previously copied blocks

2. Factorize the diagonal block

3. Subtract contribution from all the below-diagonal blocks for all the factor-
ized panels on left using gemmµ and previously copied blocks

4. Solve the below-diagonal blocks using the lower-triangular part of the di-
agonal block

5. Copy the solved below-diagonal blocks as both transpose and no-transpose
gemmµ format for later use

Figure 3.7: Basic steps for gemmµ-based left-looking Lower Cholesky factorization

our gemmµ-based Cholesky factorization. Moreover, we want to improve the performance

of QR factorization which is used for finding Eigenvalues and solving linear least squares

problem.

93

CHAPTER 4

PERFORMANCE OPTIMIZATION OF PARALLEL LU
FACTORIZATION

This chapter is an extended version of the previously published paper [37]1. LU factorization

is one of the most widely-used methods for solving linear equations, and thus its performance

underlies a broad range of scientific computing. As architectural trends have replaced clock

rate improvements with increases in parallel scale, library writers have responded by using

tiled algorithms, where operand size is constrained in order to maximize parallelism, as seen

in the well-known PLASMA library [1, 13, 14, 59, 48, 12, 26, 34, 26, 21, 78]. This approach

has two main drawbacks: (1) asymptotic performance is reduced due to limited operand

size; (2) performance of small to medium sized problems is reduced due to unnecessary data

motion in the parallel caches. In this paper we introduce a new approach where asymptotic

performance is maximized by using special low-overhead microkernel primitives that are auto-

generated by the ATLAS framework, while unnecessary cache motion is minimized by using

explicit cache management. We show that this technique can outperform all known libraries

at all problem sizes on commodity parallel Intel and AMD platforms, with asymptotic LU

performance of roughly 91% of hardware theoretical peak for a 12-core Intel Xeon, and 87%

for a 32-core AMD Opteron.

4.1 Introduction

LU factorization (essentially Gaussian elimination with partial pivoting) is a critical compo-

nent for scientific computing. This functionality is exposed to the user via the LAPACK [3, 50]

(Linear Algebra PACKage) API. In this chapter we discuss the double precision real version

of this routine, and will refer to it using its LAPACK name DGETRF (Double precision

GEneral TRiangular Factorization). The main computational component of DGETRF is

1This chapter previously appeared as [Md Rakib Hasan and R. Clint Whaley, Interna-
tional Parallel & Distributed Processing Symposium, published by The Institute of Electrical
and Electronics Engineers (IEEE)]. See the reuse permission letter in Appendix C.

94

matrix multiply, which is provided by the BLAS [22] API under the name DGEMM (Dou-

ble precision GEneral rectangular Matrix-matrix Multiply). DGEMM is typically the most

efficient (in both parallel and serial performance) of the provided BLAS operations. The

second-most important BLAS call for DGETRF is DTRSM (Double precision TRiangular

Solve to a Matrix of right-hand sides).

4.2 Experimental Details

Timings presented in this paper were run on Debian 6 (Linuxv2.6.32-5-amd64), gcc 4.7.0,

with ACMLv5.3.1, ATLASv3.11.14, FLAMEr11400, LAPACKv3.4.2, MKLv10.3.9, PLAS-

MAv2.5.1. All timings are for LU with LAPACK-equivalent partial pivoting, using the default

block sizes provided by the libraries. PLASMA offers both static and dynamic scheduling

options; we report static timings, since static scheduling gave dramatically better small-case

performance with essentially the same asymptotic performance. Since parallel timings are

volatile (particularly for smaller sizes), we always report the average across a number of

timing runs. All our timings are on square matrices of order N . For N ≤ 2000, we average

fifty timings, for 2000 < N ≤ 10, 000 six timings, for 10, 000 < N ≤ 20, 000 three timings,

and for problems of greater size we average only two timings.

Timings were performed on two commodity shared-memory platforms: (1) O32: 32-core,

2.0 Ghz AMD Opteron 6128, organized on a 4-socket motherboard. Theoretical peak for

entire machine is 256 GFLOPS; (2) X12: 12-core, 2.0 Ghz Intel Xeon E5-2620, organized on

a two-socket motherboard wt theoretical machine peak of 192 GFLOPS.

Our results are reported as a percentage of the given theoretical machine peak, using the

FLOP count provided by LAPACK’s dopla.f [49], which for LU is roughly 2
3
N3. We use

the first touch NUMA memory initialization technique discussed in Section 5.2 of [15] to

initialize all matrices, so that page ownership is distributed amongst the parallel cores. This

ensures that approaches that copy the input matrix (e.g. our approach and PLASMA) do

not have a huge advantage over ones that do not (ATLAS, LAPACK, MKL) based merely

95

on input initialization. For each machine, we time problems as large as possible without

thrashing virtual memory, which leads to a max size of 50,000 for X12 and 45,000 for O32.

4.3 History, Motivation and Related Work

Historically, parallel DGETRF providers could focus almost exclusively on asymptotic per-

formance. These are the only problem sizes that require parallel solutions, and users with

small- to medium-sized problems could count on continuing performance gains from increas-

ing clock rate. Since improving clock rate has been largely replaced by increasing parallel

scale, it has become much more important to provide parallel speedup for modest sized

problems as well. Therefore, Figure 4.1, which attempts to summarize the state-of-the-art

in parallel DGETRF performance, has an X axis that has been manipulated to allow us to

clearly see problems in this range (N < 2000). Note that the first nine data points have a

stride of 200, while the larger sizes use a stride of 1000 between points. This leads to the

illusion that there are huge increases in performance between points 2000 and 3000: this

is due to the change in scale that occurs between these two points. The Y axis shows the

percentage of theoretical peak achieved by various DGETRF implementations.

Netlib lapack using the ATLAS [76, 74, 75] parallel BLAS is the worst performer, as shown

in yellow circles. Due to shortcomings in this original approach, the recursive formulation of

LU was developed [63] and later implemented in ATLAS; the performance of this variant is

shown as green diamonds in Figure 4.1. Due to its more effective exploitation of DGEMM,

this algorithm is superior at all problem sizes compared to the original LAPACK. Both of

these approaches have the strong advantage that they leave almost all of the optimization

(both serial and parallel) to the BLAS, freeing the much larger LAPACK library to focus on

the algorithmic level. The problem with this approach is its extremely slow rise in parallel

performance with problem size; as parallel scale is increased, moderately sized problems will

achieve an increasingly minuscule percentage of machine peak due to various inefficiencies

and serializations.

96

(a)

(b)

Figure 4.1: Performance of LU factorization for netlib lapack (yellow circles), ATLAS (green
diamonds), FLAME (orange point-right triangles), PLASMA (red x), empirically tuned
PLASMA (dark red +), and MKL (black point-up triangles): (a) 12-core Intel Xeon E5-
2620 (b) 32-core AMD Opteron 6128.

97

Therefore, the current wave of research has concentrated on breaking the problems up

into sub-blocks (often called tiles) that can be explicitly scheduled. Examples of this general

approach include both the FLAME [79, 17, 54, 80, 30, 39, 6, 56, 53] (though not for LU) and

PLASMA [1, 59, 12, 26] libraries. In FLAME (orange, point-right triangles), their highest

performing LU uses multi-level static blocking with blocking factors roughly tuned for this

version MKL; this was shown to provide roughly the same performance as recursion in [69].

However, unlike recursion, this approach’s optimality is strongly dependent on both the

hardware and the BLAS implementation used, which is why it is generally less recommended

than the recursive implementation. Since FLAME’s LU is not meaningfully different from a

hand-tuned LAPACK, we omit it from later charts for clarity.

The performance of PLASMA is shown as red “x” in Figure 4.1, and it demonstrates the

fundamental problems experienced by these tiled algorithms. We see explicitly managing the

parallelism at the LU level has paid off with an algorithm that scales much better for mod-

erately sized problems than the prior approaches, but the performance hits a ceiling (in this

case at just under 75% of peak), which leads to disappointing asymptotic performance despite

scaling that is usually almost perfect in this range. The reason for this ceiling is straightfor-

ward: the BLAS contain optimizations such as copying input data to architecture-specific

formats that must be amortized over the call to the operation. By breaking the problem into

tiles of fixed sizes, these algorithms strongly constrain the problem sizes they call the BLAS

with, which leads to these overheads remaining important at all problem sizes. Therefore this

efficiency ceiling is in some sense a measure of the percentage of overhead when calling the

BLAS with such small problem sizes. While this problem is unavoidable in the BLAS-based

tiled approach, there is no reason for asymptotic performance to be this poor, since it should

be possible to drastically increase the tile size for extremely large matrices while maintaining

sufficient parallelism. Therefore, in order to get a best-case for the PLASMA approach, we

wrote an autotuner that tried all relevant combinations of inner and outer blocking factors

98

for PLASMA, resulting in the much-improved empirically-tuned PLASMA curve shown as

dark red “+”. This leads to our first important observation: PLASMA’s large-case (and to a

lesser extent, small-case) performance could be drastically improved merely by taking prob-

lem size into account when choosing blocking factors; since this could be accomplished by

instantiating some simple rules of thumb in a case statement, we are puzzled that PLASMA

currently ignores problem size.

Note that on this machine, the recursive algorithm actually outperforms both PLASMA

variants for extremely large problems: this is because recursion results in BLAS calls of di-

mensions that grow with problem size, with the largest call dominating execution time. For

huge problems like this, low-order overheads are essentially free, and so recursion asymptot-

ically approaches the speed of DGEMM, which is almost always very near machine peak.

Hardware vendors also provide optimized LAPACK and BLAS libraries, the most impor-

tant of which are Intel’s MKL [43] and AMD’s ACML [2] (not shown in Figure 4.1a). We

see that, on the Intel machine, MKL (black points-up triangles) and PLASMA scale roughly

equally well for moderately sized problems, but MKL’s performance continues to rise until it

reaches a remarkable point at just over 90% of peak. Similar rise is seen for both MKL and

ACML on the AMD machine as shown in Figure 4.1b. Since MKL and ACML are propri-

etary libraries tuned by the same companies that design the hardware, we cannot know all

of the techniques MKL and ACML exploit to achieve this level of efficiency. Therefore, the

question becomes: can we match or improve on this performance in a general library such as

ATLAS? The answer, we will show, is a decided yes.

4.4 Our Approach

There are two problems seen in Figure 4.1 that we would like to address: (1) We would like

to enable small-to-moderate sized problems to achieve a much greater percentage of machine

peak than even the explicitly parallel approaches like PLASMA deliver; and (2) in explicitly

parallelizing the operation, we must avoid the asymptotic ceiling problem that is typical of

99

the tiled/BLAS approach. We address these issues by employing several separate but related

techniques.

In order to address moderate sized performance, it is critical to minimize the data move-

ment, which is the dominant cost in this range (even though it is a low order term, and thus

unimportant for asymptotic performance). Minimizing data movement at this level requires

explicitly controlling (to the extent possible) how things are located in the cache, utilizing

cache-optimized storage patterns, and using the owner-computes rule to ensure data loaded

to a particular cache is not unnecessarily moved to another cache. We call this technique Par-

allel Cache Assignment (PCA), and in our previous work [15, 16] we showed that it can yield

the most scalable and highest performing known algorithms for many bus-bound operations

in this size range. In order to allow extremely fine-grained parallelization, we also exploit

the x86’s cache coherence mechanism to provide hardware-speed parallel synchronization

and communication [15] (these overheads can be important in this range). In this earlier

work, we concentrated on unblocked computations, but here we have adapted PCA for use

in a multilevel statically-blocked left-looking LU. Our block handling directly descends from

the distributed memory work of ScaLAPACK [44, 10]. Just as in ScaLAPACK, we lay out

the cores in a 2-D process grid, and the data is then distributed amongst the threads (and

thus amongst the caches) using a 2-D block cyclic distribution. We then explicitly manage

and minimize movement in and out of caches using local copies and remote reads just like

message passing is used in distributed memory parallelization to minimize communication

(i.e. ScaLAPACK’s off-node message becomes our out-of-cache operation); this allows us to

reuse research on optimal communication patterns in this new context.

The main advantage of PCA is that when the problem is capable of being held in the

collective cache of the machine, a PCA algorithm can achieve the theoretical minimum

memory access allowed by the algorithm. Since bus bandwidth is the main constraint on

performance in this range, this fact alone will greatly increase our performance anytime the

100

entire problem can be held in the collective cache. Since the collective cache has tended to

grow at least weakly with parallel scale, the sizes of problems that can be cache-contained is

now fairly impressive. The O32 machine has roughly 40MB of usable collective cache (some of

the cache is reserved for use by AMD’s cache coherence mechanism), while X12 has roughly

30MB of cache. Because caches don’t use LRU replacement, they tend to have less effective

space even when managed by PCA, and so we can expect our algorithms to start losing some

of their cache advantage around N = 1800. The idea is to use PCA to increase performance

until data movement becomes a dominated low-order term, and thus provide an algorithm

that maximizes performance across all problem sizes.

Even if PCA can deliver good small and moderate-sized performance, the fact that we

are using fixed-sized blocks has the possibility of constraining our asymptotic performance

just as happens with the tiled/BLAS approach. In ScaLAPACK this was handled by aggre-

gating the cyclically distributed blocks into normal column-major matrices within the local

memories, which allowed for extremely large DGEMM calls to be made. While this is better

asymptotically than storing data as tiles, it introduces a large copy cost into the algorithm

which exerts a negative effect on parallel scaling of non-asymptotic problems. Furthermore,

this storage pattern makes poor use of the memory hierarchy. In order to avoid these copy

overheads, we rewrote our algorithm to directly call the microkernels that ATLAS uses to

create its optimized DGEMM, rather than calling DGEMM. We also extended the ATLAS

framework so that a user can provide ATLAS with a list of specific problem sizes to be

auto-tuned during installation. This allows ATLAS to serve as an auto-tuner for blocked

microkernel operations, in addition to doing its normal tuning of the BLAS.

To clarify, when ATLAS tunes a complex operation like DGEMM, ATLAS breaks the

problem into simpler microkernels that can be effectively optimized on a particular machine.

These GEMM microkernels are simplified matrix multiplications where the problem dimen-

sions have been reduced so that the operands are known to fit into some level of cache. Thus,

101

the operands to these microkernels can be thought of as blocks or tiles. The problem then is

that these blocks are not stored in normal array or block formats, but rather the formatting

is arranged in a fashion that is tuned for both the operation and architecture [38]. ATLAS

originally used one format for all machines, but has just been rewritten to allow the block

storage to vary depending on architectural and microkernel details (even on the same ma-

chine, ATLAS may use a variety of storage patterns; for instance in order to handle different

block shapes). Since the storage pattern is not fixed, it would seem impossible to write an

LU factorization that uses it, but this can be handled by using a data copy. Our extended

ATLAS framework not only generates the DGEMM microkernels themselves, it also auto-

matically generates routines that copy normal row- or column-major storage to and from its

internal block storage formats. Data copies are used to manage the cache anyway, and so

these can be incorporated into the design in order to allow an application to automatically

use variable storage patterns. Since the copy of blocks is now explicitly performed by the

application, it can be managed and minimized along with all other communication costs,

rather than occurring implicitly with each BLAS call.

4.4.1 Our Contribution

These two broad ideas: using blocked PCA for small-case performance, and exploiting over-

head minimizing high-performance microkernels for block operations are the essential ideas

needed to improve performance across the entire range of problem sizes. In Section 4.5 we

will provide an outline of our actual algorithm, which is essentially a blocked left-looking

owner-computes LU factorization with infinite lookahead capabilities and multilevel blocking

to improve panel factorization performance. However, these implementation details are less

important than the two main ideas we described in this overview. For instance, the observed

data access pattern of MKL is that of a right-looking algorithm (we employ left-looking),

and yet MKL achieves almost as good performance asymptotically as our approach. There-

fore, our main contribution is in highlighting these two key concepts, and in extending the

102

ATLAS auto-tuning framework to auto-tune these block computational microkernels for our

own and other researchers’ use.

Figure 4.2 shows the performance achieved by our algorithm (labeled as PCA-bk for

blocked PCA) against the state of the art on both machines. On the Intel (Figure 4.2a),

our implementation (blue squares) dominates all libraries for moderately sized problems,

achieving over 50% of peak for N = 1600 spread over 12 cores, and essentially ties MKL

asymptotically (MKL achieves 90.06% of peak, while we get 90.7%). Figure 4.2b shows the

results on the 32-core AMD system, where our algorithm is clearly superior for the entire

curve. Note that we plotted Intel’s MKL on the AMD machine, but not the reverse; this is

because MKL provides the best asymptotic performance (excluding our own) on AMD, but

ACML does not provide good performance on Intel.

4.4.1.1 Outline of Remaining Contributions

The rest of this paper is organized as follows: Section 4.4.2 presents some implementation

details that could effect the sustainability of these results, while Section 4.4.3 outlines a

surprising and straightforward method of improving LU performance that we previously (and

erroneously) considered unimportant. Section 4.5 then explains the details of our algorithm,

while Section 4.6 gives some prioritization advice on the optimizations we implemented.

Finally Section 4.7 will describe some future work, with Section 4.8 providing summary and

conclusions.

4.4.2 Drawbacks in Our Current Implementation

Since our LU distributes blocks across a 2-D process grid, for every problem size and archi-

tecture we must choose values for the number of rows in the process grid (r) and the number

of columns (c), under the constraint r × c ≤ p, where p is the number of cores. We must

also choose a blocking factor (Nb); typically small problems must use a small block factor

in order to increase parallelism at the expense of serial performance, while large problems

will allow us to expand the block factors in order to saturate serial microkernel performance.

103

(a)

(b)

Figure 4.2: LU factorization efficiency for netlib lapack (yellow circles), ATLAS (green dia-
monds), PLASMA (red x), empirically tuned PLASMA (dark red +), ACML (brown, point-
down triangles) MKL (black point-up triangles), and our approach (blue squares): (a) For
12-core Intel Xeon E5-2620 and (b) For 32-core AMD Opteron 6128.

104

Nb is further constrained by essentially two factors: (1) the size of the cache, and (2) the

architecture-dependent microkernel details discovered during the ATLAS microkernel tun-

ing step. This still leaves us with a large degree of flexibility in choosing the Nb For this

research, we empirically tuned Nb, r, and c using a brute-force search that is probably too

expensive to be used routinely. In the future we will need to investigate to what degree we

can replace this brute-force search with a model, heuristic, or combination of these with a

smarter search. If this is not done well, the smooth climb in performance we achieved here

can become more stair-step like, as we transition from a smaller to larger blocking factors at

inappropriate times or choose less efficient process grids. There is little doubt that a more

sustainable empirical search can be constructed that keeps the overall picture roughly the

same, but future research is needed to demonstrate how close we can get to these curves

where we have essentially searched the entire optimization space.

