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ABSTRACT

We used ab initio simulations and calculations to study the structures and stabilities of
copper oxide clusters, Cu,O;, (n=1-8) and CuO, (n=1-6). The lowest energy structures of
neutral and charged copper oxide clusters were determined using primarily the
B3LYP/LANL2DZ model chemistry. In Cu,O, clusters with n=1-8, a transition from
planar to nonplanar geometries occurs at n=4. In CuO, clusters with n=1-6, all
geometries of neutral, positively, and negatively charged clusters are planar or near
planar structures. Selected electronic properties, including binding energies, ionization
energies, and electronic affinities, were calculated and examined as a function of n.
Stabilities were examined by calculating fragmentation channels and Loéwdin charge
distributions.

We have also analyzed the reactions between neutral copper oxide clusters (Cu,O, with n=1-
8) and organic compounds (phenol, ortho-chlorophenol, and para-chlorophenol) using DFT
calculations of geometries, thermodynamic properties, reaction pathways, adsorption energies,

and Lowdin charge distributions.

Vi



CHAPTER 1

INTRODUCTION

The study of clusters is very important to understand the limits of isolated atoms,
molecules and bulk matter and to investigate the phenomena of chemical physics such as
solvation. One of the most important discoveries is that some clusters show many
differences compared to their bulk counterparts for geometries, electronic and chemical
properties. Metal clusters are very important in many areas, including catalysis,
nanomaterials, and composite materials. Metal oxide clusters are performed for health
effects.”™ For example, in the World Trade Center disaster, analysis of fine and ultrafine
particulates revealed a high concentration of zinc and titanium.’

The collision of clusters with solid surfaces at high speeds can give rise to short-lived
but particularly extreme conditions of temperature and pressure.® It has been shown that
these impact-heated clusters provide an environment in which chemical reactions can be
induced.” Other researchers have studied the formation of surface-bound radicals during
the adsorption of organic molecules and aliphatic compounds on metal. Energetic cluster
impact also has the potential for technological application in the formation of particularly
dense and coherent metal®® and semiconductor thin films.*

Metal oxide clusters from combustion react with many organic compounds.™* It is
well known that transition metals (iron, vanadium, and copper) are associated with
particulate matter (PM). Studies show that PM is a threat to public health in cities.”® We
must understand the characteristics of toxic particles and how they affect the health of the
inhabitants of cities. It is well known that PM can be classified as coarse, fine or ultrafine

particles. Coarse particles have a diameter greater than 2.5 um (PM2.5-10). Fine particles



(0.1 to 2.5um, PM2.5) and ultrafine particles (<0.1 um in diameter) are predominantly
derived from the combustion of fossil fuel.'* Recently, government and air-quality
monitoring agencies determined that both PM10 and PM2.5 particles from vehicle
emission are the most dangerous.> PM10 exposure has been associated with death from
cardiopulmonary disorders and lung cancer in studies of six cities'® and 151 metropolitan
areas'’ in the United States, with a 1% increase in daily mortality for each 10ug/m?
increase in PM10. Ultrafine particles can penetrate deeper into lung tissue than coarse

and fine particles™ and can increase asthma symptoms.*® Ultrafine particles also can

19-22 23-27

increase hospitalization rates for respiratory disorders and decrease lung function.
Combustion particles may have a carbon core that is coated with organic compounds,
transition metal, nitrates and sulfates. All of these components may play a role in particle
toxicity.?® Chemically, particulate matter pollution is a complex mixture of organic and
inorganic compounds, but the properties responsible for its health effects are unknown.

Fine and ultrafine particulate matter is composed predominately of inorganic, organic,
and elemental carbon, sulfates and nitrates.?>* Table 1.1 shows a long list of transition
metals that are present in almost every particulate. The concentration of transition metals
in the particulates is determined by the origin; since fine and ultrafine particulates are
almost entirely of anthropogenic origin (combustion), the type of fuel generating the
particulates determines their definite composition.

Particulate air pollution contains transition metals (iron, vanadium, and copper) which
can catalyze the production of reactive oxygen species, such as hydrogen peroxide,
superoxide, and hydroxyl radical, which are very stable but are highly reactive.** Small
organic radicals, such as phenyl, vinyl, or methyl, are somewhat less reactive but are also less

stable. Recently, it has been realized that resonance stabilized radicals such as

cyclopentadienyl, propargyl and phenoxyl are not highly reactive with molecular species,



including oxygen, and can undergo radical-radical recombination reactions to form

polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), PAH and possibly soot at

moderately high temperatures in the post-flame and cool-zone region of combustion and

thermal processes.

A contributor to combustion emissions, “fly ash,” has been shown to catalyze the

production of reactive oxygen species and increase the level of inflammation upon instillation

in rat lungs.

33,34

Table 1.1: Metals in Environmental Nanoparticles and Fuels®

PM2.5 Coal Fuel Oil
(re/g) |
Emission Fue Emission
el ®) ) (epmy) (%)
Metal

Ni ~0.2 0.015 3-21 12.8

13,000-
\Y, 60,000 0.03 3-48 17.6
Fe 1-5%10°  6-20 (ox) 4-20 27,800 34
Mg ~1 1-4 (0x) 1-5 7,120 6.2
Ca 2-23 (0X) 1-22 41,200 14.8
Co 0.005 2,040 1.2-1.5
Cr ~1 0.02 4,400 5.8-9.0
Cu ~2 0.02 2,780 3.3-3.8
Mn 0.07 1,040 1.2-35
Pb 5-10 0.015 2,040 0.7-1.0
Sr 0.1 713 1.7-3
Zn  500-22,000 0.023 5,630 3.3-3.8
Zr 0.015
Mo 0.001 4,270 5.5-10
Si 35-45 (0x) 22-61 46,000 15-20
K 0.3-4
Al 15-40 (ox) 13-36 32,000 19.5-28

DNA damage has been observed in cells exposed to radical-containing PM. This damage has

been proposed to be due to PFRs formed by the following scheme involving a redox-active

metal >
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Figure 1.1: Adsorption of 2-MCP on copper (II ) oxide®

Other researchers have studied the formation of surface-bound radicals during the
adsorption of organic molecules on metal oxide.?**** These reactions may occur by
chemisorption of an organic molecule or aliphatic compounds on a surface copper ion.
(Figure 1.1)

Figure 1.2 shows nanoparticle formation/growth and mediation of pollutant-forming
reactions in combustion systems. Metals are vaporized in the flame zone (Zone 2) and
subsequently nucleate to form small metal nanoparticles or condense on the surfaces of other
nanoparticles in transit to the postflame (Zone 3). Zones 3 and 4 control formation of gas-
phase organic pollutants. Zone 5 is a major source of PCDD/Fs and is increasingly
recognized as a source of other pollutants (CHCs, BHCs, and XHCs; polybrominated
dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) and PXDD/Fs; partially oxidized

hydrocarbons and CHCs; and nitro-PAHs, oxy-PAHs, and oxychloro-PAHS) previously
4



thought to originate in zones 1-4. Most of the reactions need a transition metal catalysis to

form these products.*?
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Figure 1.2: Nanoparticle formation/growth and mediation of pollutant-forming reactions in
combustion systems.*?

Figure 1.3 shows the formation of 4,6-dichloro-dibenzofuran (DCDF). The main PCDD/F
products detected were the same as under pyrolytic conditions: dibenzo-p-dioxin (DD), 1-
monochloro dibenzo-p-dioxin (MCDD), and 6-dichloro-dibenzofuran (DCDF). Molecule 8
can react with gas-phase 2-MCP and there are two possible mechanisms. Scheme (a) is the
formation of MCDD and scheme (b) is the formation of DD.

Researchers have studied the formation of PCDD/Fs via a Cu(II)O-mediated reaction of
2-chlorophenol (2-MCP).*® PCDD/F or dioxins are known as the most environmentally toxic
pollutants. We are investigating copper oxide clusters and their reactions because we believe
them to be an important part of the metal oxide pathway to the formation of PCDD/Fs. There
are some theories about the formation of dioxins.®%*® 1) gas-phase formation from

molecular precursors at temperatures > 600°C, 2) condensation reactions of precursors
5



catalyzed by transition metal oxides in “fly ash” at temperatures between 200-600 °C, and 3)
de novo oxidation and chlorination of elemental carbon in soot between 200-600 °C.*"°
However, the surface-mediated process can account for the formation of dioxins better than

other explanations. It is well known that transition metal (copper or iron) oxides and

chlorides play a significant role in dioxin formation.*®

OH 0 H? H
| cu” | | cu” ] cu” ] cu”
(8) (9 (10)

desorption ©: :@
; @(
-HCI ‘-—-.\_____ Cix
Ho _— HO chlorination o ey
? and desorptlon
S (o)

Figure 1.3: Surface-Mediated Formation of MCDD and DD.*’

Experimental®*® and theoretical®® "% studies of small copper oxide clusters
have been made. Steimle and Azuma have reviewed the structure and electronic spectra
of copper monoxide (CuO) by using the technique of intermodulated fluorescence.®
Neutral and anionic CuO molecules have been studied using the laser photoelectron
spectroscopy technique.® The electron affinity of ground state CuO was determined to be
1.777 eV. CuO bond length is 1.670 A and CuO’ vibrational frequency is 739 cm™. CuO
bond length is 1.704 A and CuO vibrational frequency is 682 cm™.

Two geometries of CuO, were reported’®: CuOO (bent, Cs) and CuO- (side-on, Cy,).

65,67 73,74

Evidence for the bent complex CuOO comes from both experiment and theory.

