
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2017

Improved Subset Generation For The MU-
Decoder
Utsav Agarwal
Louisiana State University and Agricultural and Mechanical College, utsav.agarwal444@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Agarwal, Utsav, "Improved Subset Generation For The MU-Decoder" (2017). LSU Master's Theses. 4395.
https://digitalcommons.lsu.edu/gradschool_theses/4395

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4395?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


IMPROVED SUBSET GENERATION FOR THE MU-DECODER

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

in

Electrical Engineering

by
Utsav Agarwal

B.Tech, West Bengal University of Technology, 2012
May 2017



Acknowledgments
I would like to thank my advisor Dr. Ramachandran Vaidyanathan, for his patient

guidance and constant support for not only my research but also in making me a better

person. I am indeed blessed to research under such a wise pundit. I would also like to

thank the committee members Dr. Jerry Trahan and Dr. Konstantin (Costas) Busch for

helping me develop the thesis better. I would like to thank the circle of my strength and

pride, my family, which includes my parents, brother, grandparents, uncles, aunts and my

cousins. I would like to thank my family of friends who made me feel home and supported me

throughout this journey. I take this moment to thank my bhalobasha Sonam, for standing

by me throughout.

ii



Contents
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 MU-Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 MU-Decoder Structure and Ordered Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Properties of MU-Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Totally-Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Totally-Ordered Sets in the Boolean Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Totally-Ordered Source and Output Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Canonical Form of Source Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Generating a Given Totally Ordered Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Generating a Large Totally-Ordered Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Generating a Set of Non-isomorphic Totally Ordered Sets . . . . . . . . . . . . . . . 22

5 Hardware Enhancement for Partition Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Ordered Partition Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Generic Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1 Traversing the Boolean Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Single Total Order S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.1 Work Covered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



List of Tables
1.1 Results in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 Block Number of a ∈ B0
m over translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



List of Figures
1.1 An Illustration of Frame Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Boolean Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Totally-Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Totally Ordered Subset Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 x-to-n MU-Decoder MD(x, z, y, n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Boolean Lattice G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Current Selector Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 C-uniform translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Address Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Selector Module Hardware Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 2d spaced totally-ordered subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 XY Totally-Ordered subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1 Multiple Totally-Ordered paths produced from one Totally-Ordered set
of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



Abstract
The MU-Decoder is a hardware subset generator that finds use in partial reconfiguration

of FPGAs and in numerous other applications. It is capable of generating a set S of subsets

of a large set Zn with n elements. If the subsets in S satisfy the “isomorphic totally-

ordered property,” then the MU-Decoder works very efficiently to produce a set of u subsets

in O(log n) time and Θ(n
√
u log n) gate cost. In contrast, a naive approach requires Θ(un)

gate cost. We show that this low cost for the MU-Decoder can be achieved without the

isomorphism constraint, thereby allowing S to include a much wider range of subsets. We

also show that if additional constraints on the relative sizes of the subsets in S can be placed,

then u subsets can be generated with Θ(n
√
u) cost. This uses a new hardware enhancement

proposed in this thesis. Finally, we show that by properly selecting S and by using some

elements of traditional methods, a set of u
(
n
d

)
subsets can be produced with Θ(n

√
u log u)

cost.

vi



Chapter 1
Introduction

Many modern applications utilize Field Programmable Gate Arrays (FPGAs) [1, 35],

which includes intelligent systems [3, 23, 24], scientific applications [8, 13], defense and

aerospace systems [19, 25, 27, 34], communication and signal processing [6, 14, 22, 26, 32],

instrumentation [10,30], finance [33].

Partial Reconfiguration [4,5,7,9,18,20,31] (PR) is an important feature of reconfigurable

computing that allows a portion of the configuration fabric to be reconfigured at runtime.

The feature allows for an efficient use of the chip’s real estate. However PR needs to be

quick (to be useful at real time). The unit of reconfiguration is typically called a “frame.”

A frame may contain hundreds or thousands of reconfigurable bits (the entire chip could

contain millions). If frames are too large (and granular), a larger portion of the configurable

fabric may have to be reconfigured.

Example 1.1. We consider the illustrative example taken from Ashrafi [2] and Jordan [17].

Figure 1.1 shows us how frame granularity affects the partial configuration of a chip. The

blue colored regions represent the area that needs to be reconfigured and the yellow colored

regions represent the extra part of the frame that needs to be reconfigured as well during

partial configuration.

This points toward using small frames. However, to configure a frame, it must first be

selected and then a data path established to it, before the configuration bits can be input

to the frame. Conventional ways to select a frame come down to the use of a 1-hot decoder,

that selects one frame at a time (or a 1-element subset of the set of all frames). If we use

the illustration of Example 1.1 to make frames small, then there will be many frames to

reconfigure and many iterations of using the 1-hot decoder; essentially a time-consuming

exercise. The MU-Decoder [16] shows how a subset (of more than 1 frame) can be selected.

The scan-path architecture [2] shows how the configuration bits can be delivered to the

1



(a)PR area: 15% (b)Conf area: 75% (6/8 frames)

(c)Conf area: 100% (all 8 frames) (d)Conf area: 39% (7/18 frames)

(e)Conf area: 24% (17/72 frames)

Figure 1.1: An Illustration of Frame Granularity (a) shows the location of the part needing
reconfiguration. It occupies only 15% of the total area. Part (b)-(e) show the impact
of various frame size and shapes. For example, in part (c), 6 of the 8 “tall” frames are
needed to cover the blue area. So while the partial reconfiguration (PR) area is 15%, the
configuration area is 6/8 or 75%. The square frames in part(d) fare worse, requiring a total
reconfiguration. With smaller frames, the configuration area reduces.

2



multiple selected frames. The MU-Decoder is, however, efficient only for certain types of

subsets. In this thesis, we extend the range of subsets for which the MU-Decoder works. We

also construct a framework for generating arbitrary subsets on the MU-Decoder.

The core problem addressed is that of generating a subset. While this is useful in

FPGA partial reconfiguration, the application of subset generation is much wider, including

wireless and heterogeneous networks [11], vehicle control units [31], database servers [5],

image compression [29], bioinformatics [15] and much more.

1.1 Problem Definition

Let Zn = {0, 1, · · · , n− 1}. The goal is to generate a set S = {Si : 0 ≤ i < u, Si ⊆ Zn}.

In this thesis, we focus on a “totally-ordered” set S where S0 ⊂ S1 ⊂ · · · ⊂ Su−1. The

2n subsets of Zn can be viewed on a Boolean Lattice (Haase diagram) [28] as shown in

Figure 1.2(b) (an experiment example where n = 4 is in Figure 3.1 on page 14). In this

lattice a totally-ordered set is a set of points on a path from ∅ to Zn as shown in Figure 1.2(b)

with S0, S1, · · · , Sw−1 ∈ S, which is totally-ordered.

It has been shown [17] that S can be produced using an MU-Decoder with a delay of

O(log n) and gate-cost of O(n
√
u log u). Then Jordan and Vaidyanathan [16] extend this to

“isomorphic” totally-ordered sets (see Figure 1.3(a)) S0, S1, · · · , Sv−1 with Sm = {Sm
i : 0 ≤

i < w and Sm
i ⊆ Zn}. Here combinations of the subsets of any two Sm, Sm′ are in one-to-one

correspondence. That is, if Sm contains subsets of size a0, a1, · · · , aw−1 then so does Sm′ .

The cost of producing S0, S1, · · · , Sv−1 is O((v + w)n logw). If the uw subsets were to be

produced naively by a simple (uw) x n look-up table (LUT) its cost would be O(uwn). So

the cost of producing the subsets on the MU-decoder is substantially smaller than that of

a brute force “LUT Decoder” [17] method. While the LUT-Decoder can produce arbitrary

subsets expensively, the MU-Decoder can produce only a certain type of subsets (for example,

isomorphic totally-ordered subsets) inexpensively. In a way, the work of this thesis is to

extend the type of subsets that the MU-Decoder can produce effectively. We show that the

set S0, S1, · · · , Sv−1 can be produced on an MU-Decoder with O((v + w)n log(uv)) (same as

3



∅

Znn

level

l

0
∅

Zn

S0

S1

Sw−1

(a)Boolean Lattice with 0 to n levels (b)Boolean Lattice with Totally-Ordered
level ` holds

(
n
`

)
subsets of size ` subsets S = {S0, S1, · · · , Sw−1}

Figure 1.2: Boolean Lattice

before) but without the restriction of isomorphism on the totally-ordered sets S0, S1, · · · , Sv−1

(see Figure 1.3(b)). To implement the subset of the type in Figure 1.3(b), the method of

Jordan and Vaidyanathan we will need a MU-Decoder of cost O(vwn log(uv)). Considering

that v and w could be quite large (in hundreds) the difference in cost could be significant (a

factor of tens). Next, we develop properties of totally-ordered sets that allow us to increase

the efficiency of the MU-Decoder. For the set S0, S1, · · · , Sv−1, each with w subsets, the

cost can be reduced further to Θ(n(v + w)). This is done through a hardware enhancement

of the MU-Decoder that does not change its gate-cost significantly. However, it adds some

additional conditions on the sets S0, S1, · · · , Sv−1. These conditions, while not as strict as

isomorphism, are stricter than just total order. They put constraints on the gaps in the path

representing totally-ordered sets (Figure 1.4). The shaded circles in the figure represent the

original (generator) subsets of each totally-ordered set and the unshaded circles represent

new subsets generated from the generator subsets in the MU-Decoder. Now the restriction

4



∅

Zn

∅

Zn

(a)Isomorphic Totally-Ordered Sets (b)Non-Isomorphic Totally-Ordered Sets

Figure 1.3: Totally-Ordered Sets

on the generator subsets is that the smallest of these subsets must have a minimum size.

The subsets generated have the condition of being equally spaced in the Boolean Lattice

(of equal Hamming Distance [12]) from their corresponding generator subset. The above

approach allows us to pick the “best” sets of subsets. S0, S1, · · · , Sv−1 such that they are

strategically placed close (on the Boolean Lattice) to the subsets that we wish to generate.

Together with a 1-hot Decoder, we can now generate
(
n
d

)
z2 log z subsets in O(d log n) time

using a MU-Decoder of gate cost O(zn log z) and delay O(log n). This is a substantial

expansion of the MU-Decoder range for efficient operation. In fact, the method used here

can also be ported to the LUT Decoder. However, the cost of the LUT decoder will still be

O(z2n log z).