In order to improve small-case performance, we do all computation via the owner-computes

rule. Since block cyclic distributes the data roughly evenly across cores, if one or more

cores experiences sustained unrelated load, the entire algorithm can be slowed down (see

Section 4.5 for details; our algorithm is not statically scheduled, but due to the owner-

computes rule a heavily loaded core’s tasks will eventually get into the critical path of the

algorithm). Therefore, if the library is aimed primarily at usage where multiple jobs share

cores, it may make sense to enable work stealing, which will fix this issue at the cost of

reducing cache reuse.

4.4.3 The Surprising Importance of Parallelizing Row-swap

In the course of this research we measured the impact of various optimizations. The most

surprising result of this profiling was how important parallelizing the LAPACK routine

DLASWP turned out to be. DLASWP is an LAPACK routine used mainly to swap the

rows dictated by LU’s pivoting strategy. As such, it is a very simple function, and its par-

105

allelization requires almost no effort (it took us less than an hour, including debugging and

timing).

Since this is an O(N2) cost that is completely memory hierarchy bound, we did not

anticipate noticeable speedup in parallelizing this operation. However, in ATLAS’s recursive

LU, we got as much as 16% speedup on X12, and almost 18% speedup for O32, for the

entire LU factorization (i.e. not an 18% speedup in swap, which would not have surprised

us as much). This maximum speedup happens in the middle of the data range (for small

problems, the row isn’t long enough for parallel operation to make much difference, and for

very large problems this O(N2) cost is dominated). However, it appears that as parallel scale

is increased, and all other operations are at least partially parallelized by the BLAS, serial

DLASWP (DLASWP does not call the BLAS, and so cannot be parallelized at that level)

becomes a bottleneck due to some combination of memory hierarchy effects and Amdahl’s

law. On X12 we saw only a 5% asymptotic speedup at N = 45, 000, but on the O32 it was

still providing 13% speedup over performing the swaps serially. Therefore, we recommend

that even those libraries wishing to allow the BLAS to handle the bulk of the optimization

investigate parallelizing DLASWP, due to its simplicity and surprising payoff.

4.5 Our Approach in Detail
4.5.1 Understanding Left-looking LU

Our algorithm is based on the left looking variant of LU2. The algorithm breaks the matrix

up into Nb-wide column panels, as shown in Figure 4.3. These panels are factorized one at

a time from left to right, as outlined in Figure 3.1; the algorithm is “left-looking” because

to factor column panel i, we read (“look”) at only the panels to the “left” (0 ≤ j < i). The

main advantage of left-looking comes when we can contain the majority of the active panel

in the (collective) cache; in this case, the repeated writes to the column panel cause little or

no bus traffic, and will be smoothly ejected as needed during later steps (unless the entire

2Note that all algorithms discussed in this paper are drop-in replacements for LAPACK’s
DGETRF, and thus do partial pivoting considering all elements within a column.

106

Figure 4.3: Serial blocked LU factorization

matrix fits in the cache, in which case they will only cause bus traffic when the final matrix

is written out).

The panel factorization (step 2 of Figure 3.1) is just an LU factorization specialized for

tall-skinny panel shapes, rather than square matrices. It can be implemented in a variety of

ways, including recursion, (multi-level) static blocking, and using an unblocked algorithm.

For now, it is enough to know that it will produce an LU factorization for a tall and skinny

shaped input matrix.

In Figure 4.3, we assume we have already factored the first two column panels, and panel2

(third panel, dark grey) has become the active panel, which means we will apply updates

arising from the first two panels in turn, before factorizing that portion of panel2 that hasn’t

become U (in this case, the upper 2 blocks become part of U). After the panel factorization

is called on the remaining blocks of panel2, the third block from the top will become this

panel’s diagonal block, with the blocks beneath holding the final (but not fully pivoted) L.

Therefore, the first three panels will be completely factorized, and panel3 will become the

active panel. This process is outlined more formally in Figure 3.1.

107

4.5.2 Our Overall Parallel LU Factorization

In order to describe the parallel algorithm, we will need to define some terminology. Anytime

we use the word panel with no modifier, assume it is one of the column panels shown in

Figure 4.3. We distribute the input matrix on a r × c process grid (here we use process,

thread and core interchangeably). Figure 4.4a shows a process grid for r = 2 and c = 3. Only

r processes will work on a panel at a time and we will refer to these r processes as a pcol.

So, for the 2× 3 grid, thread 0 and 3 will be referred as pcol0, thread 1 and 4 as pcol1 and

so on. Just as a matrix column or column-panel is owned by a pcol, a given matrix row or

row-panel will also be owned by a prow. A thread will now have two different views of the

matrix: a global view that includes the entire input matrix, and a local view, that contains

only the blocks that belong to this thread due to the block cyclic distribution. In the serial

algorithm, the leftmost unfactored column panel was called the active panel, but locally,

all c pcols will have a leftmost panel, which we will call the llpan (locally-leftmost panel).

However, only one pcol’s llpan will be the one that is currently being factorized, and we will

refer to this panel as gcpan (globally-critical panel).

Figure 4.4b shows the distribution of a matrix for 2 × 3 process grid. As you can see, all

the computations on the gcpan (panel 2) would be applied by pcol2; since panels 0 and 1

have been completely factored, pcol0 and pcol1 could be applying these updates to their

llpan (panel 3 and panel 4, respectively).

The scheduling of parallel work is simple in abstract, but can be complex to understand

once the algorithm is heavily optimized. Therefore, Figure 4.4c shows our basic algorithm

before optimization, which is much more straightforward. We will now discuss how our

optimizations improve this implementation, before summing up our full parallel algorithm.

From Figure 4.4c we see that each pcol is always working on one of their local column

panels (when work is available), and so computation is normally occurring in all c column

panels simultaneously. This effectively translates to the parallel algorithm providing c − 1

108

0

1

0 1 2

0 1 2

3 4 5

(a) (b)

1. Copy-in: Copy local part of global matrix to ATLAS storage.

2. foreach llpan:

(a) foreach panel on the left of llpan globally:

i. Wait until that panel is factorized.

ii. If in same prow as that panel’s diagonal block, apply
pivots and solve (TRSM) using that diagonal block to
create block of U ; if not in prow, wait until U solve
complete.

iii. Using L from factorized panel and U block computed in
step ii, update thread’s local blocks of llpan (GEMM)

(b) Participate in the panel factorization of llpan, which is now
the gcpan

3. Copy the final result from local storage back to the original matrix

4. Wait for last panel to be factorized

5. Apply pivots to non-diagonal part of L in original matrix

(c)

Figure 4.4: Understanding parallel left-looking LU factorization: (a) 2×3 process grid (pgrid)
(b) Block cyclic LU factorization on a 2×3 process grid (c) Straightforward parallel algorithm

109

lookahead for free. We will discuss the steps of Figure 4.4c in detail and discuss the scheduling

optimizations we applied to improve them.

4.5.2.1 Copy-In

This step does not appear in the serial algorithm; its purpose is to bring blocks of the input

matrix into the cache and store them in one of ATLAS’s internal storage formats. Figure 4.4c

shows the simplest approach where each thread starts the algorithm by copying all its local

blocks into this storage. The problem is that this will put an initial massive load on the

bus, resulting in strongly reduced parallel performance during this stage. Therefore, at the

start of our algorithm, each thread will only copy their share of the first panel they will

work on. So in Figure 4.4b, pcol0, pcol1 and pcol2 will only copy their share of panel 0, 1

and 2 respectively. Each thread will copy their share of subsequent panels only when they

first need to access them (either because the panel has become the llpan or is examined

due to lookahead). Performing the copy only when the data is needed for computation has

two advantages: (1) it will produce less bus contention by spreading bus access throughout

lifetime of the algorithm, and (2) since the computations on the copied data will be done

right after the copy, it is much more likely we will operate on in-cache data.

4.5.2.2 Updates

When performing the actions of steps 2a(ii) and 2a(iii) of Figure 4.4c, it is necessary to

await the factorization of at least the first gcpan. When a gcpan is factorized, every thread

will get a signal indicating that an additional update opportunity is available. Step 2a(ii) is

performed by only one thread within the pcol owning the llpan, and the other threads need

the computed U block for the next step, which means the remaining r − 1 threads are idle

until step 2a(ii) is done (we will discuss removing this idle time later). Note that when U

is formed in step 2a(ii), it is the final U of the algorithm. Therefore, in order to spread out

the bus utilization of step 3, this block will be copied back to original storage as soon as the

thread owning it completes its portion of step 2. Note that one pcol’s llpan is actually the

110

gcpan, which is why it is critical to finish the panel (that other pcol’s are waiting on) before

performing the copy-back of U .

4.5.2.3 Panel Factorization

Once all the updates are applied on a panel, it is by definition the gcpan, and threads working

on this panel will start working on the panel factorization, which can be done in several

ways. In Section 4.5.3.1, we will discuss in detail on how we do the panel factorization, but

here we mention a small but important (particularly for small and medium sized problems)

optimization that effects the first gcpan only. The first panel is special in that all other pcols

are idle, and this panel proceeds directly to the panel factorization. Since everyone must

wait on this panel to be factorized, we prioritize its operations by having all other threads

delay their normal copy-in step until the first panel has been copied to the local storage of

pcol0. At that point, pcol0 signals that other threads may begin the copy-in of their llpan

while pcol0 performs the panel factorization on in-cache data (at least for moderately sized

problems). This prioritization allows the critical path to utilize the entire bus bandwidth

during the copy-in stage, by artificially idling the rest of the pcols, which will then do their

copy-in using shared bandwidth while the critical-path panel factorization is performed by

pcol0.

After each panel factorization is performed (i.e. this discussion applies to all panels, not

just the first), the pcol will copy back the factorized panel (the U blocks have already been

copied back, as previously discussed). The diagonal block, like U , is in its final form, and

so when copy-back is complete it is done. The non-diagonal portion of L, however, will be

subject to later pivoting, and is therefore not in its final form even though it has been copied

back to the input matrix.

4.5.2.4 Copy-back

In our optimized algorithm, this has been merged into prior steps, and no longer exists as a

distinct step.

111

4.5.2.5 Pivoting to the Left

As described in Figure 4.4c, the pivots coming from later panels (to the right of the panel of

L under consideration) are not applied until all panels have been factored. This is normally

a hard requirement of left-looking algorithms due to data dependencies. However, since we

actually do our updates using local copies of L, we are free to pivot those columns that have

been copied back to the original storage at any time. Note that as the algorithm factorizes the

last c panels, each time a panel is factored one pcol becomes idle. As an easy optimization,

these idle pcols instead begin applying the later (to the right) pivots to the portions of L that

have been written back to the original storage. For simplicity, we chose to just divide the

swap work amongst all cores in this initial implementation, which means that even the last

pcol to complete the algorithm will still need to do some L swaps (though the lion’s share will

have been done while the factorization was still proceeding). Since swap is very demanding

on the bus, this will tend to spread out the bus access better than doing all swaps at the

same time. In the future, we should introduce completely dynamically scheduled swapping

in this step so that it is possible that all swaps of L complete at the same time as the overall

factorization.

4.5.3 More Complicated Optimizations for Improving Scaling

Up until now, we have discussed only easily implemented improvements over the straight-

forward algorithm given in Figure 4.4c. However, further optimization is needed to make

this algorithm competitive with the state of the art. Therefore, in this section we explore

more complex optimizations that collectively improved our performance by roughly 40%

for moderate sized problems, and almost 9% asymptotically on the O32 (the impact was

less on the X12 due primarily to its lesser scale). Note that these improvements are some-

times complementary, so applying all of them gives a greater benefit than applying them

individually.

112

4.5.3.1 Panel Factorization

For problems of reasonable size, the panel factorization is dominated by the higher-order

computations coming from DGEMM and DTRSM. Therefore, for simplicity our first im-

plementation performed the panel factorization serially. More specifically, all cores in the

pcol would copy their local blocks back to the original matrix, where we could call ATLAS’s

DGETRF serially, after which all cores would copy their local blocks back to local storage.

When we profiled our code using the serial factorization, this appeared adequate: the panel

factorization time was negligible, and the main idle time it induced that we could see came

from having r− 1 cores in the pcol awaiting the results of the panel factorization (the other

pcols could typically remain busy by performing lookahead, as discussed later).

However, we knew that this panel factorization was always in the critical path, and so

we later parallelized it even though it seemed the impact might be small. What we found

was that even when the panel factorization time was negligible, we could see large overall

performance impacts. The reasons for this disproportionate impact are a mixture of critical

path optimizations reducing idle time, and improved cache effects. To understand this better,

imagine in the middle of the algorithm pcol0 is working on the gcpan; when the factorization

is serial, the serial core tends to flush its cache doing the panel factorization; meantime other

pcols have run out of updates for their llpan and begin applying earlier updates to panels to

the right (lookahead) to avoid idling. If they go through too many such panels (or one very

large panel), they will also flush their cache so that llpan will need to reloaded, and one of

the reloads will be in the critical path, and perhaps fighting for bandwidth with other pcols’

reloads.

One lesson is that when scheduling is not static, critical path optimizations can provide

performance benefits that are not correlated with their raw compute times or even the easily

measured idle times of other cores. Commenting out the operation in question can give you

a rough idea of the impact of parallelization, but even this will not capture all cache effects.

113

Therefore, it is highly recommended to at least prototype and time potential optimizations

that effect the critical path and therefore the implied scheduling.

For simplicity, our first parallel panel factorization was an unblocked implementation. We

later extended this to blocking at two levels. For this work we fixed the inner blocking at 4

(this is the smallest dimension DGEMM that our framework can meaningfully tune), with an

outer blocking of 12 (this was dictated by the architectural preferences of the two machines).

In general, the performance improvement in going from unblocked to blocked depends on

many factors (whether data is in or out of collective cache, the speed of the small-sized

GEMM microkernels, etc.), but its advantage should typically grow strongly with the full

factorization’s blocking factor. If the panel overflows the pcol’s collective cache, its advantage

should also grow with parallel scale (due to reduced bus contention).

4.5.3.2 Infinite Lookahead

Panel updates always must wait on the factorization of gcpan, and so non-gcpan pcols will

tend to finish updating their llpan (using already factored panels of L), and become idle

(particularly if the panel factorization is performed serially, as in our initial implementation).

To reduce this idle time, we introduced to a form of dynamic scheduling that essentially

provides infinite lookahead. The idea is threads will always prioritize their llpan, but when

they run out of updates for it, they will begin to apply prior updates (already applied to

their llpan) to panels further to the right. The longer the gcpan computations take, the

more lookahead will be performed, and the more our “left-looking” algorithm will begin to

resemble a “right-looking” variant. Lookahead is illustrated in Figure 4.5a, assuming panels 0

and 1 have already been factored, and panel2 (owned by pcol2) is the gcpan. If at this point

pcol0 has already applied the first two panel updates to its llpan (panel3), it will move to

it’s next panel (panel 6) to apply panel0’s (and possibly panel1’s) updates. Having made the

decision to update panel6, pcol0 will apply panel0’s updates, and then it will check if the

factorization of panel2 is complete. If so, it leaves panel6 updated only by the first panel,

114

(a) (b)

Figure 4.5: Infinite lookahead: (a) pcol0 (cores 0 & 3) apply updates to panel6 while panel2 is
being factored by pcol2; (b) pcol0 moving back to panel3 after panel factorization complete
on panel2

and returns to updating its llpan, which is always the panel most in the critical path of the

algorithm. Therefore, the transition back to working on panel3 shown in Figure 4.5b can

occur after any number of updates are applied to a panel on the right, which requires the

algorithm to keep track of the number of updates applied to each panel independently. In

scheduling, we never move to a panel to the right until all available updates are done to all

panels to the left of that panel (therefore, if we returned to panel3 after applying only one

panel to panel6, and we later became idle we would next apply panel1’s updates to panel6

before applying panel0’s updates to a notional panel9 (not shown in figure)).

4.5.3.3 Increased Parallelism of LASWP and TRSM

Note that step 2a(ii) of Figure 4.4c is wholly serial, due to the owner-computes rule. Only one

thread within the pcol owns the block that is changed into a block of U using the previous

panel’s diagonal block, and so all r − 1 other threads within the pcol are idle while the

thread owning this block computes the new portion of U using DLASWP and DTRSM. The

swap is an O(N2
b) memory-bound operation, while the DTRSM is O(N3

b) compute-bound

115

operation. Therefore, as long as Nb is small, these costs are trivial, but as Nb rises, this serial

operation can become problematic. Recall that we use the owner-computes rule primarily to

avoid unnecessary cache pollution, but that is not as important in this case. To understand

why, recall that once we finish this step, we will proceed to step 2(iii), which will require

every core on the pcol to load all of the produced block of U into its cache anyway, and so

the only cache pollution will come from having all cores in the pcol read the diagonal block,

rather than just one core.

Therefore, we violate the owner-computes rule and divide the columns of this prospective

U block amongst all r cores in the pcol, and each one performs the swaps and updates on its

reduced-length rows in parallel. Because we needed a parallel sync after the serial operation

was performed anyway, this parallelization requires no additional parallel overhead. However,

for small block factors it is nonetheless still the case that overall performance can be slightly

lower for this parallel operation than the serial; the reason is that DTRSM is called with

fewer right-hand sides, which means the operation gets less cache reuse, and may wind up

calling a cleanup case within the microkernel itself. If the reduced serial performance is not

made up by the increased scale, this parallelization will result in a slight slowdown. In our

implementation, we always parallelize this operation regardless of Nb, judging that the per-

formance loss on very small problems is too minor to justify empirically tuning the crossover

between serial and parallel operations (this crossover point is almost wholly determined by

architecture and microkernel implementation details that could not reasonably be captured

in any a priori model).

4.6 Prioritizing the Complex Optimizations

Of the more complex optimizations surveyed in Section 4.5.3, the most difficult to implement

is probably infinite lookahead. This technique is conceptually simple, but in practice it tends

to introduce race conditions that are difficult to debug. This optimization is mostly important

in the 400 ≤ N ≤ 2000 range, where lack of lookahead can drop achieved performance by

116

as much as 17% for X12 and 9% for O32. Asymptotically, its tendency to occasionally flush

the cache makes it very slightly more hindrance than help.