The linear complex OCuO has been investigated via IR,”® photoelectron spectra (PES)



measurement,’® and theoretically.”* For CuOs;, OCuO,, and Cu(Os) clusters, the
vibration frequencies’® have been calculated.”

Experiments have been performed on Cu,O4 clusters with x=1-4 using anion
photoelectron spectroscopy (PES).”” The Cu,O, species are produced using a laser
vaporization cluster beam apparatus, equipped with a magnetic-bottle time-of-flight
(TOF) photoelectron analyzer.”®*®%" Figure 1.4 shows a schematic view of a MTOF-PES
apparatus. It consists of a laser vaporization cluster source, a modified Wiley-McLaren
time-of-flight (TOF) mass spectrometer, a mass gate, a momentum decelerator, and a

MTOF electron analyzer.

n i Target & Nozzle
/N
VWYV detatchment
\ laser beam
Cluster
detector

AL

. _ 3.5 m Jong
~Pulsed ion Mass gate electron
extraction flight tube
Momentum —/ /
decelerator
L-stack

fast
Viporization electron
F{awr " %/dﬂﬂ:tm

Figure 1.4: Schematic view of the laser-vaporization/magnetic-bottle photoelectron
spectroscopy apparatus®’

Figure 1.5 shows the PES spectra of Cu,Ox (Xx=1-4), and the measured energies of all
the states are listed in Table 1.2. The ground states of the neutral clusters are labeled “X”

7



and low-lying excited-state features are labeled A, B, C and so on in ascending order.
Recently, the equilibrium structures of neutral CuO, clusters with n=1-6 were

determined within the framework of density functional theory with a plane-wave basis set

and generalized gradient corrections. Figure 1.6 shows the calculated lowest energy

structures, bond lengths, and angles of neutral CuO, clusters with n=1-6."*

1 oo B
400+ I5Enm Al o

4 E
200~ X

A6Anm A
mcu::l ‘]l‘ il
0- :
B
sond Cuy
SRR A
400+ ’f
- k>>".-':|'1-|-'l"l|
3000 4 A
CuDy a8 DE
m“ = Banim X E

o &
: =

Fiinding Energy (@)

Figure 1.5: Photoelectron spectra of Cu,0, (x=1-4).”



Table 1.2: Observed electronic states and vibrational frequencies of Cu,Ox (x=1-4)
clusters and predicted electron affinities and ground-state vibrational frequencies.”’

BE? v (exp)” EAS v (theo)*
(eV) (cm™) (eV) (cm™)
CUZOe
X 1.10 <200 1.10 v,=681'
A 2.53 Vv,=156
B 2.66 V5=586
C 2.85
D 2.95
CU202
X 2.46 630 (30) 2.12 182 302 466
A 2.91 650 (30) 493 653 718"
B 3.12
C 3.30
CU203
X 3.54 (640) 3.03 259 259 318
A 4.02 321321 351
B 4.32 608 608 678
CUQO4e
X 3.50 2.94 119 222 244
A 3.66 267 277 354
B 3.80 533 612 612
C 3.95 647 912 985'

®Measured electron binding energy (uncertainty: +0.03 eV). The binding energy (BE) of the X ground state
?)/ields the measured adiabatic electron affinity.
Measured sysmmetric stretching vibrational frequencies for the given states. Relative peak positions can
be determined more accurately.
‘Calculated adiabatic electron affinities in eV
YCalculated vibrational frequencies for the ground-state cluster structures shown in Fig 1.7.
*More highly excited states are not listed due to their broad and overlapping nature.
fTotally symmetric vibrational modes.

One of the results is that the spin of the most stable isomers is quartet state when the
number of oxygen atoms is odd, while it is doublet state when this number is even. They
have calculated the lowest geometries of CuO, clusters with n=1-6: linear OCuO for
Cu0O,, OCu(0,) for CuOs, two Cu(O) side-on units for CuOg4, one Cu(O,) side-on unit

and Cu(O3) ozonide for CuOs, and two CuO(O3) ozonides for CuOe.



Cul) Culhy

1.74 A |73 A

Cad, Culy

.44 A

Figure 1.6: Equilibrium geometries of the building blocks identified in the neutral
clusters. The bigger circle represents the copper atom, the smaller ones the oxygen atoms.
All isomers are composed of one or more of these block sharing the copper atom.*

In 1996, Wang et al. investigated the electronic structures of copper oxide clusters,
Cu,Ox (x=1-4), using anion photoelectron spectroscopy and density functional
calculations.”” They found that the ground states of Cu,O and Cu,O, are a triangle and a
rhombus, respectively. For Cu,Os, they found two isomers with close energies
(bipyramid and bent structure with an O-Cu-O-Cu-O atomic arrangement); the bipyramid
structure is in better agreement with the experimental electron affinity (EA). For Cu,0,,
the hexagonal ring with two O-O bonds is found to be the most stable structure. Figure

1.7 shows the optimized structure and Mulliken charge distributions from density

functional theory calculations for Cu,Ox (x=1-4).

10
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Figure 1.7: The optimized structures, bond lengths, angles and Mulliken charge
distributions from density functional theory calculations for Cu,Ox (x=1-4)"’

Dai et al. have suggested that the ground state structures of neutral, positively and
negatively charged Cu,O, clusters with n=1-4 are linear or near linear structures (Figure
1.8). Also, they found that the calculated electron affinities of the clusters with BLYP
level are in good agreement with the experimental ones.’’

There are relatively few experimental and theoretical studies of copper and iron oxide
clusters that are presumed present in combustion systems; thus, an understanding of the
reaction pathway for PCDD/F is hindered by a lack of knowledge of the structures and
energetics of these clusters. Estimates of the relevant cluster sizes range from the

micrometer down to just a few metal atoms. This work therefore studies the structures
11



and energetics of small copper oxide clusters as a first step towards understanding the

interactions between metal oxides and free radicals.
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CHAPTER 2

QUANTUM CHEMISTRY METHODS

2.1 The Hartree-Fock Approximation

Hartree-Fock theory is the fundamental molecular orbital theory and one of the
simplest approximate theories for solving the many-body Hamiltonian. Hartree-Fock
theory was developed to solve the electronic Schrédinger equation. It assumed that the
wavefunction can be approximated by a single Slater determinant made up of one spin
orbital per electron.

Given a functional of some trial wavefunction @, the expectation value E[®] of the

Hamiltonian operator H is a number given by

E[®] =< ®|H|D > 1)
N

|©>= ) c| ¥ )
2

By equation (1), we see that E[®], its value depends on the form of the wavefunction,
and equation (2) shows a linear variation trail wave function.

We minimize the energy

E =< cp|H|c1>ch;cj <Y H|Y, > 3
ij

13



subject to the constraint that the trial wave function remains normalized

<CD|CD>—1=ZC;‘C]- <Y H[¥Y; >-1=0 (4)
i

using Lagrange’s method,

L=<OH|®>-E(LKD|D>-1)

(5)
=Zci*cj <Y |H|Y; > —E(ch‘c}- <W¥ ¥ >-1)
y

U

where E is the Lagrange multiplier. Therefore, we set the first variation in £ equal to
zero.

Taking the differential of L,

6L =250i*cj <Y |H|Y; > —EZ&C{‘CJ- <W|Y¥ >
i i

(6)
+Zc;5cj <WIHIY, > —Echacj < > =0
i ij

Z bc; z Hij¢ — ES;j¢ | + complex conjugate = 0 (7)
L J
where Hj; =< ¥;|H|¥; >.

<Y ¥ >= S 8
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Since dc; and dc; are arbitrary, the bracketed parts of equation (7) must be zero. Thus

ZHijCj:EZSijcj (9)
j

j

It is clear that this can be written as a matrix product and is in fact an eigenvalue

equation in the form
Hc = ESc (10)

We need to minimize the Hartree-Fock energy expression with respect to changes in

the orbitals x,—yat+0ya. We have also been assuming that the orbitals x are orthonormal,

[ @ x = [alb] = 64 (11)
That is, the constraints are of the form
[alb] — 84 =0 (12)

We can accomplish this by Lagrange’s method of undetermined multipliers, where we

employ a functional L defined as

N N
Llta)) = Eolxa} = ) ) ena(lalb] = 645) (19

a=1b=1



where ¢g,, are the undetermined Lagrange multipliers, [a|b] is the overlap between

spin orbitals a and b and Ej is the expectation value of the single determinant |V, >

N N
1
Eol{x}] = Z[awa +35) > laalbb] — [ablba]  (14)
a=1b=1

Because L is real and [a|b] = [b|a]*, the Lagrange multipliers must be elements of a

Hermitian matrix
Eba = Eqp (15)

Minimization of Eo, subject to the constraints, is thus obtained by minimizing L. We

therefore vary the spin orbitals an arbitrary infinitesimal amount,

Xa = Xa T 90X (16)

setting the first variation 8§L£=0.

N N
8L = 6E, — z Z £,,8[alb] = 0 17)

a=1b=1

This follows directly from equation (13) since the variation in a constant (8,,) is

Zero.

