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Abstract

The compiler is able to detect the data dependencies in an application and is able to analyze the

specific sections of code for parallelization potential. However, all of these techniques provided

by a compiler are usually applied at compile time, so they rely on static analysis, which is in-

sufficient for achieving maximum parallelism and desired application scalability. These compiler

techniques should consider both the static information gathered at compile time and dynamic

analysis captured at runtime about the system to generate a safe parallel application. On the other

hand, runtime information is often speculative. Solely relying on it doesn’t guarantee maximal

parallel performance. So collecting information at compile time could significantly improve the

runtime techniques performance.

The goal is achieved in this research by introducing new techniques proposed for both compiler

and runtime system that enable them to contribute with each other and utilize both static and dy-

namic analysis information to maximize application parallel performance. In the proposed frame-

work, a compiler can implement dynamic runtime methods in its parallelization optimizations and

a runtime system can apply static information in its parallelization methods implementation. The

proposed techniques are able to use high-level programming abstractions and machine learning

to relieve the programmer of difficult and tedious decisions that can significantly affect program

behavior and performance.

vi



Chapter 1
Introduction

1.1 Motivation

Using existing parallelization techniques, application developers are usually not able to utilize

all available resources when parallelizing their applications; due to the hardware differences and

applications properties. Since achieving expected scalability on each hardware requires efficient

utilization of the available hardware resources, which needs a user to be aware of the details of

the applied architectures. So user needs to spend a large portion of his time to study about each

hardware and preparing his application to be compatible for that hardware; which is usually not

feasible. The main motivation of this research is to provide a scalable framework for paralleliz-

ing an application productively for a targeted underlying hardware. One of the solutions for this

challenge is improving information provided with the compiler. Since most of the compiler op-

timizations are based on the static information, so including dynamic analysis in those methods

can improve those compiler techniques. Our first investigation in this research is improving OP2

compiler:

• Improving OP2 Compiler with HPX Runtime System. Unstructured grids are well stud-

ied and utilized in various application domains. OP2 provides a framework for the parallel

execution of these unstructured grid applications on different multi-core/many-core hard-

ware architectures [1, 2]. It uses source-source translation to generate an application’s code

for the targeted platform. The main goal of developing OP2 is to provide an abstraction

level which allows users to parallelize their applications without having to worrying about

architecture specific optimizations. This allows scientists to invest most of their time in un-

derstanding their domain problems, without learning details of new architectures, and still

achieve efficient utilization of the available hardware. Its framework is designed to achieve
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the near-optimal scaling on multi-core processors [3, 4]. However, as the compiler only has

a static and defined access pattern [5–7], its analysis is not enough to obtain desired par-

allel scalability. In order to reach to this goal, OP2 needs to be able to extract parallelism

automatically at runtime. By extending the compiler to take advantage of runtime infor-

mation, OP2 will be able to consider dynamic analysis as well as static information while

generating codes for different platforms. In Chapter 2, we improve the parallel application

performance generated by the OP2 compiler by leveraging HPX, a C++ runtime system, to

provide runtime optimizations. These optimizations include providing asynchronous task-

ing, loop interleaving, dynamic chunk sizing, and data prefetching.

In Chapter 2, we illustrate how including dynamic analysis and asynchronous techniques can

improve the OP2 compiler performance. However, the static information are missed in those pro-

posed dynamic techniques. Since those methods perform only based on dynamic analysis about

the system, which are insufficient. There are several existing publications on automatically tuning

optimizations techniques based on static information extracted at compile time. Since manually

tuning parameters becomes ineffective and almost impossible when too many analysis are given

to the program. Hence, many researches have extensively studied machine learning algorithms

which optimize such parameters automatically; such as studied done in [8–12]. However, most of

these optimization techniques require users to compile their application twice, first compilation

for extracting static information and the second one for recompiling application based on those

extracted data. Also, none of these considers both static and dynamic information. So our goal is

to optimize an application’s performance by predicting optimum parameters for its parallel algo-

rithms by considering both static and dynamic information and to avoid unnecessary compilation.

This leads us to our second investigation of this research, that is improving the HPX runtime

techniques using static information provided with Clang compiler:
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• Improving HPX Runtime System with Clang Compiler. The HPX runtime methods have

been shown to be very effective in achieving better parallel scalability compared to the ex-

isting parallel techniques as it is illustrated in Chapter 2, especially for highly dynamic ap-

plications. However, as all of these HPX parallel algorithms perform based on the dynamic

analysis provided at runtime, so they are unable to reach maximal parallel performance.

The performance of an application depends on both the values measured at runtime and the

related transformations performed at compile time. Collecting the outcome of static anal-

ysis performed by the compiler could significantly improve the HPX algorithms runtime

decisions and therefore the application’s performance. In order to reach this goal, HPX al-

gorithms need to predict the optimum parameters by considering both static and dynamic

information. In the current HPX algorithms, execution parameters should be selected by

a user. Manually parallelizing all loops, however, may negatively effect an application’s

parallel performance, as some of those algorithms cannot scale desirably to a large num-

ber of threads. This leaves a user to execute each parallel algorithm of his/her application

with different execution parameters to find the efficient parameter for that algorithm. This

clearly is not an optimum approach. In Chapter 3, we illustrate how machine learning tech-

niques can be applied to address these challenges. We improve the parallel performance of

the applications written with HPX by automating such parameter selection which considers

loops characteristics implemented with a learning model. Our results show that combining

machine learning, compiler optimizations and runtime adaptation helps us to maximally

utilize available resources and minimize execution time.

As it can be seen, the main motivation of this work is to develop a framework that utilizes both

static and dynamic information about the system to make proper optimizations. As it is shown

in Fig. 1.1, in this framework, both the compiler and the runtime exchange parameters that can

be used to optimize their performance and achieve a safe parallelization. These optimizations are

discussed briefly in the following subsections.
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FIGURE 1.1. The main motivation of this work is to develop a framework that utilizes both static
and dynamic information about the system to make proper optimizations. In this framework, both
the compiler and the runtime exchange parameters that can be used to optimize their performance
and achieve a safe parallelization.

1.2 Improving OP2 Compiler with HPX Runtime System

In Chapter 2, we propose different optimization methods that provide dynamic information for

the code generated by the OP2 compiler. In that Chapter, we present the implementation of OP2

compiler that employs the proposed runtime techniques implemented using HPX to efficiently and

automatically parallelize the dynamic applications. We show the algorithmic and implementation

improvements using HPX in OP2 to hide the communication latencies and to achieve a desired

scalability.

To our knowledge, we present a first attempt of redesigning OP2 to utilize the runtime tech-

niques for improving performance of the parallel unstructured grid applications. The combination

of these proposed techniques should yield a more portable and performant software stack for

unstructured grid applications and enable the applications to properly scale to a higher level of

parallelism compared to the existing OP2 implementation. The proposed optimization methods

implemented in the developed framework can be summarized as follow:

1. Asynchronous task execution.

2. Dynamically setting chunk sizes.

3. Interleaving different loops together.

4. Prefetching data before its actual access

4



This hybrid framework provides the sufficient information for parallelizing an application to

properly scale to a higher level of the parallelism compared to the existing OP2 implementation

by combining task-based parallelism, grain size control, and prevalently asynchronous execution.

The results in section 2.5 show that the parallelization performances are improved by around

40 − 50% for an Airfoil application compared to using current version of an OP2. We briefly

discuss these optimizations in the subsequent sub-sections.

1.2.1 Asynchronous Task Execution

One of the performance optimizations achieved in this research is enabling OP2 to provide the

asynchronous task execution by using HPX. In the current OP2 design, OpenMP is used for par-

allel processing within a node and MPI is used for communication between different nodes. In

these models, an implicit global barrier is present after each loop parallelization with OpenMP

during thread synchronization [13]. Additionally, in MPI, there is an explicit barrier after nearly

every step of the communication between different nodes. These two local and global synchro-

nization barriers imposed by the programming models of OpenMP and MPI causes the parallel

threads and processes to wait and results in impeding optimal parallelization. A closer analysis on

the couple of unstructured applications reveals that only synchronization between small tasks are

needed. So there is no need to wait for all computations and processes to be executed completely

before going to the next steps.

In blocking communication applied using “MPI_ Send()” and “MPI_ Recv()”, each node must

complete its current process before it can continue to the next step. On the other hand, in non-

blocking communication applied using “MPI_ Isend()” and “MPI_ Irecv()”, the communications

are not blocked even if the current process is not yet completed, which allows the other works

to proceed. However, “MPI_ Wait()” or “MPI_ Probe()” should be used within this method to

confirm whether the communications are completed, which avoids achieving optimum scaling.

Another problem in using MPI is related to granularity, which is defined as the amount of the

computations per each execution block. Fine-grained tasks have a small quantum of work and
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help in achieving better load balancing [14, 15], while on the other hand, coarse-grained tasks

have large amount of computations. In MPI, the coarse-grained tasks are often chosen to obtain

an optimal efficiency [16], but leads to load imbalances. Integrating OpenMP into MPI is ex-

pected to increase the parallel performance, however the overheads added by loop scheduling and

synchronization in OpenMP [17] in addition to creating unnecessary synchronization barriers and

load imbalance issues mentioned above inhibit the promised speedup [16, 18].

In this research, HPX is used for both communication between different nodes and parallel pro-

cessing within each node. It provides the dynamic parallel framework, which can easily optimize

the parallelization of an unstructured grid applications. The future construct used in HPX allows

the system to start working on the next time step instead of waiting for all computations to be

completed [19], which relaxes the global barriers, improves the parallel performance and enables

an application to be executed asynchronously.

1.2.2 Dynamically Setting Chunk Sizes

HPX is able to dynamically control the chunk size during the execution by automatically setting

amount of work spawned by each chunk. This optimization can be used for dynamically determin-

ing efficient chunk sizes of the loops generated by the OP2 compiler. Moreover, the new execution

policy is proposed is this research that helps OP2 to make all chunk sizes of different dependent

loops having same execution time, which decreases the waiting time between the chunks in those

loops for obtaining better execution time. This method is discussed in more details in section

2.4.3.2.

1.2.3 Interleaving Loops Together

Using future-based techniques in HPX enables threads to continue their executions without wait-

ing for the results of the previous steps to be completed, which eliminates unnecessary implicit

global barrier. The new future based task execution technique is proposed in this research that

enables OP2 to interleave different loops together at runtime by assigning output of each loop

to a future and passing loop inputs as futures as well. As a result, if the loops are not de-
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pendent on each other, they can be executed without waiting for the previous loops to complete

their tasks, however, if they depend on the results of the previous loops, they will wait until the

previous loops complete their processes, which removes the unnecessary barrier synchronizations

between different loops. So HPX enables highly efficient parallelization compared to the existing

equivalent applications. The main advantage of this method is minimizing total synchronization

by rescheduling overheads and executing function asynchronously. This method is discussed in

more details in section 2.4.3.

1.2.4 Prefetching Data Before Its Actual Access

Although HPX increases the on-node parallelism available to the user, however it results in in-

creasing complexity of the memory hierarchies. One of the solutions to this problem is data

prefetching, which effectively reduces the memory accesses latency [20, 21]. Thereby, the new

cache prefetcher used in HPX is introduced to aid prefetching data in each time step before its

actual access is executed. This method is implemented in such a way that data of the next iteration

step is prefetched into the cache memory using prefetching iterator called in each iteration within

a loop. The main difference between this method and the other existing methods is that HPX im-

plementation combines a thread based prefetching method with the asynchronous task execution,

which results in having asynchronous execution while prefetching data of all the containers within

a loop. This method is discussed in more details in section 3.4.4.3.

1.3 Improving HPX Runtime System with Clang Compiler

• In [22, 23] different policies for executing HPX parallel algorithms are studied. These poli-

cies should be manually selected for each algorithm within an application, which may not

be an optimum approach.

• Determining chunk size is another challenge in the current HPX algorithms. Chunk size is

the amount of work performed by each task [19, 24] that is determined by either an auto-

partitioner exposed by the HPX algorithms or is passed as an execution policy’s parameter

by using static/dynamic chunk size. However,
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1. the experimental results in [25] and showed that the overheads of determining chunk

size using auto_partitioner for some of the loops negatively effects the application’s

scalability;

2. on the other hand, the static/dynamic_chunk_size should be chosen by a user, which

he/she may not know the optimum one and it can be achieved only by running appli-

cation with different values of the chunk sizes and selecting the efficient one [22]..

• In addition to these challenges, in the prefetching method proposed in [26], a distance be-

tween each two prefetching operations should also be manually chosen by a user for each

new program.

Automating these mentioned parameters selections by considering loops characteristics imple-

mented in a learning model can optimize the HPX parallel applications performances. In Chapter

3 a new technique is proposed that enables HPX runtime system to select its parallel algorithms

parameters at runtime by implementing machine learning algorithm on the extracted static and

dynamic information. In that proposed technique, the static information about the loop body col-

lected by the compiler and the dynamic information as provided by the runtime system is used to

a learning model enabling a runtime decision to obtain highest possible performance of the loop

under consideration. The presented method relies on a compiler-based source-to-source transfor-

mation, that transform a code and instructs the runtime system to apply a learning model to select

either an appropriate code path (e.g. parallel or sequential loop execution) or certain parameters

for the loop execution itself (e.g. chunk size or prefetching distance).

To the best of our knowledge, we present a first attempt in implementing learning models

for predicting loop’s parameters at runtime, in which designing these runtime techniques and

capturing learning model’s features are automatically performed at compile time. These proposed

optimization methods discussed in Chapter 3 can be summarized as follow:

1. Determining efficient execution policy.
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2. Determining efficient chunk size.

3. Determining efficient prefetching distance.

Our results show that combining machine learning, compiler optimizations and runtime adap-

tation helps us to maximally utilize available resources. The evaluated results discussed in Sec-

tion 3.5 shows that these proposed techniques improve the parallel performance performance

by around 12% − 35% for the Stream, Stencil, Matrix Multiplication and NBody application

compared to setting their HPX loop’s execution policy/parameters manually or using HPX auto-

parallelization techniques. We briefly discuss these optimizations in the subsequent sub-sections.

1.3.1 Determining Efficient Execution Policy

In order to predict the optimum execution policy (sequential or parallel), we implement a binary

logistic regression model [27] with HPX which analyzes extracted information of a loop. This

model deals with the problems in which their outputs can only be two different types, False

or True. This method estimates the probability of the occurrence of each of these outputs by

applying learned weights on a given characteristics set of a new loop. For implementing this

learning model on a loop at runtime, we introduce a new HPX execution policy par_if that makes

runtime system to decide whether executes loop in sequential or in parallel. This technique is

implemented by considering loop’s characteristics extracted with a Clang compiler and weights

values learned with a binary logistic regression model. This method is discussed in more details

in section 3.4.4.1.

1.3.2 Determining Efficient Chunk Size

In order to predict the optimum chunk size, we implemented a multinomial logistic regression

model [27] with HPX which analyzes extracted information of a loop. This model can be con-

sidered as an extension of the binary logistic regression model that allows considering problems

with more than two categories. It deals with multiclass problems to predict the output of a new

application by computing probabilities of the occurrence of each different classes. For imple-
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menting this learning model on a loop at runtime, we introduce a new HPX execution policy

parameter adaptive_chunk_size that makes runtime system to choose an efficient chunk size for a

loop. This technique is implemented by considering loop’s characteristics extracted with a Clang

compiler and weights values learned with a multinomial logistic regression model. This method

is discussed in more details in section 3.4.4.2.

1.3.3 Determining Efficient Prefetching Distance

Same as determining efficient chunk size, a multinomial logistic regression model is used here

for determining efficient prefetching distance. For implementing this learning model on a loop at

runtime, we introduce a new HPX execution policy make_prefetcher_policy that makes runtime

system to choose an efficient prefetching distance for a loop. This technique is implemented by

considering loop’s characteristics extracted with a Clang compiler and weights values learned

with a multinomial logistic regression model. This method is discussed in more details in section

3.4.4.3.

1.4 Future Plan of Study

• In this research we intend to improve the performance of the code generated with OP2

compiler by delaying some optimizations into the runtime and controlling some parameters

of the tasks dynamically. Although the experimental results of theses OP2 optimizations

show an improvement in an application scalability, however all of these techniques are

proposed for implementing parallelization in one node, not on the distributed one. Including

dynamic information and runtime techniques in the distributed OP2 optimizations can result

in achieving higher performance from distributed unstructured grids applications.

• Moreover, we developed new techniques that are able to implement a logistic regression on

a loop to determine an optimum execution policy, chunk size and prefetching distance for

an HPX loop. These techniques are able to consider both static and dynamic features of a

loop and to implement a learning technique at runtime to make an optimum decision for

its execution without requiring extra compilation. As powerful as these techniques may be,
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more work is needed to be done in order to fully realize the potential of this work. Notably,

the breadth of performance characteristics needs to be more carefully studied to understand

the core features that relate to performance. Additionally more research is needed to ensure

that the characteristics measured here also are relevant for other architectures such as the

new Knights Landing chipset.

Chapter 6 outlines the tentative plans for our next research phase.
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Chapter 2
OP2 Optimization with Runtime Parallelization
Techniques

Increasing number of processors results in increasing amount of data exchanged between main

memory and processors, which produces the overheads and avoids achieving desired parallelism

level in an application. Optimizations techniques provided with OP2 compiler address this chal-

lenge and are able to improve parallelization performance. OP2 is able to examine the specific

sections of an application’s code for studying its parallelization potentials by considering its data

dependencies. However, all of the information captured from these analysis are static and no

dynamic information can be retrieved from them. So they are insufficient for obtaining desired

scalability. To achieve better parallel performance with OP2 on modern multi-core/many-core

hardware, some optimizations should be applied to intensify OP2’s parallelization techniques,

which are obtained in this research by delaying some compiler optimizations to be managed at

runtime. The main goal in this chapter1 is to show the OP2 compiler scalability improvement by

using the proposed optimization methods implemented with the HPX, a C++ runtime system, to

obtain a better parallelization performance. It is illustrated that the use of HPX’s parallelization

methods instead of OpenMP helps avoiding unnecessary synchronization barriers that results in

extracting more parallelism for the parallel applications.

