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Abstract
Efficient representation of large amount of data particularly images and video helps in

the analysis, processing and overall understanding of the data. In this work, we present

two frameworks that encapsulate the information present in such data. At first, we present

an automated symbolic framework that is used to detect activities from videos in real time.

This framework makes use of regular expressions for symbolic representation of motion and

subsequent activity resulting from the motion, that are present in videos. The framework

is designed to uniformly handle trajectory based videos that follow certain paths and ar-

ticulated activities with periodic motion. The motion present in the videos are represented

by regular expressions that are provided manually or learnt automatically using positive

and negative examples of strings using offline automata learning frameworks. A modified

Levenshtein distance algorithm is used to determine the confidence measure between any

such string that represents motion and activities described by regular expressions. Recog-

nitions on trajectory based activities like vehicle turns (U-turns, left and right turns, and

K-turns), vehicle start and stop, person running and walking, and articulated activities

such as digging, waving, boxing, and clapping in videos from the VIRAT public dataset,

the KTH dataset, and videos obtained from YouTube are evaluated using this framework.

Next, we describe a core sampling framework that makes use of activation maps from

several layers of a pre-trained Convolutional Neural Network (CNN) as features to another

neural network using transfer learning to provide an understanding of an input image. The

intermediate map responses of a Convolutional Neural Network (CNN) contain information

about an image that can be used to extract contextual knowledge about it. Our framework

creates a representation that combines features from the test data and the contextual

knowledge gained from the responses of a pretrained network, processes it and feeds it to

a separate Deep Belief Network. We use this representation to extract more information

from an image at the pixel level, hence gaining understanding of the whole image. We

experimentally demonstrate the usefulness of our framework using a pretrained VGG-16
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model to perform segmentation on the BAERI dataset of Synthetic Aperture Radar (SAR)

imagery and the CAMVID dataset.

Using this framework, we also reconstruct images by removing noise from noisy charac-

ter images. The reconstructed images are encoded using Quadtrees. Quadtrees can be an

efficient representation in learning from sparse features. When we are dealing with hand-

written character images, they are quite susceptible to noise. Hence, preprocessing stages

to make the raw data cleaner can improve the efficacy of their use. We improve upon the

efficiency of probabilistic quadtrees by using a pixel level classifier to extract the character

pixels and remove noise from the images. The pixel level denoiser uses a pretrained CNN

trained on a large image dataset and uses transfer learning to aid the reconstruction of

characters. In this work, we primarily deal with classification of noisy characters and cre-

ate the noisy versions of handwritten Bangla Numeral and Basic Character datasets and

use them and the Noisy MNIST dataset to demonstrate the usefulness of our approach.
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Chapter 1
Introduction

The process of extracting information from images involves various steps of Image

Analysis. The smallest components of images consists of pixels. A collection of pixels

together form different objects in the images. These individual component of images are

correlated with respect to their positions, which make them distinct from other data types.

Data Representation has various uses in Computer Science, Mathematics, Engineering and

a host of other fields. Effective representation of raw data is helpful for data analysis,

manipulation, storage, machine learning etc. For example a good visualization of raw data

can help add insights about the characteristics of that data and binary representation of

characters, strings and instructions are the basic building blocks of a computer itself. In

Machine Learning, data representation helps in solving the problem of learning from the

data. Principal Component Analysis (PCA) is an example of an algorithm to reduce the

dimensionality of data so that specific algorithms designed to understand the problems are

able to solve the problem effectively. Once we learn about the data we gain knowledge

from it. The information learned from complex systems also needs to be represented so

that a computer can use it. In this work, we have defined various frameworks and ways to

represent data and knowledge learned from a variety of complex real world problems. We

primarily deal with image and video data and the ways we represent them, the knowledge

gained from them and the knowledge gained from the algorithms used to learn them.

1.1 Symbolic Framework

Our symbolic framework is an approach to encapsulate information seen on videos,

specifically different activities performed by humans or objects in the videos using symbols

or strings. We take advantage of regular expressions and advances in algorithms that can

learn regular expressions efficiently to learn those activities that have been encoded using

symbols.
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Figure 1.1: The architecture of the Symbolic framework.

Intelligence can be obtained from recognizing activities underlying the dynamics of

moving objects [95, 5] in surveillance videos. This knowledge obtained is a key enabler for

many video analytics applications [87]. Moving objects in a surveillance video can comprise

humans, vehicles, animals, etc. While many deployed surveillance systems provide auto-

matic tracking, describing the activities of tracked objects still generally requires human

intervention. Manually watching video streams continuously is time consuming, and the

human mind is not well suited to watching endless hours of repetitive video. After a while,

analysts are prone to miss events and even if no events were missed; manually keeping a

log of everything that happens in a video would not be viable.

It is therefore essential to develop techniques to automatically analyze the motions and

behaviors of objects in video streams. Potentially important events could then be flagged in

real time, giving analysts a more manageable amount of data to handle. And detailed logs

of all events could be automatically kept. While in the past few years there has been a slew

of research progress in real time activity recognition from videos, the general problem is

inherently hard. Each activity can be assigned to distinct motion characters and with little

variations. We define trajectory-based activities as activities involving turns of a vehicle,

stopping a vehicle, moving from a stopped position, people moving around a certain path

and the physical motion between frames. We define periodic articulated activities like a

human gestures. In this type of motion, we assume the human or object is stationary
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and only parts of the object or human are moving. Existing algorithms that recognize

individual activities include using specialized complex descriptor matching (such as bag-

of-words or histogram-of-gradients), probabilistic logics, and other classification methods.

Complex descriptor matching tends to be computationally expensive. Even with recent

improvements in activity recognition, a uniform approach that is able to efficiently recognize

and be applicable to a wide variety of problems is missing. Our approach can be seamlessly

integrated with reasoning platforms so that inferences at a higher level of abstraction such

as anomalies can be recognized. In this work, we describe a symbolic framework that

automates the recognition of activities from videos with real time performance.

1.1.1 Regular Expressions for Encoding Activities

In our framework, regular expressions are used to represent (possibly infinite) sets of

motion characteristics obtained from a video. It can uniformly handle both trajectory based

and articulated activities that are periodic in nature while providing polynomial time graph

algorithms for fast recognition. The regular expressions representing motion characteristics

for activities are in many cases simple enough to be provided manually (e.g., by an expert

analyst or by crowd sourcing, etc.) providing a generative framework; or they can be

learnt automatically from positive and negative examples of strings describing dynamic

behavior using offline automata learning frameworks like libalf [17]. Confidence measures

are associated with recognitions using Levenshtein’s distance between a string representing

a motion signature and a regular expression describing an activity [71]. Since regular

languages described by regular expressions are as expressive as monadic second-order logic

over strings (MSO-S) [91], we get for free a rich logical framework that can be integrated

with reasoning platforms for performing high level inference by linking together activities.

We have used our framework to recognize trajectory-based activities like vehicle turns (U-

turns, left and right turns, and K-turns), start and stop, person running and walking, and

periodic articulated activities like human digging, waving, boxing, and clapping in videos

from the VIRAT public dataset [73], the KTH dataset [86], and a set of videos obtained
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Figure 1.2: The architecture of the core sampling framework.

from YouTube. The details of these examples and the experimental results are provided in

Chapter 3.

1.1.2 Overview of the Architecture

Fig. 1.1 describes the overview of the architecture of our framework. The full motion

surveillance videos first go through a stabilization stage where the random movements in

the video are minimized. We feed the video through a tracker which tracks objects in the

video and passes it to the activity analyzer which then produces alerts when some kind of

activity is triggered. For the articulated activity videos it might not be necessary to track

objects if they have stationery objects. In this scenario, the region of interest is passed

through the activity analyzer. The activity analyzer is responsible for representing various

activities using regular expressions. Activities are represented using a series of symbols and

differentiated from other activities based on these symbols.

1.2 Core Sampling Framework

We designed our core sampling framework to do pixel level classification and regression

in images. The core sampling framework also makes use of pretrained networks to bypass

training large networks with a huge dataset. We make use of features that have been learnt

in the previous network to help classification and regression in different datasets. We use

such features and random samples of the data and trains a second network to solve the

problem, we are interested in more effectively. Our core sampling framework is able to

use the activation maps from several layers as features to another neural network using

transfer learning to provide an understanding of an input image. Our framework creates
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Figure 1.3: Artificial Neural Networks

a representation that combines features from the test data and the contextual knowledge

gained from the responses of a pretrained network, processes it and feeds it to a separate

Deep Belief Network. We use this representational model to extract more information from

an image at the pixel level, thereby gaining understanding of the whole image.

1.2.1 Prediction at Pixel-Level

Pixel-wise prediction from images has a lot of applications [42] in scene understanding.

It helps to generate a fine grain segmentation compared to existing techniques [41],[9],[89]

that segment at a coarser level. The rise of machine learning has led to novel and au-

tomatic segmentation techniques that require very little user input [8],[67],[39]. Deep

learning[14],[45], [60] in particular, has enabled this as it makes it possible to learn data

representations without supervision.

1.2.2 Artificial Neural Networks

Neural Networks are built upon the mechanism of biological neurons and their networks.

Artificial Neural Networks consist of a large amount of nodes inter-connected by weighted

lines across layers that act together as non-linear “summing devices” [32]. These weights

are updated as the network receives more training data. Artificial networks as an associate
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memory that can be used as associate memory and this memory can work with the presence

of of certain level noise [98]. Fig 1.3 shows a sample architecture of an artificial neural

network. It is made up of inputs and output values with several types of layers each with

neurons in the middle.

1.2.3 Convolutional Neural Networks (CNNs)

CNNs are particularly useful for image understanding, work on parts of the input

locally usually at different pyramidal levels. In doing so, the network gathers both low

level and high level information about an input image. So, the lower layers encode the

pixels while the deeper layers provide representation of objects comprising of those pixels

that eventually help in understanding the entire image. Figure 1.4 shows an example a

popular CNN architecture: LeNet [62]. Convolutional Neural Networks are a derivative

from artificial neural networks where the feed forward network consists of special layers

that take advantage of spatial correlation between the data points. They have translation

invariant characteristics. The spatial arrangement of images allow for CNNs to perform

better. Pixel wise classification and image understanding can be improved with the local

and global information that are encoded in the different layers of a CNN; this information,

stacked at different pyramidal levels, can be viewed as a core sample that can enable better

understanding of an image. A CNN consists of different layers that convolve the input

image and/or parts of the image with filters. Training such a network involves determining

these filters so that they produce the expected output from a given input. We can obtain

map responses by feeding in test images through these (pre)trained layers. Fig. 4.3 shows

some of the map responses that we get when we feed an input image of a cow through the

various layers of the pretrained network.

• Hypercolumn

A hypercolumn derived using an image and each hypercolumn is defined as a vector with

k columns, where k is the amount of intermediate response maps from the VGG-16 model,

with each component of the vector being a corresponding pixel in each of the maps. A
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Figure 1.4: Example of Convolutional Neural Network.

hypercolumn does not preserve any spatial correlation between the constituent maps. The

notion of Hypercolumn introduced in [42] builds upon this. The term Hypercolumn is used

to describe a column of a group of map responses from the convolution layers of a network,

aligned together such that each value in that column refers to the output of different layers

from each of these maps, for an individual pixel as shown in Fig 4.4. A random sample

drawn from a core is called a core sample. A core is a collection of hypercolumns, one per

pixel in an input image. Core samples generated from input images a fed to the second

stage of our framework. The two-stage architecture of our core sampling framework is given

in Figure 1.2. We use the VGG-16 [90] model to bootstrap our framework. This model was

trained using the ImageNet dataset [56] which comprises of more than a million training

images and 1000 classes. The intermediate maps, that are generated for each pixel during

the testing phase when images are input to the above model, when stacked together and

resized to a uniform size, form hypercolumns. Image pyramids have already been used to

extract or learn more information from images [4], [25] as well as for image segmentation

[9]. In a sense, the response from the layers of a CNN can also be viewed as the different

pyramidal levels of the image viewed at different locations of that image. In our framework,

we accumulate such hypercolumns from each pixel of every training image and use that as

training data to a deep belief network.

7



Figure 1.5: A hypercolumn is [42]represented using response maps when an image of cow
is passed through a Convolutional Layer.

1.2.4 Deep Belief Networks

The second stage of our framework consists of a Deep Belief Network (DBN). Deep

Belief Networks are unsupervised deep learning models [45]. A deep belief network is trained

by first training stacked Restricted Boltzmann Machines (RBMs) in a greedy manner [46].