Slalb] = [6xalxp] + [Xal6xp] (18)
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and

SEO = Z[SXalhl)(a] + [Xa|h|6Xa]
a=1

N N
z Z [xaxalXpxsl + Dxadxalxsxsl
a= b:

NIH

(19)
+ xaXalOxpxp] + [XaXalXp6x5]

5)(a)(b |xXpXal + Dxadxslxpxal

NIH

7[\42

N
+ Dxaxpl6xp X0l + [Xaxnlxp6xa]

Also

> b (8xals] + e 16261

ab

Zsba [6xalxp] +2 Eab [0 1Xa]

ab

(20)

= Z €pa [Oxalxp] + Z €ha [0XalXp]”
ab

ab
= z €pa [0Xalxp] + complex conjugate

ab

The first variation in £ of equation (17) becomes

17



N
5L= ) [6alhlxa]

a=1

N N
+ z Z [6XaXalXsXs] = [8xaxn X Xal (21)
a=1b=1
N N
- Z Z €pa [0Xalxp] + complex conjugate = 0

a=1b=1

We can use the coulomb and exchange operators. The exchange operator, K, (1), can

be defined by its effect when operating on a spin orbital x,(1),

7, (Ve (1) = | [ d 25 @iz @] 1 (1) @

and the coulomb operator can be defined as

30 = [ [ dx @iz @] 1,1 @

So

N
5L = Zl f dx:8 12 (D) | (e (D)

N
+ (3 = 36,M)x D
b=1

(24)

N

- z €pa Xp (1)

b=1

+ complex conjugate

=0

18



Since &8y; (1) is arbitrary, it must be that the quantity in square bracket is zero for all

Therefore,

N

e = epaxp(Da

N
R+ g, (1) — 7, (1)
[ bzl ’ ’ & (25)

=12,..,N

We can introduce a new operator, the Fock operator, as in the above square bracket.

Therefore, the Hartree-Fock equations are just

N

flXa >= D esalts > (26)

b=1

The Hartree-Fock equations can be solved numerically, or they can be solved in the
space spanned by a set of basis functions. In either case, the solutions depend on the
orbitals. Hence, we need to guess some initial orbitals and then refine our guesses

iteratively. For this reason, Hartree-Fock is called a self-consistent-filed (SCF) approach.

2.1.1 Unrestricted Hartree-Fock and Restricted Hartree-Fock

We must be more specific about the form of the spin orbitals to consider the actual
calculation of Hartree-Fock wave functions. There are two types of spin orbitals:
restricted spin orbitals, which are constrained to have the same spatial function for o

(spin up) and B (spin down) spin functions; and unrestricted spin orbitals, which have

19



different spatial functions for a and [ spins.

A Hartree-Fock wave function in which electrons whose spins are paired occupy the
same spatial orbital is called RHF (restricted Hartree-Fock) wave function. Although the
RHF wave function is generally used for closed-shell states, two different approaches are
widely used for open-shell states. In the restricted open-shell Hartree-Fock (ROHF)
method, electrons that are paired with each other are given the same spatial orbital

function.

2.1.2 Basis Sets

In 1951, Roothaan proposed representing the Hartree-Fock orbitals as linear
combinations of a complete set of known functions, called basis function. Denoting the

atomic orbital basis functions as {5, we have the expansion for each orbital i.

Y= Cud @7)

where v, is the i-th molecular orbital, C,; are the coefficients of linear combination,

pi
¢, is the p-th atomic orbital, and n is the number of atomic orbitals.
Earlier, the Slater Type Orbitals (STO’s) were commonly used for atomic Hartree-

Fock calculations. They are described as
¢:(§,n,,m,1,0,¢0) = Nr""'e="Y™ (6, $) (28)

where N is a normalization constant and ¢ is called the orbital exponent. The r, 8, and

¢ are spherical coordinates and Y;" is the angular momentum part. The n, | and m are
20



guantum numbers: principal, angular momentum and magnetic, respectively.
Unfortunately, functions of this kind cannot be evaluated fast enough for efficient
molecular integral evaluation. That is why Boys proposed the use of Gaussian-type
functions (GTFs) instead of STOs for the atomic orbitals in an LCAO wave function.
GTFs are simpler functions and frequently called Gaussian primitives.
The GTFs (also called Cartesian Gaussian) are expressed as
Gijk = Nxzi)’z{zlla{e_ar”z (29)
where N is a normalization constant, i, j, and k are nonnegative integers, a is a positive

orbital exponent, and x,,, y},, z, are Cartesian coordinates with the origin at nucleus b.

0.5 SLATER
e - STO-16
04k \ == STO-26
\-
\ .
—~— —— ST0-36

0 B 10O 15 20 25 30 35 40
Radius (a.u.)
Figure 2.1: Comparison of the quality of the least-square fit of a Is Slater function

(¢ = 1.0) obtained at the STO-1G, STO-2G, and STO-3G levels.”
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The Cartesian-Gaussian normalization constant is

(2_a>3/ * l(S?)iHTH! ! k!ll/ 2 (30)
s (2i)' (2)! (2k)!

The sum of exponents at cartesian coordinates, L = | + j + K, is used analogously to
the angular momentum quantum number for atoms, to mark functions as s-type (L=0), p-
type (L=1), d-type (L=2), f-type (L=3), etc.

Gaussian functions are efficient and rapid enough to calculate two-electron integrals;
however, Gaussian functions are not optimum basis functions and have functional
behavior that is different from the known functional behavior of molecular orbitals. This
problem can be solved to fix linear combinations of the primitive Gaussian function.
These linear combinations, called contractions, lead to contracted Gaussian-type function

(CGTF),

Xr = Z durgu (31)
u

where the g,’s are normalized Cartesian Gaussian (equation (29)) centered on the same
atom and having the same i, j, k values as one another, but different a’s. The contraction
coefficients d,. are contraction coefficient. In equation 31, x, is called a contracted
Gaussian-type function (CGTF) and g, ’s are called primitive Gaussians.

In the minimal basis set, single zeta (SZ), only one basis function (contraction) per
Slater atomic orbital is used. The SZ set consists of one STO for each inner-shell and
valence-shell AO of each atom.

A double-zeta (DZ) basis set has two basis functions that differ in their orbital

exponents & (zeta), and a triple—zeta basis set replaces each STO of a minimal basis set
22



by three STOs that differ in their orbital exponents.

The split-valence (SV) basis set uses more contractions for each valence AO than
core orbitals. Split valence sets are called valence double zeta (VDZ), valence triple zeta
(VTZ), and so on, according to the number of STOs used for each valence AO.

The polarization functions are important for reproducing chemical bonding. They are
usually added as uncontracted gaussians. Higher angular momentum functions improve
the description for anisotropic electron distribution. Normally, p orbitals are added to H
and He, d orbitals are added to first-row atoms, f orbitals are added to second-row atoms,
and so on. The basis sets are also frequently augmented with the so-called diffuse
functions. These gaussians have very small exponents and decay slowly with distance
from the nucleus. Anions, compounds with lone pairs, and hydrogen-bonded dimers have
significant electron density at a great distance from the nucleus. To improve the accuracy
for such compounds, diffuse functions are used.

Symbols of Pople’s basis set are like n-ijG or n-ijkG, where n is a number of
primitives for the inner shells and ij or ijk is a number of primitives for contractions in

the valence shell. The ij notations describe sets of valence double zeta.

2.2 Density Functional Theory (DFT)

2.2.1 The Hohenberg-Kohn Theorem

In 1964, Pierre Hohenberg and Walter Kohn proved that the ground state electron
density p, of a many-electron system in the presence of an external potential V(r;)

uniquely determines the external potential.*® Therefore, density functional theory (DFT)
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attempts to calculate ground state electronic energy Eq which is function of p, and other
ground state molecular properties from the ground state electron density pg.

We define the purely electronic Hamiltonian as

IO, 1
H=—--) Vi +Zv(ri)+zz— (32)
24 4 — £ Tj
i=1 i=1 Jj oi>j
Lo
v(r)=—-) — (33)
Tia

In DFT, v(r;) is called the external potential. The potential energy of interaction
between electron i and the nuclei depends on the coordinates X;, yi, z; of electron i and on
the nuclear coordinates.

Let us assume that two different external potentials (v, and vp) can each be consistent
with the same nondegenerate ground state density p,. Let H, and Hy be the n-electron
Hamiltonians (equation 32) corresponding to v,(ri) and vy(ri), where v, and v, are not
necessarily given by equation (33). With each Hamiltonian will be associated a ground
state wave function ¥, and its associated eigenvalue E,. The variational theorem of
molecular orbital theory dictates that the expectation value of the Hamiltonian a over the

wave function b must be higher than the ground state energy of a,

Eoq < (Wop|Hg|Wop) (34)

We may rewrite this expression as
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Eoq < (YoplHy — Hy + Hy ¥y )
< (YoplHy — Hp[Yop) + (Yo [Hy [P p) (35)

< (Yoplvg —vp|¥op) + Eop

Since the potentials v are one-electron operators, the integral in the last line of

equation (35) can be written in terms of the ground state density

Eou < f [0 () — vy ()]po (F)dr + Eo, (36)

As we have made no distinction between a and b, we get the electron density py,
corresponding to ¥y, If we go through the same reasoning with a and b interchanged,

we get

Eyp < f [0 () — v (Mo (P dr + B, (37)

Now, when we add inequalities equation (36) and equation (37), we have

Eoo + Eop < J-[Ub () — v, (M) ]po(r)dr

+ f [0 (r) = v ()] po () dr + Eqp
< f [0y () — v () + v (F) — vy ()] po (P)ddr + Eo,

+Ep,
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< Eypp+Eoq

This result, that the sum of the two energies is less than itself, is false. So our initial
assumption, that two different external potentials could produce the same ground-state
electron density, must be false.

The ground-state electronic energy Ej is thus a functional of the function p,(r) and

so must be its individual parts. One can write

Eolpol = Tlpol + Vnelpol + Vee [pol (39)

This ground state energy is the sum of electronic kinetic-energy terms, electron-
nuclear attractions, and electron-electron repulsions. This expression can be classified by

the known term and unknown terms. Vy,[p,] is known as

Ve = (%ol Y 06 %) = [ po(rIverdr (40)
i=1

where v(r) is the nuclear attracting potential energy function for an electron located at
point r.

