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ABSTRACT 

Scanning probe microscopy (SPM) for conducting surface characterizations of 

nanomaterials and molecular self-assembly processes is emerging as important contributions in 

nanotechnology, especially towards the design of molecular electronic devices.  Another area of 

importance is the characterization of the properties of nanomaterials for fundamental 

understanding of structure-function inter-relationships.  Understanding the properties and 

behavior of molecules and finding approaches to control surface self-organization through 

nanolithography provides essential information for development of workable applications for 

nanotechnology.   

The first part of the dissertation (Chapters 2 and 3) describes the methodologies of AFM 

for characterizing molecules and nanostructures produced with scanning probe lithography 

(SPL), such as AFM-based approaches of nanoshaving and nanografting.  Automated software 

for nanografting and nanoshaving produce local nanopatterned surfaces with properties that can 

be tailored by selected head group chemistries of self-assembled monolayers (SAMs).  The 

modified surfaces can then be used to develop new nanoscale bioassays and nanodevices, or can 

be used as building blocks for bottom-up development of photovoltaic thin-film devices.  

Nanografting can be used to control the vertical orientation of n-alkanethiols or α,ω-

alkanedithiols to exclusively generate layers with a standing-up configuration.  Reactive head 

groups of SAMs, such as carboxyl and thiol groups, also have a role in surface self-assembly, 

and changes in experimental parameters of concentration are shown to generate thin films of 

double layers on Au(111).   

The second part of the dissertation (Chapters 4 and 5) presents the application of AFM 

for characterizations of the arrangement, morphology, and properties of systems of 



 
 

xv

nanopigments and magnetic metal nanoparticles.  For thin films of organic dye dispersions 

composed of pigment nanoparticles, the stability and spectral properties were examined using 

AFM as well as other established analytical techniques in Chapter 4. Changes in surface 

aggregation are clearly revealed in the AFM results.  Further, the measurements show a direct 

correlation between spectral properties and the amount of aggregation for pigment nanoparticles.  

Overall, the development of new protocols and experiments for nanoscale measurements with 

AFM provide new capabilities for evaluation of the properties of nanomaterials for commercial 

pigment nanoparticles. 

Investigations of magnetic properties of metal nanoparticles is a new direction for AFM 

investigations, at the level of characterizing magnetic response at the level of single nanoparticle 

measurements, as discussed in Chapter 5.  Mapping the magnetic response of synthesized 

magnetic nanoparticles was accomplished using a hybrid AFM imaging mode termed magnetic 

sample modulation (MSM). Mixtures of iron, nickel and iron(III)-nickel nanoparticles were 

characterized using dynamic protocols of magnetic sample modulation (MSM) combined with 

contact-mode AFM imaging.  Corresponding changes in size versus the amplitude of vibrational 

response were clearly detected using MSM mode for nanoparticles as small as 1 nm in diameter.  

The flux of the external AC-electromagnetic field induced FeNi3 nanoparticles to vibrate, and 

magnetic response was tracked in MSM amplitude and phase channels using a lock-in amplifier.  

Changes to experimental parameters, such as driving frequency and AC electromagnetic field 

strength were systematically investigated with MSM to evaluate the selectivity, sensitivity and 

detection thresholds for sample characterizations. 



 
 

1

 CHAPTER 1.  INTRODUCTION 

The overall focus of this dissertation is to gain insight into the self-assembly processes, 

properties, and mechanisms of model chemical systems and nanomaterials using scanning probe 

microscopy (SPM).  Scanning probe methods are becoming more prevalent for investigations of 

surface chemistry because of the dual capabilities for obtaining physical measurements and 

structural information with unprecedented sensitivity. Scanning probe microscopy imaging 

modes have been used for the study of chemical and biochemical reactions and for investigation 

of tip-surface interactions,
1, 2

 chemical structures,
3-6

 and material properties
7, 8

 at the molecular 

level.  The capabilities for studying and controlling processes at the nanoscale with SPM are 

emerging as valuable assets in both fundamental and applied research. Scanning probe 

instruments not only provide a means for characterizing samples with unprecedented spatial 

resolution, but they can also be applied for nanoscale measurements of surface properties and as 

a nanolithography tool for constructing designed surface arrangements of molecules.
9-11

  

Fundamental understanding of the interactions of surface reactions provides essential 

information for developing workable applications for nanotechnology.  Scientific developments 

using SPM are providing a foundation for new technologies in areas such as molecular 

electronics,
12-14

 materials engineering,
15, 16

 medical diagnostics,
17, 18

 and drug discovery.
19

   

At present, SPM methods and SPM-based lithographies are primarily used as research 

tools in laboratories rather than as high-throughput tools for manufacturing.  However, when one 

considers the impact of present-day microfabrication technologies which led to the computer 

revolution, one can predict that nanoscale technology in manufacturing will likewise make an 

impact that will benefit society.  For example, a few potential applications of nanoscale 

technologies are the development of a new generation of chemical biosensors, biochips, drug 

delivery agents, analysis platforms, and devices for molecular electronics.  Nanoscale research 
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will define new directions in areas of material chemistry, biosensing, biomimetic surfaces, and 

molecule-based electronics.   

Nanoscience broadly means the study and manipulation of matter on length scales 

ranging from 1 nm to 100 nm.  The research presented in this dissertation provides new 

examples of nanoscience measurements developed with SPM.  An important theme that is 

emerging for nanoscience research is to fully characterize and measure things that are very small, 

thus pushing detection capabilities to the molecular-level and beyond.  A detailed overview of 

the experimental approaches used for dissertation research is presented in Chapter 2.  Combining 

nanoscale lithography with SPM measurements is a practical strategy for nanoscience research, 

the extent of which is described in Chapter 3.  Chapter 4 describes nanoscale measurements 

conducted in collaborative research at the laboratories of the Eastman Kodak Company in 

Rochester, New York.  A key strategy of this dissertation research is to combine multiple SPM 

approaches to develop hybrid instruments and new nanoscale measurements.  For example, 

Chapter 5 provides results with a newly developed SPM imaging mode of magnetic sample 

modulation (MSM) combined with contact-mode atomic force microscopy (AFM).  Chapter 6 

provides a prospectus for future directions with nanoscale SPM measurements. 

1.1 Experimental Approaches 

 The second chapter of the dissertation provides details of the experimental approaches for 

SPM imaging modes used for these studies.  The imaging principle, hardware, and instrument 

operation for contact mode and tapping mode AFM will be explained, as well as the 

corresponding simultaneously acquired channels of frictional force and phase imaging modes, 

respectively.  The imaging principle for a newly developed magnetic imaging mode using 

magnetic sample modulation (MSM) will also be described.
20, 21
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A wide variety of methods have been developed for creating arrays of nanomaterials on 

solid surfaces, such as photolithography,
22

 piezoelectric dispensing,
23

 soft lithography,
24

 

microspotting,
25

  electron beam lithography,
26, 27

 and particle lithography.
28-31

 Atomic force 

microscopy (AFM) has become an excellent tool for producing and viewing ordered 

arrangements of organic nanostructures on flat surfaces such as Au(111) films.  Methods such as 

nanoshaving and nanografting,
32, 33

 tip-induced oxidation,
34

 local catalysis,
35

 and dip-pen 

nanolithography (DPN)
36

 have been developed to write patterns with nanoscale dimensions.  

Chapter 2 describes the AFM-based nanolithography approaches of nanoshaving
37

 and 

nanografting
38

 which were applied in this dissertation for fundamental investigations of the 

surface chemistry of n-alkanethiols and α,ω-alkanedithiol self-assembled monolayers (SAMs). 

Microwave heating has been applied for sample extractions, synthesis, and digestions in 

general chemistry,
39

 organic chemistry,
40-44

 inorganic chemistry,
45

 physical chemistry,
46

 and 

Anal. Chem.
47-49

 laboratory courses.  In addition, microwave synthesis is rapidly becoming the 

method of choice for many medicinal, pharmaceutical, and academic laboratories.  For example, 

the United States Environmental Protection Agency (USEPA) recommends microwave-assisted 

sample preparation as the “best available technology” for many of its prescribed procedures for 

the analysis of environmental samples.  For analytical chemistry applications, microwaves have 

been implemented for preparation of samples when using ASTM test methods, to validate and 

prescribe the benchmark practices, and as the best available technology for standard lab 

procedures.   

Two microwave systems from CEM were purchased for teaching and research 

applications at LSU.  The systems are equipped with carousels of 24-40 sample vessels as well 

as temperature and pressure control sensors for conducting multiple replicate analyses.  

Microwave systems also promote the development of Green chemistry methods to prevent or 
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minimize the generation of toxic fumes, chemicals, or wastes to the environment; this is due in 

part because reactants can be scaled down to very small quantities of acids, solvents, and 

reagents in comparison to traditional methods.  Our goal was to develop creative, modern lab 

exercises to stimulate the interest and participation of undergraduates in chemistry laboratories 

and during their research internships.  The application of new methods using microwave heating 

for teaching labs is discussed in section 2.7 and in Appendix A.  Moreover, the successful 

synthesis of magnetic iron(III)-nickel composite nanoparticles using microwave chemistry is 

described in Chapter 5.  

1.2 Applying AFM-based Nanofabrication for Measuring the Thickness of Nanopatterns: 

The Role of Headgroups in the Vertical Self-Assembly of Ω-Functionalized n-Alkanethiols 

Methyl terminated n-alkanethiols form well-ordered monolayers during solution self-

assembly over a wide range of experimental conditions.  However, under certain conditions, n-

alkanethiols with reactive head groups of carboxylic acid or thiol-terminal groups were 

consistently found to produce patterns with a vertical thickness corresponding precisely to a 

double layer.  To investigate the role of head groups for solution self-assembly, designed patterns 

of ω-functionalized n-alkanethiols were nanografted with systematic changes in concentration.  

Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces 

by scanning with an AFM tip under high force, accomplished in dilute solutions of desired 

alkanethiol molecules as explained in Chapter 2, section 2.5.  The chain length and head groups 

(i.e. carboxyl, hydroxyl, methyl, thiol) were systematically varied for the nanopatterns and 

matrix monolayers.  Interactions, such as head-to-head dimerization, influence the vertical self-

assembly of ω-functionalized n-alkanethiol molecules within nanografted patterns.  At certain 

threshold concentrations, double layers were observed to form when nanografting with head 
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groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for 

nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration. 

A sample 3D topography image acquired using AFM in liquid is shown for a pair of 

nanografted cross patterns (Figure 1.1), composed of 11-mercaptodecanol (11-MUD).  The 

nanopatterns measure 200 nm in width and length, and a structural model is shown at the right.  

The cross patterns are 0.6 nm shorter than the surrounding matrix SAM of n-octadecanethiol.   

 

                                                 

 

 

 

 

 

 

 

 

          

 

 

 

Figure 1.1.  Nanografted cross patterns of 11-MUD written into a matrix SAM of 

octadecanethiol (left) and corresponding structural model (right). 

 

1.3 Investigation and Application of Nanoparticle Dispersions of Pigment Yellow 185 using 

Organic Solvents  

The effects of adding a synergist for the aggregation of pigment nanoparticles in organic 

solvent dispersions was investigated using AFM imaging and dynamic light scattering (DLS) 

measurements. The research was conducted at the Eastman Kodak Company research 

laboratories in Rochester, NY in collaborative research under the direction of Dr. Tommie 

Royster.  Nanoscale AFM characterizations were used to investigate how changes in the surface 

aggregation of nanoparticles influenced the spectral properties of spin-coated thin films of nano-

pigments.   
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The goal of this investigation was to evaluate the influence of certain dispersants with 

and without a surface-modifying synergist as well as the influence of solvent polarity on the 

properties of pigment nanoparticle dispersions. The work focused on spin-coated films of 

nanoparticles in the size range of 10-30 nm, which is an area not broadly reported for solvent-

based systems.  A highly stable yellow dispersion with a mean particle size of 12 nm was 

developed.  Characterization of dispersions and nanoparticle films was accomplished using 

dynamic light scattering (DLS) and tapping-mode AFM.  Optical properties of thin films were 

evaluated with transmission spectroscopy measurements.  Optimal performance was achieved 

using a synergist in combination with a polymeric dispersant and the polar solvent propylene 

glycol monomethyl ether acetate (PGMEA). 

Figure 1.2.  Surface morphology of a spin-coated layer of PY-185 pigment nanoparticles on 

glass with (right) and without (left) synergist, revealed by AFM topography images. 

A spin-coated layer of organic dispersions composed of PY-185 pigment nanoparticles 

and propylene glycol monomethyl ether acetate (PGMEA) coated on a glass surface is shown in 

the AFM topography image (Figure 1.2), with and without the presence of a synergist.  Large 

clusters of pigment nanoparticles are observed in the left topography image acquired when no 

synergist added.  The right topograph was obtained after the addition of a synergist and reveals 

that the sizes and amount of nanoparticle clusters are significantly reduced.  Self-aggregation of 
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organic pigment nanoparticles in organic solvents produces poor quality thin-film coatings.  The 

non-uniformity of surface layers produced by dense aggregates within films of nanopigments can 

be detrimental for light transmission in organic light-emitting diodes (LEDs).  Dispersions 

composed of an organic pigment and an organic solvent must be formulated to minimize self-

aggregation for development of high-performance thin films for optical applications, such as 

LEDs.  Comparing the AFM topography images in Figure 1.2 demonstrates that the addition of a 

synergist can reduce and even prevent the aggregation of pigment nanoparticles.  Further 

experimental results are presented in Chapter 4.    

1.4 Response of Iron(III)-Nickel Nanoparticles to a Modulated Electromagnetic Field 

Detected by Atomic Force Microscopy   

 Understanding the chemical, magnetic, and physical properties of magnetic 

nanoparticles is becoming an important research focus.  As a model system of composite 

magnetic metal nanoparticles, samples of FeNi3 nanoparticles were synthesized and 

characterized, as described in Chapter 5.  Magnetic iron(III)-nickel nanoparticles were produced 

using a hydrothermal process either using a conventional oven or a microwave oven equipped 

with high pressure Teflon vessels.  Microwave synthesis produced magnetic FeNi3 nanoparticles 

ten-fold faster than conventional radiative heating.  Precise control of heating conditions in a 

microwave digestion vessel was found to produce less polydispersity in the sizes of nanoparticles 

when compared to samples prepared in a conventional gravity oven.  Characterizations with 

AFM reveal the morphology and size distribution of iron(III)-nickel nanoparticles.  Topography 

and phase images of iron(III) and nickel nanoparticles are displayed in Figure 1.3, acquired using 

tapping-mode AFM characterizations.  

Sample images of FeNi3 nanoparticles prepared on the atomically flat surface of 

mica(0001) were acquired with tapping mode AFM in Figure 2.4.  Frames of the topography and 
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phase channels are shown for FeNi3 nanoparticles over a 6 × 6 µm
2
 scan area, for a dilute sample 

dispersed on mica(0001).  A topography image acquired in ambient air is shown in Figure 1.3A 

with a z-scale of 15 nm, and the simultaneously acquired phase image is shown in Figure 1.3B. 

 

Figure 1.3. Surface views of FeNi3 nanoparticles dispersed on mica[0001], acquired in air using 

tapping-mode AFM.  [A] Topography [6 × 6 µm
2
] and [B] simultaneously acquired phase 

images obtained in ambient air. 

 

The overall goals of the dissertation research were to obtain fundamental insight about 

the structure, properties, and self-assembly of designed nanomaterials and organic thin films by 

developing and applying methods of scanning probe microscopy.  High resolution SPM imaging 

and measurements were applied to characterize and visualize processes of chemical self-

assembly, surface properties, and nanoscale lithography.   
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CHAPTER 2.  EXPERIMENTAL APPROACHES 

2.1 Overview and History of Scanning Probe Microscopy 

Methods of scanning probe microscopy (SPM) are emerging as an important and valuable 

approach for investigations of chemical reactions on surfaces
50, 51

 and properties of 

nanomaterials.
52, 53

 Scanning tunneling microscopy (STM) was invented in 1982 by Binnig and 

Rohrer
54

 who were awarded the 1986 Nobel Prize in Physics for this discovery.  A conductive or 

semiconductive surface is required for STM imaging, which relies on the effect of electron 

tunneling to create atomically-resolved images.  In 1986, Binnig, Quate, and Gerber introduced 

the atomic force microscope (AFM),
55

 which can be used to image insulating surfaces and does 

not require current for the imaging mechanism.  Atomic force microscopy (AFM) is a high-

resolution imaging technique that enables views of surfaces in great detail.  Unlike traditional 

optical microscopes, AFM techniques use a sharp probe affixed to a cantilever to “feel” the 

surface, therefore the resolution is not limited by the wavelength of light.  The interactions 

between the tip and the sample are recorded and processed to form an image.  The surface 

structure of materials can be observed in real time on a scale from microns down to nanometers.  

The lattice arrangement of atoms can be visualized with both AFM and STM, and views of 

molecular and atomic vacancies can be routinely achieved with STM. 

A wide range of different imaging modes have been developed using AFM to 

characterize the physical properties of samples with nanoscale resolution.
56

  In typical contact 

mode AFM, a sharp tip is scanned across a sample and the deflection of the laser is monitored to 

provide 3-D information of surface topography.
55, 57, 58

 There are several advantages to using 

AFM compared to other microscopy techniques.  Images generated by AFM are true three-

dimensional surface profiles.  Samples do not require special treatments or coatings which alter 

their composition, as required for electron microscopy samples.  Both conducting and insulating 
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materials may be imaged.  A vacuum environment is not required for AFM imaging, and 

samples can be imaged in ambient conditions in air or in liquid media.  The various AFM 

imaging modes require certain changes to the instrument configuration, such as oscillating the 

AFM probe/sample, or changing the positional feedback loop.  Rich structural and mechanical 

information about samples can be obtained for the different imaging modes, such as 

characterizations of elasticity, adhesion, conductivity, electronic properties, and magnetic 

forces.
50, 52, 59

 

This chapter presents the operating principles for several AFM imaging modes used for 

the research investigations of this dissertation.  The general principles and operation for contact 

mode, frictional force imaging, tapping mode, phase imaging, and magnetic sample modulation 

(MSM) AFM are described.  Details of the chemistry of self-assembled monolayers and 

approaches used for AFM-based nanofabrication will be outlined along with synthetic 

approaches for using microwave heating to prepare metal nanoparticles. 

2.2 Contact Mode and Frictional Force Imaging 

 For contact mode and frictional force AFM, the tip is rastered in continuous contact 

across a surface using a piezoceramic scanner.  A diode laser is focused onto the backside of the 

cantilever and reflected onto a quadrant photodetector as illustrated in Figure 2.1.  A surface 

profile is generated when the AFM-probe is scanned across the surface in an X-Y raster pattern, 

and attractive and repulsive forces between the tip and the sample cause the cantilever to bend.  

As the tip moves up or down or experiences torsional twisting, the position of the reflected laser 

on the photodetector changes accordingly. Images can be simultaneously generated to view 

differences in frictional forces experienced by the scanning probe.  Contact-mode provides high-

resolution images and can be used to resolve features as small as an atomic/molecular lattice, 

provided that the surface is quite flat.   
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Figure 2.1.  Basic imaging principle for contact mode and lateral force AFM. 

