
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

1-21-2018

An Optimizing Java Translation Framework for
Automated Checkpointing and Strong Mobility
Arvind Kumar Saini
Louisiana State University and Agricultural and Mechanical College, asaini2@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Saini, Arvind Kumar, "An Optimizing Java Translation Framework for Automated Checkpointing and Strong Mobility" (2018). LSU
Doctoral Dissertations. 4195.
https://digitalcommons.lsu.edu/gradschool_dissertations/4195

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/4195?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

AN OPTIMIZING JAVA TRANSLATION FRAMEWORK
FOR AUTOMATED CHECKPOINTING AND STRONG MOBILITY

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Science

by
Arvind Kumar Saini

M.S. Computer Science, Midwestern State University, 2008
May 2018

Dedicated to Aryabhata, the astronomer and mathematician of ancient India, who invented
the digital zero.

ii

Acknowledgements

First and foremost, I would like to thank my research advisor, Dr Gerald Baumgartner, for
providing to me his valuable guidance and insights that contributed towards my successful
completion of the dissertation thesis for the doctoral program at Louisiana State University.
Being a student of Dr Baumgartner inspired me to further develop my analytical and critical
thinking skills which has fostered my growth towards the path of a successful researcher and
also to go deeper into the world of cutting-edge technology that has heralded the boom in
information technology in the recent years. I would also like to thank my other professors
at Louisiana State University and the faculty of Midwestern State University who laid the
foundation of my Doctoral program. Finally, I would also like to thank my family members
and friends in India and USA whose encouragement and support was invaluable during all
these years of the Ph.D. program.

iii

Table of Contents

Acknowledgments . iii

Abstract . vi

Chapter 1: Introduction . 1

Chapter 2: Background . 4

Chapter 3: Related Work . 7

Chapter 4: Language and API Design . 9
4.1 Basic Mobility Support . 9
4.2 Class ContextInfo . 11
4.3 Strongly Mobile User Code . 11
4.4 Checkpointing . 12

Chapter 5: Translation from Strong to Weak Mobility 15
5.1 Single-Threaded Agents . 15
5.2 Translation of Methods . 15
5.3 Translation of Agent Classes . 17
5.4 New run1() Translation Scheme . 19
5.5 Protection of Thread Stacks . 20
5.6 Synchronization Blocks . 22
5.7 Translation of Serializable Threads . 23
5.8 Synchronization for Multiple Threads . 24
5.9 Optimizations . 25

Chapter 6: New Constructs . 28
6.1 Previous Translations . 28
6.2 for Loop Translation . 29
6.3 do-while Translation . 30

Chapter 7: Translation Schemes for run1() . 32
7.1 Strongly Mobile Code . 33
7.2 Weakly Mobile Code 1 . 34
7.3 Weakly Mobile Code 2 . 36
7.4 Weakly Mobile Code 3 . 37

Chapter 8: Checkpointing . 40
8.1 Introduction To Checkpointing . 40

iv

8.2 Checkpointing Mechanisms . 41
8.3 Techniques To Reduce Checkpoint Overhead and Memory Space 42
8.4 Levels of Checkpointing . 42
8.5 Diskless and Multilevel Checkpointing . 44
8.6 Our method of Checkpointing . 45

Chapter 9: Measurements . 49

Chapter 10: Conclusions . 55

Chapter 11: Future Work . 56

References . 57

Vita . 61

v

Abstract

Long-running programs, e.g., in high-performance computing, need to write periodic check-
points of their execution state to disk to allow them to recover from node failure. Manually
adding checkpointing code to an application, however, is very tedious. The mechanisms
needed for writing the execution state of a program to disk and restoring it are similar to
those needed for migrating a running thread or a mobile object. We have extended a source-
to-source translation scheme that allows the migration of mobile Java objects with running
threads to make it more general and allow it to be used for automated checkpointing. Our
translation scheme allows serializable threads to be written to disk or migrated with a mobile
agent to a remote machine. The translator generates code that maintains a serializable run-
time stack for each thread as a Java data structure. While this results in significant run-time
overhead, it allows the checkpointing code to be generated automatically. We improved the
locking mechanism that is needed to protect the run-time stack as well as the translation
scheme. Our experimental results demonstrate an speedup of the generated code over the
original translator and show that the approach is feasible in practice.

vi

Chapter 1

Introduction

In the last decade, high performance computing has witnessed an exponential growth in

the computing power due to multifold increase in the number of cores in high performance

systems. Computation is divided into a number of tasks, with each task being executed in

parallel by a thread assigned a core. Such kind of multithreaded programming on multiple

cores results in faster performance when it comes to solving complex tasks. However, in the

case of a core failure, the thread needs to restart execution from the beginning. This results

in the delay in the computation time. The drawback can be overcome by saving the execution

state of the thread on a memory disk at regular intervals. Writing of the execution state by

the thread on memory storage device is known as the checkpoint. Whenever there is core

failure on which a thread is being executed, the last checkpoint is read by the thread and

execution resumes from the point where the interrupt had occurred. This results in reduced

computation time as execution no longer restarts from the beginning of the thread.

It is very likely in the coming few years, High Performance Computing will advance from

Petascale (1015 Flops) to Exascale (1018 Flops) technology. This implies that there will be a

drastic increase in the number of processors in order to achieve a higher degree of parallel

computing. Increase in the number of processors also means more core failures, resulting in

the Mean-Time-Between-Failures getting reduced from hours to minute. To make a system

more fault tolerant system, different techniques of checkpointing have been developed. In

checkpointing, the execution state of the threads running on the cores is written or check-

pointed on a memory disk, at regular intervals. In case of a processor failure, thread the

last checkpoint is read and the thread starts re-executing from it was interrupted. We have

developed a technique that utilizes the translation scheme to makes the task of writing the

1

code for checkpoint less tedious. In our method, mobile agents are deployed as serializable

threads that can read and write on a storage device.

For certain distributed applications, mobile agents (or mobile objects) provide a more con-

venient programming abstraction than remote method invocation (RMI). If an application

needs to process large amounts of remote data, it may be less communication intensive to

ship the computation in the form of a mobile agent to the location of the data than to use

RMI calls to get the data and perform the computation locally. Mobile agents are also less

affected by network connectivity. While the mobile agent is computing at a remote site, the

home machine does not need to remain connected to the internet, which is especially useful

if the home machine is a mobile device.

In mobile agent applications, agents typically operate autonomously using one or more

threads that conceptually run within the agent. Existing mobile agent libraries for Java,

such as Aglets [16, 15] or ProActive [3], however, only provide support for weak mobility,

which allows migrating the agent object but requires that all threads are terminated before

migration. However, Strong Mobility, which allows an agent to migrate seamlessly with run-

ning threads, would be the preferable programming abstraction. It allows a more natural

programming style, since the logic for how and when an agent should migrate can be ex-

pressed procedurally and since it does not require the programmer to manually terminate

all threads before migration and restart them at the destination. It also separates the mi-

gration mechanism from the application logic. Strong mobility, unfortunately, is difficult to

implement because the Java Virtual Machine (VM) does not provide access to the run-time

stacks of threads.

In the previous research, support for strong mobility was implemented as a source-to-source

translator from strongly mobile Java into weakly mobile Java [8, 33]. It was also demonstrated

that strongly mobile agents can be used as containers for deploying applications on a desktop

2

grid [6, 7] or in the cloud [20]. They allow migrating an application that is encapsulated within

the agent without the application programmer having to be aware of the migration.

Our mobility translator generates weakly mobile code by implementing the run-time stack

of a thread as a serializable Java data structure. Compared to other approaches to strong

mobility this has the advantage that it allows multi-threaded strongly mobile agents without

modifying the Java VM. The disadvantage, however, is that it results in very inefficient code.

Since a run-time stack is modified by the thread that owns it as well as by a thread that

wants to migrate the agent, a locking mechanism is required to protect the integrity of the

stacks. With fine-grained locking, this results in a high run-time overhead.

In this dissertation, we describe an optimization framework for our mobility translator.

We present measurements for comparing the cost of different locking mechanisms. We also

present a translation approach that can improve the performance of the generated code

in exchange for a higher latency for migrations. Finally, we outline how standard compiler

optimization techniques can be used for further optimizing the code.

3

Chapter 2

Background

Exascale systems will have a larger number of cores in order to achieve the goal of increasing

the speed of parallel computing. However, the increase in the number of cores will imply

more frequent core failures resulting in delayed computations. In order to reduce overhead

caused by core failure, fault-tolerant technique of checkpointing has been developed. For

checkpointing, serializable threads are used to write the execution state of the program to

the files or external storage disks at specified intervals. In case of a node failure, the thread

can read the execution state from the last checkpoint and program resumes execution from

where it was halted. Mobile agents can be deployed as serializable threads that can be used for

checkpointing. Mobile agents and remote method invocation have the same expressive power.

Any agent program can be translated into an equivalent RMI program and vice versa. In fact,

either mechanism can be implemented on top of the other. Similar to loops and recursion,

however, some problems are more naturally expressed in one of these programming styles.

In actual implementations, RMI is implemented on top of TCP together with object

serialization to allow objects to be sent as arguments to remote methods. An agent migration

is then implemented by the agent environment on the home machine performing a remote

method invocation on the agent environment of the destination machine and passing the

agent itself as an argument to the remote method. In the case of weak mobility, only the

agent object is sent to the destination. For strongly mobile agents, the execution state must

be transferred as well.