Parallel panel factorization is crucial for asymptotic performance at scale: on O32, the

largest problem loses almost 3% performance when the panel factorization is done in serial,

though it only loses around 1% if the parallel factorization is unblocked. The blocked panel

factorization is not meaningfully more complex to parallelize than the unblocked, but since

it is conceptually more complicated, we found it easier to first implement the unblocked,

and with the parallelization debugged, write the blocked version. Since not having a blocked

panel factorization could conceivably prevent you from using a larger Nb, it is probably worth

implementing the blocked parallel panel factorization if you are concerned with asymptotic

performance.

Parallelizing the DLASWP and DTRSM by violating the owner-computes rule has its

greatest impact for mid-range (say around N = 8000, where not implementing it can cost

you as much as 5% on both machines); around this size, its low-order term is not yet domi-

nated by DGEMM, but the Nb has gotten large enough for pcol idle-time to be a problem.

Asymptotically it gives a performance boost in the 1-1.5% range. This optimization is worth

performing due to its straightforward implementation.

4.7 Future Work

See Section 4.4.2 for discussion of the need for developing some combination of model,

heuristic and empirical tuning for choosing grid and blocking parameters, and of possi-

bly adding work stealing. In order to apply our approach to many more applications, we

need to investigate encapsulating our synchronization and communication in library calls,

so that architecture-specific code is not embedded in the application. We also need to mea-

sure the impact of using standard mutexes on small-case performance, since the cache-based

communication we used here will not work on systems with weakly-ordered cache coherence

(ARM and PowerPC both have weakly ordered cache systems). Finally, we must document

117

our extensions to the ATLAS framework for others’ use, and generalize it so any number of

applications can ask for particular microkernels without causing namespace collisions. When

these investigations are complete, we should apply these techniques to all data precisions of

all the factorizations (LU, Cholesky, QR variants).

Longer term, there is limited room for improvement of asymptotic performance, and most

appreciable performance gains will likely come from increasing our serial DGEMM efficiency.

On the other hand, moderate-sized problems still have room for improvement; most of our

current ideas in this area depend on increasingly platform-dependent bus management strate-

gies, which are probably not worth implementing unless we have a compelling use case (i.e. a

critical real-life application that requires solving a series of dependent, fixed-sized problems).

4.8 Summary and Conclusion

We have introduced a new approach to LU factorization, and shown that it handles both

small and asymptotic problems better than the tiled/BLAS approaches used in PLASMA

and FLAME. Further, we have shown that it produces the best known performance on large-

scale representative Intel and AMD shared memory architectures across all problem sizes,

including vendor-supplied libraries such as MKL and ACML3. This approach is widely appli-

cable, and the tuning framework we developed in ATLAS can be used to achieve extremely

high parallel performance for any DGEMM-based operation. More broadly, if an empiri-

cal microkernel framework like that of ATLAS is constructed, this parallelization approach

should be effective for any blockable HPC application.

Along with the critical importance of using the approach advocated in this paper for par-

allelization, we draw three subsidiary conclusions: (1) In the classic parallelization approach,

parallelizing DLASWP is surprising important. This routine’s parallelization is extremely

3After our paper was published, MKL was updated to improve their small case perfor-
mance which is now competitive with ours. On newer hardware (Xeon 2670v3) MKL can
provide slightly better performance than our approach, which in part is due to our gemmµ
being slower than theirs on this new platform.

118

straightforward, and so it should be done by all libraries, (2) For tiled libraries like PLASMA

it is necessary to vary the blocking factors with problem size, and (3) Profiling critical path

operations can massively under-predict the performance impact of optimizing them, due

to scheduling differences and cache effects, and we therefore recommend that all possible

critical-path optimization should be prototyped and timed, even when their potential im-

pact appears small.

119

CHAPTER 5

PERFORMANCE OPTIMIZATIONS FOR ARM
ARCHITECTURES

In recent years, mobile devices have become an interesting platform for the HPC community,

partially due to the use of machine learning in smartphone applications. Hardware manufac-

turers are also promoting mobile architectures to build large clusters for HPC applications

because of their low power usage. ARM is currently the most popular mobile architecture

being used for HPC clusters. To continue this trend, hardware manufacturers have released

heterogeneous systems (e.g. big.LITTLE), where some cores of the machine are for HPC

applications, while the other cores are for simple tasks. The purpose of such heterogeneous

architectures is that it can provide a balance between high performance and low power us-

age depending on the application. In 2015, as a part of an internship, we collaborated with

ARM Research Inc. to improve the performance of ATLAS on their newly released 64-bit

architecture. We worked on three key areas to improve ATLAS performance on ARM 64-bit

architectures: a) optimizing gemmµ b) supporting heterogeneous systems and c) providing

a reliable performance metric in presence of CPU frequency scaling. Note that the latter

two are generic improvements that can be applied to other architectures as well. Section 5.1

provides detail on how we built gemmµ for two different ARM 64-bit architectures. In Sec-

tion 5.2, we will discuss how we can adapt ATLAS to recognize heterogeneous systems and

properly tune itself for best performance. In Section 5.3, we present a new approach for

measuring performance (vital for ATLAS’s auto-tuning step) in presence of CPU frequency

scaling.

5.1 Developing gemmµ for ARM 64-bit Architectures

In previous chapters, we discussed how ATLAS’s gemmµ framework works and how we

can use that to achieve low-overhead BLAS and LAPACK routines. The microkernels that

are exposed by the framework can be either hand-tuned or generated. Usually, hand-tuned

microkernels provide better performance than a generated one because the author of a hand-

120

tuned microkernel needs to know the architectural features and limitations to tune the code

for best performance. To understand how a gemmµ works, consider the example in Figure 5.1.

We have a BM × BK sized block A, BK × BN sized block B and the result C is a block of

size BM ×BN . To minimize the memory access, the data are register blocked: i.e. load some

data in the available registers and use them for computations for as long as possible. As

shown in Figure 5.1, to compute a um × un unroll-block of C (e.g. C11), we stream through

an um-sized row panel of A (i.e. A1) and an un-sized column panel of B (i.e. B1). Note that

this um × un sized unroll-block of C is only accessed once for read and once for write (the

theoretical minimum). The values of um, un, and uk (the unroll factors in the dimensions M ,

N , and K, respectively) depend on the number of registers available and pipeline depth of

the processor. In this section, we discuss the gemmµ we developed using ARMv8 assembly

language that are tuned for two ARM 64-bit architectures: Cortex-A57 and Cortex-A53. We

used a Juno development board [40] to test and time our microkernels.

5.1.1 Developing gemmµ for the Cortex-A57

The Cortex-A57 is a 64-bit ARM architecture, tailored for high performance. It has the

following characteristics that we will exploit to develop our gemmµ:

1. 32 128-bit sized Advanced SIMD vector floating point registers (i.e. each vector register

can hold 2 double-precision or 4 single-precision floating point values).

un un un un

um C11 C12 C13 C14

um C21 C22 C23 C24

um C31 C32 C33 C34

BK

um A1

um A2

um A3

un un un un

BK B1 B2 B3 B4= î

C A B

Figure 5.1: An example of gemmµ with unroll factors um and un in M and N dimensions,
respectively

121

2. Peak of 4 double-precision floating point operations per cycle (1 Fused-Multiply-Accumulate

also known as FMLA instruction on a vector register).

3. One FMLA and one Vector load (ldr or ldp) can be issued in the same cycle.

4. Each element of a vector register can be directly accessed in instructions.

5. Supports out-of-order execution of instructions.

Since we want to maximize the reuse of any data that we can load in the vector registers

(register-blocking), we want to maximize the unroll factors um and un. For both ARM

architectures discussed in this section, we chose to vectorize the operations in M-dimension.

Therefore, for M-vectorized microkernels, um is a multiple of vlen, the number of elements

a vector register can hold. We need um

vlen
registers to load and reuse elements of A, 1 register

for elements of B which we can reuse, and um×un

vlen
registers to store the result elements of

C. Since Cortex-A57 has 32 vector registers and vlen = 2 for double precision, the number

of registers needed: um

2
+ 1 + um×un

2
≤ 32. For our microkernel, we chose um = 12, un = 4

which causes at least 31 registers to be used. To reduce the dependence distance between

the B load and the following FMLA (using the load) instructions, we used the spare register

instead of reusing the same register for B. For um = 12 and un = 4, in each K-loop, we are

calculating 48 elements of C that are stored in 24 vector registers. Therefore, in one K-loop

iteration, we need 24 FMLA instructions to multiply A and B elements and accumulate to

the C registers. Recall that on Cortex-A57, we can issue 1 FMLA instruction per cycle, so

each iteration of K-loop needs at least 24 cycles to complete. Since we can issue vector load

instructions along with FMLA on the same cycle, we will reuse these 24 cycles to schedule

the data load into the vector registers. Note that since this is an M-vectorized microkernel,

loads of A elements and stores of C elements can be done using vector load instructions.

For B elements, since we can access each element of a vector register directly, we can also

use the vector load for B and then access one element at a time. To summarize, we have 24

122

FMLA instructions, 6 vector loads (12 elements) of A, 2 vector loads (4 elements) of B and

some integer arithmetic instructions (loop counter and pointer updates) inside the K-loop.

At the end of the K-loop, we store the 24 vector registers i.e. 48 elements of C. Due to the

Cortex-A57 supporting out-of-order execution, instruction scheduling did not provide any

noticeable performance improvement and was omitted from the final version. For unrolling

the K-loop (i.e. uk), we tried several values. Larger uk, while reducing the loop overhead

of the K-loop and to helping with out-of-order execution, can overburden the instruction

cache. From our experiments, uk = 6 provided the best performance on this architecture.

For single-precision gemmµ, we applied the same techniques with the only change to um to

be 24 instead of 12 since vlen = 4 for single-precision. The final implementations can be

found in any ATLAS release after 3.11.37.

5.1.2 Developing gemmµ for the Cortex-A53

The Cortex-A53 is another 64-bit ARM architecture which is very popular for its low power

usage. This low power usage is the result of several hardware limitations that we need to

address to optimize gemmµ. The following are the characteristics of Cortex-A53 that we can

exploit or must work around to achieve high performance:

1. Like Cortex-A57, it has 32 128-bit Advanced SIMD vector registers.

2. In theory, it can do 4 double-precision or 8 single-precision FLOPs (i.e. 1 FMLA on

a vector register) per cycle, but in practice, due to limited number of floating point

register ports, FMLA and floating point loads (FP load) cannot be issued on the same

cycle. Also, the FP loads cannot be issued on the 4th cycle of each FMLA instruction

when it enters the accumulator pipeline of the processor.

3. Vector FP loads takes 2 cycles to issue and no other floating point instruction can be

issued during these 2 cycles.

123

4. Like the Cortex-A57, each element of a vector register can be accessed directly. This

facilitates vector load of B-elements.

5. Cortex-A53 does not support out-of-order execution, and so careful scheduling of the

instructions is required.

Since we have 32 128-bit vector registers, we can reuse our selection for the unroll factors

um and un to be 12 and 4, respectively, for double-precision microkernel. As before, for unroll

factors um = 12 and un = 4, we need to load 12 elements of A and 4 elements ofB and we have

24 FMLA instructions insideK-loop that need to be issued in 24 cycles. Recall that we cannot

issue any FP load instruction in the same cycle with an FMLA instruction. Therefore we need

extra cycles to issue the load instructions for the required data. Also recall that we cannot

issue a FP load instruction in the 4th cycle of any previously issued FMLA instruction. As a

result, the only place we can issue FP load instructions is after every 3 FMLA instructions

and for 24 FMLA instructions, we can issue 8 FP load instructions. We will refer to these

load instructions as interleaved loads. To issue these 24 FMLA instructions and 8 FP loads,

each K-loop iteration requires at least 32 cycles. Note that these floating point loads are

only 64-bit loads (1 double-precision element), since 128-bit loads take 2 cycles to issue which

causes scheduling problem with the FMLA instructions. With the 64-bit interleaved loads,

we can only load 8 of the required 16 elements. For the other 8 elements, as suggested by

David Mansell (an ARM Researcher), we can load them with integer instructions which we

can issue along with FMLA, and then move the values from integer registers to floating

point registers. These moves can be done during the 8 64-bit interleaved load instructions.

Using this technique, each iteration of K-loop still requires 32 cycles. Note that out of these

32 cycles, only 24 cycles are performing floating point operations (FLOPs) thus limiting the

achievable peak performance to 24
32

or 75% of the theoretical peak. This instruction scheduling

of K-loop is shown in Figure 5.2. Like the gemmµ for Cortex-A57, we chose um = 24 for

124

Cycles FP Instruction Slot-1 FP Instruction Slot-2 INT Instruction Slot-1

1 FP 64-bit load B0 INT-to-FP convert A0

2 FMLA INT 64-bit load A1

3 FMLA INT 64-bit load A2

4 FMLA INT 64-bit load A3

5 FP 64-bit load B1 INT-to-FP convert A1

6 FMLA INT 64-bit load A4

7 FMLA INT 64-bit load A5

8 FMLA INT 64-bit load A6

9 FP 64-bit load B2 INT-to-FP convert A2

10 FMLA INT 64-bit load A7

11 FMLA INT 64-bit load A0

12 FMLA

13 FP 64-bit load B3 INT-to-FP convert A3

14 FMLA

15 FMLA

16 FMLA

17 FP 64-bit load A8 INT-to-FP convert A4

18 FMLA

19 FMLA

20 FMLA

21 FP 64-bit load A9 INT-to-FP convert A5

22 FMLA

23 FMLA

24 FMLA

25 FP 64-bit load A10 INT-to-FP convert A6

26 FMLA

27 FMLA

28 FMLA A-pointer update

29 FP 64-bit load A11 INT-to-FP convert A7

30 FMLA K-loop Counter

31 FMLA B-pointer update

32 FMLA K-loop Condition

time

Figure 5.2: Instruction scheduling of gemmµ K-loop for Cortex-A53 architecture

125

single-precision gemmµ for Cortex-A53. As before, the final implementation can be found in

any ATLAS release after 3.11.37.

5.1.3 Performance Results

To realize the impact of a gemmµ, we need to measure the performance of full GEMM using

the newly developed gemmµ. For comparison, we used full GEMM performance of the origi-

nal ATLAS (we refer to this as ATL0) and another library called BLIS [67, 66, 58, 52, 65, 64],

developed at the University of Texas at Austin. The details of the experimental methodology

is given in Table 5.1. Figure 5.3 shows the performance comparison on Cortex-A57. All the

performances are shown as a percentage of the core’s theoretical peak performance of 4.4

GFLOPS for double-precision and 8.8 GFLOPS for single-precision. Note that at the time

of this research, BLIS was hosted on github and the repository revision used for our timings

is given in Table 5.1. As we can see, for the double-precision GEMM (i.e. DGEMM), the

performance using our newly developed gemmµ (orange upward-triangle) outperforms both

the original ATLAS and BLIS for the entire problem range. For single-precision GEMM (i.e.

SGEMM), new ATLAS is essentially tied with BLIS but outperforms the original ATLAS by

25%. Figure 5.4 shows the performance comparison on Cortex-A53. Recall that due to archi-

tectural limitations of Cortex-A53, the theoretical peak of 3.4 GFLOPS cannot be achieved

for GEMM. However, in the results shown in Figure 5.4, we still used 3.4 GFLOPS to normal-

ize the performance. The maximum achievable performance (i.e. 75%) for GEMM is marked

Table 5.1: Experimental methodology for research on ARM 64-bit architectures

Machine Juno Development Board
CPU 4 Cortex-A53 & 2 Cortex-A57
Cortex-A53 Frequencies (MHz) 450, 575, 700, 775, 850
Cortex-A57 Frequencies (MHz) 450, 625, 800, 950, 1100
Theoretical Peak Performance of A53 3.4 GFLOPS (DP), 6.8 GFLOPS (SP)
Theoretical Peak Performance of A57 4.4 GFLOPS (DP), 8.8 GFLOPS (SP)
OS Debian 8.1, Kernel 3.15.0-rc8
Compiler gcc4.9.2
Libraries ATLAS3.11.34, BLISr483e4d6
Power Measurements On-board sensors

126

Matrix Order

0 500 1000 1500 2000 2500

%
 o

f
T

h
e
o
re

ti
c
a
l
P

e
a
k

0

10

20

30

40

50

60

70

80

90

100

ATL0 BLIS ATL

(a)

Matrix Order

0 500 1000 1500 2000 2500

%
 o

f
T

h
e
o
re

ti
c
a
l
P

e
a
k

0

10

20

30

40

50

60

70

80

90

100

ATL0 BLIS ATL

(b)

Figure 5.3: Performance comparison of GEMM for original ATLAS (gray circle), BLIS
(green diamond) and new ATLAS (orange upward-triangle) on Cortex-A57 architecture
(a) DGEMM and (b) SGEMM

127

Matrix Order

0 500 1000 1500 2000 2500

%
 o

f
T

h
e
o
re

ti
c
a
l
P

e
a
k

0

10

20

30

40

50

60

70

80

90

100

ATL0 BLIS ATL

(a)

Matrix Order

0 500 1000 1500 2000 2500

%
 o

f
T

h
e
o
re

ti
c
a
l
P

e
a
k

0

10

20

30

40

50

60

70

80

90

100

ATL0 BLIS ATL

(b)

Figure 5.4: Performance comparison of GEMM for original ATLAS (gray circle), BLIS (green
diamond) and new ATLAS (orange upward-triangle) on Cortex-A53 architecture (achievable
peak is shown with the solid red line) (a) DGEMM and (b) SGEMM

128

with a solid red line. Due to the specific optimizations that can overcome the architectural

limitations of Cortex-A53, the performance of GEMM (both DGEMM and SGEMM) using

our gemmµ outperforms both the original ATLAS and BLIS by up to 35%.

5.2 Adapting ATLAS for Heterogeneous Architectures

As mentioned earlier, ARM architectures like Cortex-A53 and Cortex-A57 are used to build

systems with heterogeneous architecture like the Juno board mentioned in Section 5.1. The

purpose of such systems is to facilitate applications to utilize the proper resources based

on their requirements. For example, a video game that requires high performance can use

Cortex-A57, where background jobs like checking for new emails can use Cortex-A53 to

minimize energy consumption. In a Juno board, there are 4 Cortex-A53 cores and 2 Cortex-

A57 cores. If some applications require all the cores to get the best performance possible,

they need to run different versions of codes on different architectures that are specifically

tuned for that architecture. At the time of this research, ATLAS did not support tuning

for heterogeneous systems. In this section, we discuss how the lack of explicit support for

heterogeneous systems can cause 12− 18% loss of performance for double-precision parallel

GEMM and how we can adapt ATLAS’s auto-tuning process to achieve the full parallel

performance out of a heterogeneous system.