 A feedback loop is used to maintain the initial deflection set-point or load force applied 

between the tip and sample.  For contact mode imaging, the electronic feedback loop adjusts the 

voltages applied to the piezoscanner to maintain a constant tip deflection.  A computer generates 

a 3-D digital image of the surface topography by mapping the small changes in voltage applied 

through the feedback loop with the X-Y position of the tip.
55, 60-64

 

Nanoscale frictional forces between the tip and the sample produce torsional twisting of 

the AFM probe as it is scanned across the sample in contact mode.  The amount of twisting 

(detected as changes in the left-right position of the laser signal) is caused by local differences in 

the surface chemistry of the sample.  Lateral force or frictional force microscopy images are 

acquired simultaneously with contact-mode topography images, which display contrast due to 

surface friction.  Frictional force imaging is useful when studying the homogeneity of sample 

surfaces and provides a sensitive map of local differences in surface chemistry.  Examples of 

contact mode and lateral force images are shown in Figure 2.2 for a nanopattern 5, 10-bisphenyl-

15-20-pyridind-4-yl porphyrin nanografted into a matrix self-assembled monolayer (SAM) of 

octadecanethiol on Au(111).  For the topography frame (Figure 2.2A), the dark areas represent 

shallow areas and the bright colors correspond to taller features.  The image in the center (Figure 

Sample 
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2.2B) shows the simultaneously acquired lateral force image.  The cross-shaped nanostructure 

shows clear differences in surface chemistry compared to the surrounding matrix SAM.  In the 

absence of hysteresis, trace and retrace friction images can be digitally subtracted to reveal 

differences in surface friction for well-aligned scanners. 

Figure 2.2.  Contact and lateral force AFM images of a cross nanopattern of 5,10-bisphenyl-15-

20-pyridind-4-yl porphyrin nanografted into an octadecanethiol SAM.  [A] Topograph [0.45 x 

0.45 µm
2
] acquired in ethanol; [B] simultaneously acquired lateral force image; and [C] cursor 

profile for the line drawn in A. 

2.3 Tapping Mode AFM and Phase Imaging 

Tapping mode uses an oscillating cantilever to minimize stick-slip adhesion during 

contact between the tip and the sample.  A possible drawback of contact mode AFM is that drag 

forces develop between loosely bound samples and the scanning probe, which can alter or 

damage the surface under high forces.  Tapping mode was developed to overcome this limitation 

for imaging soft and fragile samples.
65-67

  Tapping mode is an intermittent mode of AFM in 

which the cantilever is oscillated at a certain frequency as it is scanned across the sample.  The 

tip intermittently touches or “taps” the surface as it is scanned.  This greatly reduces the dragging 

forces
68

 and is particularly suitable for imaging biological materials.
69-72

   

Tapping mode offers advantages for imaging samples that are loosely bound to the 

surface or for samples that are sticky or fragile.  The tip is driven to oscillate at its resonant 

frequency and is brought close to the sample surface to intermittently “tap” the surface at the 
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chosen frequency and desired amplitude.  For ambient imaging, the typical resonant frequency of 

tapping mode tips ranges from 160 to 300 kHz, whereas softer tips with resonances below 100 

kHz can be used for tapping mode imaging in liquid media.  Typically, the tip is attached to a 

small piezoceramic chip to drive the mechanical actuation for tip vibration (Figure 2.3).     

Figure 2.3.  Instrument configuration for tapping mode. 

 As the tip is scanned in intermittent contact with the surface, the feedback loop maintains 

a constant amplitude of tip oscillation.  The voltage changes applied to maintain the amplitude 

are reconstructed to form an amplitude image.  Phase data is obtained from the phase lag 

between the AC input which drives the oscillation and the cantilever oscillation output.  Phase 

images can be used to view differences in material properties attributable to changes in surface 

chemistry, adhesion, and softness/hardness properties.  Topography, amplitude, and phase data 

are obtained simultaneously during tapping mode operation. 
65, 66, 73-75

 

 Example images acquired with tapping mode AFM are shown in Figure 2.4.  Frames of 

the topography and phase channels are shown for 100 nm magnetic ionic liquid nanoparticles 

(MILNPs) over a 20 × 20 µm
2
 scan area, for a dilute sample dispersed on mica(0001).  A 
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topography image acquired in ambient air is shown in Figure 2.4A with a z-scale of 110 nm, and 

the simultaneously acquired phase image is shown in Figure 2.4B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  Tapping mode images of 100 nm magnetic ionic liquid nanoparticles on mica, 

acquired in air. [A] Topography 20 x 20 µm
2
 and [B] simultaneously acquired phase image. 

 

2.4 Chemistry of Self-Assembled Monolayers of n-Alkanethiols and Α,Ω-Alkanedithiols 

Self-assembled monolayers of n-alkanethiols and α,ω-alkanedithiols have been applied 

for surface modification,
37, 76-78 

corrosion inhibition,
79-81

 biosensor design,
82-85

 and molecular 

device fabrication.
86, 87

  The synthetic flexibility of SAMs provide advantages for designing the 

chemistry of surfaces with desired spacer lengths and functional groups.
88, 89

  Surface properties 

such as wettability, acidity, and adhesion can be controlled by choosing the functional groups of 

SAMs.  For example, to design the wettability properties of surfaces, SAMs terminated with 

methyl groups are hydrophobic, whereas SAMs terminated with carboxyl, hydroxyl, or amine 

groups (moieties that can hydrogen-bond to a polar surface) are hydrophilic.
90, 91

   It is well 

established that SAMs of n-alkanethiols form densely packed, well-ordered monolayers on 

coinage metal surfaces such as gold or silver.
92-95

 The packing density of SAMs is shown to 

change depending on the alkane chain length or terminal chemistry of the molecule.
89

  

The basic structure of an n-alkanethiol SAM consists of three parts: the tail, the carbon 

backbone, and the headgroup (Figure 2.5).  The tail is composed of thiol molecules for 
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chemisorptive attachment to surfaces.  The thiol is bonded directly to a saturated 2 to 18-carbon 

chain; the carbon backbone provides a spacer for choosing the vertical thickness of SAM 

nanopatterns.  The carbon chain is capped with a head group which determines the surface 

properties. A variety of functional groups (esters, alkyls, hydroxyls, carboxylates, amides, etc.) 

are available, depending on the desired application.  Previous reports provide details regarding 

synthesis, preparation, and characterization of SAMs.
79, 89, 95, 96

 

 
Figure 2.5.  General model of a self assembled monolayer on Au(111). 

To prepare SAMs of n-alkanethiols or α,ω-alkanedithiols, Au(111) substrates are 

submerged in dilute solutions of alkanethiol dissolved in solvents such as ethanol or 2-butanol 

for various time intervals.  There are a wide range of conditions reported for producing SAMs of 

methyl terminated n-alkanethiols, as summarized in Table 1.  The concentration and the amount 

of time the substrate remains in solution will vary depending on the solubility of the molecule in 

the chosen solvent and the nature of the SAM headgroups.  Controlling variables, such as the 

solution concentration and intervals of immersion, may inhibit the formation of double layers 

and ensures sufficient surface coverage to produce mature, densely-packed SAMs.
25 

 It has also 

been reported that minimizing exposure to light serves to prevent oxidation of thiols.
97, 98

 For 

UHV studies, vapor deposition has also been used to prepare SAMs.
95, 99, 100
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Table 2.1.  Examples of different protocols applied for preparing SAMs. 

SAM Substrate 
Concentration 

(mM) 

Time 

(h) 

Temperature  

(°C) 
Solvent Ref. 

n-hexanethiol,  

n-octanethiol, 

n-decanethiol,  

n-dodecanethiol, 

benzenethiol 

Au(111) 0.001 - 1 mM 24 h 25 ethanol 
101

 

n-dodecanethiol Au(111) 1 mM 24-36 h 25 ethanol 
102

 

n-hexadecanethiol Au(111) 0.0002 mM < 1 h 21 ethanol 
103

 

n-octadecanethiol Au(111) 0.0001 mM < 1 h 21 ethanol 
104

 

n-alkanedithiol Au(111) 0.01 - 1 mM 12 - 168 h 25 ethanol, 2- butanol  
105

 

1,10-decanedithiol Au(111) 0.1 mM 1 - 24 h 25 2- butanol 
106

 

 

Investigations of the solution self-assembly of α,ω-alkanedithiols on Au(111) were 

accomplished using contact mode-AFM.
105

 Unlike n-alkanethiols, SAMs of α,ω-alkanedithiols 

prepared by solution immersion resulted in a heterogeneous surface morphology.
105

 A mixed 

layer of upright or coplanar molecular orientations with either lying-down or standing-up 

orientations relative to the substrate was observed in AFM images of α,ω-alkanedithiol SAMs.  

The majority of α,ω-alkanedithiol molecules were observed to orient to the Au(111) surface with 

a thickness corresponding to having the backbone of the alkane chain aligned parallel to the 

surface.  Islands of standing molecules were intermixed and scattered throughout the surface.  

Methyl-terminated n-alkanethiols with known dimensions were used as molecular rulers to 

obtain a relative thickness measurement of α,ω-alkanedithiol SAMs with angstrom sensitivity.  

Nanopatterns of α,ω-alkanedithiols were shown to directly adopt an upright orientation by 

nanografting due to spatially constrained self-assembly.
105

  

According to studies conducted using IR, near-edge X-ray absorption fine structure 

(NEXAFS) spectroscopy, and grazing incidence X-ray diffraction (GIXD), the alkyl chains of n-

alkanethiol SAMs are tilted approximately 30° with respect to the surface normal.
107-111

  Thiol 

atoms of SAMs are considered to bind to the triple hollow site of a Au(111) lattice by 

chemisorption.
78, 89, 97, 112

 The solution self-assembly of n-alkanethiol SAMs on bare gold 
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surfaces is reported to occur in two phases.  The stripe phase forms when thiols molecules 

initially make contact with the gold surface, in which the backbone of the molecules are oriented 

parallel to the substrate in a lying-down configuration.
113

  However, over time the n-alkanethiol 

molecules rearrange into a standing position with the molecular backbone tilted 30
o
 from surface 

normal.
113

  The mature crystalline phase forms an enthalpy favorable, close-packed 

commensurate (√3 × √3)R30
o  

configuration with respect to the Au(111) lattice.
94, 114-116 

The 

exquisite details of the surface structure and long range ordering of n-alkanethiol SAMs has been 

revealed with STM and AFM to enable a direct view of defect sites such as etch pits, steps, and 

dislocations within films.
94-96

  Etch pits are small depressions observed in high resolution images 

that result from the displacement of atoms of the Au(111) substrate caused by reconstruction 

when thiols of the alkanethiols bind to the gold surface. 

A representative AFM topographic image of a naturally-formed n-alkanethiol 

SAM/Au(111) acquired in liquid is presented in Figure 2.6.  High-resolution images obtained 

with AFM disclose substrates that are not truly smooth and flat; rather, from the atomic 

perspective, surfaces contain defects such as pinholes, missing atoms, and scars.  When AFM 

images reveal these natural defects, then true molecular or atomic resolution has been achieved.  

Looking at the AFM images, the surface may appear rather rough and irregular.  However, the 

surface is actually very flat from an atomic perspective.  The height of gold steps is only 0.25 

nm, and the overall surface roughness of the underlying gold substrates for these samples is less 

than 1 nm.  The topography images in Figure 2.6 display height changes according to color 

contrast from dark to light, analogous to a height map of the surface terrain.  The dark colors 

indicate shallow features, whereas brighter areas are taller.  In the wide view image (1 × 1 µm
2
) 

of an dodecanethiol SAM in Figure 2.6A, the terrace domains of the underlying gold surface are 

clearly apparent.  The AFM image reveal that the step edges of the gold terraces are not smooth; 
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rather, the uneven and angular profiles at lacey edges reflect the true surface morphology.  The 

SAM-covered surface is decorated with tiny holes, known as etch pits or molecular vacancy 

islands, which are 0.2 nm deep, corresponding to the depth of one atomic layer of gold.  Etch pits 

are defect sites resulting from the reconstruction of Au(111) during the chemisorption of thiol 

molecules.
117

 A close-up view (500 × 500 nm
2
) of a terrace area is displayed in Figure 2.6B, 

which begins to reveal the molecular domains between areas of etch pits.  The size and density of 

etch pits varies widely for various samples according to sample preparation conditions, such as 

age and oxidation.  Details of the surface morphology of alkanethiol SAMs on Au(111) 

substrates has also been investigated with STM.
101, 118, 119

  

 
Figure 2.6.  Contact mode AFM images of dodecanethiol on Au(111) acquired in ethanol.  [A] 

Topography view of several terrace domains [1 × 1 µm
2
]

 
; [B] zoom in view [C] cursor profile 

for the line in B. 

2.5 Approaches for Scanning Probe Lithography 

 Many promising methods for producing nanostructures of organic thin film materials 

have been developed, such as x-ray and e-beam lithographies,
120-126

 nanosphere lithography,
127-

134
 and scanning probe-based nanolithography.

9, 135, 136
 Scanning probe lithography (SPL) 

exhibits the highest spatial precision at the level of single molecule resolution.  The intrinsic 

advantages of SPL have triggered rapid developments with approaches advanced for regulating 

local tip-material interactions to accomplish SPL with biological and organic thin film materials.  
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Elegant results for manipulating individual metal and noble gas atoms as well as diatomic 

molecules under cryotemperatures in ultra high vacuum (UHV) using STM demonstrate the 

atomic-level precision achievable with SPL.
137-140

 More commonly, nanoscale lithography using 

AFM approaches has been used for nanofabrication with SAMs.  Examples include tip-directed 

material deposition,
141

 dip-pen nanolithography (DPN),
142, 143

 local oxidation 

nanolithography,
144-146

 local chemical or electrochemical lithography,
147

 tip-induced catalysis,
148

 

thermal-mechanical based writing,
149-152

  nanoshaving,
37, 153, 154

 and nanografting.
38, 155, 156

 Recent 

reviews have furnished in-depth discussions for the SPL approaches of DPN and local oxidation 

lithography.
142, 143

 In comparison to other SPL approaches, STM-based lithography exhibits the 

highest spatial precision at the level of single organic molecules.  Among AFM-based 

approaches, nanografting and nanoshaving provide in situ advantages of high spatial resolution, 

demonstrating feature sizes as small as 2 nm.
157

   

2.5.1. Fabrication of SAMs Using Nanoshaving  

Nanoshaving can be accomplished by applying mechanical force to the probe during 

scans; essentially small areas of the SAM are “shaved” away by the action of a scanning AFM 

tip.
37

 Nanoshaving is used to uncover selected regions of surfaces which are surrounded by a 

passivating matrix SAM.  These uncovered regions are then available for deposition of new 

molecules and materials.  Information about the thickness of molecular layers on surfaces can be 

derived by using the nanoshaved areas as a baseline for cursor measurements.
38, 158

 Nanoshaving 

was introduced in 1994 for a SAM of octadecyltriethoxysilane (OTE).  Changes in the observed 

lattice were used to confirm that molecules were displaced from the surface.
159, 160

 

The process of nanoshaving is accomplished by scanning several times over a small local 

area of a surface with an AFM tip while applying a higher force than that used for imaging 

(Figure 2.7).  After molecules are removed, the AFM probe can still be used to image the surface 
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by returning to low force.  In nanoshaving, a high local pressure is applied by an AFM tip to the 

area of contact.  This pressure causes high shear forces, and thus displaces SAM adsorbates as 

the tip is scanned back and forth across the surface.  As a result, the bare substrate is exposed.  

By carefully controlling the amount of force applied, the AFM tip is not damaged during 

fabrication.   

 

Figure 2.7. Basic steps of nanoshaving. [A] Surface characterization under low force; [B] 

nanoshaving of local areas of the SAM is accomplished when the force in increased; [C] 

returning to low force, the nanoshaved area can be characterized in situ, using the same tip. 

 

The three basic steps of nanoshaving are shown in Figure 2.7.  The first step uses an 

AFM tip operated under minimal force (less than 1 nN) to characterize the sample and to locate a 

suitably flat, clean area for writing.  A flat plateau area of the surface with few scars and defects 

is desirable for shaving patterns.  Next, a higher force is applied (ranging from 2-20 nN 

depending on the monolayer adsorption properties), which causes the AFM tip to push through 

the matrix SAM to make contact with the surface. The molecules directly under the tip are 

shaved away to uncover areas of the surface.  Sufficient force is applied to the AFM probe to 

ensure that matrix SAM molecules are removed without disturbing the underlying gold 

substrate.
37

 In the final step, the newly fabricated areas of the surface are characterized with the 

same AFM tip using a reduced force (less than 1 nN). Thus, nanoshaving enables in situ 

fabrication of SAMs.   
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 It is critical to optimize the amount of force applied to the AFM tip for nanoshaving 

SAMs.  If too much force is applied, the sharp apex of the tip can be broken.  Therefore, it is 

important to find a minimum force to remove molecular layers without damaging the tip.  

Atomic force microscope controllers provide precise control of the force applied to AFM tips 

using electronic feedback.  The threshold force is determined for each experiment by 

successively incrementing the amount of force applied during scans.  As the force is increased, 

the tip is pushed though the matrix SAM to contact the underlying substrate.  The tip is then 

rastered several times to sweep molecules from the surface since the actual area of contact is 

very small between the tip and surface.  If too much force is applied, the torsion on the cantilever 

will cause the tip to twist and produce non-linear movements.  At the optimized minimum force 

threshold, the desired square, linear, or circular geometries will be produced.  

The imaging media and the nature of the molecule influence the success of nanoshaving. 

When imaging in air, displaced SAM molecules often pile up at the sides of the trenches or holes 

that are uncovered; in liquid media, the molecules dissolve in the surrounding solvents. 

Nanoshaving has not been accomplished for n-alkanethiols with fewer than ten carbons because 

holes or trenches refill with short-chain molecules.  Immediately after the molecules have been 

removed by the scanning AFM tip, molecules of short-chain thiol SAMs backfill into the 

uncovered areas.  In contrast, SAMs of any chain length of n-alkylsilanes are irreversibly 

displaced by nanoshaving in either liquid or ambient environments.
160, 161

  

An example array of nanoshaved patterns produced within an octadecanethiol (ODT) 

SAM is presented in Figure 2.8.  The topographic image displays twelve dark squares written 

into an ODT matrix in ethanol.  The squares correspond to uncovered areas of Au(111).  The 

areas of brighter contrast indicate taller features, whereas the dark areas are shallower.  Even 

when writing with an open-loop AFM scanner, there is very precise alignment of the rows and 
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columns of the array and well-defined square geometries for nanoshaved patterns.  The high-

resolution image of Figure 2.8A was acquired after nanoshaving and evidences that, after writing 

under force, the tip has not become blunt or damaged.  The in situ topograph clearly exhibits the 

indicators of a high-resolution image, such as circular gold terraces, concentric circular steps, 

and line scars.  The friction image (Figure 2.8B) provides a spatial map of the changes in 

chemistry for nanoshaved patterns.  The matrix areas of ODT show uniform contrast, which is 

clearly distinguishable from the brighter nanoshaved areas.  Within the nanoshaved squares, the 

homogeneous color evidences clean removal of the matrix SAM.  A cursor profile along the 

bottom row of nanoshaved patterns reveals the height difference between the ODT SAM and the 

underlying surface measures 2.0 ± 0.2 nm.  This value agrees closely with the expected thickness 

(2.1 nm) for an ODT SAM. 