However, the functionals T[p,] and V,,[p,] are unknown. We have

Eolpo] = f po(P)v(r)dr + Flpo] (41)

where the functional F[p,] is called Hohenberg-Kohn functional, is defined T[p,] +

V.[po] and is independent of the external potential. Therefore, equation (41) is
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unhelpful in providing any indication of how to predict the density of a system, because

the functional F[py] is unknown.

2.2.2 The Hohenberg-Kohn Variation Theorem

The proof of the Hohenberg-Kohn variation theorem is as follows. First, we have
some well-behaved candidate density that integrates the proper number of electrons, N.
In that case, the first theorem indicates that this density determines a candidate wave

function and Hamiltonian. Therefore we can evaluate the energy expectation value

(lpcand IHcand Ilpcand) = Ecana = Eo (42)

which must be greater than or equal to the true ground state energy.
In principle, we can keep choosing different densities and those that provide lower

energies, as calculated by equation (42), are closer to correct.

2.2.3 The Kohn-Sham Method

We know that the density determines the external potential, which determines the
Hamiltonian, which determines the wave functions. However, the Hohenberg-Kohn
theorem cannot calculate the correct Hamiltonian for the electron-electron interaction
term. In a key breakthrough, Kohn and Sham discovered a practical method for finding
po and for finding E, from py.*"

The Kohn-Sham method started as a fictitious system (denoted by the subscript s and
often called the noninteracting system) of non electrons that have the same external

potential-energy functions, v, (r;).
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Next, Kohn-Sham rewrote the energy functional from equation (39) as

E,[p] = f P w(dr + T, [p]

+ % J- f P—(ﬁ:l/:(Tz) drydr, + AT [p]

+ AV, [p]
because AT[p] and AV, [p] are defined by

AT[p] = T[p] - Ts[p]

and

_ _ 1
AT, [p] = AT,ol] ] f %dndm

(43)

(44)

(45)

where %ffwdrl dr, is the classical expression for the electrostatic interelectronic
12

repulsion energy.

The difficult terms AT[p]and AV,.[p] have been defined as the exchange-

correlation energy functional.

E..[p] = AT[p] + AV, [p]

(46)

It is very important to get a good approximation to Ey. for evaluating exact energy.

The local density approximation (LDA) and generalized gradient approximations (GGA)
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are introduced.

This is the Hamiltonian of the reference system

n

n
1
Ho= Y |37+ 0G| =) HES where hfS

i=1 i=1 (47)

_ 1
=5V + vs(11)

where h*® is the one-electron Kohn-Sham Hamiltonian.

2.2.4 Local Density Approximation (LDA)

Local density approximation can be used where charge density is slowly varying and
the exchange-correlation energy of an electronic system is constructed by assuming the
exchange-correlation energy per electron at a point r in the electron gas.

In this case, we can write E,. as

ELPA[p] = f p(Mexe (p)dr (48)

where &,.(p) is the exchange plus correlation energy per electron in a homogeneous

electron gas with electron density p.

2.2.5 Generalized Gradient Approximation (GGA)

The LDA approach will have limitations if the electron density is typically rather far
from spatially uniform. The function of E,. of LDA is only p, and LSDA (local-spin-
density-approximation) deals separately with the electron density p*(r), and the density

pP(r) and the functional, E,., become E,. = E,.[p% pP].
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GGA is also included in the gradients of the electron density p*(r) and the density

pP(r) in the integrand as

Exc [p%,p%] = f f(p* (1), pP (1), Vp© (1), VpP (r))dr (49)

where f is some function of the spin densities and their gradients.
Commonly used exchange functionals, E,, are B86'%, P!, LG'% and PBE'%>1%,
The most popular GGA correlation functionals, E., are the Lee-Yang-Parr (LYP)
functional,'” P86 or Pc86 (Perdew 1986),'% PW91 or PWc91 (Perdew and Wang
1992),'% and the Becke correlation functional called Bc95 or B96.'%

A B3LYP calculation combines Becke’s GGA exchange with the GGA correlation

functional of Lee, Yang, and Parr. This functional is defined by

Efc?)LYP — (1 —ay — ax)E,fwA + aoEﬁxaCt + afo88
(50)
+ 1 —a)EYWN + aq ELYP

2.3 Monte Carlo Simulation

The Monte Carlo simulations use random numbers and probability theory for solving
problems. Von Neumann, Ulam and Metropolis developed the Monte Carlo simulation
method at the end of the Second World War to study the diffusion of neutrons in
fissionable materials.*

The name of Monte Carlo simulation was coined by S. Ulam and Nicholas

Metropolis in reference to games of chance, a popular attraction in Monte Carlo, Monaco.
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2.3.1 The Metropolis Method

The Metropolis algorithm is based on the notion of detailed balance that describes
equilibrium for systems whose configurations have probability proportional to the Boltzmann
factor. The Boltzmann factor, e, is proportional to the probability that the system will be

found in a particular configuration at energy E when the temperature of the environment is T.

Therefore,
P x e E/T (51)
exp(— poy")

T Hl

Always

accept

Accept \
[ X &

'-.‘nm 6I{!_

Figure 2.3: Accepting uphill moves in the MC simulation.*

Consider two configurations A and B, each of which occurs with probability proportional

to the Boltzmann factor. The nice thing about forming the ratio is that it converts relative
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probabilities involving an unknown proportionality constant (called the inverse of the
partition function) into a pure number. In a seminal paper of 1953, Metropolis et al. noted
that we can achieve the relative probability of equation (51) in a simulation by proceeding as
follows:

1. Starting from a configuration A, with known energy Ea, make a change in the
configuration to obtain a new (nearby) configuration B.

2. Compute Eg (typically as a small change from Ea).

3. If Eg < Ea, assume the new configuration, since it has lower energy (a desirable thing,
according to the Boltzmann factor).

4. If Eg > Ep, accept the new (higher energy) configuration with probability p.

If we follow these rules, then we will sample points in space of all possible configurations
with probability proportional to the Boltzmann factor, consistent with the theory of
equilibrium statistical mechanics. We can compute average properties by adding them along
the path we follow through possible configurations. The hardest part about implementing the
Metropolis algorithm is the first step: how to generate useful new configurations.

If the random number, &, is less than a probability of exp™Y"™ the move is accepted.
Figure 2.3 shows this procedure. Suppose that a particular uphill move is attempted in
running the procedure. There are two points at random numbers, & and &. If the random
number &; is chosen, the move is accepted, but if &, is chosen, the move is rejected.

The Monte Carlo simulations need to compare only potential energy (V). First of all, we
calculate the initial potential energy (Vi) at the initial state (R;), moving coordinate
directions using a random number generator to get the new state (R;) and to calculate
new potential energy (V>).

In our MC simulations, we generate the initial structure by attaching CuO molecule

to an optimized and smaller copper oxide clusters. The simulations repeated the
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following steps: (1) Given the initial configuration R;, new configuration R; is generated
by random number generator of one randomly chosen atom. (2) Once the total energies
(V1 and V,) of these two configurations are calculated, the acceptance probability of the

new configuration R is then determined as

P(Rz|R1) = min[1, exp(B(V, — V1)] (52)

where 3 =—1/kgT, T is the temperature and kg is Boltzmann’s constant. (3) If the
configuration R, is accepted, it will be the configuration of the next MC step, and V; is
set equal to V, If the configuration R, is not accepted, the configuration R; and its energy
V are retained and used to start the next step. In this way, the simulations will eventually
reach equilibrium. This procedure is the Metropolis method.** About 500 MC steps were
needed to reach the equilibrium state. We performed our MC simulations at temperature

from 2000K to 300K.
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CHAPTER 3

Cu,O, (n=1-8) CLUSTERS

We used ab initio simulations and calculations to study the structures and stabilities of
copper oxide clusters, Cu,O, (n=1-8). The lowest energy structures of neutral and
charged copper oxide clusters were determined using primarily the B3LYP/LANL2DZ
model chemistry. A transition from planar to nonplanar geometries occurs at n=4.
Selected electronic properties including binding energies, ionization energies, and
electronic affinities were calculated and examined as a function of n. Stabilities were

examined by calculating fragmentation channels and Léwdin charge distributions.

3.1 Method

3.1.1 Monte Carlo Simulations

We performed ab initio Monte Carlo simulation (using Gaussian 03" and
homegrown scripts) to locate stable geometric structures for Cu,O, clusters with n=1-8.
The simulations used multiple starting geometries for each cluster size. To calculate the
total energy at each MC step, we used Gaussian 03**2 program with B3LYP (Becke’s 3-
parameter  exchange  functional  with  Lee-Yang-Parr  correlation  energy
functional)'*"**3 and 6-31G** basis set.'™>*® About 500 MC steps were needed to
reach the equilibrium state. We performed our MC simulations at temperatures from
2000K to 300K.

The Monte Carlo simulations of Cu3Ojs cluster are shown in Figure 3.1. We generate

the initial structure: Cu-O molecule is attached on optimized copper oxide clusters. We
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performed 160 MC steps to find the local energy of CusOs cluster.

These geometries were then optimized using standard ab initio methods using the
GAMESS™ quantum chemistry package. The smaller clusters were then used as starting
points to look for the global minimum geometries for larger clusters where the Monte
Carlo procedure was not practical. We used the B3LYP (Becke’s 3-parameter exchange

107,113,114

functional with Lee-Yang-Parr correlation energy functional) version of DFT

with LANL2DZ basis set.