5.2.1 Motivation

In Section 5.1, we implemented highly optimized gemmµ for Cortex-A53 and Cortex-A57.

The performance results in Figure 5.3 and 5.4 showed that the double-precision gemmµ for

Cortex-A53 achieves about 2.0 GFLOPS and Cortex-A57 achieves about 3.6 GFLOPS for

asymptotic problem sizes. A perfectly-scaled parallel GEMM on a Juno board, where we

have 4 Cortex-A53 cores and 2 Cortex-A57 cores, should achieve performance of roughly

4 × 2.0 + 2 × 3.6 = 15.2 GFLOPS. The actual performance of parallel DGEMM is shown

in Figure 5.5. The performance shown is normalized to this perfectly-scaled performance of

15.2 GFLOPS. As we can see, even for an asymptotic sized problem, the parallel DGEMM

129

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

3000 4000 5000 6000 7000 8000 9000 10000

%
 o

f
P

e
rf

e
c
tl

y
-s

c
al

ed
 P

e
rf

o
rm

an
c
e

Matrix Order

DATL0 SATL0

Figure 5.5: Performance of parallel GEMM Using our gemmµ on Juno board with unmodified
ATLAS: (a) DGEMM (orange right-downward diagonal patterned bars i.e. DATL0) (b)
SGEMM (green dot-patterned bars i.e. SATL0)

is losing about 12% of the achievable performance. Note that parallel GEMM in ATLAS

is dynamically scheduled, hence this performance loss is not primarily caused by workload

imbalance, but is rather a result of running a significantly bad gemmµ on the Cortex-A57

cores. Due to the lack of support for heterogeneous systems, ATLAS times gemmµ on all

available cores at once and chooses the one providing the best average performance. In this

case, the chosen gemmµ was the one for the Cortex-A53 which achieves significantly lower

performance on the Cortex-A57 than the one specialized for the Cortex-A57. As we can see

from Figure 5.5, similar performance loss occurs for parallel SGEMM as well.

5.2.2 Modifications in ATLAS

ATLAS installation consists of 3 major steps: a) Configuration b) Auto-tuning and c) Com-

pilation. In the configuration step, ATLAS tries to detect architectural features that it can

exploit to achieve high performance. In the auto-tuning step, it compares performance of

various microkernels that are potentially high performing on the system and finds the best

one for each BLAS routine. In the compilation step, as the name suggests, it compiles the

130

best microkernels it found for each BLAS routine and builds a complete library for users. To

adapt ATLAS to recognize heterogeneous architectures, we need to modify all these steps

accordingly.

In the configuration step, the only change we need is to have a mechanism for detect-

ing heterogeneous architectures and save the architecture information (if detected). The

ideal way would be to use CPU identification number that are usually provided by the ISA

(Instruction Set Architecture). However for the ARM architecture, the CPU identification

information is not available for user applications (at the time of this research). As a result,

we used the maximum available clock speed of a core to identify different architectures. On

the Juno board, the maximum clock speed for Cortex-A53 cores and for Cortex-A57 cores

are 850 MHz and 1100 MHz, respectively. Using this information, we categorize the core

ranks into different clusters. For Juno, we have two clusters: one for Cortex-A53 cores (core

ranks: 0, 1, 2 and 3) and one for Cortex-A57 cores (core ranks: 4 and 5).

In the auto-tuning step, instead of tuning on all cores at once, we use the cluster informa-

tion from the configuration step and tune the microkernels on one cluster at a time. Note

that with this approach, we have tuning steps that are repeated for each cluster. For this

research, we only changed the tuning phase of gemmµ so that ATLAS can use both of the

optimized gemmµ that we developed in Section 5.1.

In the compilation step, we compile the best gemmµ and the related files (e.g. copy mi-

crokernels) for each cluster using cluster-specific generated names. Note that to utilize the

cluster-specific microkernels and other tuning parameters (e.g. block size), we also need to

adapt the BLAS routines. As before, for this research, we only adapted the parallel GEMM

implementation. For simplicity, we added one layer above the current implementation of par-

allel GEMM: trivially partitioning the original problem among the clusters based on their

relative performance and then calling the current dynamically scheduled implementation on

the partitioned sub-problems. Figure 5.6a shows an example of partitioning the input prob-

131

N

CM

K

AM

N

BK= î

N1 N2

C1 C2M

K

AM

N1 N2

B1 B2K= î

C B

(a)

Hetero_GEMM(M, N, K, A, B, C)

{

N1 = perf_ratio[cluster1] * N;

N2 = N ± N1;

ATL_PGEMM(M, N1, K, A, B1, C1, cluster1);

ATL_PGEMM(M, N2, K, A, B2, C2, cluster2);

}

(b)

Figure 5.6: Basic idea of parallel GEMM for heterogeneous systems with two Clusters: (a)
partitioning the input (b) basic steps for the implementation

132

lem for two clusters. Figure 5.6b shows the basic steps for our new parallel GEMM for the

given example. The value of N1 (as shown in the figure) depends on the ratio of a cluster’s

performance and the system’s overall performance. For Juno, performance ratio of cluster 0

(Cortex-A53) would be 4×2.0
(4×2.0)+(2×3.6)

= 52.63%. Using this ratio, the input problem is parti-

tioned into two sub-problems. Each sub-problem is given to the corresponding cluster of the

machine. ATLAS’s parallel GEMM needs to be modified so that it runs only on a specified

cluster instead of the whole system. Note that invoking this cluster-specific parallel GEMM

needs to be done in parallel so that all clusters become active at the same time. Also note

that we divided the N -dimension of the input so that no communication (result accumula-

tion) is needed among different clusters. This approach may not be the most efficient due

to static partitioning of the problem among clusters. A more efficient approach would be

to adapt the dynamically scheduled implementation so that each core uses its own optimal

code for its share of the computations. In future research, we can investigate whether the

performance benefit of the dynamically scheduled approach is worth the added complexity

in the implementation.

5.2.3 Performance Results

As before, we used the Juno development board to install, test and time our modified ATLAS.

Since Juno has two clusters (Cortex-A53 and Cortex-A57), the input of a parallel GEMM

is divided into two sub-problems as shown in Figure 5.6a using the performance ratio of

these two clusters. Then each sub-problem is given to ATLAS’s cluster-specific dynamically

scheduled parallel GEMM. The performance of the modified parallel GEMM implementation

is measured using ATLAS’s own unmodified timing framework. Figure 5.7 compares the

performance of the modified parallel DGEMM of our adapted ATLAS with the unmodified

ATLAS. We can see that even with our simple and less-efficient approach we can achieve

up to 98% of the perfectly-scaled achievable performance for the parallel DGEMM. Similar

improvement is shown in Figure 5.8 for our modified parallel SGEMM.

133

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2000 3000 4000 5000 6000 7000 8000 9000 10000

%
 o

f
P

e
rf

e
c
tl

y
-s

c
al

ed
 P

e
rf

o
rm

an
c
e

Matrix Order

DATL0 DATL-bL

Figure 5.7: Performance comparison of parallel DGEMM using our gemmµ on Juno board:
unadapted ATLAS (DATL0) and adapted ATLAS (DATL-bL)

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2000 3000 4000 5000 6000 7000 8000 9000 10000

%
 o

f
P

e
rf

e
c
tl

y
-s

c
al

ed
 P

e
rf

o
rm

an
c
e

Matrix Order

SATL0 SATL-bL

Figure 5.8: Performance comparison of parallel SGEMM using our gemmµ on Juno board:
unadapted ATLAS (SATL0) and adapted ATLAS (SATL-bL)

134

5.3 Reliable Performance Auto-tuning in Presence of DVFS

This section is an extended version of a poster published at SC15 [36]1. In an era where

exascale systems are imminent, maintaining a power budget for such systems is one of the

most critical problem to overcome. Along with much research on balancing performance and

power, Dynamic Voltage and Frequency Scaling (DVFS) is being used extensively to save

idle-time CPU power consumption. The idea of DVFS is to run the CPUs at the lowest speed

at idle times (i.e. low CPU utilization) and jump to a higher speed when CPU utilization

becomes high. The drawback is that the inherent random behavior of DVFS makes walltime

unreliable to be used as a performance metric, i.e. using walltime in presence of DVFS leads

to random performance from libraries (e.g. ATLAS) that rely on machine-specific auto-tuning

of several characteristics for the best performance. In this work:

1. We showed that a sub-optimal selection (not the worst case) of gemmµ and block size

during auto-tuning can cause ATLAS to lose up to 40% of DGEMM performance.

2. We presented a more reliable performance metric in the presence of DVFS that can

estimate similar performance as a no-DVFS install and thus facilitating proper auto-

tuning.

5.3.1 Introduction and Motivation

To get the best performance from a single library (e.g. ATLAS [75]) or the best perform-

ing code from an iterative compiler (e.g. iFKO [77, 68, 61]) for a vast range of different

architectures, machine-specific auto-tuning is a state-of-the-art technique [73]. The auto-

tuning phase of ATLAS (Automatically Tuned Linear Algebra Software) tries to find the

best gemmµ, block size, etc. for that specific machine to build its optimized GEMM. For

such tuning, ATLAS requires a reliable performance metric (i.e. walltime) to compare and

1This section previously appeared as [Md Rakib Hasan, Eric Van Hensbergen and Wade
Walker, The International Conference for High Performance Computing, Networking, Stor-
age and Analysis, published by Association for Computing Machinery (ACM). See the copy-
right form in Appendix C.

135

make the best decision. In presence of DVFS, where a gemmµ could run at any frequency

or a combination of any number of different frequencies, walltime doesn’t necessarily reflect

the actual performance. As a result, the final GEMM can perform anywhere from the worst

case to the best case. In this research, we are trying to enable proper auto-tuning in presence

of DVFS so that we can still get the best performance. In this section, we show how DVFS

can impact the effectiveness of auto-tuning and in Section 5.3.2, we present our proposed

approach to properly auto-tune in presence of DVFS. The behavior of walltime under DVFS

is seemingly random for two main reason:

1. Due to short-time executions during auto-tuning, the warm-up time from low to high

frequency may be significant.

2. Thermal throttling can cause the frequency to go from high to low and then low to

high again depending on the thermal state of the CPU.

In order to see how poor the performance of an auto-tuned library can get due to a bad

auto-tuning step in the presence of DVFS and to make a repeatable comparison with our

proposed solution, we purposefully simulated two scenarios for ATLAS auto-tuning where:

1. A sub-optimal (second-best) gemmµ is chosen (TK): when the known best gemmµ is

being timed, the CPU frequency is set to the lowest possible value. This ensures that

the best gemmµ is measured as poor performing and thus never gets selected.

2. a sub-optimal (inefficient use of cache) block size is chosen (TB): during timing for all

block sizes larger than some pre-selected inefficient block size, the CPU frequency is

set to the lowest possible value so that the larger block factors are measured as poor

performing and thus do not get selected.

We separately built ATLAS under these two scenarios while using only walltime as the

performance metric on a Juno development board (for Cortex-A57 cluster). Our experimental

136

0

10

20

30

40

50

60

70

80

90

100

600 900 1200 1500 1800 2100 2400

%
 o

f
n
o

-D
V

F
S

 P
e
rf

o
rm

an
c
e

Matrix Order

TK TBTK TB

Figure 5.9: Performance of parallel DGEMM on A57 cluster after ATLAS installations with
simulated DVFS and using walltime as the performance metric: sub-optimal gemmµ (TK)
and sub-optimal block size (TB).

methodology was shown before in Table 5.1. Figure 5.9 shows the performance of parallel

DGEMM (normalized to no-DVFS performance) from the two different ATLAS installations

described above. Note that this parallel DGEMM is only running on Cortex-A57 cluster. For

repeatable comparison, all these DGEMM timings were done with DVFS turned-off after

installation. For sub-optimal gemmµ selection (TK), there is about 10% performance loss

and for a fairly inefficient block size selection (TB), the performance loss is about 40%. Note

that with true DVFS, the performance loss can be far worse or none at all. Our goal, ideally,

is to ensure no performance loss.

5.3.2 Our Approach

The ideal solution for the performance metric in presence of DVFS would be for the hardware

vendors to provide some way for the users to determine the average frequency between two

certain points in time. At the time of this research, this information was not available on

any machines that we knew of. Therefore, our research was focused on finding a solution,

even an approximate one, with the information we could collect at the time. With the

137

growing concern for power consumption by a machine, hardware manufacturers are including

sensors/mechanisms to measure energy consumption by an application. Our primary goal for

this research, was to use energy consumption in some way so that we can reliably measure

performance. In Section 5.3.2.1, we discuss our initial approach that tries to utilize the

overall energy consumption, with and without combining with walltime. In Section 5.3.2.2,

we discuss our final approach (still requires some prior knowledge of the system) which we

can reliably use to measure performance.

5.3.2.1 Using Energy Consumption

Our initial approach involved using the overall energy consumption as the performance metric

with the idea that a slower code running longer will consume more energy. However this idea

only works when the DVFS is turned off. In presence of DVFS, if a slow gemmµ runs at

low frequency and a fast gemmµ runs at a higher frequency, the slower gemmµ is deemed

as the faster one. This behavior is dictated by the non-linear relationship between the CPU

frequency and the energy consumption at that frequency. To better understand this, consider

the chart shown on Figure 5.10. It shows the amount of execution time (walltime) and the

total energy consumption of a parallel DGEMM on Cortex-A57 cluster of Juno at different

frequencies. For all frequencies, a fixed size problem (i.e. M = N = K = 1200) is analyzed.

Note that at the lowest frequency (i.e. 450 MHz), though the execution time is almost

twice than the execution time at the highest frequency (i.e. 1100 MHz), the total energy

consumption at 450 MHz is still less than the energy consumption at 1100 MHz. As a result,

if the total energy consumption is used as the performance metric, a gemmµ running at

the lowest frequency will always tend to be selected. A revised idea is to combine energy

consumption with walltime to penalize slower gemmµ with their long execution time. In this

case, we use a simple combination of the product of time and the total energy consumption as

the performance metric. Figure 5.11 shows the performance of parallel DGEMM for our two

simulated DVFS installations. For both of the installations, we used the metric M = T ×E

138

Frequency (MHz)
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

1.2
Time (Seconds)
Energy (Joules)

Figure 5.10: Time (gray circle) and total energy consumption (green diamond) of a parallel
DGEMM at different frequencies on Cortex-A57 cluster for a square input with M = N =
K = 1200.

0

10

20

30

40

50

60

70

80

90

100

600 900 1200 1500 1800 2100 2400

%
 o

f
n
o

-D
V

F
S

 P
e
rf

o
rm

an
c
e

Matrix Order

TEK TEBTEK TEB

Figure 5.11: Performance of parallel DGEMM on A57 cluster after ATLAS installations
with simulated DVFS and using the product of walltime and total energy consumption as
the performance metric: sub-optimal gemmµ (TK) and sub-optimal block size (TB).

139

to compare performance, where T is the measured walltime and E is the measured total

energy consumption. As before, the GEMM performance was measured with DVFS turned

off. As we can see, for the inefficient block size selection case (TEB), there is almost no

performance loss, which is what we want. However, for the suboptimal gemmµ selection

case (TEK), we still have a performance loss of around 12%. These results indicate that

the performance metric M = T × E provides low accuracy: if the performance difference

is significant between two gemmµ, it can detect the better gemmµ but fails otherwise. In

Section 5.3.2.2, we propose our final approach that can provide no performance loss for both

of our simulated DVFS cases.

5.3.2.2 Using the Average Power Consumption

As we explored different energy characteristics of the system, we realized that at a certain

frequency, the average power consumption is constant. The average power consumption is

defined as the energy consumption (joules) per unit time (seconds). Figure 5.12 shows the

power consumption of parallel DGEMM at different frequencies on Cortex-A57 cluster with

DVFS turned off for a problem of size M = N = K = 1200. Figure 5.13 shows the same

but for a problem of size M = N = K = 2400. Though the execution time for this

two problems vary by factor of 10 at a certain frequency, we can see the average power

consumption is almost constant for both cases. This is also true for Cortex-A53 cluster as

shown in Figure 5.14 and 5.15. Since the average power consumption seems to be consistent

at a certain frequency (no matter how long the execution time is), our idea is to estimate the

average frequency (fa) for the entire execution time from the average power consumption

(P).

Estimated average frequency, fa = F (P) (5.1)

For this research, the estimating function (F) is formed using the relationship between

frequency and average power consumption as shown in Figure 5.12, 5.13, 5.14 and 5.15.

Since some hardware vendors already provide similar information (on a system level, not

140

Frequency (MHz)
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Power (Watts)

Figure 5.12: Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A57 cluster for a square input with M = N = K = 1200.

Frequency (MHz)
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Power (Watts)

Figure 5.13: Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A57 cluster for a square input with M = N = K = 2400.

141

Frequency (MHz)
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8
Power (Watts)

Figure 5.14: Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A53 cluster for a square input with M = N = K = 1200.

Frequency (MHz)
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8
Power (Watts)

Figure 5.15: Average power consumption of a parallel DGEMM at different frequencies on
Cortex-A53 cluster for a square input with M = N = K = 2400.

142

the processor level), we suggest that hardware vendors to provide such specification so that

the relationship between a processor’s frequency and power consumption is known without

any empirical time or energy measurements. This relationship, as we saw in Figure 5.12,

5.13, 5.14 and 5.15, is non-linear but we also explored a linear approximation to compare

the results. Using this computed average frequency (i.e. fa = F (P)), we scale the measured

walltime (T) and use the scaled walltime (Ts) as the performance metric.

Performance metric,M = Ts =
fa × T

fb
(5.2)

where Ts represents the estimated walltime at frequency fb.

Figure 5.16 shows the performance of parallel DGEMM on the A57 cluster after simulta-

neously enforcing both simulated DVFS scenarios of sub-optimal gemmµ and sub-optimal

block size selection during the auto-tuning step of ATLAS. For SP , we empirically computed

the power consumption at each available frequency and formed a polynomial estimator of

the average frequency. For SL, we used the power consumption at the lowest and the highest

frequency to form a linear estimator. On Juno, Figure 5.16 shows that the performance of

both solutions using non-linear (SP) and linear (SL) estimator are essentially the same as

no-DVFS, which may not be true for other architectures.