Chapter 2 presents the preliminary concepts used throughout the thesis.

In Chapter 3, we find ourselves in the midst of defining the conditions for sets being

totally-ordered.

5



∅

Zn

Figure 1.4: Totally Ordered Subset Restriction

In Chapter 4, we prove that isomorphism is not required to produce disjoint output sets

which are individually totally-ordered.

In Chapter 5, we discuss hardware enhancements for the MU-Decoder, which increase

its productivity by accommodating the concept of translation (introduced in this thesis) into

the hardware.

In Chapter 6, we use a generic set of subsets and cover an additional d distance on the

Boolean Lattice to produce an
(
n
d

)
factor increase in subsets in O(d log n) time.

Finally, in Chapter 7, we summarize our findings and discuss the future scope of this

research and ideas that can be further developed upon.

6



# MU-Decoder configu-
ration

Constraint Cost Subsets Equivalent
LUT cost

Ref.

1 MD(x, y, z, n) none Θ(2x(x+ z)
+n log z(2y

+z))

min{2x,
2yblog zc}

n min{2x,
, 2yblog zc}

[17]

2 MD(dlog(z − 1)e,
dlog ze, z, n)

Totally-
ordered,
Isomorphic

Θ(zn log z) z2 nz2 [16]

3 MD(dlog(z − 1)e,
dlog ze, z, n)

Non-
Isomorphic

Θ(zn log z) z2 nz2 [this
the-
sis]

4 MD*(dlog(z − 1)e,
dlog(z log z)e, z, n)

Translated
Partitions

O(zn log z) z2 log z nz2 log z [this
the-
sis]

5 MD*(dlog(z − 1)e,
dlog(z log z)e, z, n)

Generic
Subsets+

O(zn log z) z2 log z
(
n
d

)
nz2 log z

(
n
d

)
[this
the-
sis]

* This MU-Decoder uses a hardware enhancement proposed in this thesis.
+ Subsets with Hamming distance d from total order with O(d log n) delay

Table 1.1: Results in this thesis

7



Chapter 2
MU-Decoder

In this chapter, we describe the MU-Decoder and some of its relevant properties. We

start the chapter by defining the standard form of a subset when represented as a string of

bits, also called the characteristic representation of a subset. We start the first section with

a description of the MU-Decoder, along with a diagram and all the terms associated with

the same as described by Jordan and Vaidyanathan [16]. We define input and output words

and the selector address along with the fact that we use ordered partition in this thesis and

not regular partitions to represent the selector module. We describe the casting of a source

word into an ordered partition, to produce the output word with the help of an indicator

set. We show how we group these words into sets of subsets, moreover even after grouping

how the casting of source words to set of ordered partitions still holds, and support it with

an example.

We move on to the next section to describe the properties of the MU-Decoder. Since

all these properties are discussed in the earlier work, we define them and then cite each of

them for proper referencing. In this section, we discuss the gate cost, time delay and subsets

produced by an MU-Decoder. We move on to define totally-ordered sets along with the

property of isomorphism. Before we proceed we define the characteristic representation of a

set.

Definition 2.1. Let Zv = {0, 1, · · · , v−1} be a v-element set. Every subset S ⊆ Zv can be

represented in hardware as a binary string 〈s0, s1, · · · , sv−1〉 where si = 1 if and only if i ∈ S .

This representation of a subset is called a characteristic representation of a subset. We will,

in general, not distinguish a subset from its characteristic representation. Conversely, every

v-bit binary string represents a subset of Zv.

In this thesis, we will use subsets of different Zv’s and sets of subsets of these Zv’s. In

general we will use the term “subset” to refer to S ⊆ Zv and the term “set” to refer to

8



S = {S0, S1, · · · }, where Si ∈ Zv, or S ∈ P(Zv).

2.1 MU-Decoder Structure and Ordered Partitions

The MU-Decoder was proposed by Jordan and Vaidyanathan [16] [17]. It allows for

efficient generation of multiple subsets of Zn. Figure 2.1 shows the general structure of an

MU-Decoder. For any x, z, y, n, where x, y << z << n, an MU-Decoder, MD(x, z, y, n) has

y

selector address

x

input word

2x × z LUT

z

source word
H

A
R

D
W

IR
IN

G

z-to-n mapping unit

multiplexers

...

· · ·

z n

output word

log z selector word

2y × n log z

selector module

Figure 2.1: x-to-n MU-Decoder MD(x, z, y, n)

x+ y external input bits, z internal signals and n output bits. Functionally, the x-bit input

word selects one of 2x = X locations in the LUT and outputs the corresponding z-bit source

word. This source word and a separate y-bit selector address are input to the Mapping Unit

where they are converted into an n-bit output word representing a subset S ⊆ Zn. The

9



Mapping Unit multicasts the z-bit source word to the various output word bits based on an

ordered partition selected by the y-bit selector address. Before we proceed it is important

to understand the role of the source word and an ordered partition to generate an output

word.

Definition 2.2. An ordered z-partition π of Zn is a list
〈
B0, B1, · · · , Bz−1

〉
pairwise disjoint

subsets of Zn, that cover Zn. That is for 0 ≤ i < j < z, Bi ⊆ Zn, Bi ∩ Bj = ∅ and
z−1⋃
i=0

Bi = Zn

The difference between an ordered partition and a conventional partition is (a) the blocks

Bi of an ordered partition can be empty and (b) the blocks are ordered. In this thesis, all

ordered partitions have z-blocks (where z is the source word size). We will use the term

ordered partition to mean an ordered z-partition. Let L = 〈L(i) : 0 ≤ i < z〉 be a source

word and let π = 〈Bi : 0 ≤ i < z〉 be an ordered partition.

Definition 2.3. For any Boolean variable (condition) ν any set S defines the indicator set:

[1(S, ν)] =


S, if ν = 1

∅, if ν = 0

We are now in a position to define how a source word combines with an ordered parti-

tion to produce subset S .

Definition 2.4. Define a cast of L into π (denoted by L◦π) as a subset S =
z−1⋃
i=0

[1(Bi, L(i))]

(where S ⊆ Zn). It is easy to say that for all a ∈ Zn, a ∈ S if and only if there exists i such

that a ∈ Bi and L(i) = 1.

In the definition above, we remind the reader that there always exists a unique block Bi

to which a belongs. The question is simply that of the block number and the corresponding

source word bit.

10



Example 2.1. For n = 8, let source words L0 = 〈0111〉 and L1 = 〈0011〉, and let ordered

partitions π0 = 〈{0, 2, 4, 6}, {1, 5}, {3}, {7}〉 and π1 = 〈{0, 1, 2, 3}, {4, 5}, {6}, {7}〉. Then

from definition 2.4 we have L0◦π0 = S0
0 =

z−1⋃
i=0

[1(B0
i , L0(i))] = [1(B0

0 , L0(0))]∪[1(B0
1 , L0(1))]∪

[1(B0
2 , L0(2))] ∪ [1(B0

3 , L0(3))] = ∅ ∪ B0
1 ∪ B0

2 ∪ B0
3 = 〈0, 1, 0, 1, 0, 1, 0, 1〉. Similarly we get

L1 ◦ π0 = S0
1 = 〈0, 0, 0, 1, 0, 0, 0, 1〉, L0 ◦ π1 = S1

0 = 〈0, 0, 0, 0, 1, 1, 1, 1〉 and L1 ◦ π1 = S1
1 =

〈0, 0, 0, 0, 0, 0, 1, 1〉

In general the LUT of Figure 2.1 contains the X = 2x source words L0, L1, · · ·LX−1. The

source set is L = {Li : 0 ≤ i < X}. Similarly the selector module contains the representation

of at least 2y = Y separate ordered partitions. Let Π = {πj : 0 ≤ j < Y } denote the set of

ordered partitions. Then we will use notation L ◦ π = S and L ◦Π =
Y−1⋃
j=0

L ◦ πj = Sj = S to

indicate set of subsets of Zn.

For example 2.1 we can say L = {L0, L1} and Π = {π0, π1}, hence the set of subsets

S0 = {S0
0 , S

0
1} = L ◦ π0, S1 = {S1

0 , S
1
1} = L ◦ π1. Hence S = S0 ∪ S1 = L ◦ Π

Observe that if the characteristic representation of S = 〈S(a) : 0 ≤ a < n〉 then S(a) = 1

if and only if a ∈ Bi and L(i) = 1. To implement this consider a hardwiring of the blocks

of π as shown in Figure 2.1, then a cast of L into π is simply multicasting L through this

hardwiring. The Mapping Unit implements this multicast by configuring through the selector

word each of its n z-to-1 MUXes. It has been shown in theorem 2.1 that MD(x, z, y, n) has

a cost and delay.

2.2 Properties of MU-Decoder

In this section, we list some relevant properties of the MU-Decoder. These are all from

Jordan and Vaidyanathan [16]

Theorem 2.1. An MU-Decoder MD(x, z, y, n) as shown in Figure 2.1 has

Gate Cost=O(2x(x+ z) + n log z(z + 2y)), Delay=O(x+ log z + y + log n)

producing min{2x, 2yblog zc} independent subsets or a many as O(2x+y) subsets.

Now we define a totally-ordered set of subsets.
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Definition 2.5. A set S = {Si : 0 ≤ i < u} is totally ordered if and only if there exists an

ordering (permutation) of the indices of Zn such that for all 0 ≤ i < u−1, Sf(i) ⊂ Sf(i+1)

Later in Section 3.3 (see page 17) we show that we can assume without loss of generality

that f(i) = i; hence S0 ⊂ S1 ⊂ · · ·Sn−1 as stated by Jordan and Vaidyanathan [16].

Definition 2.6. Let S0, S1, · · · , Sv−1 be totally-ordered sets. These form an isomorphic set of

totally-ordered sets if and only if these subset’s cardinalities are in one-to-one correspondence.

That is if S0 has elements of cardinality a0 < a1 < · · · < an−1 then so do all Si’s.

Figure 1.3(a) (see page 5), illustrates an isomorphic totally-ordered set. We note that each

line represents a totally-ordered set, and these lines contain 4 subsets each. A subset on one

totally-ordered set shares the level with a subset from each of the other totally-ordered sets.