-5148.30

-5146.35 |- "y \
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£ -5146.45

I
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:
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Steps

Figure 3.1: Monte Carlo simulation of Cu3O3 cluster. Copper/oxygen atoms are colored
white/black.
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3.1.2 Basis Sets

We used 6-31G*U1B120 G631 44 Gan 1BI2125 g 319 Gax120126128 6 991, | Gax12312¢
LANL2DZ****3 and DGDZVP*¥***® hasis set to choose the best basis set for copper

oxide clusters. 6-31G* basis set is described by six 3d functions per atom:3d,, 3d,y,

3d,,, 3d,,, 3d,,, and 3d,,. These six, the Cartesian Gaussian, are linear combinations

Xy yz»

of the usual five 3d functions: 3d,,, 3d 3d,,, 3d,, and 3d,z and 3s function

Xy XZ_yZ, yzZ 1

(x% + y? + z2), including polarization functions. The polarization functions are denoted
by an asterisk, *. Two asterisks, **, indicate that polarization functions are also added to
light atoms (hydrogen and helium). The diffuse functions are denoted by a plus sign, +.
Two plus signs, ++, indicate that diffuse functions are also added to light atoms

(hydrogen and helium).

Cuw0:-b

Figure 3.2: Lowest energy clusters for Cu,O,, n=1-4. Different basis sets give different
lowest isomers for n=3 and 4 (Cu,03-a:6-31G**; Cu,03-b: 6-31++G**, 6-311G**, 6-
311++G**, LANL2DZ and DGDZVP; Cu,0s-a: 6-31++G**, 6-311++G**, LANL2DZ
and DGDZVP; Cuy04-b: 6-31G** and 6-311G**) (See Table 2.1 for details.)
Copper/oxygen atoms are colored white/black.
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Effective core potential (ECP) or Effective Potential (EP) approaches are developed to
treat inner shell electrons as if they were some averaged potential rather than actual
particles. An effective core potential (ECP) is a linear combination of specially designed
Gaussian functions that model the core electrons; the core electrons are represented by an
effective potential, and one treats only the valence electrons explicitly. LANL2DZ basis
set is known as Los Alamos National Laboratory basis set and was developed by Hay and
Wadt.'?* 3! LANL2DZ basis set has been widely used in quantum chemistry in the study
of compounds or clusters containing heavy elements. The functions of this basis set have
been obtained by fitting the procedure of pseudo-orbitals with Gaussian functions.
DGDZVP basis sets are denoted by double-zeta valence plus polarization (DZVP) in

DGauss. 132134

Table 2.1: Electronic affinities comparing basis sets with experimental data

Electron Affinities (eV)

6-31G**  6-31++G** 6-311G** 6-311++G** LANL2DZ DGDZVP EXP"

Cu,O 0.94 1.27 0.14 1.24 1.15 1.15 1.10
Cu,0; 1.41 2.33 0.89 1.76 241 2.24 2.46
Cu,04 2.35 2.65 1.67 3.09 3.25 3.08 3.54
Cu,O4 3.26 3.34 2.75 3.35 3.54 3.31 3.50

Calculations found the lowest energy clusters for Cu,O, (n=1-4), shown in Figure 2.2.
For Cu,03 and Cu,Q,, different isomers were found depending on the basis set (Cu,0Os-a:
6-31G**; Cuy0s-b: 6-31++G**, 6-311G**, 6-311++G**, LANL2DZ and DGDZVP;
Cup04-a: 6-31++G**, 6-311++G**, LANL2DZ and DGDZVP; Cu,04-b: 6-31G** and
6-311G**). Experimental data of electron affinities of Cu,O to Cu,O, clusters are
available.”” A comparison of calculated and measured electron affinities are shown in
Table 2.1. The best agreement with experimental data is found with the LANL2DZ basis

set, which is therefore used in the remainder of this work.
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3.2 Results

3.2.1 Geometric Structures

The optimized structures of neutral and charged (CuQ), clusters with n=1-8 are
shown in Figure 3.2 and the corresponding bond lengths in Table 3.1. Spin states,
adiabatic ionization energies, adiabatic electron affinities, and binding energies per
copper atoms are given in Table 3.2. The lowest spin state (i.e., singlet, doublet, triplet
and quartet) of a given cluster was used in these calculations. Every neutral copper oxide
cluster, (CuO),, can be formed from a Cu,.;O,.1 cluster by attaching a Cu-O molecule to
the side of a Cu,.10n1 Cluster.

The calculated bond lengths for CuO™ and CuO are 1.74A and 1.81A and are in
acceptable agreement with the measured values of 1.67A and 1.72A.%° Based on the
present simulations and calculations, the structure of the lowest energy Cu,O; cluster is a
rhombus. The spin states of optimized structures are singlet, doublet, and doublet for the
neutral, cation, and anion clusters, respectively. Wang et al.”” and Dai et al.”® have
suggested minimum energy structures for Cu,O, based on ab initio calculations and/or
experimental measurements. Wang et al. suggest the structure is a rhombus, while Dai et
al. suggest the structure is linear or near linear. The rhombic structure of Wang et al. has a
Cu-O bond length of 1.78A and a Cu-O-Cu bond angle of 80°. Our calculations give a
Cu-O bond length of ~1.86A and a Cu-O-Cu bond angle of ~82°. The present work
supports the rhombic structure as the lowest energy structure for Cu,0O..

Our calculations find Cu3O3 clusters to be nearly planar. The neutral cluster is a
quartet, while the charged clusters have triplet ground states. The average Cu-O-Cu bond
angles are 121.8° (cation), 98.1° (neutral), and 94.2° (anion). The calculated Cu- O bond

lengths are 1.89A (cation), 1.90A (neutral), and 1.85 (anion).
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Figure 3.3: Optimized structures of neutral, positively, and negatively charged (CuO),
clusters with n=1-4. Copper/oxygen atoms are colored white/black.
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Figure 3.4: Optimized structures of neutral, positively, and negatively charged (CuO),
clusters with n=5-8. Copper/oxygen atoms are colored white/black.
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Table 3.1: Bond lengths (A) of Cu-O-Cu in (CuO), (n=1-8) clusters

Clusters d
CuO d1.2:1.81
Cu0O CuO’ d;-2=1.76
CuO d1.2:1.74
CUzOz d1_3:1.86 d1_4:1.86 d2_3:1.86 d2_4:l.86
CU202 CU202+ d1.3:2.01 d1.4:2.01 d2.3:2.01 d2.4:2.01
CUzOz- d1_3:1.92 d1_4:1.92 d2_3:1.92 d2_4:l.92
CU303 d1.4:1.83 d1.5:2.06 d2.4:1.81
d2_5:1.83 d3_5:1.83 d3_5:2.03
CuO. Cu0s’ ds=Ll75  dig=l77  dp,=178
33 dp5=2.13  dg5=2.12  d36=1.79
CU303_ d1.4:1.84 d1.5:1.85 d2.4:1.85
d2_5:1.85 d3_5:1.85 d3_5:1.85
CU404 d1.5:1.96 d1.5:1.97 d2.5:1.88 d2.7:1.93
d3_5:1.88 d3_8:1.93 d4_5:1.97 d4_6:l.96
Cu.O CU4O4Jr d1.5:1.94 d1.5:1.93 d2.5:1.88 d2-7:1.94
e d35=1.87 d35=1.93 ds5=1.92 ds.6=1.95
CU404_ d1.5:1.81 d1.5:1.81 d2.5:1.80 d2.7:1.79
d3_5:1.81 d3_8:1.83 d4_5:1.80 d4_6:l.80
d1.5:1.83 d1-1o:1.87 d2.5:1.83 d2.7:1.88
CU505 d3_7:1.88 d3_8:1.92 d4_g:1.92 d4_1o:1.87
d5.7:1.90 d5-1o:1.90 dg.g:1.40
d1_5:1.87 d1_10:l.87 d2_5:1.80 d2_7:l.88
CU505 Cl.l5O5Jr d3.7:1.88 d3.8:1.87 d4.9:1.87 d4.1o:1.88
d5_7:1.96 d5_10:l.96 dg_g:1.37
d1.5:1.87 d1.10:1.91 d2.5:1.87 d2.7:1.90
CU505- d3_7:1.87 d3_8:1.92 d4_g:1.92 d4_1o:1.87
d5.7:1.96 d5-1o:1.96 dg.g:1.41
d1_7:1.94 d1_12:l.90 d2_8:1.94 d2_9=l.90
Cu<O d3.9:1.90 d3.1o:1.94 d4-11:1.94 d4.12:1.90
% U59=1.88 d5.12=1.89 ds7=2.02 ds.5=2.10
d5.1022.02 d5.11:2.10 d7.8:1.52 d10.11:1.52
d1_7:1.99 d1_12:l.90 d2_8:1.99 d2_921.93
+ d3.9:1.93 d3-1o:1.99 d4-11:1.99 d4.12:1.90
CusOs  CUOs™ 4 =186 ds1p=1.85 d67=198 =198
d5-1021.98 d5-11:1.98 d7.8:1.49 d10-11:1.49
d1_7:1.96 d1_12:l.92 d2_8:1.96 dz_g:l.94
CuO«" d3.9:1.94 d3-1o:1.96 d4-11:1.96 d4-12:1.92
O ds9=1.91 d5.12=1.92 dg7=2.01 dp.5=2.05
d5-1022.06 d5-11:2.00 d7.8:1.56 d10-11:1.56
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Table 3.1: Bond lengths (A) of Cu-O-Cu in (CuO), (n=7-8) clusters