In this chapter, we propose a new technique that implementing it on an OP2 compiler makes it

to provide asynchronous tasking, loop interleaving, dynamic chunk sizing, and data prefetching

1Parts of this chapter have been previously published as: Z. Khatami, H. Kaiser, and J. Ra-
manujam, "Using hpx and op2 for improving parallel scaling performance of unstructured grid
applications, ” in Parallel Processing Workshops (ICPPW), 2016 45th International Conference
on. IEEE, 2016, pp. 190-199, Reprinted by permission. Z. Khatami, H. Kaiser, and J. Ramanujam,
"Redesigning op2 compiler to use hpx runtime asynchronous techniques,” in Parallel and Dis-
tributed Scientific and Engineering Computing (IPDPSW), 2017 18th IEEE International Work-
shop on. IEEE, 2017, Reprinted by permission. Both reprinted by permission IEEE.
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to improve a parallel performance of the unstructured grids applications. It is illustrated that dy-

namic information obtained at runtime and static information obtained at compile time are both

necessary to provide sufficient optimizations for optimal performance.

2.1 Introduction

Unstructured grids are well studied and utilized in various applications such as dense/sparse lin-

ear algebra, spectral methods, N-body methods [26], and Monte Carlo. The main goal of OP2

in to provide a scalable framework for these applications parallel execution targeted on different

multi-core/many-core hardware architectures [1, 2]. OP2 is able to provide an abstraction level

for a user to parallelize his applications without having to worrying about architecture specific op-

timizations. So he can invest most of his time in solving his scientific problems, without knowing

details of the applied architectures and achieving efficient utilization of the available hardware re-

sources. This framework is designed to achieve the near-optimal scaling on multi-core processors

[3, 4]. However, as the compiler only has a static and defined access pattern [5–7], its analysis

is not enough to obtain desired parallel scalability. In order to reach this goal, OP2 needs to be

able to involve dynamic techniques in its parallelization techniques and to extract parallelism

automatically at runtime.

In this research, we propose different optimization methods that provide dynamic information

for code generated by the OP2 compiler, including providing asynchronous task execution, in-

terleaving different loops together, dynamically setting chunk sizes of different dependent loops

based on each other, and prefetching data. These proposed techniques are implemented using

HPX runtime system via redesigning the OP2 framework in a way that employs both compiler’s

static analysis and dynamic runtime information. HPX is a parallel C++ runtime system that fa-

cilitates distributed operations and enables fine-grained task parallelism resulting in a better load

balancing [28, 29]. It provides an efficient scalable parallelism by significantly reducing processor

starvation and effective latencies while controlling overheads [30].
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A closer analysis of unstructured applications reveals that synchronization is only required

between small tasks. Prevalent parallelization paradigms, however, coerce users to join all tasks

together before proceeding to the next step in the application. In HPX, we can utilize the future

construct to allow every task to proceed as long as the values it depends on are ready [31].This

feature allows the HPX to relax the global barriers, enable flexibility, and improve the parallel

performance of applications. In this research, HPX uses futures based techniques to develop

a new task execution strategy for codes generated by the OP2 compiler which is the basis for

asynchronous tasking and interleaving loops.

In order to control the overheads introduced by the creation of each task, it is important to

control the amount of work performed by each task. This amount of work is known as the chunk

size [19, 31]. In addition, to properly interleave loops it is important for each loop to have very

similar execution times which allows the waiting time between the execution of each loop to be

minimal. We propose to address these two obstacles by creating a new execution policy which

will dynamically control the chunk sizes during the application’s execution. In addition, we also

propose to create a new cache prefetcher that aids in prefetching data for each time step to reduce

memory accesses latencies. This method is implemented in such a way that data of the next

iteration step is prefetched into the cache memory using a prefetching iterator called in each

iteration within a loop. The main difference between this method and the other existing methods

is that HPX implementation combines a thread based prefetching method with the asynchronous

task execution, which results in having asynchronous execution while prefetching data of all the

containers within a loop.

To our knowledge, we present a first attempt of redesigning OP2 to utilize the runtime tech-

niques for improving performance of the parallel unstructured grid applications. The combination

of these proposed techniques should yield a more portable and performant software stack for

unstructured grid applications and enable the applications to properly scale to a higher level of

parallelism compared to the existing OP2 implementation. The results evaluated in Section 2.5
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show that the parallelization performances are improved by around 40 − 50% for an Airfoil ap-

plication.

The remainder of this chapter is structured as follows: Section 2.2 briefly introduces OP2; Sec-

tion 2.3 introduces the future and dataflow object in HPX; Section 2.4 the results from porting

parallel simulation backend of OP2 to utilize HPX are studied as well as the details of implement-

ing hpx::for_each, HPX asynchronous task execution methods, dataflow with a new execution

policy, and the proposed prefetching method on an Airfoil application, and Section 2.5 evaluates

the scaling speedup of the experimental tests. The conclusions and the future works can be found

in Section 2.6.

2.2 Op2

OP2 is an active library that provides a parallel execution framework for unstructured grid applica-

tions on different multi-core/many-core hardware architectures [1]. It utilizes a source-to-source

translator for generating code which targets different hardware configurations [2, 3, 32]. OP2 pro-

vides C/C++ and a Fortran API that translates an application into targeted back-end hardware

implementation. The code can be transformed easily into different configurations such as serial,

multi-threaded using OpenMP and CUDA, or heterogeneous which utilizes MPI, OpenMP, and

CUDA [3]. Its goal is to decouple a scientific aspects and specifications of an application from its

parallelization to help achieving near-optimal performance.

In general, OP2 splits an application into two parts:

1. Higher application level: Users can concentrate more on writing their code and solving their

problems that will be the same and unchanged for different underlying hardwares.

2. Lower implementation level: This level optimizes an application execution process targeted

different platform by analyzing data access patterns.

As a result, a user applies the same API statements for the functions calls while the generated

code with OP2 is able to utilize the available resources of a target architecture efficiently. This

methodology makes OP2 to be able to support for any future novel hardware architectures.
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In this section, we first walk through a simple OP2 code to show its implementation details and

then we introduce the Airfoil application which is used as a case study for this research.

2.2.1 Simple Code Implementation with OP2

This section generally shows how unstructured grids are defined with OP2. The OP2 API handles

the data dependencies by providing mesh represented data layouts. The provided framework is

defined based on sets, data on sets, mapping connectivity between the sets, and the computation

on each set [2, 33]. Sets can be nodes, edges or faces. In these unstructured grids, the connectivity

information is used to specify different mesh topologies. Figure 2.1 shows a mesh example that

includes nodes and faces as sets. The value of data associated with each set is shown below each

set and the mesh is represented by the connections between them.

FIGURE 2.1. The mesh represented data layouts provided with OP2.

OP2 API for the mesh in figure 2.1 is shown as follows, which is the C/C++ API and defines 4

edges, 8 boundary edges and 9 nodes:

o p _ s e t nodes = o p _ d e c l _ s e t ( 9 , " nodes " ) ;

o p _ s e t edges = o p _ d e c l _ s e t ( 4 , " edges " ) ;

o p _ s e t bedges = o p _ d e c l _ s e t ( 8 , " bedges " ) ;
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The mapping that declares the connection between 2 nodes is defined as follow:

i n t edge_map [ 2 8 ] = { 0 , 1 , 1 , 2 , 2 , 5 , 5 , 4 , 4 , 3 , 3 , 6 , 6 , 7 , 7 ,

8 , 0 , 3 , 1 , 4 , 4 , 7 , 5 , 8 }

op_map pedge=op_decl_map ( edges , nodes , 2 , edge_map , pedge , " pedge " ) ;

Also the following mapping declares how 4 nodes are mapped on 1 face:

i n t face_map [ 1 6 ] = { 0 , 1 , 4 , 3 , 1 , 2 , 5 , 4 , 3 , 4 , 7 , 6 , 4 , 5 , 8 , 7 } ;

op_map p f a c e =op_decl_map ( f a c e s , nodes , 4 , face_map , " p f a c e " ) ;

The values of each node and face are assigned as follow:

f l o a t vFaces [ 4 ] = { 0 . 1 2 3 , 0 . 1 5 1 , 0 . 4 2 0 , 0 . 1 1 2 } ;

op _d a t d a t a _ f a c e s = o p _ d e c l _ d a t ( f a c e s , 1 , " f l o a t " , vFaces , " d a t a _ f a c e s " ) ;

f l o a t vNodes [ 9 ] = { 5 . 3 , 1 . 2 , 0 . 2 , 3 . 4 , 5 . 4 , 6 . 2 , 3 . 2 , 2 . 5 , 0 . 9 } ;

op _d a t d a t a _ n o d e s = o p _ d e c l _ d a t ( nodes , 1 , " f l o a t " , vNodes , " d a t a _ n o d e s " ) ;

For this simple example assume that we want to update the value of all faces with summing

values of its surrounding 4 nodes. The simple loop for this implementation is shown as follow:

f o r ( i n t i = 0 ; i < n u m b e r _ o f _ f a c e s ; i ++)

{

f a c e s [ i ] = f a c e s [ i ] + node [ f a c e s [4∗ i ] ] + node [ f a c e s [4∗ i + 1 ] ] +

node [ f a c e s [4∗ i + 2 ] ] + node [ f a c e s [4∗ i + 3 ] ] ;

}
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This loop can be implemented in parallel by calling op_par_loop as follow and passing sum as

a user’s kernel function as its first arguments:

op_par_ loop_sum ( " sum " , c e l l s ,

o p _ a r g _ d a t ( f a c e s ,−1 ,OP_ID , 1 , " f l o a t " ,OP_WRITE) ,

o p _ a r g _ d a t ( f a c e s ,−1 ,OP_ID , 1 , " f l o a t " ,OP_READ) ,

o p _ a r g _ d a t ( nodes , 0 , p face , 1 , " f l o a t " ,OP_READ) ,

o p _ a r g _ d a t ( nodes , 1 , p face , 1 , " f l o a t " ,OP_READ) ,

o p _ a r g _ d a t ( nodes , 2 , p face , 1 , " f l o a t " ,OP_READ)

o p _ a r g _ d a t ( nodes , 3 , p face , 1 , " f l o a t " ,OP_READ) ) ;

Each argument passed to each loop is generated based on data values used with op_arg_dat.

These arguments are explicitly indicated that how each of the underlying data can be accessed in-

side a loop: OP_READ (read only), OP_WRITE (write) or OP_INC (increment to avoid race con-

ditions due to indirect data access) [1]. For example, in op_arg_dat(nodes,0,pface,1,"double",OP_READ)

, OP_READ marks the data as read_only. This argument is created from its inputs, where nodes

is the data, 0 indicates that the data is accessed indirectly and it is the first index value on a face,

pface is the mapping between the data, 1 is the data dimension, and float is the data type.

There are two different kinds of loop defined in OP2: indirect and direct loops. A loop is an

indirect loop if data is accessed through a mapping. Otherwise it is a direct loop. Using map as

a third argument in an op_par_loop indicates indirect accessed argument and using OP_ID indi-

cates directly accessed argument. The more details about OP2 design and performance analysis

can be found in [1] and [33], which shows that all unstructured grid applications can be easily de-

scribed with sets and meshes as shown in the above example. These methods place no restriction

on the algorithm and they allow the programmer to choose unique operations on each set.
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o p _ p a r _ l o o p _ s a v e _ s o l n ( " s a v e _ s o l n " , c e l l s ,
o p _ a r g _ d a t ( p_q ,−1 ,OP_ID , 4 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_qold ,−1 ,OP_ID , 4 , " d oub l e " ,OP_WRITE) ) ;

o p _ p a r _ l o o p _ a d t _ c a l c ( " a d t _ c a l c " , c e l l s ,
o p _ a r g _ d a t ( p_x , 0 , p c e l l , 2 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_x , 1 , p c e l l , 2 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_x , 2 , p c e l l , 2 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_x , 3 , p c e l l , 2 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_q ,−1 ,OP_ID , 4 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_adt ,−1 ,OP_ID , 1 , " d oub l e " ,OP_WRITE) ) ;

FIGURE 2.2. The OP2 API functions op_par_loop_save_soln and op_par_loop_adt_calc repre-
sent two loops from an Airfoil application. op_par_loop_save_soln creates a direct loop and
op_par_loop_adt_calc creates an indirect loop.

2.2.2 Airfoil Application

In this research, we study an Airfoil application, which is a standard unstructured mesh, fi-

nite volume, computational fluid dynamics (CFD) code, presented in [34], for the turbomachin-

ery simulation and consists of over 720K nodes and about 1.5 million edges. As described

in [34] and [25], it has both direct and indirect loops. We demonstrate direct and indirect

loops in figure 2.7, which includes op_par_loop_save_soln and op_par_loop_adt_calc loops

from Airfoil: op_par_loop_save_soln is a direct loop that applies save_soln on the cells based

on the p_q and p_qold arguments, and op_par_loop_adt_calc is an indirect loop that applies

op_par_loop_adt_calc on the cells based on p_x, p_q, and p_adt arguments passed to the loop.

All of the computations on each set are implemented within these loops by performing operations

of the user’s kernels defined in a header file for each loop: save_soln.h for op_par_loop_save_soln

and adt_calc.h for op_par_loop_adt_calc. More details can be found in [2] and [32].

OP2 framework is designed to obtain an optimum scaling on multi-core processors [3, 4]. How-

ever, as all of its analysis information are static [5–7], so they are not enough to achieve desired

parallelism level. For this purpose, OP2 needs to be able to extract parallelism automatically at

runtime. This challenge is addressed in this research by delaying some compiler optimizations

to be managed at runtime. In this chapter, we propose different optimization methods that pro-
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vide dynamic information for the parallelization techniques provided by the OP2 compiler. These

techniques makes an OP2 to provide asynchronous task execution, interleaving different loops

together, dynamically setting chunk sizes of different dependent loops based on each other, and

prefetching data. These proposed techniques are implemented using HPX runtime system via re-

designing the OP2 framework in a way that employs both compiler’s static analysis and dynamic

runtime information. The evaluation results in section 2.5 illustrate that HPX’s parallelization

methods helps eliminating unnecessary synchronization barriers and enables OP2 to extract more

parallelism for the parallel unstructured grids applications. In the next section, we briefly dis-

cuss about how HPX provides the scalable framework that reduces the synchronizations and the

latencies for implementing these proposed methods.

2.3 HPX

The ParalleX execution model [35, 36] addresses the challenges using conventional parallel tech-

niques by implementing new forms of fine-grain task parallelism and enabling light weight syn-

chronized message driven computation in a global address space. Its main goal is to improve

efficiency and scalability compared to the conventional programming practices such as MPI. This

goal is achieved in ParalleX model by reducing synchronization and increasing resource utiliza-

tion through providing asynchronization and employing adaptive scheduling.

HPX is the first implementation of ParallelX model and it is a parallel C++ runtime system that

facilitates distributed operations and enables fine-grained task parallelism resulting in a better

load balancing [28, 29]. It provides an efficient scalable parallelism by significantly reducing

processor starvation and effective latencies while controlling overheads [30]. HPX [19] helps

overcoming difficulties faced using conventional techniques by exposing a programming model

that intrinsically reduces the SLOW factors [22, 37]. SLOW represents the main factors which

inhibit the scalability of applications and they can be described as follow:

A. Starvation: poor utilization of the resources caused by a lack of available work.

B. Latencies: time-distance delay of accessing remote resources.
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C. Overhead: costs for managing parallel actions.

D. Waiting: costs imposed by oversubscription of the shared resources.

Also, HPX uses the light-weight threads, which have extremely short context switching times

that results in reduced latencies even for very short operations.

Concurrency is defined to have several simultaneously concurrent computations touching same

data, while on the other hand, by parallelism we refer to simultaneous execution of independent

tasks [19]. HPX’s design focuses on parallelism rather than concurrency. As a results, HPX is able

to expose both time and spatial parallelization [37], which enables asynchronous task execution.

In this research different dynamic optimizations are proposed for improving the performance of

code generated by the OP2 compiler that are implemented using HPX runtime system, which has

been developed to overcome limitations such as global barriers and poor latency hiding [29, 30]

by embracing new ways of coordinating parallel execution, controlling synchronization, and im-

plementing latency hiding utilizing Local Control Objects (LCO) [25, 38]. These objects have the

ability to create, resume, or suspend a thread when triggered by one or more events. LCOs pro-

vide traditional concurrency control mechanisms such as various types of mutexes, semaphores,

spinlocks, condition variables and barriers in HPX. These objects improve the efficiency of an

application by permitting highly dynamic flow control as they organize the execution flow, omit

global barriers, and enable thread execution to proceed as far as possible without waiting. More

details about LCO design and its performance can be found in [22, 30, 39].

The two implementations of LCOs most relevant to this research are the future construct and

the dataflow template. HPX provides a multi-threaded, message-driven, split-phase transaction,

and distributed shared memory programming model using futures and dataflow based synchro-

nization on the large distributed system architectures, which are explained in the following sec-

tions.
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FIGURE 2.3. The global barrier prevents the progress of computation until all threads reaches that
barrier.

2.3.1 Future

One of the main challenges faced in the conventional parallelization techniques is the existence

of the implicit or explicit global barriers. This barrier prevents the progress of computation until

all threads reaches that barrier. Then the reduction will be performed on one of those threads as

shown in Fig. 2.3. HPX solves this challenge by eliminating unnecessary global barriers with

implementing future-based parallelization techniques.

future is a computational result that is initially unknown but becomes available at a later

time [31]. The goal of using future is to let every computation proceed as far as possible. Using

future enables threads to continue their executions without waiting for the results of the previous

steps to be completed, which eliminates the implicit global barrier at the end of the execution of

an OpenMP parallel loop. future based parallelization provides the rich semantics for exploit-

ing higher level parallelism available within each application that may significantly improve its

scalability.