A language with support for strong mobility provides a simple mental model for writing

mobile agents. As an example, consider a network broadcast agent that prompts the user

for input, relaying the input message to a number of other host machines. Using a Java-like

language supporting strong mobility the solution is straightforward:

4

public void broadcast(String hosts[]) {

System.out.println("Enter message:");

String message = System.in.readln();

for(int i = 0; i < hosts.length; i++) {

try {

dispatch(hosts[i]);

System.out.println(message);

}

catch(Exception exc) {}

}

dispose();

}

Weak mobility does not allow migration of the execution state of methods (i.e., local

variables and program counters). The dispatch operation simply does not return. Instead,

the framework allows the developer to tie code to certain mobility-related events. E.g., in

IBM’s Aglets framework, the developer can provide callback code that will execute when an

object is first created, just before an object is dispatched, just after an object arrives at a

site, etc. Consider the above application written in an Aglets-like framework:

private String hosts[];

private int i = 0;

private String message;

public void onCreation(String hosts) {

this.hosts = hosts;

System.out.println("Enter message:");

message = System.in.readln();

5

}

public void onArrival() {

System.out.println(message);

}

public void run() {

if (i == hosts.length)

dispose();

dispatch(hosts[i++]);

}

Because weak mobility does not allow the execution state to be transferred, programmers

must manually store the execution state in agent fields (which are transferred) and must

reconstruct the information about where the agent is and what it needs to do next using the

event handling methods. This scatters the logic for how the agent moves from host to host

across multiple methods and, therefore, results in an unnatural and difficult programming

style.

While weak mobility is a conceptually simple mechanism and relatively straightforward to

implement, it results in complex mobile agent code that may have to be written by expert

programmers. By contrast, strong mobility provides a simple programming paradigm but it

is more difficult to implement, e.g., to ensure freedom of race conditions and deadlocks.

6

Chapter 3

Related Work

There are two main techniques for implementing strong mobility: modifying the Java VM

or via translation of either source code or bytecode.

Java Threads [5] , D’Agents [13], Sumatra [1], Merpati [29], and Ara [19] extend the

Sun JVM. CIA [14] modifies the Java Platform Debugger Architecture. JavaThread, CIA,

and Sumatra to not support forced migration, i.e., the ability of an outside thread or agent

dispatching an agent. Also, D’Agents, Sumatra, Ara, and CIA do not support the migration

of multi-threaded agents. NOMADS [30] uses a customized virtual machine called Aroma

that supports forced mobility and multi-threaded agent migration. The drawback of all

these approaches is that relying on a modified or customized VM make it difficult to port

and deploy agent applications. NOMADS and Java Threads are only compatible with JDK

1.2.2 and below, D’Agents needs the modified Java 1.0 VM, and Merpati and Sumatra are

no longer supported. Furthermore, NOMADS, Sumatra, and Merpati do not support just-

in-time compilation.

WASP [11] and JavaGo [28] implement strong mobility in a source-to-source translator

that constructs a serializable stack just before the migration using the exception handling

mechanism. Neither system is able to support forced mobility. Also, JavaGo does not support

multi-threaded agent migration and does not preserve locks on migration. Correlate [31]

and JavaGoX [24] are implemented using byte code translation. While they support forced

mobility, they do not support multi-threaded agent migration.

Instead of using a source-to-source or bytecode translator for creating a serializable stack

before migration like the previous translation approaches, in our approach a source-to-source

translator ensures that serializable stacks are maintained at all times [8, 33]. This allows both

7

forced migration and multi-threaded agent migration. Also, our approach better maintains

the Java semantics, e.g., by preserving synchronization locks across migrations.

8

Chapter 4

Language and API Design

Unlike a weak mobility library, which requires several event handlers and utility classes to

simplify programming of itineraries, strong mobility can be supported with a very simple

API. Our original support for strong mobility consisted simply of the interface Mobile and

the two classes MobileObject and ContextInfo. While the design looks like a library API,

it is really a language extension, since our proposed translation mechanism compiles away

the interface Mobile and the class MobileObject.

4.1 Basic Mobility Support

Every mobile agent must (directly or indirectly) implement the interface Mobile. Similar to

Java RMI, a client of an agent must access the agent through an interface variable of type

Mobile or a subtype of Mobile.

Interface Mobile is defined as follows:

public interface Mobile extends java.io.Serializable {

public void go(java.net.URL dest)

throws java.io.IOException,

com.ibm.aglet.RequestRefusedException;

}

Like Serializable, interface Mobile is a marker interface. It indicates to a compiler or

preprocessor that special code might have to be generated for any class implementing this

interface.

As explained in Section 5 below, we used the IBM Aglets library for implementing our

support for strong mobility. This is currently reflected in the list of exceptions that can be

9

thrown by go(). In a future version, we will add our own exception class(es) so that the

surface language is independent of the implementation.

Class MobileObject implements interface Mobile and provides the two methods go() and

getContextInfo(). To allow programmers to override these methods, they are implemented

as wrappers around native implementations that are translated into weakly mobile versions.

public class MobileObject implements Mobile {

private native ContextInfo realGetContextInfo();

private native void realGo(java.net.URL dest)

throws java.io.IOException,

com.ibm.aglet.RequestRefusedException;

protected ContextInfo getContextInfo() {

return realGetContextInfo();

}

public void go(java.net.URL dest)

throws java.io.IOException,

com.ibm.aglet.RequestRefusedException {

realGo(dest);

}

}

A mobile agent class is defined by extending class MobileObject.

The method getContextInfo() provides any information about the context in which the

agent is currently running, including the host URL and any system objects or resources that

the host wants to make accessible to a mobile agent.

The method go() moves the agent to the destination with the URL dest. This method

can be called either from a client of the agent or from within the agent itself. If go() is called

from within an agent method foo(), the instruction following the call to go() is executed on

10

the destination host. Typically, an agent would call getContextInfo() after a call to go()

to get access to any system resources at the destination.

4.2 Class ContextInfo

Class ContextInfo is used for an agent to access any resources on the machine it is currently

running on:

public class ContextInfo implements java.io.Serializable {

private java.net.URL hostURL;

public ContextInfo (java.net.URL h) { hostURL = h; }

public java.net.URL getHostURL() {

return hostURL;

}

// ...

}

Currently, we only provide a method getHostURL() that returns the URL of the agent envi-

ronment in which the agent is running. In a future version, we will extend class ContextInfo.

For providing access to special-purpose resources such as databases, an agent environment

can implement the method getContextInfo() to return an object of a subclass of class

ContextInfo. By publishing the interface to this object, agents can be written to access

those resources.

A mobile agent class could then simply be defined as a subclass of class MobileObject

and would typically contain a thread that carries out the agent actions and moves to remote

machines when needed.

4.3 Strongly Mobile User Code

For writing a mobile agent, the programmer must first define an interface, say Agent, for

it. This interface should extend interface Mobile and declare any additional methods. All

11

additional methods must be declared to throw an exception of type AgletException. An

implementation of the mobile agent then extends class MobileObject and implements inter-

face Agent. A client of the agent must access the agent through a variable of the interface

type Agent and through a proxy object similar as in Java RMI or in Aglets.

When calling a method on an agent, an exception will be thrown if the agent is not

reachable. As in Java RMI, this is expressed by declaring that the method might throw an

exception. In our current design, we use the exception class AgletException. In a future

version, we will provide our own exception class.

4.4 Checkpointing

For writing a serializable thread for manual or automated checkpointing, we define the inter-

face SerializableRunnable as an extension of the Serializable and Runnable interfaces.

public interface SerializableRunnable extends Serializable, Runnable { }

A class SerializableThread is defined as an implementation of interface Serializable-

Runnable. SerializableThread class contains a run() method which is overridden by the

extension of the class.

public class SerializableThread implements SerializableRunnable {

public void run() { }

}

A Serializable thread to be deployed as a mobile agent is an extension of the class Serial-

izableThread. Translated strong mobility statements are encoded inside the run() method.

The method Restart() resumes execution after reading the last checkpoint.

public class T extends SerializableThread {

transient CheckPointer cp;

transient boolean rollover = false;

Semaphore sem = new Semaphore(1);

12

transient int pc = 0;

transient int i = 0;

T(CheckPointer c) throws IOException {

cp = c;

}

void reinit(CheckPointer c) {

cp = c;

// ...

}

public void start() {

run();

}

// Restarting the execution from the last checkpoint

public void restart(int i, CheckPointer c) throws IOException {

pc = 0;

System.out.println(i);

cp = c;

this.i = i + 1;

run();

}

public int index() {

return i;

}

// Transalted

13

public void run() {......

}

}

14

Chapter 5

Translation from Strong to Weak Mobility

5.1 Single-Threaded Agents

For efficiency reasons it would be desirable to provide virtual machine support for strong

mobility. However, a preprocessor or compiler implementation has the advantage that the

generated code can run on any Java VM, and that it is easier to implement and to experiment

with the language design.

For our initial prototype, we chose to design the translation mechanism for a preprocessor

that translates strongly mobile code into weakly mobile code that uses the Aglets library.

For our current reimplementation, we will generate code for the ProActive library [3].