Clusters
d1.8:1.94 d1.14:1.92 d2.9:1.94 dg.lo:1.92
CU707 d3_10:l.92 d3_12:1.94 d4_13:l.94 d4_14:1.92
d5-1o:1.92 d5-14:1.92 d6-1021.98 d6-11:1.88
CU707 d7_11:l.88 d7_14:1.98 dg_g:1.4o d12_13:1.40
d1.8:2.19 d1-14:1.89 d2.9:2.18 dz.lozl.gO
CU707_ d3_10:l.90 d3_12:2.l5 d4_13:2.15 d4_14:1.90
d5-1o:2.05 d5.14:2.06 d6.1022.14 d6-11:1.71
d7_11:l.73 d7_14:2.07 dg_g:1.39 d12_13:1.40
d1.9:1.94 d1.14:1.97 d2.1o:1.95 d2.11:1.97
d3_11:l.98 d3_15:1.93 d4_14:l.96 d4_15:1.93
CugOg d5.9:1.99 d5.1o:2.06 d5-15:2.06 d5-16:2.02
d5_11:l.96 d6_14:1.96 d7_11:l.91 d7_12:1.94
d8-13:1.94 d3.14:1.92 d9.10:1.55 d12.13:1.40
di5-16=1.55
d1.9:2.08 d1.14:1.93 d2-1o:2.07 d2-11:1.94
CUSOS . d3_11:2.07 d3_15:1.93 d4_14:2.08 d4_15:2.12
CugOg d5-1o:2.12 d5.15:2.13 d6-11:1.92 d6.14:1.93
d7_11:l.95 d7_12:1.82 d8_13:l.83 d8_14:1.95
d9.10:1.42 d12.13:1.38 d15.16:1.42
dl_g:1.92 d1_14:1.95 d2_1021.84 d2_11:1.97
d3-11:1.95 d3-15:1.92 d4-14:1.98 d4.16:1.84
CUgOg- d5_g:1.90 d5_15:1.92 d5_11:l.98 d6_14:1.95
d7.11:1.91 d7-12:2.13 d8.13:2.15 d3-14:1.93
dg_1021.58 d12_13:1.39 d15_16:l.58

The Cu4O4 cluster is the first nonplanar structure found for Cu,O, and consists of 2
copper atoms above and below the plane of a Cu,O4 unit. A similar structure is found for
the cation cluster, while the anion cluster is planar. The spin states of the optimized

structures are triplet (neutral) and doublet (cation and anion). The Cu-O bond lengths are

1.92A (cation), 1.94A (neutral), and 1.81A (anion).

The CusOs clusters consist of fused 6-membered (Cu3O3) and 7-membered (CuzO,)
rings sharing a O-Cu-O edge. The angle between the rings is 131.5°. In these clusters,

there is one O-O bond. The spin states of optimized structures are quartet (neutral) and

triplet (cation and anion).
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CugOg clusters have cage structures. The spin states of optimized structures are triplet
(neutral) and doublet (cation and anion). Cu;Oy clusters exhibit another fused structure
with three rings sharing a common edge. Similar to the CusOs clusters, the rings are 6-
and 7-membered. There are two O-O bonds in these structures. We were unable to
optimize the Cu;07 due to severe spin-contamination issues. The spin states of optimized
structures are quartet (neutral) and triplet (anion). CugOg can be constructed from CugOg
by addition of a Cu,0, group to an an edge of the CugOg cluster. The spin states of

optimized structures are triplet (neutral), quartet (cation) and doublet (anion).
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Figure 3.5:  Atomization energies of neutral (CuO), clusters with n=1-8
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3.2.2 Atomization Energies and Second Difference Energies

The atomization energies per atom have been calculated from

E, = [nE(Cu) + nE(0O) — E(Cu,0,)]/2n (1)

Table 3.2: Spin states, ionization energies (IE), electron affinities (EA), and binding
energies (Eb) for Cu,0O,, n=1-8. Energies are in electron volts and are calculated using
the B3LYP/LANL2DZ model chemistry.

Clusters Spin State IE EA Ep
CuO doublet
CuO™ singlet 12.25 1.35 1.22
CuO~ singlet
Cu,0, singlet
Cu, 03 doublet 8.24 2.35 1.85
Cu, 03 doublet
Cu303 quartet
Cuz 0% triplet 9.36 3.65 2.19
Cuz03 triplet
Cu, 0,4 triplet
Cu,0F doublet 8.37 3.40 2.35
Cuy O3 doublet
CusOs quartet
Cus O triplet 8.78 3.64 2.48
Cu; 03 Triplet
CugOg triplet
CugOF doublet 8.46 3.61 2.47
CugOg doublet
Cu; 0, quartet
2.00 2.53
Cu;07 triplet
CugOg triplet
CugOg quartet 8.26 3.13 2.53
CugOg doublet
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Figure 3.2 shows the atomization energy per atom, E,, as a function of the number of
copper atoms in the cluster. This energy rises rapidly from n=1 to n=5 and appears to be

converging to about 2.5eV. The second difference in energies is defined by

NEM) =[E(n+1) —EM]—[EM) — E(n—1)] )

and is often used to identify so-called “magic clusters,” which are clusters with particular
stability. The second difference is plotted in Figure 3.4. There is an odd-even alteration in
the values of A?E(n) with CusOs (and possibly CusO3) appearing to be particularly
stable.

The geometric structures CusOs and Cu3Oj3 are characterized by rings with at least 6
atoms. We have investigated whether ring strain plays an important role in the stability of
these clusters by calculating the RMS deviations of Cu-O-Cu and O-Cu-O angles from
“ideal” values. For a planar, completely symmetric ring, the angle would be 120°. The
Cu-O-Cu angles in CusOs and CuzO3 are nearly tetrahedral (= 109.5). We thus choose the
tetrahedral angle as the “ideal” Cu-O-Cu bond angle and 130.5° as the “ideal” O-Cu-O
bond angle. Table 3.3 shows these root-mean-square (rms) deviations. There is a slight
correlation between the second energy difference and the Cu-O-Cu bond angles, so there
is a possibility that ring strain due to Cu-O-Cu deviating from perfect tetrahedral angles
plays a role in the stability of the clusters. We have investigated that the stability of
copper oxide clusters is discussed in term of the ring size effect. The even numbered
clusters have small rings (3- and 4-membered). These small rings lead to ring strain and a
loss of stability. On the contrary, the odd numbered clusters have large rings (6- and 7-

membered).
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Table 3.3:  Root-mean-square deviations of Cu-O-Cu and O-Cu-O angles

CUnOn (n:2-8) CU202 CU303 CU404 CU505 CUeOe CU707 CUgOg

RMS deviations
(Cu-O-Cu angles) 275 13.0 21.7 10.9 16.2 20.6 26.5

RMS deviations

(O-Cu-O angles) 32.5 11.6 29.7 219 164 298 39.8

1.0

0.5

0.0 -

eV

2 3 4 5 6 7
Cluster Size, n

Figure 3.6:  Second difference of the energy of (CuO), clusters with n=1-7

3.2.3 lonization Potential, Electron Affinities and HOMO-LUMO
Gaps

Figure 3.5 represents the ionization potentials (IP(X,) = E(X}) —E(X,)) and
electron affinities (EA(X,) = E(X,) — E(Xy) ). lonization potentials and electron
affinities have been calculated taking the lowest structural energies, which are adiabatic

energies. The even-odd oscillation in IP can be explained based on the electronic clusters
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structures. In the case of clusters with an even number of copper atoms, all electrons are
paired, giving a closed shell electronic structure and spin pairing. In contrast, all odd
numbered clusters have a single unpaired electron. Therefore, it is much more difficult to
ionize the even numbered clusters than odd ones. It is seen that the copper oxide clusters
with n=1, 3, and 5 have higher IPs.

However, it should be much easier to attach an electron to copper oxide clusters with
an odd number of copper atoms than the even ones. In figure 3.5, the electron affinities

energies are increasing for n=1-3 and showing a stabilization for n=3-6.
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Figure 3.7: Calculated adiabatic ionization potential and electron affinities of (CuO),
clusters with n=1-8
The calculated HOMO-LUMO gaps of the lowest-energy structures for neutral (CuO),
(n=1-8) clusters are shown in Figure 3.6. The magnitude of the gaps varies from 2.24 eV to

3.67 eV. Usually the clusters with larger HOMO-LUMO gaps are more stable and chemically
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inert. Interestingly, we note that the Cu3Oj3 cluster has largest HOMO-LUMO gap among the

clusters we studied.
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Figure 3.8: Calculated HOMO-LUMO gap of neutral (CuO), clusters with n=1-8

3.2.4 Fragmentation Channels

We have also calculated the fragmentation energies of (CuO), (n=1-8) clusters for
various dissociation pathways. The fragmentation channels of (CuO),, n=1-8 clusters are
shown in Table 3.4. The fragmentation energy of CugOg cluster (dissociation to CusOs +
CuO) is the lowest value (56.59 kcal/mol), which we would like to emphasize as the most

favorable pathway to break the cluster. The fragmentation products of all copper oxide
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clusters contain a CuO cluster, except those of Cu;O; which fragments into CusOs

+Cuy0,,

Table 3.4:  Fragmentation channels of (CuO), clusters with n=1-8

Ensm— En+ En kcal/mol
(Cu0);—CuO+CuO 57.91
(CUO)g—’CUzOz‘FCUO 75.90
(CuO)4—Cuz05+Cu0 75.56
—Cu,0,+Cu,0, 93.55
(CUO)s—CuO4+CUO 81.07
—Cu303+Cu,0, 98.72
(CUO)s—CusOs+CUO 56.59
—Cus04+Cuy0, 79.74
—Cu3z03+Cuz05 79.41
(CUO)7—>CU605+CUO 77.40
—Cus05+Cu,0, 76.07
—Cuy04+Cuz03 81.25
(CUO)g—CuzO07+CUO 59.27
—Cug06+Cu,0, 78.76
—Cus05+Cu303 59.45
—Cu404+Cuys04 64.96

3.2.5 Léwdin Charge Distributions

The calculations of Lowdin charge distributions® of copper oxide clusters are shown in
Table 3.5.