A weight matrix for an RBM is obtained by training it in an unsupervised manner. This

weight matrix act as the initial weights on the connections between the first two layers of

the DBN. The RBM then transforms the matrix of input feature vectors by calculating

the mean activation of the hidden unit. The transformed data is then used to initialize

the weights of the connections between the second and the third layer in a similar way.

This process is repeated until the weights for all connections are initialized. These weights

are later fine-tuned using supervised training to change the learned representation to a

classifier. Because of the unsupervised training in the beginning, DBNs are useful even

with limited labeled data. An example of a Deep Belief Network (DBN) is shown in Fig.

1.6.

Since no spatial correlation among the maps is preserved in the hypercolumns com-

prising the input core samples, a CNN cannot be used in the second stage as the filters in

a CNN presume spatial correlation between adjacent maps. The DBN interprets the input

8



Figure 1.6: Sample architecture of a Deep Belief Network.

core samples to provide an understanding of the original input image.

1.2.5 Contributions

These are the contributions made with the help of our Core Sampling Framework:

1. We present a novel core sampling framework that is able to use activation maps

from several layers of a CNN as features to another neural network using transfer

learning to provide an understanding of an input image. It creates a representation

that combines features from the test data and the contextual knowledge gained from

the responses of a pretrained network. This model is used to extract more knowledge

about an image at the pixel level, thereby gaining understanding of the whole image.

2. We experimentally demonstrate the utility of the core sampling framework by showing

its ability to automatically segment the BAERI dataset [38] of Synthetic Aperture

Radar (SAR) imagery and the CAMVID dataset [23].
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1.3 Pixel Level Reconstruction and Feature Represen-

tations using Quadtrees

We use the data representation methods used in the Core Sampling Framework to do

a pixel level reconstruction of noisy images by removing the noise. We leverage the recent

advancements in Deep Learning to develop techniques for efficient representation of sparse

features. Sparse representations are usually compact representations of signals or features

that have default values that are unnecessary [49], [19]. Quadtrees can be an efficient

representation for learning from sparse features. Real world images, especially those of

handwritten characters, are usually noisy. Efficient algorithms to remove noise can help

in classification. We improve the effectiveness of probabilistic quadtrees by using a pixel

level classifier to extract the character pixels and remove noise from handwritten character

images.

1.3.1 Overview of our approach

Using Figure 1.7, we describe the steps in which we classify the handwritten character

images. This algorithm makes use of a Convolutional Neural Network (CNN), which has

been previously trained, to gather features from images of handwritten characters. These

extracted features help learn the shape of the characters and segment out those pixels that

do not belong to the characters. The information acquired from the pre-trained CNN helps

train a Deep Belief Network (DBN) (called the reconstruction network) that reconstructs

the handwritten characters through transfer learning [99] segmenting out noisy pixels.

1.3.2 Character Reconstruction Network

Handwritten character images are the input to the Character Reconstruction Network

(CRN) and it produces as output a denoised binary version of it. This network is the

backbone of our approach. The goal of this network is to be able to remove noise from

noisy data and output images that are similar to standardized datasets. This enables us to

be able to compete with noise-free character image datasets. The reconstruction network
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Figure 1.7: Steps involved in the handwritten character classification

segments out those pixels that do not belong to the character. A probabilistic quadtree is

then used to learn the sparse features from the resulting denoised binary image obtained

from the reconstruction network and used to train a Character Classification Network

(another DBN) to classify the character images.

We experimentally demonstrate the effectiveness of our algorithm at multiple resolu-

tions using a recognition scheme similar to the one used in [15] while obtaining better per-

formance compared to [15]. We also improve upon the quadtree decomposition technique

used in [11] by using a saliency map to eliminate blocks that do not provide discriminating

power. The saliency map helps reduce the dimension of the training data enabling efficient

learning.

1.3.3 Contributions

With the help the pixel level reconstruction algorithm, we make the following contri-

butions with this approach:

• It develops an efficient framework that removes noise from noisy images of handwrit-

ten characters
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• It improves the effectiveness of probabilistic quadtrees by using a pixel level classifier

to extract the character pixels removing noise from handwritten character images.

• It introduces a dataset 1 comprising noisy Bangla basic characters and numerals with

three different noise types. This dataset can serve as the basis and benchmark for

future research in noisy Bangla character recognition.

1https://drive.google.com/open?id=0B0gFcrqVCm9pT1VjbmUwYzdOTjA
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Chapter 2
Related Work

2.1 Symbolic Framework

Activity Recognition involves recognizing a diverse set of activities of human, animals,

vehicular and other objects. While activities of vehicles and other non-living objects are

simpler the activities of humans and the objects operated by humans usually are complex

[54]. There have been various approaches to recognize activities in the past which include:

logic based [85], probabilistic reasoning based [47] and pattern-based activity recognition

[54]. Vision based activity recognition involves using videos (and images) of humans or

objects to recognize activities being performed by them. Usually, vision based approach

also involves tracking the objects in the videos because often times they are in motion.

2.1.1 Logic based Activity Recognition

Logic based detection of activities makes use of ”formal” and ”declarative” semiotics

[7] and their efficiency and scalability coupled with the tools to allow machine learning to

described event structures and recognition makes their use valuable. Our approach provides

a logical framework with fast algorithms for recognition. A Dynamic Bayesian Networks

method is used for detecting activities in the presence of tracking failures (e.g., track

switching) [47]. Markov Logic Network has been used to recognize interesting activities in

video [94]. Text-based classification was used to recognize actions in movies [59]. Movie

scripts are used to annotate actions for providing training data. Other frameworks include

representing contexts to facilitate activity recognition [51] and logic programming [88].

2.1.2 Probability based Activity Recognition

Activities have been often been modeled using markov chains which can represent sim-

pler activities [54]. For complex activities, Hidden Markov Models (HMM) and Conditional

Random Fields have been popular for recognition. A stochastic process is used by the au-

thors in [78], [36], popularly called Hidden Markov Models, that has hidden processes and
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sequence symbols of these are observable symbols. A framework based on 3D Markov

Random Field has also been proposed to recognize trajectory-based and articulated ac-

tivities like dancing, talking, etc. [30]. Even a combination of Gaussian Mixture Models

has been used to representing activities for activity recognition [65]. In contrast, we use

a symbolic regular expression-based framework for representing possibly infinite sets of

motion signatures. Events at a traffic intersection were detected using a combination of

foreground/background segmentation and color model with probabilistic data association

[96]. Dynamic Bayesian Network learning have been used to represent context knowledge

as first order probabilistic logic formulas [101].

2.1.3 Pattern based Activity Recognition

Modern approaches have been geared towards pattern based activity recognition. Us-

ing a normalized edit distance measure, representation and retrieval of object trajectories

has also been proposed [27]. The symbolic framework builds on top of our robust tracking

framework that uses a combination of foreground background segmentation and a color his-

togram model to compensate for track failures. An activity recognition framework has been

developed that considers activities as resulting from the execution of a dynamical system

[64]. A generative mixture model was designed for activity recognition using the velocity

history collected from tracks [70]. Another uniform framework for activity recognition was

used to model motion using a frequency domain transform [80]. The authors in [84] pro-

vide a review of such frameworks to recognize activities and mention the use of context-free

grammars that are in use to detect complex actions. Time complexity for recognition of

context-free languages is O(n3) whereas that for regular ones is linear. Besides, context-

free languages cannot be directly tied to a logical framework unlike the regular expression

framework which provides expressiveness equivalent to MSO-S. In our framework, each

moving object generates a string. Our regular expression-based framework is equivalent

to MSO-S and thus is more expressive than first order logic (over strings) [35]. Speech

signals has been used to encode activities and employ speech recognition techniques for

14



Figure 2.1: Sigmoid Function

activity recognition [26]. We use a measure based on the Levenshtein distance to quantify

the accuracy (or uncertainty) of recognition of an activity.

2.2 Core Sampling Framework

The Core Sampling Framework follows the recent advancement in Machine Learning

particularly Neural Networks where deep architectures are supported. The frame work

uses deep architectures and the information learned during by one network as features to a

second network. This eases the problem of manually selecting appropriate features. Core

sampling has been used in engineering and science to understand the properties of natural

materials[68], climatic record from ice cores [55] etc.

2.2.1 Logistic Regression

Logistic Regression is the general model utilized for regression where dependent vari-

ables are based on categories and for binomial classification [33]. Linear regression is

generally modeled to evaluate continuous output. The probabilities of the classes are de-

termined by logistic regression For multiple classes, one vs rest classification is used, for

Logistic regression. A sigmoid function, seen on Fig. 2.1 is a special type of logistic function

used as squashing function to clip large values show that the values can remain between 0
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and 1. A general sigmoid function is of the form [66]:

f(x) =
1

1 + e−x
(2.1)

2.2.2 Stochastic Gradient Descent

Gradient descent is an iterative process of optimizing a function. Stochastic gradient

descent is an incremental process that helps optimize the objective function by estimating

the gradient each iteration with respect to a randomly selected example [18]. Stochastic

gradient descent moves more quickly compared to a regular gradient descent because the

estimation is taking place with the help of a smaller number of examples instead of the

entire set [1]

2.2.3 Multi-layer Perceptron (MLP)

An MLP is a finite directed acyclic graph [81]. Single neurons are not enough to

learn complex functions. In an MLP, the number of dimensions for the input must match

the amount of neurons in the input layer. A perceptron with multiple layers can also

be considered a simple Artificial Neural Network. To learn the parameters a stochastic

gradient descent (SGD) approach that relies on the backpropagation algorithm to reach

the optimum setting is used. We also use logistic regression on our MLP to calculate the

output. Our Deep Belief Network is built up using a Multi-layer Perceptron.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks are a type of artificial neural network that take advan-

tage of the connections between the related data points. The connections between neurons

is reduced, which helps to combat the curse of dimensionality in deep networks where neu-

rons are fully connected to other neurons in the adjacent layers. CNNs have been used to

extract information from images; deep CNNs have enabled recognition of objects in images

with high accuracy without any human intervention [63], [56], [13], [83]. There has been

some research in using the information acquired from the intermediate layers of a CNN to
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Figure 2.2: VGG-16 Architecture. The architecture shows multiple convolution layers, with
the max-pooling layers in between followed by 3 fully connected with a softmax layer for
the final output.[90]

solve tasks such as classification, recognition, segmentation or a combination of these [42],

[8], [44], [79], [67].

2.2.5 Image Segmentation

We make use of the classical Image Segmentation problem to show the usefulness of

our Core Sampling Framework. Various techniques have been used over the years where

manual techniques were used for the segmentation. Haralick and Shapiro [41] describe

classical image segmentation techniques such as thresholding, multidimensional space clus-

tering, region growing, etc. Comanciu and Meer [31] use the mean shift algorithm to

provide automatic segmentation, where human intervention is needed to choose the class

of a segment. There are well known graph-based algorithms for image segmentation; e.g.,

Normalized Cuts [89], where segmentation is achieved by measuring the similarity of graph

partitions; Graph Cuts [37], where a segmentation is defined as set of regions; this set of

regions is repeatedly combined based on the similarity between neighboring regions. Rother

et. al. [82] implement iterative estimation on top of graph cuts algorithm [20] to define a

boundary for the segmentation of objects where a user selects the broader region.
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2.2.6 Deep Learning Based Segmentation

Recent approaches to segmentation also include various ways to use a CNN to seg-

ment images. Girshick et. al. [39] use Region-based CNNs (R-CNNs) where category-

independent region proposals are defined during the pre-processing stage, that are input to

a CNN to generate feature vectors. A linear Support Vector Machine (SVM) divides the

image into regions. Unsupervised Sparse auto-encoders have been used in [29] on Synthetic

Aperture Radar (SAR) data to classify different types of vehicles. They only deal with

classification of images already segmented into smaller regions containing the objects. We

deal with segmentation by classification at pixel level. Ladicky et. al. [57] use a Conditional

Random Fields (CRF) [58] based approach to aggregate results from different recognizers.

Zhang et. al. [102] recover dense depth map images and other information about the frames

in video sequences such as height above ground, global and local parity, surface normal,

etc. They use graph cut based optimization and decision forests to evaluate their features.

The need of video sequences limits their application. Both the previous approaches need

manual feature extraction.

