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Asbtract

Radio Frequency IDentification (RFID) systems are prevalent in all sorts of daily
life endeavors. In this thesis we propose a new method to estimate RFID tag
population size. We have named our algorithm “Gaussian Estimation of RFID
Tags,”namely, GERT. We present GERT under both {0, 1} and {0, 1, e} channel
models, and in both cases the estimator we use is a well justified Gaussian random
variable for large enough frame size based on Central Limit Theorem for triangular
arrays. The most prominent feature of GERT is the quality with which it estimates
a tag population size. We support all the required approximations with detailed
analytical work and account for all the approximation errors when we consider the
overall quality of the estimation. Our simulation results agree well with analytical
ones. GERT, based on standardized frame slotted Aloha protocol, can estimate
any tag population size with desired level of accuracy using fewer number of frame
slots than previously proposed algorithms.
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Chapter 1

Introduction

RADIO frequency identification (RFID) systems are of common use particularly
because of the negligible price of RFID tags (e.g., as low as 5 cents per tag [1])
compared to the products that they are attached to. Some of these applications
are, object tracking [2], 3-D positioning [3], indoor localization [4], supply chain
management [5], inventory control, and access control [6], [7] . The most common
use of RFID is to identify individual products. Some of the world famous guitar
producing companies, for example Fender, have embedded their producsts with
RFID chips, which uniquely identify each guitar. If a guitar gets stolen, police can
quickly know the real owner. RFID tags embedded in poker chips help the casino
track how much gamblers are spending and on which tables and thus prevent theft.
RFID is being used by some of the luxury product brands to let their customers
scan and verify the originality of the product. A product that has RFID tag inside,
can be tracked wherever there is a reader. So, factories use RFID to measure how
long it takes to make product and companies track how and where their products
such as vehicles and computers are used. RFID tags are very small and hence
can be implanted in people and animals. One of the earliest uses of RFID in the
United States and Europe was to implant pet animals with RFID chips to ensure
that the pets do not go missing. RFID is used in manufacturing plants to track
parts and work in process and to reduce defects, increase throughput and manage
the production of different versions of the same product.

A tag is a microchip with an antenna that has limited computing power and
communication range. A reader, on the other hand, is a device that has a dedicated
power source and substantial amount of computational ability. Tags respond to the
queries sent by the reader over a shared wireless medium. Passive tags do not have
their own power sources and hence they are powered by the radio frequency energy
from the readers. They are usually capable of communicating over a range of less
than 20 ft. Active tags posses their own power sources and can communicate over
a longer range. When an RFID reader is at a distance within the communication
range of a tag, it can send and read data to identify the item the tag is embedded
in.

Tag estimation is defined as the problem of designing an efficient algorithm to
estimate the number of RFID tags in a deployment area without actually reading
the ID of each tag. A tag estimation algorithm must ensure the following qualities
[8]:

1. Reliability The given reliability requirement α means that atleast α fraction
of the times the estimated value t̂ of the number of tags should fall in the

1



allowed confidence intrval t ± βt. This is called required reliability. The
reliability that we actually achive running the algorithm is called the actual
reliability. The algorithm should ensure that the acutal reliability is equal or
greater than the required reliability.

2. Scalability The estimation for large number of tags should be scalable. There
might be cases where the number of passive tags will be very high and the
algorithm should take all those cases in consideration.

3. Compliance The estimation algorithm should be compliant with the C1G2
standard without any modifications or adjustments done to the tags

Tag estimation is useful in many everyday applications including tag identification,
privacy-sensitive RFID systems and warehouse monitoring. For tag identification
in frame slotted Aloha protocol [standardized in EPCGlobal Class-1 Generation-2
(C1G2) RFID standard [9] and implemented in commercial RFID systems], tag
estimation often helps to decide an optimum frame size. In warehouses, it is
often required to estimate the current stock of a product to plan on the future
requirements or prevent theft. In a privacy sensitive RFID system, for example in
a parking area where the reader does not have the permission to identify a human
individual, tag estimation helps to keep track of the number of vehicles entering
in a particular area.

We are proposing a very efficient method to estimate the size of a tag popula-
tion. There has been a good number of estimation schemes in literature, and we
present the comparative efficacy of our algorithm with respect to recently proposed
Average Run-based Tag estimation(ART) [8].

Before we fomally introduce the detailed attributes of our scheme it is worth to
have a quick look at the some of the preceeding works, their disticnt features and
contributions. One of the first works on tag estimation was that of Kodialam and
Nandagopal, titled Unified Probabilistic Estimator (UPE) [10]. UPE estimation
was based on the number of empty slots in a frame or the number of collision
slots in the frame. UPE has larger variance which only meant more number of
rounds required. Kodialam et al. later proposed an improved framed slotted Aloha
protocol-based estimation in [11] called Enhanced Zero Based (EZB) estimator.
EZB makes its estimation based on the total number of empty slots in a frame. The
difference between EZB and UPE is, UPE makes an estimation of the population
size in each frame and at the end averages out all the estimation results, whereas
EZB finds the average of the number of 0s in each frame and finally makes the
estimation based on this average value.

Qian et al. in [12] proposed the scheme known as Lottery of Frame (LoF).
Though it was faster than the previous schemes, it required each tag to store a
big number in the scale of thousands. This issue rendered LoF’s implementation
impractical. LoF is also noncompliant with C1G2 because, it requires to modify
both tags and communication protocol between the reader and the tags.

First Non Empty Based (FNEB) estimator, proposed by Han et al. is based
on the size of the first run of 0s in a frame [13]. FNEB assumes an arbitrarily
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large frame size, which is impractical. Maximum Likelihood Estimator (MLE),
proposed by Li et al. came with the motive to minimize power consumption by
the active tags [14]. The multireader tag estimation proposed by Shah and Wong
in [15] assumes that any tag covered by several readers replies to only one of
them. Collision Set Estimator (CSE), proposed in [16] by Zanella uses maximum
likelihood estimation to estimate the population size. CSE does not take accuracy
requirements into account, hence cannot achieve required level of reliability. Shah-
Mansouri and W.S. Wong presented an algorithm to estimate the cardinality or
RFID tags under multiple readers with overlaping regions [17].

We compared our proposed approach GERT with relatively recent tag estima-
tion scheme ART [8]. We owe a sincere acknowlegement to the authors of ART,
for the inspiration and intuition behind writing this paper. Though our work is
analytically different from their’s, understanding their approach contributed to our
understanding of the problem and helped us frame and organize our approach. We
also credit ART for comparing their results to a good number of preceeding works,
because that added significant meaning to the comparison of our results to that
of ART. ART also uses standardized framed slotted Aloha protocol, in which a
reader first broadcasts a value f to the tags in its vicinity, where f represents
the number of time-slots present in a forthcoming frame. Each tag replies to a
randomly picked slot in the frame. Thus, the reader gets a binary sequence of 0s
and 1s by representing a slot with no tag replies as 0 and a slot with one or more
tag replies as 1. So, it’s clear that ART uses {0, 1} channel model and does not
differentiate between a singleton and a collision slot. A 1 may mean exactly 1 or
any other value greater than 1. ART estimates tag population size based on the
average run size of 1s in the binary sequence. They show that the average run size
of 1s in a frame monotonically increases with the increase in the tag population
size and hence it is invertible. ART compared their results and findings with some
of the previous works in the area and claimed to be more cost effective and faster
than all previous works.