5.3.3 Conclusions

DVFS is becoming very popular for saving idle-time power consumption but due to making

walltime useless as a performance metric, it is still not being adopted by researchers focusing

entirely on performance. In this work, we proposed two techniques: (1) one that combines

measured walltime and energy consumption to provide a low-accuracy performance metric

without needing any prior knowledge of the system behavior and (2) one that uses average

power consumption to estimate the true walltime at a certain frequency (requires prior

knowledge on the relationship between frequency and power consumption possibly from

hardware vendors) that can be used as a reliable performance metric in presence of DVFS.

The relationship between frequency and power consumption was empirically determined for

143

0

10

20

30

40

50

60

70

80

90

100

600 900 1200 1500 1800 2100 2400

%
 o

f
n
o

-D
V

F
S

 P
e
rf

o
rm

an
c
e

Matrix Order

SL SPSL SP

Figure 5.16: Performance of parallel DGEMM on A57 cluster after ATLAS installation with
simulated DVFS and using the scaled walltime as the performance metric: non-linear esti-
mator (SP) and linear estimator (SL)

this research but it can be manually specified by the system vendors in future (for a linear

approximation). The next steps for this research would be to verify the approach on other

architectures that do not have on-board power sensors (e.g. using RAPL [42, 41, 55, 57] on

Intel architectures). Also, simultaneous CPU and memory DVFS is also being considered as

an energy saving technique while maintaining high performance [19, 62]. We need to explore

the effect of such combinations (not yet supported by OSes) during auto-tuning and therefore

its impact on overall performance.

5.4 Summary and Future Research

In this chapter, we have improved the performance of ATLAS in three different areas:

1. We developed two gemmµ for two ARM-64bit architectures which improves the per-

formance ATLAS’s DGEMM and SGEMM by up to 12% and 42%, respectively on the

Cortex-A57 and by up to 39% and 53%, respectively on the Cortex-A53.

144

2. We adapted ATLAS to recognize and autotune for heterogeneous architecture systems

that improved ATLAS parallel DGEMM and SGEMM performance by up to 13%.

3. We presented a new performance metric that can be used to properly measure perfor-

mance in ATLAS’s autotuning step in the presence of DVFS.

For future research, we plan to investigate other unroll factors and the use of software

prefetching to further optimize the gemmµ performance. For heterogeneous systems, we

demonstrated that adapting ATLAS’s parallel GEMM for such systems can provide improved

performance. We can extend the idea for all routines in ATLAS to complete the support for

heterogeneous systems. Finally, as discussed in Section 5.3.3, we need to investigate the

accuracy of our proposed performance metrics on other architectures (e.g. x86).

145

CHAPTER 6

SUMMARY, FUTURE WORK AND CONCLUSIONS

In Chapter 2 we outlined a new approach for developing and maintaining a microkernel-based

BLAS. We did this study using the most challenging BLAS to adequately tune, TRSM, and

then showed TRMM as an example of a more typical BLAS case. We reported initial results

that, even prior to our full empirical tuning, are extremely impressive, with across-the-board

speedups over ATLAS’s prior BLAS support, and results competitive with Intel’s MKL

library. We believe this demonstrates the huge promise of this approach, and that it should

lead to even greater speedups for the parallel BLAS, where the low-order terms like the

TRSM component of a GEMM-based TRSM are likely to be more visible due to increasing

scale.

For future work, we must first get the new tuning design working enough to autotune the

new trsmµ and trmmµ as outlined. We can then use these timings to validate and improve

the block predicting model outlined in Sections B.3 and B.4. Next, we can extend both the

code and model to support the entire serial BLAS, at which point this work should be ready

for journal publication, possibly in TOMS (Transactions on Mathematical Software). We

may also wish to provide and support microkernel-based serial factorizations as outlined in

Chapter 3, though this is probably not necessary for publication.

In Chapter 4 we developed a gemmµ-based parallel LU factorization which, at the time of

the research, was the best performing on both Intel and AMD machines. We conclude that

the microkernel-based approach is the best we know of for small- and medium sized problems,

and we have already reoriented ATLAS’s tuning framework due to these results. Once the

preceding serial work is published, we need to extend our microkernel-based BLAS and

associated models to the parallel BLAS. We first need prototype parallel implementations,

and then as the tuning and timing of parallel overheads come online, to predict the best

blocking factors in parallel using models. If this work is successful, we we will then be

146

ready to resume our original work in predicting the parallel block factor and grid size more

accurately, as described in Appendix B.1.

A promising approach for arbitrarily sized factorizations is to develop hybrid algorithms

that use PCA for aggregate-cache sized problems, while using right-looking or other factor-

ization variants for very large problems. We will need to first complete the parallel BLAS

work discussed above before such a hybrid algorithm will be competitive, however. If this

work is successful, it should be extended to the Cholesky and QR factorizations.

This ongoing parallel BLAS and/or modeling work should be publishable in conferences

like IPDPS (International Parallel and Distributed Processing Symposium), PPoPP (Princi-

ples and Practice of Parallel Programming) and ICPP (International Conference on Parallel

Processing), and the full research should fit well in a journal article for venues such as Parallel

Computing and Concurrency: Practice and Experience.

In Chapter 5, we developed two gemmµ for ARM 64-bit architectures that improved AT-

LAS’s GEMM performance by up to 39% for double-precision and 53% for single-precision.

We know of other optimizations that we believe could improve this even further, so this may

not be the ceiling for our performance.

The proof-of-concept for heterogeneous support was extremely compelling. Even the simple

approach we outlined requires significant tuning and configure framework support, but if the

heterogeneous trends continue it will become necessary. This work would be of interest to

all the same publication venues as discussed above for the parallel BLAS and factorization

work.

Finally, Chapter 5 presented intriguing experiments on doing empirical tuning in the face

of DVFS (Dynamic Voltage and Frequency Scheduling). This work will need to be revisited

as vendors supply us with more DVFS-related profiling.

147

REFERENCES

[1] Emmanuel Agullo, Bilel Hadri, Hatem Ltaief, and Jack Dongarra. Comparative study
of one-sided factorizations with multiple software packages on multi-core hardware. In
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, SC ’09, pages 20:1–20:12, New York, NY, USA, 2009. ACM.

[2] AMD. Acml homepage. http://www.amd.com/acml/, 2013.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, 3rd edition, 1999.

[4] E. Anderson, J. Dongarra, and S. Ostrouchov. Lapack working note 41: Installation
guide for lapack. Technical report, University of Tennessee, Knoxville, TN, USA, 1992.

[5] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for
high-performance computing. ACM Comput. Surv., 26(4):345–420, 1994.

[6] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and
Robert A. van de Geijn. The science of deriving dense linear algebra algorithms. ACM
Trans. Math. Softw., 31(1):1–26, March 2005.

[7] J. Bilmes, K. Asanović, C.W. Chin, and J. Demmel. Optimizing Matrix Multiply using
PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology. In Proceedings
of the ACM SIGARC International Conference on SuperComputing, Vienna, Austria,
July 1997.

[8] C. Bischof and C. van Loan. The WY representation for products of householder
transformations. SIAM Journal on Scientific and Statistical Computing, 8(1):s2–s13, 1
1987.

[9] C. Bishof. Adaptive Blocking in the QR Factorization. The Journal of Supercomputing,
3(3):193–208, 1989.

[10] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[11] BLAS-group. Blas homepage. http://www.netlib.org/blas/, 2011.

[12] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek, and
Stanimire Tomov. The impact of multicore on math software. In Proceedings of the
8th international conference on Applied parallel computing: state of the art in scientific
computing, PARA’06, pages 1–10, Berlin, Heidelberg, 2007. Springer-Verlag.

148

[13] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. Parallel tiled qr fac-
torization for multicore architectures. Concurr. Comput. : Pract. Exper., 20(13):1573–
1590, September 2008.

[14] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel
tiled linear algebra algorithms for multicore architectures. Parallel Comput., 35(1):38–
53, January 2009.

[15] Anthony M Castaldo, Clint Whaley, and Siju Samuel. Scaling lapack panel operations
using parallel cache assignment. ACM Transactions on Mathematical Software (TOMS),
39(4):22:1–22:30, July 2013.

[16] Anthony M. Castaldo and R. Clint Whaley. Achieving Scalable Parallelization For The
Hessenberg Factorization. In Proceedings of IEEE Cluster, pages 65–73, Austin, TX,
September 2011. IEEE.

[17] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı,
and R. van de Geijn. Supermatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming, pages 123–132, New York, NY,
USA, 2008. ACM.

[18] M. Dayde, I. Duff, and A. Petitet. A Parallel Block Implementation of Level 3 BLAS
for MIMD Vector Processors. ACM Transactions on Mathematical Software, 20(2):178–
193, 1994.

[19] Qingyuan Deng, D. Meisner, A. Bhattacharjee, T.F. Wenisch, and R. Bianchini.
Coscale: Coordinating cpu and memory system dvfs in server systems. In Microarchi-
tecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pages
143–154, Dec 2012.

[20] F. Desprez, S. Domas, and B. Tourancheau. Optimization of the ScaLAPACK LU
factorization routine using communication/computation overlap, pages 1–10. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996.

[21] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak, Piotr
Luszczek, and Ichitaro Yamazaki. A survey of recent developments in parallel imple-
mentations of gaussian elimination. Concurr. Comput. : Pract. Exper., 27(5):1292–1309,
April 2015.

[22] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.

[23] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656: An extended
Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs.
ACM Transactions on Mathematical Software, 14(1):18–32, 1988.

149

[24] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of FOR-
TRAN Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Soft-
ware, 14(1):1–17, 1988.

[25] J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable dense linear algebra
libraries. In Proceedings Scalable High Performance Computing Conference SHPCC-92.,
pages 372–379, Apr 1992.

[26] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek. Achieving Numeri-
cal Accuracy and High Performance Using Recursive Tile LU Factorization with Partial
Pivoting. Concurrency and Computation: Practice and Experience, 26(7):1408–1431,
May 2014.

[27] Jack Dongarra, Emmanuel Jeannot, and Julien Langou. Modeling the LU factorization
for SMP clusters. Research report, University of Tennessee, 2006.

[28] E. Elmroth and F. Gustavson. Applying Recursion to Serial and Parallel QR Fac-
torization Leads to Better Performance. IBM Journal of Research and Development,
44(4):605–624, 2000.

[29] Krassimir Georgiev and Jerzy Wasniewski. Recursive version of lu decomposition. In
Revised Papers from the Second International Conference on Numerical Analysis and
Its Applications, NAA ’00, pages 325–332, London, UK, UK, 2001. Springer-Verlag.

[30] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.
Flame: Formal linear algebra methods environment. ACM Trans. Math. Softw.,
27(4):422–455, December 2001.

[31] F. Gustavson. Recursion Leads to Automatic Variable Blocking for Dense Linear-
Algebra Algorithms. IBM Journal of Research and Development, 41(6):737–755, 1997.

[32] F. Gustavson, A. Henriksson, I. Jonsson, B. K̊agström, and P. Ling. Recursive blocked
data formats and blas’s for dense linear algebra algorithms. In B. K̊agström, J. Don-
garra, E. Elmroth, and J. Waśniewski, editors, Applied Parallel Computing, PARA’98,
Lecture Notes in Computer Science, No. 1541, pages 195–206, 1998.

[33] F. Gustavson, A. Henriksson, I. Jonsson, B. K̊agström, and P. Ling. Superscalar gemm-
based level 3 blas – the on-going evolution of a portable and high-performance library.
In B. K̊agström, J. Dongarra, E. Elmroth, and J. Waśniewski, editors, Applied Parallel
Computing, PARA’98, Lecture Notes in Computer Science, No. 1541, pages 207–215,
1998.

[34] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular value
algorithm and its implementation for multicore hardware. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’13, pages 90:1–90:12, New York, NY, USA, 2013. ACM.

[35] R. Hanson, F. Krogh, and C. Lawson. A Proposal for Standard Linear Algebra Sub-
programs. ACM SIGNUM Newsl., 8(16), 1973.

150

[36] Md Rakib Hasan, Eric Van Hensbergen, and Wade Walker. Reliable performance auto-
tuning in presence of dvfs. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’15, 2015.

[37] Md Rakib Hasan and R. Clint Whaley. Effectively exploiting parallel scale for all
problem sizes in LU factorization. In Proceedings of the 28th International Parallel and
Distributed Processing Symposium (IPDPS2014), pages 1039–1048, Phoenix, AZ, May
2014. IEEE press.

[38] Greg Henry. BLAS Based on Block Data Structures. Technical Report 89, Cor-
nell University, January 1992. http://ecommons.library.cornell.edu/bitstream/

1813/5471/1/92-089.pdf.

[39] Francisco D. Igual, Ernie Chan, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı,
Robert A. Van De Geijn, and Field G. Van Zee. The flame approach: From dense linear
algebra algorithms to high-performance multi-accelerator implementations. J. Parallel
Distrib. Comput., 72(9):1134–1143, September 2012.

[40] ARM Inc. Juno arm development platform soc technical reference manual. https:

//static.docs.arm.com/ddi0515/d/DDI0515.pdf, 2015.

[41] Intel. Measuring processor power. http://www.intel.com/content/dam/doc/

white-paper/resources-xeon-measuring-processor-power-paper.pdf, 2011.

[42] Intel. Intel 64 and ia-32 architectures software developer’s manual volume 3b: System
programming guide, part 2. https://software.intel.com/sites/default/files/

managed/7c/f1/253669-sdm-vol-3b.pdf, 2016.

[43] Intel. Mkl homepage. http://software.intel.com/en-us/mkl/, 2016.

[44] J. Choi and J. Dongarra and S. Ostrouchov and A Petitet and D. Walker and R. C.
Whaley. The Design and Implementation of ScaLAPACK LU, QR, and Cholesky.
Scientific Programming, 5:173–184, 1996.

[45] B. K̊agström, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS: High-Performance
Model Implementations and Performance Evaluation Benchmark. Technical Report
UMINF 95-18, Department of Computing Science, Ume̊a University, 1995. Submitted
to ACM TOMS.

[46] B. K̊agström, P. Ling, and C. van Loan. Gemm-based level 3 blas: High performance
model implementations and performance evaluation benchmark. ACM Transactions on
Mathematical Software, 24(3):268–302, 1998.

[47] Bo K̊agström and Charles van Loan. Algorithm 784: Gemm-based level 3 blas: Porta-
bility and optimization issues. ACM Trans. Math. Softw., 24(3):303–316, September
1998.

151

[48] Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia. Scheduling dense
linear algebra operations on multicore processors. Concurr. Comput. : Pract. Exper.,
22(1):15–44, January 2010.

[49] LAPACK. LAPACK/TIMING/LIN/dopla.f. http://www.netlib.org/lapack/

lapack-3.0.tgz, 2013.

[50] LAPACK-group. Lapack homepage. http://www.netlib.org/lapack/, 2011.

[51] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms
for Fortran Usage. ACM Transactions on Mathematical Software, 5(3):308–323, 1979.

[52] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Ort́ı. An-
alytical modeling is enough for high-performance BLIS. ACM Transactions on Mathe-
matical Software, 43(2):12:1–12:18, August 2016.

[53] M. Marqués, G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, and R. vande Geijn. Using desktop
computers to solve large-scale dense linear algebra problems. The Journal of Supercom-
puting, 58(2):145–150, 2011.

[54] Mercedes Marques, Gregorio Quintana-Orti, Enrique S. Quintana-Orti, and Robert A.
van de Geijn. Out-of-Core Computation of the QR Factorization on Multi-Core Pro-
cessors. In Henk Sips, Dick Epema, and Hai-Xiang Lin, editors, Euro-Par 2009 Parallel
Processing, volume 5704 of Lecture Notes in Computer Science, pages 809–820, Heidel-
berger Platz 3, Berlin, 2009. Springer Berlin / Heidelberg.

[55] Jacob Pan. Rapl (running average power limit) driver. https://lwn.net/Articles/

545745/, 2014.

[56] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. Van De Geijn, Field
G. Van Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for thread-
level parallelism. ACM Trans. Math. Softw., 36(3):14:1–14:26, July 2009.

[57] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and Doron
Rajwan. Power-management architecture of the intel microarchitecture code-named
sandy bridge. IEEE Micro, 32(2):20–27, March 2012.

[58] Tyler M. Smith, Robert A. van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and
Field G. Van Zee. Anatomy of high-performance many-threaded matrix multiplica-
tion. In 28th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2014), 2014.

[59] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems. In SC ’09: Pro-
ceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, pages 1–11, New York, NY, USA, 2009. ACM.

[60] G.W. Stewart. Introductions to Matrix Computations, chapter 2, 3 & Appendix 3.
Academic Press, 1973.

152

[61] Majedul Haque Sujon, R. Clint Whaley, and Qing Yi. Vectorization past dependent
branches through speculation. In Proceedings of the 22Nd International Conference on
Parallel Architectures and Compilation Techniques, PACT ’13, pages 353–362, Piscat-
away, NJ, USA, 2013. IEEE Press.

[62] Ananta Tiwari, Anthony Gamst, MichaelA. Laurenzano, Martin Schulz, and Laura Car-
rington. Modeling the impact of reduced memory bandwidth on hpc applications. In
Fernando Silva, Ins Dutra, and Vtor Santos Costa, editors, Euro-Par 2014 Parallel
Processing, volume 8632 of Lecture Notes in Computer Science, pages 63–74. Springer
International Publishing, 2014.

[63] S. Toledo. Locality of Reference in LU Decomposition with Partial Pivoting. SIAM
Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[64] Field G. Van Zee. Implementing high-performance complex matrix multiplication via
the 1m method. submitted.

[65] Field G. Van Zee and Tyler Smith. Implementing high-performance complex matrix
multiplication via the 3m and 4m methods. ACM Transactions on Mathematical Soft-
ware, 2017. accepted.

[66] Field G. Van Zee, Tyler Smith, Francisco D. Igual, Mikhail Smelyanskiy, Xianyi Zhang,
Michael Kistler, Vernon Austel, John Gunnels, Tze Meng Low, Bryan Marker, Lee
Killough, and Robert A. van de Geijn. The BLIS framework: Experiments in portability.
ACM Transactions on Mathematical Software, 42(2):12:1–12:19, June 2016.