For implementing strong mobility in a preprocessor, it is necessary to save the state of a

computation before moving an agent so it can be recovered afterwards. Fünfrocken describes

a translation mechanism that inserts code for saving local variables just before moving the

agent [11]. This has the disadvantage that the go() method cannot be called from arbitrary

points outside the agent.

Our translation approach is to maintain a serializable version of the computation state at

all times by letting the agent implement its own run-time stack. This increases the cost of

regular computation as compared to Fünfrocken’s approach, but it simplifies restarting the

agent at the remote site.

5.2 Translation of Methods

For making the local state of a method serializable, we implement activation records of

agent methods as objects. For each agent method, the preprocessor generates a class whose

instances represent the activation records for this method.

An activation record class for a method is a subclass of the abstract class Frame:

15

public abstract class Frame

implements Cloneable, java.io.Serializable {

public Object clone() { ... }

abstract void run();

}

Activation records must be cloneable for implementing recursion as explained below. The

translated method code will be generated in method run().

For example, given an agent class C with a method foo of the form

void foo(int x) throws AgletsException {

int y = x + 1;

go(new URL(dest));

System.out.println(y);

}

(and ignoring exception handling and synchronization for simplicity) we might generate a

class Foo of activation records for foo of the form

class Foo extends Frame {

C This;

int x;

int y;

int pc = 0; // program counter

Foo(C t) { this.This = t; }

void setArgs(int x) { this.x = x; }

void run() {

if (pc == 0) { pc++; y = x + 1; }

if (pc == 1) { pc++;

go(new URL(This.dest)); This.run1(); }

16

if (pc == 2) { pc++; System.out.println(y); }

}

}

The parameter and the local variable of method foo() became fields of class Foo. In addition,

we introduced a program counter field pc and a variable This for accessing fields in the agent

object.

The method run() contains the original code of foo() together with code for incrementing

the program counter and for allowing run() to resume computation after moving. Calls of

agent methods are broken up into a call of the generated method followed by This.run1(),

as explained below. For allowing the agent to be dispatched by code outside the agent class,

the program counter increment and the following instruction must be performed atomically,

which requires additional synchronization code.

For efficiency, the preprocessor could group multiple statements into a single statement

and only allow the agent to be moved at certain strategic locations.

5.3 Translation of Agent Classes

An agent now must carry along its own run-time stack and method dispatch table. The

generated agent class contains a Frame array as a method table and a Stack of Frames as

the run-time stack. When calling a method, the appropriate entry from the method table

is cloned and put on the stack. After passing the arguments, the run method executes the

body of the original method foo while updating the program counter.

Suppose we have an agent class AgentImpl of the form

public class AgentImpl extends MobileObject implements Agent{

int a;

public AgentImpl() { /* initialization code */ }

public void foo(int x) throws AgletsException { ... }

}

17

Since this class indirectly implements interface Mobile, the preprocessor translates it into

the following code:

public class AgentImpl extends Aglet {

int a;

Frame[] vtable = { new Foo(this) };

final int _foo = 0;

Stack stack = new Stack();

public void onCreation (Object init) {

/* initialization code */

}

public void foo(int x) {

Foo frame = (Foo) (vtable[_foo].clone());

stack.push(frame);

frame.setArgs(x);

}

public void run1() {

Frame frame = (Frame) stack.peek();

frame.run();

stack.pop();

}

class Foo extends Frame { /* as described above */ }

}

The preprocessor eliminates interface Mobile and class MobileObject and lets the agent

class extend class Aglets.

18

For implementing method dispatch, the agent includes a method table vtable of type

Frame[]. The constant _foo is the index into the method table for method foo. The field

stack implements the run-time stack.

The constructor of class AgentImpl is translated into the method onCreation. Since

Aglets only allows a single Object as argument of onCreation(), any original constructor

arguments must be packaged in an array or vector by the preprocessor.

As described above, the original agent method foo() gets translated into a local class

Foo of activation records. The method foo() in the generated code implements the call

sequence: it allocates an activation record on the stack and passes the arguments. The code

for executing the method on the top of the stack and for popping the activation record in

method run1() is shared between all methods. A client must first call foo() followed by a

call to run1().

For resuming execution after arriving at the destination, we must also generate a method

run() inside class AgentImpl:

public void run() {

while (! stack.empty())

run1();

}

The drawback of this technique is that agent might be invoked to relocate

5.4 New run1() Translation Scheme

public void run() throws InterruptedException {

semaphore.acquire();

while (!stack.empty())

run1();

}

19

public void run1() throws InterruptedException {

if (waitingWriters > 0) {

semaphore.release();

semaphore.acquire();

}

Frame frame = (Frame) stack.peek();

frame.run();

stack.pop();

}

Second method

public void run() throws InterruptedException {

semaphore.acquire();

while (!stack.empty())

run1();

}

public void run1() throws InterruptedException {

Frame frame = (Frame) stack.peek();

frame.run();

stack.pop();

}

5.5 Protection of Thread Stacks

It is imperative that an agent cannot be dispatched by another thread between incrementing

the program counter and executing the following statement. If the program counter increment

and the following statement were not executed atomically, a thread could be dispatched

after the program counter increment and incorrectly miss execution of the statement upon

arrival. Since by definition this type of synchronization need not be maintained across VM

20

boundaries, standard Java synchronization techniques are used. For a single-threaded agent,

we simply synchronize on the agent object itself. For method calls, we only need to protect

the call to set up the activation record. The actual execution of run1() does not need to

be synchronized since by then a new activation record with its own pc will be on top of the

stack:

synchronized(This) { pc++; go(new URL(This.dest)); }

This.run1();

For preventing the agent from being dispatched between the program counter increment and

the next instruction, the call of realGo() in MobileObject.go() must also be synchronized

on the agent object.

If two agents try to dispatch one another, this synchronization code could lead to a dead-

lock. For executing the statement b.go(dest), Agent a would first synchronize on itself.

Then a synchronization on b would be required to protect the integrity of b’s stack. If sim-

ilarly b would execute a.go(dest), a deadlock would result. To prevent this, the call of

realGo() is synchronized on the agent context instead of on the caller.

public class MobileObject implements Mobile {

public void go(java.net.URL dest)

throws IOException, RequestRefusedException {

synchronized(TheAgentContext) {

synchronized(this) { realGo(dest); }}

}

The only time any thread synchronizes on two objects is now in the call of realGo(), in which

case the first synchronization is on the agent context. Deadlocks are, therefore, prevented.

This synchronization mechanism ensures that only one agent can migrate at a time. If two

agents a and b try to dispatch one another, the first one, say a, will succeed. By the time b

21

tries to dispatch a, a is already on a different host. The call to a.go() will, therefore, throw

an exception that must be handled by b.

This synchronization mechanism could be extended to multi-threaded agents. In this case,

each thread would have its own execution stack. Instead of on the agent, we would have

to synchronize on the thread. In effect, the threads would become agents. When migrating

an agent, we would have to ensure that all thread are in a safe state. This can be done by

maintaining a counting semaphore whose count indicates how many thread are currently

running.

5.6 Synchronization Blocks

When the method go() is called from inside a synchronized block or method, the semantics of

the synchronized code block needs to be retained while relocating the agent. On encountering

the synchronized method or block, the object gets hold of the intrinsic lock in order to ensure

mutual exclusion within the block. However, the lock is lost when the agent is moved to the

new destination. Due to the inherent security features of the JVM, the intrinsic locks are

not saved in the objects during serialization. Instead, the locks are hidden within the JVM,

thus making them inaccessible to the user.

However, the above problem can be eliminated by using Serializable locks. In the

translation mechanism, an object of serializable MobileMutex class is created for an ob-

ject that uses synchronization. Locking and unlocking of the synchronized code block is

implemented by lock() and unlock() of the corresponding SerializableLock object. The

SerializableLock class is shown below :

public class SerializableLock implements java.io.Serializable

boolean locked = false;

public SerializableLock() {}

public synchronized void lock() {

if (!locked) locked = true;

22

else {

while (true) {

try {

wait();

locked = true;

break;

}

catch(InterruptedException ex) {}

}

}

public synchronized void unlock() {

locked = false;

notify();

}

}

5.7 Translation of Serializable Threads

Our mobility translator supports migration of multithreaded agents. Unfortunately, the Java

library classes Thread and ThreadGroup are not serializable. Therefore, for each use of

the classes Thread and ThreadGroup we need to generate a serializable wrapper of classes

SerializableThread and SerializableThreadGroup, respectively. The go() method on an

agent can be invoked by another agent in the system or by a thread within the agent itself.

The go() method calls the realgo() method to check whether the agent is already on the

move. If so, a MoveInterrupt exception is thrown. Otherwise, each SerializableThread

calls the interrupt() method of the underlyingThread class. This terminates any wait(),

join(), or move() functions if they are being executed. The time remaining to completely

23

execute these function calls is saved so that the function can resume execution at the desti-

nation from the point where it had been interrupted.

The next step is to call the packUp() method of the main agent wrapper of the thread

group. This in turn calls the packUp() methods of the wrappers for all the threads and the

thread groups. The underlying state of execution of each thread and thread group is saved

to the corresponding wrappers. All the threads are forced to halt any further executions

and subsequently the agent is shipped to the destination by the dispatch() call. At the

destination, the reinit() method of the main agent thread group wrapper is invoked. This

method calls the reinit() method of each wrapper. The called reinit() methods create

Thread or ThreadGroup objects from their corresponding wrappers and the execution states

of the threads are restored.