Multi-category RFID Estimation was proposed in [18], which is a technique to
estimate RFID tags in different categories. The first ever RFID estimation tech-
nique in presence of blocker tags was proposed in [19]. An algorithm to estimate
RFID tags in composite sets was proposed in [20].

The problem of tag estimation can be formally stated as follows: for a given
reliability requirement α ∈ [0, 1), a confidence interval β ∈ [0, 1) a reader or a set of
readers will have to estimate an unknown tag population size t in a particular area.
The estimation has to maintain the minimum accuracy condition P [|t̂−t| ≤ βt] ≥ α
where t̂ is the estimated value of the actual tag population size t.

GERT uses the framed slotted Aloha protocol specified in C1G2 as its MAC-
layer communication protocol. Reader broadcasts the frame size (f) and a random
seed number (S) to all the tags in its vicinity. Each of the tags participate in the
forthcoming frame with probability p, where p is the persistence probability, the
probability that decides if a tag is going to remain active to participate in the
forthcoming frame. Each individual tag has an ID and uses f and S values to
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evaluate a hash function h(f, S, ID). The value of the hash function is uniformly
distributed within the range [1, f ]. Each tag has a counter that has an initial value
equal to the slot number that it has got evaluating the hash function. After each
slot the reader sends out a termination signal to all the tags and each tag decreases
its counter value by 1. At any given point the tags with counter value equal to
1, reply to the reader. Empty slots are the slots that have not been replied to by
any of the tags; singleton slots are the ones that have been replied to by exactly
one of the tags; collision slots are the slots that have been replied to by more than
one tags. Under {0, 1, e} channel model, each empty slot is represented by a 0,
each singleton slot is represented by a 1, and each collision is represented by an
e, whereas under {0, 1} channel model, each empty slot is represented by a 0 and
each non empty is represented by a 1.

At the beginning of the estimation process GERT runs a probe using the Flazo-
let Martin algorithm [21] to get a rough upper bound tm on the tag population size
t. The critical parameters p, f and n are calculated based on the upper bound tm
and the accuracy requirements α, β, where n is the number of rounds (i.e. frames)
required to meet the accuracy requirements . Using standardized framed slotted
Aloha protocol, depending on the channel model, GERT gets a reader sequence of
{0, 1, e} or {0, 1}. GERT uses Ne−N1

f
and Nn−N0

f
as the estimator under {0, 1, e}

and {0, 1} channel models respectively, where Ne represents the number of e’s (
i.e. collision slots) and N1 is the number of 1’s, Nn is the number of non-empty
slots (i.e, both 1s and e’s) and N0 represents the number 0s in the reader sequence.
GERT calculates the value of the respective estimator (i.e, Ne−N1

f
under {0, 1, e}

and Nn−N0

f
under {0, 1} channel model) for each round . After n rounds of these

measurements we take the average of all these values. This average is finally substi-
tuted for the true mean in the expected value equation of the respective estimator
to estimate the tag population size by an inverse function. We have analyzed in
this paper the conditions under which Ne−N1

f
and Nn−N0

f
are asymptotically Gaus-

sian distributed and their respective expected value functions are invertible, while
meeting the imposed estimation accuracy requirement. Below are the prominent
features of our algorithm:

1. The approximation of our estimator to Gaussian random variable has been
well justified by using ’Triangular Array Central Limit Theorem’.

2. We have strictly maintained the quality of our estimation by taking the
approximation error into account when calculating the overall estimation
error.

3. We have presented the analysis and results of GERT under both {0, 1, e} and
{0, 1} channel models.

4. GERT achieves same level of reliability using fewer number of slots for estima-
tion than the recently proposed Average Run-based Tag estimation(ART) [8].

4



GERT uses fewer number of slots than ART to estimate any given tag popu-
lation size (except for estimating very small tag population sizes) under the same
accuracy requirements. Here, we define the required number of slots as (f + l)×n
where f is the number of slots in a frame, n is the number or rounds and l = 1ms
(i.e. ≈ 3.33 time slots) is the C1G2 specified mandatory time delay between the
end of a frame and the start of the next one [9], [22]. Because of having more side
information, it is intuitively expected that GERT under {0, 1, e} channel model
would require fewer number of slots than ART, but it incurs the extra cost of
distinguishing between a singleton and a collision slot. To ensure a fair ground
for comparison, we compare the results of GERT under {0, 1} channel model with
the results of ART in terms of the number of slots required for estimation and the
achieved reliability.

1.1 Organization of the Thesis

Here we give some guideline about the organization of the remaining part of the
thesis. The next chapter gives the detailed analysis of GERT under {0, 1, e} chan-
nel model. Chapter 3, which refers back to chapter 2 for most parts, gives the
detailed analysis of GERT under {0, 1} channel model. Since the the analysis of
GERT under {0, 1} channel model follows similar steps as GERT under {0, 1, e}
channel model, we used the framework laid down in chapter 2 as reference for chap-
ter 3. The comparative performance of our algorithm to the previously proposed
schemes and the conclusions drawn from there are given in Chapter 4. The final
part of the thesis has appendices that include all the necessary proofs to lemmas
and theorems.
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Chapter 2

GERT Under {0, 1, e} Channel
Model

This chapter and the next one are exclusively dedicated to analyzing the analytical
properties of GERT under {0, 1, e} channel model. We define,

Zf (t) ,
Ne −N1

f
(2.1)

gf (t) , E

[
Ne −N1

f

]
= E [Zf (t)] (2.2)

It is obvious that, Zf can take the values only in the range [−1, 1]. The minimum
value for Zf is −1 considering the case where we have all the slots of a frame with
exactly one reply in them and the maximum value is 1 which occurs when all the
slots are strictly greater than 1.

In GERT, in each frame of the Aloha protocol, we calculate Zf . After n rounds
of these measurements we take the average of all these values. This average is
finally substituted as if it were the true mean, in the expected value equation of
the estimator to estimate the tag population size.

Let, Xij ∼ Bernoulli( p
f
) be the variable that represents the probability that the

ith tag replies to the jth slot. So the value of Xij is 1 with a probability p
f

and the

value of Xij is 0 with a probability (1− p
f
), i.e,

Xij =

{
1, with probability p

f

0, with probability (1− p
f
)

(2.3)

Now we introduce Yj to represent the random variable exactly how many replies
are there to the jth slot i.e. the sum of all Xij for the jth slot over the total number
of tags, and

Yj =
t∑
i=1

Xij. (2.4)

It is straightforward to derive the following probability distribution of Yj,

pYj(y) =


(

1− p
f

)t
= p0, y = 0

t
(
p
f

)(
1− p

f

)t−1
= p1, y = 1

1− p0 − p1 = pe, y = e

(2.5)
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where p0, p1 and pe are the probabilities that a slot has no reply, exactly one reply
and more than one replies, respectively.