 

Figure 2.8.  Nanoshaved array of 100 x 100 nm
2
 squares written in an octadecanethiol matrix. 

[A] topography; [B] frictional force image; [C] corresponding cursor profile along the bottom 

row of nanopatterns.  

 

 The thickness of the SAM can be measured from cursor profiles across the film and areas 

of the uncovered substrate.  Nanoshaving can be applied to determine the thickness of thin films 

with angstrom precision by referencing the substrate as a baseline for cursor measurements.  In 

addition to alkanethiol SAMs, nanoshaving has been used for characterizations of molecularly 

thin films of porphyrins,
162

 alkylsilanes,
159, 163, 164

 sexithiophene,
165

 dimercaptobiphenyl 

multilayers,
166

 α,ω-alkanedithiols,
105

 and DNA.
167 

After local areas of the surface have been 
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uncovered by nanoshaving, new molecules or nanomaterials can then be selectively deposited on 

the exposed areas to form nanopatterns.
168

  

2.5.2  Nanografting of n-Alkanethiol and Α,Ω-Alkanedithiol SAMs 

 

Nanografting was introduced in 1997 by Xu and Liu.
38

 A useful analogy for describing 

AFM-based lithography is to consider the AFM tip as a pen, a matrix SAM on gold as the paper, 

and fresh n-alkanethiols in solution as the “ink” for writing patterns.  Nanografting basically uses 

the same procedure as nanoshaving, except that the steps are accomplished while the tip and the 

sample are immersed in a dilute solution of thiol molecules chosen for writing (Figure 2.9).  The 

matrix SAM is first characterized in liquid media by applying a low force, less than 1 nN.  

Imaging in liquids enables one to achieve high resolution with low, nondestructive forces.
169, 170

 

After choosing an area for writing, a greater force (1-10 nN) is applied to the AFM tip (pen) to 

shave the matrix molecules from the gold substrate.  The SAM molecules which are removed 

from the surface (paper) are either deposited at the edges of the nanopatterns or are dissolved in 

the surrounding solvent.  New thiol molecules from solution immediately self-assemble onto the 

shaved areas following the scanning track of AFM tip.  The written patterns can then be 

characterized in situ without changing tips by returning to low force. 

For nanografting, it is critical to control the amount of force to ensure that the tip remains 

sharp after writing nanopatterns.  Unfortunately, the microfabrication processes used to 

manufacture tips have not yet achieved nanoscale reproducibility for the shape and spring 

constants for each lever, thus, an in situ approach is useful to derive the optimized threshold 

force for each AFM tip.  To optimize the writing force, a simple computer script can be used to 

write several patterns at incrementally increasing force. The lowest force at which a complete 

pattern is observed is then chosen as the optimized force for nanografting.  When too much force 
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is applied to the AFM probe while scanning, it is possible to scratch away the underlying surface 

or to break the apex of the probe.  If the selected threshold force is too great, the torsion on the 

cantilever will cause the tip to write irregular shapes and produce stray lines and marks around 

the patterns.  

 
 

Figure 2.9. Principle of nanografting.  Molecules self-assemble from solution following the 

scanning track of an AFM tip. 

 

When a minimum force is used for nanografting, hundreds of patterns can be written with 

the same AFM tip without sacrificing topographic resolution.  In fact, often the resolution of 

AFM imaging is improved by the sharpening process or cleaning of the tip by scratching the 

surface.  

Depending on the choice of molecules, nanografting can generate patterns that are taller 

or shorter than the SAM matrix.  For example, a cross-shaped pattern of 11-mercaptoundecanol 

(MUD) was written into matrix of ODT in Figure 2.10A.  The simultaneously acquired frictional 

force image exhibits dark contrast for the MUD areas of the cross, which are terminated with 

hydroxyl groups (Figure 2.10B).  The surrounding methyl-terminated matrix areas of ODT 

exhibit lighter frictional contrast, clearly distinguishing the differences in surface chemistry after 

nanografting.  The line profile of Figure 2.10C indicates the nanostructure is 0.7 ± 0.3 nm shorter 

than the matrix SAM, in close agreement with the theoretical differences in thickness (ODT 

measures 2.1 nm, MUD is 1.5 nm).  The measurements of film thicknesses with nanografting are 
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highly dependent on the flatness of the surface; in this example, the error term for the 

nanografted domains take into consideration the roughness of gold step edges (± 0.25 nm). 

 

 

 

 

 

 

 

 

Figure 2.10. Nanografted patterns of self-assembled monolayers. [A] Cross-shaped pattern of 

11-mercaptoundecanol fabricated within a matrix of octadecanethiol; [B] corresponding 

frictional force image; [C] cursor profile for the white line in A. [D] Mercaptohexadecanoic acid 

forms a taller pattern within a dodecanethiol matrix, the square has bright contrast; [E] friction 

image; [F] cursor profile across the nanopattern in D. 

An example is presented for a positive height pattern of 16-mercaptohexadecanoic acid 

(MHA) in Figure 2.10D.  The square nanopattern (200 x 200 nm
2
) was written within a 

dodecanethiol matrix and is well-centered on a terrace step of Au(111).  The friction images 

provide additional information about the chemical changes on the surface which have taken 

place after writing new molecules (Figure 2.10E).  The corresponding friction image shows 

bright contrast for the carboxylic acid areas of the square pattern, whereas the surrounding 

methyl-terminated matrix has dark contrast.  There is adhesion between the tip and surface of the 

square nanopattern, which caused line spikes only on the patterned area along the horizontal 

direction of the scanning AFM tip.  The line artifacts are clearly visible in the friction image.  In 

contrast, the methyl-terminated areas do not exhibit the stick-slip adhesion because the methyl 

groups do not interact as strongly with the tip.  The expected thickness for MHA is 1.9 nm, and 
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for dodecanethiol, it is 1.5 nm.   A representative cursor profile (Figure 2.10F) indicates that the 

pattern is 0.4 ± 0.2 nm taller than the molecules of the matrix, in close agreement with the 

theoretical height difference.  An attribute of the nanografting process with thiol SAMs 

demonstrated with these examples is the extraordinary angstrom to nanometer precision for edge 

resolution, even when using open-loop feedback for electronics.  Such well-formed regular 

geometries at the square edges and corners of patterns are routinely achievable with AFM 

because the piezocontrollers enable exquisite control of small forces applied to the tip.      

A key element of nanografting is that n-alkanethiols chemisorb spontaneously to surfaces 

in an upright arrangement to form a crystalline phase, due to a mechanism of spatial 

confinement.
171

 When n-alkanethiols assemble naturally, there is a phase transition from a side-

on orientation, with the backbone of the molecule oriented along the surface, to a standing 

orientation in which the molecules adopt a tilted orientation as in Figure 2.5.
95, 100, 113

 When 

nanografting, it is thought that the molecules bypass the lying-down phase and assemble 

immediately into a standing configuration because there is not sufficient space for the molecules 

to assemble on the surface in a horizontal direction.
171

 A kinetic Monte Carlo model of natural 

and nanografted deposition of alkanethiols on gold surfaces was developed by Ryu and Schatz, 

which reproduces experimental observations for the variation of SAM heterogeneity with AFM 

tip writing speed.
172

 The speed of the AFM tip influences the composition of the monolayers 

formed along the writing track. 

2.6 Magnetic Sample Modulation AFM 

This section describes a new approach for mapping the magnetic response of 

nanomaterials by combining magnetic sample modulation (MSM) with contact mode AFM.  

Several measurement SPM modes have been developed for evaluating magnetic properties of 

samples.  Imaging modes, such as magnetic resonance force microscopy (MRFM)
173-176

 and 
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magnetic force modulation (MFM),
177-180

 require the use of tips with a magnetic coating.  In 

contrast to magnetic force microscopy, MSM imaging requires using nonmagnetic probes and 

evaluates the mechanical response of materials vibrating in response to an external magnetic 

field to map magnetic domains.  This new MSM imaging mode has the potential to advance the 

resolution of magnetic imaging beyond that which is currently possible with MFM. 

This new imaging MSM mode uses a standard soft, nonmagnetic AFM cantilever 

operated in contact mode to detect the physical motion of nanoparticles which are driven to 

vibrate by an externally applied AC electromagnetic field.  Magnetic probes can be problematic, 

however, since the magnetic properties of the thin metal films which coat the underside of the 

probes diminish over time, requiring remagnetization.  Also, after continuous contact mode 

scanning, the thin metal films can be worn away.  The thickness of the magnetic coatings is on 

the order of tens of nanometers, which greatly decreases the resolution for imaging small surface 

features.  Intrinsically, the resolution of SPM methods depends on the geometry of the coated 

probe; metal coatings produce relatively large, blunt tips. 

A solenoid is placed underneath the sample stage, as shown in Figure 2.11.  When an AC 

current is applied to the wire coil solenoid, a magnetic field is produced which alternates in 

polarity.  The flux of the alternating magnetic field causes the magnetic nanomaterials to vibrate 

on the surface according to the desired frequency of the AC current.  The periodic motion of the 

sample vibration can be tracked by changes in the deflection of the tip.  As the tip is rastered 

across the surface in contact mode, the movement of the magnetic nanomaterials causes the tip to 

vibrate when it touches the vibrating domains.  The mechanical motion of the magnetic material 

is sensitively detected by a scanning AFM tip.  Only the magnetic materials vibrate when the 

alternating magnetic field is applied, providing contrast that is selective for magnetic areas. 
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Figure 2.11.  Concept for AFM imaging with magnetic sample modulation.  [A] Instrument 

setup; [B] photograph of solenoid located beneath the sample plate.  

The instrument setup for MSM is a hybrid mode composed of elements of three AFM 

imaging modes.  The tip is operated in contact mode using a MAC mode sample plate to apply 

an alternating magnetic field for selective modulation of magnetic domains.  Essentially, MSM is 

a variant of force modulation AFM with selectivity for actuating and characterizing magnetic 

nanomaterials.  To visualize the magnetic domains of a sample, conventional contact mode 

images are first acquired without applying a magnetic field.  Next, the same area of the surface is 

scanned again with an alternating electromagnetic field applied. The polarity, oscillation, and 

flux of the magnetic field are generated and controlled by selection of parameters for the AC 

current applied to the wire coil solenoid, which is located underneath the sample plate embedded 

within an epoxy resin shown in Figure 2.11 B.  When an electromagnetic field is applied to 

samples, only the magnetic domains are driven to vibrate, providing selective contrast for areas 

that are in motion.  A lock-in amplifier is used to acquire the amplitude and phase components of 

the deflection signals, which furnishes exquisite sensitivity for slight changes in tip movement.  

The changes in phase and amplitude as the tip interacts with the vibrating sample are plotted as a 

function of tip position to create MSM phase and amplitude images.  The differences displayed 

for images with and without an applied magnetic field are used to map areas of magnetic 

nanomaterials. 
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Magnetic sample modulation was applied to characterize FeNi3 nanoparticles synthesized 

using conventional oven heating.
181

 Figure 2.12 showcases proof-of-concept MSM images of 

FeNi3 nanoparticles.  A topography image of nanoparticle sample prepared on a mica(0001) 

surface is shown in Figure 2.12A, and the simultaneously acquired MSM-amplitude and MSM-

phase channels are displayed in Figures 2.12B and 2.12C, respectively.  The top portion of the 

images was acquired when an alternating magnetic field was activated.  However, after scanning 

halfway, the electromagnetic field was turned off.  Therefore, at the bottom region of the MSM 

images, no phase or amplitude changes are apparent without the actuation of the external 

electromagnetic field.  Topography images which are acquired by scanning in continuous contact 

with the surface reveal the presence and shape of nanoparticles regardless of whether an external 

magnetic flux is applied.  Nevertheless, for phase and amplitude channels, sample contrast can 

only be detected when the samples are vibrating in response to the AC magnetic flux.  The MSM 

images reveal that nanoparticles stopped shaking immediately after the magnetic field is halted.  

Figure 2.12.  Images of FeNi3 nanoparticles in response to the presence or removal of an 

externally applied AC electromagnetic field.  [A] Topography view (6.5 x 6.5 µm
2
), [B] MSM-

amplitude, and [C] MSM-phase channel.   

2.7 Synthesis of Nanoparticles with Microwave Heating 

The advanced technology of microwave heating is readily available in most homes and 

restaurants in the United States, and it seems sensible to use microwaves in our chemistry 

laboratories.  Microwaves are widely used commercially in industrial and research labs because 
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they are fast and efficient.  Many organic solvents and chemicals produce dangerous vapors 

which can ignite or explode when heated.  Microwaves for chemistry are designed with 

explosion-proof safety features and use computer-controlled fiber optic temperature and pressure 

sensors to carefully regulate reaction conditions.  On the other hand, chemistry microwaves are 

extremely efficient, producing higher percentage yields in a matter of minutes for reactions that 

conventionally would require many hours or days to evolve, and reach completion using a hot-

plate.  The benefits of using microwave ovens for sample preparation and synthesis include 

improved safety, smaller reagent volumes, speed, increased yields, and cleaner Green 

chemistries.  

Our goal was to implement microwave heating for undergraduate chemistry laboratories 

and research internships and to develop more efficient, safe, and rapid approaches for sample 

digestions, extractions, and synthesis.   

For example, a laboratory exercise for the analysis of heavy metals in cereals using 

atomic absorption spectrophotometry was developed using microwave heating for acid digestion.  

The microwave method was accomplished with only twenty minutes of heating, using far smaller 

amounts of concentrated solutions of acids in sealed vessels as compared to the hot-plate 

approach which required heating open containers of boiling hot liquids that evolved acid fumes.  

The full details of the experiments that were developed are described in Appendix A.  In 

addition, students were encouraged to incorporate microwave protocols in their senior research 

projects for Chemistry 4553.   For example, one group of students studied the leaching effects of 

heavy metals from alumina, copper, and cast iron cooking pots and used microwave heating to 

extract metal leachates from food prepared in metal pans.    

Microwave systems were also used for graduate student research.  In particular, synthesis 

of FeNi3 nanoparticles was accomplished using microwave heating to control the size dispersity, 
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and these results are discussed in Chapter 5.  Iron and nickel nanoparticles synthesized using 

microwave heating were imaged with tapping mode AFM (Figure 2.13).  Topography and phase 

images are shown for a 4 × 4 µm
2
 scan area, revealing the spherical shape and compositional 

differences of Fe, Ni, and FeNi3 nanoparticles.  The topography image (Figure 2.13A) with a z-

scale of 12 nm and corresponding phase image (Figure 2.13B) were acquired in ambient 

conditions using tapping-mode AFM.  A height histogram generated from cursor line profiles of 

individual nanoparticles reveals polydisperse sizes for the mixture of different nanoparticles 

(2.13C).  Further AFM characterizations comparing the size and composition of nanoparticles 

prepared by oven heating in a digestion bomb versus nanoparticles prepared with microwave 

heating in a controlled pressure vessel are described and characterized in Chapter 5. 

 

Figure 2.13. A mixture of iron and nickel nanoparticles was produced by microwave heating at 

low pressure.  [A] AAC-mode topograph; [B] corresponding phase image; [C] size distribution 

of nanoparticles. 
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CHAPTER 3.  APPLYING AFM-BASED NANOFABRICATION FOR MEASURING 

THE THICKNESS OF NANOPATTERNS: THE ROLE OF HEADGROUPS IN THE 

VERTICAL SELF-ASSEMBLY OF Ω-FUNCTIONALIZED N-ALKANETHIOLS 

 

3.1 Introduction 

Methyl-terminated n-alkanethiols have been extensively studied and are known to form 

well-ordered commensurate monolayers over a wide range of experimental conditions (e.g. 

concentration, immersion intervals).
89, 94, 182-184

  However, self-assembled monolayers (SAMs) 

with hydroxyl, sulfur and carboxylic acid head groups have not been as extensively investigated.  

By using solutions containing two different alkanethiols, it is possible to generate SAMs of 

mixed composition.
185-193

 Little is known at the molecular level about how the relatively bulky 

head groups of ω-functionalized n-alkanethiols influence the vertical self-assembly for SAM 

nanopatterns.  Alkanethiol SAMs have a number of applications such as for surface 

modification,
37, 76, 194, 195 

corrosion inhibition,
79, 196, 197

 chemical or biosensing platforms,
198-202

 

lubrication
203-207

 and molecular device fabrication.
208, 209

  The synthetic flexibility of SAMs 

provide advantages for designing the chemistry of surfaces with desired spacer lengths and 

functional groups.
210

 By changing the functional group, surface properties can be controlled, 

such as wettability, acidity and adhesion.   

Useful nanotechnology applications for n-alkanethiol SAMs as relief and resist structures 

for micrometer to nanoscale lithographies have recently emerged.  Nanostructures with designed 

functionality, geometry, and lateral dimensions can be achieved using scanning probe 

lithography with n-alkanethiols, such as with approaches of nanografting,
211, 212

 NanoPen Reader 

and Writer (NPRW),
213

 or DPN.
214

  At larger micrometer dimensions, SAM structures can be 

produced using methods such as microcontact printing and photolithography.
215-220

 To produce 

nanostructures of n-alkanethiol SAMs, nanografting was introduced in 1997 by Xu and Liu.
38

 

For writing nanopatterns with nanografting, a high force is applied to a scanning AFM probe to 
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remove small areas of the matrix SAM.  The exposed areas are immediately filled with 

molecules from solution to inscribe structures within a matrix SAM along the track of the 

scanning AFM tip.
221

  Nanografting takes place under spatially confined conditions which direct 

the surface assembly of molecules directly into an upright orientation, bypassing the lying-down 

phase.
222

  Small areas of the surface that are exposed by the AFM tip during nanografting are 

confined by both the AFM tip and the neighboring thiol molecules of the surrounding matrix; 

thus, incoming alkanethiols are written directly in a standing orientation.  Since nanografting is 

accomplished in dilute solutions of thiolated molecules, a range of different solvents and 

concentrations can be examined to evaluate the resulting changes in the vertical self-assembly of 

nanopatterns.  

Mature SAMs with methyl head groups form an enthalpy favorable, close-packed 

(√3×√3)R30
o 

surface structure and also c(4×2) superstructures as a crystalline chemisorbed phase 

which is commensurate with the Au(111) lattice.
94, 210, 223 

The thiol end groups are considered to 

mostly bind to triple hollow sites of a Au(111) lattice by chemisorption.
79, 89, 194, 224

 For methyl-

terminated n-alkanethiol SAMs, studies conducted using IR, near-edge X-ray absorption fine 

structure (NEXAFS) spectroscopy and grazing incidence X-ray diffraction (GIXD), indicate that 

the alkyl chains of SAMs are tilted approximately 30° with respect to surface normal.
207, 223, 225, 

226
  For SAMs with different head groups, the molecular-level packing is known to be different 

as compared to methyl terminated n-alkanethiols with the same backbone.  For example, SAMs 

with hydroxyl and carboxylic acid groups exhibit a higher degree of disorder and different chain 

orientation.
227, 228

 For SAMs with aldehyde-termini, the surface morphology is reported to 

exhibit a smaller domain size, a lesser degree of long-range order, large coverage of disordered 

areas, and higher density of missing molecules and other point defects within domains of closely 

packed molecules.
229

 These structural differences are mainly attributed to the strong dipole-
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dipole interactions among the aldehyde head groups.  It has been proposed that disorder is 

produced by interactions among the head groups, which can disrupt close-packing at the 

molecular level.
227, 228

  

In the present study, we systematically investigate the influence of concentration 

parameters for nanografting n-alkanethiols with –COOH, –SH, –OH and –CH3 head groups.  