From Figure 1.2(a) we know that at level ` all subsets are of size `. Hence the subsets are

isomorphic. This theorem has been proved by Jordan and Vaidyanathan [16].

12



Chapter 3
Totally-Ordered Sets

In this chapter, we discuss the properties of “totally-ordered sets” as they relate to

the MU-Decoder. Jordan and Vaidyanathan [16] showed that totally-ordered sets have an

efficient implementation on the MU-Decoder. In this thesis, we expand the scope of this

observation by extending the range of sets for which the MU-Decoder is efficient. In this

chapter, we formally define totally-ordered sets and derive some properties of the source set

(see definition 2.5 on page 12) needed for producing totally-ordered sets. We end the chapter

with the definition of a “canonical form” of source words (section 3.3). Then we justify one

assumption that the source words are represented in canonical form as just a convenience

for studying totally-ordered sets.

We begin with a definition of a totally-ordered set (of subsets of Zn), taken from Jordan and

Vaidyanathan [16].

Definition 3.1. A set S = {S0, S1, · · · , Su−1} ⊆ P(Zn) is totally-ordered if and only if

there exists an ordering of elements of S, such that S0 ⊂ S1 ⊂ · · · ⊂ Su−1.

Example 3.1. Let n = 8, u = 5. Then with S0 = {0, 6}, S1 = {0, 1, 6}, S2 = {0, 1, 5, 6},

S3 = {0, 1, 5, 6, 7} and S4 = {0, 1, 2, 5, 6, 7}, the set S = {S0, S1, · · · , S4} ⊆ P(8) is totally-

ordered, with S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4 . In terms of the characteristic string of a set we have

S0 = 〈10000010〉, S1 = 〈11000010〉, S2 = 〈11000110〉, S3 = 〈11000111〉 and S4 = 〈11100111〉.

Recall that
−→
S is a characteristic string of set S .

3.1 Totally-Ordered Sets in the Boolean Lattice

For a n element set Zn, its power set P(Zn) (with 2n elements) can be represented as a

boolean lattice [28]. The most common expression of this lattice is as a Hasse diagram [28].

This is a graph Gn with 2n nodes (one per element of P(Zn)). Two nodes Si, Sj with

characteristic strings σi, σj have an edge between them if and only if σi, σj differ in exactly

one bit, that is Si, Sj are different by exactly one element of Zn. Typically nodes of Gn are

13



arranged in n+ 1 levels (numbered 0, 1, · · · , n) such that level ` contains
(
n
`

)
nodes (subsets

of Zn) with ` elements. Therefore, the empty set ∅ is the only one at level 0 and the set Zn

is the only one at level n. Figure 3.1 shows the representation of Boolean Lattice G4 with 24

nodes and 5 levels. We remember from Figure 1.2(a) (see page 4) that ` holds
(
n
`

)
subsets

〈0000〉

〈1111〉

〈0001〉

〈0111〉

〈0010〉

〈1011〉

〈0100〉

〈1110〉

〈1000〉

〈1101〉

〈0011〉 〈0101〉 〈0110〉 〈1010〉 〈1001〉 〈1100〉

Figure 3.1: Boolean Lattice G4

of size `. Observe that if there is an edge in Gn between Si and Sj then they must be in

adjacent levels, say ` and ` + 1. Without loss of generality let Si have ` elements and Sj

have ` + 1 elements. Then Sj = Si ∪ {a}, where a the only element of Sj that is not in Si.

Therefore, Si ⊂ Sj. We view Gn as a directed (acyclic) graph where each undirected edge

between Si and Sj with Si ⊂ Sj is viewed as directed edge from Si to Sj. In this view, all the

edges of Figure 3.1 are directed towards the top. The following observation is now optional.
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Lemma 3.1. If S0 ⊂ S1 ⊂ · · · ⊂ Su−1 then the totally-ordered set S = {S0, S1, · · · , Su−1}

corresponds to a path in Gn traversing S0, S1, · · · , Su−1 in that order.

In Definition 2.4 (see page 2.4) we described how a source set L and a set of ordered

partition s Π produce an output set S = L ◦ π. Now in Section 3.2 we further study the

relationship between the source set L and the output set S, given that one of them is a

totally-ordered set. In Section 3.3 we first define a canonical form for the source words in

a totally-ordered source set. Then we show that every totally-ordered source set can be

assumed to be in canonical form. This representation makes many of the proofs starting

from Chapter 4 more concise.

3.2 Totally-Ordered Source and Output Sets

Let L = {L0, L1, · · · , LX−1} be a set of z bit source words and let π =
〈
B0, B1, · · · , Bz−1

〉
be an ordered z ordered partition of Zn. Let S = L ◦ π = {S0, S1, · · · , Su−1} be a set of u

subsets of Zn, where u ≤ X.

Lemma 3.2. If L is a totally-ordered set then S = L ◦ π is a totally-ordered set.

Proof. We proceed in the contrapositive direction. Suppose S is not a totally-ordered set.

This implies that there exist different subsets Si, Sj ∈ S such that Si 6⊂ Sj and Sj 6⊂ Si.

This further implies that there exist elements a, b ∈ Zn such that a ∈ Si, a 6∈ Sj and b ∈ Sj,

b 6∈ Si. For blocks Bq, Br of ordered partition π, let a ∈ Bq ∈ π and b ∈ Br ∈ π; observe

that q 6= r, otherwise a, b ∈ Bq ∈ π and a ∈ Si if and only if b ∈ Si. For some source words

Li, Lj ∈ L, let Si = Li ◦ π, and Sj = Lj ◦ π. Now a ∈ Si, and b 6∈ Si implies that Li(q) = 1

and Li(r) = 0 (see definition 2.4 on page 10) or q ∈ Li and r 6∈ Li. Similarly b ∈ Sj, and

a 6∈ Sj implies that Lj(r) = 1 and Lj(q) = 0 (chapter 2) or r ∈ Lj and q 6∈ Lj. Thus Li 6⊆ Lj

and Lj 6⊆ Li, implying that L is also not a totally-ordered set.

Example 3.2. Let Si = {Si
0, S

i
1, · · · , Si

X−1} not be a totally-ordered set, and Si
0 =
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1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A B C D E F G H I J K L M N O

Si
1 =

0 1 1 0 1 0 1 0 1 0 1 0 1 0 1

A B C D E F G H I J K L M N O

We can say from the above values that A ∈ Si
0, A 6∈ Si

1, similarly B 6∈ Si
0, B ∈ Si

1. Now

assuming the output set is a result of the following computation L◦πi = Si (definition 2.4), let

the ordered partition πi = {{B}, {A}, {C,E,G, I,K,M,O}, {D,F,H, J, L,N}}, and hence

the corresponding L = {L0, L1, · · · , LX−1},L0 = 0110 and L1 = 1010 where L0 ◦πi = Si
0 and

L1 ◦ πi = Si
1. Hence L0 6⊆ L1 and L1 6⊆ L0 implying L is not a totally-ordered set.

We now proceed to a similar result in the opposite direction.

Lemma 3.3. Let L ◦ π = S, let π be an ordered partition with no empty blocks. If S is a

totally-ordered set then L is a totally-ordered set.

Proof. Again we proceed in the contrapositive direction. Suppose that L is not totally-

ordered. This implies that there exist distinct source words Li, Lj ∈ L such that Li 6⊂ Lj

and Lj 6⊂ Li. This further implies that there exist elements q, r ∈ Zz such that q ∈ Li, q 6∈ Lj

and r ∈ Lj, r 6∈ Li. We can further say that Li(q) = 1, Li(r) = 0 and Lj(r) = 1, Lj(q) = 0.

Let a ∈ Bq ∈ π and b ∈ Br ∈ π. (The existence of a, b is assured as Bq, Br 6= ∅.) This

further implies that a ∈ Si = Li ◦ π, a 6∈ Sj = Lj ◦ π and b ∈ Sj = Lj ◦ π, b 6∈ Si = Li ◦ π.

Hence we can conclude that S is not a totally-ordered set.

Example 3.3. Let L = {L0, L1, · · · , LX−1},L0 = 0110 and L1 = 1010 where L0 ◦ πi = Si
0

and L1 ◦ πi = Si
1. Now L0(2) = 1, L0(3) = 0 and L1(3) = 1, L1(2) = 0. Let πi =
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{{B}, {A}, {C,E,G, I,K,M,O}, {D,F,H, J, L,N}}. Assuming Si = {Si
0, S

i
1, · · · , Si

X−1}

the corresponding Si
0 =

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

A B C D E F G H I J K L M N O

Si
1 =

0 1 1 0 1 0 1 0 1 0 1 0 1 0 1

A B C D E F G H I J K L M N O

Hence Si
0 6⊆ Si

1 and Si
1 6⊆ Si

0 implying Si is not a totally-ordered Set.

3.3 Canonical Form of Source Set

We first define a reverse sorted string.

Definition 3.2. A binary string 〈a0, a1, · · · , am−1〉 is reverse sorted if and only if every 1

in the string precedes any 0.

Example 3.4. For m = 8,
−→
L1 = 〈11100000〉 is reverse sorted whereas

−→
L2 = 〈10110000〉 and

−→
L3 = 〈0000011〉 are not.

Recall from Definition 2.1 (see page 8) that the characteristic string of a set L ⊆ Zz

depends on the characteristic order −→c assumed on Zz.

Definition 3.3. Let L ⊆ P(Zz), and let −→c = 〈c0, c1, · · · , cz−1〉 be a characteristic order of

Zz. The characteristic order −→c is in canonical form if and only if the characteristic string

−→
L is reverse sorted for every L ∈ L.

Example 3.5. For z = 8 and L = {L0, L1}, let L0 = {1, 3, 5} and L1 = {1, 2, 3, 4, 5}.