After the restoration of the execution states, the start() method of the main thread group

wrapper is called. This method invokes the start() methods of all the SerializableThread

wrappers. Then start() method of the underlying thread is called, which then calls the

run() method of the SerializableThread wrapper. The run() method checks the stack

of the SerializableThread wrapper. If the stack is empty, then the run() method of the

Runnable target is called. Otherwise, the activation records in the stack are executed.

5.8 Synchronization for Multiple Threads

An agent should not be shipped to the destination while a thread is in the middle of executing

a statement. To prevent this from happening, the program counter update and a statement

execution should be performed atomically. Neither should any two agents dispatch each

other at the same time nor should two threads within the same agent try to move the agent

simultaneously. For example, each statement in the thread is protected by a lock mechanism

as shown below:

semaphore.acquire();

if (pc == i) {

24

pc++;

stmt;

}

semaphore.release();

The problem of lock synchronization for multi-threaded agents is comparable to the

readers-write problem with writers priority. Each thread in the agent is assigned a lock.

The threads that are executing statements are considered to be readers and the thread that

invokes the go() method to move the agent is considered to be the writer. After the reader

thread is done executing the statement, the lock is released and acquired by the writer thread.

When the writer thread has acquired the locks of all the readers, only then can the agent be

allowed to relocate.

The drawback by having a locking mechanism around each program counter update and

statement, is that it incurs a large overhead. On the other hand, synchronizing on an entire

agent instance reduces the degree of parallelism in the system.

5.9 Optimizations

Our translation mechanism introduces several sources of inefficiencies. Migration of a strongly

mobile agent is slower than that of a handwritten weakly mobile agent, because the run-time

stacks need to be serialized and shipped along with the agent. However, since the expected

behavior of mobile agents is that they spend a significantly larger amount of time computing

than migrating, the overhead imposed on regular computation is of much more concern.

The computation overhead comes from three sources: the locking mechanism for protecting

the run-time stacks, the frequency of locking and the associated overhead of testing and

incrementing the program counter, and pushing activation records onto the run-time stacks.

A straight-forward optimization is to combine multiple consecutive statements, e.g., mul-

tiple assignments, into a single block without releasing and re-acquiring the lock after each

statement.

25

semaphore.acquire();

if (pc == i) {

pc++;

stmt1;

stmt2;

stmt3;

}

semaphore.release();

This increases the latency slightly until a call to go() is honored and the agent can migrate,

but given the infrequency and cost of migration, even a latency of up to 1 second would

likely not be a problem for most applications.

Much of the locking overhead itself comes from ensuring that writers (i.e., threads that

want to move an agent) do not starve. A readers-writer lock with reader priority would be

significantly cheaper but it could not insure freedom of starvation for writers. Since writers

occur very infrequently, it is possible to keep the stack locked for readers by default and only

allow a writer to proceed if one is pending. E.g., instead of releasing and re-acquiring the

lock, we could use

if (waitingWriters) {

semaphore.release();

semaphore.acquire();

}

using an atomic Boolean or atomic integer to test for the presence of writers.

Such a locking-scheme then allows a different code structure. Instead of having lock-unlock

pairs around statements or consecutive groups of statements, it would be possible to have

these if-conditions with unlock-lock pairs only in a few strategic places in the code. Again,

26

this would increase the latency until a migration can take place, but it has the potential to

drastically improve performance.

In addition, it would be possible to use standard compiler optimizations to further reduce

the run-time overhead. The overhead of maintaining the program counter for a loop can be

reduced by unrolling the loop. Inlining of methods can be used to eliminate the expensive

method call sequence. Methods that do not contain loops may not need to be translated at

all. Finally, with worst-case execution time analysis, it would be possible to give a bound on

the run-time of a method or code fragment and only generate locking code to test for the

presence of writers if the worst-case execution time is more than the acceptable migration

latency.

27

Chapter 6

New Constructs

6.1 Previous Translations

Translation mechanisms for the conditional and loop statements have also been implemented.

In this section, translations scheme for the if-else and while statements will be explained

first. The implementaion of if-else and while statements had been developed by [6].

The strongly mobile code to be translated is shown below:

if (cond) stmt1; else stmt2;

The translated weakly mobile code is shown below. thisIf, thisWhile, thisFor and thisDo

are the translations for if, while, for and do-while statements respectively. Statement stmt’

is translation of statement stmt in the strongly mobile code. inpc(stmt) denotes program

counter value before execution of stmt and outpc(stmt) denotes program counter value after

the execution of stmt.

if (((pc > inpc(thisIf)) && (pc < outpc(stmt1’)))

|| (pc == inpc(thisIf)

&& cond)) {

stmt1’;

}

if (pc == inpc(thisIf))

pc = outpc(stmt1’) + 1;

if ((pc >= inpc(stmt2’)) && (pc < outpc(stmt2’))) {

stmt2’;

}

if ((pc == outpc(stmt1’))

|| (pc == outpc(stmt2’))) {

28

pc = outpc(stmt2’) + 1;

}

while (cond) { stmt’ }

while ((pc >= inpc(thisWhile))

&& (pc <= outpc(stmt’))) {

if (pc == inpc(thisWhile) && ! cond) {

pc = outpc(stmt’) + 1;

break;

}

stmt’;

if (pc == outpc(stmt’)) {

pc = inpc(thisWhile);

}

}

6.2 for Loop Translation

The translation for the for loop in strongly mobile code

for (InitialStmt; Cond; AfterStmt) {

stmt;

}

is given below

for (InitialStmt; (pc >= inpc(thisFor) && pc <= outpc(stmt)); AfterStmt) {

if (pc == inpc(thisFor) && !(cond)) {

pc = outpc(stmt) + 1;

break;

}

29

stmt;

if (pc == outpc(stmt)) {

pc = inpc(thisFor);

}

}

InitialStmt and AfterStmt are from the untranslated for loop. thisFor is the translated

version of the for loop. The loop is executed as long as the value of the program counter

variable is between inpc(thisFor) and outpc(stmt’) inclusive. If the condition is false, the

value of the program counter after the execution of the translated statement is incremented

by one and the loop is ended by the break statement.

6.3 do-while Translation

The translation for the do-while loop in strongly mobile code

do { stmt; } while (cond);

is given below

do {

if (pc >= inpc(thisDo) && pc < inpc(thisWhile)) {

stmt;

}

if (pc == inpc(thisWhile) && ! cond) {

pc = output(stmt) + 1;

break;

}

stmt;

if (pc == outpc(stmt)) {

pc = inpc(thisWhile);

}

30

} while ((pc >= inpc (thisWhile)) && (pc <= outpc(stmt)));

thisDo is the translation of the do statement. The translation ensures that the stmt’ is

executed at least once. if the condition is false after the execution of the statement for the

first tim, program counter variable after statement execution is incremented by one and the

loop ends due to the break statement. In case the condition is true, stmt’ is executed again.

The program counter variable is set to value of the program counter before the execution of

thisWhile statement.

31

Chapter 7

Translation Schemes for run1()

The strongly and different versions of weakly mobile codes have been designed to ensure that

optimization at runtime is minimal as possible. In order to achieve minimal optimization,

the following

1) The value for bound integer variable n is assigned by a function call.

int n = bound();

2) The integer variables x, x1, x2...x9 are assigned values by random functions.

// Inititalize variables x, x1...x10 randomly.

x = random.nextInt(100);

x1 = random.nextInt(100); x2 = random.nextInt(100);

x3 = random.nextInt(100); x4 = random.nextInt(100);

x5 = random.nextInt(100); x6 = random.nextInt(100);

x7 = random.nextInt(100); x8 = random.nextInt(100);

x9 = random.nextInt(100); x10 = random.nextInt(100);

3) The variables x, x1, x2...x9 are used as a variables in an arbitrary function which is invoked

after the for loop.

// Define a method that uses variables x, x1, x2...x10

// for some arithmetical operation.

int func(int x, int x1, int x2, int x3, int x4,

int x5, int x6, int x7, int x8, int x9, int x10) {

int y = x + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;

return y;

}

32

The for loops in the strongly and weakly mobile code invoke the method below:

//Define method bar() which is called from the function foo()

void bar() {

int x, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10;

int n;

//Initialize variables x, x1, ...x10, n

x = 1; x1 = 2; x2 = 3; x3 = 5; x4 = 7; x5 = 11;

x6 = 13; x7= 17; x8 = 19; x9 = 23; x10 = 29;

n = 10;

for (int i = 0; i < n; i++) { //Loop n times

//Add variable x variables to x1...x10

x1 = x1 + x; x2 = x2 + x; x3 = x3 + x;

x4 = x4 + x; x5 = x5 + x; x6 = x1 + x;

x7 = x1 + x; x8 = x1 + x; x9 = x1 + x;

x10 = x10 + x;

}

}

7.1 Strongly Mobile Code

The code fragment below is the strongly mobile code. The foo() function has a for loop which

iterates for specific number of times. The bar() function is invoked during each iteration.

void foo() {

...