[67] Field G. Van Zee and Robert A. van de Geijn. BLIS: A framework for rapidly instan-
tiating BLAS functionality. ACM Transactions on Mathematical Software, 41(3):14:1–
14:33, June 2015.

[68] R. Clint Whaley. Automated Empirical Optimization of High Performance Floating
Point Kernels. PhD thesis, The Florida State University, November 2004.

[69] R. Clint Whaley. Empirically Tuning LAPACK’s Blocking Factor for Increased Perfor-
mance. In Proceedings of the International Multiconference on Computer Science and
Information Technology, volume 3, pages 303–310, Wisla, Poland, October 2008. IEEE
press.

[70] R. Clint Whaley and Anthony M. Castaldo. Achieving accurate and context-sensitive
timing for code optimization. Technical Report CS-TR-2008-001, University of Texas
at San Antonio, January 2008.

[71] R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra Soft-
ware. Technical Report UT-CS-97-366, University of Tennessee, December 1997.
http://www.netlib.org/lapack/lawns/lawn131.ps.

[72] R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra software. In
SuperComputing 1998: High Performance Networking and Computing, San Antonio,

153

TX, USA, 1998. CD-ROM Proceedings. Winner, best paper in the systems cate-
gory.
http://www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps.

[73] R. Clint Whaley and Jack Dongarra. Automatically Tuned Linear Algebra Software.
In Ninth SIAM Conference on Parallel Processing for Scientific Computing, 1999. CD-
ROM Proceedings.

[74] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101–
121, February 2005.

[75] R. Clint Whaley and Antoine Petitet. Atlas homepage. http://math-atlas.

sourceforge.net/, 2011.

[76] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical opti-
mization of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[77] R. Clint Whaley and David B. Whalley. Tuning high performance kernels through
empirical compilation. In The 2005 International Conference on Parallel Processing,
pages 89–98, Oslo, Norway, June 2005.

[78] Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra. Porting the plasma
numerical library to the openmp standard. International Journal of Parallel Program-
ming, 45(3):612–633, 2017.

[79] Field G. Van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A. van de Geijn. Scalable
Parallelization of FLAME Code via the Workqueuing Model. ACM Transactions on
Mathematical Software, 34:10:1–10:29, March 2008.

[80] Field G. Van Zee, Ernie Chan, Robert A.van de Geijn, Enrique S. Quintana-Ort, and
Gregorio Quintana-Ort. The libflame library for dense matrix computations. Computing
in Science Engineering, 11(6):56–63, 2009.

154

APPENDIX A

HANDLING TRAPEZOIDAL UNROLL BLOCKS IN trmmµ

In Section 2.2.2, we discussed how the four variants LLN, LUN, RLN, and RUN of trmmµ

are implemented for um = i × uk or un = i × uk for the left- or right-variants respectively

where i ≥ 1. In this chapter, we will discuss the same variants of trmmµ when uk = i× um

or uk = i × un case where i > 1 which leads to trapezoidal unroll blocks. Note that this

only changes the copy microkernels for the triangular A and the trmmµ but not the copy

microkernel for the B matrix.

A.1 trmmµ for LLN-variant

Recall that LLN denotes the operation: B = alpha×A×B, where A is the lower triangular

matrix and B is a general matrix.

Triangular copy microkernel changes: The triangular A is partitioned into um-sized

row panels and each of these row panels are partitioned into (um × uk)-sized unroll blocks.

Each of these row panels contains a triangular or trapezoidal block at the end. These blocks

are zero-padded to make them (um × uk)-sized rectangular unroll blocks. Figure A.1 shows

the partitioning and the zero-padded row panels of A for an example of LLN-variant where

uk = 2um.

trmmµ changes: The required changes from a gemmµ are shown in Algorithm A.1.

BM

BM

A A

uk

um T1
0

um T2
0 uk

um A3 T3
0

um A4 T4
0 uk

um A5 T5
0

um A6 T6
0

Figure A.1: LLN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 um

.

155

Algorithm A.1: Pseudocode of looping and pointer updates for LLN-variant of trmmµ
for uk = i× um (changes from a gemmµ are highlighted in bold)

1 Function trmmµ-LLN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the triangular matrix
pB : pointer to the general matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB
5 Askip← mu× ku /* Initialize the skips needed */

6 Bskip← nu× (K − ku)
7 off ← 0
8 for i← 1 to nmu do
9 {

10 for j ← 1 to nnu do
11 {
12 Kbound← (i×mu)− off + ku

13 for k← 1 to Kbound do
14 {
15 =⇒ perform one unroll-block multiplication
16 pA← pA+mu
17 pB ← pB + nu

18 }
19 pB ← pB + Bskip /* skip to correct column-panel */

20 pA← pA0
21 pC ← pC + (mu× nu)

22 }
23 pA0← pA0 + Askip /* skip to correct row-panel */

24 pA← pA0
25 pB ← pB0
26 off ← off + mu

27 if (off ≥ ku) then
28 {
29 off ← off − ku

30 Askip← Askip + (mu× ku) /* update skips for next */

31 Bskip← Bskip− (ku× nu) /* row-panel if needed */

32 }

33 }

34 }

156

A.2 trmmµ for LUN-variant

LUN denotes the operation: B = alpha × A × B, where A is the upper triangular matrix

and B is a general matrix.

Triangular copy microkernel changes: The triangular A is partitioned into um-sized

row panels and each of these row panels are partitioned into (um × uk)-sized unroll blocks.

Each of these row panels contains a triangular or trapezoidal block at the beginning. These

blocks are zero-padded to make them (um × uk)-sized rectangular unroll blocks. Figure A.2

shows the partitioning and the zero-padded row panels of A for an example of LUN-variant

where uk = 2um.

trmmµ changes: The required changes from a gemmµ are shown in Algorithm A.2.

A.3 trmmµ for RLN-variant

RLN denotes the operation: B = alpha×B×A, where A is the lower triangular matrix and

B is a general matrix.

Triangular copy microkernel changes: The triangular A is partitioned into un-sized

column panels and each of these column panels are partitioned into (uk × un)-sized unroll

blocks. Each of these column panels contains a triangular or trapezoidal block at the begin-

ning. These blocks are zero-padded to make them (uk × un)-sized rectangular unroll blocks.

Figure A.3 shows the partitioning and the zero-padded column panels of A for an example

of RLN-variant where uk = 2un.

uk uk uk

0 T1 A1 um

0 T2 A2 um

0 T3 A3 um

0 T4 A4 um

0 T5 um

0 T6 um

BM

BM

A A

Figure A.2: LUN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 um

.

157

Algorithm A.2: Pseudocode of looping and pointer updates for LUN-variant of trmmµ
for uk = i× um (changes from a gemmµ are highlighted in bold)

1 Function trmmµ-LUN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the triangular matrix
pB : pointer to the general matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB
5 Askip← mu×K /* Initialize the skips needed */

6 Bskip← 0
7 off ← 0
8 for i← 1 to nmu do
9 {

10 for j ← 1 to nnu do
11 {
12 Kstart← (i×mu)− off

13 for k← Kstart to K do
14 {
15 =⇒ perform one unroll-block multiplication
16 pA← pA+mu
17 pB ← pB + nu

18 }
19 pB ← pB + Bskip /* skip to correct column-panel */

20 pC ← pC + (mu× nu)
21 pA← pA0

22 }
23 pA0← pA0 + Askip /* skip to correct row-panel */

24 pA← pA0
25 pB ← pB0
26 off ← off + mu /* update the skips if needed */

27 if (off ≥ ku) then
28 {
29 off ← off − ku

30 Askip← Askip− (mu× ku)
31 Bskip← Bskip + (ku× nu)

32 }
33 pB ← pB + Bskip /* advance pB to correct block */

34 }

35 }

158

BN

BN

A

un un

uk

0 0

T1 T2
un un

uk

A1 A2

0 0

T3 T4
un un

uk A3 A4

0 0

T5 T6

A

Figure A.3: RLN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 un

.

trmmµ changes: The required changes from a gemmµ are shown in Algorithm A.3.

A.4 trmmµ for RUN-variant

RUN denotes the operation: B = alpha × B × A, where A is the upper triangular matrix

and B is a general matrix.

Triangular copy microkernel changes: The triangular A is partitioned into un-sized

column panels and each of these column panels are partitioned into (uk × un)-sized unroll

blocks. Each of these column panels contains a triangular or trapezoidal block at the end.

These blocks are zero-padded to make them (uk × un)-sized rectangular unroll blocks. Fig-

ure A.4 shows the partitioning and the zero-padded column panels of A for an example of

RUN-variant where uk = 2un.

trmmµ changes: The required changes from a gemmµ are shown in Algorithm A.4.

un un un un un un

T1 T2
A3 A4

A5 A6

uk
0 0

T3 T4
uk

0 0

T5 T6
uk

0 0

BN

BN

A A

Figure A.4: RUN-variant: partitioning and zero-padding the lower-triangular A for uk = 2 un

.

159

Algorithm A.3: Pseudocode of looping and pointer updates for RLN-variant of trmmµ
for uk = i× un (changes from a gemmµ are highlighted in bold)

1 Function trmmµ-RLN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the general matrix
pB : pointer to the triangular matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB
5 Apan← mu×K /* size of one row-panel */

6 for i← 1 to nmu do
7 {

/* Initialize the skips needed */

8 Askip← 0
9 off ← 0

10 for j ← 1 to nnu do
11 {
12 Kstart← (j × nu)− off

13 for k← Kstart to K do
14 {
15 =⇒ one unroll-block multiplication
16 pA← pA+mu
17 pB ← pB + nu

18 }
/* update skip for next column-panel */

19 off ← off + nu if (off ≥ ku) then
20 {
21 off ← off − ku Askip← Askip + (mu× ku)
22 }
23 pA← pA0 + Askip /* skip to correct block */

24 pC ← pC + (mu× nu)

25 }
26 pB ← pB0
27 pA0← pA0 + Apan /* move to next row-panel */

28 pA← pA0

29 }

30 }

160

Algorithm A.4: Pseudocode of looping and pointer updates for RUN-variant of trmmµ
for uk = i× un (changes from a gemmµ are highlighted in bold)

1 Function trmmµ-RUN(nmu, nnu, K, pA, pB, pC):
2 {

arguments: nmu : no. of mu-sized row-panels in A matrix
nnu : no. of nu-sized column-panels in B matrix
K : size of the dimension common to A and B
pA : pointer to the general matrix
pB : pointer to the triangular matrix
pC : pointer to the result matrix

3 pA0← pA
4 pB0← pB
5 Apan← mu×K /* size of one row-panel */

6 for i← 1 to nmu do
7 {

/* offset needed to keep track of K-loop */

8 off ← 0
9 for j ← 1 to nnu do

10 {
11 Kbound← (j × nu)− nu− off + ku

12 Kbound← min(K,Kbound)
13 for k← 1 to Kbound do
14 {
15 =⇒ perform one unroll-block multiplication
16 pA← pA+mu
17 pB ← pB + nu

18 }
/* update offset for next K-loop */

19 off ← off + nu if (off ≥ ku) then
20 {
21 off ← off − ku

22 }
23 pC ← pC + (mu× nu)
24 pA← pA0

25 }
26 pB ← pB0
27 pA0← pA0 + Apan /* move to next row-panel */

28 pA← pA0

29 }

30 }

161

APPENDIX B

COMPUTATIONAL MODEL FOR MICROKERNEL-BASED
BLAS AND LAPACK OPERATIONS

In Chapters 2-4, we discussed how ATLAS’s gemmµ framework can be used to achieve high

performance for all sized problems for BLAS and LAPACK routines. One problem for such an

approach is the need to select the best block factors during execution based on the problem

size. We will try to address this issue in this chapter by building computational models for

our gemmµ-based routines. Since our primary goal is to model our gemmµ-based parallel

LU factorization, we will start our discussion with building a computational model for it,

and later in the chapter, we discuss building computational models for serial routines that

are less complex.

B.1 Computational Model for Parallel LU Factorization

In our parallel LU factorization, we divide the input into blocks and the blocks are then

distributed in a cyclic fashion for a r× c process grid. For best performance, we need to not

only find the best blocking factor B but also the grid size r and c. Note that for a parallel

routine, smaller B provides more parallelism but may impact gemmµ performance. Also,

using smaller r may reduce the parallel overhead but it leads to increased idle times due to

less parallelism within a column panel. In this section, we will build a computational model

for our LU factorization to predict B, r and c for a given problem size (N).

Building a computational model for a parallel routine is much harder (compared to com-

putational model for serial routines discussed in later in the chapter) due to unpredictable

thread scheduling and inconsistent cache effects. There are some prior research [10, 20, 25, 27]

that tried to build computational model for LU factorization for SMP clusters but they only

focused on asymptotic sized problems for which thread scheduling and cache effects do not

tend to affect the model. For our research, we want to try to incorporate some such effects

into the model to improve its small-sized accuracy.

162

To incorporate the scheduling effects, we built a simulator that imitates the steps of our

parallel LU factorization and accumulates the estimated time taken by each step. For incor-

porating the caching effects, we use different timings for in-cache and out-of-cache problems

but as we will later see, this adaptation still cannot predict the best parameters for problems

that are at the cache-size boundary. Note that in an ideal case, the simulator is going to es-

timate the total execution time for each thread and use the maximum as the execution time

for the whole LU factorization. However, with our 2-D grid approach, each thread working

on a column panel are synchronized after almost every step of the computation. To simplify

our simulator using this characteristic of our approach, we only estimated the execution time

for one thread for each column of the process grid (pcol). Note that for each column panel

of the input, we estimate the maximum time taken among the threads of the pcol to process

that panel and we accumulate that to the execution time of that pcol that owns the column

panel. Consider the example shown in Figure 4.4b. For the first column panel, the execution

time would only be the panel factorization time where the panel factorization is done by

the first column of the process grid. We have Np = N/B blocks to factorize, performed

by r threads. Therefore, the execution time for the first panel would be roughly the time

taken by one thread for LU factorization on an input of size (⌈Np

r
⌉B)×B. Now consider the

second panel where the first step is to apply B pivots on the top (B × B)-sized block and

then perform TRSM on it. Both operations are performed in parallel by r threads. So, the

estimated pivoting time (ta) would be the time taken to apply B pivots on ⌈B
r
⌉ columns and

the estimated TRSM time (ts) would be the time taken for a TRSM of size B × ⌈B
r
⌉ i.e.

B × B sized triangle and ⌈B
r
⌉ right hand sides. Both pivoting and TRSM time estimations

can be done through prior empirical timing and interpolation/extrapolation if needed. For

the GEMM updates, we have Nb−1 calls to gemmµ on the second panel that are performed

by r threads. The estimated time for GEMM updates would be tm×⌈
Np−1

r
⌉ where tm is the

time taken by the gemmµ for performing a square GEMM on an B × B input. After the

163

GEMM is done, the panel (i.e. (Np − 1) blocks) needs to be factorized. As before, the esti-

mated time for the second panel factorization would be the time for serial LU factorization

on an input of size (⌈Np−1

r
⌉B)× B.

Total panel factorization time, Tf =

Np
∑

j=1

tf

(⌈

(Np − j + 1)

r

⌉

B,B

)

(B.1)

Total pivot time, Ta = ta

(

B,

⌈

B

r

⌉) Np
∑

j=1

j−1
∑

i=1

(i− 1) (B.2)

Total TRSM time, Ts = ts

(

B,

⌈

B

r

⌉) Np
∑

j=1

j−1
∑

i=1

(i− 1) (B.3)

Total GEMM time, Tm = tm(B,B,B)×

Np
∑

j=1

j−1
∑

i=1

⌈

Np − i

r

⌉

(B.4)

Note that summing Equation B.1, B.2, B.3 and B.4 would provide an estimate for the whole

LU factorization but not considering any scheduling effects (idle times waiting for data to

be ready). Instead, to incorporate such idle times, our simulator estimates each component

time and simulates the parallel LU factorization. As before, we can have two variants (in-

cache and out-of-cache) of estimated time for each component to reflect the cache effects for

small sized problems. Later we added another variant of timings where a panel fits in the

aggregate cache. For a given input problem, we can use the simulator for each available B,

r and c combination to predict the best one. To limit the possible number of combinations,

in our simulator, we imposed a restriction of r < c. This restriction is always a good idea in

our experience: the reason is that the communication within a process column is extremely

tightly coupled, and if any r threads gets out of sync, the pcol working on the critical path is

unnecessarily delayed, while the communication along the prow is effectively loosely coupled,

and can be overlapped via look-ahead. This results in r ≤ c for every non-degenerate case

that we have investigated so far.

Note that in the above discussion, we ignored the cost of thread communications and

of copying the input matrix. At the time of this research, these timings are an in-progress

164

improvement of the gemmµ framework in ATLAS. Once the framework is updated, we can

improve our computational model (i.e. the simulator) to incorporate these times for better

predictions. Also note that in our simulator, we ignored the infinite lookahead technique due

to its unpredictable scheduling effects.

B.1.1 Performance Results

In Section 4.4, we presented the performance of our parallel LU factorization with the best

combination of B, r and c (with an exhaustive search) for each problem sizes. In this section,

we compare those results with the performance of our LU factorization using the predicted

combination B, r and c from our simulator. As mentioned before, to measure the accuracy

of the computational model for our parallel LU factorization, we measured its performance

using the block factor and grid size from: (a) an exhaustive search and (b) the prediction of

our simulator for all selected problem sizes. Figure B.1, B.2 and B.3 shows the percentage of

performance loss when using the prediction from our model over the best configuration from

an exhaustive search. As we can see, for mid-to-asymptotic sized problems, the accuracy

of our model is within 3% but for small problems, the performance loss is up to 73% on

O32. This high error is primarily caused by two issues: (1) the cache effects are extremely

unpredictable at that range and (2) for such small problems, we also need to figure out how

many available cores to use since using all available cores is not optimal at that range due to

significant parallel overhead. As we can see, both these issues become worse with scale i.e.

up to 14% loss on X12 vs. 73% on O32. This indicates that there might be some effects that

we are unable to capture in our current model. To mitigate the performance loss for small

sizes, one simple idea would be to have ATLAS try the top 3 predictions from our simulator

and save the best combination for later use. Also note that on X12 and X24, the two regions

for low accuracy of our model are: for very small problems (around 200-1,000) and for the

problems of size at the cache size boundary (around 2,000-4,000). For very small problems,

parallel overhead such as thread startup and communication cost are significant; we plan to

165

-20%

-15%

-10%

-5%

0%

5%

P
e
rf

o
rm

an
c
e

lo
ss

 o
ve

r
b
e
st

 (
%

)

Matrix Order

Figure B.1: Performance loss of our parallel gemmµ-based LU factorization on X12

-20%

-15%

-10%

-5%

0%

5%

P
e
rf

o
rm

an
c
e

lo
ss

 o
ve

r
b
e
st

 (
%

)

Matrix Order

Figure B.2: Performance loss of our parallel gemmµ-based LU factorization on X24

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

P
e
rf

o
rm

an
c
e

lo
ss

 o
ve

r
b
e
st

 (
%

)

Matrix Order

Figure B.3: Performance loss of our parallel gemmµ-based LU factorization on O32

166

extend our model to include them as future research. To isolate this issue from the cache

boundary issue, we started building computational models for serial routines as discussed in

the following sections.