Figure 3.7 shows the scheme of the future performance with 2 localities, where a locality is

a collection of processing units (PUs) that have access to the same main memory. It illustrates

that the other threads do not stop their progress even if the thread, which waits for the value to be

computed, is suspended. Threads access a future value by performing future.get(). When the
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FIGURE 2.4. The principle of the operation of the future in HPX. Thread 1 is suspended only
if the results from locality 2 are not readily available. Thread 1 accesses the future value by
performing future.get(). If results are available, Tread 1 continues to complete the execution.

result becomes available, the future resumes all HPX suspended threads waiting for that value. It

can be seen that this process eliminates the global barrier synchronizations, as only those threads

that depend on the future value are suspended. With this scheme, HPX allows asynchronous

execution of the threads.

2.3.2 Dataflow Object

dataflow object provides a powerful mechanism for managing data dependencies without the

use of global barriers [28, 40]. Figure 2.5 shows the schematic of a dataflow object, which en-

capsulates a function F (in1, in2, ..., inn) with n future or non-future inputs from different data

resources. If an input is a future, then the invocation of the function will be delayed. Non-future

inputs are passed through. A dataflow object waits for a set of futures to become ready and as

soon as the last input argument has been received, the function F is scheduled for the execution

[22]. Because the dataflow object returns a future, its result can be fed to other objects in the sys-

tem including other dataflows. These chained futures, by their nature, represent a dependency
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FIGURE 2.5. A dataflow object encapsulates a function F (in1, in2, ..., inn) with n inputs from
different data resources. As soon as the last input argument has been received, the function F is
scheduled for an execution.

tree that automatically generates an execution graph. This graph is executed by the runtime system

as each nodes dependencies are meet. As a result, dataflow minimizes the total synchronization

by scheduling new tasks as soon as they can be run instead of waiting for entire blocks of tasks to

finish computation.

2.4 HPX Implementation on an Airfoil application

As described in section 2.2, the Airfoil application [34] uses an unstructured grid and consists of

five parallel loops: op_par_loop_save_soln, op_par_loop_adt_calc, op_par_loop_res_calc,

op_par_loop_bres_calc, op_par_loop_update, of which op_par_loop_save_soln and op_par_loop_update

loops are direct loops and the others are indirect loops, shown in figure 2.6. Saving old data val-

ues, applying computation on each data value and updating them are implemented within these

five loops. Each loop iterates over a specified data set and performs the operations with the user’s

kernels defined in a header file for each loop: save_soln.h, adt_calc.h, res_calc.h, bres_calc.h and

update.h.

Figure 2.7 demonstrates op_par_loop_save_soln that applies save_soln on the cells based

on the arguments generated with op_arg_dat using p_q and p_qold data values. The function

op_arg_dat creates an OP2 argument based on the information passed to it and the function

op_par_loop creates a parallel loop for the computations over the sets through for each loop.
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o p _ p a r _ l o o p _ s a v e _ s o l n ( " s a v e _ s o l n " , c e l l s ,
o p _ a r g _ d a t ( da t a_a0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da t a_an , . . . ) ;

o p _ p a r _ l o o p _ a d t _ c a l c ( " a d t _ c a l c " , c e l l s ,
o p _ a r g _ d a t ( da ta_b0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da ta_bn , . . . ) ;

o p _ p a r _ l o o p _ r e s _ c a l c ( " r e s _ c a l c " , edges ,
o p _ a r g _ d a t ( da t a_c0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da t a_cn , . . . ) ;

o p _ p a r _ l o o p _ b r e s _ c a l c ( " b r e s _ c a l c " , bedges ,
o p _ a r g _ d a t ( da ta_d0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da ta_dn , . . . ) ;

o p _ p a r _ l o o p _ u p d a t e ( " u p d a t e " , c e l l s ,
o p _ a r g _ d a t ( da t a_e0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da t a_en , . . . ) ;

FIGURE 2.6. Five loops are used in Airfoil.cpp for saving old data values, applying computation,
and updating each data value. save_soln and update loops are direct loops and the others are
indirect one.

o p _ p a r _ l o o p _ s a v e _ s o l n ( " s a v e _ s o l n " , c e l l s ,
o p _ a r g _ d a t ( p_q ,−1 ,OP_ID , 4 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_qold ,−1 ,OP_ID , 4 , " d oub l e " ,OP_WRITE) ) ;

FIGURE 2.7. op_par_loop_save_soln represents one of the loops used in an Airfoil application.
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void o p _ p a r _ l o o p _ s a v e _ s o l n ( char c o n s t ∗name ,
o p _ s e t s e t , op_arg arg0 , op_arg a rg1 )

{
.
.
.
#pragma omp p a r a l l e l f o r
f o r ( i n t b l o c k I d x =0; b lock Idx < n b l o c k s ; b l o c k I d x ++)
{

i n t b l o c k I d = / / based on t h e b l o c k I d x
i n t nelem = / / based on t h e b l o c k I d
i n t o f f s e t _ b = / / based on t h e b l o c k I d

f o r ( i n t n= o f f s e t _ b ; n< o f f s e t _ b +nelem ; n ++)
{

.

.

.
s a v e _ s o l n ( . . . ) ; / / u s e r ’ s k e r n e l

}}
}

FIGURE 2.8. #pragma omp parallel for is used for a loop parallelization for an Airfoil application.
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The loop parsed with OP2 in figure 2.8 illustrates how each cell updates its data value by ac-

cessing blockId, offset_b, and nelem data elements. The arguments are passed to the save_soln

user kernel subroutine, which does the computation for each iteration of an inner loop from off-

set_b to offset_b+nelem of each iteration of an outer loop from 0 to nblocks. Also it illustrates that

OpenMP is used for the parallel processing within a node. It is important to note that the outputs

of the computations shown in figure 2.6 cannot be passed to the outside of the loop, therefore,

the current OP2 design doesn’t provide a method for interleaving loops together. This creates im-

plicit global barrier after each loop as the threads inside the loop must wait to synchronize before

exiting the loop [13]. Barriers, naturally, impede optimal parallelization by causing the parallel

threads and processes to wait. In order to solve this problem, this research sets out to optimize

the performance of code generated by the OP2 compiler using the HPX runtime, which are three

different HPX parallelization methods:

1. using parallel hpx::for_each for parallelizing loops generated with OP2,

2. using parallel hpx::for_each while enabling asynchronous task execution, and

3. using dataflow object.

The comparison results of these methods with OpenMP are studied in Section 2.5.

2.4.1 hpx::for_each

The recently published C++ Extensions for Parallelism TS [41] specifies a comprehensive set

of parallel algorithms for inclusion into the C++ standard library and applies the proven design

concepts of the Standard Template Library to the parallel loop executions [19]. Almost all of these

parallel algorithms are implemented with HPX, which have been extended to support the full

spectrum of execution policies, combined with the full set of executors and executor parameters

[37]. HPX provides the higher-level abstractions based on and derived from the current C++

standard.

hpx::for_each is one of the HPX parallel algorithms that is able to automatically control the

chunk size during the execution. The auto_partitioner executor exposed by the hpx::for_each
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TABLE 2.1. The execution policies defined by the Parallelism TS and implemented in HPX [41].

Policy Description Implemented by
seq sequential execution Parallelism TS, HPX
par parallel execution Parallelism TS, HPX
par_vec parallel and Parallelism TS

vectorized execution
seq(task) sequential and HPX

asynchronous execution
par(task) parallel and HPX

asynchronous execution

algorithm is able to automatically control the amount of work spawned by each chunk by sequen-

tially executing 1% of the loop. Therefore hpx::for_each helps creating sufficient parallelism by

determining number of the iterations to be run on each HPX thread. This optimization can be

used for dynamically determining efficient chunk sizes of the loops generated with op_par_loop

by OP2. Moreover, HPX is able to execute loops in sequential or in parallel by applying execu-

tion_policies, which are briefly described in Table 2.1 [22]. The concept of the execution_policy

developed in HPX is used to specify the execution restrictions of the work items, in which calling

with a sequential execution policy makes the algorithm to be run sequentially and calling with a

parallel execution policy allows the algorithm to be run in parallel [38].

In this section, we use par as an execution policy while executing hpx::for_each to make the

loops shown in figure 2.6 executing in parallel. We modified the OP2 source-to-source transla-

tor with Python to automatically produce hpx::for_each instead of using #pragma omp parallel

for for the loop parallelization. In this method Airfoil.cpp (figure 2.6) and the OP2 API remain

unchanged. Figure 2.9 shows the loop of op_par_loop_adt_calc function parsed with OP2 using

HPX for the loop parallelization.

It should be considered that if the computational time of a loop is too small, using auto-

partitioner algorithm within HPX will not be efficient. Since for the small loops, 1% execu-

tion time of the loop used for determining grain size will affect the application’s scalability.

For solving this problem, HPX provides another way to avoid degrading scalability while using

hpx::for_each. Grain size can be specified as the static chunk size with hpx::for_each(par.with(scs))
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void o p _ p a r _ l o o p _ s a v e _ s o l n ( char c o n s t ∗name ,
o p _ s e t s e t , op_arg arg0 , op_arg a rg1 )

{
.
.
.
auto r = b o o s t : : i r a n g e ( 0 , n b l o c k s ) ;
hpx : : p a r a l l e l : : f o r _ e a c h ( par , / / e x e c u t i o n p o l i c y

r . b e g i n ( ) , r . end ( ) , [&] ( s t d : : s i z e _ t b l o c k I d x ) {

i n t b l o c k I d = / / based on t h e b l o c k I d x i n OP2 API
i n t nelem = / / based on t h e b l o c k I d
i n t o f f s e t _ b = / / based on t h e b l o c k I d

f o r ( i n t n= o f f s e t _ b ; n< o f f s e t _ b +nelem ; n++ ) {
.
.
.
s a v e _ s o l n ( . . . ) ; / / u s e r ’ s k e r n e l

} } ) ;
}

FIGURE 2.9. Implementing hpx::for_each for the loop parallelization in OP2. HPX is able to
control the grain size with this method. As a result, it helps in reducing processor starvation
caused by the fork-join barrier at the end of the execution of the parallel loops.
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void o p _ p a r _ l o o p _ s a v e _ s o l n ( char c o n s t ∗name ,
o p _ s e t s e t , op_arg arg0 , op_arg a rg1 )

{
.
.
.
s t a t i c _ c h u n k _ s i z e s c s ( SIZE ) ;
auto r = b o o s t : : i r a n g e ( 0 , n b l o c k s ) ;
hpx : : p a r a l l e l : : f o r _ e a c h ( p a r . w i th ( s c s ) ,

r . b e g i n ( ) , r . end ( ) , [&] ( s t d : : s i z e _ t b l o c k I d x ) {

i n t b l o c k I d = / / based on t h e b l o c k I d x i n OP2 API
i n t nelem = / / based on t h e b l o c k I d
i n t o f f s e t _ b = / / based on t h e b l o c k I d

f o r ( i n t n= o f f s e t _ b ; n< o f f s e t _ b +nelem ; n++ ) {
.
.
.
s a v e _ s o l n ( . . . ) ; / / u s e r ’ s k e r n e l

} } ) ;
}

FIGURE 2.10. Implementing hpx::for_each for loop parallelization in OP2. HPX is able to avoid
degrading scalability for small loops by defining static grain size with dynamic_chunk_size
scs(SIZE) before the parallel loop execution.

before executing loop; scs is defined by static_chunk_size scs(SIZE). Figure 2.10 shows the loop

of op_par_loop_adt_calc function with static chunk_size implemented with static_chunk_size

scs(SIZE). In section 2.5 the performance of these two methods are studied.

So, what we achieve here by implementing hpx::for_each within the loop execution is enabling

compiler to control the chunk sizes dynamically. However, this method exposes the same dis-

advantage as OpenMP implementation, which is representation of the fork-join parallelism that

introduces the global barriers at the end of a parallel loop. In the next sections, we show how we

overcome to this problem.
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2.4.2 async and hpx::for_each

In this section we solve the problem described in the previous section by using asynchronous task

execution while controlling chunk sizes dynamically within the loop executions. Asynchronous

task execution means that a new HPX-thread will be scheduled. As a result it eliminates the global

barrier synchronizations when using hpx::for_each. For this purpose, we implement two different

parallelization methods for the loops, based on their types:

1. For the direct loops, async and hpx::for_each with par as an execution policy is imple-

mented.

2. For the indirect loops, hpx::for_each with par(task) as an execution policy is implemented.

The calls to async and par(task) provide a new future instance, which represents the result of

the function execution, making invocation of the loop asynchronous. future based parallelization

provides rich semantics for exploiting higher level parallelism available within each application

that may significantly improve the scaling.

OP2 source-to-source translator with Python is modified and it automatically produces async

and hpx::for_each with par for each direct loops and hpx::for_each with par(task) for each

indirect loops within an Airfoil application. For example, in figure 2.11, async and hpx::for_each

with par is used for op_par_loop_save_soln, which is a direct loop and returns a future repre-

senting result of a function. Also, in figure 2.12, hpx::for_each with par(task) is used for

op_par_loop_adt_calc, which is an indirect loop and returns a future representing result of a

function. The futures returned from all direct and indirect loops allow asynchronous execution

of the loops. In this method, OP2 API is not changed but Airfoil.cpp is changed as shown Figure

2.13. Each kernel function within op_par_loop returns a future stored in a new_data. Each fu-

ture depends on the future in a previous step. So, new_data.get() is used to get all futures ready

before the next steps.

So, what we achieve here by implementing async within the loop execution is enabling compiler

to:
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hpx : : s h a r e d _ f u t u r e < op_dat > o p _ p a r _ l o o p _ s a v e _ s o l n (
char c o n s t ∗name , o p _ s e t s e t , op_arg arg0 , op_arg a rg1 ) {
.
.
.
re turn async ( hpx : : l a u n c h : : async ,

[ a d t _ c a l c , s e t , arg0 , . . . , a rgn1 ] ( ) {

auto r = b o o s t : : i r a n g e ( 0 , n t h r e a d s ) ;
hpx : : p a r a l l e l : : f o r _ e a c h ( par ,
r . b e g i n ( ) , r . end ( ) , [ & ] ( s t d : : s i z e _ t t h r ) {

i n t s t a r t = / / based on t h e number o f t h r e a d s ;
i n t f i n i s h = / / based on t h e number o f t h r e a d s ;

f o r ( i n t n= s t a r t ; n< f i n i s h ; n++ ) {
s a v e _ s o l n ( . . . ) ;

}
} ) ;

}

FIGURE 2.11. Implementing async and hpx::for_each with par for a direct loop parallelization in
OP2. The returned future representing result of a function.
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hpx : : s h a r e d _ f u t u r e < op_dat > o p _ p a r _ l o o p _ a d t _ c a l c (
char c o n s t ∗name , o p _ s e t s e t , op_arg arg0 , op_arg arg1 ,
op_arg arg2 , op_arg arg3 , op_arg arg4 , op_arg a rg5 ) {
.
.
.
auto r = b o o s t : : i r a n g e ( 0 , n b l o c k s ) ;
hpx : : f u t u r e <void > new_data ;
new_data=hpx : : p a r a l l e l : : f o r _ e a c h ( p a r ( t a s k ) ,
r . b e g i n ( ) , r . end ( ) , [ & ] ( s t d : : s i z e _ t b l o c k I d x ) {

i n t b l o c k I d = / / based on t h e b l o c k I d x i n OP2 API
i n t nelem = / / based on t h e b l o c k I d
i n t o f f s e t _ b = / / based on t h e b l o c k I d

f o r ( i n t n= o f f s e t _ b ; n< o f f s e t _ b +nelem ; n++ ) {
.
.
.

a d t _ c a l c ( . . . ) ;
}

} ) ;
re turn new_data ;

}

FIGURE 2.12. Implementing hpx::for_each with par(task) for an indirect loop parallelization in
OP2. The returned future representing result of a function.
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new_data1= o p _ p a r _ l o o p _ s a v e _ s o l n ( " s a v e _ s o l n " , c e l l s ,
o p _ a r g _ d a t ( da t a_a0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da t a_an , . . . ) ;

new_data2= o p _ p a r _ l o o p _ a d t _ c a l c _ ( " a d t _ c a l c " , c e l l s ,
o p _ a r g _ d a t ( da ta_b0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da ta_bn , . . . ) ;

new_data2 . g e t ( ) ;

new_data3= o p _ p a r _ l o o p _ r e s _ c a l c ( " r e s _ c a l c " , edges ,
o p _ a r g _ d a t ( da t a_c0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da t a_cn , . . . ) ;

new_data4= o p _ p a r _ l o o p _ b r e s _ c a l c ( " b r e s _ c a l c " , bedges ,
o p _ a r g _ d a t ( da ta_d0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da ta_dn , . . . ) ;

new_data3 . g e t ( ) ;
new_data4 . g e t ( ) ;

new_data5= o p _ p a r _ l o o p _ u p d a t e ( " u p d a t e " , c e l l s ,
o p _ a r g _ d a t ( da t a_e0 , . . . ) , . . . ,
o p _ a r g _ d a t ( da t a_en , . . . ) ;

new_data1 . g e t ( ) ;
new_data5 . g e t ( ) ;

FIGURE 2.13. Airfoil.cpp is changed while using async and par(task) for loop paralleliza-
tion in OP2. new_data is returned from each kernel function after calling op_par_loop and
new_data.get() is used to get futures ready before the next steps.
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us ing hpx : : l c o s : : l o c a l : : d a t a f l o w ;
us ing hpx : : u t i l : : unwrapped ;

/ / a u t o m a t i c a l l y r e t u r n s t h e argument a s a f u t u r e
re turn d a t a f l o w ( unwrapped ( [ & ] ( da t a_a , . . . ) {

/ / same as o r i g i n a l o p _ a r g _ d a t
re turn a r g ;
}

} ) , da t a_a , . . . ) ;

FIGURE 2.14. op_arg_dat is modified to create an argument as a future that is passed to a func-
tion through op_par_loop shown in figure 2.6.

X set the chunk sizes dynamically, and

X produce an asynchronous loop execution.

The place of new_data.get() depends on the application and the programmer should put them

manually in the correct place by considering data dependencies between the loops. In order to

completely generate a code automatically for implementing this method without using program-

mer’s help, we change the OP2 API and we implement a dataflow method in HPX, which is

studied in more details in the next section.