...

for (int count = 0; count < 101; count++) {

long start = System.nanoTime();

for (int i = 0; i < n; i++) {

// Add variable x variables to x1...x5

33

x1 = x1 + x; x2 = x2 + x; x3 = x3 + x;

x4 = x4 + x; x5 = x5 + x;

bar(); // bar() function is called.

// Add variable x variables to x6...x10

x6 = x1 + x; x7 = x1 + x; x8 = x1 + x;

x9 = x1 + x; x10 = x10 + x;

}

System.out.println(System.nanoTime() - start);

// Call function func()

func(x, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10);

}

}

7.2 Weakly Mobile Code 1

Code fragment below is the translated weakly mobile code for the strongly mobile code

above. There is a unlocking-locking pair after every program counter update and statement

execution. The bar() and run1() functions are called before the lock is released.

class Foo extends Frame { // foo() function translated into Foo frame.

...

void run() throws InterruptedException { //Begin run function

...

for (int i = 0; pc >= 0 && pc <= 10; i++) { //Beginning of for loop

if (pc == 0 && !(i < n)) {

pc = 11;

break; // Loop ends

}

semaphore.release();

semaphore.acquire(); //Lock-unlock pair

34

if (pc == 0) {

pc++;

x1 = x1 + x;

}

...

semaphore.release();

semaphore.acquire();

if (pc == 5) {

pc++;

bar(); // Push Bar frame on run time stack

// run1() function is after lock is acquired and

// before the lock is released

// Pop the bar frame from run time stack and

// execute run() function.

run1();

}

semaphore.release();

semaphore.acquire();

...

if (pc == 9) {

pc++;

x10 = x10 + x;

}

if (pc == 10) {

pc = 0;

}

semaphore.release();

semaphore.acquire();

35

}

}

}

7.3 Weakly Mobile Code 2

Code fragment below is the translated weakly mobile code for the strongly mobile code

above. The statements are grouped into a logical block.There is a unlocking-locking pair

after every program counter update and logical block execution. The bar() function is called

before the lock is released and run1() function after the release.

class Foo extends Frame { // foo() function translated into Foo frame.

...

void run() throws InterruptedException { // Begin run function

...

for (int count = 0; count < 101; count++) {

pc = 0;

long start = System.nanoTime();

for (int i = 0; pc >= 0 && pc <= 2; i++) {

if (pc == 0 && !(i < n)) {

pc = 3;

break;

}

semaphore.release();

semaphore.acquire();

if (pc == 0) {

pc++;

x1 = x1 + x; x2 = x2 + x; x3 = x3 + x;

x4 = x4 + x; x5 = x5 + x;

bar(); // Push Bar frame on run time stack

36

}

semaphore.release();

// Pop Bar frame from the stack and execute run() function

run1();

semaphore.acquire();

if (pc == 1) {

pc++;

x6 = x6 + x; x7 = x7 + x; x8 = x8 + x;

x9 = x9 + x; x10 = x10 + x;

}

if (pc == 2) {

pc = 0;

}

semaphore.release();

semaphore.acquire();

}

System.out.println(System.nanoTime() - start);

// Invoke func() function

func(x, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10);

}

}

}

7.4 Weakly Mobile Code 3

Code fragment below is the translated weakly mobile code for the strongly mobile code

above. The statements are grouped into a logical block.There is a unlocking-locking pair

after every program counter update and logical block execution. The bar() function is called

before the lock is released and run1() function after the release.

37

class Foo extends Frame { // Run time stack Foo

...

void run() throws InterruptedException { // Begin run function

...

for (int count = 0; count < 101; count++) {

pc = 0;

long start = System.nanoTime();

for (int i = 0; pc >= 0 && pc <= 1; i++) {

if (pc == 0 && !(i < n)) {

pc = 2;

break;

}

semaphore.release();

semaphore.acquire();

if (pc == 0) {

pc++;

x1 = x1 + x; x2 = x2 + x; x3 = x3 + x;

x4 = x4 + x; x5 = x5 + x;

// Push Bar frame on run time stack

bar();

// Pop Bar frame from the stack and execute run()

run1();

x6 = x6 + x; x7 = x7 + x; x8 = x8 + x;

x9 = x9 + x; x10 = x10 + x;

}

if (pc == 1) {

pc = 0;

}

38

semaphore.release();

semaphore.acquire();

}

System.out.println(System.nanoTime() - start);

func(x, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10);

}

}

}

However in the above scheme, statements after the bar() method in the logical block might

not get executed if the agent relocates during the execution of activation record of bar()

method. In that case, after the execution of the activation record of bar() method is com-

pleted, execution in the callee method foo() resumes from the last program counter update

instead.

39

Chapter 8

Checkpointing

8.1 Introduction To Checkpointing

In last the few years, algorithms in the Machine Learning have been proposed that need more

powerful machines to perform complex computations. In order to achieve faster computa-

tional speeds, the number of nodes in the parallel computing machines has been increasing

drastically. With increasing number of nodes, the likelihood of failures has increased result-

ing in the Mean Time Between Failures (MTBF) getting reduced from hours to minutes. It

is predicted that in Exascale systems that failures will occur between 3 to 26 minutes [27].

In case of a node failure, the computation that was being performed at node needs to be

restarted all over again from beginning in order to achieve correct results which results in

longer time for executing a computational task. In order to overcome this drawback, var-

ious fault tolerant techniques such as redundancy and checkpointing have been proposed.

Redundancy involves execution of the replica of a task on another node. The drawback of

redundancy is that extra resources are required and overhead is incurred due to redundant

communication. Checkpointing [10] involves writing the execution state of the executing task

to a file or an external storage device at specified intervals. The executing task is interrupted

to facilitate migration to the file or storage device where the execution state is saved. In case

of a node failure, the task reads the execution state and resumes execution from the last

checkpoint instead of restarting execution from the beginning. Another useful application

for checkpointing is debugging analysis. Modern debugging tools incur large overheads when

trying to detect a program error. However, the error programs can also be detected by using

checkpointing tools. The use, however, checkpointing incurs overhead due to reading to and

writing from the files. In the current Petascale systems, significantly large checkheads cause

I/O bottlenecks resulting in 25 percent of the overhead [25]. If there are 1000 processes of

40

1GB RAM, that will require I TB of space that degrades the performance as well as costs

more memory space. In Exascale systems, more nodes imply shorter MTBF resulting in more

checkpoint overhead due to more frequent failures. Attempts are being made to reduce the

checkpoint overhead and also decrease the memory space occupied by the checkpoint in the

storage devices.

8.2 Checkpointing Mechanisms

In the High-Performance systems, it is imperative that there should be a consistent global

checkpoint even though the different nodes might be at different stages of execution. Since

the global checkpoint is composed of local checkpoints, maintaining synchronization among

all the local checkpoints is a tedious task. In case of single node failure, programs running on

all the other nodes also have to restart from the previous checkpoints.This ”domino effect”

because of single node failure causes significantly large overhead. To eliminate this drawback,

three different types of checkpointing mechanisms have been developed.

1) Uncoordinated checkpointing involves checkpointing by programs running on different

nodes whenever it is possible to do so. This results in a reduced overhead but obtaining a

consistent global checkpoint becomes more complicated leading to a more likelihood of a

domino effect.

2) Coordinated checkpointing involves synchronized checkpointing by different nodes, thus

enabling a consistent global checkpoint. the advantage of this technique is that it eliminates

the possibility of the domino effect, thereby incurring less overhead than uncoordinated

checkpointing. However, internal synchronization required in order to maintain a consistent

global checkpoint results in significant overhead. For the synchronization overhead reduc-

tion, protocols such as non-blocking checkpointing coordination protocol has been proposed.

DMTCP uses checkpointing based on synchronized clocks for reducing the overhead.

3) Communication-induced checkpointing (CIC) or Message Induced Checkpointing involves

local and forced checkpointing. In local checkpointing, the local state of the program is

41

written on a persistent storage device. In forced checkpointing, protocols force the pro-

gram to perform an additional checkpointing. There is an overhead reduction because local

checkpointing can be performed when size of the state is small. However frequent forced

checkpointing and messages piggybacking data produce significant overhead.

8.3 Techniques To Reduce Checkpoint Overhead and Memory Space

Various checkpointing techniques have been proposed to reduce the overhead and increase the

efficiency. Data compression [23] is used to reduce the checkpoint overhead. However, if there

is a memory overhead if a large amount of data needs to be compressed. Additionally, time

overhead is incurred due to data decompression. In concurrent checkpointing, the process

continues execution while the execution state is saved on the buffer. The saved data is then

transferred to an external storage device. Incremental checkpointing [21] saves only. the

part of the program that has been modified since the last checkpoint resulting in a reduced

overhead. Copy-on Write method involves fork of child process by the parent process.The

parent process continues execution without getting interrupted while the child process does

checkpointing. However, spawning of new processes results in performance degradation if the

size of the checkpoint data is large. Solid State Disk(SSD) memory has also been suggested

to reduce the checkpoint overhead because it has lower access times and latency cycles.

However, reading and writing data cannot be done more than a specified number of times.

Fusion-io ioDrive card is another technology that has been suggested to reduce the overhead.

It is based upon NAND flash-based solid-state technology and provides more bandwidth. [9]

developed a technique called data deduplication that reduces the memory space occupied by

checkpoint.

8.4 Levels of Checkpointing

Checkpointing is performed at three different levels:

1) User-level checkpointing makes use of user libraries for checkpointing implementation.