2.2.7 Pixel Level Segmentation

Another approach is to use deconvolution layers after the convolution layers as a way

to reconstruct segmented images as done in [72] and [8]. SegNet [8] uses an encoder

architecture similar to VGG-16. The decoder is constructed by removing the fully connected

layers and adding deconvolution layers. It is used to transform low resolution maps to high

resolution ones. The original paper that proposed the notion of hypercolumns [42] also

uses the maps from the intermediate layers of a CNN to segment and localize objects in

images. They use a location specific approach; in particular, they use K x K classifiers

across different positions of the images where K is a constant. A linear combination of

these classifiers is used to classify each pixel. They also use bounding boxes of size 50 x 50

and try to predict the heat map to localize objects in an image.
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Figure 2.3: Characteristics of Transfer Learning.

2.2.8 Transfer Learning

Transfer Learning allows the use of the knowledge acquired from solving one problem to

improve the solution to another [93]. Our core sampling framework makes use of transfer

learning, where the core sample acquired from a previously trained network is used for

training a second network. Fig. 2.3 shows the benefits of using transfer learning during

training. This strategy helps increase the overall performance and speeds up training. The

other benefit of this approach is that it avoids training a very large network on a huge

dataset. Often there is not enough training data for a particular task; this can be overcome

by using the knowledge learned from a similar task [76] or a different task [99]. In [34],

the authors use transfer learning for segmentation of hyper-spectral images by training on

an unlabeled dataset and then using transfer learning to improve separability based on the

learned knowledge.

2.2.9 Deep Belief Networks

Deep Belief Networks (DBNs) use hierarchical representations to generalize and learn

data in a domain by first pre-training a Restricted Boltzmann Machine (RBM) [14]. DBNs
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are first trained in an unsupervised manner. After that the stochastic and latent variables

are fine tuned in a supervised phase. After the layers are trained, the weights are transferred

to the main Neural Network [13]. This initialization makes the convergence of the neural

network much faster than a neural network that has not been initialized. The supervised

phase comprises of a feed forward backpropagation based Neural Network having multiple

layers.

2.3 Pixel Level Reconstruction and Feature Represen-

tations using Quadtrees

Reducing the dimensionality of data helps improve the efficiency of learning algorithms

while making the models simpler and more robust [43], [46]. Similar to the Core Sampling

Framework, we again use Transfer Learning to use the knowledge acquired from one domain

to be used in another The pixel level reconstruction o removal of noise at pixel level. The

reconstructed images consist of either the character pixels or the background.

2.3.1 Quadtrees

Quadtrees have been used previously to compress images [69] and represent spatial

data [6]. In [11], the authors use probabilistic quadtrees to represent character images

and classify them using a deep belief network (DBN). Deep Belief Networks use hierarchi-

cal representations to generalize and learn from data in a domain by first pre-training a

Restricted Boltzmann Machine (RBM) [14].

2.3.2 Bangla Characters

For Bangla Characters recognition, Chain code histogram features are used to discrim-

inate classes in a multi stage approach in [15] where rejected images are classified again

at higher resolutions. We follow a similar approach of using higher resolutions when clas-

sifying the Bangla Numeral Dataset [15]. In [16] the authors classify handwritten Bangla

Basic Characters that has 50 classes. They use a two stage approach where they employ

chain-code and gradient based features. The first stage is a modified quadratic discriminant
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function (MQDF) based classifier while the second stage is a Multi-layer Perception based

classifier that helps to improve recognition on confused classes.

2.3.3 Probabilistic Quadtrees Based Approaches

On the Noisy Bangla Datasets that we focus on, [11] have used probabilistic quadtrees

to learn sparse representations of handwritten character images and have used a two layer

DBN for the classification. Quadtrees are decomposed into blocks and a homogeneity cri-

terion is used to decide whether or not to decompose them further into smaller blocks.

For handwritten character images containing significant amounts of noise, the sparse rep-

resentations learnt using quadtrees in [11] are not efficient. The authors also introduce the

handwritten Bangla Numeral Dataset which includes the 10 Bangla Numeric Characters

and three types of noise: gaussian random noise, motion blurred, and diminished contrast

[11] . We inject these three types of noises into the Bangla Basic Character dataset con-

sisting of 50 classes resulting in the Noisy Bangla Basic Character Dataset. In [11], once

a block has been chosen for decomposition in any one image based on the homogeneity

criterion, that block is identically decomposed for every other image. We build upon this

approach and use a saliency map to improve the representation and also use another DBN

for character reconstruction removing noise.
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Chapter 3
Symbolic Framework

Activities are associated with possibly infinite sets of motion signatures (think of the

numerous ways in which a U-turn can be made). It is necessary to identify the common

components of activities to find a proper representation of processes involved in an activity.

In our framework activities are represented by regular expressions describing their motion

signature set. Various components of an activity are encoded as symbols and patterns are

observed based on those activities. We recognize activities from videos by keep track of

objects across the frames. Incoming full motion video is first input to a stabilization engine

for jitter correction and background noise subtraction. With the presence of noise and

jitter, there is a possibility that the collection of symbols would misrepresent the activities.

The stabilized video is then input to a tracker. The tracker follows objects present in the

videos and outputs an annotation file which keeps track of the perceived location of the

object. The output of the tracker is input to an activity analyzer. The analyzer smooths the

data and extracts from the tracked video strings describing motion signatures of moving

objects in it. The smoothing of the data further removes left over noise. The strings

are then matched against regular expressions representing activities using approximate

pattern matching algorithms for “soft” matching. A strict matching would not allow small

variations in complex activities. We describe the different components of the framework in

details below. An overview of the Framework is presented in Fig. 3.1.

3.1 Regular Expressions

A regular expression [48] describes a pattern representing a ( possibly infinite) set of

strings (i.e., a language) over an alphabet. Its a great utility for representations where

patterns exist. Each regular expression contains set of characters and symbols that match

to different words in a language. Here, the language refers to set of all possible sequence

of characters that can be formed using the rules set by the regular expression. The lan-
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Figure 3.1: The architecture of the proposed framework.

Figure 3.2: An automata that takes in the string ‘abc’.

guage contains the set of all strings accepted by the automata corresponding to that regular

expression. For example a regular expression /mat/ would match every occurrence of the

string ‘mad’. Regular expressions also have wild cards such as ‘?’ and ‘*’ where ‘represents’

a single wild character and ‘*’ can represent multiple wild characters. For example /m?d/

can accept ‘mad’, ‘mid’, ‘ mud’ or ‘mid’ etc. and /t*o/ could match ‘two’,‘tomato’,‘tempo’

or even just ‘to’. Fig. 3.2 shows an examples of a graphical representation of a simple

automata that only accepts a string ‘abc’. Regular expressions can be conveniently repre-

sented by finite state automata that allows efficient manipulation using graph algorithms.

They support efficient string search operations, generally polynomial in the number of bytes

of data to be searched and provide great flexibility in symbolically describing sets of strings.

In terms of expressiveness, regular languages (i.e., those described by regular expres-

sions) are as expressive as monadic second-order logic over strings (MSO-S) [91]. MSO-S

subsumes temporal logics like LTL [77] that are popularly used for describing dynamic

behavior sequences. We will use the flexibility of the framework of regular expressions to

describe and classify object motions and recognize underlying activities.
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Figure 3.3: Running average of Mean Squared Difference of Directional Histograms, fitted
with Gaussian curves for Hand waving action.

24



3.1.1 Representing Directions and Periodicity

As Fig. 3.4 shows, we use the characters a through h to represent both the cardinal

(N, S, E, W) and ordinal (NW, NE, SW, SE) pixels representing “unit vectors” in the

respective directions. To make our algorithm more robust and detailed we can increase the

number of such directions. In fact, for our final experiments, we used 24 directions instead

of just 8. This allowed us to represent activities at a finer level. Using this language of

motion description, the string abc represents a movement to the east, then from there

to the northeast, then from there to the north. The string aa represents a motion two

units eastward, the string aeaeae. . . represents a left-and-right oscillation, and so on.

Fig. 3.7 demonstrates how this mapping applies to vehicle motion. Each instance of the

depicted vehicle represents its position at each frame during a left turn. The vehicle begins

traveling eastward, then veers northeast as it begins to turn; at the end of the turn, it

is situated facing north. The first and second frames map to the character a; the third

and fourth to b, and the final to c. Thus, the full string which describes this motion is

aabbc. We also represent activities with periodic motion with our framework. We divide

the region of interest in the video i.e. a large block within which the object exists, into

several small blocks. At each of these blocks we try to look for periodic motions.Periodic

motions as in articulated activities like digging, gesturing, etc., can also be mapped to

regular expressions as shown in Fig. 3.3 and illustrated in Section 3.5. We use directional

histograms and a difference between such histograms at these blocks and evaluate the

periodicity of the activity that object is involved in. Here, we fit Gaussian equations with

the running average of the histogram differences as data. The widths of Gaussian curves are

subsequently mapped to character strings to extract the periodicity information in them.

To classify motion signatures obtained from a video, one first needs to track moving

objects. From the tracks, symbols are extracted corresponding to motion characteristics in

individual frames. After accumulating string representations of activities from a tracked
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Figure 3.4: Cardinal and ordinal directions are mapped to characters.

video, we do approximate pattern matching against regular expressions representing activ-

ities.

3.2 Tracking

A robust probabilistic tracking framework is used for tracking objects in the videos [12].

This scheme uses a model that combines motion model with appearance of an object and its

position in the frame where it is estimated to be. To determine the motion component using

the tracking algorithm, we use a Gaussian Mixture Background Subtraction algorithm [12].

The object’s appearance is determined by the color histogram that defines the distribution

of the colors of the object. The position is an estimation based on optical flow between

frames and last location in the previous frame. The tracking algorithm is robust to abrupt

movements because of the image stabilization. A spatio-temporal filtering algorithm is

used to automatically start tracking an object [10].

Object tracking is a process of measuring the optical flow which measures the perceived

movement of an object, while maintaining the coordinates of its pixels [10]. During this

process, it is assumed that the intensity of that object doesn’t vary significantly. This

is essential to calculate the optical flow between frames. The algorithm uses Gaussian

Mixture background subtraction for objects who have higher degrees of motion and the

Lucas-Kanade method for objects with slower motion. This approach takes cares of both

types of movements. object tracking, Gaussian Mixture background subtraction, subtracts

the image intensities between two sequential frames. If the image intensity at a pixel

does not vary between two frames, the pixel is likely part of the background; if not, it

is likely part of a moving object. We assume that most features are in fact background
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features; in real- world scenarios, this is most often the case. As we will discuss later, the

main disadvantage of using Gaussian Mixture background subtraction is its susceptibility

to camera motion. To compensate for this, we fall back on another method for computing

optical flow.

The optical flow algorithm often is associated with a displacement to apply constraint

to it. The Lucas-Kanade method imposes it as well. The displacement (δIx; δIy) represents

the change in intensities of the a pixel at (x, y) with intensity value of (Ix, Iy) from the

pixel (Ix + δIx; Iy + δIy) in the next frame. Over time, the displacement is usually minimal

and constant. For any pixel p:

Ix(p)Vx + Ix(p)Vx = −It(p) (3.1)

where Ix, Iy and It are the partial derivatives of the image intensity with respect to x,

y and t, and and Vx and Vy are the velocity vectors [10]. The constraint imposed by

the Lucas-Kanade algorithm, makes it suitable for objects of varying levels of motion

including uniform velocity. The type of optical flow used in this method is pyramidal

Lucas-Kanade. This means that the algorithm computes the flow at a higher res image

I0 and then, low-res result is obtained :I1 from I0. This is followed by obtaining I2 with

the help I1, and the process continues. Together with the Lucas- Kanade method, using

the Gaussian Mixture background makes the tracking perform better than using either

approach separately. Object tracking can have a lot of potential challenges: movement

of cameras, pan and tilts etc. can cause the quality of the videos to be poor. These

unintended rotations and movements can challenge the tracking algorithms. Besides, the

videos themselves may not be in higher resolutions. Chances of occlusions and missing the

objects are also present in real motion videos. Effective real time algorithm to track videos

therefore has a lot challenges.
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Original Mapping Distorted Mapping

Figure 3.5: Rightward camera motion distorts the tracking and motion classification- of a
left-turning vehicle.

3.2.1 Image Stabilization

Imagine holding a pen still on an unmoving sheet of paper; then, imagine doing the same

on a rightward-moving sheet. The shape produced in the latter case is a line drawn from the

point of initial contact to the left. As with the sheet of paper, stationary background objects

appear to move directly opposite to actual camera motion. This also has ramifications for

moving objects. Imagine drawing a circle on an unmoving sheet, then a rightward-moving

one; the latter circle appears as a swirl. Consider the impact on the mapping of the vehicle

motion in Figure 3.5 of a camera which moves rightward two pixels per frame. Were we

to map the vehicle motion without first stabilizing the image, our mapping would fail to

account for the motion across pixels due to the camera. The car, though oriented in the

same fashion as before, would appear to be moving westward, then northwest, and finally

north; this motion would be falsely encoded as eeddc. Clearly, this is an unacceptable

result; the image must be stabilized to ensure correct tracking.