Nanografting provides an in situ approach to investigate the vertical self-assembly of molecules 

in a liquid environment at various concentrations.  Essentially, the well-known dimensions of 

methyl-terminated alkanethiol matrix SAMs provide a molecular ruler for evaluating the 

thickness of nanografted structures.  Changes in the vertical assembly of nanopatterned 

molecules under varied conditions of solution concentration provide insight on the interactions of 

head groups for functionalized n-alkanethiols.  

3.2 Experimental  

3.2.1 Materials  

 Hexanethiol (HT), octadecanethiol (ODT), hexadecanethiol (HDT), 11-

mercaptoundecanoic acid (MUA), 16-mercaptohexadecanoic acid (MHA), 11-

mercaptoundecanol (MUD), 1,9-nonanedithiol, dodecanethiol (DDT), N,N-dimethylformamide 

(DMF), 2-butanol, and dimethyl sulfoxide (DMSO) were obtained from Sigma Aldrich (St. 

Louis, MO, USA) and used without further purification.  Ethanol (200 proof) was purchased 

from AAper Alcohol and Chemical Co. (Shelbyville, KY, USA).  Flame-annealed gold coated 

mica substrates (150 nm thickness) were acquired from Agilent Technologies, Inc. (Chandler, 

AZ). 

3.2.2 Preparation of n-Alkanethiol Self-Assembled Monolayers   

 To prepare SAMs of n-alkanethiols, flame-annealed Au(111) films on mica substrates 

were submerged in dilute solutions of alkanethiols dissolved in ethanol for time intervals ranging 
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from 1 to 48 h.  The concentration and the amount of time the substrate remains in solution were 

varied, depending on the solubility of the molecule in the chosen solvent and the nature of the 

head groups.  Controlling variables such as the solution concentration and intervals of immersion 

prevented double layers from forming and ensures sufficient surface coverage to produce mature, 

densely-packed SAMs.
 
 In preparing SAMs, it has also been reported that minimizing exposure 

to light serves to prevent oxidation of thiol end groups.
230, 231

  After immersion in ethanolic 

solutions of either HT, DDT or ODT at a concentration of 10
-7

 M for no more than 48 h, the 

matrix samples of SAMs/Au(111) were stored in fresh solvent in the dark for up to 3 weeks.   

3.2.3  Atomic Force Microscopy (AFM) 

 Experiments were accomplished using contact-mode in liquid with either a hybrid AFM 

system from RHK or an Agilent 5500 system (Chandler, AZ).  For the hybrid system, a 

PicoSPM scanner from Agilent (Chandler, AZ) was interfaced with electronic controllers and 

software (XPM Pro v.1.2.1.0) from RHK Technology (Troy, MI).  For automated scanning probe 

lithography, a computer-controlled vector scanning module was used to control the position, 

force and motion of the AFM tip (VSCAN, RHK Technology).
232

  Silicon nitride cantilevers 

from Veeco Probes (Santa Barbara, CA) with a 0.5 N/m force constant were used for AFM-

based lithography and imaging.  Picoscan v5.3.3 software was used for data acquisition. Digital 

images were processed with Gwyddion (version 2.9) open source software which is freely 

available on the Internet and supported by the Czech Metrology Institute.
233

 

3.2.4 Nanografting 

 Nanografting consists of three basic steps (Figure 3.1), which are accomplished in situ 

while the tip and the sample are immersed in a dilute solution of new thiol molecules chosen for 

writing.  A useful analogy for describing AFM-based lithography is to consider the AFM tip as a 

pen, a matrix SAM on gold as the paper, and fresh n-alkanethiols in solution as the “ink” for 



 
 

36

writing patterns.  First, the matrix SAM is characterized by applying a low force less than 1 nN 

(Figure 3.1A).  A flat area with few defects or scars is chosen for writing the patterns.  Next, a 

higher force is applied to the AFM tip (pen) to shave the matrix molecules from the gold 

substrate (Figure 3.1B).  The forces used for writing patterns ranged from 2 – 9 nN for the 

examples presented in this report.  The SAM molecules which are removed from the Au(111) 

surface (paper) are either deposited at the edges of the nanopatterns, or are dissolved in the 

solvent media.  New thiol molecules from solution (ink) immediately assemble on the surface 

following the scanning track of AFM tip.  The written patterns can then be characterized in the 

final step using the same AFM tip by returning to the non-destructive force used in the first step 

(Figure 3.1C).  Beginning with a low concentration (10
-9 

M), the imaging media was 

successively replaced with higher concentration solutions (up to 10
-3

 M) to evaluate the threshold 

conditions for producing double layer patterns.  

 

Figure 3.1.  In situ steps of nanografting. [A] Surface characterization is accomplished while 

imaging at low force. [B] Nanopatterns are written at high force, thiol molecules assemble in an 

upright orientation following the scanning track of the AFM tip. [C] Returning to low force, the 

patterns are imaged in situ. 

3.2.5 NanoPen Reader and Writer (NPRW)   

 Nanopatterns of n-alkanethiols can be written with NPRW using a coated AFM tip in an 

ambient environment, as previously introduced by Amro et al.
213

  In the first step, an AFM tip is 

submerged in a 5 mM ethanolic solution of chosen n-alkanethiol (ink) for at least 30 min.  The 

thiolated ink molecules adhere to the tip via physisorption, but do not chemically bond to silicon 
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nitride probes.  After the alkanethiol coated probe is removed from solution and dried briefly in 

air, it is installed on the AFM scanner for imaging.  When scanning under low force with the 

coated probe, the surface of a methyl-terminated SAM is not disturbed and ink molecules remain 

attached to the tip.  Under low force the thiol coating of the tip serves as a lubricant and enables 

high-resolution imaging to be accomplished.
213, 234

 When the force is increased to a certain 

displacement threshold, nanopatterning is accomplished in air using the same coated probe.  

Under increased force, matrix molecules directly under the AFM tip are displaced from the 

substrate and replaced by ink molecules from the tip.  The newly inscribed nanopatterns can then 

be characterized in situ by returning to low force for non-destructive imaging.  A minimal 

threshold force for writing is determined by successively increasing the force until nanopatterns 

are generated with a single pass.  By comparing the heights for the matrix SAM of known 

thickness to the heights of newly inscribed nanopatterns, the local thickness can be measured 

precisely. 

3.3 Results and Discussion 

 The known dimensions of methyl-terminated n-alkanethiols were used as a height 

reference standard or molecular ruler for comparative measurements of the vertical dimensions 

of ω-functionalized SAMs (hydroxyl, carboxylic acid, and thiol terminated SAMs).  To estimate 

the heights of n-alkanethiols on Au(111), the value for the fully extended molecular length from 

chemical models of energy minimized structures was determined, and an estimated tilt of 30 

degrees was applied to determine theoretical dimensions.  Using this approach, the theoretical 

heights for matrix reference molecules of hexanethiol, dodecanethiol and octadecanethiol are 0.9, 

1.5 and 2.1 nm, respectively.  The theoretical values are consistent with values reported from 

experimental measurements using various surface techniques, such as ellipsometry, x-ray 

diffraction and x-ray photoelectron spectroscopy.
235-238

  Nanografting and NPRW provided a 
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means to generate nanostructures for local thickness measurements, enabling a side-by-side 

comparison of the heights of ω-functionalized alkanethiols versus matrix monolayers of known 

dimensions.   

3.3.1 Nanografted Patterns with Methyl Head Groups as a Reference Standard   

 A cross pattern (300 x 300 nm
2
) composed of methyl-terminated ODT (10

-8 
M) was 

nanografted into a DDT matrix (Figure 3.2).  The brighter area of the topography frame indicates 

that the nanografted structure is taller than the surrounding matrix SAM (Figure 3.2A).  The 

cross was written by rastering the AFM tip under high force in the horizontal direction to sweep 

matrix molecules from the surface with a single pass.  The spacing was programmed to advance 

the tip 2 nm between each linesweep.  The cross pattern was written in less than 1 min with a 

writing speed of 500 nm/second.  Since both the matrix and nanopattern are terminated with 

methyl groups, the lateral force image only reveals subtle differences in surface chemistry at the 

edges of the nanopattern (Figure 3.2B).  Edge effects at the peripheral areas surrounding patterns 

can often be discerned clearly in lateral force images, which are useful for identifying the local 

differences in surface chemistry of nanopatterns that were written.  Essentially, the tip-surface 

adhesion for a tip traveling along the side of a molecule is different than when the tip travels 

across the top surface of the exposed functional group.  The lateral force image confirms that the 

head group chemistry of the matrix and nanografted pattern is the same.  A dark circular hole is 

observed in the upper left region of the nanopatterned cross, which is a pinhole defect of the 

underlying gold substrate.  This landmark is also visible as a bright spot in the corresponding 

lateral force image.  The cursor profile across the center of the cross indicates a height difference 

of 0.5 ± 0.2 nm (Figure 3.2C).  The error term is derived from the height of a Au(111) step                   

(~ 0.24 nm) for the uncertainty of thickness measurements for nanopatterns.  The cursor 
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measurement agrees closely with the expected theoretical values for a close-packed monolayer of 

n-alkanethiols as illustrated in the height model of Figure 3.2D.  

                                                                           
 

Figure 3.2. A methyl-terminated cross nanopattern written with octadecanethiol in a 

dodecanethiol matrix. [A] Topography image after writing a pattern via nanografting; [B] 

corresponding lateral force image; [C] cursor profile for the line in A. [D] Side-view model of 

molecules of the nanopattern. 

Regardless of the concentration of the thiol solution or solvent system chosen, we have 

observed that methyl-terminated alkanethiols consistently form monolayers when nanografting.  

Even for concentrations as high as 1 mM, single layers were exclusively produced when 

nanografting with solutions of methyl-terminated n-alkanethiols.  Thus, methyl-terminated 

SAMs provide a convenient, reliable and reproducible height standard for comparative 

measurements of other systems of ω-functionalized n-alkanethiols. 
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3.3.2 Nanopatterns with Carboxylic Acid Head Groups   

 For carboxylic acid terminated SAMs, the heights of nanografted patterns were observed 

to double at higher concentration.  A monolayer pattern was produced at relatively low 

concentration (10
-9 

M) as shown in Figure 3.3A.  A cross pattern (300 x 300 nm
2
) of MUA was 

written in ODT with an applied force of 3.4 nN.  As expected, the MUA pattern is shorter than 

the surrounding ODT matrix.  The pattern is located on an area which spans three Au terraces; 

therefore a representative cursor line was selected along a flat area at the upper part of the cross 

along a single plateau.  The MUA pattern is 0.6 ± 0.2 nm shorter than the ODT matrix (Figure 

3.3B), which is in agreement with the dimensions expected for a monolayer.  A model of the side 

view of the theoretical heights of the molecules for the cross pattern is presented in Figure 3.3C.   

When the concentration of MUA was increased by a factor of ten to 10
-8 

M, nanografted 

patterns with carboxylate head groups reproducibly formed a double layer in ethanol (Figure 

3.3D).  Compared to the matrix areas  of ODT, a taller height is observed in the topography 

image of a 4×4 array of nanografted squares (100×100 nm
2
), corresponding to the expected 

thickness of a double layer of MUA.  The cursor profile indicates that the nanopatterns exhibit 

uniform heights, measuring 0.8 ± 0.2 nm taller than the surrounding ODT matrix (Figure 3.3E).  

This example showcases the capabilities for automation when writing nanopatterns with 

nanografting, exhibiting nanoscale precision for registry and alignment.  Each square of the array 

was written in ~ 1 min, and the patterns are spaced at regular intervals of 20 ± 10 nm.   

For concentrations of MUA below 10
-9

 M, patterns were generated with heights that 

correspond to a monolayer thickness.  At higher concentrations, a double layer forms as a result 

of head-to-head interactions between carboxylic acid groups.  At higher concentration, it is likely 

that dimers are formed in solution for carboxylate-terminated molecules, which then assemble as 

a bilayer during nanografting.  Layer-by-layer growth was not observed for carboxylic acid 
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terminated nanopatterns over time, after subsequent prolonged exposure to higher concentrations 

of MUA, which suggests that dimers formed in solution.  For the example of a cross in Figure 

3.3A, the in situ experiment was monitored in an ethanolic solution of MUA for a period of up to 

12 h, to determine if the height would increase with exposure time.  Even when the concentration 

of the imaging media (ODT) was increased 100-fold, the height of the cross pattern did not 

increase, and a double layer was not observed to attach to the nanografted patterns over time.   

  
 

Figure 3.3.  Influence of concentration when nanografting carboxyl-terminated SAMs in 

ethanol. [A] A monolayer pattern of MUA is formed at low concentration. [B] Cursor profile for 

A shows the pattern is shorter than the ODT matrix; [C] Model for nanostructure in A. [D] Array 

of MUA patterns written at high concentration within an ODT matrix; [E] cursor profile for the 

top row of patterns reveals that a double layer was formed. [F] Model for head-to-head 

interactions which produce a double layer. 

3.3.3 Monolayer or Bilayer Nanopatterns Can Be Formed in Water   

 Nanografting can be accomplished in aqueous media by adding a small amount of 

amphiphilic surfactant molecules, such as N,N-dimethylformamide (DMF) or dimethyl sulfoxide 

(DMSO) to form a mixed solvent.
239

 To determine if patterns with double layers are formed 

when nanografting in aqueous media, a parent solution was prepared by dissolving MUA in 

DMF.  Next, the stock solution was further diluted in deionized water for a final concentration of 

MUA ranging from 10
-4

 M to 10
-5

 M with less than 1% DMF in water.  An array of nanopatterns 
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of MUA nanografted from aqueous media into an ODT matrix monolayer are presented in 

Figures 3.4A and 3.4B when using a relatively low concentration (10
-5

 M).   

 

Figure 3.4. Nanografting can be accomplished in aqueous solutions. [A] Topograph of square 

patterns of MUA nanografted within ODT at low concentration (10
-5

 M); [B] corresponding 

lateral force image; [C] cursor profile for the white line in A shows thickness for monolayer 

patterns. [D] Array of square patterns of MUA nanografted within ODT at high concentration 

(10
-4

 M); [E] corresponding lateral force image; [F] line profile for D reveals the pattern 

thickness corresponds to a double layer 

For the nanopatterns in Figure 3.4A, the shapes of 14 patterns are square and regular, while two 

of the patterns of the array are not clearly inscribed.  The missing patterns most likely result from 

the uneven surface areas at the bottom left corner, which contain deep trenches.  The 100 x 100 
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nm
2
 patterns are separated by 30, 40, 50 nm intervals in the horizontal direction, and spaced at 50 

nm in the vertical direction.  Notice that even at the nanoscale, the rows and columns are aligned 

in registry with similar interpattern spacing.  The programmed distance of 50 nm was not 

produced precisely, due to the non-linear effects of writing near the furthermost edges of the scan 

range of the open loop scanner.  Stray line patterns measuring 20 x 40 nm
2
 were generated at the 

top left corner of each array element.  These regular marks were produced by the sliding 

movement of the AFM tip as it was placed on the surface.  The corresponding lateral force image 

(Figure 3.4B) exhibits bright contrast for the –COOH terminated areas of the 14 nanopatterns, 

and the homogeneous color indicates complete replacement of the ODT matrix with nanografted 

MUA molecules.  The cursor profile across the first row of patterns of Figure 3.4A exhibits a 

thickness which is 0.5 ± 0.3 nm shallower than the ODT matrix (Figure 3.4C), which is 

consistent with the theoretical difference in chain length for nanografting a single layer of 

molecules. 

As was observed with ethanol solutions, at a certain threshold concentration, double 

layers of MUA are produced when nanografting in aqueous media (Figure 3.4D).  The array of 

patterns in Figure 3.4D has brighter color in comparison to the ODT matrix, revealing that the 

nanopatterns are taller than the surrounding SAM.  Every pattern of the array formed a double 

layer, evidencing a reproducible event when nanografting double layers in aqueous media.  For 

this experiment nanografting was accomplished in aqueous solution at 10
-4

 M.  All sixteen 

patterns are visible in the topography image (Figure 3.4D), with uniform and reproducible 

geometries and heights.  The edges of triangular gold steps are visible at the bottom left corner 

below the patterns, furnishing an in situ landmark for height measurement.  The locations of the 

patterns in the lateral force frame are not as clearly distinguishable because adhesion and friction 

between the tip and surface were minimized when imaging in water.  A cursor profile along the 
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top row of patterns of Figure 3.4D shows the height of the patterns measures 0.6 ± 0.2 nm above 

the ODT matrix.  This correlates well with the expected thickness for a double layer of MUA 

(Figure 3.4F).   

Whether using ethanol or aqueous solutions, double layers are produced at certain 

threshold concentrations when nanografting with carboxylic acid terminated MUA.  For 

nanografting in aqueous media, the threshold concentration is different than when nanografting 

in ethanol (10
-8 

M vs. 10
-4 

M).  This difference is likely caused by the surfactant effects of DMF 

in water, which influences the proximity of adjacent MUA molecules in solution.  The surfactant 

serves to lessen the possibility for forming head-to-head dimers of carboxylate groups.   

Two orientations are possible for the molecules within the double-layer patterns, either 

head-to-head or head-to-tail.  If head-to-tail conformations were produced, then hypothetically 

many more successive layers could be formed, which does not match the experimental 

observations.  The AFM results disclose that double layer patterns are produced when using 

higher concentrations for MUA, which would imply that the exposed groups of the double layer 

patterns are thiols.  The contrast of the lateral force images of Figures 3.4B and 3.4E provide 

another clue about the nature of the head groups of the nanopatterns.  The surface groups of the 

single layer patterns are known to be carboxylate, yet the contrast of the images in Figure 3.4E 

are markedly different, even though the images were acquired with the same identical AFM tip 

and with the same ODT matrix SAM.  Since lateral force images reflect changes in adhesive 

interactions between surface head groups and an AFM tip, matching color contrast would be 

expected for the nanopatterns if both images present carboxylate head groups at the interface.   

3.3.4 Nanografted Patterns Produced with α,ω-Alkanedithiols   

 To evaluate the vertical self-assembly of α,ω-alkanedithiols, a cross pattern of 

nonanedithiol (300 x 300 nm
2
) was written into a DDT matrix with a concentration of 10

-6
 M in 
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ethanol (Figure 3.5A).  The DDT matrix SAM is only ~0.2 nm taller than nonanedithiol, 

however the nanografted areas of the cross are easily distinguished in the high resolution 

topography frame.  A few stray marks are apparent in the topograph, indicating areas where the 

tip was picked up or placed onto the surface under force.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  A monolayer pattern forms at 10
-6

 M for nonanedithiol when nanografting in 

ethanol, the pattern is slightly shorter than the dodecanethiol matrix. [A] The shape of the cross 

pattern viewed with a contact-mode topograph; [B] Simultaneously acquired lateral force image 

of the nanografted pattern. [C] Cursor for the line in A. [D] proposed height model for 

nanografting a single layer. 