The application programs are modified, compiled and then linked to the library, hence this

42

technique might not transparent to the users. The drawback of the technique is that parallel

programs and shell scripts might not be checkpointed due to inaccessibility to the system

files. Esky, Condo and libckpt are examples of user-level checkpointing. Esky currently works

under Linux 2.2 and Solaris 2.6. DMTCP (Distributed Multithreaded Checkpointing) [2] im-

plements transparent user-level checkpointing in distributed applications. No modifications

are required in the application or the operating system. System calls (fork and dump) are

used for creating core dump for the restoring the application state.

2) Application level checkpointing implementation involves encapsulating the checkpoint-

ing functionality within the application code. This technique is platform independent but

is not transparent to the users. The size of the checkpoint in application checkpointing can

be comparatively smaller. Another drawback is that the user needs to have a good under-

standing of the checkpointing functionality. Also, there is performance degradation in terms

of scalability. Cornell Checkpoint Compiler is based on application level checkpointing.

3) System level checkpointing is of two types, hardware and kernel. The checkpointing

interval is controlled by a system parameter. It is transparent to the user and the applica-

tion code does not require any modification. System-level checkpointing can also implement

preemption in which Checkpointing is performed case before a node is highly likely to fail

soon. Preemption results in more efficient batch scheduling as the number of idle cycles are

reduced. The drawback of system level checkpointing is that kernel source code might not

be available to the user.Also, the kernel level checkpointing is not platform independent.

The most popular form of system-level checkpointing is Berkeley Lab Checkpoint/Restart

(BLCR), a checkpoint/restart implementation designed for Linux clusters. by the Future

Technologies Group at Lawrence Berkeley National Lab. CRAK and Zap are also examples

of system level checkpointing. In Hardware level checkpointing, customization of the cluster

for checkpointing is done using the digital hardware. This technique is user transparent.

43

SWICH is an example of this technique. Hardware checkpointing can also be implemented

using FPGA but with an additional cost of hardware.

8.5 Diskless and Multilevel Checkpointing

The most basic form of checkpointing is the single level checkpointing in which the checkpoint

data is written on a parallel file system (PFS). It is called single level checkpointing because

there only one type of storage device used. However, in Exascale computing, the number

of nodes will increase drastically which implies more node failures. Due to the large size of

checkpoint data and limited bandwidth of the PFS, significant overhead will be incurred

due to I/O [18, 26]. PFS techniques such as Panasas [34], GPFD and Lustre has higher ef-

ficiency but incur significant overhead. Diskless and multiple checkpointing techniques have

been developed eliminate the shortcoming of single point checkpointing. The advantage of

diskless checkpointing [22] technique is that it eliminates the need of using PFS for writing

checkpointing. This is kind of checkpointing distributes the encoded redundant data across

the in-storage devices like main memory and SSD. However, the redundant checkpoint data

stored in in-storage devices can be lost in case of a node failure and the process cannot

restart from the point where the In the multilevel checkpointing technique [12] [32], there

are multiple levels of storage device where the nodes can write the checkpoint data. The

most resilient but slowest nodes checkpoint to the parallel file systems whereas less re-salient

but faster nodes checkpoint on external storage devices such as Flash, RAM or a disk. Fre-

quent checkpointing external storage with lower latency devices result in lesser overhead

than the single point checkpointing. [4] have integrated topology based Reed-Solomon en-

coding in a three level multilevel checkpointing scheme. The technique is implemented using

Fault-Tolerance Interface and the encoding time is hidden using Fault-Tolerance dedicated

per node. Large-scale evaluation was performed using SPECFEM3D on TSUBAME2.0 that

showed FTI imposed only 8 per cent of checkpoint overhead at a speed of over 0.1 Petaflops

and checkpoint time of 6 minutes. [17] developed the Scalable/Restart library to evaluate

44

multilevel checkpointing on a large scale system. The efficiency of the technique has been

demonstrated by using a probabilistic Markovian model and the results of an application.

8.6 Our method of Checkpointing

The method developed uses the translation scheme to generate code for the checkpointing.

The translator produces serializable threads which are to be executed on the processor cores.

The serializable threads, along with runtime stack, can migrate at the desired intervals of

time to the memory disks where the execution state can be written. In the case of a processor

failure, the thread migrates to the corresponding memory disk and reads the execution state.

The aim is to make the task of the programmer who wants to write checkpointing code as

simple as possible. This technique is user-friendly as the programmer only has to write the

code in the t strongly mobile form and the translator, instead of the programmer, produces

the checkpointing functionality and features as the part of the generated code.

public class CheckPointer extends Thread {

enum Type {

MANUAL, // manual checkpointing

TIMED // automated checkpointing

}

Type type;

int period; // Time period

File file;

FileOutputStream fos;

FileInputStream fis;

ObjectOutputStream oos;

ObjectInputStream ois;

File outFile;

FileWriter fileWriter;

45

BufferedWriter bufferedWriter;

double start; // Starting and ending time in ns.

double end;

private static Object lock = new Object();

// Checkpointer function for manual checkpointing.

CheckPointer() throws IOException {

file = new File("a.txt");

fos = new FileOutputStream(file);

fis = new FileInputStream(file);

oos = new ObjectOutputStream(fos);

ois = new ObjectInputStream(fis);

outFile = new File("outputFile");

fileWriter = new FileWriter(outFile);

bufferedWriter = new BufferedWriter(fileWriter);

type = Type.MANUAL; // Declare type for manual checkpointing.

period = 0;

}

//Checkpointer function for automated checkpointing.

CheckPointer(int time) throws IOException {

file = new File("a.txt");

fos = new FileOutputStream(file);

fis = new FileInputStream(file);

oos = new ObjectOutputStream(fos);

ois = new ObjectInputStream(fis);

outFile = new File("outputFile");

46

fileWriter = new FileWriter(outFile);

bufferedWriter = new BufferedWriter(fileWriter);

type = Type.TIMED; // Declare type for automated checkpointing.

period = time;

}

// Linked list of serializable threads

LinkedList < T > threads = new LinkedList();

void register(T t) {

threads.add(t); // add t to list threads

}

void checkPoint() {

synchronized(lock) {

for (T t: threads) {

try {

start = System.nanoTime();

oos.writeObject(t);

System.out.println("CheckPoint written");

//System.out.println(System.nanoTime() - start);

//oos.close();

} catch(IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

47

}

for (T t: threads) {

if (t.pc == -1) {

try {

T readThread = (T) ois.readObject();

System.out.println("CheckPoint read");

readThread.restart(readThread.index(), this);

} catch(ClassNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch(IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

}

}

The translation implementation developed is of two types

1) Manual Checkpointing Checkpointing can be inserted manually at any location within

the generated checkpointing code.

2) Automated Checkpointing Checkpointing is done by a separate thread which is run-

ning in parallel with the serializable thread encapsulating the weakly mobile code. The

checkpointing thread writes the execution state at specified intervals.

48

Chapter 9

Measurements

To indicate the overhead of the translation mechanism and the potential for optimizations,

the results of manual optimizations and measurements had been performed in prior work [8].

These measurements were made on a quad-core UltraSparc-II 296MHz processor with 1GB

of memory running Solaris and using the Sun JDK 1.4.0 Hotspot VM.

For these measurements, standard Java benchmarks were rewritten in the form of both

strongly mobile agents and Aglets. This did not involve changing the timed code significantly.

The only changes that needed to be made to the original benchmarking code were made to

avoid method calls inside expressions, since the preprocessor did not yet handle these.

The strongly mobile agents were passed through the translator. Simple manual optimiza-

tion techniques were used to improve the performance of the translated agents. These were:

the grouping of simple statements to form logical, atomic statements; the acquiring and re-

leasing of locks only every 10,000 simple statements for a loop; and the inlining of calls to

simple methods that in turn do not contain method calls.

The running times and memory footprints of the translated agents and the manually

optimized agents were compared with the equivalent weakly mobile Aglets. The results have

been presented in Table 9.1.A major contributor to the poor running times of the recursive

benchmark programs was the garbage collector that runs several times a second during their

execution.

[8] performed further optimzations on the Linpack benchmark, a matrix multiplication im-

plementation. The inner-most loop of Linpack is inside a dot-product method. This method

was manually inlined, and measured execution time with the inner-most loop untranslated,

and with the translated loop unrolled. The running time comparisons are presented in Ta-

ble 9.3 .

49

TABLE 9.1. Execution time of strongly mobile agents compared to corresponding Aglets code.

Benchmark Translated Code Optimized Code

Crypt (array size: 3,000,000, no threads) 5.61X 1.23X
Crypt (array size: 3,000,000, 1 thread) 5.96X 1.30X
Crypt(array size: 3,000,000, 2 threads) 6.00X 1.41X
Crypt(array size, 3,000,000, 5 threads) 5.60X 1.31X
Linpack (500 X 500) 10.00X 1.75X
Linpack (1000 X 1000) 9.48X 1.65X
Tak (100 passes) 245.30X 220.83X
Tak (10 passes) 247.00X 213.60X
Simple recursion (sum 1–100, 10,000 passes) 68.27X 60.75X

TABLE 9.2. Memory utilization of Strongly Mobile Agents and the Aglets (MB)

Benchmark Translated Optimized Aglet
Code Code

Crypt 32.10 30.69 30.44
Crypt - multi-threaded 32.54 30.82 30.35
1 thread
Crypt - multi-threaded 32.56 30.82 30.35
2 threads
Crypt - multi-threaded 32.54 30.83 30.38
5 threads
Linpack(500 X 500) 31.02 30.02 28.34
Linpack(1000 X 1000) 58.27 52.94 51.24
Tak(100 passes) 22.04 21.99 20.98
Tak(10 passes) 22.05 22.02 20.98
Simple Recursion 22.03 21.82 21.02

TABLE 9.3. Potential performance improvements for inner loop transformations of strongly mobile
Linpack code relative to Aglets.