Should the camera move even slightly, the Gaussian Mixture background subtraction

used to track the target object falsely detects many other moving objects which, from the

frame of reference of the moving camera lens, appear stationary. In order to stabilize the

image, we must ensure that each pixel remains in the same position despite the camera

motion. We use the following algorithm [75] for image stabilization:
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Before Smoothing After Smoothing

Figure 3.6: The position (x, y) of a left-turning vehicle before and after smoothing.

1. First Frame: Extract motion features using Shi and Tomasi’s algorithm .

2. Subsequent Frames: Calculate Optical Flow using Lucas-Kanade’s algorithm

3. Keep track of the object and find the average of all motion features.

4. Distort frame to accommodate these motion.

3.3 Symbol Extraction

Symbol extraction is the process of translating tracked object positions into strings of

characters. As we will discuss later, these strings are needed to support efficient search

operations through the use of regular expression patterns. Symbol extraction involves

two steps: smoothing of the data and mapping of the data into character symbols. The

classification of the patterns is tedious when there are noisy symbols that do not add

meaning to the activity but are present. We discuss the motivation for data smoothing and

the mapping process in the following subsections.

3.3.1 Data Smoothing:

Object tracking is imperfect; the tracks of real-world motion usually do not follow any

smooth pattern. For example, even if a car makes a smooth turn, on close inspection the

track appears jagged due to small additive noise. Raw tracks, if left unsmoothed, are often
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incorrectly mapped. As we shall see in the following section, such an intervening character

has no place in the regular expression pattern used to define a northbound left turn; were

the character included in the corresponding character string, the regular expression search

would fail to find a left turn. The data must be smoothed to improve accuracy. To smooth

the data, we use a simple Gaussian filter with a width of α (set to 20) . This means

the data can be processed with an 20-frame delay, which is about two-thirds of a second

of full-motion video. This straightforward approach to smoothing has a profound effect,

not only serving to eliminate faulty tracks that would lead to erroneous classification, but

also supports greater accuracy in the data mapping process, as the derivative is less noisy

(Figure 3.6).

3.4 Mapping Vehicle Motions to Strings

Data mapping is the process of converting motion vectors into strings of characters

which may be efficiently matched by regular expression patterns. To map the data, we

consider the points output by the object tracker. Each movement and the direction is

encompassed by a character. If it continues to move in the same direction, a series of same

characters will be seen and the character changes once the direction varies. In this way, a

string that represents the movement and the direction in which the object travelled along

the path is obtained. In the ideal case, the vehicle moves exactly one pixel per frame, the

mapping conforms precisely to the actual motion. For this scenario, we can simply generate

as output one character per frame. However, this is usually not the case. Sometimes, there

is not enough movement across frames.

3.4.1 Subpixel Movement

Subpixel movement is the movement of an object across less than one pixel per frame

(Figure 3.7) and it occurs quite often in videos of slow moving objects. To account for

subpixel movement, we accumulate movement until it can be mapped into a single larger

vector. Figure 3.8 (left) shows a smoothed track as a series of dots. Superimposed on this

is the track as it would be approximated by a sequence of symbols. In this case, the first
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Figure 3.7: Characters describe vehicle motion.

approximated movement is horizontal (symbol a), followed by diagonal direction (symbol

b). Figure 3.8 (middle) shows the next sub-pixel movement. At this point, there are two

choices.

1. Keep accumulating movements.

2. Map the movement to a symbol.

The decision depends on the amount of error that would result from such a mapping.

We take the derivative at the current point and compare this slope against the slopes of

possible eight symbols that could be generated. If the slope is between the slopes of two

symbols, they become the candidates for the next mapping. In the figure, the candidates

for the next mapping are b and c, shown in gray. We seek to minimize the error (i.e.,

Euclidean distance) between the approximated track and the actual movement. In this

case, the distance to the endpoints of the two candidates is greater than the distance to

the endpoint of the last mapped symbol. Therefore, error is minimized by not generating

a new symbol, and we continue to accumulate the movement. This strategy can also be

helpful to differentiate a u-turn from a left turn. During a u-turn, naturally a left turn

exists especially if we do not consider the final direction an object is headed. Figure 3.8

right shows what happens after two more positions have been accumulated. Now symbol c
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Figure 3.8: Symbolic mapping as trajectory updates.

can be mapped because it is the candidate that minimizes error. The strings representing

other trajectory-based motion signatures for vehicles such as start and stop and those for

humans (i.e., those associated with walking, running, etc.) can be determined similarly.

3.5 Mapping Articulated Motions to Strings

In surveillance videos, recognizing the various active entities as part of the foreground

is the first part in modeling the generic behaviors. Once this has been achieved, the next

phase is to classify the motions of these entities into various categories. Earlier, these

classifications were done by human operators. When the amount of hours in videos is

too large, there appears the need for automating such classification modules. Articulated

motions are associated with human activities like digging, waving, boxing, clapping, etc.

We use the directional histograms of pixel intensities in the frames of a target video to map

them into a regular expression. The directional histograms help in capturing the periodic

motion in the articulated activities like clapping, gesturing, digging etc. As an example,

lets consider the digging shown in Fig. 3.13 (c). Here, the directional histogram for the

x-axis in the lower part of the video is periodic. Similarly, for the hand waving video in

Fig. 3.13 (d), the horizontal directional histogram for the upper part of the video is periodic

in nature.
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3.5.1 Representing Articulated Activities with Directional His-

tograms

In order to recognize the various activities, we use the concept of directional histograms.

Directional histograms are computed separately for both the x and y axes for a two di-

mensional image. Each histogram represents the mean of the intensity of pixels in either

the horizontal (x) or vertical direction (y). Our tracking framework identifies the region of

interest from the trajectories of humans or vehicles. The directional histogram algorithm

processes the RGB image and converts it to grayscale. Histogram differences are then

calculated frame-by-frame from the video sequence. A running average of the histogram

differences that decays with time ( e.g.150 frames) is accumulated in bins. The first bin

represents the difference between consecutive frames and the second bin represents the dif-

ference of histograms that are 2 frames apart and so on. A low value in the nth bin would

mean the frames that are n bins apart are similar and suggest that the action reoccurs

every n frames.

A directional histogram is different from a normal histogram in that it is computed

separately for both the x and y axes for a two dimensional image. The mean intensity

values along the horizontal direction or the vertical direction are stored in each histogram.

Because we work with the intensity of the pixels, we first convert the RGB image into

grayscale. As can be followed from Algorithm Listing 1, following this step, the Region of

Interest (ROI) [21] of the image containing the activity is computed. The ROI images are

read in successively from the video sequence and the corresponding histogram differences

are calculated. The running average of the histogram differences are piled up in a queue

(currently its of length 150). So, after the third frame, the first value in the Pile will

have an average of the histogram differences between consecutive frames (first and second;

second and third) and the second value will have the histogram difference between two

frames apart (first and third in this case). This is continued as the Pile gets filled. The

150th value in the Pile represents the running average of histogram difference between the
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image at current frame and the image at 150 frames ago.

After 150 frames, the queue starts popping the first value and pushing the last value

(basically it starts acting like a queue). The values in this pile (histogram), thus represent

the difference (or similarity) with the other frames. The first value represents the average

of difference of consecutive frames. A low value at nth position would mean that the frames

n places apart are similar. Thus, there is some type of action occurring every n frames.

3.5.2 Mapping the histogram data into strings

The first step that is performed to extract the periodicity information available in the

histograms, is to map the histogram data into strings that can be represented in a formal

language specification at a later stage. To map the histogram data into strings, we fit a

linear composition of a mixture of Gaussians with the horizontal and vertical histograms

as data as shown in Fig. 3.3 . A Gaussian function is given by :

f(x) = ae−(x−b)
2/2c2 (3.2)

for some constants a, b, and c. Here, the periodicity information can be approximately

mapped to the value 2c2. So, we get the corresponding period of motion as Pi = 2ci
2.

Thus we can derive strings of the form P1P2P3...Pn. in vehicles as well as various human

activities like walking, running, digging, gesturing etc.

3.5.3 Defining Patterns of Motion

As stated before, search operations which use regular expression matching are efficient

because their running time is linear in the number of bytes of data searched. If we use

regular expression patterns to describe general motions, we may harness the efficiency of

such search operations. Consider the case of the northbound left turn; the vehicle moves

from east to north, traveling the intervening northeast direction. The string matching such

a motion must begin with a, end with c, and may contain only a, b, and c as intervening
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Algorithm 1 Action Detection

1: function Main( )
2: data.Qctr ← 1;. Increment for the Queue and data is a data structure storing Pile

etc.
3: MaxSize← 150; . maximum size of queue and pile
4: data.MultiplyCtr ← zeros(1,MaxSize); . stores the multiplying indices for

running averages
5: data.WindowSize← 100; . decaying rate
6: for all frame do
7: roi← GetFrame(video);
8: img ← mean(roi, 3); . converts to grayscale
9: img1, img2← DivideImage(img); . divides image horizontally in two halves .

Following are the image histograms along vertical/ horizontal direction
10: hist[1]← mean(img1, 1); . top half horizontal
11: hist[2]← mean(img2, 1); . bottom half horizontal
12: hist[3]← mean(img1, 2); . top half vertical
13: hist[4]← mean(img2, 2); . bottom vertical
14: hist[5]← mean(img, 1); . complete horizontal
15: hist[6]← mean(img, 2); . complete vertical
16: for all histogram do data←CreateStruct(hist, data); . creates queue and

calls accumulator
17: end for
18: end for
19: end function
20: function CreateStruct(hist, data)
21: if ( thenQctr ≤MaxSize) . Filling up the queue
22: Queue[Qctr]← hist;
23: if Qctr > 1 then
24: Pile← Accumulate (Pile,Queue,MulitplyCtr); . Creates an accumulator

referred to as Pile
25: else if Qctr > MaxSize then
26: Queue[MaxSize+ 1]← hist; . Adds new hist to first element (Enqueue)
27: Queue← Dequeue(Queue); . Removes the first element
28: end if
29: end if
30: MulitplyCtr ← Increase(MulitplyCtr); . Keeping increasing the value of each

element in vector until a WindowSize is reached
31: end function
32: function Accumulate(Pile,Queue,MultiplyCtr)
33: TempPile← HistDiff(Queue); . Stores difference of the current hist with all other

hist in the Queue. Current and Last Frame, Current and two frames ago and so on in
order.

34: Pile← RunningAvg(Pile, TempP ile,MulitplyCtr); . Stores the running average
of the difference

35: end function
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stair steps reverse stairs pure diagonal

aaaababccccc aaacbaccccc aaabbccccc

Figure 3.9: Turns encoded with strings of characters

characters; thus the corresponding pattern is /a[abc]+c/. The general form of the left-turn

expression is as follows:

as{{a, b, c}l ∪ {a, b, c}l+1 ∪ {a, b, c}l+2 ∪ . . . ∪ {a, b, c}u}cf (3.3)

This expression classifies left turns that begin facing due east. {a, b, c}x where x ∈ [l, u]

represent the possibility of some variations during the turn which is often the case. A similar

expression is used for each of the other 7 directions. Right-turn patterns are simply the

reverse of left-turn patterns. U-turn expression are similar except the starting and ending

directions are 180 degrees apart, and there are a combination of five symbols in the middle.

The general expression has four parameters s, l u , and f that can be tuned based on

data by the analyst.

• s, f : minimum length of the start and finish of the turn

• l, u: lower and upper limit for the middle of the turn

Figure 3.10 shows how different instances of northbound left -turns are encoded. Figure

3.9 shows how an actual turn is encoded. In this analysis, we assume that s=1, which means

the start of the turn can be just one symbol; f =3, which means that the finish of the turn

must be a string of at least three symbols that are 90 degrees from the start. The middle

of the turn is any combination of the three symbols in between and including the start and
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baaaaaaaabaaaabaabaabaabaaaaabaabaaababbbbcbccc cbbcbcbcbcbbcbbbbcabc

Figure 3.10: This graph shows the tracking data from an actual turn and the string to
which it is mapped.

finish symbol, with a minimum lower length of l= 10 and maximum upper length of u=60.

The figure shows a track of a right turn from due east to north, so the start symbol is a,

the middle portion is a combination of 35 a’s, b’s, and c’s, and the finish is a string of c’s.