2.4.3 Dataflow

In this section, the new method is proposed for parallelizing loops generated with OP2, which is

based on dataflow implementation that solves the current challenges of OP2. In this method, the

OP2 API is modified in such a way that op_arg_dat used in each loop in figure 2.6 produces an

argument as a future for dataflow object inputs. Figure 2.14 shows the modified op_arg_dat, in

which data_a,... expressed at the last line of the code invokes a function only once all of them

get ready. unwrapped is a helper function in HPX, which unwraps the futures and passes along

the actual results. This implementation also generates an output argument as a future and as a

result, all of the arguments of each loop in figure 2.6 are passed as a future to the kernel function

through op_par_loop.
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2.4.3.1 Parallelizing Loops Using for_each

Parallelizing loops and controlling chunk sizes are implemented by using for_each algorithm

and persistent_auto_chunk_size as an execution_policy respectively. In figure 2.15, dataflow is

implemented with for_each for the loop in figure 2.8, that aids to parallelize the outer loop. It

also illustrates that arg0 and arg1, which are created as a future with op_arg_dat using p_q and

p_qold respectively, are passed as a future within a loop. This loop will be executed only if these

arguments get ready. Then, the output argument, which is arg1 in this example, is passed as a

future to the outside of the loop and it is stored within p_qold shown in figure 2.16. This method

is implemented to all of the loops in figure 2.6, and as a result, each kernel function returns an

output argument as a future. The loop execution may depend on the results of the other previous

loops. So by this method, the results of the loops can be passed as future inputs to the other

loops, which makes OP2 able to interleave different loops. For example, p_qold value updated in

op_par_loop_save_soln is used as an input argument for op_par_loop_update as shown in figure

2.17, which using this proposed method makes it able to interleave this two loops together by

passing output of op_par_loop_save_soln as an input argument for op_par_loop_update.

Figure 2.18 shows generally that by implementing proposed method, the future output of each

loop passed as an input of the other loops makes OP2 able to interleave different loops together

at runtime. As a result, if the loops are not dependent on each other, they can be executed without

waiting for the previous loops to complete their tasks, however, if they depend on the parameters

from the previous loops, they will wait until the previous loops complete their processes. This

proposed method removes the unnecessary barrier synchronizations between different loops and

execute them asynchronously.

2.4.3.2 Controlling Chunk Sizes

As it is explained in section 2.4.3.1, figure 2.18 shows how dataflow provides a way of inter-

leaving execution of different loops together. In a case of having dependent loops, the execution

of each chunk in a loop depends on the execution of the chunks in the previous loop. By using
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hpx : : s h a r e d _ f u t u r e < op_dat > o p _ p a r _ l o o p _ s a v e _ s o l n ( char c o n s t ∗ name ,
o p _ s e t s e t ,

hpx : : f u t u r e <op_arg > arg0 ,
hpx : : f u t u r e <op_arg > a rg1 )

{
us ing hpx : : l c o s : : l o c a l : : d a t a f l o w ;
us ing hpx : : u t i l : : unwrapped ;
/ / a u t o m a t i c a l l y r e t u r n s o u t p u t a s a f u t u r e
re turn d a t a f l o w ( unwrapped ([& s a v e _ s o l n ]
( op_arg arg0 , op_arg a rg1 ) {

.

.

.
auto r = b o o s t : : i r a n g e ( 0 , n b l o c k s ) ;
hpx : : p a r a l l e l : : f o r _ e a c h ( p o l i c y ,
r . b e g i n ( ) , r . end ( ) ,
[&] ( s t d : : s i z e _ t b l o c k I d x ) {

f o r ( i n t n= o f f s e t _ b ; n< o f f s e t _ b +nelem ; n ++)
{

.

.

.
s a v e _ s o l n ( . . . ) ;

}
re turn a rg1 ;

} ) , arg0 , a rg1 ) ;
}

FIGURE 2.15. Implementing for_each within dataflow for the loop parallelization in OP2 for the
loop in figure 2.8. It makes the invocation of a loop asynchronous by returning output as a future.
dataflow allows automatically creating execution graph, which represents a dependency tree.

p_qo ld = o p _ p a r _ l o o p _ s a v e _ s o l n ( " s a v e _ s o l n " , c e l l s ,
o p _ a r g _ d a t ( p_q ,−1 ,OP_ID , 4 , " d oub l e " ,OP_READ) ,
o p _ a r g _ d a t ( p_qold ,−1 ,OP_ID , 4 , " d oub l e " ,OP_WRITE) ) ;

FIGURE 2.16. Airfoil.cpp is changed while using dataflow for the loop parallelization in OP2.
p_qold is returned as a future from each kernel function after calling op_par_loop.
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FIGURE 2.17. The proposed method makes OP2 able to interleave thses two loops together by
passing p_qold output of op_par_loop_save_soln as an input argument for op_par_loop_update.

FIGURE 2.18. dataflow provides a way for interleaving execution of different loops together by
generating output as a future and passing all inputs as futures as well.
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(a) Chunk sizes with different
execution time

(b) Chunk sizes with the same
execution time

FIGURE 2.19. Setting chunk sizes of different dependent loops based on each other.

par as an execution policy, different chunks with different execution time regardless of the chunk

sizes of the other loops are determined for each loop shown in figure 2.19a, which may increase

the waiting time between them. So for decreasing this waiting time, the execution time of each

chunk in these dependent loops should be the same. For this purpose, the new execution policy is

proposed in this section, named persistent_auto_chunk_size, that makes all chunk sizes of differ-

ent loops having same execution time as shown in figure 2.19b. In this policy, the chunk size of

the first loop is determined automatically with for_each algorithm. Then the chunk sizes of each

second and third loops are determined based on the execution time of the chunk in the first loop.

As a result, all chunks of all these three loops will have the same execution time. It should be note

that chunk1, chunk2 and chunk3 have different sizes but with the same execution time.

So, what we achieve here by implementing dataflow within the loop execution is enabling

compiler to:

X set the chunk sizes dynamically,

X controlling chunk sizes of different dependent loops based on each other,

X produce an asynchronous loop execution, and

X interleave direct and indirect loops together without using programmer’s help.

39



Although this method successfully provides an asynchronous task execution framework which

increases the on-node parallelism available for the parallel applications generated with OP2, this

method also increases the complexity of the memory hierarchy. One solution for this problem is

data prefetching, which effectively reduces the memory accesses latencies. In this research, we

add the generic prefetching scheme as a new feature to HPX, which is explained in more details

in the next Section.

2.4.4 Prefetching Iterator Implemented in HPX

Data prefetching is one of the methods for reducing memory accesses latencies by calling data

required for the next step into the cache [21]. The simplest form of the cache prefetching can be

implemented by prefetching cache line of the next iteration as soon as the current cache line is

referenced [20, 42]. Hardware, software and thread prefetching are different traditional techniques

for this purpose.

Various hardware prefetching methods has been proposed that one of them is using one-block-

lookahead (OBL) scheme [43]. In this method, the blocks i+1, i+2, ..., and i+n are prefetched

whenever the block i is brought to the cache that results in reducing cache misses significantly.

Creating reference prediction table [44, 45] is another method to limit unnecessary prefetching

and to predict the future memory references. However, one of the big challenges exists in most of

these hardware prefetching methods is that the prefetcher uses the past access pattern by consid-

ering data stream, which cannot handle an irregular access pattern.

In the software prefetcher method, the prefetching data is implemented by using prefetch di-

rectives in the code. One of the problem of this method is that these prefetching instructions are

inserted with programmer or compiler into the applications, which has the high probability of the

cache miss occurrences. Another problem is introducing additional overhead for executing these

prefetch instructions. There has been many developments proposed for optimizing this technique

that mostly are obtained by prefetching pointer-based data structures [43, 46]. Mowry’s algo-

rithm [47] is one of the recent prefetching optimization that defines the affine array-references
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as the prefetching candidates within an inner-most loop, performs the loop unrolling, and cre-

ates the multiple memory references within a loop. As a result, the exact missing instance is

prefetched, which avoids the unnecessary prefetching and reduces prefetching overheads. Jump

pointer prefetching [44, 45] is another proposed software prefetching approach, which is im-

plemented by inserting additional pointers into a dynamic data structure for connecting non-

consecutive elements within a loop. This technique allows prefetching data by creating pointer

chain and results in overlapping fetching process of multiple elements simultaneously. However,

this technique also has the difficulty in handling sequences of the irregular data accesses [20].

Thread based prefetching method is usually preferred over the software / hardware prefetching

methods, since it precomputes the load addresses accurately and it is able to follow more com-

plex patterns compared to the other methods [42]. This technique executes an application in the

prefetcher thread context and brings data of the next cache line into the shared cache before the

main thread accesses it. However, the scaling can be degraded with this method because of

1. cache misses: the prefetcher could make slower progress than the main thread, and

2. global barriers: a global barrier is needed to synchronize the prefetcher with the main thread

[21, 42, 43].

In this section, the new prefetching method is introduced in HPX that combines a thread based

prefetching with an asynchronous task execution. The main goal of this method is not only to

reduce the memory accesses latencies, but also to relax the global barriers, which results in a

better parallel performance. Figure 2.20 shows the scheme of using future and the proposed

prefetching iterator, which makes HPX to have the asynchronous execution while prefetching

data of all the containers within a loop of the next step in to the cache memory in each iteration.

Moreover, HPX is able to prefetch data in sequential or in parallel with applying execution_policy

described in Table 2.1. This method is added to the method explained in section 2.4.3.1 to decrease

the memory access latencies while parallelizing loops.
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FIGURE 2.20. Data of the next iteration step is prefetched into the cache memory with the prefetch-
ing iterator called in each iteration within the for_each

hpx : : p a r a l l e l : : f o r _ e a c h ( hpx : : p a r a l l e l : : e x e c u t i o n : :
m a k e _ p r e f e t c h e r _ p o l i c y ( p o l i c y , p r e f e t c h _ d i s t a n c e _ f a c t o r ,

c o n t a i n e r _ 1 , c o n t a i n e r _ 2 , . . . , c o n t a i n e r _ n )
l o o p _ r a n g e . b e g i n ( ) , l o o p _ r a n g e . end ( ) ,
[&] ( s t d : : s i z e _ t i )
{

. . .
} ) ;

FIGURE 2.21. The prefetching method used in for_each. The prefetching iterator called with
for_each is the struct that references to all container in the loop.
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Figure 2.21 shows the details of the prefetching method implementation within for_each. The

program execution is divided into several chunks within for_each and its iterator is developed

to prefetch data of the next chunk size in either sequential or in parallel. The prefetching itera-

tor is initialized and executed with using make_prefetcher_policy. This prefetching policy make

for_each to act as a struct that references to all container in the loop, which enables it to prefetch

data of these containers. loop_range is the range, in which the loop is executed. One of the fea-

ture of this prefetcher is that it works with any data types even in a case of having different type

for each container. The distance between each two prefetching operations is computed based on

the value of prefetch_distance_factor. In order to increase the effectiveness of the prefetcher and

to decrease the relative cost, prefetch_distance_factor is designed to be determined based on the

length of the cache line. As a result, within each prefetcher distance, data of all containers of the

next time step are prefetched in each iteration by calling this prefetching iterator.

So, what we achieve here by implementing dataflow within the loop execution is enabling

compiler to:

X set the chunk sizes dynamically,

X controlling chunk sizes of different dependent loops based on each other,

X produce an asynchronous loop execution,

X interleave direct and indirect loops together without using programmer’s help, and

X automatically prefetch data of the next chunk size while executing loops.

The experimental results of optimizing OP2 performance with HPX discussed in this chapter

are presented in the next section.

2.5 Experimental Results

In this section, we evaluate the experimental results of our work by comparing our proposed

framework to OP2’s current design. The main goal of this section is to illustrate that dynamic in-

formation obtained at runtime and static information obtained at compile time are both necessary

to provide sufficient optimizations for optimal performance. The proposed methods studied in the
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FIGURE 2.22. Comparison results of the execution time between #pragma omp parallel for,
hpx::for_each, async and dataflow used for an Airfoil application.

previous sections are evaluated here. The experiments are executed on the test machine with two

Intel Xeon E5-2630 processors, each with 8 cores clocked at 2.4GHZ and 65GB. Hyper-threading

is enabled. The OS used by the shared memory system is 32 bit Linux Mint 17.2. and HPX 0.9.99

is used here.

2.5.1 Asynchronous Task Execution

Figure 3.9 shows the execution time of an Airfoil application using #pragma omp parallel for,

hpx::for_each, async and dataflow, which illustrates that HPX and OpenMP has approximately

the same performance on 1 thread. We are however able to improve parallel performance in using

async and dataflow for more number of threads.

To evaluate the HPX performance of the loop parallelization generated with OP2, we perform

the strong scaling and weak scaling experiments. For the speedup analysis, we use strong scaling,

for which the problem size is kept the same as the number of cores are increased. Figure 3.4

shows shows the strong scaling comparison results for the following three loop parallelization

methods: #pragma omp parallel for, hpx::for_each(par) with automatic chunk sizing for all loops

and hpx::for_each(par) with the static chunk size for the small loops for an Airfoil application.

It shows that although hpx::for_each helps creating sufficient parallelism by determining number
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of the iterations to run on each thread, however using hpx::for_each(par) with the static chunk

size for the small loops has better performance than automatically determining chunk sizes for

all loops. Since, the computational time of the loop is so small, using auto_partitioner algorithm

within HPX will not be efficient for determining chunk sizes. Using this method, OpenMP still

performs better than HPX.

Figure 3.6 shows the strong scaling comparison results between #pragma omp parallel for and

async and hpx::for_each(par(task)) from section 2.4.2. The performance is better for async with

hpx::for_each(par(task)), which is the result of the asynchronous execution of loops through the

use of futures that eliminates the global barrier synchronizations when using hpx::for_each. It

proofs that the HPX future based parallelization method provides the rich semantics for exploiting

higher level parallelism available within each application that improves the scaling.

Figure 3.5 shows the strong scaling comparison results between #pragma omp parallel for and

dataflow. hpx::for_each(par) is used for the loop parallelization in this method as discussed in

section 2.4.3. It illustrates a better performance for dataflow due to the asynchronous task exe-

cution and interleaving different dependent loops together. As described in section 2.3, dataflow

automatically generated an (implicit) execution tree, which represents a dependency graph that

results in removing unnecessary global barriers and improving scalability of the parallel applica-

tions.

By considering the above results, we can see the improvement in the performance over the OP2

(initial) version. For 32 threads in figure 3.6, async with hpx::for_each(par(task)) improves the

scalability by around 16% and in figure 3.5, dataflow improves the scalability by around 33%

compared to using #pragma omp parallel for.

To study the effects of the communication latencies, we perform the weak scaling experiments,

where the problem size is increased in proportion to the increase of the number of cores. Figure 3.8

shows the weak scaling in terms of the efficiency relative to the one core case using #pragma omp

parallel for, hpx::for_each(par), async with hpx::for_each(par(task)) and dataflow. It is shown

45



FIGURE 2.23. Comparison results of the strong scaling between #pragma omp parallel for and
hpx::for_each(par) with the static and auto chunk_size used for an Airfoil application with up to
32 threads. HPX allows controlling grain size while using hpx::for_each to improve scalability.
It shows a better performance for hpx::for_each with the static chunk_size compared to the auto
chunk_size for small loops. Hyperthreading is enabled after 16 threads.

FIGURE 2.24. Comparison results of the strong scaling between #pragma omp parallel for and
async with hpx::for_each(par(task)) used for an Airfoil application with up to 32 threads. It shows
a better performance for async due to the asynchronous task execution. Hyperthreading is enabled
after 16 threads.

46



FIGURE 2.25. Comparison results of the strong scaling between dataflow and #pragma omp par-
allel for used for an Airfoil application with up to 32 threads. It illustrates a better performance
for dataflow for a larger number of threads, which is due to the asynchronous task execution.
dataflow automatically generates an execution tree, which represents a dependency graph and
allows an asynchronous execution of the functions. Hyperthreading is enabled after 16 threads.

FIGURE 2.26. Comparison results of the weak scaling between #pragma omp parallel for,
hpx::for_each, async and dataflow used for an Airfoil application. It illustrates a better perfor-
mance for dataflow, which shows the perfect overlap of the computations with the communica-
tions enabled by HPX. Hyperthreading is enabled after 16 threads.
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that dataflow has a better parallelization efficiency and parallel scalability compared to the other

methods, illustrating better overlap of the communication with the computation enabled by HPX.

The results show that we are able to optimize the application parallelization by dynamically

controlling chunk sizes, interleaving different direct and indirect loops together and asynchronous

scheduling tasks at runtime. For further improvements, the chunk size of each loop is determined

by considering chunk sizes of the previous loops as described in section 2.4.3 and its results are

evaluated in the next section.

2.5.2 Controlling Chunk Sizes

In this section, the chunk sizes of different loops are set by considering chunk sizes determined in

the previous loops as described in section 2.4.3. Since dataflow enables the compiler to interleave

different direct and indirect loops together, the execution of each chunk in each loop depends

on the execution of the chunks in the previous loops. So using persistent_auto_chunk_size makes

the execution time of each chunks in these loops to be the same, which decreases the waiting

time between chunks in each loops. Figure 2.27 shows the improvement in the performance of

dataflow method by using persistent_auto_chunk_size as an execution policy within the loops.

For an instance, with 32 threads, the improvement is obtained by about 40%.

For further parallelization performance improvements, the data prefetching proposed in section

3.4.4.3 is implemented in the dataflow method and its results are evaluated in the next section.

2.5.3 Prefetching Data

The proposed prefetching method is applied on the dataflow method and its performance is shown

in figure 2.28. This method takes advantage of the asynchronous execution while prefetching data

within a loop of the next step in to the cache memory in each iteration step. These results illustrate

that the parallel performance of for_each is improved by an average of 45%, which confirms the

successful process of avoiding cache misses with implementing HPX prefetcher iterator. The

bandwidth rate comparison of these results are also shown in figure 2.29.
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FIGURE 2.27. Comparison results of the strong scaling using dataflow with/without setting chunk
sizes of different dependent loops based on each other.