From Lowdin charges one gets useful information about the amount of charge transfer
between Cu and O in an oxide. Average Lowdin charges of the Cu atoms are 0.24 |e| for CuO,
0.26 |e|] for Cuy0Oy, 0.23 |e| for CuzOs, 0.17 |e| for CusOy4, 0.18 |e| for CusOs, 0.20 |e|
for CugOs, 0.15 |e| for Cu;O7, and 0.15 |e| for CugOg in neutral clusters. Average Léwdin
charges of the O atoms are -0.24 |e| for CuO, -0.26 |e] for Cu,0,, -0.23 |e|] for Cu3zOs, -
0.17 |e] for CusQOy4, -0.19 || for CusOs, -0.17 |e| for CugOs, -0.14 |e| for Cu;O7, and -

0.15 |e| for CugOg in neutral clusters.
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Table 3.5;

Lowdin charges of copper and oxygen atoms in (CuO), (n=1-8)

Clusters qCu (atom number) gO (atom number)
Cu0 0.24(1) -0.24(2)
Cu0 cuot | 0.95(1) 0.05(2)
Cuo~ | -0.53(1) -0.47(2)
Cu,0, | 0.26(1) 0.25(2) 0.26(3) -0.26(4)
Cu,0,  Cu,0F | 0.60(1)  0.60(2) -0.10(3)  -0.10(4)
Cu,0; | -0.10(1) -0.10(2) -0.40(3)  -0.40(4)
Cu;0; | 0.19(1) 0.30(2) 0.19(3) | -0.23(4) -0.23(5) -0.22(6)
Cu;0;  CuzOf | 0.46(1) 046(2) 051(3) | -0.14(4) -0.20(5) -0.10(6)
Cu;03 | 0.04(1) 0.03(2) -0.03(3) | -0.35(4) -0.36(5) -0.34(6)
w0 023(1) 0.12(2) 0.27(5)  -0.27(6)
Wts 1 008(3)  0.24(4) -0.07(7)  -0.05(8)
L | 042(1) 0292 -0.18(5)  -0.20(6)
CusOp  CusOi | go53)  0.40(4) 0.01(7)  0.004(8)
cuo- | 008(1)  0.07(2) -0.28(5)  -0.36(6)
Wta 1 009(3)  0.10(4) -0.32(7)  -0.36(8)
a0 0.24(1) 0.23(2) 0.12(3) | -0.28(6) -0.26(7) -0.07(8)
Us¥s 1 0.12(4)  0.20(5) -0.07(9)  -0.26(10)
_— cuob | 03%(1)  039(2)  025@3) | -0.16(6) -0.25(7) 0.008(8)
Us¥s Us¥s 1 0.25(4)  0.37(5) 0.009(9) -0.25(10)
cuo- | 005(1)  005(2)  0023) | -0.27(6) -0.34(7) -0.10(8)
Us¥s 1 0.02(4)  0.02(5) -0.10(9)  -0.34(10)
00 0.14(1) 0.15(2) 0.15(3) | -0.12(7) -0.13(8) -0.25(9)
Y% | 014(4) 0.15(5) 0.27(6) |-0.13(10) -0.12(11) -0.25(12)
_— cuob | 025()  023(2)  0.23(3) | -0.05(7) -0.048) -0.24(9)
UsVe UYs¥6 | 0.25(4) 040(5) 0.32(6) | -0.05(10) -0.05(11) -0.24(12)
cuo- | 003(1)  003(2)  0.033) | -017(7) -0.17(8) -0.33(9)
Ys¥6 | 0.03(4) 0.007(5) 0.20(6) | -0.17(10) -0.17(11) -0.32(12)
0.15(1) 0.15(2) 0.16(3) | -0.06(8) -0.06(9) -0.26(10)
Cu,0, | 0.16(4) -0.07(5) -0.24(11) -0.06(12)
a0 0.24(6)  0.24(7) -0.06(13) -0.26(14)
U7tz 012(1) 0.12(2) 0.15@3) | -0.13(8) -0.13(9) -0.27(10)
Cu,07 | 0.14(4)  -0.16(5) -0.31(11) -0.14(12)
0.006(6)  0.009(7) -0.13(13)  -0.27(14)
0.16(1) 0.16(2) 0.13(3) | -0.13(9) -0.14(10) -0.26(11)
CugOg | 0.13(4)  0.27(5) 0.013(6) | -0.06(12) -0.06(13) -0.26(14)
0.15(7)  0.15(8) -0.13(15) -0.13(16)
0.24(1) 0.24(2) 0.24(3) | -0.05(9) -0.07(10) -0.25(11)
CugOg  CugOf | 0.23(4) 0.44(5) -0.04(6) |-0.03(12) -0.03(13) -0.25(14)
0.22(7)  0.22(8) -0.07(15) -0.05(16)
0.09(1) 0.04(2) 0.05(3) | -0.16(9) -0.22(10) -0.26(11)
CugO3 | 0.002(4) 0.06(5) 0.01(6) |-0.12(12) -0.12(13) -0.26(14)
0.14(7)  0.13(8) -0.16(15) -0.16(16)

50



3.3 Conclusions

The electronic and structural properties of small copper oxide clusters have been
studied using density functional theory and several basis sets. Comparison with existing
experimental work demonstrated that the LANL2DZ basis set is in best agreement and
therefore was used to study Cu,O, with n=1-8 clusters. A transition from planar to
nonplanar geometries occurs at n=4, though the negatively charged Cu,O,4 cluster is
planar. Atomization energies and second difference energies demonstrate that CusOs
cluster has the highest stability. We find that odd numbered copper oxide clusters have
higher stabilities than even numbered copper oxide clusters, which can be explained in
two ways. First, the Cu-O-Cu angles are relatively close to tetrahedral values and
correlate reasonably well with second difference energy.

Second, we have investigated that the stability of copper oxide clusters is discussed in
term of the ring size effect. The even numbered clusters have small rings (3- and 4-
membered). These small rings lead to ring strain and a loss of stability. On the contrary,
the odd numbered clusters have large rings (6- and 7-membered). Therefore, we expect
that odd numbered copper oxide clusters (CugQOg, Cu1;01;...) will be most stable.

lonization potentials have some oscillations with cluster size, as these are typical for
clusters. The lowest fragmentation energy of CugOs cluster (dissociation to CusOs + CuO)
is, we would like to emphasize, the most favorable pathway to break the cluster. We also
expect that bigger copper oxide clusters than CugOg cluster would dissociate to contain a

CuO cluster as small copper oxide clusters. (From CuO to CugOg clusters)
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CHAPTER 4

COMPUTATIONAL STUDIES OF
REACTIONS OF PHENOL AND
CHLORINATED PHENOLS WITH
COPPER OXIDE CLUSTERS

We already performed ab initio Monte Carlo simulated annealing simulations and
density functional theory calculations to study the structures and stabilities of copper
oxide clusters, Cu,O, (n=1-8). We determined the lowest energy structures of neutral,

positively and negatively charged copper oxide clusters using the GAMESS*’

quantum
chemistry package. We used the B3LYP (Becke’s 3-parameter exchange functional with
Lee-Yang-Parr correlation energy functional)**”***** version of DFT with LANL2DZ
basis set. The geometries were found to undergo a structural change from two
dimensional to three dimensional when n = 4 in neutral copper oxide clusters. In this
chapter, we have analyzed the interactions between neutral copper oxide clusters and
organic compounds (phenol, ortho-chlorophenol and para-chlorophenol) for geometric

parameters, thermodynamic properties, reaction pathway, adsorption energies and

Lowdin charge distributions.

4.1 Method

4.1.1 DFT Calculations

It is known that phenols adsorb on the copper oxide surfaces through H,O elimination

at surface oxide and hydroxyl sites resulting in surface phenolate formation.****
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Therefore, our calculations include two types of reactions. First, each copper oxide
cluster is reacted with a water molecule. Second, the hydrogenated clusters are reacted
with the organic compounds phenol, ortho-chlorophenol and para-chlorphenol.

The reaction enthalpies were calculated according to the following procedure: (1)
the total electronic energies for the reactants and the products were calculated, (2) these
were corrected for zero-point energies to obtain a theoretical enthalpy at OK, and (3)
thermal corrections were applied to get the reaction enthalpy at 298.15K. The enthalpies,
H, is the calculated sum of Hgjec, Hirans, Hrot, @nd Hyin and the Gibbs free energies are the
calculated sum of Geee, Gtrans, Grot, and Gyip. In water molecule reactions, we need to
consider possible reaction sites to find the lowest energy structures. From CuO to Cu303
clusters, we have found just one possible reaction site. However, from Cu;O,4 to Cu;Oy
clusters, we need to consider three or four possible reaction sites. Actually, we have
checked all energies and structures after reaction with water molecule following possible
reaction sites. Fig 4.1-7 show the lowest structures [(2), (7), (12), (17), (22), (27), (32)
clusters] of each cluster with water molecule reaction.

In phenol and para-chlorophenol reactions, we have started two possible initial
geometries to change dihedral angle (Cu-O*-C-C, the asterisk denotes the atom of the
adsorption site on the copper oxide clusters) 0 and 90 degrees. In ortho-chlorophenol
reaction, we have started four possible initial geometries to change dihedral angle (Cu-
0*-C-C) 0, 90, 180 and 270 degrees. Therefore we can find the global energy structure of
each molecule with organic compound reactions. Then we confirm the lowest energy
using PES with single point energy calculation. Figure 4.1 shows this PES calculation
with Cu;07-Phenol cluster reaction. Thus we confirm that the dihedral angle of the
lowest energy structure of Cu;O;-phenol cluster is O degree or 180 degrees.