The general form of a K-turn expression is as follows:

{{aΣ∗b}pΣ∗q{aΣ∗b}}+ (3.4)

where, p and q are strings 180 degrees apart and a and b are mutually opposite strings

skewed by 2 to 3 characters and Σ is the alphabet. The regular expression patterns for both

vehicle and human trajectory-based activities like start, stop (vehicle), walking, running

(human) can be similarly determined.

For articulated activities we can derive regular expressions as well, e.g., the regular

expression derived for waving is of the form

{{c} ∪ {b}∗}+ (3.5)

A detailed discussion on the way these regular expressions are derived is presented in
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section 3.5 and further illustrated in section 3.6.

3.5.4 Confidence Measure and Approximate String Matching

Standard pattern matching algorithms for regular expressions provide hard matching.

To obtain soft matching, we use an approximate matching algorithm. This algorithm

provides a confidence measure for a string approximately matching a regular expression

based on how closely it matches the expression. The confidence measure acts as a threshold

parameter which we can manipulate to allow certain patterns to be accepted or rejected as

a particular turn or activity. It computes the confidence based on the Levenshtein distance

between a string and a regular expression. The Levenshtein distance LD between a string

s and a regular expression R is given by mins′∈L(R)L̄D(s′, s) where L(R) is the regular

language associated with R and L̄D is the standard Levenshtein distance between two

strings, and s and s′ have the same length. We have designed an algorithm for computing

the Levenshtein distance LD between a regular expression R and a string s; the algorithm is

based on repeated depth-first graph search and runs in time O(k2) where k is the length of

the string s. Given the Levenshtein distance LD , the equation for computing the confidence

measure of a string s matching a regular expression R is given as:

CM =
length(s)− LD

length(s)
(3.6)

where s represents the string whose confidence measure we are calculating and LD is the

Levenshtein Distance between R and s. The above method is illustrated in Algorithm

Listing 2.

3.6 From Strings to Regular Expressions

While in many cases, the regular expressions representing activities are simple enough

to be provided manually, we can also use offline automata learning algorithms for learning

regular patterns from positive and negative examples of strings encoding motion charac-
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Algorithm 2 Levenshtein Distance Computation
i← 0;

2: LD ← String.Length(); . Livenshtein Distance
MAPTOSTATES(); . Map characters of Input String to the states of Automaton

4: if FinalStateReached = AcceptingState then
StringAccepted = TRUE;

6: else
while CurrentState 6= AcceptingState do

8: i← i+ 1;
BACKTRACK(i); . Backtracks i steps through the automaton

10: LD ← LD − i;
DFS(i); . Performs Depth First Search up to a depth of i

12: end while
end if

Figure 3.11: Sample Automata created using the RPNI

teristics.

3.6.1 Learning the regular expressions by classification of strings

Once we have formed the strings representing positive and negative examples, the

next step is to use a learning algorithm to infer a finite state automaton representing the

regular language that accepts strings belonging to the language. For this, we use the RPNI

(Regular Positive Negative Inference) offline learning algorithm [17] to learn the finite state

automaton. This is implemented using the Libalf (Automata Learning Framework) library

available online. The method is illustrated in Algorithm listing 3. Once, we input the

strings belonging to the positive and negative classes, the library function calls upon the
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Figure 3.12: Samples from the KTH dataset [86]

learning algorithm to infer an automaton that accepts all the positive examples and none

of the negative ones. Next, the automaton is converted to a regular expression using the

JFLAP library available online. The input strings representing motion signatures can be

matched against the regular expressions to detect trajectory-based or articulated activities.

An example of an automata created using the offline learning algorithm can be seen in

Figure 3.11.

Algorithm 3 Learner

P ← GetPositiveExamples();
Pclass ← P.addclassification(1); . classification 1 is for positive examples

3: N ← GetNegativeExamples();
Nclass ← N.addclassification(0); . classification 0 is for negative examples
AddToKnowledgeable(P, Pclass, N,Nclass);

6: CallLearner(RPNI);
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(a) Boxing (b) Clapping (c) Digging

(d) Hand Waving (e) Running (f) Jogging

(g) Walking

Figure 3.13: Screenshots of different activities detected by our algorithm.
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3.7 Experimental Results

3.7.1 Articulated Activities

We performed the experiments on different datasets for the vehicular motion and tra-

jectory based activities. We use multiple binary classifiers concurrently, each producing a

probability per activity. By comparing these probabilities, we find the most likely activity.

The digging examples are obtained from YouTube while the other articulated activity ex-

amples are from the KTH dataset [86], as seen in Figure 3.12. Examples in these datasets

are segmented to contain one activity each. Figure 3.14 shows the ROC curves for four

different articulated activities recognized by our activity recognizing module. For all these

activities, the best algorithms such as [28] produce a correct detection rate of 95.83% while

the approach in [50] produces a correct detection rate of 94%. In [97], the authors report

their best result to be 92.1% at 4.6 fps. Our framework outperforms these approaches by

producing correct detection rates of 96 %. On a 29.97 fps video, our algorithm is able

to process frames at 86 fps on an Intel Centrino machine, that is nearly three times real

time. The best results were seen on Boxing and Clapping as seen in Fig. 3.14. Waving was

slightly difficult to recognize as it was often misidentified. Running and jogging were often

confused.

3.7.2 Trajectory Based Activities

Table 3.1 shows the results of using our framework for trajectory based activity ex-

amples obtained from the VIRAT Public Dataset [73] where the “Total Expected” column

is based on ground truth. On the other hand, the Automata Learning Framework was

able to correctly detect 53 out of 78 examples at 16 false positives. Because of the lack

of learning examples for u-turns and k-turns, we perform the learning only on left and

right turns. The learning framework shows promising results for turns and is expected to

perform better in cases where we have a larger training set. Fig. 3.15 shows screenshots of

some trajectory-based turn detection examples, whereas Fig. 3.13 shows the results from

the activity classification module.
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(a) Boxing (b) Clapping (c) Digging

(d) Hand Waving (e) Running (f) Jogging

(g) Walking

Figure 3.14: ROC curves for different activities.
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False Correct Total
Positives Detections Expected

Left turn 8 4 5
Right Turn 2 7 8
U-Turn 2 2 2
K-turn 1 1 1
Walking 4 16 21
Starting 0 5 6
Stopping 1 3 4
Running 0 1 1

Table 3.1: Detection rates for left turns, right turns, U-turns, K-turns and other events
using the string matching approach(without learning).

(a) Right Turn (b) U-turn

(c) K-turn

Figure 3.15: Detection of Right turn, U-turn and K-turn by our Algorithm.
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Chapter 4
Core Sampling Framework

The core sampling framework was designed to do pixel level classification and regression

in images. It also is able to make use of pretrained networks instead of training a large

network. Large networks with large datasets obviously need a large amount of processing

power and time. These large networks learn a lot of knowledge about the datasets. We

want to be able to use a subset of features that are only applicable for our experiments.

For example a large network maybe able to distinguish between thousands of varieties of

animals. While learning the knowledge needed to distinguish such animals, it possibly

learns details about the shape, size, color, texture, positions of various shapes at various

places etc. Both high level features and low levels features will be learned. We may not

need the information needed to distinguish between animals but all we may require is the

pre trained network’s ability to extract the general shape of any object (or animal) in an

image. Pixel-wise prediction/classification can help in scene understanding. Distinguishing

pixels belonging to foreground and background have been quite common in the past. We

take it a step further by classifying each pixel into even more classes. Hence, it gives us a

finer segmentation. Because recognizing an object as a tree is not enough, the goal is to

be able to color parts of the tree different, and color leaves separately from the branches

and the background. Also, even in the same leaf not all pixels need to be the same color.

Core sampling is a term used in engineering and science where a long cylindrical sample is

Figure 4.1: The architecture of the Core Sampling framework.
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extracted for analysis natural materials, climatic record from ice cores etc. Convolutional

Neural Networks (CNNs) work on parts of the input locally usually at different pyramidal

levels. The lower layers encode the pixels while the higher layers provide representation of

objects comprising of those pixels that eventually help in understanding the entire image.

Pixel wise classification and image understanding can be improved with the local and global

information encoded in different layers of a CNN. The information from these layers can

be stacked at different pyramidal levels, and used as a core sample that can enables better

understanding of an image. A CNN convolves the input image and/or parts of the image

with filters. Training a CNN involves determining what these filters need to be to get

the desired output for a given input. We use the VGG-16 [90] model to bootstrap our

framework. The ImageNet dataset was used to trained this model [56]. It comprises of

more than a million training images and 1000 classes [56]. The intermediate maps, that

are generated for each pixel during the testing phase when images are input to the above

model, when stacked together and resized to a uniform size, form hypercolumns. The second

stage of our framework consists of a Deep Belief Network (DBN). Deep Belief Networks

are unsupervised deep learning models [45]. Figure 4.1 describes the architecture of the

core sampling framework. The left-most box represents an image being passed through the

VGG-16 architecture. There are numerous map responses from each layer of the network.

These map responses from multiple images are then up-sampled and aligned together and

samples from them are used to train a Deep Belief Network (DBN). The DBN treats each

pixel and corresponding features (map response values for that pixel) as a data point and

uses the labels supplied to it to train a network that can perform the desired task.

4.1 Pixel Level Classification

We use hypercolumns introduced in [42] as a data structure for representing the layer

outputs from a CNN. A hypercolumn for a pixel in an input image is a vector with k

columns, where k is the number of intermediate maps in the VGG-16 model, with each

component of the vector being a map. A hypercolumn does not preserve any spatial
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Figure 4.2: VGG-16 Architecture. There are multiple convolution layers, max pooling
layers, fully connected layers and a softmax layer.[90]

correlation between the constituent maps. A core is a collection of hypercolumns, one per

pixel in an input image. A random sample drawn from a core is called a core sample. Core

samples generated from input images a fed to the second stage of our framework. The

first few layers are used for accurate localization of an object and the layers close to the

output layer help to distinguish between different objects. Pre-trained VGG-16 [90] model

for bootstrapping the core sampling framework. Fig. 4.2 shows the architecture of the

VGG-16 network. There are also pooling layers between the convolution layers and fully

connected layers at the end [90]. This network is trained on the ImageNet dataset which

has a large variety of objects. This makes it a perfect model to construct a framework that

works for a variety of datasets [99]. Our framework uses the intermediate maps that are

acquired during the testing phase when images are input to this model. The individual

pixels of the intermediate maps, when stacked together and resized to a uniform size,

form hypercolumns. Each pixel’s value, combined with the map values produced using the

pretrained model, is used as a data point. The map values are thus the features for their

respective pixels. While using the maps from just 5 convolutional layers of the pretrained

model, the number of maps per image is already around 1500. As the size of the core
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sampling data (processed output data from the pretrained network, described in 4.1.3)

gets large, we came up with with the use of response maps from multiple layers of the

CNN. For this reason we use a randomly sampled subset of pixels to train the DBN in the

second stage.

4.1.1 Preprocessing and Data Augmentation

The input to the pre-trained VGG-16 model needs to be of the size 224 by 224. The

BAERI dataset (see Section 4.3.1) consists of raw images at inconsistent intensity levels

and variable image sizes. Resizing the images would create images that are at different

scales. So we added padding around smaller images to create 224 by 224 images. Because

we did not resize them, the scale information remained intact. For the same reason, we

created sub-images (tiles) from larger images before extracting the map responses. These

image tiles are created by using a sliding window of 224 by 224 and a smaller stride size.

As before, there is no resizing of images; hence there is no need for scale normalization.

We also generated more data by varying contrast to improve robustness to images that the

framework might not have seen and to create more training data for the next stage. The

map responses, which are now used as features, are individually normalized and the same

normalization parameters are used for the corresponding features during testing. CAMVID

consists of images of the same size (480 x 360) and are at the same scale, being a standard

dataset; hence not much preprocessing or data augmentation needs to be done.

4.1.2 Response Maps

The layers of a deep neural network learn different features at different layers or com-

binations of layers. The first layer of the network learns features that are similar to Gabor

Filters or Color blobs [99]. The deeper layers help to discriminate objects and parts of

objects while losing spatial and local information [100]. Hence, the combination of maps

at different layers helps to capture the spatial as well as the discriminative features. In

[100], it is pointed out that removing the fully connected layers as features had resulted in

very little increase in the error rate. Since the response from the fully connected layers is a
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Figure 4.3: Response Maps resized to original image size. Higher number indicates maps
from deeper layers.
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Figure 4.4: Response maps when stacked together. Each pixel and the stacked response
pixel together forms a hypercolumn. These response maps values are used as features for
our deep belief network

vector (either of size 1024 or 1000) resizing it would drastically increase the size of the data

without any significant increase in performance. We can see from Fig. 4.3 that the deeper

maps extract more and more abstract features. For example, the 1183rd map identifies the

eyes/ears of the cow whereas the first few maps detect the edges of the image. The deeper

maps, however, lose the detailed spatial information about the objects.