Introduction of the following two indicators Y
(1)
j and Y

(e)
j makes our analysis

easier,

Y
(1)
j =

{
1, when Yj = 1

0, when Yj 6= 1
, Y

(e)
j =

{
1, when Yj = e

0, when Yj 6= e
(2.6)

So, (2.1) can be re-written as

⇒ Zf =
1

f

f∑
j=1

(Y
(e)
j − Y

(1)
j ) =

1

f

f∑
j=1

Zj,f (2.7)

where

Zj,f , Y
(e)
j − Y

(1)
j . (2.8)

It is straightforward to show that Zj,f has the following PMF.

Zj,f =


0, with probability p0

−1, with probability p1

1, with probability pe

(2.9)

The first and second moments of Zj,f can be given by,

E[Zj,f ] = µj,f = pe − p1, (2.10)

E[Z2
j,f ] = pe + p1. (2.11)

Combination of (2.10) and (2.11) gives us the variance of Zj,f ,

σ2
j,f = pe + p1 − (pe − p1)2. (2.12)

Let, µf and σ2
f be the mean and variance of Zf , respectively. Using (2.2), (2.7),

(2.10) and (2.12) we have,

µf = gf (t) = pe − p1, (2.13)

σ2
f =

1

f
[pe + p1 − (pe − p1)2]. (2.14)

Now using the expressions from (2.5), equation (2.13) can be rewritten as,

gf (t) = 1−
(

1− p

f

)t
− 2t

(
p

f

)(
1− p

f

)t−1
(2.15)

We define,

r ,
tp

f
(2.16)
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which essentially is the average number of active tags per slot.
Figure 2.2 presents the variance curve against different values of tag population

size r. We see that for the very small values of r , the variance is low because,
for given p and f if t is small we have a lot of 1s and very few e’s which means
p1 is big and pe is very small which in turn makes the term (pe − p1)2 in (2.14)
big and hence the overall variance small. For the opposite reason (i.e. pe is big
and p1amall) we get small variance for bigger values of r. For the r values where
p1 ≈ pe the variance curve hits its peak.

We notice in Figure 2.1 that, there is a dip at the beginning and other than that
the expectation curve is monotonically increasing. The monotonically increasing
part guarantees us a distinct inverse that will help us estimate the actual number
of tags. But for the dip we instead have a singularity i.e. we will get more than
one horizontal points for one vertical point. We either have to operate in the
monotonically increasing region, or we have to find a special way out to select the
actual value out of the multiple values suggested by the estimator in the singularity
region. The following two lemmas shed more light on the matter.

Let the corresponding values of t and r at the point where the dip of gf (t) in
Figure 2.1 occurs be tLM and rLM , respectively.

Lemma 2.1. The local minimum of gf (t) curve occurs at a tag population size
tLM = f

2p
or equivalently at rLM = 1

2
, given frame size f and persistence probability

p.

Lemma 2.2. gf (t) is a convex function of t for t < 3f
2p

, and for the rest of the t
values the function is concave, given frame size f and persistence probability p.

The proofs to the above two lemmas are given in the appendices.
Combining Lemma 2.1 and Lemma 2.2 we can see there exists 1

2p
f ≤ tB ≤

3
2p
f or equivalently 1

2
≤ tBp

f
≤ 3

2
such that gf (tB) = gf (1) (considering that the

minimum possible tag population size is 1). That t corresponds to the point B in
the gf (t) curve and we represent the corresponding value of r by rmin. gf (t) will
go into the singularity if we violate the following condition,

r ≥ rmin. (2.17)

We numerically got the value of rmin = 1.2564 . So, the summary from this section
is that, if we have an r so that (2.17) holds, gf (t) will be a monotonic function and
hence invertible.

It is important to note that, we do not know the value of t rather we just have
an upper-bound on t which is tm. The frame size we are selecting corresponds to
tm not t. Since our frame size corresponds to tm we may end up selecting a bigger
f than we should. As a result we may still end up operating in the singularity
region of gf (t). The next lemma helps us to solve this problem.

Lemma 2.3. In the case of a singularity, i.e. when we have to decide between two
different t̂ corresponding to the same value of the estimator, the value to the right
of the dip is always the value desired.

The proof to lemma 2.3 is given in the appendices.
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2.1 Gaussian Approximation of GERT Estima-

tor Under {0, 1, e} Channel Model

Our estimation of the tag population size has to maintain the accuracy requirement
given by the condition,

P [|t̂− t| ≤ βt] ≥ α (2.18)

Since we are using Zf as our estimator to determine the value of t̂, using (2.1) and
(2.2), the condition in (2.18) can be written as,

P [|g−1f {Zf} − t| ≤ βt] ≥ α

⇐⇒ P [(1− β)t ≤ g−1f {Zf} ≤ (1 + β)t] ≥ α

⇐⇒ P [gf{(1− β)t} ≤ Zf ≤ gf{(1 + β)t}] ≥ α (2.19)

Now to perform our estimation of the tag population size while maintaining the
accuracy requirements given in (2.19), we need the following two conditions,

1. gf (t) has to be an invertible function.

2. a well approximated PDF for Zf (t).

The previous section clearly analysed the conditions under which gf (t) is monotonic
function and hence invertible. This section is particularly devoted to the analysis of
the conditions under which Zf (t) can be well approximated by a Gaussian random
variable.

The Lindeberg-Feller Central Limit Theorem states that sums of independent
random variables, properly standardized, converge in distribution to standard nor-
mal if Lindeberg Condition is satisfied. Since these random variables do not have
to be identically distributed, this result generalizes the Central Limit Theorem for
independent and identically distributed sequences.

It is sometimes the case that X1, X2, ..., Xn a set of independent random vari-
ables possibly even identically distributed but their distributions depend on n.
To find the asymptotic distributions for those random variables we need a spe-
cial version of Central Limit Theorem, known as Triangular Array Central Limit
Theorem.

In our case the probabilities for p0, p1, pe given in (2.5), vary with the tag
population size t for a given frame size f , or equivalently for a given tag population
size t, the probabilities vary with the frame size. Hence we resort to triangular
array CLT [23], to prove that Zf (t) follows Gaussian distribution. In other words,
we resort to Lindeberg Feller Theorem [24].

The statement of Lindeberg Feller Theorem says, let {Xn,i} be an independent
array of random variables with E[Xn,i] = 0 and E[X2

n,i] = σ2
n,i, Zn =

∑n
i=1Xn,i

and B2
n = V ar(Zn) =

∑n
i=1 σ

2
n,i, then Zn → N(0, B2

n) distribution if the condition

10



below holds for every ε > 0,

1

B2
n

n∑
i=1

E
[
X2
n,i1Xn,i

{|Xn,i| > εBn}
]
→ 0 (2.20)

where 1X{A} is the indicator function of a subset A of the set X, and is defined
as,

1X{A} :=

{
1, x ∈ A
0 x /∈ A

In our algorithm, it is easy to see that the random variable Zj,f given in (2.9)
are independent. From (2.10), (2.13) we see that E[Zj,f ] = µf . Lindeberg Feller
theorem requires the variable to have zero mean which is not the case with Zj,f .