B.2 Motivation for Modeling Serial Routines

Recall that for serial routines, we only need to know the block factor to use for the best

performance for a given problem. A simple approach for selecting the block factors is to use

the best performing ones for gemmµ. This approach is usually sufficient for asymptotic sized

problems but it is not the best for small problems. To better understand this, recall that our

gemmµ-based TRMM requires two searches:

1. Finding an optimized gemmµ with a restriction of BM = BK for left variants or

BN = BK for right-variants, where BM , BN , and BK are block factors in the M , N ,

and K dimensions, respectively.

2. Finding an optimized trmmµ with a restriction of um = i× uk or uk = i× um for left

variants (un = i × uk or uk = i × un for right variants), where i ≥ 1 and um, un, and

uk are unroll factors in the M , N , and K dimensions.

Due to trmmµ performing a small portion of the total number of required floating point

operations (FLOPs), we can afford to select only one trmmµ and use it for any block-sized

TRMM. Selecting only one combination of gemmµ and the block factors, however, is not

always optimal. Consider the triangle shown in Figure B.4 for a LLN-variant of TRMM with

M = 240 and N = 240. Let us assume that our trmmµ for block size of 240 achieves 50% of

the machine’s theoretical peak performance. If we use a block factor of BM = BN = BK =

240 (shown in Figure B.4a), our full TRMM runs at trmmµ’s efficiency (i.e. 50%). On the

other hand, if we use the block factors BM = BN = BK = 120 (shown in Figure B.4b),

roughly half of the computation will be done by the trmmµ and the rest will be done by

gemmµ (shown in gray). We will discuss in detail how we can calculate this in Section B.3.

167

240

240

(a)

120 120

120
A11

120 A21 A22

(b)

Figure B.4: Triangle partitioning for an example of LLN-variant of TRMM: (a) BM = 240
(b) BM = 120

Since gemmµ are extremely optimized, they can achieve between 25%-95% (depending on

architecture, problem and block sizes) of the peak performance. On recent Intel machines

(e.g. Haswell-EP), a gemmµ with BM = BN = BK = 120 achieves about 85% and with

BM = BN = BK = 240 achieves about 90% of peak performance. Note that assuming

the performance of 45% of peak for our trmmµ with BM = BN = BK = 120, the overall

performance of our TRMM for the above problem would be (0.5×45%)+(0.5×85%) = 65%.

As we can see, even though the performance of both gemmµ and trmmµ is higher for a block

factor of 240, it is not the best block factor for our example problem. Therefore, the best

block factors to use will vary depending on relative gemmµ and trmmµ performance and

the input size. Therefore, during our gemmµ search we tune and time a set of block factor

combinations and one of those combinations needs to be used during runtime based on the

given problem size. The best way to do this would be to exhaustively tune each routine for

all problem sizes possible and store the selections in a table to be used later for a user-given

problem. However, tuning for all problem sizes is not feasible in practice. A compromise is

to exhaustively tune for some representative problem ranges and interpolate/extrapolate for

other problem sizes. Even with smart pruning of potentially non-optimal solutions in this

exhaustive search, tuning can take a couple days even for one routine (e.g. our parallel LU

factorization). To avoid this, our proposed approach is to build a computational model for

168

each routine that combines a few empirically tuned data points and a theoretical model of

the operation based on its FLOP count. Note that the FLOP count analysis we are doing

in this chapter are only extensions of prior research [4, 49] with a focus on our microkernel-

based operations. In this chapter, we discuss how we can build such computational models

for our gemmµ-based serial TRMM, TRSM, Cholesky and LU factorization. Note that for

all the models discussed in this chapter, we assume that the problem sizes are multiple of the

block factors (i.e. M = i× BM , N = j × BN , where i, j ≥ 1). This simplifies the discussion

by omitting the analysis for partial blocks or panels. In actual implementation of the models,

proper analysis for partial blocks or panels are included.

B.3 Computational Model for gemmµ- and trmmµ-based TRMM

In this section, we will develop a computational model for TRMM using the FLOP count

analysis of TRMM operation and the empirical timings of the basic components needed for

TRMM.

B.3.1 Minimal FLOP Count for TRMM

In this section, we analyze the TRMM operation to find the minimum number of FLOPs

required to perform the operation. Our analysis will assume DIAG = N so that the diagonal

elements are always used for multiplication as in our trmmµ discussed in Section 2.3.1.

Consider the problem in equation B.5, where M = 3, N = 2 and alpha = 1.

Z11 Z12

Z21 Z22

Z31 Z32

=

A11 0 0

A21 A22 0

A31 A32 A33

×

B11 B12

B21 B22

B31 B32

(B.5)

Recall that the computation of the first column of Z requires the steps shown in Figure B.5.

Note that for Z11, we only need one multiplication. For Z21, we need two multiplications and

one addition and for Z31, we need three multiplications and two additions. In general, to

compute i-th row element of Z, we need i multiplications and (i − 1) additions. Therefore,

169

1. Z31 = A33B31 . 1 mult

2. Z31 = Z31 + A31B11 + A32B21 .2 mults, 2 adds

3. Z21 = A22B21 . 1 mult

4. Z21 = Z21 + A21B11 . 1 mult, 1 add

5. Z11 = A11B11 . 1 mult

Figure B.5: Computational steps of LLN-variant of TRMM for first column of Z

for an M -length column of Z, the total number of FLOPs required is given below:

FLOPs for M -length column =
M
∑

i=1

(i) + (i− 1)

=
M
∑

i=1

(2i− 1)

= M

(

2M − 1 + 1

2

)

= M2

(B.6)

Since the same operations are repeated for each column of Z, the total number of FLOPs

needed for an (M ×N)-sized LLN-TRMM is given below:

Total FLOPs in LLN-TRMM = NM2 (B.7)

In terms of computations needed, the LUN-variant is symmetric to the LLN-variant, thus

requiring the same number of FLOPs. Recall that other left-variants (e.g. LLT, LUT, etc.)

are mere reflections of LLN and LUN variants as described in Section 2.2.1.5. Therefore,

Equation B.7 applies for all the left-variants of TRMM.

For right-variants, consider the example of RUN-variant shown in equation B.8, where

M = 2, N = 3, and alpha = 1.

Z11 Z12 Z13

Z21 Z22 Z23

=

B11 B12 B13

B21 B22 B23

×

A11 A12 A13

0 A22 A23

0 0 A33

(B.8)

170

Recall that for right-variants, we process one row at a time. For Z11, we only need one

multiplication. For Z12, we need two multiplications and one addition. In general, for i-th

column element, we need i multiplications and (i−1) additions. Therefore, the total number

of FLOPs needed for one N -sized row of Z can be derived as:

FLOPs for N -sized row =
N
∑

j=1

(j) + (j − 1)

=
N
∑

j=1

(2j − 1)

= N

(

2N − 1 + 1

2

)

= N2

(B.9)

Since the same operations are repeated on each row for right-variants, the total number of

FLOPs needed for an (M ×N)-sized RUN-variant of TRMM is given below:

Total FLOPs in RUN-TRMM = MN2 (B.10)

Similar to left-variants, Equation B.10 is valid for all the right-variants of TRMM.

For the GEMM-based approach, consider an example of the LLN-variant of TRMM where

M=36 and N=12. Using Equation B.7, the total number of FLOPs required is 15,552. As-

suming BM = 12 and BN = 12 for the GEMM-based approach, the blocked matrices are

shown in Figure B.6. The steps needed to complete the operation are identical to the steps

shown in Figure 2.8.

Step 1, 3, and 5 themselves are TRMM operations of size 12×12. We can use our previously

developed Equation B.7 to compute the number of FLOPs needed for each of these steps

(1,728 FLOPs each). For step 2, we need a GEMM update with M = 12, N = 12, and

K = 24. A GEMM operation of size M , N , and K with α = 1 and β = 1 requires 2MNK

FLOPs [4]. Using this formula, step 2 requires 2× 12× 12× 24 = 6, 912 FLOPs. Similarly,

step 4 requires 2 × 12 × 12 × 12 = 3, 456 FLOPs. Therefore, the total number of FLOPs

required = (3× 1, 728) + 6, 912 + 3, 456 = 15, 552, which is the exact number we previously

171

12 12 12

12

12

12

A

12

12

12

12

B

12

12

12

12

Z

= î

Figure B.6: An example of LLN-variant of GEMM-based TRMM: M = 36 and N = 12.

computed by using equation B.7 on the whole problem. This analysis shows that blocking

doesn’t require any extra FLOPs for GEMM-based TRMM.

B.3.2 FLOP Count for our gemmµ- and trmmµ-based TRMM

In Section B.3.1, we showed that GEMM-based TRMM doesn’t require any extra FLOPs.

However, this is not true for our trmmµ-based approach discussed in Section 2.2. As we have

seen, our trmmµ zero-pads the diagonal blocks of the A matrix to make them full matrices,

so that we can perform all computations as if it were a gemmµ routine (i.e. minimal changes

are required to use the gemmµ framework). In Figure 2.16, let us assume um = 4 and un = 12

for the trmmµ. Note that for a TRMM operation of size 12 × 12, we have 3 um-sized row

panels of A where each requires zero-padding in the diagonal unroll-block. As a result, each

of these row panels are now rectangular during multiply with size 4×4, 4×8 and 4×12 from

top to bottom row-panel respectively. Since these zero-padded row-panels are rectangular,

they are treated just like GEMM row panels and are multiplied with the B column-panels

of size 4× 12, 8× 12 and 12× 12, respectively. Using GEMM’s required FLOP formula for

α = 1, β = 0 for the diagonal block multiplication, the number of required FLOPs for Z1, Z2,

and Z3 are 4×12×(2×4−1) = 336, 4×12×(2×8−1) = 720, and 4×12×(2×12−1) = 1, 104,

respectively. The total number of FLOPs done by our trmmµ in this case is 2,160, compared

to the minimum 1,728 FLOPs required in the ideal case without zero-padding. Note that

we increased the FLOPs required by our trmmµ by 25% for a 12 × 12 input with um = 4.

172

With the increased FLOPs done by our trmmµ, the total number of required FLOPs by our

gemmµ- and trmmµ-based TRMM is (3× 2, 160) + 6912 + 3456 = 16, 848. Note that this is

about 8.33% extra computations done by our gemmµ- and trmmµ–based approach. As M

and N grows for the input of TRMM, this percentage of extra computations quickly becomes

negligible. For example, for an LLN-TRMM of size 6, 000×6, 000, assuming BM = BN = 240

and um = 12, the amount of extra FLOPs is only about 0.2%. A general formula for the

number of extra (i.e. useless) FLOPs for a (BM ×BN)-sized input in LLN-variant of trmmµ

can be derived as follows1:

1. Minimal TRMM FLOPs: For a um × un unroll-block of Z, the minimal number of

required FLOPs can be computed using the formula in Equation B.7.

Minimal TRMM FLOPs = unu
2
m

(B.11)

2. Unroll-block trmmµ FLOPs: After the zero padding, trmmµ will perform the same

number of FLOPs as a gemmµ on these blocks with α = 1 and β = 0 assuming these

zero-padded blocks are multiplied first2. Therefore, for a um×un block of Z, the FLOPs

performed by the trmmµ is given below:

Unroll-block trmmµ FLOPs = unum(2um − 1)

= 2unu
2
m − unum

(B.12)

3. Unroll-block Useless FLOPs: The number of useless FLOPs are the FLOPs due to

zero-padding the diagonal um×un blocks. This can simply be computed by subtracting

1Note that we assume BM is divisible by um and BN is divisible by un for simplified
discussion.

2For some variants, even though the zero-padded blocks are multiplied last with α = 1
and β = 1, one non-diagonal gemmµ is performed with α = 1 and β = 0 so the total number
of FLOPs stays the same.

173

Equation B.11 from Equation B.12 as shown below:

Unroll-block Useless FLOPs = 2unu
2
m − unum − unu

2
m

= unu
2
m − unum

= unum(um − 1)

(B.13)

4. Panel Useless FLOPs: For LLN-variant of trmmµ, a column-panel of size BM × un

is processed at a time. For each unroll-block of such panels, only one unroll-block

computation requires useless FLOPs (the rest of the computation involves non-diagonal

unroll-blocks). Since each column panel consists of BM

um
unroll-blocks, we derive the

number of useless FLOPs for such panel as shown below:

Panel Useless FLOPs =

(

BM

um

)

unum(um − 1)

= BMun(um − 1)

(B.14)

5. Block Useless FLOPs: As discussed before, for LLN-variant of trmmµ, the same

operation is repeated for each (BM × un)-sized column panel of Z. For a (BM × BN)-

sized block of Z, we have BN

un
column-panels. Therefore, the total number of useless

FLOPs by trmmµ for a block-sized input is given below:

Block Useless FLOPs =

(

BN

un

)

BMun(um − 1)

= BNBM(um − 1)

(B.15)

Recall that trmmµ is called once for each (BM ×BN)-sized block of a Z. For an input of size

M ×N , the total number of useless FLOPs by our gemmµ- and trmmµ-based TRMM can

be computed as below:

Total Useless FLOPs =

(

N

BN

)(

M

BM

)

BNBM(um − 1)

= NM(um − 1)

(B.16)

174

The total number of FLOPs required by our gemmµ- and trmmµ-based TRMM can be

computed by simply adding Equation B.7 and B.16 as shown below:

Total LLN-TRMM FLOPs = NM2 +NM(um − 1)

= NM(M + um − 1)

(B.17)

As discussed before, the above equation can be applied for any left-variant of our gemmµ-

and trmmµ-based TRMM. We can do similar analysis to show that the total number of

FLOPs for any right-variant of our gemmµ- and trmmµ-based TRMM is MN(N + un − 1).

B.3.3 Building the Computational Model

As mentioned before, trmmµ is called once for each block of Z. Let Nrp and Ncp be the

number of row panels and column panels of Z, respectively. If tT is the time taken by a

single call to trmmµ, the total time spent (TT) in trmmµ can be computed as shown below:

Total trmmµ Time, TT =

Ncp
∑

j=1

Nrp
∑

i=1

tT

= NcpNrptT

=

(

N

BN

)(

M

BM

)

tT

(B.18)

Recall that for each i-th row-block of each column-panel, we need (i−1) calls to the gemmµ

for GEMM updates. If tM is the time taken by one gemmµ call on one block sized input,

the total time (TM) spent for all calls to gemmµ is given below:

Total gemmµ Time, TM =

Ncp
∑

j=1

Nrp
∑

i=1

(i− 1)tM

=
1

2
NcpNrp(Nrp − 1)tM

=
1

2

(

N

BN

)(

M

BM

)(

M

BM

− 1

)

tM

(B.19)

To estimate the total time of our LLN-variant of TRMM, we can can use the following

equation, derived by adding Equation B.18 and B.19:

Total TRMM Time =

(

N

BN

)(

M

BM

)

tT +
1

2

(

N

BN

)(

M

BM

)(

M

BM

− 1

)

tM (B.20)

175

We can use this equation for a given problem (i.e. M and N are known) to estimate the

performance of using a certain combination of block factors (BM and BN) and choose the

best one based on our estimated performance. We can do a similar analysis to build model

for each variant of TRMM. The only unknown factors in our model (Equation B.20) are tT

and tM that varies depending on the system. Section B.3.4 describes how we can estimate

the values of tT and tM .

Note that in our computational model, we ignored the cost of copying the blocks. Although

it may not be important for asymptotic problems, the cost for copy is significant for small

problems. Therefore, we can improve the model by including this cost but that requires extra

timing of the copy routines. At the time of this research, the timing of copy routines in the

ATLAS gemmµ framework is in progress. In future research, we can include the copy cost

to improve the decision of our model.

B.3.4 Empirical Timings

In the computational model for TRMM, we need to know the time (tT) it takes for a trmmµ

on a block sized TRMM and the time (tM) it takes for a gemmµ on a block sized GEMM.

Recall that during our search for trmmµ and the gemmµ for our gemmµ-based TRMM, we

measure the performance of these all the microkernels anyway to find the best ones for the

system. We can save those timing results during the search and later use them as tT and tM

respectively for different block factors. Note that proper timing of a microkernel is vital to

have a good estimate of performance [70]. ATLAS uses various timing techniques depending

on whether the input problem can fit into some level of the system’s cache or not. We can use

the same approach to time the microkernels for two categories of problems: (1) the problem

fits and (2) the problem does not fit in the system’s cache. During the selection of block

factors using our model, we will determine whether the problem is small enough to fit in the

cache or not and use the appropriate timing data to estimate the performance.

176

B.4 Computational Model for gemmµ- and trsmµ-based TRSM

For our gemmµ- and trsmµ-based triangular solve (TRSM), we need two searches as well

for the best performance:

1. Finding an optimized gemmµ with a restriction of BM = BK for left variants or

BN = BK for right-variants, where BM , BN , and BK are block factors for the M , N ,

and K dimensions respectively and

2. Finding a combination of um, un, and uk so that our TRSM microkernel can utilize an

optimized gemmµ for best performance. For trsmµ, we have a restriction of um to be

a multiple of uk for left variants, or un to be a multiple of uk for right variants, where

um, un, and uk are unroll factors for M , N , and K dimensions.

Like TRMM, due to trsmµ performing a small portion of the total number of required

computation, we can afford to select one combination of um, un, and uk and then use it

for any block-sized TRSM. However, as discussed before, selecting only one combination of

gemmµ and the block factors is not always optimal. Therefore, we have the same problem as

TRMM that we need to select one combination of the block factors BM , BN , and BK for a

given input problem for performing the solve. To select the combination for best performance,

we will develop a computational model for our gemmµ-based TRSM.