• ImageNet

The ImageNet [56] dataset is database of images. It consists of hierarchically organized

images. The quality of the images and the annotations are maintained by the ImageNet

Team. The broader types of images in the dataset are [56]:

1. plant, flora, plant life

2. geological formation, formation

3. natural object

4. sport, athletics

5. artifact, artifact
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6. fungus

7. person, individual, someone, somebody, mortal, soul

8. animal, animate being, beast, brute, creature, fauna

9. Misc

• VGG-16 (Visual Geometry Group’s 16 layer architecture) [90]

The pretrained model that we use is a 16 layer architecture that is trained with the

ImageNet dataset [56]. The VGG-16 [90] architecture performs up to 7.4% classification

error on the ImageNet test case. It consists of large number of convolutional layers, with

a large amount of 3 x 3 convolutional filters. The layers of the VGG-16 architecture is

described in Figure 2.2. The first two layers are of the same size as input (224 x 224) [90].

There are 64 such convolutional filters in each. They are succeeded by a max-pooling layer

of half the size (112x112)[90]. The next two convolutional layers consists of 128 filters [90].

It is then trailed by another max pooling layer of half the size (56 x 56)[90]. There are 3

more convolutional layers consisting of 256 filters and then, two more sets of max-pooling

layer succeeded by 3 convolutional layers of sizes 28x28 and 14x14 follow [90] each with 512

filters. There is then a 7x7 maxpooling layer for each of the 512 filters [90]. Towards the

end, there are dense layers of 1 x 1 x 4096 that are fully connected, a drop out layer and

final soft max layer for the final output layer [90].

4.1.3 Core Sample: Intermediate Data Representation

Since, we extract maps from a pre-trained model, we normalize the images by subtract-

ing constants from the Red, Green and Blue values (the same procedure that was used while

training the original model). From each image we then acquire the map responses from

each layer. Most of the map responses are n x n shapes (n ∈ 2i, i = positive integer).

Each of these map responses of various sizes are then resized to the input image size using

bilinear interpolation. These map responses are then stacked along with original input

image. From this point on wards, each pixel is a distinct data point with the map response
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values as its features. We define a core as a collection of hypercolumns, one per pixel for

an input image. Core samples are random samples drawn from a core. We feed the core

samples to the second stage of our framework. When we are dealing with classification,

we are expecting a data point to have a single label value, when we train on this data in

the second stage of our framework. In case of colorization, we use a regression layer where

we have normalized the possible output between 0 and 1. Also, in case of Colorization, we

are predicting two different channels (Cb and Cr), and both the output can have values

between 0 an 1.

4.1.4 Prediction using Deep Belief Network

We use unsupervised pretraining using RBMs followed by supervised learning using

DBNs for the final pixel-wise prediction. Our framework is flexible; depending upon the

task at hand, different types of output layers can be used. We have implemented two

different types of layers: a regression layer that implements linear regression a logistic

regression layer . For the loss function, the mean-squared error (MSE) is an appropriate

function for regression and for the logistic regression layer that is used to classify pixels a

negative log likelihood loss function is preferred. For example, if two pixels have red (R)

values 0.5 and 0.6 they are more similar than if they were 0.1 and 0.6. Hence, the use mean

squared error function is more appropriate on regression problems. Mean Squared Error

function is given by,

MSE =
1

n

n∑
i=1

(ŷ(i) − y(i))2, (4.1)

where ŷ is vector of predicted values and y is vector of actual values for n observations. On

most neural networks that classify rather than perform regression, the distance between

any two labels would be the same. In such cases, the likelihood (L) and loss (l) functions

are given by:
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L(θ = {W, b},D) =

|D|∑
i=0

log(P (Y = y(i)|x(i),W, b))

l(θ = {W, b},D) = −L(θ = {W, b},D),

(4.2)

where W, b are weights and biases respectively and D is the dataset [1] . Given an input,

the weights matrix, and a bias vector, it outputs the likelihood for a given input xi pertains

to a class represented by yi. Since this equation is based on probability values rather than

distance measure, it is more suitable for classification.

However, the two tasks that we evaluate our framework on, only deal with the classi-

fication task. We however have demonstrated examples where the regression layer can be

useful. The input to the data is the intermediate data representation that we described

above. The map responses from each layer is normalized using standard feature scaling.

The unsupervised training helps us to cluster the features together further, and help to

converge the network faster. Since, we only deal with classification for the we use negative

log likelihood as our cost function.

• Why DBN

If we cluster images by average map response, we can see a Convolutional Neural

Network gets more organized every layer as larger chunks are recognized. In simple cases

where many high level features / object parts are recognized, a standard two layer network

should be enough. A standard CNN is the extreme example of this: the convolutional layers

handle the bulk of the data abstraction, and the fully connected layers are only receiving

the very abstracted data from the bottom layer. If the maps from the upper layers are a

major part of solving the problem, a DBN should be used to ensure the data is properly

abstracted. In [99], the authors showed how CNNs lose generality as data travels through

them; so this would certainly be the case when trying to make predictions about images

that differ considerably from the original CNN training images (as is the case for our data).
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Similarly, the more the classification problem diverges from simple object recognition, the

less our desired output distributions will resemble the internal distributions in the CNN,

and the more additional levels of abstraction will be desirable.

We train our data by first doing a pre-training step with persistent chain contrastive

divergence (P-CD) and then fine tuning the network using a deep neural network. Keeping

the pretrained CNN and the sample interpreting DBN distinct makes it easier to pre-process

the data and also to normalize the testing set with respect to the training data. We used

L1 and L2 norms for regularization and implemented dropout on the hidden layers.

4.1.5 Core Sampling Algorithm

Algorithm 4 implements the core sampling framework. There are two modes of running

the framework: training (Line 2) and testing (Line 6). In both cases, we generate core

samples from images in a folder and normalize them before training or testing begins. The

function CoreSample() loads the pretrained model and the images and iterates through

the images. The aforementioned preprocessing/normalizing of the images is done and then

each image is fed into the model. GetFeature() extracts the feature maps and then each

map is upscaled to a uniform size of W ×H using bilinear interpolation where W and H

are the width and height of the input image. Then we concatenate all the cores into a

single array and normalize them. The normalization parameters for each feature map are

separately maintained. During training, an array of target vectors is created by using the

labeled images. Normalized samples from the cores and the labels are used as training data

for the Deep Belief Network and the trained model is saved to hard disk. During testing,

we load the model that we trained using our interpretive network (DBN) feed the core data

in and finally make our prediction.

4.2 Image Colorization

We originally intended to use our core sampling framework on image colorization.

We tried to train the framework on the entire samples from the ImageNet dataset. The

amount of training samples was huge (more than a million images). We were not able to
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Algorithm 4 Core Sampling FrameWork

1: function Main(mode, params, path)
2: if (mode = training) then
3: X, Y ← CoreSample(True, path)
4: model← trainDBN(params,X, Y ) . Trains the DBN and returns a trained

interpretive model
5: SaveModel(decision model, params.name)
6: else
7: X ← CoreSample(False, path)
8: model← LoadModel(params.name)
9: output← Predict(model,X)

10: end if
11: end function
12: function CoreSample(isTrain, path)
13: model← LoadPretrainedModel(name)
14: images, labels← LoadImages(path)
15: for each instance in images do
16: instance← preprocess(instance)
17: feature maps← GetFeature(instance)
18: for each map in feature maps do
19: upscaled← imresize(map, (W,H), ‘bilinear′)
20: core← reshape(upscaled,WXH) . converts upscaled to a vector of

length W x H
21: X ← concatenate(X, core)
22: end for
23: end for
24: X ← Normalize(X)
25: if (isTrain) then
26: Y = CreateTargets(labels) . Uses label images to create targets
27: return X, Y
28: else
29: return X
30: end if
31: end function
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train the network efficiently. We are only able to load about 20 images worth of pixels in

the Graphical Processing Unit (GPU) at a time.

4.2.1 Preprocessing Data

Color images consists multiple channels. Some of the popular ways to represent color

images are using RGB, YUV, CMYK, HSI, HSV, YCbCr etc [52]. These are different

methods to internally store images. RGB is the most common method to color modes to

represent images. These images have 3 channels where R channel represent the Red value,

G channel represent the Green value and B channel represents the Blue value of each pixel

in that image. The composite of all three images gives the final color image. Using the

RGB model is not the best choice for colorization problem. These three channels contain

more information than just colors. During colorization, the grayscale images already have

the outline, texture and other information about the images. They are just missing the

color components. Hence, we use the YCbCr color model where we the grayscale image is

used as the Y component and we predict the other two channels (Cb and Cr) which consist

of the color information. For training purposes, we convert the color images in to YCbCr

where Y is treated as the data and CbCr are the labels.

4.2.2 Regression

We use regression instead of classification for predicting the color values. The Cb and

Cr values are predicted in the range from 0 to 1. We add the regression layer in the DBN of

our core sampling framework as the output layer for the prediction. For the cost function,

we use the mean squared error function.

4.2.3 Complications

We focused mainly on landscape images with 3 different types of objects in our testing

of the image colorization problem: blue skies, forest and desert from public online images.

However, on a larger dataset there were some improvements required to outperform state

of the art. There were issues with storing very large size data. The core data increased
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(a) Sample Test Image (b) Sample Colorized Image

Figure 4.5: Colorization Example [40]

the size of the dataset by more than 1500 times. With a bigger pretrained network and

more maps from more layers, the size of the data would increase further. One way we tried

to combat this issue was use Core Samples. These are randomly chosen samples from the

Core Data. However, even with this and the significantly large amount of possible types

of images, further improvements were needed to use the framework to colorize any input

image.

4.3 Core Sampling Framework for Segmentation

Segmentation involves dividing an image into parts or segments based on some mean-

ingful criteria to make it easier to analyze the image. Pixel wise segmentation allows us to

get a finer boundary between segments even on highly irregular shapes. We use two dif-

ferent datasets for the image segmentation problem. On both the datasets, the prediction

is only on one channel. Each pixel can be classified as belonging to one of multiple classes
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and the entire image is segmented using pixel level prediction.

4.3.1 Datasets

The CAMVID dataset [23], [22] consists of 32 semantic classes of objects out of which,

like most of the other approaches [57], [102], we evaluate our algorithm on the 11 major

classes and 1 class that includes the rest. These classes are Building, Tree, Sky, Car,

Sign-Symbol, Road, Pedestrian, Fence, Column-Pole, Side-walk and Bicyclist [23], [22].

The training set includes input images, that are regular three channel color images and

the targets are segmented single channel images. The images are from a few videos taken

from inside a car driven on streets. These consist of labeled images with 367 training, 101

validation and 233 test images of consistent sizes at the same scale [23], [22].

The BAERI dataset [38] that we introduce here consists of imagery collected from a

Synthetic Aperture Radar (SAR). Both the input and output are treated as single channel

images. The input single channel image consists of SAR values and the labels are the

ground truth values at each of the pixels. Labels were obtained by morphological image

processing techniques for noise removal, i.e., opening and closing. The erosion and dilation

on the images fail to remove all the noise in the ground truth images. Therefore, there

are certain areas in the ground truth images that still contain some noise with incorrect

labels. As, we are classifying each pixel separately, the noise must be taken into account

during training. The values in the training images were in the range between -40 and 25.

In the BAERI dataset, the pixel classes are those belonging to the ship class and the rest.

There are only 55 images of variable sizes available in this dataset with the total size of 68

megabytes.
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Figure 4.6: Results on the CAMVID dataset. [23], [22] The images from left to right: a)
Original Image b) Ground Truth c) Our Algorithm d) SegNet [8]
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4.4 Experimental Results and Discussion for Classifi-

cation

4.4.1 Experimental Setup

We use negative log likelihood as our cost function for Classification. We trained the

DBN in the second stage by first performing a pre-training step with persistent chain

contrastive divergence (P-CD) and then fine tuning the network using a deep feed forward

neural network trained by backpropagation. Keeping the pretrained CNN and the DBN

interpreting the core samples distinct makes it easier to preprocess the data and also to

normalize the testing set with respect to the training data. We used L1 and L2 norms

for regularization and implemented dropout on the hidden layers. The input to the DBN

are the core samples that we described above. The map responses from each layer of the

CNN are normalized using standard feature scaling. The unsupervised training helps us

to cluster the features together further, and helps to converge the training faster. We used

the theano [92] deep learning library and an Intel i7 six core server with TITAN X GPU

for our experiments.