Linpack Version Untranslated Unrolled 2X Unrolled 10X

Linpack (500 X 500) 1.02X 1.21X 0.75X
Linpack (1,000 X 1,000) 1.02X 1.15X 0.76X

TABLE 9.4. Memory utilization of Optimized Strongly Mobile Agents for Linpack (MB)

Linpack Inner Loop Inner Loop Inner Loop
Optimizations Untranslated Unrolled Unrolled

2 times 10 times

Linpack 29.9 30.19 30.48
(500 X 500)
Linpack 52.8 53.12 53.40
(1000 X 1000)

50

TABLE 9.5. Migration Time for Single-threaded Strongly Mobile Agents and Aglets (ms) — Lin-
pack Benchmark

Number of Agent Agent Aglets
stack frames pack time dispatch time dispatch time

1 12 8418 1105
2 12 5200 1078
3 6 5153 1060

TABLE 9.6. Migration Time for Multi-threaded Strongly Mobile Agents and the Aglets (ms) — 5
frames on main thread stack, 2 frames on other threads’ stacks

Number of Agent Agent Aglets
threads pack time dispatch time dispatch time

1 12 8418 1105
2 12 5200 1078
5 6 5153 1060

The overhead of migrating agents depends on the amount of state that the agent requires

to carry along with itself. This was dependent on the number of threads within the agent,

and on the number of frames on the runtime stack of the threads. The migration costs of

moving a single threaded agent with different numbers of frames on the stack have two

components - the time required to pack up the agent state, and the time to move the agent.

The latter was the time required for the translated agent to execute the Aglets dispatch

method. compare this against the time required for the transfer of the simple benchmark

Aglet. Agents and Aglets were transferred between ports on the same machine, in order to

obtain a meaningful comparison that is unaffected by network delay. The results for different

stack sizes are shown in table Table 9.5. Similarly, the dependence of the migration cost of

a multi-threaded agent, on the number of threads is shown in table Table 9.6 .

For finding the cheapest locking mechanisms, we performed micro-measurements of lock-

unlock pairs for several different locking mechanisms as well as using atomic integers or

Booleans as guards for a lock. These measurements were performed on a quad-core, 2.4GHz

Xeon workstation running Linux. Since all code is sequential and to make the measurements

more predictable, we disabled multi-core support, hyper-threading, Intel Turbo Boost (over-

clocking), and Intel Speed Step (CPU throttling), and turned off all network interfaces, the X

51

TABLE 9.7. Average execution time for one lock-unlock pair.

Locking Mechanism Time (ns) Standard Deviation(ns)

Semaphore 8.25 0.009
ReentrantLock 6.39 0.062
ReentrantReadWriteLock (Read Lock) 10.90 0.085
ReentrantReadWriteLock (Write Lock) 7.31 0.076
AtomicBool (as guard for lock) 1.68 0.040
AtomicInt (as guard for lock) 1.34 0.016

window system, and unnecessary background processes. We used Java Version 1.7.0 21 and

ran the measurements on the Java server VM with the command line options -Xbatch and

-XX:CICompilerCount=1 to ensure that the measurements are not distorted by background

compilation. We took 100 measurements of 10,000 lock-unlock pairs each in a 10X-unrolled

loop. The average times are shown in Table 9.7.

As our measurements show, the cheapest combination would be to use an atomic integer

(the difference between them atomic integer and atomic Boolean is statistically significant) .

All the error bars were less than 0.1ns (or whatever is the smallest error) with a confidence of

99%, so the differences between any pair of locking mechanisms are statistically significant.

Therefore , Atomic integer is used as a guard for a ReentrantLock instead of our original

counting Semaphore. With guarded locks it would be possible to generate code that unlocks

and re-acquire the lock less frequently. This, together with compiler optimizations such as

not translating inner loops or methods without loops, inlining, and loop unrolling has the

potential to reduce the overhead to less than 20% for non-recursive applications, which would

be acceptable.

Measurements were performed for the various run1() translation schemes and the aver-

age execution times computed are shown in table Table 9.8. The measurements show that

WeaklyMobile2 scheme performs better than WeaklyMobile1. As expected, WeaklyMobile3

was efficient than WeaklyMobile1 and WeaklyMobile2.

Measurements were also performed our checkpointing scheme discussed in the paper. Av-

erage execution times were computed for both reading and writing for manual checkpointing

52

TABLE 9.8. Average execution time

Locking Scheme Time Standard Deviation

Strongly Mobile 18.54 ns 47.96 ns
WeakMobile1 309.84 ns 2.26 ns
WeakMobile2 222.99 ns 1.55 ns
WeakMobile3 211.12 ns 1.52 ns

TABLE 9.9. Average execution time for manual checkpoint scheme

Checkpoint Scheme Time (ns) Standard Deviation(ns)

Reading from disk 5365.99 3144.18
Writing to disk 4827.99 2721.57

(Table 9.9) and automated checkpointing Table 9.10. Linpack code was translated into weakly

mobile code and the average execution times for Linpack without and with the various lock-

ing schemes which have been shownin table Table 9.11. There was a 34 per cent overhead

reduction when the using the AtomicInteger as gaurd when compared to single step locking

scheme. To further reduce the overhead, the number of statements executed were also taken

into consideration along with the AtomicInteger guard. This mechanism showed a overhead

reduction overhead by as much as 21 per cent. However, there was an insignificant change in

the overhead irrespective of the increase in number of statements to check whether locking-

unlocking needed to be performed. The reason can be attributed to the fact that comparison

operation along with the AND operation is always performed.

TABLE 9.10. Average execution time for automated checkpoint scheme

Checkpoint Scheme Time (ns) Standard Deviation(ns)

Reading from disk 21843.73 1667.86
Writing to disk 22309.10 1319.45

53

TABLE 9.11. Average execution for translated Linpack (200 X 200)

Locking scheme Time (ms) Standard Deviation (ms)

Strongly Mobile 0.59 0.01
Weakly Mobile - Without locks 2.72 0.17
Weakly Mobile - Single Step 7.21 0.24
Weakly Mobile - Atomic Guard 4.72 0.15
Weakly Mobile - Atomic Guard with Count 3.93 0.14

54

Chapter 10

Conclusions

We have presented a framework for translating strongly mobile Java code into weakly mo-

bile code. Compared to existing approaches to strong mobility, our approach has the ad-

vantages that it allows multithreaded agents and forced mobility, accurately maintains the

Java semantics, and can run on a stock Java VM. The disadvantage is that without further

optimizations, the run-time overhead would be prohibitively large.

The main contribution of this dissertation is that it presents an optimization framework for

improving the performance of the generated weakly mobile code. Preliminary measurements

show that with a combination of a cheaper locking mechanism and a code structure that

trades off migration latency for performance, the overhead can become acceptably small.

Finally, standard compiler optimization techniques can be used to further improve the per-

formance of the generated code. We have also developed a checkpointing techniques (both

manual and automated) in which the user can generated checkpointing code in form of

threads that can migrate from node to another. Our technique is user friendly since it elimi-

nates the need for the user to have knowledge of checkpointing features and functionalities.

55

Chapter 11

Future Work

In our translation scheme for strongly mobile code, we have modified the syntax tree of

Polyglot extension compiler so as to obtain a more optimized translated code. Our objective

has been to reduce the overhead incurred due locking-unlocking. We have experimented with

different locking mechanisms and schemes in order to achieve that objective. More work can

be done on further optimization so as to achieve a better efficiency. A construct can be intro-

duced which does not translate the section of a code. This eliminates the need of translating

the section of code that incurs significantly less overhead than the translated one due to fre-

quent locking and unlocking. Functions having only a few lines of code can be inlined instead

of being called from another function, thus lowering the overhead incurred. An algorithm

also needs to be developed that will determine where the logical block of statements will

end. One suggestion is to end the block where a function with a significantly large overhead

is invoked. We have also developed a technique in which the programmer can produce se-

rializable threads that can migrate from one node to another. The serializable threads can

be used for restarting an application in the Android systems when it powered on. This will

reduce time to load the application on Android. The checkpointing implementation using

serializable threads can also be applied to checkpointing in High Performance Computing.

With the advent of Exascale Computers, the Mean Time Between Failures is likely to reduce

and thus me efficient techniques of checkpointing are needed in order to reduce the overhead

incurred due to reading and writing to the disk. We have developed a prototype that im-

plements checkpointing in Java language. However, Java is not the language used in High

Performance Systems. But a method similar to our technique can be used for checkpointing

using commonly used High Performance System languages such as C++ and FORTRAN.