To fulfill that requirement, we define a new variable Z̃j,f such that,

Z̃j,f = Zj,f − µf (2.21)

Now using (2.9), the probability distribution of Z̃j,f can be given by,

Z̃j,f =


−µf , with probability p0

−1− µf , with probability p1

1− µf , with probability pe

(2.22)

Using (2.10),(2.12) and (2.21) we have,

E[Z̃j,f ] = 0 (2.23)

V ar[Z̃j,f ] = σ2
j,f (2.24)

We define,

Sf ,
f∑
j=1

Z̃j,f =

f∑
j=1

(Zj,f − µf ) (2.25)

Now, {Z̃j,f} are independent random variables with E[Z̃j,f ] = 0 , Sf =
∑f

j=1 Z̃j,f

and V ar[Sf ] =
∑f

j=1 V ar(Z̃j,f ) = fσ2
j,f . According to Lindeberg Feller Theorem,

Sf will be asymptotically N(0, fσ2
j,f ) if the condition below holds for every ε > 0,

1

fσ2
j,f

f∑
j=1

E
[
Z̃2
j,f1{Z̃j,f}{|Z̃j,f | > ε

√
fσj,f}

]
→ 0 (2.26)

Substituting Sf ∼ N(0, fσ2
j,f ) in (2.25), simple algebraic manipulations using (2.7),

(2.12), (2.14) and (2.25) give us Zf → N(µf , σ
2
f ). So, we can sum up, Zf →

N(µf , σ
2
f ) if (2.26) holds.

11



In the above condition given in (2.26) , the indicator function 1{Z̃j,f}{|Z̃j,f | >
ε
√
fσj,f} plays a pivotal role. For the variable Z̃j,f we have the following 3 cases

of the indicator function,

|1− µf | > ε
√
fσj,f (2.27)

| − 1− µf | > ε
√
fσj,f (2.28)

| − µf | > ε
√
fσj,f (2.29)

It is easy to see that if none of (2.27), (2.28) and (2.29) holds, (2.26) not just
converges to but actually becomes 0. We have proved in the appendix section
that if the following condition holds, none of the (2.27), (2.28), (2.29) holds, or
consequently (2.26) holds,

ε2f ≥ k(r) (2.30)

where k(r) is defined as

k(r) , max{k1(r), k2(r), k3(r)} (2.31)

and the values for k1, k2 and k3 are given by the following equations:

k1(r) =
1∣∣∣−er(1+4r)

(1+2r)2

∣∣∣− 1
(2.32)

k2(r) =

∣∣∣∣∣e2r + (1 + 2r)
(
1
4
− er

)
1
4

(1 + 2r)2 − rer

∣∣∣∣∣ (2.33)

k3(r) =

∣∣∣∣∣e2r − 2er (1 + 2r) + (1 + 2r)2

(1 + 2r)2 − er (1 + 4r)

∣∣∣∣∣ (2.34)

Figure 2.3 demonstrates k1, k2, k3 against different values of r. One noticeable
thing is that only for the very small values of r, k1 is bigger, other than that k2
dominates the other two conditions.

We now come down to a condition, if (2.30) holds, (2.26) strictly becomes 0.
So, for given r and ε if we select a frame size large enough so that (2.30) holds,
the distribution of the estimator can be approximated as Zf ∼ N(µf , σ

2
f ).

Quality Considerations of Gaussian Approximation

The quality of the approximation depends on the value of ε. To ensure that
we satisfy the reliability requirements, we take this approximation error into ac-
count when we calculate the overall approximation error. Exactly speaking Zf →
N(µf , σ

2
f ) means, if the frame size is large enough to satisfy (2.30),

12
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Figure 2.3: k1, k2, k3 against r under {0,1,e} channel model

∣∣∣∣P [l ≤ Zf − µf
σf

≤ u

]
− P [l ≤ θ ≤ u]

∣∣∣∣ ≤ ε (2.35)

where, θ ∼ N(0, 1). Using the above equation we can write,

P

[
l ≤ Zf − µf

σf
≤ u

]
≥ P [l ≤ θ ≤ u]− ε (2.36)

Now for the given reliability requirement α, using (2.36) we have,

P [l ≤ θ ≤ u]− ε ≥ α

⇒ P [l ≤ θ ≤ u] ≥ α + ε (2.37)

Which means that, if we approximate
Zf−µf
σf

as a standard normal, to compensate

for the approximation error we will have to maintain the actual reliability α + ε
instead of the given reliability α. Using the fact that probability can not be greater
than 1,

α + ε ≤ 1⇒ εmax = 1− α (2.38)

Equation (2.38) gives the maximum value of ε that we can operate on for a
given reliability requirement α .

13



2.2 Selection of Critical Parameters

This section clarifies the steps to attain the optimum parameters for GERT under
{0, 1, e} channel model, described by Algorithm 1. Since all the parameters are
functions of the tag population size t which is unknown, we have substituted tm
for t in those equations.

Frame Size f

For given r and tm we can have different pairs of p and f satisfying (2.16). Since
p ≤ 1, (2.16) should give us the maximum possible frame size when p = 1 for given
r and tm. Using (2.16),

fmax =
tm
r

(2.39)

For a given r we will have a particular value of k(r) calculated from (2.31), to
satisfy the Lindeberg Feller conditions. Hence, we can get different pairs of f
and ε satisfying (2.30). Plugging in maximum possible ε given by (2.38) in (2.30)
should give us the minimum allowable frame size for given r. Using (2.30),

fmin =
k(r)

ε2max
(2.40)

Because of the fact that we operate on a fixed value of r, any frame size in the
range [fmin, fmax] will have a corresponding ε ≤ εmax, hence the pair will always
satisfy Lindeberg Feller conditions.

We see in equation (2.16) that for given r and tm, bigger the value of f larger
is p. So, fmax corresponds to p = 1, and any f in the range [fmin, fmax] will have
a corresponding p ≤ 1 for given r and tm.

Number of Rounds n

For a given frame size f , the required number of rounds required for the estimation
of the tag population follows from the accuracy requirements specified in (2.19).
Since for all the frame sizes in the permissible range [fmin, fmax], gf (t) is a mono-
tonic function and Zf ∼ N(µf , σ

2
f ) with an approximation error ε corresponding

to a given f , using (2.19) and (2.36) we have,

P

[
gf{(1− β)tm} − µf

σf
≤ Zf − µf

σf
≤ gf{(1 + β)tm} − µf

σf

]
≥ α + ε (2.41)

Since Zf ∼ N(µf , σ
2
f ), we have

Zf−µf
σf
∼ N(0, 1). Now taking the value of α+ ε as

the CDF of standard normal distribution we get the corresponding cut off points
in the standard normal curve either side of the vertical axis. Let us the symmetric
cutoff points to the right and to the left be z∗ and −z∗ respectively.