4.4.2 Analysis on the BAERI Dataset

Between the CAMVID dataset and the BAERI one, there are more objects in the

CAMVID dataset that are also present in the ImageNet dataset. On the other hand, the

BAERI dataset is quite different from ImageNet because it contains SAR data not present

in ImageNet. As a result of transfer learning, the knowledge acquired from ImageNet based

the wide variety of features abstracted at various levels by the pretrained VGG-16 network

prevented the sparsity of the BAERI dataset from creating any problem in training the

DBN in the second stage. On the BAERI dataset, our framework was able to slightly

outperform SegNet (see Table 4.1). The output images of SegNet had less blobs that could

be classified as noise but it also missed a few of the smaller ships and had a larger area of

pixels incorrectly classified as ships around the main clusters compared to our algorithm.
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Table 4.1: Results on BAERI Dataset

Metric Our Method SegNet
[8]

Accuracy (%) 99.24 98.08
Mean Squared Error (MSE) .0115 .0142

Table 4.2: Results on CAMVID Dataset

Classes Our Method Boosting Dense Depth SegNet [8]
(CRF + Detectors)[57] Maps [102]

367 Training Images 3.5 K Images
Building 71.0 81.5 85.3 89.6

Tree 62.6 76.6 57.3 83.4
Sky 96.8 96.2 95.4 96.1
Car 72.2 78.7 69.2 87.7

Sign-Symbol 52.3 40.2 46.5 52.7
Road 80.4 93.9 98.5 96.4

Pedestrian 56.4 43.0 23.8 62.2
Fence 48.1 47.6 44.3 53.5

Column-Pole 39.5 14.3 22.0 32.1
Sidewalk 77.3 81.5 38.1 93.3
Bicyclist 38.5 33.9 28.7 36.5

Class Avg. 63.2 62.5 55.4 71.2

All result images can be seen on [3]. Qualitatively, our algorithm performed better on the

BAERI dataset than SegNet.

4.4.3 Analysis on the CAMVID Dataset

On the CAMVID dataset[23], [22], the core sampling framework outperformed both

[57], [102] on 10 of the 11 classes in terms of accuracy and had a better per class accuracy

(see Table ??). Both [57], [102] and our framework were trained on 367 labeled training

images. As can be seen from Table 4.2, our framework could not match the performance

of SegNet on the CAMVID dataset in terms of accuracy except for the Sky, Column-Pole,

and Bicyclist classes where it outperformed SegNet. However, while our framework was

trained on 367 labeled images, SegNet was trained on 3500 labeled images.
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Chapter 5
Pixel-level Reconstruction and
Classification for Noisy Handwritten
Bangla Characters

Dimensionality reduction is a key concept in Machine Learning. The reduction in the

number of random variables to a least set of principal components / variables makes train-

ing and learning more efficient. These learning algorithms that reduce dimensions make the

model simpler and easy to train. Quadtrees are decomposed data structures usually con-

structed out of images by dividing the image into quadrants and subdividing each quadrant

recursively. We have used probabilistic quadtrees have been used to represent character

images and classify them using a deep belief network (DBN). Deep Belief Networks use hier-

archical representations to generalize and learn from data in a domain by first pre-training

a Restricted Boltzmann Machine (RBM) [14]. We also make use of transfer learning to

make use of pretrained networks to facilitate the fast training of our algorithms. In the next

sections, we will discuss how we use these techniques to focus on character images on the

Bangla and n-MNIST dataset [61],[11] . We use the same dataset provided for n-MNIST

data and create a new dataset by adding noise to the Bangla Basic Character Dataset. On

the Noisy Bangla Datasets that we focus on, [11] have used probabilistic quadtrees to learn

sparse representations of handwritten character images and have used a two layer DBN for

the classification. Quadtrees are decomposed into blocks and a homogeneity criterion is

used to decide whether or not to decompose them further into smaller blocks. We inject

three types of noise: random gaussian noise (awgn), noise due to camera or object move-

ments (motion blur), and noise due to poor illumination (reduced contrast) into the Bangla

Basic Character dataset consisting of 50 classes resulting in the Noisy Bangla Basic Char-

acter Dataset. In [11], once a block has been chosen for decomposition in any one image

based on the homogeneity criterion, that block is identically decomposed for every other
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Figure 5.1: The architecture of our character recognition scheme.

image. We build upon this approach and use a saliency map to improve the representation

and also use another DBN for character reconstruction removing noise.

5.1 Preprocessing Data

The datasets that we evaluate our algorithm on consist of three types of handwritten

characters: a) Bangla Basic Characters b) Bangla Numeric Characters c) Noisy MNIST

dataset. There are 50 classes in the first type and 10 in the other two. Preprocessing the

data is required for the Bangla Datasets as the images in the dataset provided to us were

all of different sizes. So, our preprocessing stage involves creating a dataset that is similar
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Figure 5.2: Original Images Bangla Numeral Characters. One image for each Bangla
Numeral. [15]

Figure 5.3: Original Images Bangla Basic Characters. One image each of the 50 Bangla
Basic Characters.[16]
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to the standard datasets for character recognition such as MNIST [61].

5.1.1 Standardize Raw Data

The n-MNIST images are already standardized. The Bangla Basic Characters and

Numerals images are all of different sizes, have different intensity levels for the foreground

and background pixels, and contain light blobs not part of the characters. These raw images

are first processed using the non-local means denoising algorithm [24]. Non local means is

unique in that it adds error even in the denoising process. Instead of looking at just the

pixels surrounding the image, nonlocal means also looks at every pixel. After performing

the non-local means denoising algorithm, the resulting images are bimodal in nature, with

the pixels belonging to the background having value around one and the rest, belonging

to the character or noise, having lower values. The next step is to use Otsu’s binarization

scheme [74] to threshold the images to binary. Otsu’s binarization is useful for bimodal

images because we can take the approximate mid value of the peaks as a threshold value [2].

It calculates the threshold value automatically using the histogram of the bimodal image.

In the subsequent binarized versions, we set the values of the pixels in the background to

0 and those in the foreground to 255. Following the procedure described in [11], we then

find the largest connected component for each image and center the image around that

component. We pad the images, to create square images, resulting in at least 10 pixel

long borders on all sides. To avoid large boundaries, we crop images that have too many

background pixels surrounding the characters. Fig. 5.3 shows one sample image each from

the 50 different classes of the Bangla Basic Characters dataset and Fig. 5.2 shows the 10

different Bangla Numerals.

5.1.2 Bangla Noisy Data Creation

Three kinds of noisy handwritten character image datasets are created from the pre-

processed dataset by adding three distinct types of noise. Similar to [11], we create: a)

the awgn noisy dataset by adding white gaussian noise(awgn) to the preprocessed dataset.

The signal to noise ratio (snr) for these images was: 9.5, b) the contrast noisy dataset by
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(a) added white gaussian noise (awgn)

(b) motion blurred

(c) decreased contrast and awgn

Figure 5.4: Noisy Version of the Bangla Numerals.

dividing the intensity of the preprocessed images by 2 and awgn with a snr of 12, and (c)

the motion blurred noisy dataset by blurring the images with a linear motion of 5 and an

angle of 15 degrees in the counterclockwise direction. Fig. 5.4 shows the samples from the

noisy Bangla Numeral dataset for each of the three noise types and Fig. 5.5 shows the sam-

ples from the noisy Bangla Basic Characters dataset for each of the three noise types. The

three noise types we added are commonly found in images due to camera movements, poor

illumination, high temperature, and movement of objects [103]. Natural images taken from

cameras, scanner etc. often contain such noises that need to be taken into consideration

during classification tasks.

5.1.3 Ground Truth for the Character Reconstruction Network

We do a pixel-level character reconstruction to clean the noisy images using the char-

acter reconstruction network. We use binarized/cleaned version of the original images as

labels for training this network. To keep the images binary after resampling, we use the

nearest neighbor method during the resizing process. Each pixel in the ground truth can

be grouped into one of the following two classes: a) belonging to the background or b)

belonging to the character. Fig. 5.6 shows binary images used as ground truth for the
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(a) added white gaussian noise (awgn)

(b) decreased contrast and awgn

(c) motion blurred

Figure 5.5: Training Data for the Character Reconstruction Network. The noisy images of
the the basic bangla characters
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Figure 5.6: Ground truth sample images of the the basic bangla characters for the Character
Reconstruction Network

Character Reconstruction Network.

5.2 Deep Belief Networks

We use Deep Belief Networks at two stages of our approach. First, we use a DBN as

a Character Reconstruction Network (CRN) to segment the pixels belonging to characters

from the background and then we also a DBN as a Character Classification Network (CCN)

to generate the final classification using the feature vector representation provided by the

probabilistic quadtrees.

5.3 Character Reconstruction Network (CRN)

The Character Reconstruction Network uses the map responses from the intermediate

layers of a previously trained CNN as features for pixel-wise classification. The CRN

segments the pixels representing the characters from the rest of the pixels. It uses the

map responses to the noisy images obtained when they are fed to the pretrained CNN

as features. Each pixel, combined with the extracted features, is a single data point and

the whole character image is reconstructed based on the classification of each pixel in that

image. We do not know beforehand the types of noise that could be in the input images.

A single simple filter may not be enough to denoise images with unknown types of noise.
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5.3.1 Transfer Learning

We use transfer learning to extract information from the character images using the

map responses from the pre-trained CNN as features to the CRN. The data that we feed

in to either the CRN or the CCN is not suitable for a convolutional network.

The pretrained CNN has been trained on the ImageNet dataset [56] which has 1000

object classes and more than a million images. It is trained mostly on objects, animals,

scenes, and some geometric shapes. Though we are dealing with a different type of data, it

has been found that some of the higher level features learned from the convolutional layers

are applicable in other types of images as well [99]. Since the objective of the CRN is to use

pixel-wise classification to segment the pixels belonging to the character from the rest and

the pre-trained CNN already takes into account the contextual information in the image,

we use a DBN as the CRN.

5.3.2 Training the CRN

Our input to the Character Reconstruction Network is the preprocessed character im-

ages along with the maps extracted from the pre-trained CNN when these images are

passed through it. Our ground truth, as explained in Section 5.1.3, is the binarized version

of the original images. For the training of this network, all three types of noisy images,

that includes both Numeral and Basic Character images, are used. We also train the CRN

with images without noise to make it more robust to images containing very little noise as

well. We only use images generated from the training set of the original dataset (and not

the testing or validation set) for the training, validation, and testing of this network. We

sample 30 images each from all the three noisy versions of each of the two types of data:

Bangla Numeral and Bangla Basic Character and 14 images each from the images without

noise. We use the framework described in [53] to train the CRN where map responses from

the pre-trained CNN are all rescaled to our input image size. Now, every pixel in the input

image has a corresponding pixel in each of the map responses. The values of the pixels

in the corresponding map responses are used as features that when aligned together form
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(a) Noisy Samples of images (awgn)

(b) Corresponding output

Figure 5.7: Results from the Character Reconstruction Network

hypercolumns [42]. We train the Character Reconstruction Network by taking random

samples from the pool of all available pixels along with their respective features. We do no

use the n-MNIST dataset in any training of the CRN. However, we use the same model to

reconstruct the n-MNIST images.

5.3.3 Reconstruction on the n-MNIST dataset

As discussed before, we train our CRN using the training images of Noisy Bangla

Characters that we created and create a model that reconstructs clean images. We use

the same model to reconstruct our n-MNIST images [11]. Standardizing our Noisy Bangla

Dataset allowed us to use the same model without having to use the n-MNIST images to
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(a) added white gaussian noise
(awgn)

(b) motion blurred (c) decreased contrast and awgn

Figure 5.8: Sample Images from the n-MNIST Training dataset [11]

train a second model of the CRN. Transfer Learning is also applied here even though the

images have a lot of similarity between them. Figure 5.8 shows the noisy images from the

n-MNIST dataset. Similar to the Noisy Bangla dataset there are same 3 types of noise

that have been inserted. They are of size 28 x 28 compared to 32 x 32 on the Noisy Bangla

Dataset.

5.4 Feature Representation using Quadtrees

Decomposing an image window into maximal quadtree blocks has been used as an

efficient way to represent sparse features [6]. We use this technique to represent our images.