Consider the characteristic order −→c1 = 〈0, 1, 2, 3, 4, 5, 6, 7〉, −→c2 = 〈6, 1, 2, 3, 4, 5, 0, 7〉, −→c3 =
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〈1, 3, 5, 2, 4, 0, 6, 7〉 and −→c4 = 〈5, 1, 3, 4, 2, 6, 0, 7〉. Under −→c1 we have L0 = 〈01010100〉 and

L1 = 〈01111100〉. Now characteristic order −→c1 gives the exact same characteristic represen-

tation of L0, L1. For characteristic order −→c2 we have rearranged the positions of elements of

Zn. However the characteristic string of L0 and L1 are still the same as under −→c1 . Now for

−→c3 we see that the positions are rearranged in such a way that the resulting characteristic

string produces L0 = 〈11100000〉 and L1 = 〈11111000〉. Here all 1’s precede all the 0’s,

which is the reverse sorted order. For −→c4 , we see that the characteristic strings of L0 and L1

are the same as under −→c3 and hence reverse sorted order. Thus −→c3 and −→c4 are in canonical

form whereas −→c1 and −→c2 are not. We note −→c3 6= −→c4 .

We now show that there is no loss of generality in assuming a canonical order for the

source set L.

Let L = {L0, L1, · · · , LX−1} be totally-ordered with L0 ⊂ L1 ⊂ · · · ⊂ LX−1. We now

construct a characteristic order −→c = 〈c0, c1, · · · , cz−1〉 as described below. Let |L0| = m0,

|Li − Li−1| = mi for 0 < i < X and let ni = m0 + m1 + · · · + mi = |Li|. In constructing

−→c we enumerate the m0 elements of L0 first; that is L0 = {c0, c1, · · · , cm0−1}. The relative

order of these m0 elements is irrelevant. Next for 0 < i < X, we assign the mi elements of

Li − Li−1 to elements of {cni−1
, cni−1+1, · · · , cni−1}. We will call a characteristic order −→c a

standard characteristic order.

Theorem 3.1. Every standard characteristic order is canonical for totally-ordered L

Proof. Without loss of generality let L = {L0, L1, · · · , LX−1} with L0 ⊂ L1 ⊂ · · · ⊂ LX−1

and |Li| = ni, for 0 ≤ i < X. Let −→c = 〈c0, c1, · · · , cz−1〉 be a standard characteristic order.

From our construction we can say as follows:

−→c =

〈
c0, c1, · · · , cn0−1︸ ︷︷ ︸

L0

, cn0 , cn0+1, · · · , cn1−1︸ ︷︷ ︸
L1−L0

, · · · , cni−1
, cni−1+1, · · · , cni−1︸ ︷︷ ︸

Li−Li−1

, · · ·

, cnX−2
, cnX−2+1, · · · , cnX−1−1︸ ︷︷ ︸

LX−1−LX−2

〉
(3.1)
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Hence the representation of Li under −→c has the following form:

−→c =

〈
1, 1, · · · , 1︸ ︷︷ ︸

L0

, 1, 1, · · · , 1︸ ︷︷ ︸
L1−L0

, · · · , 1, 1, · · · , 1︸ ︷︷ ︸
Li−Li−1︸ ︷︷ ︸

Li

, 0, 0, · · · , 0︸ ︷︷ ︸
Li+1−Li

, · · · , 0, 0, · · · , 0︸ ︷︷ ︸
LX−1−LX−2

〉

which is reverse sorted (definition 3.2).

Thus we may, without any loss of generality assume that every totally ordered source

set L is represented in canonical order. This assumption does not change L, it only makes

our proof in subsequent chapters much easier.
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Chapter 4
Generating a Given Totally Ordered
Set

Let S = L◦π be any set of output subsets that can be produced from a source set L and

a single ordered partition π. In this chapter, we will first produce multiple ordered partition s

π0, π1, · · · , πy−1 for totally-ordered S. This result is important as the entire result of Jordan

and Vaidyanathan [16] applies only to a relatively small set S with at most X = z − 1

elements. Further, we show that any decomposition of S into S0, S1, · · · , Sk−1 works, as long

as |Si| ≤ X.

In a separate result, Jordan and Vaidyanathan [16] showed that a set S = S0 ∪ S1 ∪ · · · ∪

Sk−1 of isomorphic totally-ordered sets S0, S1, · · · , Sk−1 with |Si| ≤ X can be implemented

as MU(x, x+ 1, log k, n). We extend this to work for any set S = S0 ∪ S1 ∪ · · · ∪ Sk−1 of

totally-ordered sets (not necessarily isomorphic).

4.1 Generating a Large Totally-Ordered Set

We begin with the case where a totally-ordered set S is small. Recall that L is the

source set. Suppose that |L| ≥ |S|. In Lemma 3.3 we showed that if S = L ◦ π then if S is

totally-ordered, then so is L (assuming π has no empty block). The following lemma, in a

way, works in the opposite direction.

Lemma 4.1. For any given L and S that are both totally-ordered sets, with |L| ≥ |S| there

exists an ordered partition π such that L ◦ π = S.

Proof. Let L = {L0, L1, · · · , LX−1} with Li ⊂ Li+1 for 0 ≤ i < X−1 and S =
{
S0, S1, · · · , Su−1

}
with Si ⊂ Si + 1 for 0 ≤ i < u − 1. Here u ≤ X. Recall that z is the source word length

for Li to be distinct. X ≤ z − 1, assuming Li 6= ∅ or Zz. Without loss of generality assume

that L is in canonical form. Then it is easy to see that Li =

〈
111...111︸ ︷︷ ︸

i+1

000...000︸ ︷︷ ︸
z−(i+1)

〉
. Con-

struct ordered partition π = {Bi : 0 ≤ i < z} as follows: block B0 = S0 and for 0 < i < u,
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Bi = Si − Si−1. Elements of Zn − Su−1 can be placed in any manner among blocks Bu

to Bz−1. Observe that
i⋃

j=0

Bj = Si. Consider any source word Li =

〈
111...111︸ ︷︷ ︸

i+1

000...000︸ ︷︷ ︸
z−(i+1)

〉
where 0 ≤ i < u. a ∈ Li ◦ π if and only if a ∈ B0 ∪ B1 ∪ · · · ∪ Bi = Si. That is Si = Li ◦ π.

Therefore S = L ◦ π.

The above result also appears in Jordan and Vaidyanathan [16], although expressed

less formally. This result extends in a simple manner to large totally-ordered sets S with

greater than |L| elements. Ordered partition S into non-empty sets S0, S1, · · · , Sv−1 such

that
v−1⋃
j=0

Sj = S and Si ∩ Sj = ∅ for i 6= j. Any such ordered partition suffices since S is

totally-ordered, clearly each Si is totally-ordered.

Let |Si| ≤ |L| so v ≥
⌈

u
X

⌉
. For each Si, applying Lemma 2.4 gives us an ordered

partition πi such that Si = L ◦ πi. Thus with Π = {πi : 0 ≤ i < v}, we get S = L ◦ Π.

Lemma 4.2. For any totally-ordered output set S and a totally-ordered source set L there

exists a set of v ordered partitions π such that S = L ◦ Π where v ≥
⌈
|S|
|L|

⌉
Theorem 4.1. A MU(x, 2x + 1, y, n) can produce a totally-ordered set of at most 2x+y

subsets.

Proof. Setting |L| = 2x and v = 2y in Lemma 4.2, we have |S| ≤ v|L| = 2x+y.

This result extends the idea in Jordan and Vaidyanathan [16] to large totally-ordered sets.

The above theorem shows a method to implement a large totally-ordered set S or a MU-

Decoder. In doing so, we partitioned S into 2x blocks. Clearly, it is useful to have each block

of S contain approximately the same number of elements, so that the number of blocks is

reduced. Thus S =
v−1⋃
i=0

Si where v =
⌈
|S|
|L|

⌉
and |Si| ≤

⌈
|S|
v

⌉
≤ |L|.

However, which elements of S are in Si is not clear. For the purpose of the results in this

chapter, this question is irrelevant. However, in Chapter 5 we will show that a particular

way of constructing Si is advantageous.
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4.2 Generating a Set of Non-isomorphic Totally Or-

dered Sets

Let S =
v−1⋃
i=0

Si be a set of output sets with Si 6= ∅, Si ∩ Sj = ∅ for i 6= j and Si is

totally-ordered. Then recall Definition 2.6 that S is a set of isomorphic totally-ordered sets

if and only if for each Si, Sj and any Si ∈ Si there exists an Sj ∈ Sj such that |Si| = |Sj|.

Jordan and Vaidyanathan [16] proved that if S is a set of isomorphic totally-ordered sets and

if |Si| ≤ |L| then an MU-Decoder can generate S as in Definition 2.6.

The main contribution of this definition is to leverage a common L for all v = 2y totally-

ordered sets. We now show that the isomorphic restriction is not needed and that the range

of ordered partition could exceed v.

Theorem 4.2. Let S =
v−1⋃
i=0

Si be a set of output sets where Si is non-empty totally-

ordered and pairwise disjoint. Then for any totally-ordered source set L, there exists a set

Π of at most v + |S|
|L| ordered partitions such that S = L ◦ Π.

Proof. By Lemma 2.4 each Si can be generated by L and an ordered partition set πi ( so

Si = L ◦ πi). Here |πi| =
⌈
|Si|
|L|

⌉
. Therefore the total number of ordered partition s needed

for S =
v−1⋃
i=0

Si is at most

v−1∑
i=0

|πi| =
v−1∑
i=0

⌈
|Si|
|L|

⌉
<

v−1∑
i=0

1 + |Si|
|L| = v + 1

|L|

v−1∑
i=0

|Si| = v + |S|
|L| .

The above is used later for Generic Subset Generation.
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Chapter 5
Hardware Enhancement for Partition
Generation

In Chapter 2 we discussed the structure of the MU-Decoder (Figure 2.1, Page 9). In

this chapter, we particularly focus on the selector module of the MU-Decoder. The selector

module accepts a selector address and selects the corresponding ordered partition to be used

with the MUXes for mapping the source words. Originally each selector address produces

one ordered partition. In this chapter, we propose hardware enhancement for the selector

module that allows each selector address to produce multiple ordered partitions.

The original selector module produces 2y ordered z-partitions with a hardware cost

of O(2yn log z), where n is the size of the output word representing an output subset of

Zn = {0, 1, · · · , n − 1}. With the enhancements, we will be able to produce k2y ordered

z-partitions with a cost of O(2yn log h); that is with the same cost as before, we can produce

a factor of k more ordered partitions.