14



Algorithm 1: Estimate RFID Tag Population (α, β)

Input:

1. Required reliability α

2. Required confidence interval β

Output: Estimated tag population size t̂
Calculate tm := upper bound, and substitute t by tm.
Find the range R = [rmin, rmax] specified for {0, 1, e} channel model and
discritize it. calculate, lR = length(R).
for m := 1 : lR do

calculate k(r) from (2.31) and use that to obtain fmax and fmin using
(2.39) and (2.40) respectively for given r = R(m).
if fmin ≤ fmax then

make the array, farray = [fmin, fmax]
calculate, lf = length(farray)
for i := 1 : lf do

calculate pi and εi from (2.16) and (2.30) respectively for given r
and f = farray(i).
Evaluate ni from (2.45).

end
Obtain fm, and nm such that
(fm + l)× nm := mini{(farray(i) + l)× ni}

end

end
Obtain rop, fop, and nop such that (fop + l)× nop := minm{(fm + l)× nm}
calculate pop and εop from (2.16) and (2.30)
for j := 1 : nop do

Provide the reader with frame size fop, persistence probability p, and
random seed Sj.
Run Aloha on jth frame.
Obtain Zf (j) = Ne−N1

fop
for the jth frame

end
Z̄f ← 1

nop

∑nop

j Zf (j)

Set gf (t) := Z̄f and solve (2.15) to get the estimated value t̂ for tag
population size t.
return t̂

Q-function is the tail probability of the standard notmal distribution, in other
words Q(x) the probability that a normal random variable will obtain a value x
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standard deviation above the mean. Mathematically, Q-function is defined as

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du. (2.42)

Now using (2.41) and (2.42) it is straightforward to find the value of z∗ to
be z∗ = Q−1

[
1−α−ε

2

]
. Let nright and nleft be the number of rounds required cor-

responding to z∗ and −z∗ respectively. Because of the fact that the standard
deviation gets scaled down

√
n times if we take n rounds of the measurements,

solving the following two equations should give us the values for nleft and nright ,

gf{(1− β)tm} − µf
σf√
nleft

= −z∗ (2.43)

gf{(1 + β)tm} − µf
σf√
nright

= z∗ (2.44)

Since the two equations are not quite symmetric, the values of nleft and nright
might differ from each other. We will go by the higer value and take the ceiling if
it is not an integer to ensure that we fulfill the minimum accuracy requirements.
So, using (2.43) and (2.44) the required number of rounds for given frame size f ,
is given by

n = dmax{nleft, nright}e =

⌈
(z∗)2σ2

f

[gf{(1− β)tm} − µf ]2
,

(z∗)2σ2
f

[gf{(1− β)tm} − µf ]2

⌉
(2.45)

2.3 Selection of r

All other parameters of GERT were selected for a given value of r. To select a
proper r, we go back to the expectation curve given in Figure 2.1 . We see that
for {0, 1, e} channel model, the value of r cannot be less than rmin = 1.26 because
of the singularity considerations.

Calculation of rmax follows from the fact that we need to ensure that the fol-
lowing holds,

fmax ≥ fmin (2.46)

Combinig (2.40) and (2.46), we can calculate the biggest r for which (2.46) holds,

rmax = sup
r≥rmin

{ε2maxfmax(r) ≥ k(r)} (2.47)

It may happen that for a given tm the rmax calculated from (2.47) is smaller
than rmin = 1.26. Which implies that the range [rmin, rmax] does not exist. That
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means the tag population size is not big enough to be estimated even at a value
r = rmin for given εmax. Plugging in r = rmin in (2.39) and (2.40) then solving the
equations under the constraint fmax ≥ fmin, we have

tm ≥
k(rmin)rmin

ε2max
= tml (2.48)

(2.48) implies that, for a given accuracy requirement we can only estimate a partic-
ular tag population size only if the upper bound is greater than tml. For example,
for α = 92% i.e. εmax = 0.08, we can only estimate tag population sizes that have
tm greater than 230 under {0, 1, e} channel model .

2.4 Upper Bound on the Tag Population Size tm

Our algorithm requires an upper-bound on the tag population size which we ob-
tain by using Flajolet and Martin’s probabilistic counting algorithm [21]. We do
it before calculating the parameters p, f , and n because, to calculate all these
parameters we need tm. In Flajolet and Martin’s probabilistic counting algorithm,
the reader keeps issuing one slot frames till the reader gets an empty slot. The
persistence probability starts with a value 1 and keeps on decreasing following a
geometric distribution (i.e., p = 1

2i−1 in the ith frame). If the empty slot occurs in
the jth frame then, tm = 1.2897 × 2j−2 is considered to be an upper bound on
the existing tag poputation size t [21], [12]. Average of tm values obtained in large
number of rounds assymptotically approaaches t [21].

We want the upper bound to be as close to actual population size as possible.
In [8] fair bit of analysis was done on how close tm is to t. Their result shows
that for 99% reliability and 1% confidence interval tm is within 1.66 × t, and for
90% reliability and 10% confidence interval , which is not particularly a very tight
accuracy requirement, tm is within 1.83 × t. This gives us a fair idea that for
reasonable accuracy requirements tm is within 2 × t. This is an assumption that
we made in this paper that tm ≤ 2× t which is well supported by the findings in [8]
and we take the average over 100 rounds to get that tm.

2.5 GERT with Multiple Readers

Firstly, When there are multiple readers they are deployed after site surveys so
that minimum overlapping region between readers is ensured. Secondly, our tm is
just a rough estimate with an error tolerence over 1.64 × t [8]. Because of these
two reasons we can let each reader calculate tm in its own region and all the tms
to get the overall tm. As suggested by Kodialam et al. in [11], we will use a
central controller for all the readers. Accross all the readers the GERT parameters
α, β, tm, p, ε, n, f are the same. Each reader uses the seed issued to it by the central
controller that means all the readers generate the same sequence of seeds. In the ith
frame each reader uses the same seed Si and the each running the hash h(f, Si, ID)
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will reply to the same slot number in across all frames under overlapping reader.
The controller adds all the ith frames and gets a single ith frame. This bars the
same tag getting counted multlple times. GERT uses total n rounds.
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Chapter 3

GERT Under {0, 1} Channel
Model

To justify the fairness of the comparison between our proposed approach to previ-
ously proposed algorithms, we present the analysis of GERT under {0, 1} channel
model in this chapter. Under this model 0 represents an empty slot and 1 repre-
sents a nonempty slot. The Aloha protocol that we used for {0, 1, e} is the same
protocol that we use for {0, 1} channel model to obtain the reader sequence. The
estimator that we are using for {0, 1} model is Nn−N0

f
where Nn is the number of

nonempty slots and N0 is the number of empty slot in frame. The corresponding
equations for (2.1) and (2.2) for this channel model can be given by, (3.1) and (3.2)
respectively.

Zf (t) ,
Nn −N0

f
(3.1)

gf (t) , E

[
Nn −N0

f

]
(3.2)

Lemma 3.1. The expected value function gf (t) is a monotonically increasing func-
tion of r = tp

f
for given frame size f and persistence probability p.

Proof to lemma 3.1 is given in the appendices. So, under {0, 1} channel model
gf (t) is invertible . As far as the requirements of GERT we only need to analyze
the conditions under which Zf can be approximated as Gaussian.

It is straightforward to see that the random variable Yj defined in (2.4), has
the following probability distribution under {0, 1} channel model,

pYj(y) =


(

1− p
f

)t
= p0, y = 0

1−
(

1− p
f

)t
= pn, y 6= 0

(3.3)

where, pn = 1 − p0 is the probability that a particular slot is not empty. Corre-
sponding to Y

(1)
j and Y

(e)
j in (2.6), we introduce the following two indicators for

{0, 1} channel model,

Y
(0)
j =

{
1, when Yj = 0

0, when Yj 6= 0
, Y

(n)
j =

{
1, when Yj 6= 0

0, when Yj = 0
(3.4)
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Figure 3.1: Expected value function of GERT gf (t) against r = tp
f

under {0, 1}
channel model . (f = 200, p = 1)
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Figure 3.2: Variance of GERT estimator against r = tp
f

under {0, 1} channel model.