 

Etch pits or gold vacancy islands are evident on the surface of the DDT SAM surrounding the 

nanopattern, and three pinhole defects (dark spots) are apparent at the edges of the cross 

nanopattern.  Defects such as holes are commonly observed for evaporated Au(111) thin films, 

usually tens of nanometers deep.  The lateral force image reveals a distinct difference in friction 
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for the areas within the cross pattern of nonanedithiol compared to the surrounding areas of the 

DDT matrix (Figure 3.5B).  The bright areas of the cross are thiol-terminated, whereas the 

regions with darker color are methyl-terminated DDT.  The cursor profile indicates that the DDT 

matrix areas are 0.3 ± 0.2 nm taller than the nonanedithiol pattern (Figure 3.5C), which matches 

well with the theoretical value of a monolayer.  A proposed model for the heights of the 

nanopattern is shown in Figure 3.5D.  In this example, the natural roughness of the underlying 

Au(111) substrate is the same as the expected height difference.  Further examples have been 

published previously for nanografting single layer patterns of α,ω-alkanedithiol SAMs.
105

 

 

Figure 3.6.  In situ fabrication of a bilayer nanopattern of an α,ω-functionalized alkanedithiol 

written within a matrix layer of dodecanethiol. [A] When nanografting at higher concentration 

(10
-5

 M) nonanedithiol forms a double layer.  [B] Cursor profile for A. [C] Proposed model for 

the double layer. 

When the concentration was increased 10-fold to 10
-5

 M, nanopatterns with thicknesses 

corresponding to a double layer were produced by nanografting with nonanedithiol.  The height 

difference is evident in the topograph of a cross pattern (300 nm x 300 nm
2
) composed of 

nonanedithiol written at higher concentration into DDT (Figure 3.6A).  The nonanedithiol pattern 
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is 1.1 ± 0.2 nm taller than DDT, which extrapolates to a total thickness of 2.6 nm (Figure 3.6B).  

A molecular model for the height of the double-layer pattern is presented in Figure 3.6C. 

An experiment with 1,9-nonanedithiol at high concentration (10
-3

 M) nanografted within 

a HT matrix is presented in Figure 3.7.  Characteristic features of the surface of a mature 

alkanethiol SAM such as molecular vacancy islands are clearly apparent in the 300 × 300 nm
2
 

topograph, as well as a staircase arrangement of several overlapping gold steps (Figure 3.7A).   

 

Figure 3.7.  Nanografted bilayer pattern of 1,9-nonanedithiol nanografted at high concentration 

within a HT monolayer. [A] AFM topograph acquired in ethanol; [B] Corresponding line profile 

across the pattern. 

The nanografted pattern measures 160 × 130 nm
2
 (l × w) in lateral dimension and is clearly taller 

than the surrounding HT SAM.  A precise measurement of the thickness of the nanopattern is 

complicated by the presence of multiple step edges near the pattern.  The predicted thickness 
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difference is 1.7 nm between a double layer of nonanedithiol (2.6 nm) and the HT matrix (0.9 

nm).  A representative line profile (Figure 3.7B) selected near the top of the pattern indicates a 

height of approximately 1.5 ± 0.2 nm above the HT matrix, which closely matches the expected 

thickness for a double layer. 

 

Figure 3.8.  Differences in the surface assembly of α,ω-alkanedithiols when nanografting at low 

versus high concentration. 

There are two possible mechanisms to consider for producing double layer nanopatterns 

by nanografting.  Either the dithiol molecules form dimers in solution and then assemble directly 

on the surface as a bilayer, or the second layer could form successively in separate steps, with the 

second layer assembling as individual unpaired molecules attach in a sequential adsorption step.  

To gain insight about the assembly mechanism, monolayer patterns of 1,9-nonanedithiol were 

first written at low concentration (≤10
-6

 M) and then continuously monitored to determine if 

double layers form over time.  After checking patterns at regular intervals with successive AFM 

imaging for 3 h, additional changes in pattern heights were not detected.  Next the patterns were 

exposed to solutions at higher concentration (10
-5 

M) and monitored in-situ.  After 6 h 

incubation, the heights of monolayer patterns still were not observed to increase.  If assembly 

occurred through successive adsorption of a second layer, then one would expect a bilayer to 
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eventually form on the exposed thiol groups of the monolayer patterns.  Since bilayers were not 

observed to form over extended time, even with increased concentration of the liquid media the 

layer-by-layer assembly is not observed.  A plausible mechanism for producing double layers at 

high concentration is that dimerization of α,ω-functionalized n-alkanethiols occurs in solution at 

high concentration due to effects of closer proximity.  The proposed assembly model for writing 

monothiols or dimers directly onto the surface is shown schematically in Figure 3.8 when 

nanografting at different concentrations. 

3.3.5 Nanografting with Hydroxyl-Terminated n-Alkanethiols   

 For concentrations ranging from 10
-3

 to 10
-7

 M nanografting with hydroxyl head groups 

was shown to form monolayer patterns exclusively (Figure 3.9).  A pair of cross patterns of 11-

mercaptoundecanol (MUD) were nanografted within an ODT matrix at 10
-7

 M (Figure 3.9A).  

The darker color in comparison to the surrounding matrix evidences that MUD nanopatterns are 

shorter than the ODT monolayer.  The patterns measure 300 nm in dimension from top to bottom 

and side to side, and are spaced 300 nm apart.  In both the topography and lateral force images 

(Figures 3.9A, 3.9B), the central rectangular area of the crosses is observed to be darker in 

comparison to the upper and lower inscribed areas.  This is caused by changes in the writing 

density; the central areas were programmed to be rastered with more linesweeps than the upper 

and lower areas (Figure 3.9D).  Thus, two different gradients of density were produced by a 

simple modification of the writing parameters.  The cursor plot (Figure 3.9C) indicates that the 

nanopatterns are 0.6 ± 0.2 nm shorter than the ODT matrix, matching the expected height 

difference between ODT (2.1 nm) and MUD (1.5 nm).   

When the concentration was further increased to 10
-3

 M for MUD, monolayer patterns 

were still produced by nanografting.  The letters L, S, and U were nanografted into ODT at 10
-3

 

M (Figure 3.9E), generating patterns that are shorter than the ODT matrix.  Each letter is 200 nm 
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in size, with the lines of each letter are 50 nm in width.  The thickness difference for MUD and 

ODT measured 0.6 ± 0.3 nm as shown with a representative cursor profile (Figure 3.9F).  A 

model of the molecular heights is presented in Figure 3.9G.  

Figure 3.9.  When nanografting hydroxyl-terminated SAMs, monolayers were produced 

regardless of concentration. [A] Topography image of cross-shaped patterns of MUD written 

into ODT at 10
-7

 M; [B] lateral force image; [C] profile for the white line in A. [D] Raster design 

for writing the cross patterns. [E] Topograph of nanografted letters of MUD written in ODT at 

10
-3 

M. [F] cursor plot for the white line in E. [G] Model of molecular heights. 

Unlike dithiol and carboxyl–terminated alkanethiols, nanografting with hydroxyl-

terminated alkanethiols consistently produced monolayer patterns regardless of concentration.  

This suggests that attractive interactions between hydroxyl head groups are not strong enough to 

form multiple layers.  We have found that hydroxyl-terminated groups provide good resist layers 

for subsequent binding of electrolessly deposited metals, since hydroxyl-passivated surfaces tend 

to inhibit non-specific binding.
240

 

3.3.6 Sequential Nanografting of Monolayer Patterns with Different n-Alkanethiol Inks   

 As demonstrated in previous reports, multiple SAM patterns can be nanografted with 

different head groups and chain lengths when using an AFM scanner with high mechanical 
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stability.
221, 241

  For example, three monolayer patterns with different molecular backbones and 

terminal chemistries were written sequentially in Figure 3.10 using a fabrication force of 8 ± 1 

nN.   

 

Figure 3.10.  Sequential monolayer patterns of different n-alkanethiols nanografted within a 

hexanethiol matrix. [A] First a parallelogram of HDT was written at the left. [B] Next, a 

carboxylate-terminated nanopattern of MHA was written at the top of the image frame. [C] 

Finally, a shorter chain MUA nanopattern was nanografted on the right. [D] Corresponding 

lateral force image for C. [E] Line profile for the nanopattern in A. [F] Height profile for the 

second nanopattern in B.  [G] Line profile for the third nanopattern in C. [H] Height model for 

the nanopatterns. 

Each nanopattern was inscribed within a HT matrix after rinsing the sample cell with clean 

solvent and replacing the imaging media with different ink molecules; from left to right the 

patterns are composed of HDT, MHA and MUA for Figures 3.10A, 3.10B and 3.10C, 

respectively.  To generate monolayer patterns, ink solutions were prepared in 2-butanol at a 

concentration of approximately 10
-7

 M.  The concentration threshold for producing double layer 

patterns in 2-butanol is different than in ethanol by a factor of 10, which is most likely due to 

intrinsic differences in solvent properties.  The lateral force image of Figure 3.10D shows that 

the second and third patterns with carboxylic acid head groups exhibit a different contrast in 

comparison to the HT matrix and the pattern of HDT, which are terminated with methyl groups.  
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The thickness of the nanografted patterns matches well with the expected dimensions of densely-

packed monolayers.  The representative line profiles in Figures 3.10E, 3.10F and 3.10G indicate 

heights of 0.9 ± 0.2 nm, 0.8 ± 0.3 nm and 0.4 ± 0.3 nm above the HT matrix for patterns of HDT, 

MHA and MUA, respectively which is in good agreement with the heights expected for 

monolayer patterns.  The height model of Figure 3.10H depicts the expected differences in chain 

length for the nanopatterns with respect to the HT matrix monolayer, and the expected thickness 

differences would measure 1.0, 1.1 and 0.6 nm, respectively for HDT, MHA and MUA. 

3.3.7 Bilayer Nanopatterns of MHA Are Produced with NPRW  

 Intermolecular interactions have important consequences for other nanoscale 

lithographies which are accomplished in air without solvent dilution.  When patterning SAMs in 

air, the close proximity of molecules in neat parent solutions can generate double layer structures 

for certain types of α,ω-functionalized thiol SAMs, depending on the nature of the head groups.  

For example, in a previous report, bilayer nanopatterns were written for rigid rod molecules of 

biphenyl 4,4'-dithiol with heights corresponding to a bilayer, using the AFM-based approach of 

DPN which is accomplished in air using a coated AFM tip.
156

 We further investigated the 

vertical assembly of carboxylate-terminated MHA using NPRW in ambient air.  

The tip was pre-coated with ink molecules of a neat solution of MHA for writing, 

however instead of writing on bare gold surfaces the substrate was a methyl-terminated SAM of 

DDT.  When the coated AFM tip is operated under force, the tip displaces the matrix molecules 

and new thiols from the tip adsorb onto the freshly exposed gold substrate following the shaving 

track of the tip (Figure 3.11A).  The inscribed nanopatterns can then be characterized using the 

same coated AFM probe under a reduced load since the molecules of the coating are not 

delivered to the surface unless high force is applied.  Two nanopatterns of MHA written in DDT 

using NPRW are shown in Figure 3.11B, which measure 220 x 280 nm
2
 and 270 x 330 nm

2
,
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respectively.  Both patterns were nanofabricated in air using an MHA-coated AFM tip by 

applying a force of 7 nN.  The representative cursor profile in Figure 3.11C indicates the patterns 

are 2.4 ± 0.3 nm taller than the DDT matrix, which matches the expected dimensions for a 

densely packed bilayer.  A double layer of MHA would measure 4 nm in height if densely-

packed; therefore the expected thickness difference would be 2.5 nm compared to a DDT matrix.    

Figure 3.11.  Bilayer nanopatterns of MHA were produced by NPRW.  [A] Contact-mode AFM 

topograph of two patterns of MHA written within a matrix of dodecanethiol in air; [B] 

Corresponding cursor profile for the white line in A.  

3.3.8 Mechanism for Nanopatterning Is Influenced by the Nature of Molecules, 

Concentration and Solvent Media 

 

 Intermolecular interactions in solution predominate when nanografting n-alkanedithiols 

or carboxylic acid terminated alkanethiols on surfaces directly into an upright configuration.  At 

very low concentrations, bilayers did not form when nanografting patterns of alkanedithiols or 

carboxylic acid terminated alkanethiols.  As the concentration was increased to a certain 
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threshold, the steric effects produce dimers, which can then be reproducibly written as double 

layers when nanografting.  Head-to-head interactions between functional groups of SAMs have 

previously been observed with STM for lying-down phases of alkanethiols on graphite 

substrates.
242

 The assembly mechanism with nanografting is different than that of solution self-

assembly due to spatial confinement.
212, 222

 When nanografting, n-alkanethiol molecules do not 

follow a transition from a lying-down to a standing-up phase, rather the molecules assemble 

directly into an upright or standing orientation.  The area exposed by a scanning AFM tip is quite 

small, and this confined space prevents the assembly of a lying-down phase with the backbone of 

the molecule oriented parallel with the surface.  It appears that double layers form when dimers 

from solution assemble immediately as a bilayer, connected together by head-to-head 

interactions between adjacent molecules.  Carboxylic acids form head-to-head coupling through 

hydrogen bonding of head groups.  Dithiol molecules, with a typical pKa of 9-11 are more 

nucleophilic than alcohols with a corresponding pKa of 15-19 and therefore dithiols will readily 

dimerize through oxidative coupling at high concentration.   

3.4  Conclusion  

Under certain conditions, the intermolecular interactions between molecules in solution, 

such as head-to-head dimerization can direct the vertical self-assembly of certain α,ω-

alkanedithiols to produce bilayers when writing nanopatterns via nanografting or NPRW.  For 

systems tested with methyl, hydroxyl, thiol or carboxylic acid head groups, monolayer patterns 

of ω-functionalized n-alkanethiols can be reproducibly generated when using dilute ethanolic or 

aqueous solutions.  However, as the solution concentration is increased to a certain threshold, 

nanopatterns are formed with heights corresponding to a double layer when nanografting with 

carboxylic acid head groups or with α,ω-alkanedithiols.  Patterns of nanografted SAMs with 
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methyl or hydroxyl head groups were observed to exclusively form monolayer structures for a 

relatively wide range of tested concentrations. 
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CHAPTER 4.  INVESTIGATION AND APPLICATION OF NANOPARTICLE 

DISPERSIONS OF PIGMENT YELLOW 185 USING ORGANIC SOLVENTS 

4.1 Introduction 

Pigment nanoparticles or nanopigments are emerging as practical nanomaterials with 

properties that are intermediate between molecular and bulk materials.
243-246

 Increasingly, 

dispersions of organic and inorganic nanopigments are being applied as inks used in digital 

printing, colorants for paints or coatings, cosmetics, and color filter arrays for the display 

industry.
247-257 

The advantages of pigment nanoparticles are based upon properties that provide 

higher optical densities, an increased range of color scales, and sharper spectral features 

compared to pigments composed of micro particles.
245, 247, 253, 258-260

 Additionally, higher 

transmittance can be achieved for display applications.
247, 260, 261

  

For several of the applications, pigment nanoparticles are initially formulated into 

dispersions. Aqueous systems are predominantly used for dispersions that incorporate organic 

pigments including applications such as inkjet printing.
243, 249, 259, 262, 263

 Eco-friendly solvent-

based systems are also beginning to emerge and are more suitable for certain applications.
264

 

However, dispersing organic pigment nanoparticles that are 50 nm and smaller in organic 

solvents presents a challenge. Strong interactions between organic pigments and organic solvents 

(e.g., hydrogen bonding) can be difficult to overcome, resulting in significant nanoparticle 

aggregation that compromises optical properties.
261

 This problem is magnified for dispersions 

with pigment concentrations in the 10 – 15 % range resulting in high viscosity dispersions. To 

prevent aggregation of pigment nanoparticles and also reduce viscosity, polymeric dispersants 

and agents that modify the surface of nanoparticles can be used.
259, 263, 265

 Polymer-grafted 

organic pigments have also been reported to produce stable organic solvent-based dispersions.
266
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However, there are few studies reported that show how dispersants and synergists can be used to 

disperse organic pigment nanoparticles smaller than 50 nm for non-aqueous systems.   

Dispersions composed of organic pigment nanoparticles in organic solvent have been 

produced by methods such as mechanical milling
267

 and supercritical antisolvent processes 

(SAS).
253, 261

 Mechanical milling is the most common method used to produce pigment 

nanoparticles in organic media. This process often involves use of ceramic milling media for 

particle size reduction.
267

 Organic pigment dispersions prepared by using supercritical 

antisolvent processes in combination with various organic aprotic or protic co-solvents have been 

reported.
253, 261

 Typically, a fluid is termed supercritical when the pressure and temperature are in 

a state above the fluid critical temperature and pressure, thereby permitting the gaseous and 

liquid phases to coexist.
261, 268

 A new dry milling process used for organic pigments in the 

presence of silica nanoparticles produced uniform hybrid core-shell nanostructures.
269, 270

 

However, attempts to disperse the dry milled nanoparticles in PGMEA resulted in slight 

aggregation, as determined by DSL measurements combined with transmission electron 

microscopy (TEM) images.
269

  

For pure organic pigments, the resulting particle size achieved using traditional 

mechanical milling depends upon several variables including the type and size of the milling 

media, milling speed, dispersant, and solvent type. The typical size range for particles and/or 

aggregates produced by traditional mechanical milling is 200 nm to 1 µm. The supercritical fluid 

(CO2) process produced nanoparticles that ranged from 15 µm to 100 nm.
253, 261

 This broad range 

of organic pigment nanoparticles can be attributed to a host of factors including solvent effects, 

flow rate, temperature, and pressure. The dry milling of organic pigments with silica 

nanoparticles produced core-shell nanostructures with an average size comparable to the parent 

silica nanoparticles (~20 nm) as determined by TEM.  
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To broaden the potential capabilities and applications for non-aqueous dispersions, more 

fundamental studies in this area are required. Therefore, our work has focused upon generating a 

uniform distribution of nanoparticles smaller than 50 nm and dispersing the nanoparticles in an 

eco-friendly solvent system. Comprehensive studies that cover the desired particle size 

distribution for organic pigments dispersed in organic solvents have been difficult to identify. 

Our studies probe the influences of common polymeric dispersants, surface-modifying agents, 

and changes in solvent polarity on aggregation and dispersion stability. Results demonstrate low 

viscosity stable dispersions composed of uniform organic pigment nanoparticles smaller than 50 

nm and dispersed in an organic solvent. A correlation between nanoparticle aggregation and the 

resulting spectral properties of thin films fabricated from the solvent-based dispersions was 

established. Studies and improvements in this area ultimately can contribute to advancements in 

the optical performance of thin films made from pigment nanoparticles for commercial 

applications.
271-273 

 

4.2  Experimental 

4.2.1 Materials and Reagents  

 Commercially available dispersants were used without further purification: Solsperse 

22000 from Lubrizol Additives (Wickliffe, Ohio); pigment yellow 185 (PY-185) from BASF 

Corporation (Florham Park, NJ); and Disperbyk-161 from BYK USA Inc. (Wallingford, CT). 