In the next section we provide an overview of the new hardware. Section 5.1 is devoted

to the idea of “Translation” of one ordered partition to another. This operation is essential

to our hardware enhancement

Selector Address

n log z

Selector Module

Ordered Partition

y

Figure 5.1: Current Selector Module
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5.1 Ordered Partition Translation

In this section we describe an operation called translation on an ordered partition π0 that

produces another ordered partition π1. Central to this operation is a “Translation Vector”

−→
C that guides the translation of π0 to π1. Subsequently we will develop the proposition of

translation.

Definition 5.1. Let ordered partition π0 = 〈B0
m : 0 ≤ m < z〉 be an ordered partition on

Zn, with |B0
m| = `0m. For each 0 ≤ m < z, let Cm ⊆ B0

m with Cz−1 = ∅. Denote |Cm| = cm.

Let vector
−→
C = 〈Cm : 0 ≤ m < z〉. Ordered partition π1 = 〈B1

m : 0 ≤ m < z〉 is a unit-

translation of π0 with respect to vector
−→
C (or π0

−→
C−→ π1) if and only if B1

0 = B0
0 − C0 and

for all 0 < m < z, B1
m = (B0

m − Cm) ∪ Cm−1.

Example 5.1. Let ordered partition π0 = 〈{3, 4, 11, 12}, {2, 5, 10, 13}, {1, 6, 9, 14}, {0, 7, 8, 15}〉

and ordered partition π1 = 〈{3, 4}, {11, 12, 2, 5, 10}, {13, 1}, {6, 9, 14, 0, 7, 8, 15}〉. Then π0
−→
C−→

π1, that is π1 is a unit-translation of π0 with respect to vector
−→
C = 〈{11, 12}, {13}, {6, 9, 14}, {}〉.

Let ordered partition π2 = 〈{3, 4, 11, 13}, {2, 5, 10, 12}, {1, 6, 9, 15}, {0, 7, 8, 14}〉 then π0

−→
D

6−→

π2, because B2
0 6= B0

0 − D0 for any D0 ⊆ B0
0 we have B2

0 6⊆ B0
0 . Moreover though B2

1 =

(B0
1−D1)∪D0 where D0 = 〈12〉, D1 = 〈13〉. But B2

2 6= (B0
2−D2)∪D1, B

2
3 6= (B0

3−D3)∪D1

and D3 6= ∅.

Let ordered partition π3 = 〈{3, 4}, {11, 12, 2}, {5, 10}, {13, 1, 6, 9, 14, 0, 7, 8, 15}〉, then π1
−→
E−→

π3, that is π3 is a unit-translation of π1 with respect to vector
−→
E = 〈{}, {5, 10}, {13, 1}, {}〉.

We also note that π0

−→
F

6−→ π3, because 〈13〉 ∈ B0
1 , so it should be in B3

1 = (B0
1 − F1) ∪ F0 or

B3
2 = (B0

2 − F2) ∪ F1 but 〈13〉 ∈ B3
3 which is not possible through unit-translation.

We observe that when π0 is translated to π1, cm ≤ |B0
m| elements of B0

m ∈ π0 move to

B1
m+1 ∈ π1. All the remaining elements remain in the same block, that is the rest of the

elements of B0
m ∈ π0 move to B1

m ∈ π1 which is basically the same block number across

different partitions.

Definition 5.2. For each element a ∈ Zn, let r(a) be a unique rank (number) from Zn.
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The value a and its rank r(a) are not related. A set of ranks r is consistent with an ordered

partition π =
〈
B0, B1, · · · , Bz−2, Bz−1

〉
if and only if the following condition holds. For all

a ∈ Bi and b ∈ Bj, if i < j then r(a) < r(b) and if a, b ∈ B0
i still r(a) 6= r(b).

In Example 5.1, π0
−→
C−→ π1

−→
E−→ π3 is a 2-transition with ordered partition π0 =

〈{3, 4, 11, 12}, {2, 5, 10, 13}, {1, 6, 9, 14}, {0, 7, 8, 15}〉 and the rank of the

ordered partition r(π0) = 〈{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}〉.

Definition 5.3. Let π0

−→
C0

−→ π1

−→
C1

−→ π2 · · · πk−1
−−−→
Ck−1

−→ πk be a series of unit-translations.

This sequence of k unit-translations from π0 to πk will be called a k-translation if and only if

there exists a rank r for each element of Zn that is consistent with every ordered partition πi

(0 ≤ i ≤ k).

This implies that the Cm elements of B0
m that move into B1

m+1 are the highest ranked

elements of B0
m.

Lemma 5.1. Suppose π0
−→
C−→ π1. Then for all a ∈ Zn, if a ∈ B0

m then a ∈ B1
m′ where

m′ ∈ {m,m+ 1}.

Proof. Let position a ∈ B0
m. Now every block in ordered partition π1 is B1

m = (B0
m −

Cm) ∪ Cm−1; where C−1 = ∅. Since a ∈ B0
m, a 6∈ B0

m−1 if it exists (the blocks are disjoint).

That is a 6∈ Cm−1 ∈ B0
m−1. Now we consider two cases, first if a ∈ Cm, then a 6∈ B1

m but

a ∈ B1
m+1 = (B0

m+1 − Cm+1) ∪ Cm. Second if a 6∈ Cm then a ∈ B1
m = (B0

m − Cm) ∪ Cm−1.

Remark: The block number of any element of block B0
m increases by at most 1 as we

translate from π0 to π1.

Theorem 5.1. Let L be a source set and π0, π1 be ordered z-partitions such that π0
−→
C−→ π1.

Let output sets S0 = L ◦ π0 and S1 = L ◦ π1. If L is totally-ordered, then S0 ∪ S1 is totally-

ordered.
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Proof. Without loss of generality, we assume that the source set L is in canonical form (see

Section 3.3 on page 17). Clearly, by Lemma 3.2 (Page 15), S0 and S1 are independently

totally-ordered, as L is totally-ordered. Suppose that S0 ∪ S1 is not totally-ordered. Then

there exist subsets S0
i ∈ S0 and S1

j ∈ S1 such that S0
i 6⊆ S1

j and S1
j 6⊆ S0

i . This implies that

there are elements a, b ∈ Zn such that a ∈ S0
i , b 6∈ S0

i and a 6∈ S1
j , b ∈ S1

j . This implies that

a, b are in different blocks of π0; similarly they are in different blocks of π1. Let a ∈ B0
î
,

b ∈ B0
ĩ

where î 6= ĩ and let a ∈ B1
ĵ

and b ∈ B1
j̃

where ĵ 6= j̃. Let S0
i = Li′◦π0 and S0

j = Lj′◦π1.

Since a ∈ S0
i , a ∈ B0

î
and S0

i = Li′ ◦ π0, we have Li′ (̂i) = 1. Similarly Li′ (̃i) = 0,Lj′(ĵ) = 0

and Lj′(j̃) = 1. Now since source set L is in canonical form, from Li′ (̂i) = 1 and Li′ (̃i) = 0

we can say

î < ĩ (5.1)

similarly ĵ > j̃ (5.2)

Now since a ∈ B0
î

and a ∈ B1
ĵ
, a might have moved to a new block in translation.

by Lemma 5.1 î ≤ ĵ ≤ î+ 1 (5.3)

Similarly ĩ ≤ j̃ ≤ ĩ+ 1 (5.4)

Hence we can say ĩ
(5.4)

≤ j̃
(5.2)

≤ î
(5.3)

≤ ĵ
(5.3)

≤ î + 1
(5.1)

≤ ĩ which is a contradiction. Hence the

lemma.

Lemma 5.2. Let G1
j+1 = B1

0 ∪ B1
1 ∪ · · · ∪ B1

j+1 and G0
j+1 = B0

0 ∪ B0
1 ∪ · · · ∪ B0

j+1. Then

G1
j+1 = G0

j+1 − Cj+1, where 0 ≤ j + 1 < z − 1.

Proof. As assumed G1
j+1 = B1

0 ∪ B1
1 ∪ · · · ∪ B1

j+1 and G0
j+1 = B0

0 ∪ B0
1 ∪ · · · ∪ B0

j+1. From

Definition 5.1 we know that B1
0 = B0

0 − C0 and for all 0 < j < z, B1
j = (B0

j − Cj) ∪ Cj−1
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where Cz−1 = ∅.

Hence G1
j+1 = B1

0 ∪B1
1 ∪ · · · ∪B1

j+1

= {(B0
0 − C0)} ∪ {(B0

1 − C1) ∪ C0} ∪ · · · ∪ {(B0
j+1 − Cj+1) ∪ Cj}

= B0
0 ∪B0

1 ∪ · · · ∪ (B0
j+1 − Cj+1)

= G0
j ∪ (B0

j+1 − Cj+1)

Since all blocks are disjoint and Cj+1 ⊆ B0
j+1

Hence: G1
j+1 = G0

j+1 − Cj+1

moreover G1
j+1 ⊂ G0

j+1

Now since Cz−1 = ∅ and union of all the blocks gives us Zn

we have: G1
z−1 = G0

z−1 = Zn

Hence the equation

G1
j+1 = G0

j+1 − Cj+1 (5.5)

proves the lemma.

Let us again consider the translation π0
−→
C−→ π1, which yields the output set S0 = L ◦ π0

and S1 = L ◦ π1. From Theorem 5.1 we know that if source set L is totally-ordered then

S0 ∪ S1 is totally-ordered as well. We now derive the circumstances under which S0 and S1

are disjoint.

Lemma 5.3. Let π0
−→
C−→ π1 and for totally-ordered source set L, let S0 = L ◦ π0 and

S1 = L◦π1. Then if 0 < ci < |B0
i | for all 0 ≤ i < z we have S0∩S1 = ∅, where Cz−1 = ∅.

Proof. We first observe that since 0 < Ci < |B0
i | for 0 ≤ i < z − 1, we have non empty

blocks for π0. We proceed in the contrapositive direction. Let S ∈ S0∩S1. Then there exists

some 0 ≤ u′, v′ < X such that S = Lu′ ◦ π0 = Lv′ ◦ π1. We can, without loss of generality,

assume the canonical form for source set L and say Lu′ =

〈
111...111︸ ︷︷ ︸

u

000...000︸ ︷︷ ︸
z−u

〉
and Lv′ =〈

111...111︸ ︷︷ ︸
v

000...000︸ ︷︷ ︸
z−v

〉
. Using Definition 2.4 we can say Lu′ ◦ π0 =

z−1⋃
i=0

[1(B0
i , Lu′(i))] =
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{B0
0 ∪B0

1 ∪ · · · ∪B0
u} = G0

u (Lemma 5.2). Similarly

Lv′ ◦ π1 =
z−1⋃
i=0

[1(B1
i , Lv′(i))] = {B1

0 ∪B1
1 ∪ · · · ∪B1

v} = G1
v. Hence S = G0

u = G1
v.