B.4.1 FLOP Count Analysis

Consider the example of LLNN-TRSM in the equation below, where M = 3, N = 2 and

alpha = 1.

A11 0 0

A21 A22 0

A31 A32 A33

×

X11 X12

X21 X22

X31 X32

=

B11 B12

B21 B22

B31 B32

(B.21)

Recall that the solve of the first column of X requires the steps shown in Figure 2.24. Note

that for X11, we only need one division. For X21, we need one multiplication, one subtraction

177

and one division and for X31, we need two multiplications, two subtractions and one division.

In general, for i-th row element, we need (i− 1) multiplications, (i− 1) subtractions and 1

division. The same number of computation is needed for each column.

Number of FLOPs in LLN-TRSM of size M ×N =
N
∑

j=1

M
∑

i=1

(i− 1) + (i− 1) + 1

= NM2

(B.22)

Like TRMM, LUN-variant of TRSM is symmetric to the LLN-variant, thus requiring the

same number of FLOPs.

Now consider the RUN-variant of TRSM shown in the equation below, where M = 2,

N = 3 and alpha = 1. For the right-variants, since we process one row of X at a time,

we start with X11. For X11, we only need one division, for X12, we need one multiplication,

one subtraction and one division. In general, for j-th column, we need 1 division, (j − 1)

multiplications and (j−1) subtractions. The same number of FLOPs is needed for each row.

Number of FLOPs in RUN-TRSM of size M ×N =
M
∑

i=1

M
∑

j=1

(j − 1) + (j − 1) + 1

= MN2

(B.23)

Due to being symmetric, RLN-variant of TRSM requires the same number of FLOPs as the

RUN-variant.

As shown in Section B.3 for GEMM-based TRMM, we can similarly show that GEMM-

based TRSM requires the same number of FLOPs as the unblocked TRSM. Next, we will

analyze our gemmµ-based approach. Note that unlike TRMM, we do not pad the triangular

blocks for our trsmµ. As a result, the number of FLOPs required should be the same as

the unblocked TRSM. However, recall that we store the inverted diagonal during copy and

multiply with inverted diagonal elements to avoid repeated division operation. This incurs

BM or BN extra FLOPs for left or right variants, respectively.

Number of FLOPs in Left-trsmµ = BNB
2
M + BM

Number of FLOPs in Right-trsmµ = BMB2
N +BN

(B.24)

178

If we assume Nrp to be M/BM , i.e. the number of BM -sized row-panels and Ncp = N/BN

i.e. the number of BN -sized column panels, the total number of FLOPs done by the trsmµ

is given below:

Total Left-trsmµ FLOPs = Ncp ×Nrp × (BNB
2
M + BM)

=

(

N

BN

)(

M

BM

)

BM(BNBM + 1)

=

(

MN

BN

)

(BNBM + 1)

(B.25)

We can use a similar analysis to that of TRMM to see that for i-th BM -sized row-panel, we

need (i − 1) calls to the gemmµ of size BM , BN , BM . The total number of calls to gemmµ

is given below:

Total number of calls to gemmµ for Left-variants =

Ncp
∑

j=1

Nrp
∑

i=1

(i− 1)

=
1

2
NcpNrp(Nrp − 1)

=
1

2

(

N

BN

)(

M

BM

)(

M

BM

− 1

)

(B.26)

Each of these calls to gemmµ performs 2 × BM × BN × BM FLOPs. Therefore, the total

number of FLOPs done by gemmµ is given below:

Total gemmµ FLOPs for Left-variant =
1

2
NcpNrp(Nrp − 1)× 2×BM ×BN ×BM

=

(

N

BN

)(

M

BM

)(

M

BM

− 1

)

B2
MBN

=

(

N

BN

)(

M

BM

)(

M −BM

BM

)

B2
MBN

= NM(M − BM)

(B.27)

B.4.2 Building the Computational Model

If we assume that tS is the time taken by one trsmµ for an BM ×BN sized problem and tM

is the time taken by one gemmµ for a GEMM of size BM , BN , and BM . Using these two

parameters, we can build a computational model to estimate the amount of time that will

179

be needed to perform a TRSM operation using our gemmµ-based approach, as shown below:

Total Time = Ncp × (Nrp × tS +
1

2
Nrp(Nrp − 1)× tM)

=

(

N

BN

)(

M

BM

tS +
M(M −BM)

2B2
M

tM

) (B.28)

We can use this equation for a given problem (i.e. M and N are known) to estimate the

performance of using a certain combination of block factors (BM and BN) and choose the

best one based on our estimated performance. We can do a similar analysis to build model

for each variant of TRSM. The only unknown factors in our model (Equation B.28) are tS

and tM that varies depending on the system.

As described in Section B.3.4 for the computational model of TRMM, we can save the

timing results during gemmµ and trsmµ search for estimation of tM and tS respectively. Note

that like TRMM, in our computational model for TRSM, we ignored the cost of copying the

blocks which can later be included for improved predictions.

B.5 Computation Model for Serial Cholesky Factorization

For our gemmµ-based serial Cholesky factorization, we need one search to find the best

gemmµ and a set of block factors with the restriction of square block factors i.e. BM =

BN = BK . Note that it may be possible to apply non-square blocking for Cholesky but in

our research, we chose square block factors to simplify implementation. We will simply use

BN to denote this square block factor.

B.5.1 FLOP Count Analysis

The minimal FLOP count for Cholesky factorization on a matrix of size N × N , as given

in [4], is shown below:

Total Cholesky FLOPs =
1

3
N3 +

1

2
N2 +

1

6
N (B.29)

Recall that a Cholesky factorization involves four major operations: a) block factorization

b) TRSM c) SYRK and d) GEMM. However, in our gemmµ-based approach, we are using

gemmµ to perform SYRK which requires extra/useless FLOPs. The total number of extra

FLOPs done can be derived as follows:

180

1. Minimal SYRK FLOP count for an (N ×K)-sized input for α = −1, β = 1 given in [4]

as:

Minimal SYRK FLOPs = KN(N + 1) (B.30)

2. In Cholesky factorization, SYRK is performed with N = BN and K = (j − 1)BN for

column panel j. If we assume that SYRK operation is performed for BN × BN -sized

inputs, we need to call the SYRK operation j−1 times for column panel j. If Np =
N
BN

is the number of column panels, then

Block-sized SYRK calls =

Np
∑

j=1

(j − 1)

=
Np(Np − 1)

2

=

(

N

2BN

)(

N

BN

− 1

)

(B.31)

3. For the number of FLOPs performed by each block-sized SYRK calls can be computed

using Equation B.30 as follows:

Block-sized SYRK FLOPs = B2
N(BN + 1) (B.32)

4. Since we call gemmµ to perform SYRK and each gemmµ operates on block-sized inputs

with α = −1, β = 1:

Block-sized gemmµ-based SYRK FLOPs = 2B3
N (B.33)

5. We can compute the number of useless FLOPs performed by each gemmµ calls by

subtracting Equation B.32 from Equation B.33 as shown below:

Block Useless FLOPs = 2B3
N − B2

N(BN + 1)

= B3
N −B2

N

= B2
N(BN − 1)

(B.34)

181

6. We can multiply Equation B.34 and B.31 to compute the total number of useless

FLOPs performed by our gemmµ-based Cholesky factorization as shown below:

Total Useless FLOPs = B2
N(BN − 1)

(

N

2BN

)(

N

BN

− 1

)

= B2
N(BN − 1)

(

N

2BN

)(

N −BN

BN

)

=
1

2
N(BN − 1)(N −BN)

(B.35)

Recall that the latest ATLAS release provides SYRK microkernels which may reduce the

number of useless FLOPs but may require copying the same data blocks to different storage

formats required by the gemmµ and the SYRK microkernel. Depending on the problem size,

we may choose to either do the extra FLOPs or do the extra copy.

B.5.2 Building the Computational Model

If Tf is the total amount of time taken by all block factorization steps, Ts is the total amount

of time taken for TRSM, and Tm is the total amount of time taken by GEMM and SYRK

using gemmµ.

Total Time for Cholesky Factorization, T = Tf + Ts + Tm (B.36)

Recall that the block factorization step is done once for every column-panel. If Np is the

number of row/column-panels (i.e. Np = N
BN

), the total time for factorizing the blocks is

given below:

Total Factorization Time, Tf = Np tf

=

(

N

BN

)

tf

(B.37)

tf is the time taken by an (BN × BN)-sized Cholesky factorization. We can estimate the

value of tf by timing the block factorization used in our Cholesky factorization.

Recall that on the first column-panel, TRSM is called on block-sized inputs for Np − 1

times. On the second column-panel, TRSM is called on block-sized inputs for Np − 2 times

182

and so on.

Total TRSM Time, Ts =

Np
∑

j=1

(Np − j) ts

=
1

2
Np(Np − 1) ts

=

(

N

2BN

)(

N

BN

− 1

)

ts

(B.38)

ts is the time taken by an (BN × BN)-sized TRSM. We can similarly estimate ts by timing

ATLAS’s TRSM routine on (BN ×BN)-sized inputs.

For GEMM, on the first panel, we have zero gemmµ calls. On the second column-panel,

one gemmµ is called for Np − 1 blocks. On the third column-panel, two gemmµ is called for

Np − 2 blocks and so on.

Total gemmµ Time, Tm =

Np
∑

j=1

((j − 1)(Np − j + 1)) tm

=
1

6
(N3

p −Np) tm

=
1

6

(

N3

B3
N

−
N

BN

)

tm

(B.39)

tm is the time taken by an (BN × BN)-sized gemmµ. tm can be estimated using the timing

data from the gemmµ search for Cholesky factorization. As before, we can have two variants

for each of the estimated values tf , ts, and tm: for in-cache and out-of-cache problems.

B.6 Computation Model for Serial LU Factorization

Recall that in an LU factorization, the major steps are panel factorization, applying row-

swaps (pivoting), TRSM and GEMM updates using gemmµ. The total time taken by the

complete LU factorization, T = Tf +Ta+Ts+Tm, where Tf is the total amount of time taken

by all panel factorization steps, Ta is the total amount of time taken for applying row-swaps,

Ts is the total amount of time taken for TRSM, and Tm is the total amount of time taken by

GEMM. Recall that in our gemmµ-based serial LU factorization, all the operations except

the panel factorization are done on block-sized data at a time.

183

Since a panel factorization is itself an LU factorization (unblocked) on an B-sized column-

panel, we need to analyze the panel factorization in detail to build a model. An unblocked

panel factorization is done with the steps: a) finding pivot with IAMAX b) row-swaps using

SWAP and c) rank-1 update using GER. We will estimate the time taken by each of these

components for estimating the panel factorization time for an (M ×B)-sized panel.

IAMAX: As discussed in Section 3.1, for an (M × B)-sized panel, we need an IAMAX

on each column with size M , M − 1, M − 2, and so on. An IAMAX operation with size M

requires M − 1 comparisons to find the pivot element. Therefore:

Total IAMAX comparisons =
B
∑

j=1

(M − j − 1)

=
1

2
(2MB − B2 −B)

(B.40)

Time for IAMAX, Ti(M,B) =
B
∑

j=1

ti(M − j + 1)

where ti(x) is the time needed for IAMAX on an input of size x.

(B.41)

Note that to estimate these IAMAX times for all possible sizes is not feasible. Rather we can

time IAMAX for some pre-selected sizes and use interpolation or extrapolation as needed to

estimate the time for any other input sizes. Note that an alternative approach to estimate

Ti(M,B) would be to estimate the time for an average case, and use that for all columns

(instead of estimating all possible ti i.e. ti(M), ti(M − 1), etc.). In that case, Ti(M,B) =

B × ti(M −B/2)

SWAP: In the worst case, we have B element swaps for each column. If the diagonal

element of the current column is already the pivot element, no swap is necessary. Since this

is rarely true for a uniformly random input, we will consider the worst case in our analysis.

Total SWAPs =
B
∑

j=1

B = B2 (B.42)

Time for SWAP, Tsw(M,B) = B tsw(B) (B.43)

184

where tsw(B) is the time needed to swap B elements. We can time the SWAP operation for

each available Bs to estimate tsw(B).

GER: After each swap, we need to apply GER on the rest of the matrix. The GER

operations are of size (M − j)× (B − j) after performing SWAP for the j-th column where

i < B since no GER is needed after B-th swap.

Total GER FLOPs =
B
∑

j=1

(M − j)× (B − j) (B.44)

Total GER time, Tg(M,B) =
B
∑

j=1

tg(M − j, B − j) (B.45)

where tg(x, y) is the time needed to perform a GER on (x×y)-sized input. As with IAMAX,

timing GER for all possible inputs is not feasible. Therefore, we can time GER for some

pre-selected input sizes and use interpolation or extrapolation if needed to estimate time for

each of these GER operations or use an average estimation as with IAMAX. In that case,

Tg(M,B) = B tg(M − B/2, B/2).

Using the above equations, we can estimate the time for panel factorization on (M ×B)-

sized input.

Time for one panel factorization, tf (M,B) = Ti(M,B) + Tsw(M,B) + Tg(M,B) (B.46)

Recall that the height (M) of the panel factorization decreases as we progress for suc-

cessive column-panels in the outer LU factorization. Therefore the total time for all panel

factorization can be computed as:

Total time for panel factorization, Tf (N) =

Np
∑

j=0

tf (N + B − jB,B) (B.47)

where Np = N/B i.e. the number of column-panels in the input.

After each panel factorization, we move on to the next column-panel of the matrix and

apply the necessary updates on it before it can be factorized using our selected panel factor-

ization method. These updates include pivoting rows and applying TRSM on (B ×B)-sized

185

blocks. For column-panel j, we apply pivot and TRSM on j − 1 blocks (reading data from

previously factorized j − 1 panels on the left) where 1 ≤ j ≤ Np.

Total pivot time, Tp =

Np
∑

j=1

(j − 1)× tp(B,B) (B.48)

Total TRSM time, Ts =

Np
∑

j=1

(j − 1)× ts(B,B) (B.49)

Both pivot time (tp(B,B)) and TRSM time (ts(B,B)) for block sized input can be estimated

through prior timing of these operations for all available block factors.

Recall that a series of gemmµ is performed after each TRSM operation is done on a certain

panel. The number of calls to gemmµ for column-panel j is
∑j−1

i=1 (Np− i).

Total number of calls to gemmµ =

Np
∑

j=1

j−1
∑

i=1

(Nb− i) (B.50)

Total time for GEMM updates, Tm =

Np
∑

j=1

j−1
∑

i=1

(Nb− i)× tm(B,B,B) (B.51)

tm(B,B,B) is the time taken by one gemmµ call on block-sized square input and this

estimated time is already saved by the gemmµ framework for each available B. Using the

above equations, we can estimate the time for LU factorization for each available B given

an input problem and select the best B for performing the factorization.

186

APPENDIX C

COPYRIGHT PERMISSIONS

Copyright permissions for the previously published materials are provided here.

Figure C.1: Reuse permission from IEEE for the paper on LU factorization

187

����������	�
�������

�
���������	
�������������
����������������	���������	
������������	
	��	��
������
�	
�
����	�������������	���
������ ��
��	�����!��������" �#�����
���������	�
!������������
�����������$�����	
��"%!�$%#&�
�

�'� (�	��������	�����
�����	���

)���*�	�
����������	������
�*��	����*��������������������������
	+��*����������,	��*
���������
	�
����	������
���)	����������
�����
��	������
��	��	
������������
��	
	��	
��)	���	�&�"�#�����
	�	����������������	����
�����	���������	
������������	
	��	��
�������	
�
����	������������
�	���
������ ��
��	�����!��������" ���#-�"*#�����)��	����	�����	
)�	������	-�
����"�#��������	
�����������������
���	�������������)��������
������������*�����
�
��	��������	�������������	���������	
������������	
	��	��
�������	
�
����	�
������������	���
������ ��
��	�����!��������" ���#�"����	���)	������	�
%$��	
����%#'�
�

�'� (�	�
�������
���	��������	���	��
����
�����������
	�
�������������	�$��	
������
�
��������������
�������������
�����
�*��	��*��!�$�������)	�*
�������������
�
	�	��������������	���������	
������������	
	��	��
�������	
�
����	�
������������	���
������ ��
��	�����!��������" ���#'�
�

.'� �������	�������������	�
�������
���	����� 	������������
��	
��
����!�$���	�
�������	�����
�����	���

)���*�	�
����������	�������	�������
	�����	�	����)���	�
����*���
�����������
��������������	�������������	���)	
���	�	��������
�*������
�������	����
�������*��!�$������
	�	��	�!�$�
�������������*��	�����
�������
�
�)�����
���*������'�
�

/'� 0�	
	��	�	���
�������)	��*����	���������
����
����	
�����������������	�������
�
������	�
�������*�)	�������)	��
�)��	������	����������	
�������������
����	�������!�$'�
�

�'� 1+�	����
���	�
������	+�
	������
���	�����!�$��*�)	����
	��������	
���������	�
���	��	�������
��	
���
�����������	�$��	
����'�

�
1��	
����
� �*�����������	������2�"	'�'��(���
�����������#&333333333333333333333333�

 �*��������(���	&33�

!����
"�#��4��(12&333�

!����
"�#� �5�12&33�

4	��
��������
����
�������	� �*������������	�������4	�	��	�6�
��
 �*��������6�
���)����*�	���������&77��*��������'���	
���������'�
�7�

���������

�	
��
	��	��������	������������������	�	��	��������

����� ��!����"�#��������!	��	��	�"�$��	�$�
 	�

�����%&'�!���("�#�&)���(�!#(�'#�*#("�$��#�$�+%#�

Figure C.2: Consent form submitted to ACM: poster and extended abstract ownership re-
tained by author

188

VITA

Md Rakib Hasan was born in Dhaka City, Bangladesh. He finished his undergraduate studies

in Computer Science and Engineering at Bangladesh University of Engineering and Tech-

nology in March 2009.

After working at a software development company for more than a year, Rakib came

to United States of America to pursue his graduate studies at University of Texas at San

Antonio. In 2013, he transferred to Louisiana State University to continue his research with

Dr. R. Clint Whaley. He is currently a candidate for the degree of Doctor of Philosophy in

Computer Science, which will be awarded in August 2017.

189

	Louisiana State University
	LSU Digital Commons
	2017

	Maintaining High Performance Across All Problem Sizes and Parallel Scales Using Microkernel-based Linear Algebra
	Md Rakib Hasan
	Recommended Citation

	Hasan_diss.dvi