Propylene glycol monomethyl ether acetate (PGMEA) and cyclohexanone were obtained from 

Sigma Aldrich (Milwaukee, WI).  The proprietary milling media was procured from Eastman 

Kodak Company. 

4.2.2 Preparation of Dispersions of Pigment Yellow 185  

 In a typical process, 200 g of dispersion was prepared by combining PGMEA with the 

dispersant polymer Disperbyk 161 in a 1.0 L stainless steel cold water-jacketed vessel. Then, a 
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70 mm diameter high-shear Cowles disperser blade connected to a Ross mechanical stirrer 

(Model HSM-100H2) was submerged in the mixture and operated at 500 rpm. While in 

operation, PY-185 was introduced, followed by the proprietary milling media. The final mixture 

was composed of 80% PGMEA, 2% butlyacatate,12% PY-185, and 6% of the active polymer. 

After adjusting the stirrer to 1000 rpm, the dispersion was milled for 1 h at a mixing rate of 1000 

rpm. The dispersion was isolated after vacuum filtering through 5 µm filter media.   

4.2.3 Dynamic Light Scattering (DLS)  

 Particle size distributions of pigment nanoparticles dispersed in fluids were measured 

using a Nanotrac model 150, previously known as Ultrafine Particle Analyzer (UPA) from 

Microtrac (Saint-Petersburg, Russia). Nanoparticles, because of their small size (usually <1 µm), 

undergo random Brownian diffusion. The DLS instrument was operated in the frequency domain 

and used a frequency spectrum analyzer to measure the particle diffusion over time. Once the 

distribution of diffusion coefficients of the particle ensemble was measured, the Stokes-Einstein 

equation was used to calculate a particle size distribution making an assumption of spherical 

particle geometry (eq 1). The DLS plots presented are averages of multiple scans of each sample. 

Stokes-Einstein equation: 

 D = kT/(3 π η d)  (1) 

where η is the solvent viscosity, d is the diameter of the nanoparticles, T is absolute temperature, 

k is the Boltzmann constant, and D is the diffusion coefficient.
274

   

4.2.4 Sample Preparation by Spin-Coating  

 Dispersions were spin-coated on clean glass slides within 48 h of preparation. The 

substrates used were borosilicate glass 1.1 mm thickness (2.5 × 2.5 µm
2
). Glass cleaning was an 

automated process performed in a class-100 clean room. Slides were cleaned by rinsing with 

deionized water and then washed for 30 s in a solution of deionized water with Valtron SP 2500 
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alkaline detergent solution (Valtech Corp., Pottstown, PA). The glass surfaces were rinsed with 

deionized water and the cycle was repeated once. After rinsing, the slides were dried under 

nitrogen for 25 s and exposed to an infrared lamp for 25 s. The glass was then spun at 2500 rpm, 

followed by a spin dry cycle at 2500 rpm for 25 s. The glass plates were transferred to a vacuum-

operated spin-coater before placing ~1 mL of the dispersion onto the plate. The sample was spun 

for 3 s at 100–500 rpm before the speed was ramped to 2500 rpm for 30 s. The coated plate was 

then air-dried and cured on a hot plate by heating for up to 40 min at 55 C. The samples were 

stored for up to 2 months for AFM characterization and optical measurements.   

 4.2.5 Total Transmittance Measurements  

 Spectrophotometry measurements of dispersions coated glass plates were made using a 

CARY 5E UV-Vis-NIR Spectrometer from Varian (Palo Alto, CA) with an integrating sphere 

attachment, operating in total transmittance mode. The total transmittance mode measures both 

the diffuse and specular components of the sample. Blank substrates of uncoated glass slides 

were used for a baseline measurement. The blank slides were subjected to the same cleaning 

procedure as the coated surfaces.   

4.2.6 Atomic Force Microscopy (AFM)  

 Atomic force microscopy images of dispersions coated glass plates were acquired using a 

Dimension 3100 scanning probe microscope with maximum scan area of 90 × 90 µm
2
 (Veeco 

Metrology Inc., Santa Barbara, CA). Nanoscope v5.12 software was used for data acquisition. 

Digital images were processed with Gwyddion (version 2.9), which is open source software 

supported by the Czech Metrology Institute freely available on the Internet (http://gwyddion.net). 

Commercially available silicon nitride cantilevers with resonance frequencies ranging from 200 

to 400 kHz, and spring constants ranging from 20 to 80 N/m were used for imaging in tapping 

mode (Veeco Probes, Santa Barbara, CA). 



 
 

61

 4.3 Results and Discussion 

Before investigating the capability of blocking aggregation of nanoparticles smaller than 

50 nm, a process was needed to generate a uniform distribution of nanoparticles in the desired 

particle size range.  To accomplish this goal, pigment yellow 185 (PY-185) was combined with 

various dispersing polymers in PGMEA and then mechanically milled using the proprietary 

milling media developed at Eastman Kodak Company.  It was determined from the dispersant 

screening process that Disperbyk – 161 worked most effectively for generating and dispersing 

PY-185 nanoparticles while maintaining a low viscosity (10 – 20 cps).  The polymeric dispersant 

contains amine functional groups that can favorably interact (through hydrogen bonding) with 

surface-exposed amine groups of PY-185.  The molecular structure of PY-185 is shown in 

Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1. Molecular structure of PY-185. 

 

4.3.1  Characterizations of Nanoparticle Samples Prepared in PGMEA  

 

Dynamic light scattering (DLS) measurements were used to assess the particle size 

distribution and stability of the resulting dispersions.  Particle sizing data were collected within 

24 h and after 90 days of preparation.  Size distribution plots of the reference dispersion, 

composed of PY-185, PGMEA, and Disperbyk-161, are represented in Figure 4.2.  Each plot 

showed a dominant population of nanoparticles in the 10–50 nm range.  A second population 
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above 100 nm was also observed. However, for the plot acquired after 90 days, a shift toward 

larger particles was observed, indicating instability and particle aggregation.  

 

Figure 4.2. Size analysis (DLS) of reference pigment nanoparticles prepared in PGMEA. 

Analyses were carried out immediately after dispersion preparation and after aging for three 

months.     

 

A synergist was used as a surface modifier to enhance interactions between pigment 

nanoparticles and the dispersing polymer.  Moreover, to probe the influence of PY-185 surface 

modification, the yellow synergist Solsperse 22000 was introduced under the same dispersion 

preparation conditions as the reference dispersion.  Size distributions acquired with DLS of the 

resulting dispersions are represented in Figure 4.3.  The plots show a more uniform size 

distribution compared to the reference control sample in Figure 4.2 with a mean nanoparticle size 

of 12 nm.  There was no significant detection (2.2 %) of particles larger than 100 nm. In 

addition, no detectable shift in the size distribution was observed after 90 days, indicating 

stability for the dispersion formulation. 
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Figure 4.3. Size distribution of pigment nanoparticles in PGME with synergist obtained by DLS.  

Analyses were carried out immediately after preparing dispersions and after three months.  

  

To elucidate if the improved yellow dispersion formulation translated into improved 

optical properties of thin films, the preceding dispersions were coated on glass plates and 

characterized by atomic force microscopy and total transmittance spectrophotometry.  

Measurements with AFM were critical in determining if the reference dispersion was composed 

of two particle size distributions or a distribution of dispersed and aggregated nanoparticles.  In 

addition, AFM analysis was useful in evaluating if the improved nanoparticle uniformity of 

synergist-containing dispersions translated into uniform coatings and with possible optical 

advantages. 

Collected AFM images of the reference dispersion confirmed that uniform nanoparticles 

were formed with significant aggregation detected.  In the topography image shown in Figure 

4.4A, approximately eight bright zones of dense nanoparticle aggregates are apparent within the 

20 × 20 µm
2
 scan, covering 8% of the total surface.  The lateral dimensions of these taller 
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domains ranged from 500 to 2000 nm, and the average height measured 200 nm. A zoom-in view 

of the central region without the dense clusters is displayed in Figure 4.4A'.  The image exhibits 

a tightly packed arrangement of pigment nanoparticles on the surface; the overall dimensions of 

the dense areas ranges from 100 nm to 270 nm.  The RMS roughness measured 9.1 nm for the 

area displayed in Figure 4.4A'.  The simultaneously acquired phase image in Figure 4.4A" 

reveals a uniform color for the nanoparticles.  The homogeneous color suggests a highly 

consistent surface composition without evidence of contamination or additives.  The 

corresponding cursor profile of Figure 4.4A''' measured the size of pigment nanoparticles to be 

50 nm, whereas the cluster had a height of approximately 150 nm.  

Similar to the coating prepared from the reference dispersion, the synergist-containing 

coating was also characterized using tapping mode AFM.  The images are shown in the bottom 

panels of Figure 4.4. A few small areas of dense nanoparticle clusters are still present in the wide 

area topography view of Figure 4.4B; however, the areas are considerably smaller in dimension.  

The overall regions of dense aggregates cover approximately 1.5% of the surface, and lateral 

dimensions of the dense areas range from 60 to 80 nm.  The heights of the bright zones measure 

120 ± 26 nm, referencing the shallowest area of the surface as a baseline.  A close-up view 

(Figure 4.4B') more clearly displays the morphology of pigment aggregates, which range from 

50 to 150 nm in size. The RMS roughness for the 2.5 × 2.5 µm
2
 frame measures 7.9 nm.  The 

corresponding phase image in Figure 4.4B" exhibits interesting surface changes that are not 

apparent in the topography frames.  Two distinct colors are evident; the dark areas identify the 

synergist material added to the dispersion.  The sample contains a well-dispersed molecular 

adsorbate mixed with the pigment nanoparticles, in contrast to the reference sample image shown 

in Figure 4.4A".  Phase images provide a highly sensitive map for distinguishing differences in 

the chemical composition of surfaces.  The phase data clearly displays the intercalation of the 
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synergist located at edges surrounding nanoparticles throughout the sample.  The line profile 

presented in Figure 4.4B''' shows a pigment nanoparticle cluster with a height of approximately 

120 nm. 

Figure 4.4. Surface views of coated pigment nanoparticles prepared with polymeric dispersant 

only.  [A] Tapping mode AFM topography image (20 x 20 µm
2
); [A'] zoom-in topograph (2.5 x 

2.5 µm
2
); [A"] phase image for A'; [A'''] cursor profile of A.  Images of coated pigment 

nanoparticles prepared with polymeric dispersant in the presence of a synergist: [B] Wide area 

topograph (20 x 20 µm
2
);  [B'] zoom-in view of B (2.5 x 2.5 µm

2
); [B"] phase image for B';  

[B'''] profile for the line in B.  

The amount of nanoparticle clusters or aggregates detected in the AFM images is not 

entirely consistent with the DLS data because the AFM views display selected local areas of 

coated surfaces, which may not be representative of dispersions of pigment nanoparticles.  Spin 

coating can induce aggregation as a result of solvent evaporation during the spinning process.  

However, the influence of the synergist is indicated by smaller aggregates in coatings prepared 

from synergist-containing dispersions relative to coatings prepared from the reference dispersion.  

This is supported by the cursor profile of the synergist coating represented in Figure 4.4B''' 
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showing fewer and shorter clusters compared to the reference coating. In addition, the surface 

coverage for areas of high density for the synergist coating was reduced from 8.4 to 1.5%.  The 

indicated size of the nanoparticles was consistent between the coatings, however, rms roughness 

of the surface was shown to decrease slightly from 9.1 to 7.0 nm for coatings containing the 

synergist.  The values of rms roughness were calculated for local areas of the surface, and are not 

necessarily an indicator of surface changes for the entire sample.  The values of rms roughness 

change considerably from frame to frame, even for the same sample.  It should be noted the 

convolution of tip geometry could affect roughness measurements, as well as the size of the area 

selected for measurements.  Therefore, the rms roughness provides a relative indicator of local 

changes only for selected areas of the same dimensions, which are representative of areas viewed 

throughout the surface.  The rms roughness can be helpful for local comparisons with AFM, but 

is not a definitive estimate of macroscopic roughness.   

Research on pigment nanoparticles has shown the least aggregated or more dispersed 

pigment nanoparticles normally leads to sharper spectral features and hence transmits more 

light.
247, 261 

To confirm that reduction in nanoparticle aggregates of the coated dispersions 

translates into improved optical properties, each coating was characterized by total transmittance 

spectrophotometry.  A comparison of the total transmittance spectra in the visible wavelength 

region for the coated dispersions is presented in Figure 4.5. Figure 4.5B displays a zoom-in on 

the 490–525 nm wavelength region to show that the least aggregated coating prepared from the 

synergist-containing yellow dispersion has the sharpest-cutting total spectral transmittance 

features.  As expected, the coating from the aggregated yellow dispersion made without the 

synergist has the least sharp spectral cut and transmits the least amount of light, especially in the 

490–525 nm wavelength region.  
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Figure 4.5. Transmittance spectra of coated dispersions with and without synergist present: [A] 

Visible wavelength region; [B] Zoom-in view of 490–525 nm.  

4.3.2 Characterizations of Nanoparticle Samples in Mixed Solvents 

To determine the influence of solvent polarity on dispersion properties, synergist-

containing dispersions of PY-185 were prepared using solvent mixtures.  The standard solvent 

PGMEA was combined in different ratios with the lower polarity solvent cyclohexanone. 

Chemical structures of both solvents are illustrated in Figure 4.6. 
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Figure 4.6. Chemical structure of PGMEA and cyclohexanone solvents. 

 

4.3.2 Characterizations of Nanoparticle Samples in Mixed Solvents 

Dispersions were prepared using 3:1 and 1: 1 ratios of PGMEA and cyclohexanone, 

respectively.  Size analyses of resulting dispersions were obtained from DLS measurements for 

the mixed solvent dispersions (Figure 4.7).  For the dispersion prepared using a solvent ratio of 

3:1, analysis immediately after preparation showed 37% of the nanoparticles ranged from 10 to 

43 nm in size and 63% ranged from 43 to 350 nm.  After aging, measurements showed a slight 

shift toward larger sizes.  However, overall 36% of the nanoparticles still were within the 10 to 

43 nm range.  The shape of the second peak became sharper, showing a particle size range of 43 

nm to 970 nm. (Figure 4.7B). Results were similar for the dispersion prepared with a 1:1 mixture 

of PGMEA to cyclohexanone (Figure 4.7A).  Three peaks were apparent, showing 3% of the 

nanoparticles are less than 20 nm in size, 56% ranged from 20 to 125 nm, and 41% covered the 

size range of 125 to 350 nm.  After 90 days, the particle size distribution changed more 

significantly, showing a greater percentage of larger particles.  The DLS distribution showed 

43% in the 10 to 125 nm range and 57% ranged from 125 nm to as large as 820 nm.  Thus, with 

a higher percentage of cyclohexanone, the rate of aggregation increased based on the detection of 

larger particle sizes.  
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Figure 4.7. Size distribution of pigment nanoparticles prepared with a synergist dispersed in 

mixtures of PGMEA and cyclohexanone. [A] Data acquired directly after dispersion were 

prepared with a 3:1 PGMEA/cyclohexanone ratio and after aging for 90 days. [B] Data acquired 

directly after dispersion was prepared with a 1:1 PGMEA/cyclohexanone ratio and after aging 

for 90 days.   

 

Samples of the mixed solvent dispersions were also spin coated on glass and imaged with 

tapping-mode AFM to determine the nanoscale morphology.  The coatings from dispersions 

prepared with a 3:1 ratio of PGMEA to cyclohexanone are shown in the upper panels of Figure 
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4.8.  The lower panels of Figure 4.8 show coatings prepared from the 1:1 solvent mixture. 

Multiple areas were examined throughout the sample, and the results of Figure 4.8 are 

representative of the morphologies of the entire surface.  Comparing the upper versus lower 

topography frames for the different solvent mixtures, the samples are mostly indistinguishable.  

Even for the 2.5 × 2.5 µm
2
 zoom-in view, the shapes and arrangements of pigment nanoparticles 

within the films are quite similar for Figure 4.8A' (3:1 ratio PGMEA:cyclohexanone) as 

compared to Figure 4.8B' (1:1 ratio PGMEA:cyclohexanone).  As a quantitative estimate, the 

rms value for Figure 4.8A' measured 13 nm compared to 15 nm for Figure 4.8B', which further 

indicates that the surface morphologies are quite similar for the two samples.  Do to extensive 

aggregation, nanoparticle clusters could not be observed from the mixed solvent coatings.  There 

are two colors apparent within the phase images; there is a dark outline within the grooves and 

spaces between pigment nanoparticles in Figures 4.8A" and 4.8B", which corresponds to areas 

with intercalated synergist, as shown previously for the phase image of Figure 4.4B".  An 

estimate of the surface area of the regions containing synergist measured 45 ± 5% and 43 ± 5% 

for Figures 4.8A" and 4.8B", respectively.  

Based on DLS data, introducing the lower polarity solvent cyclohexanone promotes 

nanoparticle aggregation.  A possible mechanism is that a less polar solvent increases the net 

charge of the dispersed pigment nanoparticles, leading to greater forces for self-aggregation. 

Cyclohexanone was shown to promote aggregation of nanoparticles and dispersion instability 

over time 

Surface analysis by AFM also indicates the large clusters viewed in solution by DLS do 

not necessarily persist when the samples are spin-coated on surfaces; the forces of surface 

adhesion can often break the clusters into smaller assemblies when films are formed under 

centrifugal force.  The sizes of nanoparticle aggregates within surface films are often quite 
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different than sizes of clusters dispersed in solutions; therefore, when comparing DLS results to 

AFM measurements, the results often show differences for size measurements.  

Changing the polarity of the dispersion solvent was shown to be quite effective for 

preventing dense zones of pigment nanoparticles from forming within spin-coated films.  

Whether the solvent composition was composed of predominantly PGMEA or equal parts with 

the lower polarity cyclohexanone, the surface topologies were indistinguishable for samples 

prepared.  Surface chemistry was unchanged as viewed with phase images, and the rms 

roughness was quite similar for samples prepared with the two different solvent ratios. 

Figure 4.8. Surface views of pigment nanoparticles coated from 3:1 PGMEA/ cyclohexanone 

ratio. [A] Wide view AFM topograph (20 x 20 µm
2
); [A'] zoom-in view (2.5 x 2.5 µm

2
); [A"] 

corresponding phase channel for A'.  Images of pigment nanoparticles coated from 1:1 PGMEA/ 

cyclohexanone ratio:  [B] AFM topograph (20 x 20 µm
2
); [B'] zoom-in view (2.5 x 2.5 µm

2
); 

[B"] phase image for B'.  Both dispersion mixtures contain synergist. 
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A comparison of the total transmittance spectral plots of coatings prepared from the 

mixed solvent dispersions is shown in Figure 4.9.  Included in the comparison are the reference 

non-synergist and the PGMEA only with synergist coatings.  Relative to the reference non-

synergist coating, a trend of increased transmittance was observed for coatings that contained the 

synergist  Coatings from mixed solvent dispersions with synergist have total spectral 

transmittance properties that fall in the middle of the reference (without synergist) and the pure 

PGMEA with synergist coatings.   

 

Figure 4.9. Transmittance spectra of coated dispersions showing influence of synergist and 

solvent systems.  