Hence S = G0
u = G1

v (5.6)

using Equation (5.5) where G1
v = G0

v − Cv

we get G0
u = G0

v − Cv (5.7)

We now consider a few cases:

i If u = v then we can state equations (5.5),(5.6) as G0
v

(5.6)
= G1

v

(5.5)
= G0

v−Cv. Hence Cv = ∅.

This is not possible as cv > 0.

ii For u > v let the union of u blocks G0
u = {B0

0 ∪ B0
1 ∪ · · · ∪ B0

v ∪ B0
v+1 ∪ · · · ∪ B0

u} =

G0
v ∪ {B0

v+1 ∪ B0
v+2 ∪ · · · ∪B0

u}. Now B0
i 6= ∅. Hence G0

u ⊃ G0
v

(5.5)
⊃ G1

v

(5.6)
= G0

u, which is

the necessary contradiction.
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iii For u < v, let u+ i = v where i > 0 is an integer.

G0
u = G0

v − Cv Equation (5.7)

= G0
u+i − Cu+i

=

G0
u ∪
(
B0

u+1 ∪B0
u+2 ∪ · · · ∪B0

u+i

)︸ ︷︷ ︸
H (let)

− Cu+i

= (G0
u − Cu+i) ∪ (H − Cu+i)

Now since Cu+i ⊆ B0
u+i 6∈ G0

uwe can say

G0
u = G0

u ∪ (H − Cu+i)

Hence H − Cu+i ⊆ G0
u

This is possible only if H − Cu+i = ∅ because all the blocks of an ordered partition are

disjoint, meaning H ∩G0
u = Cu+i ∩G0

u = ∅

From H − Cu+i = ∅

we can say H ⊆ Cu+i

Now since all the blocks are non empty and H =
(
B0

u+1 ∪B0
u+2 ∪ · · · ∪B0

u+i

)
we can say

B0
u+i ⊂ H ⊆ Cu+i

Therefore |B0
u+i| < cu+i,

which contradicts our assumption that cu+i < |B0
u+i|.

Lemma 5.4. Let π0
−→
C−→ π1 and for totally-ordered source set L, let S0 = L ◦ π0 and

S1 = L ◦ π1. Then S0 ∩ S1 = ∅ implies for all 0 < m < z − 1, 0 < cm < |B0
m|.

Proof. Suppose the conclusion is false. That is for all 0 < m < z− 1, 0 < cm < |B0
m| is false.

This implies that there exists m such that cm = |B0
m| or cm = 0 6= |B0

m|.
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i For cm = |B0
m|, that is Cm = B0

m

Now G1
m = G0

m − Cm equation (5.5)

= G0
m −B0

m using Cm = B0
m

= (B0
0 ∪B0

1 ∪ · · · ∪B0
m)−B0

m

= B0
0 ∪B0

1 ∪ · · · ∪B0
m−1 because the Blocks B0

i are pairwise disjoint.

or G1
m = G0

m−1 implies that the union of blocks receiving

value 1 in π1 and π0 are equal.

Hence the result:

=⇒ S1 ∩ S2 6= ∅

i For cm = 0 6= |B0
m|, that is Cm = ∅

Now G1
m = G0

m − Cm equation (5.5)

or G1
v = G0

v implies that the union of blocks receiving value-

1 in π1 and π0 are equal. Hence the result:

=⇒ S1 ∩ S2 6= ∅

Hence the lemma.

Lemma 5.5. Let π0
−→
C−→ π1 and for totally-ordered source set L, let S0 = L ◦ π0 and

S1 = L◦π1. Then for all 0 < m < z−1 we have 0 < cm < |B0
m| if and only if S0∩S1 = ∅.

Proof. Evident from the results of the two Lemmas 5.3 and 5.4.

We now consider a particular class of translation π0
−→
C−→ π1, in which for all 0 ≤ m < z−1,

|B0
v | 6= ∅ implies 0 < cm = c ≤ |B0

m|. That is c lower bounds the size of the smallest block

of π0. We will call such a translation as a C-uniform unit-translation or simply a C-uniform

translation, where the context is clear. Before we proceed let us consider the following

example.
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Example 5.2. For n = 8, that is Zn = {0, 1, 2, 3, 4, 5, 6, 7}, let z = 3 and let π0 =

〈{0, 5, 7}, {2, 3}, {1, 4, 6}〉. Here the block number for elements 0,5,7 is 0, that of 2,3 is

1 and that of 1,4,6 is 2. Let ~C = 〈{5, 7}, {2, 3}〉, then for π0
−→
C−→ π1 we have π1 =

〈{0}, {5, 7}, {2, 3, 1, 4, 6}〉. The block number for 0 is still 0, however the block number

of 5,7 is now 1. This Translation causes the block number of the elements of Zn to change.

Notice that the number of elements entering and leaving each block is uniform (c = 2 ≤ |B0
m|)

except the first and last blocks. Hence a C-uniform translation.

Lemma 5.6. There exists a C-uniform translation π0
−→
C−→ π1, if and only if no block B0

m

(0 ≤ m < z − 1) has 0 < c′ < c elements, that is every block has ≥ c elements.

Proof. If every block has αc (α > 0) elements then consider any ~C = 〈C0, C1, · · · , Cz−2〉

with cm = c. Since |B0
m| ≥ c, cm ≤ B0

m is always true. On the contrary, if some block

has 0 < |B0
m| = c′ < c, then cm must be equal to c for a C-uniform translation. However

cm ≤ |B0
m| < c. Thus the C-uniform translation is not possible.

Lemma 5.7. If π0
−→
C−→ π1 is a C-uniform translation with respect to ~C, and if every block

B0
m of ordered partition π0 (for 0 ≤ m < z − 1) has ≥ c elements, then every block B1

m of

ordered partition π1 has equal number of elements, that is |B1
m| = |B0

m|.

Proof. Recall from Definition 5.1 that B1
m = (B0

m − Cm) ∪ Cm−1 and Cm ⊆ B0
m. Since

Cm−1∩B0
m = ∅, we have |B1

m| = |B0
m|−|Cm|+|Cm−1| = |B0

m|−cm+cm−1. Now cm = cm−1 = c,

hence |B1
m| = |B0

m| − c + c = |B0
m|.

Putting Lemmas 5.6, 5.7 together we can say that if the number of elements in every

block (except possibly the last block) of π0 is greater than or equal to c, then we can construct

C-uniform translations

π0

−→
C0

−→ π1

−→
C1

−→ π2 · · · πk−1
−−−→
Ck−1

−→ πk

This is because the block size remains the same through the translations which is ≥ c.

We now consider such a C-uniform k translation in which from each block Bi
m, c elements

shift out to the corresponding block Bi+1
m+1 ∈ πi+1.

31



Example 5.3. For n = 16, that is Zn = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, let

z = 4 and let π0 =

〈
{0, 5, 7, 8, 9, 14}︸ ︷︷ ︸

block 0

, {2, 3, 13, 15}︸ ︷︷ ︸
block 1

, {1, 4, 6, 12}︸ ︷︷ ︸
block 2

{10, 11}︸ ︷︷ ︸
block 3

〉
. Let

~C0 = 〈{9, 14}, {13, 15}, {6, 12}〉, then for π0

−→
C0

−→ π1 we have

π1 =

〈
{0, 5, 7, 8}︸ ︷︷ ︸

block 0

, {9, 14, 2, 3}︸ ︷︷ ︸
block 1

, {13, 15, 1, 4}︸ ︷︷ ︸
block 2

{6, 12, 10, 11}︸ ︷︷ ︸
block 3

〉
. Let ~C1 = 〈{7, 8}, {2, 3}, {1, 4}〉,

then for π1

−→
C1

−→ π2 we have π2 =

〈
{0, 5}︸ ︷︷ ︸
block 0

, {7, 8, 9, 14}︸ ︷︷ ︸
block 1

, {2, 3, 13, 15}︸ ︷︷ ︸
block 2

{1, 4, 6, 12, 10, 11}︸ ︷︷ ︸
block 3

〉
. The

block number for 0,5 is still 0, however the block number of 9,14 is now 1. These translations

cause the block number of the elements of Zn to change. Notice that the number of elements

entering and leaving each block is uniform (c = 2 ≤ |B0
m|), hence the block size remains

constant (except the first and last blocks). Hence a C-uniform 2-translation. The extent of

change in block numbers is tracked later in the chapter.

We recall from Example 5.3 that as we translate from one ordered partition to another,

block number of elements of Zn change. We now track the extent of change to the block

numbers as we progress through a C-uniform k translation π0

−→
C0

−→ π1

−→
C1

−→ π2 · · · πk−1
−−−→
Ck−1

−→ πk.

Specifically, we consider any element a ∈ B0
m whose block number in π0 is m. As we move

from π0 to π1, π2, · · · πk, the block number of a could increase. This increase is calculated in

following paragraphs.

As defined in Definition 5.2 we can say that there is a rank r of the elements of Zn, that

is constant with πi (0 ≤ i ≤ k), where πi is produced from C-uniform k translation of π0

through πk. Considering π0

−→
C0

−→ π1, let some element a ∈ B0
m move to block B1

m+1; recal

that a ∈ B1
m or B1

m+1. Thus the maximum increase in the block number of element a is 1. If

g(k) denotes the maximum increase in the block number of an element as we translate from

π0 to πk, then g(1) = 1. Figure 5.2 shows the contents of a block B1
m+1 with ≥ c elements.