Considering that the use of quadtree decomposition is more effective in representing images

with less noise, the previous step is done to denoise noisy images. However, it is also

beneficial to reduce dimensionality. Hence, we improve the sparse representation offered by

probabilistic quadtrees [11] further by eliminating a) blocks that have been decomposed in

only a small fraction of samples and b) blocks that are present in almost all samples. This

step would make the dataset itself less redundant.

5.4.1 Saliency Measure

The homogeneity criterion described in [11] guides the process of reducing the char-

acter images into a vector of intensity values. Blocks containing textural details would be

decomposed into smaller blocks. The quadtree representation is then converted to a linear
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vector by performing a depth first search (DFS). The average pixel values of the decom-

posed blocks are used as features. While this approach reduces the number of features,

when the data is noisy the quadtrees tend to be broken down into smaller blocks. Also,

using this approach, whenever an image is broken into smaller blocks, all other images use

this block in the final feature vector.

To combat this problem, we only use salient blocks that help in discrimination of

characters. We define a saliency measure and prune smaller blocks that are not decomposed

in µ percentage of the total number of training images or if they are contained in more

than ν percentage of the samples. This technique decreases the number of features while

not removing key blocks helpful to distinguish characters. The decomposition map on Fig.

5.9 (a) shows the normalized recurrence of the decomposed blocks for the entire training

dataset for motion blurred (noisy) Bangla Numeral images. The map shows that a lot of

the blocks on the edges are hardly ever used and some blocks in the middle are present in

almost all of the images. These blocks are not very likely to be useful in discriminating

the characters. The saliency mask obtained in Fig. 5.9 (b) shows the blocks actually used.

Table. 5.1 and 5.2 show the reduction of feature vectors using our technique compared to

the previous approach.

5.4.2 Character Classification Network

The Character Classification Network is a DBN that uses the average pixel values of

the different blocks that have been decomposed in the quadtree. We train the CCN to

recognize the handwritten characters as belonging to individual character classes. In this

case, the output is a probability value that represents what character is present in the

entire image instead of each pixel. The training data consists of the pixel values at all

quadtree blocks. The labels are provided by the labels of the images. In contrast to the

Character Reconstruction Network, we use separate models for each type of noise for the

final classification of the characters into the classes that they represent.

72



(a) Decomposition Map (b) Saliency Mask

Figure 5.9: Using saliency measure to reduce dimensionality.

Table 5.1: Comparison of the number of features used in the Bangla Numeral Dataset

Noise Type Original Ours Basu et. al.[11]
awgn 1024 208 244
contrast 1024 203 244
motion 1024 196 202

Table 5.2: Comparison of the number of features used in the n-MNIST dataset

Noise Type Original Ours Basu et. al.[11]
awgn 784 153 244
contrast 784 146 244
motion 784 145 211
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5.5 Experimental Results and Discussion

5.5.1 Experimental Setup

We trained both the CRN and the CCN by first performing a pre-training step with

persistent chain contrastive divergence (P-CD) and then fine tuned the network using

backpropagation. We again use L1 and L2 norms for regularization and implemented

dropout on the hidden layers. We ran our algorithms on an Intel i7 six core server with

TITAN X GPU and used the Theano deep learning library for the Deep Belief Networks

[92]. We used µ = 5% and ν = 95% for our experiments.

5.5.2 Original Numeral Dataset

Table 5.6 shows that our approach performs better on the Original Numeral dataset

compared to [15]. For a better comparison, we used a similar multistage approach as in

[15] for our classification. We trained a CCN at multiple resolutions of the images: 16 x

16, 32 x 32, 64 x 64 and a combination of these. A classification with rejection scheme was

chosen. We had a better recognition accuracy and encountered less rejection (i.e., no class

assigned) and substitution (i.e., wrong classification) using our method. We used a uniform

threshold for the CCN at each resolution. Fig. 5.12 shows the performance (recognition

accuracy) at various thresholds and a probability threshold of .993 yielded best results.

Table ?? shows the exact number of correct predictions, rejections, and substitutions on

Training and Testing data.

5.5.3 Results on the Bangla Noisy Datasets

On the Bangla Numeral Dataset, Table 5.8 shows that we also significantly improve on

the results for each of the noise types in the Noisy Numeral dataset compared to [11]. We

further improve the results using the saliency mask. We can observe that the classification

accuracy increased even with a decrease in the number of features. In Table 5.10, we com-

pare our results on the Noisy Bangla Characters dataset with that obtained by just using

a traditional DBN using raw pixels as features (similar to [11]). We obtained significant
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(a) added white gaussian noise
(awgn)

(b) motion blurred (c) decreased contrast and awgn

Figure 5.10: Reconstructed n-MNIST Images

improvements in overall accuracy for each of the noise types using our approach. We also

studied the impact of various CCN architectures on the classification accuracy on the noisy

Bangla Basic Characters dataset and the n-MNIST dataset. For the awgn noise type of

Bangla Basic Characters, an architecture with two hidden layers each with 500 neurons in

each layer performed best as seen in Table 5.3. From Table 5.4, we can see that for the

motion noise type an architecture with 2 hidden layers each with 300 neurons performed

best. In the Bangla basic characters, reduced contrast noisy images had the worst accuracy.

For the contrast noise type, the architectures with 3 hidden layers each with 500 neurons

performed best indicated in bold in the three columns of the Table 5.5. Fig. 5.14 shows

the percentage of recognition of each class represented using a confusion matrix. Among

the digits, 1 and 9 seem to be the most frequently confused characters, as their shapes are

similar.

5.5.4 Results on the n-MNIST Dataset

Fig. 5.10 shows samples of the reconstructed images for the n-MNIST dataset. The

quadtree representation was extracted from the reconstructed images and trained each

using CCN. Each type of noise has its own trained model. Table 5.9 shows the results on

the n-MNIST dataset provided in [11]. We get better significant improvements with the

datasets with added white gaussian noise (awgn) and with reduced contrast and comparable

75



Table 5.3: Results on Bangla Characters with AWGN with Different Architecture

Architecture
(Neurons)

Error (%)

100 - 100 25.29
200 - 200 23.57
300 - 300 23.47
400 - 400 23.35
500 - 500 23.26

1000 - 1000 23.28
100 - 100 - 100 26.81
300 - 300 - 300 24.08
500 - 500 - 500 23.28

1000 - 1000 - 1000 23.49

Table 5.4: Results on Motion Blurred Bangla Characters with Different Architecture

Architecture
(Neurons)

Error (%)

100 - 100 24.43
200 - 200 23.26
300 - 300 22.78
400 - 400 23.09
500 - 500 23.35

1000 - 1000 23.03
100 - 100 - 100 26.03
300 - 300 - 300 23.49
500 - 500 - 500 23.24

1000 - 1000 - 1000 23.27

Table 5.5: Results on Contrast Reduced and AWGN MNIST with Different Architecture

Architecture
(Neurons)

Error (%)

100 - 100 33.63
200 - 200 31.90
300 - 300 31.16
400 - 400 30.71
500 - 500 30.82

1000 - 1000 30.88
100 - 100 - 100 39.90
300 - 300 - 300 32.20
500 - 500 - 500 30.34

1000 - 1000 - 1000 31.31
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Table 5.6: Comparison on the Bangla Numeral Dataset

Ours
Multistage

Representation [15]
Total Correct 3942 3928

Accuracy 98.55% 98.20%
Rejection 0.13% 0.18%

Substitution 1.32% 1.62%

Figure 5.11: Confusion Matrix on the Noisy Bangla Numeral dataset

Table 5.7: Performance Statistics on the Bangla Numeral Dataset

Stage
Total

Samples
Recognition Accuracy

Correct Rejection Substitution
Train

16 X 16 17392 11647 5706 39
32 X 32 5706 4984 717 5
64 X 64 717 661 56 0

Combination 56 55 1 0
Overall 17347 1 44

Overall (%) 99.74 0.01 0.25

Test
16 X 16 4000 2440 1532 28
32 X 32 1532 1093 417 22
64 X 64 417 349 65 3

Combination 65 60 5 0
Overall 3942 5 53

Overall (%) 98.55 .13 1.32
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Figure 5.12: Performance on the Bangla Numeral Dataset over various rejection proba-
bility threshold. We used the same threshold for Training and Testing
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Table 5.8: Comparison of Error(%) on the Noisy Bangla Numeral

Noise Ours Basu et. al. [11] Ours (Saliency Measure)
awgn 4.92 8.66 4.54

motion 5.12 7.34 4.96
contrast 7.4 12.69 7.15

Table 5.9: Comparison of Error(%) on the Noisy MNIST Dataset

Noise Ours Basu et. al. [11] )
awgn 2.38 9.93

motion 2.8 2.6
contrast 4.96 7.84

results with the motion blurred image. The observation made from this result is that the

accuracy is improved on images with added white noise. We also use smaller number of

features for the n-MNIST compared to using raw pixels and [11]. For the awgn noise

type MNIST characters, an architecture with two hidden layers each with 500 neurons

performed best as seen in Table 5.11. From Table 5.12, we can see that for the motion

noise type an architecture with 2 hidden layers with 400 neurons in each layer performed

best. The reduced contrast noisy MNIST images had the worst accuracy. For the contrast

noise type, the architectures with 2 hidden layers with 300 neurons in each layer performed

best indicated in bold in the three columns of the Table 5.5.

In both n-MNIST and noisy Bangla Basic Characters, reduced contrast images had

the worst recognition rates. The reconstruction network eroded a lot of pixels from the

characters of the reduced contrast images. The random noise pixels had similar intensity

values to the character pixels. Because of that edges were not as sharp as the other two types

Table 5.10: Performance on Noisy Bangla Characters

Noise Type
Error (%)

Ours Ours Raw Pixels
(Without Reconstruction)

awgn 23.26 29.36 42.69
motion 22.78 25.64 41.20
contrast 30.34 41.11 53.37
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Figure 5.13: Accuracy on the n-MNIST with different architecture

80



Figure 5.14: Confusion Matrix on the n-MNIST dataset

Table 5.11: Results on Added White Gaussian Noise MNIST with Different Architecture

Architecture
(Neurons)

Error (%)

100 - 100 2.84
200 - 200 2.54
300 - 300 2.65
400 - 400 2.5
500 - 500 2.38

1000 - 1000 2.63
100 - 100 - 100 3.04
300 - 300 - 300 3.05
500 - 500 - 500 2.61

of noisy images. Fig. 5.11 shows the percentage of recognition of each class represented

using a confusion matrix. It is notable that the erosion of pixels from the contrast dataset

leads to a recognition of 89
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Table 5.12: Results on Motion Blurred MNIST with Different Architecture

Architecture
(Neurons)

Error (%)

100 - 100 3.42
200 - 200 3.00
300 - 300 2.84
400 - 400 2.80
500 - 500 2.91

1000 - 1000 3.07
100 - 100 - 100 3.37
300 - 300 - 300 3.05
500 - 500 - 500 3.01

Table 5.13: Results on Contrast Reduced and AWGN MNIST with Different Architecture

Architecture
(Neurons)

Error (%)

100 - 100 5.54
200 - 200 5.12
300 - 300 4.96
400 - 400 5.12
500 - 500 5.10

1000 - 1000 5.41
100 - 100 - 100 5.83
300 - 300 - 300 5.07
500 - 500 - 500 5.21

82



Chapter 6
Conclusions

Our rich symbolic framework based on regular expressions is used for recognizing di-

verse types of activities in surveillance videos. Though simple, the framework not only

provides fast algorithms for activity recognition but is also flexible enough to admit both

generative and learning based approaches. We plan to integrate our framework with rea-

soning engines to provide inference capabilities at a higher level of abstraction. We also

plan to compare to incorporate the Probabilistic Finite State Automata (PFA) and make

comparisons with the current approach as PFAs can be learnt from a set of strings using

Expectation-Maximization.

We also presented a core sampling framework that is able to use the activation maps

from several layers of a pretrained CNN as features to a DBN using transfer learning to aid

pixel level classification. We experimentally demonstrate the usefulness of our framework

using a pretrained VGG-16 [90] model to perform segmentation on the BAERI dataset

[38] of Synthetic Aperture Radar(SAR) imagery and the CAMVID dataset [23]. In the

future, we intend to use the core sampling framework to facilitate compression of images

and texture synthesis.

We improved the efficiency of probabilistic quadtrees by using a pixel level classifier

to reconstruct character images by removing the noisy pixels from them. We used a pixel

level denoiser based on a pretrained CNN on a distinct but huge dataset and used transfer

learning to learn features for that network.
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Chapter 4 of this work is based on the paper titled ”Core Sampling Framework for Pixel
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