FIGURE 2.28. Comparison results of a dataflow performance by using proposed prefetching
method. It shows that the speedup is increased by around 45% with prefetching data within a
loop.
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FIGURE 2.29. The data transfer rate of implementing hpx::for_each using standard random access
iterator versus prefetching iterator within a dataflow.

FIGURE 2.30. The data transfer rate of using prefetching iterator for different prefetching dis-
tances.
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The results of the parallel performance of the prefetching iterator measurements with different

prefetch_distance_factor are shown in figure 2.30. It can be seen that for the very large dis-

tances, data prefetching cannot improve the parallel performance. On the other hand, very small

prefetcher distances causes more data to be prefetched, which becomes more expensive. This cost

dominates the gains from prefetching and impedes scaling. It is illustrated that

prefetch_distance_factor = 15 for an Airfoil application improves the parallel performance

significantly. These results show the good scalability achieved by HPX and indicates that it has

the potential to continue to scale on a larger number of threads.

2.6 Conclusion

OP2 provides the framework for the parallel execution of the unstructured grid applications as the

abstract for the users to parallelize their application in the high parallelism level without worrying

about the architecture specific optimizations. It is designed to achieve a near-optimal scaling on

multi-core processors. However its performance is hindered while using conventional techniques.

In this research, we present an implementation of the OP2 compiler that employs HPX runtime

techniques to efficiently and automatically parallelize unstructured grid applications to achieve

desired parallel scalability. The results illustrate that using both dynamic information provided

at runtime and the static information provided at compile time are necessary to obtain a higher

parallelism level in the applications.

In the proposed framework, OP2 is able to automatically produce data dependencies based on

arguments that are passed into the loops at compile time and, by using HPX parallelism methods,

the generated loops can be executed asynchronously. In this framework, we propose different

optimization methods that make OP2 execute tasks asynchronously, interleave different loops

together, efficiently control the chunk sizes of different dependent loops based on each other, and

prefetch data into the cache before its actual access.

The performance of the proposed framework is evaluated on an Airfoil simulation, which shows

that Airfoil had the same performance using HPX and OpenMP running on 1 thread, but we are
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able to obtain 16% scalability improvement in using async and 33% scalability improvement in

using dataflow for the loop parallelization compared with OpenMP. Efficiently controlling chunk

sizes and prefetching data improved the overall performance of an Airfoil application by around

40− 50%.

Although these experimental results show an improvement in an application scalability, how-

ever the static information are missed in those proposed dynamic techniques. More optimizations

could be achieved by utilizing static information extracted at compile time in the runtime system.

Since only trusting on the runtime information doesn’t guarantee maximal parallel performance,

so we believe that collecting information at compile time could significantly improve the HPX

parallel applications performances. In the next Chapter, we improve the HPX runtime techniques

using static information provided with Clang compiler.
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Chapter 3

HPX Intelligent Parallel Algorithms

The performance of many parallel applications depends on loop-level parallelism. However, man-

ually parallelizing all loops may result in degrading parallel performance, as some of them cannot

scale desirably to a large number of threads. In addition, the overheads of manually tuning loop

parameters might prevent an application from reaching its maximum parallel performance. We

illustrate how machine learning techniques can be applied to address these challenges. In this

research, we develop a framework that is able to automatically capture the static and dynamic

information of a loop. Moreover, we advocate a novel method for determining the execution pol-

icy, chunk size, and prefetching distance of an HPX loop to achieve best possible performance by

feeding static information captured during compilation and runtime-based dynamic information

to our learning model .

3.1 Introduction

Runtime information is often speculative. While runtime adaptive methods have been shown to

be very effective – especially for highly dynamic scenarios – solely relying on them doesn’t guar-

antee maximal parallel performance, since the performance of an application depends on both the

values measured at runtime and the related transformations performed at compile time. Collecting

the outcome of the static analysis performed by the compiler could significantly improve runtime

decisions and therefore application performance [9, 25, 26, 48–50].

The goal of this Chapter is to optimize an HPX application’s performance by predicting opti-

mum parameters for its parallel algorithms by considering both static and dynamic information

and to avoid unnecessary compilation. As all of the HPX parallel algorithms perform based on the

dynamic analysis provided at runtime, this technique is unable to achieve the maximum possible

parallel efficiency in some cases:
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• In [19, 30] different policies for executing HPX parallel algorithms are studied. However

these policies should be manually selected for each algorithm within an application, which

may not be an optimum approach, as a user should execute each parallel algorithm of his

application with different execution policies to find the efficient one for that algorithm.

• Determining chunk size is another challenge in the existing version of the HPX algorithms.

Chunk size is the amount of work performed by each task [24, 37] that is determined

by an auto_partitioner exposed by the HPX algorithms or is passed by using static/dy-

namic_chunk_size as an execution policy’s parameter [30]. However,

1. the experimental results in [50] and [49] showed that the overheads of determining

chunk size by using the auto_partitioner negatively effected the application’s scala-

bility in some cases;

2. the policy written by the user will often not be able to determine the optimum chunk

size either due to the limit of runtime information.

• In [26], we proposed the HPX prefetching method which aids prefetching that not only

reduces the memory accesses latency, but also relaxes the global barrier. Although it results

in better parallel performance for the HPX algorithms, however, a distance between each

two prefetching operations should also be manually chosen by a user for each new program.

Automating these mentioned parameters selections by considering loops characteristics imple-

mented in a learning model can optimize the HPX parallel applications performances. To the best

of our knowledge, we present the first attempt to implement a learning model for predicting op-

timum loop parameters at runtime, wherein the learning model captures features both from static

compile time information and from runtime introspection.

In this research, we introduce a new ClangTool ForEachCallHandler using LibTooling [51] as

a custom compiler pass to be executed by the Clang compiler, which is intended to collect the

static features at compile time. The logistic regression model is implemented in this paper as a
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learning model that considers these captured features for predicting efficient parameters for an

HPX loop. For implementing this learning model on a loop, we propose new execution policies

and parameters that – when used on a parallel loop – instructs the compiler to apply this ForE-

achCallHandler tool on that loop. As a results, the loop’s features will automatically be included

in the prediction process implemented with that learning model. One of the advantages of this

approach in utilizing HPX policies is that in practice it enables us to change the algorithms in-

ternal structure at runtime and therefore we do not have to compile the code again after the code

transformation step.

This technique is able to use high-level programming abstractions and machine learning to

relieve the programmer of difficult and tedious decisions that can significantly affect program be-

havior and performance. Our results show that combining machine learning, compiler optimiza-

tions and runtime adaptation helps us to maximally utilize available resources. This improves

application performance by around 12% − 35% for the Matrix Multiplication, Stream, 2D Sten-

cil and NBody applications compared to setting their HPX loop’s execution policy/parameters

manually or using HPX auto-parallelization techniques.

The remainder of this chapter is structured as follows: related works are studied briefly in 3.2;

the machine learning algorithms that are used to study the learning models are discussed in section

3.3; the proposed model is discussed is more details in section 3.4, and section 3.5 provides the

experimental results of this proposed technique. Conclusion and future works are explained in

section 3.6.

3.2 Literature Review

There are several existing publications on automatically choosing optimizations parameters based

on static information extracted at compile time. For example in [52, 53], a new runtime technique

is proposed that determines an optimum parallel execution schedule for a loop, which requires

using synchronization after each iteration for ensuring correct order execution. In these studies,

the new inspector and scheduler are presented for performing preprocessing of the loop’s access
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pattern and scheduling the loop iterations without using synchronization. Their implementation

are based on analyzing data dependencies captured at compile time that are utilized for breaking

iterations into smaller subsets that can be executed in parallel. Their evaluated results show that

this proposed method is capable of achieving speedups. As another example, in [48, 54, 55] the

parallel performance was improved by considering static information captured at compile time

and iteratively applying the compilation with different settings for choosing the best sequence of

the compiler options. Their implementation resulted in proposing a new compiler framework that

is able to adopt its behavior to the user’s application, target machine and available transformations.

This method optimizes a compiler in choosing an optimum set of transformations and their usage

order.

However, one of the challenges in these studies is the need to repeat their proposed methods for

each new program, which in general is not desirable, as it requires extra execution time for each

application for such parameters determination. Moreover, manually tuning parameters becomes

ineffective and almost impossible when too many features are given to the program. Hence, many

researches have extensively studied machine learning algorithms which optimize such parameters

automatically. This section provides a summary of a number of related works that use machine

learning based techniques for improving application performance based of the compile time cap-

tured information.

3.2.1 Joshi et al. (2006)

In Joshi et al. [12] clustering algorithm is implemented for examining different benchmarks for

their similarities based on their microarchitecture independent characteristics of interest. Their

method resulted in finding a representative subset of the applications that can be used for esti-

mating the behavior of the other similar benchmarks with saving simulation time and without

loosing accuracy. Clustering algorithm is implemented in their proposed technique on a feature

set included instruction mix and control flow behavior statistics. Their method can be easily used

during designing benchmark to make it suitable for a group of the candidate programs.
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3.2.2 Calder et al. (1997)

Branch prediction is important for the compilers and computer architectures. It is used for pre-

dicting whether a branch will be taken before it is actually executed. In Calder et al. [8] neural

network and decision tree are applied to predict the branch behavior in a new program. This

technique is implemented based on the static branch behaviors captured at compile time.

3.2.3 Stephenson et al. (2005), Stephenson et al. (2009)

Loop unrolling is one of the well known transformation that replicates a loop body a number of

times which reduces the overheads of some of the branch operations as well as allowing further

compiler optimizations to be applied on a loop. In Stephenson et al. [9] and [11] nearest neighbors

and support vector machines are used for predicting unroll factors for different nested loops based

on the extracted static features. This feature set includes 38 features determined and extracted at

compile time. Then the Mutual Information Scoring method is used to select the smaller subset of

this set. In nearest neighbors method, training data are classified into n different classes in which

they reduce the overall calculated Euclidian distance. However, their experimental results showed

an increasing in complexity with increasing in the number of features. On the other hand, Support

Vector Machine showed fastest process. Their evaluated results on different benchmarks showed

that their learned classifier is able to predict the loop unrolling factors with good precision.

3.2.4 Agakov et al. (2006)

Generating predictive models applied on the static information is used in Agakov et al. [56] for

iterative compiler optimizations. The technique proposed in this study is able to speedup iterative

optimization by reducing the number of evaluations of the application performed by a compiler.

3.2.5 Dubach et al. (2007)

Authors in Dubach et al. [57] studied about executing applications on a specific processor and

predicting execution time of a new application without actually executing it on real hardware.
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Their proposed techniques uses a set of features of an application in Neural Network for predicting

application performance.

3.2.6 Cavazos et al. (2006), Pekhimenko et al. (2011)

In Cavazos et al. and Pekhimenko et al. [10, 58], the logistic regression model is used to de-

rive a learning model, which resulted in a significant speedup in compilation time of their studied

benchmarks. In [58] authors proposed a new machine learning technique that makes a compiler to

decide which optimizations passes to apply on an application and to decide which set of the trans-

formations is needed for that application. This selection is based on the application’s reactions

that provides the information of the application performance comparisons by applying different

transformations. Their studies resulted in developing a framework suitable for a heavily tuned

commercial optimizer. In [10], a new method-specific technique is proposed that automatically

selects an optimum set of optimizations for different parts of an application. This technique also

focuses on reducing the complexity of the process of determining set of the compiler transforma-

tions.

3.2.7 Akihiro et al. (2015)

In Akihiro et al. [59], the selection between CPUs and GPUs as an application’s hardware device

is implemented using Support Vector Machine. The datasets and application’s features effect its

parallelization performance, so a proper system should be chosen for achieving desired speedup.

Their studies resulted in developing a compiler that is able to detect a parallel stream API and

records its features such as the parallel loop range, the number of its instructions and etc. Then

these features are fed to a learning model that enhances the scalability of an application. Their

proposed techniques is developed for the application written with Java and it is trained over 291

samples with 28 features generated by their compiler.
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3.2.8 Pellegrini et al. (2009)

Customizing MPI environment to be suitable for the specific applications or hardwares allows im-

proving distributed parallel performance efficiently. In Pellegrini et al. [60], estimating optimum

runtime parameters setting for MPI applications on any hardware architecture is implemented

using decision trees and artificial neural network. In their proposed method, a new inspector is

introduced that is able to select an efficient subset of runtime parameters for any MPI input ap-

plication by considering static information captured at compile time, number of cores, amount of

private/shared cache, and etc.

3.2.9 Planned Contribution

Most of these optimization techniques require users to compile their application twice, first com-

pilation for extracting static information and the second one for recompiling application based on

those extracted data. None of these considers both static and dynamic information. The goal of

this chapter is to optimize an application’s performance by predicting optimum parameters for its

parallel algorithms by considering both static and dynamic information and to avoid unnecessary

compilation.

3.3 Learning Algorithm

In this research we use the binary and multinomial logistic regression models [27] to select the

optimum execution policy, chunk size, and prefetching distance for certain HPX loops based on

both, static and dynamic information, with the goal of minimizing execution time. Logistic regres-

sion model has been used in several previous works [58, 61], and it is shown to be able to predict

such parameters accurately. We will show later that the performance of these learning models has

high accuracy for about 98% and 95% for the binary and multinomial logistic regression mod-

els respectively on the studied problems. Also, compared to the other learning models such as

artificial neural networks (ANNs), the implemented logistic regression model has lower compu-

tational complexity. Moreover, since the chunk size values can be seen as a categorical variables,
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this makes the logistic regression models well-suited for our problem. We briefly discuss these

learning models in the following sections.

3.3.1 Binary Logistic Regression Model

In order to select the optimum execution policy (sequential or parallel) for a loop, we implemented

a binary logistic regression model [27] in HPX which analyzes the static information extracted

from the loop by the compiler and the dynamic information as provided by the runtime. In this

model, the weights parameters having k features W T = [ω1, ω2, ..., ωk] are determined by con-

sidering features values xr(i) of each experiment Xi = [1, x1(i), ..., xk(i)]
T which minimize the

log-likelihood of the Bernoulli distribution value as follow:

µi = 1/(1 + e−WTXi). (3.1)

The values of ω are updated in each step t as follows:

ωt+1 = (XTStX)−1XT (StXωt + y − µt) (3.2)

, where S is a diagonal matrix with S(i, i) = µi(1−µi). The output is determined by considering

the following decision rule:

y(x) = 1←→ p(y = 1|x) > 0.5 (3.3)

3.3.2 Multinomial Logistic Regression Model

In order to predict the optimum values for the chunk size and the prefetching distance, we im-

plemented a multinomial logistic regression model [27] in HPX which also analyzes the static

information extracted from the loop by the compiler and the dynamic information as provided by

the runtime. If we haveN experiments that are classified inC classes and each hasK features, the
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posterior probabilities are computed by using a softmax transformation of the feature variables

linear functions for an experiment n with a class c as follow:

ync = yc(Xn) =
exp(W T

c Xn)∑C
i=1 exp(W

T
i Xn)

(3.4)

The cross entropy error function is defined as follows:

E(ω1, ω2, ..., ωC) = −
N∑

n=1

C∑
c=1

tnclnync (3.5)

, where T is a N ×C matrix of target variables with tnc elements. The gradient of E is computed

as follows:

∇ωcE(ω1, ω2, ..., ωC) =
N∑

n=1

(ync − tnc)Xn (3.6)

In this method, we use the Newton-Raphson method [62] to update the weights values in each

step:

ωnew = ωold −H−1∇E(ω) (3.7)

where H is the Hessian matrix defined as follows:

∇ωi
∇ωj

E(ω1, ω2, ..., ωC) =
N∑

n=1

yni(Iij − ynj)XnX
T
n (3.8)

Since the Hessian matrix for this regression model is positive definite, its error function has a

unique minimum. At the end of this iterative process, a set of weights is determined for a learning

model that gives the best classification on a given set of training data. More details can be found

in [63].
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FIGURE 3.1. The goal of this research is to combine machine learning methods, compiler trans-
formations, and runtime introspection in order to maximize the use of available resources and to
minimize execution time of the loops.

3.4 Proposed Model

In this section, we propose a new technique for applying the learning models discussed in section

3.3 to HPX loops. The goal of this technique is to combine machine learning methods, compiler

transformations, and runtime introspection in order to maximize the use of available resources

and to minimize execution time of the loops (see Fig. 3.1). Its design and implementation has

several steps categorized as follow1:

A. Special Execution Policies and Parameters

B. Feature Extraction

C. Designing Learning Model

D. Learning Model Implementation

Fig. 3.2 shows the scheme of the workflow of this model, in which the static information about

the loop body (such as the number of operations, see Table 3.1) collected by the compiler and the

dynamic information (such as the number of cores used to execute the loop) as provided by the

1This technique with its installation instructions are publicly available at https://
github.com/STEllAR-GROUP/hpxML. Feel free to join our IRC channel #ste||ar if you
need any help.
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FIGURE 3.2. The scheme of the workflow of the proposed model.

runtime system is used to feed a logistic regression model enabling a runtime decision to obtain

highest possible performance of the loop under consideration. The presented method relies on

a compiler-based source-to-source transformation. The compiler transforms certain loops which

were annotated by the user by providing special execution policies – discussed later in section

3.4.1 – into code controlling runtime behavior. This transformed code instructs the runtime system

to apply a logistic regression model and to select either an appropriate code path (e.g. parallel or

sequential loop execution) or certain parameters for the loop execution itself (e.g. chunk size or

prefetching distance).