56

References

[1] Anurag Acharya, Mudumbai Ranganathan, and Joel Saltz. Sumatra: A language for
resource-aware mobile programs. In Jan Vitek, editor, Mobile Object Systems: Towards
the Programmable Internet, volume 1222 of Lecture Notes in Computer Science, pages
111–130. Springer-Verlag, 1996.

[2] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent checkpointing for
cluster computations and the desktop. In Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, IPDPS ’09, pages 1–12, Washington,
DC, USA, 2009. IEEE Computer Society.

[3] Françoise Baude, Denis Caromel, Fabrice Huet, and Julien Vayss̀ıere. Communicating
mobile active objects in Java. In Marian Bubak, Hamideh Afsarmanesh, Roy Williams,
and Bob Hertzberger, editors, Proceedings of HPCN Europe 2000, volume 1823 of Lecture
Notes in Computer Science, pages 633–643. Springer Verlag, May 2000.

[4] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. Fti: High performance fault tolerance interface for
hybrid systems. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 32:1–32:32, New York,
NY, USA, 2011. ACM.

[5] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma, and F. Boyer. Experiences
implementing efficient Java thread serialization, mobility and persistence. In Software
— Practice and Experience, pages 355–394, 2002.

[6] Arjav J. Chakravarti and Gerald Baumgartner. Self-organizing scheduling on the Or-
ganic Grid. Int. Journal on High Performance Computing Applications, 20(1):115–130,
2006.

[7] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. The Organic Grid: Self-
organizing computation on a peer-to-peer network. Trans. Sys. Man Cyber. Part A,
35(3):373–384, May 2005.

[8] Arjav J. Chakravarti, Xiaojin Wang, Jason O. Hallstrom, and Gerald Baumgartner.
Implementation of strong mobility for multi-threaded agents in Java. In Proceedings
of the International Conference on Parallel Processing, pages 321–330. IEEE Computer
Society, October 2003.

[9] Zhengyu Chen, Jianhua Sun, and Hao Chen. Optimizing checkpoint restart with data
deduplication. Sci. Program., 2016:10–, June 2016.

[10] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, September 2002.

57

[11] Stefan Fünfrocken. Transparent migration of Java-based mobile agents: Capturing and
reestablishing the state of Java programs. In Kurt Rothermel and Fritz Hohl, editors,
Proceedings of the Second International Workshop on Mobile Agents, volume 1477 of
Lecture Notes in Computer Science, pages 26–37, Stuttgart, Germany, September 1998.
Springer-Verlag.

[12] Erol Gelenbe. A model of roll-back recovery with multiple checkpoints. In Proceedings
of the 2Nd International Conference on Software Engineering, ICSE ’76, pages 251–255,
Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[13] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus. D’Agents: Security in a
multiple-language, mobile-agent system. In Giovanni Vigna, editor, Mobile Agents and
Security, volume 1419 of Lecture Notes in Computer Science, pages 154–187. Springer-
Verlag, 1998.

[14] Torsten Illmann, Tilman Krueger, Frank Kargl, and Michael Weber. Transparent mi-
gration of mobile agents using the Java platform debugger architecture. In Proceedings
of the 5th International Conference on Mobile Agents, MA ’01, pages 198–212, London,
UK, 2002. Springer-Verlag.

[15] Danny B. Lange and Mitsuru Oshima. Mobile agents with Java: the Aglets API. World
Wide Web Journal, 1998.

[16] Danny B. Lange and Mitsuru Oshima. Programming & Deploying Mobile Agents with
Java Aglets. Addison-Wesley, 1998.

[17] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system. In Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.
IEEE Computer Society.

[18] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Maria Ruiz
Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In Proceedings of the 24th IEEE Conference on Mass Storage Sys-
tems and Technologies, MSST ’07, pages 30–46, Washington, DC, USA, 2007. IEEE
Computer Society.

[19] Holger Peine and Torsten Stolpmann. The architecture of the Ara platform for mo-
bile agents. In Radu Popescu-Zeletin and Kurt Rothermel, editors, First International
Workshop on Mobile Agents, volume 1219 of Lecture Notes in Computer Science, pages
50–61, Berlin, Germany, April 1997. Springer Verlag.

[20] Brian Peterson, Gerald Baumgartner, and Qingyang Wang. A hybrid cloud framework
for scientific computing. In 8th IEEE International Conference on Cloud Computing,
CLOUD 2015, pages 373–380, New York, NY, June 2015.

58

[21] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent check-
pointing under unix. In Proceedings of the USENIX 1995 Technical Conference Pro-
ceedings, TCON’95, pages 18–18, Berkeley, CA, USA, 1995. USENIX Association.

[22] James S. Plank, Youngbae Kim, and Jack J. Dongarra. Algorithm-based diskless check-
pointing for fault-tolerant matrix operations. In Proceedings of the Twenty-Fifth Inter-
national Symposium on Fault-Tolerant Computing, FTCS ’95, pages 351–, Washington,
DC, USA, 1995. IEEE Computer Society.

[23] James S. Plank and Kai Li. Ickp: A consistent checkpointer for multicomputers. IEEE
Parallel Distrib. Technol., 2(2):62–67, June 1994.

[24] Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Bytecode transforma-
tion for portable thread migration in Java. In Proceedings of Agent Systems, Mobile
Agents, and Applications, volume 1882 of Springer Verlag Lecture Notes in Comuter
Science, 2000.

[25] Bianca Schroeder, Garth Gibson, and Garth A. Gibson. Understanding failures in
petascale computers. 2007.

[26] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. In Proceedings of the International Conference on
Dependable Systems and Networks, DSN ’06, pages 249–258, Washington, DC, USA,
2006. IEEE Computer Society.

[27] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers.
Journal of Physics: Conference Series, 78(1):012022, 2007.

[28] Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. A simple extension of
java language for controllable transparent migration and its portable implementation.
In In Proceedings of the 3 rd Intl. Conference on Coordination Models and Languages,
1999.

[29] Takashi Suezawa. Persistent execution state of a Java virtual machine. In Java Grande,
pages 160–167, 2000.

[30] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R Breedy, Paul T. Groth, Gregory A. Hill,
Renia Jeffers, and Timothy S. Mitrovich. An overview of the NOMADS mobile agent
system. In Ciarán Bryce, editor, 6th ECOOP Workshop on Mobile Object Systems,
Sophia Antipolis, France, 13 June 2000.

[31] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and Pierre
Verbaeten. Portable support for transparent thread migration in Java. In Proceedings of
the Joint Symposium on Agent Systems and Applications / Mobile Agents, pages 29–43,
Zurich, Switzerland, September 2000. Springer-Verlag.

[32] Nitin H. Vaidya. A case of multi-level distributed recovery schemes. Technical report,
College Station, TX, USA, 2001.

59

[33] Xiaojin Wang, Jason Hallstrom, and Gerald Baumgartner. Reliability through strong
mobility. In Proc. of the 7th ECOOP Workshop on Mobile Object Systems: Development
of Robust and High Confidence Agent Applications (MOS ’01), pages 1–13, Budapest,
Hungary, June 2001.

[34] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small,
Jim Zelenka, and Bin Zhou. Scalable performance of the panasas parallel file system. In
Proceedings of the 6th USENIX Conference on File and Storage Technologies, FAST’08,
pages 2:1–2:17, Berkeley, CA, USA, 2008. USENIX Association.

60

Vita

Arvind Saini is from New Delhi, India. He obtained his Master’s degree in Computer Science

from Midwestern State University, Texas (USA) in May, 2008. His research area at Mid-

western State University was in Software Engineering. In 2010, he joined Louisiana State

University for the doctoral program in Computer Science and will obtain the Ph.D. degree

in May, 2018. His research interests include optimizations for mobile agents for large clusters

and desktop grids and parallel computing. Currently, he is exploring the use of the mo-

bility translator for checkpointing applications. In addition, he authored a paper titled An

Optimizing Translation Framework for Strongly Mobile Agents, which was published in the

proceedings of KPS 2015 in Vienna, Austria.

61

	Louisiana State University
	LSU Digital Commons
	1-21-2018

	An Optimizing Java Translation Framework for Automated Checkpointing and Strong Mobility
	Arvind Kumar Saini
	Recommended Citation

	Acknowledgments
	Abstract
	Chapter Introduction
	Chapter Background
	Chapter Related Work
	Chapter Language and API Design
	Basic Mobility Support
	Class ContextInfo
	Strongly Mobile User Code
	Checkpointing

	Chapter Translation from Strong to Weak Mobility
	Single-Threaded Agents
	Translation of Methods
	Translation of Agent Classes
	New run1() Translation Scheme
	Protection of Thread Stacks
	Synchronization Blocks
	Translation of Serializable Threads
	Synchronization for Multiple Threads
	Optimizations

	Chapter New Constructs
	Previous Translations
	for Loop Translation
	do-while Translation

	Chapter Translation Schemes for run1()
	Strongly Mobile Code
	Weakly Mobile Code 1
	Weakly Mobile Code 2
	Weakly Mobile Code 3

	Chapter Checkpointing
	Introduction To Checkpointing
	Checkpointing Mechanisms
	Techniques To Reduce Checkpoint Overhead and Memory Space
	Levels of Checkpointing
	Diskless and Multilevel Checkpointing
	Our method of Checkpointing

	Chapter Measurements
	Chapter Conclusions
	Chapter Future Work
	References
	Vita