(f = 200, p = 1)
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Corresponding to (2.8), we define Zj,f , Y
(n)
j − Y (0)

j , and its easy to see that Zj,f
has the following PMF under {0, 1} channel model,

Zj,f =

{
1, with probability pn

−1, with probability p0
(3.5)

It is important to notice that the relation Zf = 1
f

∑f
j=1 Zj,f holds for {0, 1} chan-

nel model as well. Simple algebraic manipulations should give us the mean and
variance for Zj,f and Zj,f for the {0, 1} channel model. Corresponding to (2.13)
and (2.14) in {0, 1, e} for {0, 1} channel model we have,

µf = gf (t) = pn − p0 = 1− 2

(
1− p

f

)t
(3.6)

σ2
f =

1

f
[pn + p0 − (pn − p0)2] (3.7)

Where, pn = 1 − p0 is the probability that a particular slot is not empty.
Now, corresponding to (2.22), the modified version of Zj,f , Z̃j,f has the following
probability distribution under {0, 1} channel model,

Z̃j,f =

{
1− µf , with probability pn

−1− µf , with probability p0
(3.8)

It is obvious that under {0, 1} channel model, the indicator function in (2.26) has
only the following two cases,

|1− µf | > ε
√
fσj,f (3.9)

| − 1− µf | > ε
√
fσj,f (3.10)

Consequently, the corresponding equation for k given in (2.31), under {0, 1} chan-
nel model would be,

k(r) , max{k1(r), k2(r)} (3.11)

and the values for k1and k2 are given by the following equations under {0, 1}
channel model.

k1(r) =
e−r

1− er
(3.12)

k2(r) =
1− e−r

e−r
(3.13)

The proofs of the above two equations are given in the Appendix section of the
paper. Based on Lindeberg Feller theorem applied in {0, 1, e} case, we can say,
if we have a big enough frame size to satisfy (2.30) for given ε and a value of k
calculated from (3.11), (2.26) holds and we have Zf ∼ asymptotically N(µf , σ

2
f )

under {0, 1} channel model. To ensure that we take the approximation error into
account, like {0, 1, e} we have to maintain the actual reliability α + ε instead of
required reliability α for {0, 1} channel model, and we still have that upper bound
on the value of ε given by (2.38).
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3.1 Critical Parameters Under {0, 1} Channel Model

We use the same equations (2.39) and (2.40) as under {0, 1, e} channel model, to
calculate fmax and fmin for given tm and r, except for the fact that the value of
k(r) we use in (2.40) is specific to {0, 1} channel model and is calculated from
(3.11). The corresponding values of p and ε for each f in the range [fmin, fmax]
follow like they did under {0, 1, e} channel model.

Selection of the number of rounds required n to meet the accuracy requirement
under {0, 1} is no different from that of {0, 1, e} channel model. For any f in the
farray mentioned in Algorithm 2, we calculate n required for the given accuracy
requirements from (2.45), as we did for the {0, 1, e} channel model.

3.2 Selection of r

For the {0, 1} channel model we do not have any singularity issue. Hence, we do
not have to maintain any lower bound on r. We still calculate rmax from equation
(2.47) as we did uder {0, 1, e} channel model, except for the fact that in this case
we use k(r) specific to {0, 1} channel model. So, the range of the values of r that
we operate for given tm under {0, 1} channel model is (0, rmax] . It’s easy to see
that, for any value of rmax the range (0, rmax] exists. Since we do not have rmin,
the maximum frame size fmax can be arbitrarily big and the condition fmax ≥ fmin
is always satisfied. This implies that, unlike GERT {0, 1, e}, we can estimate
arbitrarily small tag population sizes under GERT {0, 1} channel model.
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Algorithm 2: Estimate RFID Tag Population (α, β)

Input:

1. Required reliability α

2. Required confidence interval β

Output: Estimated tag population size t̂
Calculate tm := upper bound, and substitute t by tm.
Find the range R = (0, rmax] specified for {0, 1} channel model and
discritize it. calculate, lR = length(R).
for m := 1 : lR do

Calculate k(r) from (3.11) and use that to obtain fmax and fmin using
(2.39) and (2.40) respectively for given r = R(m).
if fmin ≤ fmax then

make the array, farray = [fmin, fmax]
calculate, lf = length(farray)
for i := 1 : lf do

calculate pi and εi from (2.16) and (2.30) respectively for given r
and f = farray(i).
Evaluate ni from (2.45).

end
Obtain fm, and nm such that
(fm + l)× nm := mini{(farray(i) + l)× ni}

end

end
Obtain rop, fop, and nop such that (fop + l)× nop := minm{(fm + l)× nm}
calculate pop and εop from (2.16) and (2.30)
for j := 1 : nop do

Provide the reader with frame size fop, persistence probability pop, and
random seed Sj.
Run Aloha on the jth frame.
Obtain Zf (j) = Nn−N0

fop
for the jth frame

end
Z̄f ← 1

nop

∑nop

j Zf (j)

Set gf (t) := Z̄f and solve (3.6) to get the estimated value t̂ for tag
population size t.
return t̂

3.3 Upper Bound on the Tag Population Size tm

It’s the same algorithm that we use to find the population upper bound for GERT
under the {0, 1} channel model as we used for GERT under {0, 1, e} channel model.
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3.4 GERT with Multiple Readers

Under the multiple reader arrangement GERT under {0, 1} channel model works
exactly the same way as GERT under {0, 1, e} channel model does, except for one
technical difference. The difference is that, the controller runs logical OR operation
on all ith frames of different readers and gets a single ith frame, instead of adding
them which we saw under {0, 1, e} channel model.
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Chapter 4