3.4.1 Special Execution Policies and Parameter

We introduce two new HPX execution policies and one new HPX execution policy parameter,

which enables the weights gathered by the learning model to be applied on the loop: par_if and

make_prefetcher_policy. These policies instrument executors to be able to consume the weights

produced by a binary logistic regression model, which is used to select the execution policy cor-

responding to the optimal code path to execute (sequential or parallel), and a multinomial logistic

regression model, which is used to determine an efficient prefetching distance. Additionally we

created an new execution policy parameter, adaptive_chunk_size, which uses a multinomial logis-

tic regression model to determine an efficient chunk size. Fig.3.3 shows three loops defined with

these new execution policies and the new execution parameter that apply a lambda function over
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//This loop chooses an optimum execution policy(seq/par)
for_each(par_if, range.begin(), range.end(), lambda);

//This loop chooses an efficient chunk size
for_each(policy.with(adaptive_chunk_size())

,range.begin(),range.end(),lambda);

//This loop chooses an efficient prefetching distance for
prefetching array1 and array2

for_each(make_prefetcher_policy(policy,
prefetching_distance_factor,
container_1,..., container_n),
range.begin(),range.end(),lambda);

FIGURE 3.3. Loops using the new execution policies and parameters. These policies and param-
eters are instrumented to allow HPX to consider the weights produced by the learning models
when executing the loops.

a range. We have created a new special compiler pass for clang which recognizes these annotated

loops and transform them into equivalent code which instructs the runtime to apply the described

regression models.

3.4.2 Feature Extraction

Initially, we selected 10 static features to be collected at compile time and 2 dynamic features

to be determined at runtime to be evaluated by our learning model. These features are listed in

Table 3.1. Although it may not be the best possible set, it is very similar to those considered in the

other works [9, 48, 58], which in their results indicated that the set is sufficient to design a learning

model for this type of problem. In order to collect static information at compile time, we introduce

a new ClangTool named LoopConvert in the Clang compiler as shown in Fig.3.4. This tool locates

in the user source code instances of loops which use par_if or make_prefetcher_policy as their ex-

ecution policy or adaptive_chunk_size as an execution policy parameter. Once identified, the loop

body is then extracted from the lambda function by applying getBody() on a lambda operator

getLambdaCallOperator(). The value of each of the listed static features is then recorded by pass-

ing lambda to analyze_statement. In order to capture dynamic features at runtime, the compiler
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TABLE 3.1. Collected static and dynamic features. First 6 features marked with red* have been
selected for our model using the decision tree classification technique [64, 65] to avoid overfitting
the model.

Type Information
dynamic number of threads∗
dynamic number of iterations∗

static number of total operations per iteration∗
static number of float operations per iteration∗
static number of comparison operations per iteration∗
static deepest loop level∗
static number of integer variables
static number of float variables
static number of if statements
static number of if statements within inner loops
static number of function calls
static number of function calls within inner loops

inserts hooks (HPX API function calls) which are invoked by the runtime. In this instance the com-

piler will insert the call hpx::get_os_thread_count() and std::distance(range.begin(), range.end())

which will return the number of OS threads as well as the number of iterations that the loop will

run over, respectively.

To avoid overfitting the model, we chose 6 critical features marked with red∗ color in Table 3.1

to include in the actual decision tree classification technique[64, 65]. This algorithm starts with

considering entire features set, then it selects the best feature that yields maximum information

for a better classification. It reduces the initial feature set in a tree building process based on the

information gain value to decide which feature to be selected for splitting data at each step in a

tree building process. This information gain is computed for each feature in each step, and the one

with the highest value will be chosen as the test feature for that set of training data. This value for

each feature A with v distinct values and having m distinct classes is computed as follow:

InformationGain(A) = I(s1, s2, ..., sm)− E(A) (3.9)

, where E(A) is an entropy that is given by
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c l a s s LoopConver t :
p u b l i c R e c u r s i v e A S T V i s i t o r <LoopConvert >

{
. . .
/ / V i s i t e v e r y c a l l e x p r e s s i o n
bool V i s i t C a l l E x p r ( c o n s t C a l l E x p r ∗ c a l l )
{

. . .
SourceManager &SM = m_context−>ge tSourceManager ( ) ;

/ / check i f a c a l l i s an hpx a l g o r i t h m
c o n s t c l a n g : : F u n c t i o n D e c l ∗ FD= c a l l −>g e t D i r e c t C a l l e e ( ) ;
s t r i n g f u n c _ s t r i n g =FD−>g e t Q u a l i f i e d N a m e A s S t r i n g ( ) ;
i f ( f u n c _ s t r i n g . f i n d ( " hpx : : p a r a l l e l : : " ) != s t r i n g : : npos )
{

/ / C a p t u r i n g lambda f u n c t i o n from a loop
c o n s t CXXMethodDecl∗ l a m b d a _ c a l l o p =

lambda_record −>g e t L a m b d a C a l l O p e r a t o r ( ) ;
Stmt∗ lambda_body = l a m b d a _ c a l l o p −>getBody ( ) ;

/ / C a p t u r i n g p o l i c y
SourceRange p o l i c y ( c a l l −>ge tArg ( 0 )−>ge tExprLoc ( ) ,

c a l l −>ge tArg ( 1 )−>ge tExprLoc ( ) . g e t L o c W i t h O f f s e t (−2) ) ;

s t r i n g p o l i c y _ s t r i n g = Lexer : : g e t S o u r c e T e x t (
CharSourceRange : : ge tCharRange ( p o l i c y ) , ∗SM,
LangOpt ions ( ) ) . s t r ( ) ;

/ / D e t e r m i n i n g p o l i c y i f a c u r r e n t p o l i c y i s p a r _ i f
i f ( p o l i c y _ s t r i n g . f i n d ( " p a r _ i f " ) != s t r i n g : : npos )
{

/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n
a n a l y z e _ s t a t e m e n t ( lambda_body ) ;
p o l i c y _ d e t e r m i n a t i o n ( c a l l , SM) ;

}

/ / D e t e r m i n i n g chunk s i z e i f a c u r r e n t p o l i c y ’ s p a r a m e t e r i s a d a p t i v e _ c h u n k _ s i z e
i f ( p o l i c y _ s t r i n g . f i n d ( " a d a p t i v e _ c h u n k _ s i z e " ) != s t r i n g : : npos )
{

/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n
a n a l y z e _ s t a t e m e n t ( lambda_body ) ;
c h u n k _ s i z e _ d e t e r m i n a t i o n ( c a l l , SM) ;

}

/ / D e t e r m i n i n g p r e f e t c h i n g d i s t a n c e i f a c u r r e n t p o l i c y i s m a k e _ p r e f e t c h e r _ p o l i c y
i f ( p o l i c y _ s t r i n g . f i n d ( " m a k e _ p r e f e t c h e r _ p o l i c y " ) != s t r i n g : : npos )
{

/ / E x t r a c t i n g s t a t i c i n f o r m a t i o n from lambda f u n c t i o n
a n a l y z e _ s t a t e m e n t ( lambda_body ) ;
p r e f e t c h i n g _ d i s t a n c e _ d e t e r m i n a t i o n ( c a l l , SM) ;

}
}

}}

FIGURE 3.4. In the Clang compiler, we propose to add the ClangTool LoopConvert which will
collect static information of each for loop and to implement a learning model based on the current
execution policy:

• par_if.

• policy.with(adaptive_chunk_size).

• make_prefetcher_policy(policy, ...).
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E(A) =
v∑

j=1

s1j + s2j + ...+ smj

s
I(s1, s2, ..., sm) (3.10)

, that I is computed as follow:

I(s1, s2, ..., sm) = −
m∑
k=1

pklog2(pk) (3.11)

, in which pk is the probability that an arbitrary data belongs to class k and is given by

pk =
sk
s

(3.12)

This classifier generation stops whenever all the data of a leaf belong to the same class. More

information about this technique can be found in [64, 66, 67].

3.4.3 Designing Learning Model

To design an efficient learning model that could be able to cover various cases, we collected

over 300 training data sets by analyzing Matrix multiplication application with different problem

sizes that implements par_if, adaptive_chunk_size or make_prefetcher_policy on its loops. The

experimental results evaluated in Section 3.5 show that these training data1 are enough to predict

the HPX loop’s parameters accurately for the studied applications: Matrix multiplication, Stream,

2D Stencil and NBody applications.

Both the binary and multinomial logistic regression models are implemented in C++1. These

models are designed based on the collected data, in which the values of ω from eq.3.14 and

eq.3.7 are determined whenever the sum of square errors reaches its minimum value. Then they

are stored in an output file named as weights.dat that will be used for predicting the optimal

1The characteristics of the loops of these training data are available at https://github.
com/STEllAR-GROUP/hpxML/blob/master/logisticRegressionModel/
algorithms/inputs.
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execution policy, chunk size, and prefetching distance at runtime. This learning step can be done

offline, which also doesn’t add any overhead at compile time nor does at runtime.

It should be noted that the multinomial logistic regression model must be initialized with the

allowed boundaries for the chunk size and prefetching distance in order to choose an efficient

value. In this study we selected 0.1%, 1%, 10%, or 50% of the iterations of a loop as chunk

size candidates and 1, 5, 10, 100 and 500 cache lines as prefetching distance candidates. These

candidates are validated with different tests and based on their results, they are selected. Also,

they are already included in the implementation of the proposed technique discussed in the next

section and it is not required for the users to include them manually.

3.4.4 Learning Model Implementation

In this study, we propose three new techniques that are able to implement binary and multinomial

logistic regression models at runtime:

1. Implementing Binary Logistic Regression Model (Execution Policy).

2. Implementing Multinomial Logistic Regression Model (Chunk Size).

3. Implementing Multinomial Logistic Regression Model (Prefetching Distance).

These new techniques are discussed as follow.

3.4.4.1 Implementing Binary Logistic Regression Model (Execution Policy)

For this purpose, we propose a new function seq_par that passes the extracted features for a

loop that uses par_if as its execution policy. In this technique, a Clang compiler automatically

adds extra lines within a user’s code as shown in Fig.3.5b that allows the runtime system to

decide whether execute a loop sequentially or in parallel based on the return value of seq_par

from Eq.3.15. If the output is false the loop will execute sequentially and if the output is true

the loop will execute in parallel. This function takes the weights extracted during compilation
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f o r _ e a c h ( p a r _ i f , r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(a) Before compilation.

i f ( s e q _ p a r ( { e x t r a c t e d _ s t a t i c / d y n a m i c _ f e a t u r e s } ) )
f o r _ e a c h ( seq , r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

e l s e
f o r _ e a c h ( par , r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(b) After compilation.

bool s e q _ p a r ( F &&f e a t u r e s )
{

. . .
/ / from e x t e r n a l f i l e
W w i g h t s = r e t r i e v i n g _ w e i g h t s ( " w e i g h t s . d a t " ) ;

re turn p o l i c y _ c o s t s _ f n c ( f e a t u r e s , w i g h t s ) ;
}

(c) Determining execution policy at runtime using features and weights values.

FIGURE 3.5. The proposed seq_par for implementing binary logistic regression model at runtime.

and the values polled at runtime as inputs. Fig.3.5c shows the seq_par function implemented for

determining policy by computing cost function with features and weights values as its inputs.

3.4.4.2 Implementing Multinomial Logistic Regression Model (Chunk Size)

For this purpose, we propose a new function chunk_size_determination that passes the extracted

features for a loop that uses adaptive_chunk_size as its execution policy’s parameter. In this tech-

nique, a Clang compiler changes a user’s code automatically as shown in Fig.3.6b that makes run-

time system to choose an optimum chunk size based on the output of chunk_size_determination

from Eq.3.16 that is based on the chunk size candidate’s probability and it is computed us-

ing the values of the studied loop’s features and the learning model’s weights. Fig.3.6c shows

chunk_size_determination function implemented for determining chunk size by computing cost

function with features and weights values as its inputs.
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f o r _ e a c h ( p o l i c y . w i th ( a d a p t i v e _ c h u n k _ s i z e ( ) ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(a) Before compilation.

f o r _ e a c h ( p o l i c y . w i th ( c h u n k _ s i z e _ d e t e r m i n a t i o n ( { e x t r a c t e d _ s t a t i c /
d y n a m i c _ f e a t u r e s } ) ) ) ,

r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(b) After compilation.

dynamic_chunk_s i ze c h u n k _ s i z e _ d e t e r m i n a t i o n ( F &&f e a t u r e s )
{

. . .
/ / from e x t e r n a l f i l e
W w i g h t s = r e t r i e v i n g _ w e i g h t s ( " w e i g h t s . d a t " ) ;

re turn c h u n k _ s i z e _ c o s t s _ f n c ( f e a t u r e s , w i g h t s ) ;
}

(c) Determining chunk size at runtime using features and weights values.

FIGURE 3.6. The proposed chunk_size_determination for implementing multinomial logistic re-
gression model at runtime.

3.4.4.3 Implementing Multinomial Logistic Regression Model (Prefetching Distance)

For this purpose, we propose a new function prefetching_distance_determination that passes the

extracted features for a loop that uses make_prefetcher_policy as its execution policy. In this tech-

nique, a Clang compiler changes a user’s code automatically as shown in Fig.3.7b that makes

runtime system to choose an optimum prefetching distance based on the output of prefetch-

ing_distance_determination. This function also computes the outputs by implementing Eq.3.16

using the values of the studied loop’s features and the learning model’s weights. Fig.3.7c shows

prefetching_distance_determination function implemented for determining prefetching distance

by computing cost function with features and weights values as its inputs.

As we can see, these proposed techniques consider both, the static and the dynamic infor-

mation for determining an efficient execution policy, chunk size, and prefetching distance for a

loop. In addition, this decision process is performed at runtime by computing outputs of seq_par,

chunk_size_determination and prefetching_distance_determination, which avoids an extra com-

pilation step. In other words, static information is collected during compilation and the decisions
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f o r _ e a c h ( m a k e _ p r e f e t c h e r _ p o l i c y ( p o l i c y ,
p r e f e t c h i n g _ d i s t a n c e _ f a c t o r ,
c o n t a i n e r _ 1 , . . . , c o n t a i n e r _ n ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(a) Before compilation.

f o r _ e a c h ( m a k e _ p r e f e t c h e r _ p o l i c y ( p o l i c y ,
p r e f e t c h i n g _ d i s t a n c e _ d e t e r m i n a t i o n ( { e x t r a c t e d _ s t a t i c /

d y n a m i c _ f e a t u r e s } ) ,
c o n t a i n e r _ 1 , . . . , c o n t a i n e r _ n ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(b) After compilation.

s t d : : s i z e _ t p r e f e t c h i n g _ d i s t a n c e _ d e t e r m i n a t i o n ( F &&f e a t u r e s )
{

. . .
/ / from e x t e r n a l f i l e
W w i g h t s = r e t r i e v i n g _ w e i g h t s ( " w e i g h t s . d a t " ) ;

re turn p r e f e t c h i n g _ d i s t a n c e _ c o s t s _ f n c ( f e a t u r e s , w i g h t s ) ;
}

(c) Determining prefetching distance at runtime using features and weights values.

FIGURE 3.7. The proposed prefetching_distance_determination for implementing multinomial
logistic regression model at runtime.
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aiming at optimum parameters are made at runtime while taking into account additional runtime

information. One of the other advantages of this method are that other parameters and execu-

tors attached to the current execution policy can be also reattached to the generated execution

policy as shown in Fig.3.8. Moreover, all of all of these new execution policies and parame-

ters can be used together by simply defining a loop policy to be “make_prefetcher_policy(par_if,

...).with(adaptive_chunk_size())". The experimental results of our proposed learning techniques

discussed are presented in the next section.

3.5 Experimental Results

In this section, we evaluate the performance of our proposed technique using Clang 4.0.0 and

HPX V 0.9.99 on the test machine with two Intel Xeon E5-2630 processors, each with 8 cores

clocked at 2.4GHZ and 65GB of main memory. The main goal here is to illustrate that dynamic

information obtained at runtime and static information obtained at compile time are both neces-

sary to provide sufficient parallel performance and the proposed techniques are able to predict the

optimum parameters for HPX loops based on these information. We illustrate the performance of

our proposed model in the following three sections1:

1. Evaluating Model Accuracy

2. Artificial Test Cases

3. Real Benchmarks

3.5.1 Evaluating Model Accuracy

As discussed in Section 3.3, binary logistic regression model and multinomial logistic regression

model are implemented for determining execution policy, chunk size and prefetching distance of

a loop. As mentioned in 3.4.4, chunk size candidates are 0.1%, 1%, 10%, or 50% of the iterations

of a loop and prefetching candidates are 1, 5, 10, 100 and 500 cache lines.

1Applications evaluated in this Section are publicly available at https://github.com/
STEllAR-GROUP/hpxML/tree/master/examples.
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f o r _ e a c h ( p a r _ i f . w i th ( p a r a m e t e r ) . on ( e x e c u t o r ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

f o r _ e a c h ( p o l i c y . on ( e x e c u t o r ) . w i th ( a d a p t i v e _ c h u n k _ s i z e ( ) ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

f o r _ e a c h ( m a k e _ p r e f e t c h e r _ p o l i c y (
p o l i c y . w i th ( p a r a m e t e r ) . on ( e x e c u t o r ) ,
p r e f e t c h i n g _ d i s t a n c e _ f a c t o r ,
c o n t a i n e r _ 1 , . . . , c o n t a i n e r _ n ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(a) Before compilation.

i f ( s e q _ p a r ( { e x t r a c t e d _ s t a t i c / d y n a m i c _ f e a t u r e s } ) )
f o r _ e a c h ( seq . w i th ( p a r a m e t e r ) . on ( e x e c u t o r ) ,

r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;
e l s e

f o r _ e a c h ( p a r . w i th ( p a r a m e t e r ) . on ( e x e c u t o r ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

f o r _ e a c h ( p o l i c y . on ( e x e c u t o r ) . w i th ( c h u n k _ s i z e _ d e t e r m i n a t i o n ( {
e x t r a c t e d _ s t a t i c / d y n a m i c _ f e a t u r e s } ) ) ) ,

r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

f o r _ e a c h ( m a k e _ p r e f e t c h e r _ p o l i c y (
p o l i c y . w i th ( p a r a m e t e r ) . on ( e x e c u t o r ) ,
p r e f e t c h i n g _ d i s t a n c e _ d e t e r m i n a t i o n ( { e x t r a c t e d _ s t a t i c /

d y n a m i c _ f e a t u r e s } ) ,
c o n t a i n e r _ 1 , . . . , c o n t a i n e r _ n ) ,
r a n g e . b e g i n ( ) , r a n g e . end ( ) , lambda ) ;

(b) After compilation.