 
 

73

Although AFM images did not distinguish a difference in the degree of nanoparticle aggregation 

for the mixed solvent coatings, the coating from the 3:1 solvent mixture was sharper cutting in its 

total spectral transmittance properties than the coating from the dispersion with the 1:1 solvent 

ratio.  The results would be consistent with increased aggregation as the solvent shifts to lower 

polarity.  These spectral studies show the impact of nanoparticle aggregation on the ability to 

obtain desirable sharp-cutting spectral characteristics and increased transmitted light for thin 

films prepared from pigment nanoparticles.   

4.4 Conclusion 

A systematic approach to the design and development of a stable dispersion composed of 

organic pigment nanoparticles in an organic solvent has been demonstrated.  To our knowledge, 

the combination of dispersion properties produced from this work has not been disclosed from 

prior studies.  Specifically, this study produced a low viscosity dispersion consisting of 

uniformly dispersed PY-185 nanoparticles in PGMEA with a mean nanoparticle size of 12 nm.  

These properties were observed for a pigment concentration measured at close to 10-weight %.  

Key parameters that influence the dispersion properties have been identified and can be used as a 

guide for future studies.  This work demonstrated the correlation of improved optical properties 

for thin films prepared from dispersions free of significant nanoparticle aggregation.  Well-

dispersed dispersions of PY-185 yielded coatings with superior optical properties in terms of 

sharper cutting transmission bands with overall higher transmission.  Surface characterizations 

by AFM were used to evaluate the uniformity of nanoparticle arrangements within spin-coated 

films prepared on glass.  There are several possible factors influencing aggregation.  The 

influence of modifying the dispersion of pigment nanoparticles by introducing a synergist can be 

considered an enabling technology for achieving desirable dispersion properties.  Total 

transmittance measurements showed the sharpest spectral features and highest transmission from 
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coatings prepared using the most stable dispersion.  Spectral measurements also showed a 

decrease in transmittance when a less polar solvent was used.  However, dispersions without the 

synergist showed the lowest spectral transmittance.  Finally, it can be stated that this work 

provides useful insight on how to advance the performance of optical thin films that incorporate 

pigment nanoparticles. 
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CHAPTER 5.  RESPONSE OF IRON(III)-NICKEL NANOPARTICLES TO A 

MODULATED ELECTROMAGNETIC FIELD DETECTED BY ATOMIC FORCE 

MICROSCOPY 

 

5.1 Introduction 

Nanotechnology has made it possible to synthesize and specifically tailor the magnetic 

properties of nanoparticles for various applications.
275 

Applications for magnetic nanoparticles 

include high-density data storage devices,
276, 277 

 ferrofluids,
278-280

 and magnetic refrigeration 

systems.
281

 Magnetic nanoparticles are also critical for biomedical applications such as magnetic 

resonance imaging,
282-284

 hyperthermic treatment for malignant cells,
285, 286  

magnetic 

separations,
283, 287

 site specific drug delivery
34

 and the manipulation of cell membranes.
288

 

For scaling effects of nanomagnetic materials, precise knowledge of the relationships 

between particle shape and size, surface structure and the resulting magnetic properties is 

incomplete.  Magnetic properties with nanoscale dimensions are not fully defined even for 

simple particles composed of pure materials such as Fe, Co, or Ni, whereas the bulk properties 

are well understood.
289

 Essentially, the physics and properties of magnetic nanostructures cannot 

necessarily be inferred from scaled down properties of bulk materials.
290

 Unique magnetic 

phenomena are exhibited for nanoparticles which are different than bulk properties. As particle 

sizes decrease, more of the atoms of a nanoparticle are surface atoms; therefore surface and 

interface effects predominate.
291

 For magnetic materials, surface effects can lead to a decrease of 

the total magnetization in comparison to the bulk value, such as for oxide nanoparticles.
292

 

However, an enhancement of the magnetic moment was reported for metal nanoparticles of 

cobalt.
293

  

 Iron(III)-nickel nanoparticles have interesting nanoscale magnetic properties and have 

been shown to enhance recording speed when used as materials for  magnetic recording 
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devices.
294-297

 Metal nanoparticles are being applied in energy conversion and electronic 

devices.
294, 296

 As the size of nanoparticles become smaller, the magnetic properties of 

nanoparticles have been shown to exhibit new phenomena such as giant magnetoresistance 

(GMR) and superparamagnetism.
294-298

  Composite intermetallic nanoparticles of iron and nickel 

were synthesized either in a conventional oven or in a microwave oven equipped with high 

pressure vessels, based on a previous method.
296

 Microwave systems offer a promising approach 

for better control of synthetic parameters for size control of during nanoparticle synthesis.  

Microwaves furnish precise control of temperature and pressure parameters within a sealed 

container by using a fiber optic thermocouple and a pressure transducer for feedback.  Also, the 

reaction time and reagents can be scaled down for systematic investigations of optimal 

parameters.  The benefits of using microwave ovens for sample preparation and synthesis are 

improved safety, speed, smaller reagent volumes and increased product yields in comparison to 

traditional methods which require lengthy heating in an oven.
299-307

  

 In this report, we demonstrate a new approach for sensitive and selective surface 

measurements of FeNi3 magnetic nanoparticles using a hybrid imaging mode of atomic force 

microscopy (AFM).  Previously, we demonstrated that the MSM instrument configuration can be 

used for selective magnetic imaging of electrolessly deposited iron-oxide capped nanostructures 

formed on organosilane nanopatterns
308

 and for imaging nanostructures of ferritin.
309

  Contact-

mode AFM is accomplished simultaneously with magnetic sample modulation (MSM) to 

selectively image the motion of FeNi3 nanoparticles.  The flux of an oscillating AC 

electromagnetic field causes the nanoparticles to vibrate during AFM imaging, enabling 

detection of magnetic response at the level of individual nanoparticles.  Changes in the phase and 

amplitude of the sinusoidal motion of the nanoparticles that are driven to vibrate by MSM can be 

used to selectively detect and map the positions of magnetic nanoparticles, while the sample is 
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imaged with a non-magnetic probe in continuous contact-mode.  With MSM, responses of the 

amplitude and phase signal simultaneously with the topographic frame, as well spectra of the 

vibrational response can be acquired for selected magnetic areas of the surface.  

5.2 Experimental Section 

5.2.1 Materials and Reagents  

Nickel(III) nitrate hexahydrate (Ni(NO3)2•6H2O, 98%), iron(III) nitrate nonahydrate 

(Fe(NO3)3•9H2O, (98%), hydrazine hydrate (N2H4•H2O, 80%), and sodium dodecyl sulfate 

(SDS)  were purchased from Alfa Aesar and used without further purification.  Sodium 

hydroxide pellets were purchased from Mallinckrodt Baker Inc. (Phillipsburg, NJ).  Ruby 

muscovite mica substrates were obtained from S&J Trading Company (NY, USA).  Silicon 

wafers doped with boron were purchased from Virginia Semiconductor, Inc. (Fredericksburg, 

VA). The silicon surfaces were cleaned with piranha solution, which is a mixture of sulfuric acid 

and 30% hydrogen peroxide at a (v/v) ratio of 3:1.  Piranha solution is highly corrosive and 

should be handled carefully. Substrates were then rinsed copiously with deionized water and 

dried in air. 

5.2.2 Synthesis of FeNi3 Nanoparticles  

Intermetallic nanoparticles ranging from 1 to 15 nm in diameter were prepared by 

modifying a procedure previously reported by Liao.
13

 First, a mixture of 0.1 g iron(III) nitrate 

nonahydrate and 0.22 g of nickel(III) nitrate hexahydrate were placed into  a beaker.  Next, 22 

mL of deionized water (18 Ω) was added and the solution was mixed until the solid dissolved.  

The solution was made alkaline by increasing the pH to 11 using sodium hydroxide.  A 2 mL 

volume of hydrazine hydrate (reducing agent) and 0.5 mL of sodium dodecyl sulfate was added 

to the solution and stirred vigorously.  For oven heating, the mixture was placed into a Parr bomb 

(Parr Instrument Company, Moline, IL) and placed in an oven at 180
 
C for 15 h.  For microwave 
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synthesis, the solution was placed into a Teflon vessel and tested at various conditions of 

temperature, pressure and duration.  A MARS system from CEM Corporation (Matthews, NC) 

was used for microwave synthesis.  Non-optimized conditions for synthesizing nanoparticles 

were found by heating at 180 C for 45 min at pressures below 200 psi.  Optimal conditions were 

achieved by increasing the heating time to 1 h and using pressure setting greater than 300 psi.   

5.2.3 Powder X-ray Diffraction and Elemental Analysis  

To evaluate the composition of the FeNi3 nanoparticles, powder X-ray diffraction was 

accomplished for dried thin films of nanoparticles with a Bruker DE Advance X-Diffractametor.  

The diffraction patterns show peaks that are consistent with a mixture of nanoparticles composed 

of iron oxide, FeNi3 and nickel, with a predominance of FeNi3.  Crystallographic parameters and 

dominant peaks from samples of nanoparticles prepared with oven or microwave heating are 

shown in Table 5.1.  

Table 5.1. Crystallographic parameters and dominant peaks 

Heating method Scan range (2θ) Dominant peaks  Compound present Temprature C 

Oven  20-80
o
 30.5, 36, 44.5, 52, 63, 76 FeNi3, Fe2O3 25 

Microwave 20-80
o
 44.5, 52, 76 FeNi3 25 

 

 Powder XRD spectra for the nanoparticle samples are shown in Figure 5.1.  The top 

spectrum was acquired for nanoparticles produced by conventional oven heating (Figure 5.1A) 

after 15 h, and the bottom spectrum shows results for nanoparticles produced using microwave 

heating for 1 h (Figure 5.1B).  Broad peaks at 44.2 and 52.5 2θ in the spectra of the oven-

prepared sample confirms that FeNi3 nanoparticles were produced with a cubic structure, 

however other peaks observed in the spectra indicates that Fe2O3 nanoparticles are also present.  

Comapared to microwave diffractor pattern, the broard dominate peaks observed confirmed the 

presence of iron(III) nickel.   
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Figure 5.1. Powder X-ray diffraction spectra of iron-nickel nanoparticles. [A] Nanoparticles 

prepared by conventional oven heating; [B] sample synthesized with microwave heating.  

 The spectra also reveal that residual unreacted iron forms iron(III) oxide nanoparticles for 

both oven and microwave heated samples.  We observed that when the nanoparticles are 

analyzed by XRD immediately after being synthesized, less Fe2O3 was detected, suggesting 

oxidation effect occur over time.  Broadening of the diffraction peaks indicates the size of the 

powder is within the nanometer range.  For the XRD pattern of iron(III)-nickel nanoparticles 

produced in an oven, the peaks have a greater intensity and are closer to 2θ values correlating to 

FeNi3 as compared to the XRD spectra of nanoparticles prepared with microwave heating.  
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5.2.4 Atomic Force Microscopy (AFM)  

Tapping-mode topography and phase imaging was accomplished using acoustic AC 

mode with an Agilent 5500 AFM/SPM equipped with Picoscan v. 5.3.3 software (Chandler, AZ).  

Samples were prepared by depositing 10 µL of sample onto either silicon or freshly cleaved mica 

surfaces which were then dried in air for at least 24 h.  Figure 5.2 was acquired using silicon 

nitride tips from NanoSensors (Lady’s Island, SC) with a resonance frequency ranging between 

146-236 kHz.  Images were processed using Gwyddion v.2.8.
310

  

5.2.5 Magnetic Sample Modulation AFM  

For magnetic AFM characterizations, the Agilent 5500 AFM scanner was operated for 

continuous contact-mode imaging while the flux of an alternating electromagnetic field was 

applied to the sample stage.  A solid plastic nose cone without metal components was used as the 

tip holder assembly for AFM imaging, with soft silicon nitride cantilevers having force constants 

ranging from 0.5 to 0.1 N m
-1

 (Veeco Probes, Santa Barbara, CA).  The MSM set-up is a hybrid 

of contact-mode AFM combined with selective actuation of magnetic samples (Figure 5.2).
311, 312

    

A typical approach for imaging first involves acquiring conventional contact- mode 

topography images.  Next, the same area of the surface is scanned again, however with an 

oscillating electromagnetic field applied via the sample stage with average field strength ranging 

between 0.01 to 0.4 T.  The differences for images with and without an applied magnetic field 

are used to map magnetic areas.  The polarity and flux of the magnetic field applied to the 

sample stage is generated and controlled by selection of parameters for the AC current applied to 

a wire coil solenoid located directly underneath the sample plate.  When an electromagnetic field 

is applied to samples only the magnetic domains vibrate, providing selective contrast for 

magnetic areas that are in motion.  Changes in the phase and amplitude of vibrating 

nanomaterials are mapped relative to the driving AC signal.  Since a lock-in amplifier is used to 
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acquire the amplitude and phase components of the deflection signals, extreme sensitivity is 

achieved for slight changes in tip movement. 

 

Figure 5.2. Imaging principle for AFM with magnetic sample modulation (MSM).  

5.3 Results and Discussion   

 Although AFM-based characterizations can provide unprecedented resolution for 

evaluating the 3D morphology of nanoparticles on surfaces, it has the limitation of being 

chemically blind.  For AFM images, relative differences in friction, surface adhesion and elastic 

compliance of samples can be obtained at the nanoscale, however accurate interpretation of 

images is contingent upon prior knowledge of the sample composition.  Our goal for this 

investigation was to evaluate whether the newly developed approach for MSM imaging is 

capable of distinguishing changes in the composition of different systems of magnetic 

nanoparticles.  Tapping-mode AFM provides dynamic characterizations of changes in elastic 

compliance, tip-sample adhesion and the Young’s modulus at the nanoscale.  However, tapping-

mode does not provide insight about the magnetic properties of metal nanoparticles.  For 

tapping-mode, the tip is driven to oscillate near its resonance frequency, and is brought 

intermittently into contact with the sample.  The motion of the vibrating tip can be dampened by 

tip-surface adhesion and elasticity, resulting in changes for the amplitude and phase rhythm of 
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the tip trajectory.  Digital images are generated by spatially mapping the changes in phase to 

provide a picture of the relative differences in surface composition.  For this report, results from 

tapping-mode phase images are presented to corroborate MSM results that disclose 

compositional differences in mixed systems of nanoparticles. 

 An ideal, optimized protocol for nanoparticle synthesis with perfect stoichiometry and 

reaction conditions would achieve 100% yields of the desired composite nanoparticles.  

However, actual conditions will usually generate a mixture of iron, nickel and FeNi3 

nanoparticles, as shown with XRD analysis.  We intentionally chose a synthetic protocol which 

produces a mixture of different magnetic nanoparticles to provide a means to evaluate whether 

MSM can be used to resolve small changes in the magnetic response of nanoparticles of differing 

composition.   

5.3.1 Characterization of Nanoparticles by Tapping-mode AFM 

 Iron(III)-nickel nanoparticles were synthesized using either conventional oven heating or 

microwave synthesis under different conditions.  Three different batches were prepared and 

imaged using tapping-mode AFM, as shown in Figure 5.3.  The top panel (Figures 5.3A-5.3C) 

displays representative topography, phase and height distributions for nanoparticles prepared by 

oven heating in a pressure bomb.  The topography and phase images reveal the shapes of ~ 34 

nanoparticles, which have a uniform composition.  The samples were diluted in water and 

dispersed on flat surfaces of freshly cleaved mica to provide local views of isolated 

nanoparticles.  The phase image (Figure 5.3B) shows a homogeneous color for the nanoparticles 

which is evidence that the nanoparticles within this frame have a uniform FeNi3 composition, 

and the results are confirmed by XRD spectra shown in Figure 5.1.  The sizes of the oven-

prepared batch of nanoparticles (Figure 5.3C) ranges from 2 to 12 nm, with a relatively narrow 
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distribution.  Approximately 77% of the nanoparticles fall within the range of 4 to 6 nm in 

diameter.   

 When a batch of nanoparticles was prepared in a microwave under conditions of low 

pressure, changes in material composition became readily apparent with tapping-mode images.  

Figures 5.3D and 5.3E reveal a mixture of large and small nanoparticles were produced with 

near-spherical geometries.  The phase image of Figure 5.3E displays different colors for the 

substrate and nanoparticles.  The larger nanoparticles are dark whereas the smaller nanoparticles 

are brighter.  The color assignments are assigned arbitrarily for these phase images, and do not 

reflect which surface is harder or softer.  However, the phase images clearly evidence that the 

small and large nanoparticles have different material composition, which matches the results 

from XRD analysis.  Under low pressure conditions, nanoparticles of both iron or nickel were 

produced, and the intermetallic nanoparticles were not observed to form.  Likewise, the height 

histogram shows a bimodal distribution of nanoparticle diameters (Figure 5.3F) in which 86% of 

the nanoparticles are smaller, ranging from 2 to 6 nm in dimension while larger nanoparticles 

measured 10 nm in size.  Analysis by XRD confirmed that FeNi3 nanoparticles were not 

generated (Figure 5.1). 

A third batch of nanoparticles was prepared with microwave heating under high pressure, 

shown in the bottom panel of Figure 5.3.  There are ~ 27 nanoparticles within the 2 × 2 µm
2
 

frames (Figures 5.3G - 5.3H), and the sizes appear to be mostly monodisperse.  The phase image 

sensitively reveals that the smaller nanoparticles have a different contrast and composition. The 

sizes range from 2 to 8 nm, which is similar to the first batch of nanoparticles prepared by oven 

heating.  Most of the nanoparticles (76%) are 4 to 6 nm in diameter (Figure 5.3I).  Analysis of 

the sample with XRD shows a predominance of FeNi3 nanoparticles were formed, with lesser 

quantities of iron oxide nanoparticles of Fe2O3 and Fe3O4.  
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Figure 5.3. Comparison of nanoparticles prepared under different conditions. [A] intermetallic 

iron-nickel particles produced by heating in a conventional oven viewed with a tapping-mode 

topography image, 2 × 2 µm
2
; [B] corresponding phase frame and [C] height histogram of 

nanoparticles obtained from cursor measurements, n=150.  [D] Mixture of iron and nickel 

nanoparticles synthesized by microwave heating at low pressure viewed with a 2 × 2 µm
2
 

topograph; [E] simultaneously acquired phase image; [F] distribution of nanoparticle sizes, 

n=150.  [G] FeNi3 nanoparticles produced with microwave heating under optimized pressure and 

temperature viewed with a topography image, 2 × 2 µm
2
; [H] corresponding phase image and [I] 

histogram of height measurements, n=150.  

 A comparison of the histogram data obtained from cursor height measurements of 

individual nanoparticles is displayed in Table 5.2.  Significant differences are observed for the 

average sizes and distributions for each of the three batches of nanoparticles.  A greater standard 

deviation was observed for the bimodal distribution of iron and nickel nanoparticles for the low 

pressure microwave synthesis.  Interestingly, the average size of nanoparticles prepared by 

optimized microwave heating (3.5 nm) is smaller than the nanoparticles prepared in an oven after 
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12 hours of heating (4.7 nm).  The larger nanoparticles most likely were generated over time, 

since the microwave batch was synthesized within only one hour of reaction.  