Clearly a ∈ B0
m that moved to B1

m+1 is one of the lowest ranked c elements of B1
m+1. Let⌊

|B1
m+1|−c

c

⌋
=
⌊
|B1

m+1|
c

⌋
− 1 = `1 (where |B1

m+1| ≥ c). After another `1 translation a ∈ B1
m+1

moves to B2
m+2 only if it is one of the largest c ranked elements of B1

m+1. If `1 ≥ 1, then
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π0 · · ·

B0
m B0

m+1

c c

π1 · · · c c c

B1
m B1

m+1 B1
m+2

|B0
m+1| − c

Figure 5.2: C-uniform translation

|B1
m+1| ≥ 2c and a will not move out of B1

m+1 to B2
m+2. It will remain in B1

m+1, that is block

number of a will not increase. In fact, it is easy to show that the block number of a will

increase only after `1 additional translations. So for all 1 ≤ `′ ≤ `1, a ∈ B`′
m+1. It’s possible

that a ∈ B`′+1
m+2. Table 5.1 extends this argument to show the number of translations needed

for each block number increase. We now restrict our attention to a particular case where

Block Number Number of Translations
m 0(initial)

m+ 1 1 = k1

m+ 2 k1 +

⌊
|Bk1

m+1|
c

⌋
= k2

m+ 3 k2 +

⌊
|Bk2

m+2|
c

⌋
= k3

...
...

m+ h kh−1 +

⌊
|B

kh−1
m+h−1|
c

⌋
= kh

Table 5.1: Block Number of a ∈ B0
m over translation

|B0
0 | ≥ kc. We call this a non-depleting C-uniform k-translation. It is easy to verify that

each block Bi
0 ≥ 0 (0 ≤ i < k), since |B0

m| ≥ c for all 0 < m < z − 1, hence Bi
m ≥ c. This is

because for m > 0, a block receives c elements and gives up c elements. It is only Bi
0 that

does not receive any element for non-depleting C-uniform k-translation.

Hence: |Bi
0| = |B0

0 | − ic for 0 ≤ i < k (5.8)

and |Bi
m| = |B0

m| for 0 < m < z − 1 (5.9)
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In Table 5.1 we see that kh > kh−1 ≥ 1. Therefore using Equation 5.9, we can say |Bkh
m | =

|B0
m|. Thus from the table, we can say

kh = kh−1 +

⌊
|B

kh−1
m+h−1|
c

⌋
= kh−1 +

⌊
|B0

m+h−1|
c

⌋
= kh−1 +

⌊
`0m+h−1

c

⌋
= kh−2 +

⌊
`0m+h−2

c

⌋
+
⌊
`0m+h−1

c

⌋
= kh−3 +

⌊
`0m+h−3

c

⌋
+
⌊
`0m+h−2

c

⌋
+
⌊
`0m+h−1

c

⌋
...

= k1 +
⌊
`0m+1

c

⌋
+
⌊
`0m+2

c

⌋
+ · · ·+

⌊
`0m+h−1

c

⌋
= 1 +

h−1∑
i=1

⌊
`0m+i

c

⌋
An unintended consequence of this is the following Lemma.

Lemma 5.8. If for every 0 < m < z − 1, |B0
m| = b then kh = 1 + (h− 1) ∗

⌊
b
c

⌋
Since g(kh) = h we can have as many as 1 + (h− 1) ∗

⌊
b
c

⌋
non-depleting C-uniform

k-translation and still have each element’s block number increase by at most h.

Suppose we have an ordered partition π0 = 〈B0
m : 0 ≤ m < z〉 with z blocks in which B0

0

has at least khc elements and each of B0
1 , B

0
2 , · · · , B0

z−1 has at least c elements each. Then π0

can be translated to πh (according to a series of translations π0

−→
C0

−→ π1

−→
C1

−→ π2 · · · πk−1
−−−→
Ck−1

−→

πk) ensuring that the block number of any element of Zn increases (corresponding to that of

π0) by at most h.

Observe that since we are using a C-uniform translation with each ~Ci =
〈
Ci

0, C
i
1, · · · , Ci

z−2,
〉

has |Ci
m| = c.

Example 5.4. For n = 16, that is Zn = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, let

z = 4, c = 2 and let π0 =

〈
{11, 0, 5, 7, 8, 9, 14}︸ ︷︷ ︸

block 0

, {2, 3, 13, 15}︸ ︷︷ ︸
block 1

, {1, 4, 6, 12}︸ ︷︷ ︸
block 2

{10}︸︷︷︸
block 3

〉
. Let

~C0 = 〈{9, 14}, {13, 15}, {6, 12}〉, then for π0

−→
C0

−→ π1 we have
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π1 =

〈
{11, 0, 5, 7, 8}︸ ︷︷ ︸

block 0

, {9, 14, 2, 3}︸ ︷︷ ︸
block 1

, {13, 15, 1, 4}︸ ︷︷ ︸
block 2

{6, 12, 10}︸ ︷︷ ︸
block 3

〉
. Let ~C1 = 〈{7, 8}, {2, 3}, {1, 4}〉,

then for π1

−→
C1

−→ π2 we have π2 =

〈
{11, 0, 5}︸ ︷︷ ︸

block 0

, {7, 8, 9, 14}︸ ︷︷ ︸
block 1

, {2, 3, 13, 15}︸ ︷︷ ︸
block 2

{1, 4, 6, 12, 10}︸ ︷︷ ︸
block 3

〉
. Let

~C2 = 〈{0, 5}, {9, 14}, {13, 15}〉, then for π2

−→
C2

−→ π3 we have

π3 =

〈
{11}︸︷︷︸
block 0

, {0, 5, 7, 8}︸ ︷︷ ︸
block 1

, {9, 14, 2, 3}︸ ︷︷ ︸
block 2

{13, 15, 1, 4, 6, 12, 10}︸ ︷︷ ︸
block 3

〉
.

These 3 translations cause the block number of the elements of Zn to change by up to 2.

Notice that the size of the first block is greater than the product of the number of translations

and shift size, moreover the number of elements entering and leaving each block is uniform

(c = 2 ≤ |B0
m|), hence the block size remains constant (except the first and last blocks).

Hence a non-depleting C-uniform 3-translation (π0

−→
C0

−→ π1

−→
C1

−→ π2

−→
C2

−→ π3).

The block number for elements {11, 0, 5, 7, 8, 9, 14, 2, 3, 13, 15, 1, 4, 6, 12, 10} changed from

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3 to 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3 respectively. Hence

the change in block number for the elements are 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, we call

this as the increment vector for π0 −→ πh. In general the increment vector 〈d0, d1, · · · , dn−1〉

gives da, the increase in block number for element a ∈ Zn with 0 ≤ da ≤ h.

Recalling that an ordered partition π =
〈
B0, B1, · · · , Bz−1

〉
is represented in the address

generator module (see Figure 5.3) as a sequence 〈e0, e1, · · · , ea, · · · , en−1〉, where for all a ∈

Zn, ea = m if and only if a ∈ Bm. Clearly 0 ≤ ea < z. Let us call the sequence 〈ea : a ∈ Zn〉

as the partition vector. Given any partition vector ~e0 = 〈e0a : a ∈ Zn〉 (corresponding to

ordered partition π0) and an increment vector ~d = 〈da : a ∈ Zn〉 for π0 −→ πq, where q = k.

One can generate the partition vector ~eq = 〈eqa : a ∈ Zn〉 as eqa = e0a + da. Notice that

0 ≤ da ≤ h. Figure 5.3 shows how πq can be generated from π0.

In the method of Jordan and Vaidyanathan [16] the address generator stored the vector

for every ordered partition, it needs to use. This required a 2y × n log z LUT with gate

cost O(2yn log z). Now we only need to store the increment vector, each of size n log h (as

opposed to n log z for the entire ordered partition ). If 2y1 increment vectors are stored then
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π0 Partition Vector e00 e01 · · · e0a · · · e0n−1

Increment Vector d0 d1 · · · da · · · dn−1

log z-bit address

πq Partition Vector eq0 eq1 · · · eqa · · · eqn−1

Figure 5.3: Address Generator

the cost is O(2y1n log h) for the LUT, 2n log z for the input and output partition vectors.

The additions even if performed by a ripple carry adder have O(n log z) cost. Thus the total

cost is O(n log z + 2y1n log h). If we set 2y1 log h = 2y log z then y1 = y log
(

log z
log h

)
. Now if h

is a constant then y1 = y log log z. Thus with the same cost of O(2yn log z), the enhanced

MU-Decoder can now produce 2y1 ordered partitions and 2y1+x subsets rather than the 2y+x

subsets in the original solution. Further generalizing this, if we use 2y ordered partitions

each capable of handling 2y1 increment vectors, then with a cost of O(2yn log z + 2y1n log h)

one could produce 2y+y1+x subsets. If 2y log z + 2y1 log h = O(2y log z) then we need 2y =

O
(

2y1 log h
log z

)
. This gives the hardware structure of Figure 5.4.

In general it is more efficient to decrease y (to even 0), however, a larger y allows

for independent ordered partition generation. We will explore the x = 0 case further in

Chapter 6.
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Ordered Partitions

Partition Vectors

n log z

n log h

Adder Array

n log z

2y1

Figure 5.4: Selector Module Hardware Structure
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Chapter 6
Generic Subsets

Until now we have looked at generating a given totally-ordered set. In this chapter, we

generate a generic set of subsets of Zn, from which other subsets can be discovered.

6.1 Traversing the Boolean Lattice

Given a subset S ⊆ Zn, supersets of S can be generated by adding one element of Zn−S

at a time to S . This amounts to moving up the Boolean lattice, one level at a time. In fact,

a one-hot decoder generates subsets this way.

Example 6.1. On a 1-hot decoder the subset S2 = {0, 1, 2} may be generated as S0 = {0},

S1 = S0 ∪ {1} and S2 = S1 ∪ {2}.

Similarly, subsets can be formed by removing one element at a time, that is moving down

the Boolean lattice. Thus the path length of moving from subsets Ŝ = (S1−S2)∪S3 (where

S1 ∩ S2, S1 ∩ S3 are empty) is |S2|+ |S3| which is a good reflection of the cost of generating

Ŝ from S1.

The overall idea is to generate S1 in O(log n) time and then spend another O(d log n)

time to generate S from S1. The set S1 is called a primary set and S (derived from S1) a

secondary set. Now given a set S = 〈Si : 0 ≤ i < u〉 of primary sets (produced by an MU-

Decoder), we try to produce a set Ŝ = {Ŝi} ⊇ S of secondary subsets that can be produced

within a distance d of S.