FIGURE 3.8. Reattaching policy’s parameters and executors to the final determined execution
policy.
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TABLE 3.2. Execution policy, chunk size and prefetching distance determined by seq_par,
chunk_size_determination and perfecting_distance_determination implementation based on the
static and dynamic information extracted for each loop and the weights provided by the learning
models.

Test Loop Iterations Total opr. Float opr. Comparison opr. Loop level Policy (Threads) Chunk size% Pref. dist.

1 l1 10000 400100 200000 101010 2 par (8) 0.1 5
l2 20000 450026 250000 150503 2 par (8) 0.1 5
l3 20000 502040 250000 103051 2 par (8) 0.1 1
l4 500 550402 200000 150102 1 par (8) 10 5

2 l1 150000 350106 101010 500 2 par (8) 0.1 10
l2 100 10050016 5000000 2505013 3 seq 10 1
l3 100 25000000 3010204 1500204 3 seq 10 1
l4 50000 4000450 200000 100150 1 par (8) 1 5

3 l1 500 4504030 250000 150300 2 par (8) 1 10
l2 400 3502020 200000 100405 1 par (8) 1 10
l3 2000 250033 150000 103040 3 seq 10 5
l4 2500 350400 150000 100600 3 seq 10 5

4 l1 20000 204002 100000 10320 2 par (8) 0.1 1
l2 30000 400000 150102 10000 2 par (8) 0.1 1
l3 300 550000 44000 20030 3 seq 10 5
l4 400 450000 50400 10602 3 seq 10 10

5 l1 200 4502001 150000 101004 3 par (8) 1 1
l2 700 400020 300000 150006 3 par (8) 1 5
l3 300 302020 20000 14005 2 par (8) 1 5
l4 100 50400 20000 10110 2 seq 10 10

The characteristics of these models are derived from a training set of over 300 test cases. In

order to derive the fidelity of the model, we train the algorithm using 80% of the test cases and

use the remaining 20% as a trials to see how accurate the predictions are. Our results show that

the binary logistic regression model is accurate in 98% of the trials and the multinomial logistic

regression model is accurate in 95% of them.

3.5.2 Evaluating Proposed Techniques on Different Test Cases

In this section, we evaluate the performance of the proposed techniques from section 3.4 over 5

test cases shown in Table 3.2, in which each of them includes 4 loops with different characteris-

tics. Each of these loops of each test cases is a Matrix multiplication computation with different

problem sizes included in this table. The main purpose of these evaluations is to show the effec-

tiveness of each proposed method on an HPX parallel performance.

3.5.2.1 par_if

Parallelizing all loops within an application may not result in a best possible parallelization, as

some of the loops cannot scale desirably on more number of threads. For evaluating the effec-
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tiveness of the proposed seq_par function exposed by a new execution policy par_if discussed

in section 3.4, we study its implementation on the described 5 test cases. These test cases are

selected to show that in case of having several loops within a parallel application, some of these

loops should be executed in sequential to achieve a better parallel performance. Each of these test

cases is executed three times by setting execution policies of the outer loops to be seq, par, or

par_if in each time. The static and dynamic characteristics of each loop in each test are listed

in Table 3.2. The execution policies determined by using par_if policy for each loop are also

included in the column Policy of this Table.

Fig.3.9 shows the execution time for each test case and it illustrates that in most of them using

the execution policy par_if will outperform the basic policy par. The main reason of this im-

provement is that by considering the determined execution policy included in Table 3.2, as the

execution policy seq is determined for some of the loops that cannot scale desirably on more

number of threads, this technique results in outperforming manually parallelized code by around

15%− 20% for these test cases expect the first one. In this test case, however, the total execution

time of the loops took slightly longer when invoked with par_if. This is due to the overhead gener-

ated during the invocation of the policy_costs_fnc cost function, manually setting their execution

policy as par resulted in having a better performance.

3.5.2.2 adaptive_chunk_size

As discussed in Section 3.4, the proposed chunk_size_determination function exposed by a new

execution policy’s parameter adaptive_chunk_size enables the runtime system to choose an effi-

cient chunk size for a loop by considering static and dynamic features of that loop. As mentioned

in section 3.4.3, this method selects between chunk sizes of 0.1%, 1%, 10%, or 50% of the iter-

ations of a loop by comparing their probabilities in the multinomial logistic regression model’s

cost function

Fig.3.10 shows the execution time for each test case in Table 3.2 by setting optimal chunk size

of each loop. The chunk size determined by the algorithm for each loop are also included in the
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FIGURE 3.9. The execution time comparisons between setting execution policy of the loops to be
seq, par, or par_if.

column Chunk size% of the Table 3.2. The overall performance of these cases show by an average

of about 31%, 15%, 17% and 38% improvement over setting chunks to be 0.1%, 1%, 10%, or

50% of the iterations of a loop. The main reason of this improvement is that efficient chunk size

helps in having even amount of work on each number of threads that results in reducing total

overheads and latencies. These results also illustrate the importance of the chunk size’s effect on

an application’s scalability and the capability of this method in improving parallel performance

of an application by choosing efficient chunk size for each loop.

3.5.2.3 make_perfetcher_policy

As discussed in section 3.4, the proposed perfecting_distance_determination function exposed by

a new execution policy make_perfetcher_policy allows the runtime system to choose an efficient

prefetching distance for a loop by considering static and dynamic features of that loop. As it

mentioned in section 3.4.4, this method chooses between prefetching distances of 1, 5, 10, 100

76



FIGURE 3.10. The execution time comparisons between setting chunk size of the loops to be
0.1%, 1%, 10%, or 50% of the iterations of a loop and the chunk size determined by using adap-
tive_chunk_size.

and 500 cache lines by comparing their probabilities in the prefetching_distance_costs_fnc cost

function from fig.3.7c.

Fig.3.11 shows the execution time for each prefetching size in each test case in Table 3.2.

The prefetching distance determined by the algorithm for each loop are also included in the last

column of the Table 3.2. The overall performance of these cases show by an average of about

25%, 19%, 14%, 33%, 24%, and 47% improvement over setting prefetching distances to be 1, 5,

10, 100, or 500 cache lines. The main reason of this improvement is that using efficient prefetching

distance resulted in better cache usage that reduced the total overheads.

3.5.3 Real Benchmarks

In the previous section, we demonstrated the effectiveness of each proposed on an HPX parallel

performance on 5 different test cases in which each of them includes 4 different loops for a

matrix multiplication computation. In this section, we apply all of the proposed methods together

on four different benchmarks: the Stream, a 2D Stencil, a Matrix Multiplication and an NBody
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FIGURE 3.11. The execution time comparisons between setting the prefetching distance of the
loops to be 1, 5, 10, 100, or 500 cache lines and the determined prefetching distance using
make_perfetcher_policy.

TABLE 3.3. Dynamic and static features of the loops in Stream, Stencil and Matrix Multiplication
Benchmarks.

Test Iterations Total opr. Float opr. Comp. opr. Loop level
Stream 50000000 8 8 0 0
Stencil 45 3502 2500 301 1

Mat. Mult. 200 123706 320800 10053 2

benchmarks. The previous training data is also used in the proposed techniques applied on these

applications.

3.5.3.1 Stream Benchmark

The Stream benchmark [68, 69] has been widely used for evaluating memory bandwidth of a sys-

tem. In [30], the HPX executors performance were evaluated on this benchmark with 50 million

data points over 10 iterations. As shown in Fig.3.12, this application includes 4 operations over 3

equally sizes arrays (A,B andC) that are: copy (C = A), scale (B = k×C), adding (C = A+B)

and triad (A = B+K×C). The characteristic information of this loop is included in Table 3.3. All
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f o r _ e a c h ( p o l i c y , a_beg in , a_end , [ & ] ( s t d : : s i z e _ t i ) {
/ / copy s t e p
c [ i ] = a [ i ] ;

/ / s c a l e s t e p
b [ i ] = k ∗ c [ i ] ;

/ / ad d i ng s t e p
c [ i ] = a [ i ] + b [ i ] ;

/ / t r i a d s t e p
a [ i ] = b [ i ] + k ∗ c [ i ] ;

} ) ;

FIGURE 3.12. Stream Benchmark.

FIGURE 3.13. HPX Stream benchmark’s strong scaling using the proposed techniques together
compared to implementing without considering static/dynamic information and implementing
machine learning technique.
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FIGURE 3.14. Heat Distribution Benchmark, HPX Stencil [23].

three proposed techniques – seq_par, adaptive_chunk_size and make_prefetcher_policy – are ap-

plied on this loop to make HPX to choose an execution policy, chunk size and prefetching distance

efficiently. The speedup comparison results of the data transform measurements with/without us-

ing proposed techniques are illustrated in Fig.3.13. As we can see, using the proposed techniques

together on this benchmark improves HPX performance by an average of about 13% compared

to using HPX auto-parallelization techniques without considering static/dynamic information and

implementing machine learning technique.

3.5.3.2 Stencil Benchmark

The performance of different HPX scheduling policies on a 2D Stencil benchmark is studied

in [19]. This application is a two dimensional heat distribution shown in Fig.3.14, in which the

temperature of each point is computed based on the temperature of its neighbors. The charac-

teristic information of this loop is also included in Table 3.3. Same as the Stream Benchmark,

all three proposed techniques – seq_par, adaptive_chunk_size and make_prefetcher_policy – are

also applied on this loop to make HPX to choose an execution policy, chunk size and prefetch-

ing distance efficiently. The speedup comparison results of HPX performance with/without using

proposed technique are illustrated in Fig.3.18. It shows HPX performance improvement by an

average of about 22% by using the proposed techniques together on this loop compared to using

HPX auto-parallelization techniques without considering static/dynamic information and imple-

menting machine learning technique.
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FIGURE 3.15. HPX 2D Stencil benchmark’s strong scaling using the proposed techniques together
compared to using HPX auto-parallelization techniques without considering static/dynamic infor-
mation and implementing machine learning technique.

3.5.3.3 Matrix Multiplication Benchmark

HPX matrix multiplication performance using the proposed techniques is evaluated in this section.

The characteristic information of this loop is also included in Table 3.3. Same as the Stream and

Stencil Benchmarks, all three proposed techniques – seq_par, adaptive_chunk_size and make_prefetcher_policy

– are also applied on this loop to make HPX to choose an execution policy, chunk size and

prefetching distance efficiently. Fig. 3.16 illustrates the speedup comparison results of the bench-

mark’s performance with/without using proposed technique. As we can see, using the proposed

techniques together improve the benchmark’s parallel performance by an average about 37% com-

pared to using HPX auto-parallelization techniques without considering static/dynamic informa-

tion and implementing machine learning technique.
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FIGURE 3.16. Matrix Multiplication benchmark’s strong scaling using the proposed techniques
together compared to using HPX auto-parallelization techniques without considering static/dy-
namic information and implementing machine learning technique.

3.5.3.4 NBody Benchmark

In an NBody problem [70, 71], updating the information of each of the particles requires accessing

the information about the other particles. The brute-force NBody algorithm which computes a

new position of a particles by considering the forces felt by all other N particles in each time step

has an O(N2) time complexity. In order to improve the parallel scalability of this application,

various algorithms have been proposed, e.g. Barnes-Hut and Fast Multipole Method (FMM) with

O(NlogN) and O(log(1/ε)N) time complexity respectively [72–74].

In [26], we showed performance improvement by using features of the HPX parallel algorithms

to decrease the communication latencies in a Barnes-Hut algorithm when compared to using a

hybrid model (OpenMP + MPI). The experimental results evaluated in that paper showed that

HPX helped this application to achieve a desired scalability by providing task-based parallelism

and asynchronous task execution. It was illustrated that the future concepts implemented by the

HPX algorithms allowed the tasks related to a single particle in an NBody application to execute
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FIGURE 3.17. The Octree data structure used in an NBody application.

when its dependencies were satisfied without having to wait for the resolution of dependencies

for all other particles. This effectively circumvents the global barriers that are imposed by the

hybrid model implementation where all particles were not able to continue to the next timestep

until all particles had reached that timestep. The NBody application used in this research employs

the Barnes-Hut algorithm. This algorithm has the following three stages:

1. Octree Construction: Fig.3.17 shows the Octree data structure applied in the NBody ap-

plication [73, 75]. The maximum number of particles within each cube is considered to be

Nthreshold. This implies that each cube will be subdivided into eight equally sized sub-cubes

if it has more than Nthreshold number of particles. The Octree is adaptive and is able to be

modified automatically if the positions of the particles are changed during the simulation.

In order to name each cube, a unique id is assigned to each cube in an Octree as follows:

the id of a cube, c, is created by taking the id of the cube’s parent, p, and computing:

idc = idp + 8 × i, where i varies from 1 to 9 (the sequence of that parent’s sub-cubes).

For example, as it is illustrated in Fig.3.17, a cube with id = 1, has eight sub-cubes with

9 <= id <= 16. This technique enables each cube to confirm the ids of its neighbors. The

center of mass of each of these cubes is computed using Eq. 3.14 based on the positions

and the masses of the particles in that cube [76]:

center_of_massi = masstotal ×
n∑

i=1

rpi ×masspi (3.13)

, where masstotal is the summation of all of those particles masses.
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FIGURE 3.18. The gravitational potential of a distant group of particles is approximated as a single
particle that is located in the center of mass of those particles.

2. Interaction List Creation: After partitioning particles into an Octree, the interaction list

for each particle is created by an Octree traversal. In [? ], we illustrated how we imple-

mented the FMM [77, 78] method in the Barnes-Hut algorithm which reduced the stage

time complexity from O(NlogN) to O(log(1/ε)N). This interaction list contains the par-

ticles that are close enough to an object to be individually considered as well as a cubes

which are collections of particles that are far away and therefore modeled as one object.

These remote cubes are treated as a single particle if d is greater than r/θ value; where d

is the distance between the cube and that particle, r is the radius of that cluster of those

particles, and θ controls the error of the approximation (see Fig.3.18):

• A larger θ produces more accurate results but increases the application’s execution

time.

• A smaller θ produces less accurate results but decreases the application’s execution

time.

This parameter should be assigned based on the level of accuracy required for this appli-

cation. We evaluated the performance of our proposed technique on an NBody application

using different θ values in this section.

3. Force Computation: In an NBody application, each particle mi with an initial position ri

and an initial velocity vi moves under the influence of the gravitational attraction. These

gravitational force applied on each is computed by using Newton’s law of gravity, Eq. 3.14,
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by considering all particles and sub-cubes included in the interaction list of that particle as

follow:

Fij =
G mj mi (ri − rj)
|| rj − ri ||3

(3.14)

Also, the velocity and the new position of that particle is computed in Eq.3.15 and Eq.3.16

respectively,

vi = vi +
Fij × t
mi

(3.15)

ri = ri + vi × t+
0.5× t2 × Fij

mi

(3.16)

, where t is a time step.

In [26], the performance of an NBody application was evaluated when using HPX parallel

loops. It was shown that HPX future-based techniques enable the application to continue its

progress without waiting for all of the computations in a previous time step to be completed.

This effectively results in removing an unnecessary global barrier after each time step. However,

as all of the HPX parallel algorithms perform based on the dynamic analysis provided at runtime,

this technique is often unable to achieve the maximum possible parallel efficiency. As a result of

this challenge, an HPX application’s performance may suffer.

To demonstrate the importance of this effect on an application’s scalability, we show the perfor-

mance of an NBody application with 1, 000, 000 particles when assigning different chunk sizes in

Fig.3.19. The chunk sizes include: 0.1%, 0.2%, 1%, 2%, 10%, 20%, or 50% of the particles. We

used the maximum bandwidth measured to determine the most efficient setting for the application.

For each series on the graph, we marked the highest value with a “♦" and the lowest value with a

“◦". As illustrated, the most performant setting was to use 2 NUMA Domains and 16 threads with

chunk size = 0.1% of the particles, which is approximately a 53% percentage difference over the
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worst case with chunk size = 50% of the particles. This underscores the fact that choosing an

optimum chunk size for each number of threads is necessary for the NBody application to achieve

to its highest possible speedup.

Both effective static and dynamic loop’s characteristics should be considered for determining

its chunk size. We illustrate the performance of our proposed model in the following scenarios:

A. Using fixed θ value.

B. Using different θ values.

A. Using fixed θ value

In this section we are going to evaluate the performance of the proposed technique on an NBody

application using Barnes-Hut algorithm with a fixed value of θ to be 0.01 for different number

of the particles. As discussed in Section 3.4.4, the proposed chunk_size_determination function

exposed by the new execution policy’s parameter adaptive_chunk_size enables the runtime sys-

tem to choose an efficient chunk size for the loop by considering static and dynamic features of

that loop. Fig.3.20a and 3.20b show the bandwidth rates for an NBody application with different

problem sizes – 100, 000, 1, 000, 000, and 10, 000, 000 particles– on 1 NUMA and 2 NUMA do-

mains respectively. These results compare assigning chunk sizes automatically by using the HPX

facility auto_partitioner and using the proposed technique discussed in Section 3.4 by annotating

the loop with adaptive_chunk_size. The results shown with prefix “(ML)" are the one with using

the proposed technique.

In this case, the application gained up to 33%, 17%, and 19% improvement with application

sizes of 100, 000, 1, 000, 000, and 10, 000, 000 particles respectively. The main reason of this

improvement is that efficient chunk size helps in having even amount of work on each number of

threads that results in reducing total overheads and latencies. These results illustrate the capability

of this method to improve parallel performance of an application simply by intelligently choosing

efficient chunk size for the HPX loop.
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(a)

(b)

FIGURE 3.19. NBody parallel performance with 1, 000, 000 particles using chunk sizes of: 0.1%,
0.2%, 1%, 2%, 10%, 20%, or 50% of the particles.
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(a)

(b)

FIGURE 3.20. NBody parallel performances with 100, 000, 1, 000, 000, and 10, 000, 000 parti-
cles with assigning chunk sizes automatically by an HPX and using the proposed technique dis-
cussed in Section 3.4 by annotating loop with adaptive_chunk_size. The results shown with prefix
“(ML)" are the series which use the proposed technique.
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B. Using different θ values

As mentioned in before, θ controls the error of the approximation. For further evaluation, in this

section, the performance of the proposed technique is studied when simulating NBody application

using different values for θ. Fig.3.21a and 3.21b show the bandwidth rate for an NBody appli-

cation with 10, 000, 000 particles on 1 NUMA and 2 NUMA domains respectively. The results

shown with prefix “(ML)" are the series which use the proposed technique.