Performance Evaluation,
Conclusion and Appendices

4.1 Performance Evaluation

After the completion of the analytical analysis of GERT we used MATLAB to get
simulation results for GERT. Figures 4.1 and 4.2 illustrate the actual reliability
of GERT for different reliability requirements under {0, 1} and {0, 1, e} channel
models respectively. We see that the actual reliability of GERT is much greater
than the required reliability under both channel models. This higher level of quality
can be attributed to two distinct properties of GERT. Firstly, because of the
restrictions imposed by the Gaussian approximation of Zf , for a given number of
tags t GERT always maintains a commensurate frame size which is highly unlikely
to get saturated. Secondly, we controlled quality by taking all the approximation
errors into account when we calculated the overall estimation error. This gives
us the advantage of being able to target a lower reliability requirement than the
required reliability. For example, under {0, 1} channel model we see that, when
we have a required reliability of 91%, we can actually aim at 87%. Figure 4.3 and
4.4 present the corresponding number of slots (f + l)×n required for the achieved
reliability given in Figure 4.1 and 4.2 respectively. Since (f + l) × n is random
due to the randomness of tm, we presented the mean value line along with the
standard deviation over 50 samples. The gradual descent of the curves under both
the models, is due to the fact that for the smaller values of t we can not shoot for
the bigger values of r due to restrictions incurred by the condition fmax ≥ fman.
As t gets bigger we can shoot for the larger values of r and the variance curves in
Figures 2.2 and 3.2 suggest that under both the models variance is smaller for the
bigger values of r. That saves us in terms of the number of rounds. The (f + l)×n
curve eventually gets saturated due to the fact that we can not operate beyond
the vaule of r = rmax. So, even if t continues increasing we cannot operate beyond
r = rmax and adjust p to account for the increment in the tag population size. The
required number of slots for ART for (α, β) requirements (91%, 5%), (95%, 5%)
and (97%, 5%) are 1760, 2340 and 2880 respectively for any tag population size t.
As we see in Figure 4.3 compared to ART,except for the very small tag population
sizes GERT under {0, 1} channel model takes much less number of slots to achieve
the same or higher reliability. Comparing between figures 4.3 and 4.4, we notice
that GERT under {0, 1, e} requires fewer number of slots than GERT under {0, 1}
to achieve similar level of accuracy. This shows the advantage of having more side
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Figure 4.1: Actual reliability achieved by GERT under {0, 1} channel model for
different tag population sizes for different accuracy requirements.β = 0.05.
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Figure 4.2: Actual reliability achieved by GERT under {0, 1, e} channel model for
different tag population sizes for different accuracy requirements. β = 0.05
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Figure 4.3: Number of slots required for estimation by GERT under {0, 1} channel
model against the tag population size t, for different levels of achieved reliability.
(β = 0.05)
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Figure 4.4: Number of slots required for estimation by GERT under {0, 1, e} chan-
nel model against the tag population size t, for different levels of achieved reliability.
(β = 0.05)
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Figure 4.5: Comparison of actual reliability between ART and GERT under {0, 1}
channel model for different required reliability requirements. (β = 0.05)

information. This is because under {0, 1, e} each 1 is certain. Because of this added
certainty, we need fewer number of rounds to meet the accuracy requirements under
{0, 1, e} than under {0, 1} channel model.

We simulated ART and compared the achieved reliability with that of GERT
under {0, 1} channel model for different accuracy requirements. Figure 4.5 depicts
that GERT under {0, 1} channel model performs much better that ART in terms
of achieved reliability.

4.2 Conclusion

The key contribution of this thesis is that it proposes a completely new and more
effective technique for the estimation of an RFID tag population size. Our esti-
mator is Gaussian distributed and we proved that in detail with all the necessary
steps. The most prominent feature of GERT is the quality of estimation coming
off rigorous analysis. We supported our analytical results both under {0, 1, e} and
{0, 1} channel models, by simulation results. GERT under {0, 1} channel model
can estimate any arbitrary tag population size with better accuracy than other
existing {0, 1} channel model schemes. Our scheme not just achieves better relia-
bility, it generally uses less resources than other schemes in terms of the number
of slots required for estimation to achieve the same reliability.
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Appendix A

Proof of Lemma 2.1

Proof. To find the local minimum we need to differentiate the expectation curve
and set the derivative to 0. Solving that equation we will get the local minimum
of the dip. Using (2.15),

d

dt
gf (t)] =

d

dt

[
1−

(
1− p

f

)t
− 2t

(
p

f

)(
1− p

f

)t−1]
= 0 (A.1)

Simple algebraic calculations give us,

tLM =
−2
(
p
f

)
−
(

1− p
f

)
ln
(

1− p
f

)
2
(
p
f

)
ln
(

1− p
f

) (A.2)

Here, tLM stands for the t value where the local minimum of the dip occurs (i.e.
at point D in Figure:2.1). Now, since the value of p

f
<< 1 we can approximate

ln
(

1− p
f

)
as − p

f
. This will give us the following, tLM ≈ f

2p
. Which means the

local minimum for the dip occurs at a value of t = tLM which is supported by our
simulation results. Substituting, tLM in (2.16) gives us rLM = 1

2
.
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Appendix B

Proof of Lemma 2.2

Proof. To find an inverse we need gf (t) to be a monotonic function of t . To
find which part of the gf (t) demonstrates monotonic behavior we need the second
derivative of gf (t) and check for it’s convexity and concavity characteristics. Again
using (2.15)

d2

dt2
gf (t) =

(
1− p

f

)t−1
ln

(
1− p

f

)[
−2t

(
p

f

)
ln

(
1− p

f

)
−4

(
p

f

)
−
(

1− p

f

)
ln

(
1− p

f

)] (B.1)

If we closely follow the equation we see that, the value of the common factor(
1− p

f

)t−1
ln
(

1− p
f

)
is negative . So, for the total value to be posive the part

of the equation inside the third bracket will have to be negative. After algebraic

manipulations and approximating ln
(

1− p
f

)
as − p

f
we get for t < 3f+p

2p
,[

2t

(
p

f

)(
p

f

)
− 4

(
p

f

)
+

(
1− p

f

)(
p

f

)]
< 0

Or, equivalently, for t < 3f+p
2p
≈ 3f

2p
, d2

dt2
gf (t) is positive, indicating gf (t) is a convex

function of t and for the rest of the t values the curve is concave. Substituting
t = 3f

2p
in (2.16) gives us r = 3

2
. Our simulation results strongly support that

claim.

30



Appendix C

Proof of Lemma 2.3

Proof. At point B in Figure 2.1, we know the corresponding frame size is fmax,
uning (2.16) and (2.17) we have,

tmp

fmax
≥ rmin ⇒ tmp

fmax
≥ 1.2564 (C.1)

Now from [8], we know that the upper bound on t is always less that 2t for any
reasonable accuracy requirements. With that knowledge, using (C.1)

2tp

fmax
≥ 1.2567 ⇒ 2tp

f
≥ 1.2564 (C.2)

Using (2.16) and (C.2),

r ≥ 0.6283 ∴ r ≥ 1

2
(C.3)

From Lemma 2.1, we know that any point in 1
2
≤ r ≤ rmin corresponds to a t value

to the right side of the dip in the gf (t) curve in Figure 2.1.
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Appendix D

Proof of Lemma 3.1

For GERT under {0, 1} channel model, using equation (3.6) we get,

gf (t) = 1− 2

(
1− p

f

)t
⇒ d

dt
[gf (t)] = −2

(
1− p

f

)t
ln

(
1− p

f

)
⇒ d2

dt2
[gf (t)] = −2

(
1− p

f

)t [
ln

(
1− p

f

)]2
In our algorithm we have p ∈ (0, 1], f ≥ 1 and t ≥ 1. So, the first and second
derivatives of gf (t) with respect to t will always be non-negative and negative
respectively. Hence, gf (t) is a monotonically increasing function of t. Equivalently,
gf (t) is a monotonically increasing function of r = tp

f
for given f and p.
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Appendix E

Derivation of Lindeberg Feller
Conditions for GERT Under
{0, 1, e} Channel Model

First Condition

From equation (2.27) we have the following,

⇒1− µf > ε
√
fσj,f

⇒1− (pe − p1) > ε
√
f [pe + p1 − (pe − p1)2]