Table 5.2. Comparison of nanoparticle sizes produced by oven or microwave heating 

 
Conventional 

heating 

Microwave heating under 

low pressure 

Microwave heating 

optimized 

Average size (nm) 4.7 4.4 3.5 

Standard deviation (nm) 1.9 2.3 1.5 

Largest size  (nm) 12 9.8 7.5 

Smallest size (nm) 1.2 1.3 1.5 

n 150 150 150 

 

5.3.2 Characterizations of Nanoparticles with Magnetic Sample Modulation AFM 

Instead of actuating the AFM tip for surface measurements with tapping-mode, the 

magnetic properties of nanoparticles themselves can be used for dynamic imaging by driving the 

sample to vibrate with the flux of an external AC electromagnetic field.  Proof-of-concept results 

are presented in Figure 5.4 which illustrates the MSM imaging concept.  Metal nanoparticles 

were imaged without an applied external electromagnetic field in the top panel of Figure 5.4, 

displaying the simultaneously acquired topography, phase and amplitude frames, respectively for 

a 5 × 5 µm
2
 area of the surface (Figures 5.4A, 5.4B, 5.4C).  Without an electromagnetic field 

there is no change in the amplitude or phase of the scanning tip, and likewise the shapes and 

positions of nanoparticles cannot be distinguished.  However, when the same area is scanned 

with the AC field applied (center panel, Figures 5.4D, 5.4E, 5.4F) the shapes and locations of 

nanoparticles are readily apparent in both phase and amplitude frames.  The area was scanned 

with an average electromagnetic field strength of 0.2 Tesla with a driving frequency of 38.6 kHz.  

Both MSM channels sensitively detect sub-angstrom changes in AFM tip motion caused by 

vibration of nanoparticles.  The MSM-amplitude and MSM-phase images clearly display the 
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prominent larger islands of nanoparticles with dark contrast that are obvious in the topography 

frames, however the locations and high density arrangements of tinier nanoparticles become 

readily apparent in MSM frames even with such broad magnification for a micron-sized area.     

    Spectra for frequency versus amplitude can be acquired for samples by carefully placing the 

AFM tip in contact with a vibrating area of the sample, as shown in Figure 5.4G under a minimal 

force.  When the tip is disengaged from the surface, there are no prominent peaks detected for 

the baseline measurement, thus there is no response of the tip to the AC field.  When the AFM 

probe is engaged, provided that the tip is placed in contact with the vibrating magnetic domain of 

the surface, the frequency can be swept to evaluate the resonance for sample actuation.  The 

amplitude axis correlates directly with the z displacement of the AFM tip, and was found to 

range from 0 to 1.3 nm.  A large broad resonance peak was observed between 35 and 45 kHz, 

and the frequency selected for MSM imaging was 38.6 kHz for Figure 5.4.  Depending on the 

size of the nanoparticle under the tip, the frequency spectra can be quite variable.  Investigations 

are currently in progress to systematically evaluate changes in resonance spectra versus 

nanoparticle sizes.   

5.3.3 MSM Protocols with Varied Parameters of Frequency and Field Strength 

The MSM approach offers unique capabilities to obtain information about the dynamic 

response of the actuated nanoparticles by changing the modulation frequency or field strength 

parameters.  The driving frequency and magnetic field strength parameters can be systematically 

ramped to obtain rich information about the magnetic response of individual magnetic 

nanoparticles over time using MSM imaging.  An experiment testing the changes in MSM 

images with frequency is shown in Figure 5.5.   
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Figure 5.4. Response of iron(III)-nickel nanoparticles to magnetic sample modulation (MSM). 

[A] When the electromagnetic field is off the corresponding topography, [B] amplitude, and [C] 

phase images were acquired.  Images acquired when an AC electromagnetic field was applied 

[A] MSM-topography, [B] MSM-amplitude and [C] MSM-phase images.  [G] Frequency spectra 

showing the sample response when the tip is engaged and disengaged.   
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Figure 5.5. Results for MSM imaging using different frequencies to drive the sample oscillation. 

[A] Topography view (4.2 x 4.2 µm
2
); [B] simultaneously acquired MSM-amplitude and [C] 

MSM-phase images. [D] Frequency spectra obtained for 0.1 T.  

As the frequency is changed at designed increments during image acquisition with MSM, the 

vibrational amplitude of the nanoparticles changes accordingly.  The amplitude responses shown 

in Figure 5.5B scale predictably with the magnitude of the resonances of the frequency plots. 

Optimized amplitude contrast is achieved at the resonance frequency of 38 kHz.   Data for the 

tallest resonance peaks exhibit more intense vibration in the amplitude images of Figure 5.5B, 

whereas changes for the phase channel do not correlate directly with the scale of the peak 

magnitude.  The data in Figure 5.5 were acquired with an average magnetic field strength of 0.1 

T.  Interestingly, the MSM-phase images of Figure 5.5C reveal details and contrast at 

frequencies that are not coincident with vibrational resonances, which is evidence that extreme 

local sensitivity can be achieved with nanoparticles with the using MSM imaging, at the level of 

angstrom level displacements of the AFM tip or smaller.   
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Changes for AFM images under conditions of different magnetic field strengths were 

investigated with MSM.  The response of FeNi3 nanoparticles to changes in the magnitude of the 

applied AC field is shown in Figure 5.6.  Variations of the field strength between 0.05 to 3 T 

were captured within a single frame for the corresponding topography, MSM-amplitude and 

MSM-phase frames.  As the field was incrementally ramped, increases in the vibrational 

response of the nanoparticles produced corresponding changes for both the amplitude and phase 

channels.  As the field was increased, more nanoparticles become detectable for each segment of 

the phase and amplitude images.  The greatest density of nanoparticles became apparent at the 

highest field strength, at the top sections of the images.  Smaller nanoparticles are not detected at 

the lower field intensities, likely because there is not sufficient vibrational energy to perturb the 

motion of the tip until greater field strength is applied.  The higher the magnetic field strength the 

greater the nanoparticles vibrate and the smaller nanoparticle deflections are more prominently 

captured and displayed in MSM-amplitude channel.   

 
 

Figure 5.6.  Varying magnetic field strength while scanning. [A] MSM-topography; [B] MSM-

amplitude; and [C] MSM-phase images. 

Interestingly, at higher AC fields of 0.3 T there is a contrast reversal for some of the 

larger nanoparticles.  The colors flip so that the substrate is darker and the nanoparticles are 

bright, particularly for the larger aggregates of nanoparticles that are clustered together on the 

surface.  This suggests that there is a shift or broadening of the vibrational resonance with greater 
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magnetization – the properties do not change, rather the resonance of the vibrational response is 

broader with increased vibrational motion.   

 

Figure 5.7. MSM images acquired at different electromagnetic field strengths within a 4.2 x 4.2 

µm
2
 scan area. Top panels were acquired at 0.2 T for [A] MSM-topography; [B] MSM-

amplitude; and [C] MSM-phase images. Contrast reversal was consistently detected at higher 

field of 0.3 T as shown in [C] MSM-topography; [D] MSM-amplitude; and [E] MSM-phase 

frames of the bottom panel.    

Further investigations of the contrast reversal are presented in Figure 5.7, to evaluate the 

reproducibility of this observation.  Characterizations with MSM were accomplished by scanning 

a 2 × 2 µm
2
 region with an applied average field strength of 0.2 T (Figures 5.6A, 5.6B and 5.6C) 

and also when using a field strength of 0.3 T (Figures 5.6D, 5.6E, and 5.6F).  From prior 

knowledge of nanoparticle composition with the tapping-mode images and XRD spectra, it is 

likely that the smaller nanoparticles are composed of iron oxide, and the larger particles are 

successfully synthesized composite intermetallic FeNi3 nanoparticles.  With the MSM views of 

amplitude and phase changes there clearly is a lesser amplitude viewed for the smaller iron oxide 

nanoparticles, indicated by the lighter color.  The darker spots with greater amplitude response 
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correlate to larger-sized nanoparticles of FeNi3. Unfortunately, this is not a direct comparison of 

identically sized nanoparticles, so the role of nanoparticle size can be used to rationalize the 

changes in MSM amplitude and phase contrasts.  It is also clear that the larger nanoparticles and 

aggregate areas of clusters of nanoparticles have stronger vibrational amplitude, while the 

smaller nanoparticles have smaller responses.  A collective, additive effect of stronger magnetic 

vibration is detected when the nanoparticles are clustered together, as one would predict for mass 

magnetization effects of coupling nanomagnets together. 

            

Figure 5.8.  Comparison of the changes in average amplitude displacement of the tip caused by 

oscillation of nanoparticles with changes in the applied AC electromagnetic field measured from 

MSM-amplitude images.  

 

The scaling relationship between the nanoparticle size and the magnetic response that is 

detected by the displacement of the AFM tip can be more quantitatively evaluated by plotting the 

amplitude versus nanoparticle diameter, as shown in Figure 5.8.  Using the data from a single 

MSM-amplitude frame, the scaling behavior for 30 nanoparticles was plotted for measurments at 

0.2 T and 0.3 T.  At the lower field strength (blue circles) there is little difference in amplitude 

for particles ranging from 0.5 to 5 nm in diameter.  However, when the field is ramped up to 0.3 
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T, the larger nanoparticles experience greater vibrational amplitude, and the mass magnetization 

effects for larger nanoparticles becomes apparent when the diameter is larger than 3 nm (orange 

diamonds).   

5.4 Conclusion 

 When conducting AFM experiments, the dynamic conditions of the applied field 

strength, the force applied to the AFM probe and the frequency parameters can be systematically 

varied to visualize changes in the magnetic response of magnetic nanoparticles using MSM for 

characterizations at the level of individual nanoparticles.  Changes of certain experimental 

parameters such as the driving frequency and the applied magnetic field strength directly 

influence the vibrational response of iron oxide and FeNi3 nanoparticles when imaging with 

MSM.  These preliminary results for mixtures of metal nanoparticles at the level of single 

nanoparticle measurements suggest intriguing new possibilities for characterizations with a 

hybrid MSM-AFM imaging mode and add a magnetic dimension to SPM methods for 

identification of magnetic nanomaterials.  Although we have not satisfactorily addressed the 

question of whether MSM imaging can be used to discriminate differences in magnetic response 

for nanoparticles of different composition, it is clear that changes for different sized 

nanoparticles can be quantitatively evaluated.  As with most measurements, the very small sizes 

of the nanoparticles pose a challenge for surface measurements, however, these results set a 

benchmark for detecting magnetic response for nanoparticles as small as 1.0 nm using the hybrid 

mode of MSM-AFM.  We anticipate that using AFM tips with softer spring constants will 

provide a means to more clearly resolve differences for magnetic nanoparticles of different 

composition and size.  In future experiments we plan to develop strategies to analyze mixtures of 

magnetic and non-magnetic nanomaterials or mixtures with different types of magnetic 

character, e.g. superparamagnetic versus ferromagnetic.  Future quantitative protocols will be 
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developed for obtaining frequency sweeps for individual nanoparticles of different sizes under 

varied conditions of AC field strength and load force.   
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CHAPTER 6.  SYNOPSIS AND FUTURE PROSPECTUS 

 Understanding and controlling molecular arrangement of molecules and nanomaterials on 

surfaces is a key step for successful fabrication of 3D nanostructures using bottom-up 

approaches.  In Chapter 3, examples of nanografting were successfully demonstrated as a 

strategy for controlling the orientation of n-alkanethiols and α,ω-alkanedithiols within 

nanopatterns.  Because of the effects of spatial confinement only crystalline phases (standing-up 

configuration) were observed to form for nanografted patterns of n-alkanethiols
211

 and α,ω-

alkanedithiols.
105, 313

 Nanografting is accomplished with in situ AFM in liquid media containing 

thiols solution that are different from the matrix molecules of the surface.  Following the 

trajectory of the AFM probe operated under small applied forces, molecules of the surface 

monolayer are displaced and are immediately replaced by new molecules from the surrounding 

solution.
38, 222, 314

  Designed surfaces with local changes in surface properties are readily 

produced with nanografting. When α,ω-alkanedithiols form though natural self-assembly, a 

monolayer with a mixture of surface orientations were observed, where the majority of the 

molecules have both thiol groups chemisorbed to Au(111) and aligned parallel to the surface.  

However, when α,ω-alkanedithiols are nanografted, they directly adopt a standing up 

configuration with only one thiol group bound to the surface.
105

 Alkanethiols with reactive head 

groups such as carboxyl and thiol were shown to form double layers when nanografted under 

certain conditions of concentration, however at low concentrations monolayers were produced.  

The precise mechanism for generating double layers is not fully understood, but based on results 

reported in Chapter 3, it is thought to occur by dimerization in solution prior to steps of 

nanografting.
313
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 In a collaborative research project conducted at Eastman Kodak Company in Rochester, 

New York with Dr. Tommie L. Royster, dispersions of pigment nanoparticles were characterized 

using AFM, DLS and transmission spectrometry, as detailed in Chapter 4.
308

  Organic pigment 

nanoparticles formulated in aqueous media remain well-dispersed and can therefore be used for 

inkjet printing.
262, 315-318

  In contrast, formulating a dispersion composed of organic solvents and 

organic pigment nanoparticles with sizes smaller than 50 nm is a challenge because of self-

aggregation.  Chapter 4 describes development of a stable organic dispersion with dye 

nanoparticles smaller than 50 nm that was achieved by introduction of a synergist.  In addition, 

an increase in aggregation of pigment nanoparticles diminishes the desired spectral properties.  

Spin-coated samples of the resulting dispersion were interrogated using AFM.  At the end of the 

investigation, the organic dispersion was shown to be stable for three months; however, light 

aggregation among the nanoparticles were detected.  Extending the stability to greater duration 

than three months with variations in the pigment concentration are directions for future 

investigations.   

  Development of methods to investigate the magnetic properties and measure the 

magnetic response of nanomaterials at fundamental size scales is important for both 

understanding the behavior of existing nanomaterials as well as for advancement in the 

development of new materials.  Magnetic sample modulation (MSM), a newly developed AFM 

imaging mode, was applied for measuring the vibrational response of magnetic nanoparticles 

when the flux of an alternating electromagnetic field is applied to samples.
20,181

 Described in 

Chapter 5, MSM was accomplished for iron(III)-nickel nanoparticles prepared on mica(0001).  

Varying the driving frequency and magnetic field strength of MSM provides new dynamic 

protocols for evaluating the magnetic response of iron oxide and FeNi3 nanoparticles.  Larger 



 
 

96

nanoparticles were more easily detected with MSM imaging, whereas the smallest nanoparticles 

(1-2 nm diameter) required higher AC field strength to become visible.   

The preliminary results in Chapter 5 demonstrating MSM imaging for mixtures of metal 

nanoparticles at the level of single nanoparticles add a magnetic dimension to SPM methods for 

identification of magnetic nanomaterials.  Although we have not fully addressed the question of 

whether MSM imaging can be used to discriminate differences in magnetic response for 

nanoparticles of different composition, it is clear that changes for different sized nanoparticles 

can be quantitatively evaluated with exquisite sensitivity.  The very small sizes of the 

nanoparticles (~ 1 nm) set a precedent for detecting magnetic response for ultra small 

nanoparticles using the hybrid mode of MSM-AFM.  In future experiments we plan to develop 

strategies to analyze mixtures of magnetic and non-magnetic nanomaterials or mixtures with 

different types of magnetic character, e.g. superparamagnetic versus ferromagnetic.  

A focus on chemical education was an integral component of the work described in this 

dissertation, with significant participation by several undergraduate researchers.  My educational 

philosophy is that teaching should go beyond merely providing students with fixed concepts; 

rather, students should be taught how to critically and consciously reflect on the information set 

before them in order to arrive at the proper answer.  Simply stated, an effective educator is one 

who must make sure that his pupils understand not only the ‘whats’, but also the ‘wheres’, 

‘whys’, and ‘hows’ of the subject matter at hand.  These are the educational ideals that I have 

employed as a graduate student, and I will continue to foster these principles in my academic life 

as a research professor.      
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APPENDIX A:   MICROWAVE DIGESTION OF CEREAL FOR METAL 

ANALYSIS 
 

1. First, clean all of the glassware and microwave vessels with deionized water or dilute acid 

solutions.  

 

 

2. Using a mortar and pestle, grind the cereal sample into a fine 

powder.  Weigh ~1.0 g of sample into an OMNI vessel and 

record the weight of the sample to 4 significant figures.  

 

 

 

 

 

 

3. Carefully add 10 mL of concentrated nitric acid to each 

microwave vessel, including the control vessel.   

 

 

 

4. Place the vessels into the sample holder, and tightly close the 

lid.  Next, tighten the screw attached to the sample holder first 

by hand and then by using a monkey wrench, until a clicking 

noise is heard. 

 

 

5. Insert the temperature probe only into the control vessel 

through the top opening.  Please handle the temperature 

probe carefully, these are fragile and the glass sensor will 

break if dropped.  Be extremely careful, as the probes are 

expensive!   

 

6. Place the pressure sensor probe into the vertical opening located 

on the control vessel.  Again, please handle with care.  
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7. Place the control vessel into the microwave, and insert the 

temperature probe into positions within the interior of the oven 

as shown. 

 

 

 

 

8. Next, attach the pressure probe within the oven as shown. 

 

 

9. Place the vessels into the carousel of the microwave.  Make sure 

the vessels are securely in place on the turntable.  Note: the 

control vessel should be placed into the designated spot labeled 

‘control vessel.’ 

 

10. Close the oven door. 

 

11. Check to see if the model numbers for the probes are correct. 

a. Choose “Set up” and select “Select Sensor.” 

b. Select “Pressure Sensor,” and the display should indicate 

ESP-1500 Plus. 

c. Select “Home.” 

d. Select “Set up,” and select “Select Sensor.” 

e. Select “Temperature Sensor,” which should show RTP-300 

Plus. 

f. Check the Gauge Factor (GF number) and be sure it is                                                        

the same number as shown on the package of the probe. 

g. If it is the same, click “Home;” if not, enter the correct GF 

number. 

h. Select “Home.” 

 

12. To start the instrument: 

a. From the menu, select “Load Method.” 

b. Select “User Directory.” 

c. Select “4553Cereal” method by using arrows. 

d. Click on Start (green arrow). 

 

The cereal program will heat the samples at 80 C for 15 minutes at a pressure of 50 atm. 
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13. When the digestion is complete, let the vessels cool down until the temperature is ~50 C.  

Then, place the vessels into the hood. 

 

14. Release the pressure by turning the knob on the side of the 

vessel very slowly.  Make sure the vessel is inside the 

hood. Be careful, the contents of the vessels are still 

under pressure. 

 

15. Open the vessels carefully.  Please make sure to avoid 

any fumes that might be released when the container 

lid is removed! 

 

 

 

16. Let the vessel cool down until it is cool to the touch (i.e. 

room temperature). 

 

 

17. Set up the filtering system, clean the filtering vials, and 

place filter paper on the bottom of each vial.  Obtain clean 

vials from storage and place them directly under the 

filtering vials. 

 

 

 

 

18. Pour the contents of the vessels into the filtering vials, 

apply pressure by installing the filtering caps, and collect 

the sample.  Bring the sample to the desired final liquid 

volume, e.g. 50 mLs.  The sample is ready for AAS 

analysis. 
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APPENDIX B: LETTERS OF PERMISSION 
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