These results compare how adaptive_chunk_size adapts to changing values of θ. Larger values

of θ implies that more particles are considered to be near objects, which results in a more accurate

model. On the other hand, smaller values of θ results in less particles being treated as near objects.

Therefore, θ controls the amount of calls to computing_forces_on_each_particle within a loop,

which causes the execution time of the loop to grow when using larger values of θ and smaller

execution times of the loop when using smaller values of θ. We can conclude then, that the chunk

size selection process will be affected by the value of θ.

As it is illustrated in these comparison results, the effect of applying the proposed technique to

NBody when θ = 100 is negligible. However, this parallel performance is improved up to 17%,

19%, 8% and 3% when θ is changed to 0.01, 0.1, 1 and 10 respectively compared to the existing

version of the HPX parallel loop using auto_partitioner. It can be concluded that the proposed

technique is more effective in improving an NBody parallel performance when it uses a smaller θ

value.

3.6 Conclusion

The main goal of this chapter is to illustrate a powerful new set of techniques that can be made

available to application developers when compilers, runtime systems, and machine learning algo-

rithms work in concert. These techniques developed here not only greatly improve performance,

but users are able to reap their benefit with little cost to themselves. Simply by annotating their

code with high level policies, users can see their application’s performance increase in a portable
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(a)

(b)

FIGURE 3.21. NBody parallel performances with 10, 000, 000 particles with assigning different
values for θ while using the proposed technique by annotating loop with adaptive_chunk_size.
The results shown with prefix “(ML)" are the series which use the proposed technique.
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FIGURE 3.22. Shows generally how our proposed methods combines three different fields of ma-
chine learning, compiler and runtime together. All of our techniques are publicly available at
https://github.com/STEllAR-GROUP/hpxML.

way. Fig. 3.22 shows generally how our proposed methods combines three different fields of

machine learning, compiler and runtime together.

These results could have broad impact for applications and libraries as well as the maintainers

and scientist that use them. The high level annotations increase the usability and therefore accessi-

bility of runtime features that before would have taken a knowledgeable developer to implement.

Due to the machine learning element, users will not have to worry about losing performance in

different runtime environments that could manifest themselves. Finally, the inclusion of compiler

information will allow these performance optimizations to be platform independent. These three

features taken together present a notable solution to the challenges presented by an increasingly

multi-core and heterogeneous world.

As powerful as these techniques may be, more work is needed to be done in order to fully

realize the potential of this work. Notably, the breadth of performance characteristics needs to be
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more carefully studied to understand the core features that relate to performance. Additionally

more research is needed to ensure that the characteristics measured here also are relevant for

other architectures such as the new Knights Landing chipset. On a shorter time scale we intend

to investigate extending the number of features for improving the resulting loop’s parameters

prediction.

In this chapter, we have illustrated that the parallel performance of our test cases were improved

by using a machine learning algorithm to determine either an appropriate code path (parallel

or sequential loop execution) or certain parameters for the loop execution itself (chunk size or

prefetching distance). The speedup results of these test cases and benchmarks showed by around

12% − 35% improvement compared to selecting execution policy, chunk size and prefetching

distance of a loop without using static information and machine learning technique. These results

proved that combining machine learning techniques, compiler information, and runtime methods

helps an application maximize the available resources.
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Chapter 4

Artifact Description

In this chapter, we provide links to the source code for implementing proposed optimization

techniques discussed in Chapter 3. The hpxML source code and its build instructions are provided

as well as the LoopConvert source code. Training data used for designing multinomial logistic

regression model are also available. Finally, we include the output results from our benchmarks

that one would expect to get.

4.1 Description

4.1.1 Check-list (Artifact Meta Information)

• Algorithm: Logistic regression model.

• Program: C++ code.

• Compilation: Clang 4.0.0.

• Data set: Provided in 4.1.5.

• Run-time environment: Linux Mint 17.2.

• Hardware: x86.

• Output: Bandwidth rate (MB/s).

• Experiment workflow: Git clone hpxML; Make hpxML; Get learning models; Download the datasets;

Run learning models on those datasets; Rebuild Clang compiler after adding LoopConvert; Compile

and run the test script; Observe the measurement results (see fig. 4.1).

• Experiment customization: Provided in 4.5.

• Publicly available?: Yes.

4.1.2 How Delivered

All the source code for implementing proposed optimization techniques are provided as follow.
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FIGURE 4.1. The general scheme of implementing proposed technique on a test application.

• HPX source code is available from GitHub at https://github.com/STEllAR-GROUP/

HPX.

• Changes introduced in the current HPX libraries developed in this research for implement-

ing proposed techniques are publicly available at https://github.com/STEllAR-GROUP/

hpxML with the instructions offering guidance for applying them.

• Multinomial logistic leaning model implemented in C++ is also provided at https://

github.com/STEllAR-GROUP/hpxML/tree/master/logisticRegressionModel.

• LoopConvert source code – our new ClangTool based on Clang’s LibTooling – can be found

in https://github.com/STEllAR-GROUP/hpxML/tree/master/ClangTool.

The general scheme of implementing proposed technique on a test application is shown in fig.

4.1, which illustrates three separate but needed implementations for reproducing the experiments

studied in this paper:

−− Steps to design learning model.

−− Steps to prepare HPX runtime system with new changes.

−− Steps to prepare Clang compiler with our ClangTool.

It is described in more details in the following subsections.
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4.1.3 Hardware Dependencies

All the new changes and new optimization techniques in this paper are implemented and tested

on x86 architectures.

4.1.4 Software Dependencies

On Linux systems, the HPX installation requires Clang 3.3 or newer, CMake 2.8.4 or newer, and

Boost 1.50.0 or newer. You can find the full list of HPX prerequisites here: (http://stellar.

cct.lsu.edu/files/hpx-0.9.9/html/hpx/manual/build_system/prerequisites.

html). In this study, the proposed techniques are implemented using Clang 4.0.0, CMake 3.7.1,

and Boost 1.63.0.

4.1.5 Datasets

Training data which are used to prime the learning model for predicting execution policy, effi-

cient chunk sizes and prefetching distances are publicly available at https://github.com/

STEllAR-GROUP/hpxML/tree/master/logisticRegressionModel/algorithms/

inputs.

4.2 Installation

4.2.1 Setup HPX with New Changes

First, install Boost 1.63.0 using Clang 4.0.0. Then, follow the build instructions on hpxML’s

GitHub page (4.1.2). To use Clang 4.0.0 as the compiler add the additional cmake flags below:

-DCMAKE_CXX_COMPILER=/path/to/clang++\

-DCMAKE_BUILD_TYPE=Release

At this stage, HPX is tooled to support the learning techniques.
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4.2.2 Set Up Clang with LoopConvert

Add a new ClangTool LoopConvert (4.1.2) in a new directory loop-convert as follow:

$ cd /path/to/clang-llvm/llvm/

$ mkdir tools/clang/tools/extra/loop-convert

$ mv /path/to/LoopConvert.cpp tools/clang/tools/extra/loop-

convert/

$ echo ’add_subdirectory(loop-convert)’ >> tools/extra/

CMakeLists.txt

Compile our new tool as follow. We recommend using Ninja for this process.

$ cd /path/to/clang-llvm/build

$ ninja loop-convert

More details about building tools using LibTooling and LibASTMatchers can be found in

https://clang.llvm.org/docs/LibASTMatchersTutorial.html.

4.3 Experiment Workflow

4.3.1 Designing The Learning Model

The multinomial logistic learning model can be trained on the data provided in 4.1.5. We have pre-

pared this learning model using a separate C++ code (see 4.1.2) using the Eigen library (https:

//eigen.tuxfamily.org/dox/index.html). To determine the coefficients to be used

for the learning model, compile and run the source code available at https://github.com/

STEllAR-GROUP/hpxML/tree/master/logisticRegressionModel/algorithms

with the command below that calls our C++ multinomial logistic learning model on each training

dataset∗.
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$ g++ -std=c++11 -I /path/to/include/eigen3/ main.cpp -o main.o

After executing main.o for each dataset, the trained weights will be stored in separate output

files.

4.3.2 Running The Benchmark Using LoopConvert

For the artifact evaluation, we supply an instructions to run on our Stream, Stencil, and matrix

multiplication benchmark provided at https://github.com/STEllAR-GROUP/hpxML/

tree/master/examples. Before executing this script, you can find three different loops

within each of these applications as follows.

for_each(policy, range.begin(), range.end(),f);

for_each(policy.with(adaptive_chunk_size()),range.begin(),range.

end(),f);

for_each(execution::make_prefetcher_policy(policy,...),range.

begin(),range.end(),f);

After executing this script, LoopConvert will be executed on these loops and will modify them

as follows.

for_each(policy,range.begin(),range.end(),f);

1For the convenience of this phase, Matlab multinomial logistic learning model (https:
//www.mathworks.com/help/stats/mnrfit.html) is also recommended.
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for_each(policy.with(chunk_size_determination(

EXTRACTED_STATICE_DYNAMIC_FEATURES)),range.begin(),range.end

(),f);

for_each(execution::make_prefetcher_policy(policy,

prefetching_distance_determination(

EXTRACTED_STATICE_DYNAMIC_FEATURES),...),range.begin(),range.

end(),f);

At the end, a modified benchmark will be executed utilizing an efficient chunk size and prefetch-

ing distance determined from the learning model for these loops.

4.4 Evaluation and Expected Result

The expected results from running the proposed techniques on our applications include bandwidth

rates for for_each with and without using proposed methods. These results are discussed in more

details in section 3.5.3.

4.5 Experiment Customization

In order to reproduce the experimental results discussed in this Appendix, there are two cus-

tomizations that are already discussed in the previous sections, however we want to restate them

here to clear up any confusion:

• The training data provided in 4.1.5 should be normalized before using them to design the

learning model, which is considered in our C++ multinomial logistic regression model dis-

cussed in 4.3.1.

• Executing provided applications on different numbers of threads is currently included in a

provided instruction used in 4.3.2.
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Chapter 5

Summary

5.1 Summary of Work

The goal of our study is to propose optimization techniques for implementing scalable parallel ap-

plications. This goal is achieved in this research by introducing new techniques for both compiler

and runtime system that enable them to contribute with each other and utilize both static and dy-

namic analysis information to maximize application parallel performance. In the proposed frame-

work, a compiler can implement dynamic runtime methods in its parallelization optimizations and

a runtime system can apply static information in its parallelization methods implementation. Our

study consists of two projects that are discussed in details in chapters 2 and 3.

In Chapter 2, we propose different optimization methods that provide dynamic information for

the code generated by the OP2 compiler. To our knowledge, we present a first attempt of redesign-

ing OP2 to utilize the runtime techniques for improving performance of the parallel unstructured

grid applications. In that Chapter, we illustrate the implementation of OP2 compiler that em-

ploys the proposed runtime techniques implemented using HPX to efficiently and automatically

parallelize the dynamic applications. These optimizations include asynchronous tasking, loop in-

terleaving, dynamic chunk sizing, and data prefetching. The combination of these proposed tech-

niques yield a more portable and performant software stack for unstructured grid applications and

enable the applications to properly scale to a higher level of parallelism compared to the existing

OP2 implementation.

In Chapter 3 a new technique is proposed that enables HPX runtime system to select its parallel

algorithms parameters at runtime by implementing machine learning algorithm on the extracted

static and dynamic information. To the best of our knowledge, we present a first attempt in im-

plementing learning models for predicting loop’s parameters at runtime, in which designing these

runtime techniques and capturing learning model’s features are automatically performed at com-
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pile time. In that proposed technique, we introduced a new ClangTool using LibTooling as a

custom compiler pass to be executed by the Clang compiler, which is intended to collect the static

features at compile time. The logistic regression model is implemented as a learning model that

considers these captured features for predicting efficient parameters for an HPX loop. For im-

plementing this learning model on a loop, we propose new execution policies that instructs the

compiler to apply our ClangTool on that loop. As a results, the loop’s features will automatically

be included in the prediction process implemented with that learning model. This technique is

able to use high-level programming abstractions and machine learning to relieve the programmer

of difficult and tedious decisions that can significantly affect program behavior and performance.

As it was illustrated in the experimental results discussed in both chapters, the scalable frame-

work is developed in this research that utilizes both static and dynamic information about the

system to make proper optimizations. Both the compiler and the runtime exchange parameters

that can be used to optimize their performance and achieve a safe parallelization. In next chap-

ter, we discuss a brief summary of our planned contributions and present some interesting future

research ideas.
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Chapter 6

Future Work

In this chapter, we discuss a brief summary of our planned contributions and present some inter-

esting future research ideas.

6.1 Improving OP2 Compiler with HPX Runtime System

OP2 framework is presented in chapter 2 and it is shown that how unstructured grids can be im-

plemented in this framework without worrying about the underlying architecture hardware. OP2

is designed to solve an overhead challenge caused by the data exchanged between main memory

and processors in a case of having large unstructured grids. All of its optimization techniques,

however, are based on the static information and they are insufficient for achieving maximal par-

allelism level. For obtaining desired scalability using this framework, some optimizations should

be applied at runtime, so OP2 could be able to include dynamic information in its optimization

techniques.

Higher parallel performance for code generated with the OP2 compiler are achieved in chapter 2

by delaying some compiler optimizations to be managed at runtime. These proposed optimization

methods are implemented with the HPX runtime system that makes OP2 to provide asynchronous

tasking, loop interleaving, dynamic chunk sizing, and data prefetching for the parallel execution

of the unstructured grid applications. The experimental results on an Airfoil application showed

up to 50% improvement in its parallel scalability. This improvement is mostly due to the use of

the future based techniques that allow HPX to relax the global barriers, enable flexibility, and

improve the parallel performance. Some interesting future research ideas are as follows.

• All parallelization techniques discussed in chapter 2 are proposed for implementing paral-

lelization within a node, not between nodes. In the current OP2 framework, MPI is used

for executing distributed unstructured grids on more than one node. However as discussed
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in Chapter 1 and 2, obtaining desired scalability may be hindered because of the following

problems.

1. Same as an in-node parallelization, for between nodes parallelization in the current

OP2 design, only static information are considered for establishing connection be-

tween two different nodes and exchanging data between them. We believe that in-

cluding dynamic information and runtime techniques in these methods can result in

achieving higher performance from parallel and distributed unstructured grids appli-

cations.

2. As discussed in Chapter 1, the challenges faced in using MPI for between nodes paral-

lelization such as providing unnecessary global barriers and causing load imbalances

between different nodes, may result in having not scalable applications for some un-

structured grids. We believe that fine-grained task parallelism and the future-based

parallelization techniques provided with the HPX runtime system can resolve these

challenges and result in having better load balance and relaxing unnecessary global

barriers.

• As discussed in section 2.4.3.2, the proposed technique using dataflow is able to set different

chunk sizes but with the same execution time for the loops that their execution are dependent

on each other. As it was shown, in this method for_each sets a chunk size of the first loop

dynamically by exposing auto_partitioner and then the chunk sizes of the rest of the loops

will be set by considering the execution time of the chunk size of the first loop. However

setting all chunks based on the chunk of the first loop may not be an optimum solution. It

should be evaluated in more studies about the chunk size selection and to see which loop

should be selected as a base for setting other chunk sizes.

6.2 Improving HPX Runtime System with Clang Compiler

In the current HPX design, most of the parameters of its algorithms should be manually selected

by a user at runtime. However this approach doesn’t guarantee achieving desired speedup in the
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HPX parallel applications. Both static and dynamic features of an application should be con-

sidered in assigning such parameters. Collecting static features and related transformations at

compile time could result in tuning those parameters efficiently to maximally utilize available

resources.

Higher parallel performance for the HPX parallel applications are achieved in chapter 3 by

combining machine learning, compiler optimizations and runtime techniques. In these proposed

techniques, the HPX loop’s parameters are automatically selected with implementing logistic re-

gression model on the loop’s characteristics, that its static features are collected by a compiler and

its dynamic features are provided by the runtime system. Efficient execution policy, chunk size,

and prefetching distance of an HPX loop can be predicted with these techniques. This prediction

process is performed at runtime by computing outputs of the learning model, which avoids an

extra compilation step. Some interesting future research ideas are as follows.

• Although the evaluated results discussed in section 3.5 show an improvement in an HPX

parallel application, however more studies should be done in selecting efficient features set

for a learning model to cover more various applications. Collecting architecture’s character-

istics in this feature set could help the proposed techniques to predict a proper architecture

hardware for a particular application.

• The learning models in these proposed methods are designed offline with using collected

training data. One of the major difficulty in this offline learning is that this learning model

should be set at once, hence, this training data should be general enough to cover various

cases. If not sufficient training data is collected, these proposed techniques may not predict

the parameters for the future new applications efficiently. On the other hand, online training

data could help us to update our learning model in each step for future data. By implement-

ing online machine learning method, the learning algorithms can dynamically adapt their

trained weights to new patterns in the data.
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• In the proposed methods, executing HPX algorithm sequentially or in parallel is determined

automatically at runtime based on the output of a binary logistic regression model using the

values of algorithm’s characteristics. This method can be extended to use a multinomial

logistic regression model for determining loop’s execution policy other than just seq or par

and choosing the efficient one between all 5 policies described in Table 2.1.

• These proposed techniques can be implemented on an HPX algorithm by using specific ex-

ecution policies. However, their performances are evaluated only on an HPX loop. As these

specific policies are designed to be used for all of the HPX parallel algorithms, so imple-

menting them on all of these algorithms should be studied for examining their effectiveness

on these algorithms performances.
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