⇒1− 2(pe − p1) + (pe − p1)2 > ε2f
[
pe + p1 − (pe − p1)2

]
⇒1−

(
2 + ε2f

)
pe +

(
2− ε2f

)
p1 +

(
1 + ε2f

)
(pe − p1)2 > 0 (E.1)

Letting ε2f be represented by k, and inserting the expression for p0 , p1 and pe we
have,

⇒1− (2 + k)

[
1−

(
1− p

f

)t
− t
(
p

f

)(
1− p

f

)t−1]
+ (2− k)

[
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(
p

f

)(
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f

)t−1]
+ (1 + k)[

1 +

(
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f

)2t

+ 4t2
(
p
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)2(
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)2(t−1)

− 2
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(
p

f

)(
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f
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4t

(
p
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)(
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f
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> 0 (E.2)

We know, for x� 1 and y � 1, (1−x)y can be appriximated as ey ln[1−x] and that

in turn can be reduced to ey[−x−
1
2
x2] applying Taylor series. Applying this we get,

⇒1− (2 + k)

[
1− e−t{

p
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2
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f
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(
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)
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p
f
+ 1

2
( p
f
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]
> 0 (E.3)
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Now we have a list of approximations to make. They are,

e−t{
p
f
+ 1

2
( p
f
)2} ≈ e−t

p
f (E.4)

e−(2t−1){
p
f
+ 1

2
( p
f
)2} ≈ e−2t

p
f (E.5)

e−2(t−1){
p
f
+ 1

2
( p
f
)2} ≈ e−2t

p
f l (E.6)

e−(t−1){
p
f
+ 1

2
( p
f
)2} ≈ e−t

p
f (E.7)

After all these approximations and using (2.16) we have,

⇒1− (2 + k)
(
1− e−r − re−r

)
+ (2− k) re−r + (1 + k)

(
1 + e−2r + 4r2e−2r − 2e−r

)
+ (1 + k)

(
4re−2r − 4re−r

)
> 0

(E.8)

For the equation (2.27) to not hold, (E.8) must not hold. Simple algebraic manip-
ulations give us that for (E.8) to not hold the value of k must be,

k ≥ 1∣∣∣−er(1+4r)

(1+2r)2

∣∣∣− 1
= k1

So, k1 is the minimum value of k for which (2.27) does not hold.

Second condition

From equation (2.28) we have the following,

⇒1 + µf > ε
√
fσj,f

⇒1 + (pe − p1) > ε
√
f [pe + p1 − (pe − p1)2]

⇒1 + 2(pe − p1) + (pe − p1)2 > ε2f
[
Pe + p1 − (pe − p1)2

]
⇒1 +

(
2− ε2f

)
pe −

(
2 + ε2f

)
p1 +

(
1 + ε2f

)
(pe − p1)2 > 0 (E.9)

letting ε2f be represented by k, and inserting the expression for p0 , p1 and pe we
have,

⇒1 + (2− k)
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− t
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> 0 (E.10)

34



Like the first condition (1− x)y can be appriximated as ey ln[1−x] and that in turn

can be reduced to ey[−x−
1
2
x2] applying Taylor series. Applying this along with

approximations made in (E.4), (E.5), (E.6), (E.7) and using (2.16) we have,

⇒1 + (2− k)
(
1− e−r − re−r

)
− (2 + k) re−r + (1 + k)

(
1 + e−2r + 4r2e−2r − 2e−r

)
+ (1 + k)

(
4re−2r − 4re−r

)
> 0 (E.11)

For the equation (2.28) to not hold, (E.11) must not hold. Simple algebraic ma-
nipulations give us that for (E.11) to not hold the value of k must be,

k ≥

∣∣∣∣∣e2r + (1 + 2r)
(
1
4
− er

)
1
4

(1 + 2r)2 − rer

∣∣∣∣∣ = k2

So, k2 is the minimum value of k for which (2.28) does not hold.

Third Condition

From equation (2.29) we have the following,

⇒µf > ε
√
fσj,f

⇒(pe − p1) > ε
√
f [pe + p1 − (pe − p1)2]

⇒(pe − p1)2 > ε2f
[
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]
⇒− ε2f(pe + p1) +

(
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)
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(
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)(
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f
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> 0 (E.12)

Like we did in the previous two conditions, (1 − x)y can be appriximated as

ey ln[1−x] and that in turn can be reduced to ey[−x−
1
2
x2] applying Taylor series. Ap-

plying this along with approximations made in (E.4), (E.5), (E.6), (E.7) and using
(2.16) we have,

⇒− k
(
1− e−r

)
+ (1 + k)

(
1 + e−2r + 4r2e−2r − 2e−r

)
+ (1 + k)

(
4re−2r − 4re−r

)
> 0

(E.13)

For the equation (2.29) to not hold, (E.13) must not hold. Simple algebraic
manipulations give us that for (E.13) to not hold the value of k must be,

k ≥

∣∣∣∣∣e2r − 2er (1 + 2r) + (1 + 2r)2

(1 + 2r)2 − er (1 + 4r)

∣∣∣∣∣ = k3
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So, k3 is the minimum value of k for which (2.29) does not hold.
From the above three conditions we see that if we select the value of k such

that k = max{k1, k2, k3} all of (2.27), (2.28) and (2.29) will not hold or equiva-
lently (2.26) will hold. That essentially means for k = max{k1, k2, k3} the GERT
estimator Zf under {0, 1, e} channel model is Gaussian distributed.
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Appendix F

Derivation of Lindeberg Feller
Conditions for GERT Under {0, 1}
Channel Model

First Condition

From equation (3.9) we have the following,

|1− µf | > εσj,f

⇒1− µf > εσj,f

⇒1− (pn − p0) > εσj,f

⇒1− 1 + 2p0 > εσj,f

⇒2p0 > εσj,f

⇒4p20 > ε2f
[
pn + p0 − (pn − p0)2

]
⇒− kpn − kp0 + p2nk − 2pnp0k + p20k + 4p20 > 0 (F.1)

Simple algebraic manipulations and aforementioned approximations give us, (F.1)
or equivalently (3.9) does not hold if the following is satisfied,

k ≥
∣∣∣∣ e−r

1− e−r

∣∣∣∣ = k1 =
e−r

1− e−r
(F.2)

Second Condition

From equation (3.10) we have the following,

|−1− µf | > εσj,f

⇒1 + µf > εσj,f

⇒1 + (pn − p0) > εσj,f

⇒1 + 1− 2p0 > εσj,f

⇒2− 2p0 > εσj,f

⇒4− 8p0 + 4p20 > ε2f
[
pn + p0 − (pn − p0)2

]
⇒4− 8p0 + 4p20 − kpn − kp0 + p2nk − 2pnp0k + p20k > 0 (F.3)
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Simple algebraic manipulations and aforementioned approximations give us, (F.3)
or equivalently (3.10) does not hold if the following is satisfied,

k ≥
∣∣∣∣1− e−re−r

∣∣∣∣ = k2 =
1− er

e−r
(F.4)

From the above two conditions we see that if we select the value of k such that
k = max{k1, k2}, (3.9) and (3.10) will not hold or equivalently (2.26) will hold.
That essentially means for k = max{k1, k2} the GERT estimator Zf under {0, 1}
channel model is Gaussian distributed.
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