6.1.1 Single Total Order S

Let S = {Si : 0 ≤ i < u} be totally-ordered. Using Lemma 4.1, S can be produced

using an MU-Decoder in O(log n) time. Select S so that Si ⊆ Si+1 and |Si+1| − |Si| ≥ 2d

This implies that the totally-ordered set S occupies a path in the Boolean lattice in which

individual elements of S are at least 2d apart (see Figure 6.1). For each primary set Si

reaching in O(log n) time using an MU-Decoder, secondary set at distance d can be reached.

Since Hamming distance between any Si and Sj ≥ 2d, a d distance set can be reached from
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only one primary set.

Figure 6.1: 2d spaced totally-ordered subsets

Lemma 6.1. The number of d-distance secondary sets reachable from any primary set

Si ⊆ n is
(
n
d

)
.

Proof. Out of the n possible elements in (or not in) Si, select d to be not in (or in) Ŝi (a

secondary set).

Example 6.2. For set {0, 1, 2}, a 1-hot decoder generates {0}, then generates {1} and

accumulates this with {0} to get {0, 1} and finally generates {3} to accumulate with prior

result to get {0, 1, 2}.

In general, the above accumulation is a move up from a point in the Boolean Lattice. A

move down can be done in a similar way (using a active 0 1-hot decoder).

Given any set S , another set S ’ that differs from S in d elements (Hamming distance d)

can be produced from S in d iteration. Here we create a set of primary subsets S, such that

each pair of elements of S has a Hamming distance > 2d, see Figure 6.1.
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Lemma 6.2. If primary set of subsets is totally ordered and if it has a pairwise Hamming

distance of at least 2d, then
(
n
d

)
z2 log z subsets can be generated in O(d log n) time by an

MD((dlog(z − 1)e, 0, z, n)).

Proof. This MU-Decoder represents a single line with 2x = z elements. Therefore each

source word corresponds to one primary subset and there is only one partition being used

(y = 0). The Totally-orderedfor a single line is proved by Jordan and Vaidyanathan [17] and

each subset in the totally-orderedline can be used to reach
(
n
d

)
subsets (Lemma 6.1)

The following theorem is deduced in a similar way to Lemma 6.1 using Theorem 4.1

(page 21).

Theorem 6.1. Now if we have 2y ≤ n
2d

(d ≥ 1) primary sets, where all the subsets have a

pairwise Hamming distance ≥ 2d, then
(
n
d

)
z2 log z2y totally-orderedsubsets can be generated

in O(d log n) time by an MD((dlog(z − 1)e, dlog(z log z)e, z, n)).

Proof. 2y ≤ n
2d

primary subsets can be spaced as Figure 6.1.

To see the significance of this result, we observe that for d = 1 we have nz2 log z subsets at

O(nz log z) cost and O(log n) delay. However with z = 2, there is no significant change to the

delay and cost, but the number of subsets produces increases to approximately n2

2
nz2 log z

(an increase by an n2

2
factor). Given that n is much larger than z, this is a substantial

increase in the number of subsets produced. More generally, for about the same costa and

delay, with any constant d we will have a polynomial increase in the number of subsets

produced.

Let S = S0∪S1∪· · · SY−1, where the Si’s are pairwise disjoint and equal in size. Suppose

Si = L ◦ πi. Then S can be generated as shown in Definition 2.4. Now we look into the fact

whether all these πi ordered partitions can be generated from a single ordered partition π0

as shown in Lemma 5.8 (see page 34). For us to translate k ordered partitions from ordered

partition π0, we need |B0
0 | > kc and each block in π0 to have at least c elements (except

the last one). We pick any S (path of XY elements) where X = |L| the source set size and
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Y is the number of partitions, including the primary and the translated ones. Let elements

of S be subsets uniformly distributed on the path. That is, |Si − Si−1| ≥ c ≥ 2d for each i

(see Figure 6.2). Now let us divide the XY totally-ordered subsets from Figure 6.2 into Y

sets of subsets as below

S0 = {SY−1, S2Y−1, · · · , SiY−1, · · · , SXY−1}

S1 = {SY−2, S2Y−2, · · · , SiY−2, · · · , SXY−2}
...

Sj = {SY−(j+1), S2Y−(j+1), · · · , SiY−(j+1), · · · , SXY−(j+1)}
...

SY − 1 = {S0, SY , · · · , S(i−1)Y , · · · , S(X−1)Y }

Now Sj = {Sj
0, S

j
1, · · · , S

j
i , · · · , S

j
X−1}, where Sj

i = S(i+1)Y−(j+1) = Li ◦πj and Sj
0 = SY−(j+1).

For πj =
〈
Bj

0, B
j
0, · · · , B

j
z−1
〉
, we know Bj

0 = Sj
0, Bj

i = Sj
i − S

j
i−1 and Bj

X = Zn − Sj
X−1. We

used X = 2x = z − 1 from Jordan and Vaidyanathan [16].

Lemma 6.3. Every block of ordered partition πj is non-empty, except block Bj
X which is

possibly empty.

Proof. B0
0 − B

j
0 = S0

0 − S
j
0 = SY−1 − SY−(j+1). Since Y − 1− (Y − (j + 1)) = j, we can say

|SY−1| − |SY−(j+1)| = cj. Clearly S0
0 ⊇ Sj

0 so is B0
0 ⊇ Bj

0.

In general,

B0
i −B

j
i = (S0

i − S0
i−1)− (Sj

i − S
j
i−1)

= (S(i+1)Y−1 − S(i)Y−1)− (S(i+1)Y−(j+1) − S(i)Y−(j+1))

Now (i+ 1)Y − 1 ≥ (i+ 1)Y − (j + 1) ≥ iY − 1 ≥ iY − (j + 1)

or (S(i+1)Y−1 ⊃ (S(i+1)Y−(j+1) ⊃ S(i)Y−1) ⊃ S(i)Y−(j+1))

Hence B0
i −B

j
i = S(i+1)Y−1 − S(i+1)Y−(j+1)

or |B0
i −B

j
i | = jc
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Hence we can say π0 → πj is a non depleting C-uniform k-translation. We can say

that if element a moves into Bj
i from Bj−1

i−1 , then a never moves out of Bj
i . Hence S0 =

S0, S1, · · · , SY−1 can be generated from a single ordered partition π0. Therefore for each

totally-ordered set, the number of generator partitions is only 1 which is π0 and the rest are

generated using the increment vector. Hence y = y1 + y2 = y2.

Lemma 6.4. S0, S1, · · · , SY−1 are disjoint.

Proof. We can say from the construction of Figure 6.1 that since |Si−Si−1| ≥ c, hence each

output subset is at least c distance apart from the nearest subset and hence disjoint.
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S0

S1

...

SY−1

SY

SY+1

S2Y−1

...

SiY

SiY+1

...

S(i+1)Y−1

S(X−1)Y

SXY−1

Figure 6.2: XY Totally-Ordered subsets, each circle has radius d from the primary subset
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Chapter 7
Conclusion

7.1 Work Covered

In this thesis, we proved that for any source set and any output set we can produce

an ordered partition which will map the given source set to the output, as long as the

source set and output set are totally-ordered. We further expand on this to say that for

a given set of output sets, which are individually totally-ordered, they can be produced

from any given single totally-ordered source set we produce the required set of ordered

partitions for this output set (for the same source set). This alleviates the limitations due to

isomorphism (see Jordan and Vaidyanathan [16]). This allows us to produce different sets

of individually totally-ordered output sets from a single totally-ordered source set, hence

effectively reducing the cost of using a large LUT-Decoder. A set of subsets as represented

in Figure 1.3(b) (see page 5), can be produced with the same cost as a regular MU-Decoder,

but with the isomorphism constraint, the cost would rise significantly.

We further worked on hardware enhancements for generating additional ordered parti-

tions from existing ordered partitions, inside the MU-Decoder itself, leading to an increase in

the number of subsets produced for about the same hardware cost. We enhance the existing

hardware of the MU-Decoder to produce these additional subsets. This additional hardware

doesn’t affect the complexity of previously assumed cost of the MU-Decoder and generates

Θ(log z) additional subsets. Producing these additional subsets has certain limitations, the

generator and generated subsets together are totally-ordered. So far we generated, for π0,

the ordered partitions π1, π2, · · · , πk. The subsets Si = L ◦ πi are totally-ordered. In fact we

assert that
⋃
i

Si is totally-ordered. However, our method does not require this. All we im-

pose is that S0∪Si must be totally-ordered (as in Figure 7.1). That is, while we have proved

our method for
⋃
i

Si being totally-ordered, we have strong evidence that is all we require for

S0 ∪ Si to be totally-ordered. In this thesis, we focused our work producing subsets which
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can be produced cheaply, and using these subsets to approach a given set of subsets at a dis-

tance of up to log n from the produced subset. In this thesis, we focused our work producing

the “best” sets of subsets. Together with the 1-hot Decoder, we generate
(
n
d

)
2yz2 log z sub-

sets in O(d log n) time using a MU-Decoder MD(dlog(z − 1)e, dlog(z log z)e, z, n) of gate cost

O(zn log z) and delay O(log n) where 2y ≤ n
2d

and (d ≥ 1). This is a substantial expansion

of the MU-Decoder range for efficient operation.

7.2 Future Work

This work opens up several possible directions for future work.

Is the translation algorithm the best possible? Are similar algorithms (to generate

ordered partition) possible for non-totally-ordered sets?

The cost of enhancement is driven by the cost O(n2y) of the increment vector. We

assume that these vectors are independent. Could one be derived from the other?

The MU-Decoder itself is a reconfigurable device being reconfigured through its LUTs.

Can the MU-Decoder be used as a LUT? For example the increment vector π as big as a

subset of Zn.

So far the MU-Decoder used is “universal” [17] in which all z source bits are sent to all

n muxes. We want to figure if there is a “good” set of subsets (as in Chapter 6) for which

each MUX receives only a subset of source bits. This would drastically reduce the cost of the

interconnects in the mapping unit and the address selector LUT size. (It has been shown by

Kongari [21] that these interconnect is a large contributor to the MU-Decoder area.)

Can multiple MU-Decoder be used to produce different ranges of subsets of Zn?

45



∅

Zn

Figure 7.1: Multiple Totally-Ordered paths produced from one Totally-Ordered set of subsets
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