Figure 4.2-8 show the lowest structures [(3), (4), (5), (8), (9), (10), (13), (14), (15),
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(18), (19), (20), (23), (24), (25), (28), (29), (30), (33), (34), (35) clusters] of each cluster

with organic compound reactions.

Energy (Hartree)

-2207.2005
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-2207.2040
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Angle

Figure 4.1: PES calculation with Cu;O7-phenol reaction

4.2 Results

4.2.1 Geometric Structures

We already studied neutral, positively and negatively charged copper oxide clusters.

Figure 3.2 shows the lowest energy structures of neutral copper oxide clusters from CuO to

CUgOg.
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Table 4.1: Average bond lengths of water, organic compounds and copper oxide-organic

compounds clusters

Clusters Avg. Bond lengths
cu-0  OH 0-0 c-C c-0 C-H c-cl

H,0 0.98

Phenol 0.98 1.41 1.40 1.09

ortho- 0.98 1.41 1.39 1.09 1.81

chlorophenol

para-chlorophenol 0.98 1.41 1.40 1.09 1.82
(1) 1.81
2 1.77 0.98

CuO (3) 1.79 0.98 1.41 1.35 1.09
(4) 1.79 0.97 1.41 1.34 1.09 1.80
(5) 1.79 0.97 141 1.35 1.09 1.81
(6) 1.86
7) 1.77 0.98

Cu,0, (8) 1.78 0.99 141 1.35 1.09
9) 1.78 0.99 141 1.34 1.09 1.80
(10) 1.79 0.97 141 1.34 1.08 1.81
(11) 1.90
(12) 1.75 0.98

Cus0, (13) 1.77 0.98 1.42 1.34 1.09
(14) 1.77 0.98 1.41 1.33 1.09 1.80
(15) 1.77 0.98 141 1.34 1.08 1.81
(16) 1.94 1.40
() 1.86 0.98 1.40

Cu,04 (18) 1.86 0.97 1.40 1.41 1.35 1.09
(19) 1.86 0.97 1.40 141 1.34 1.09 1.81
(20) 1.86 0.97 1.40 141 1.35 1.09 1.81
(21) 1.88 1.40
(22) 1.89 0.98 1.40

CusOs (23) 1.93 0.97 1.40 141 1.35 1.09
(24) 1.92 0.97 1.40 141 1.35 1.08 1.83
(25) 1.92 0.97 1.40 141 1.35 1.08 1.81
(26) 1.96 1.52
(27 1.94 0.98 1.56

CugOs (28) 1.95 0.98 1.57 1.41 1.39 1.09
(29) 1.96 0.98 1.57 1.41 1.37 1.09 1.84
(30) 1.95 0.98 1.57 1.41 1.39 1.09 1.82
(31) 1.93 1.40
(32) 1.94 1.13 1.40

Cu;04 (33) 1.95 1.21 1.40 1.40 1.40 1.08
(34) 1.95 1.07 1.40 1.40 1.38 1.08 1.82
(35) 1.94 1.22 1.40 1.40 1.39 1.08 1.81
(36) 1.97 1.50
(37) 1.95 1.13 1.50

CugOsg (38) 1.95 1.07 1.50 141 1.39 1.09
(39) 1.95 1.05 1.50 141 1.37 1.09 1.83
(40) 1.95 1.06 1.50 1.41 1.39 1.09 1.82
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The geometries of copper oxide clusters are found to undergo a structure change from two
dimensional to three dimensional when n=4 in neutral copper oxide clusters. After the water
reaction, the geometries of copper oxide clusters for CuO, Cu,0, and Cu3Os clusters are
changed to linear or near linear clusters and three dimensional structure Cu,sO4 cluster is
changed to near planar structure. From CusOs to CugOg clusters still have three dimensional
structures after the water reaction.

The calculation results of average bond lengths (O-H, O-O, C-C, C-O, C-H and C-Cl) are
for copper oxide clusters, copper oxide-water clusters and copper oxide-organic compounds
clusters shown Table 4.1. Average Cu-O bond lengths of copper oxide clusters, CuO, Cu,O,,
Cu303, CuyO4 and CugOg, are decreased after the water reaction. Average Cu-O bond lengths
of CusOs and CugOg clusters are slightly increased from 1.88 to 1.89 and 1.93 to 1.94,
respectively. It is interesting that CusO3 cluster has the biggest gap of average Cu-O bond
length, from 1.90 to 1.75 after the water reaction. After organic compounds reactions,
average Cu-O bond lengths of all copper oxide cluster-organic compounds clusters are
slightly longer than those of copper oxide-water clusters.

Table 4.2 shows the energy, H, and G. With careful analysis of the table, the obvious
correlation of energy and the position of chlorine substitute in copper oxide cluster reveal
that para position copper oxide chlorophenols are more stable from CuO to CusO,4 and
Cu;0y clusters than ortho position copper oxide chlorophenols.

The correlation of H® can be the same with energy. Para position copper oxide
chlorophenol clusters have smaller values (from CuO to Cu;O4 and Cu;Oy clusters).

Gibbs energies are a little bit different than energies and enthalpies. The Gibbs energy

value of ortho position CusO3 chlorophenol cluster is smaller than that of para postion.
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Table 4.2: The spin states, energies, enthalpies and Gibbs free energies of copper oxide-

organic compounds complexes

Clusters Spin State  Energy(eV) H° (eV) G’ (eV)

@ doublet -7382.21 -7382.11  -7382.83

(@) doublet -9463.41 -9463.25  -9464.16

CuO 3 doublet -15747.71  -15747.45 -15748.69
4) doublet -16138.01 -16137.72 -16139.01

(5) doublet -16138.09 -16137.81 -16139.08

(6) singlet -14766.92 -14766.76 -14767.73

(7) triplet  -16848.28 -16848.04 -16849.20

Cu,0 (8) triplet -23132.54 -23132.20 -23133.67
(9) triplet  -23522.84 -23522.45 -23524.02

(10) triplet -23522.94  -23522.55 -23524.13

(11)  quartet  -22152.42 -22152.16 -22153.43

(12) quartet -24233.03  -24232.71 -24234.15

CusO; (13) quartet -30517.33  -30516.89 -30518.66
(14) quartet -30907.63 -30907.15 -30909.08

(15)  quartet  -30907.72 -30907.27 -30909.05

(16) triplet -29537.90 -29537.58 -29538.99

(17)  triplet  -31618.96 -3161857 -31620.14

Cus04 (18) triplet -37903.41 -37902.91 -37904.76
(19) triplet -38293.70 -38293.17 -38295.12

(20) triplet -38293.80 -38293.27 -38295.22

(21)  quartet  -36923.62 -36923.22 -36924.84

(22) quartet -39003.95 -39003.49 -39005.21

CusOs (23)  quartet  -45288.03 -45287.46 -45289.46
(24) quartet -45678.52 -45677.90 -45680.00

(25)  quartet  -45678.44 -45677.82 -45679.93

(26) triplet -44308.28 -44307.84 -44309.48

(27)  triplet  -46388.64 -46388.14 -46389.90

CugsOs  (28) triplet -52672.57 -52671.94 -52674.04
(29)  triplet  -53063.14 -53062.48 -53064.60

(30) triplet -53062.95 -53062.28 -53064.44

(31) quartet -51693.84 -51693.29 -51695.22

(32) quartet -53773.83  -53773.23 -53775.28

Cu,0; (33 quartet -60057.68 -60056.95 -60059.33
(34) quartet -60447.96 -60447.19 -60449.65

(35) quartet -60448.09 -60447.32 -60449.7

(36) triplet -59078.62 -59078.02 -59079.99

(37)  triplet  -61159.04 -61158.39 -61160.49

CugOg  (38) triplet -67442.83 -67442.05 -67444.48
(39) triplet -67833.30 -67832.47 -67835.01

(40) triplet -67833.22 -67832.39 -67834.93
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4.2.2 Energetic Properties and Léwdin Charge Distributions

The changes of energies, enthalpies, and Gibbs energies of reactions between copper
oxide clusters and water are shown in Figure 4.2-4.9. The changes of energies, enthalpies,
and Gibbs energies of reactions between copper oxide-water clusters and phenol and
chlorinated phenols are also shown in Figure 4.2-4.9. Copper oxide clusters (CuO, Cu,0,,
Cu303, Cus0q4, and Cu;0;) with para-chlorophenol are more stable than those with ortho-
chlorophenol.

We have investigated the adsorption energies (AEs) to display the characteristics of the
energetic interactions among copper oxide clusters and organic compounds (phenol, ortho-

chlorophenol and para-chlorophenol). The calculation formula is as follows:

E, = E(Cu,0, — Organic Compounds) — (E(Cu,0,)

+ E(Organic Compounds)) (1)

Table 4.3 shows that adsorption energies of copper oxide clusters (from CuO to CusO4
and Cu;O7) with ortho-chlorophenol are higher than phenol and para-chlorophenol.
Adsorption energies of CusOs and CugOg clusters are almost same comparing phenol and
chlorinated phenols. CugOg cluster with para-chlorophenol has higher adsorption energy than
phenol and ortho-chlorophenol. It is well known ortho-chlorophenol is more stable than
para-chlorophenol because hydrogen bonding stabilization plays an important role. As well
as inductive, electrostatic repulsion, and steric effect can explain why ortho-chlorophenol is
more stable.

Therefore, we can explain why adsorption energies of copper oxide clusters with ortho -
chlorophenol are higher than phenol and para-chlorophenol because H atom of OH group of
ortho-chlorophenol is displaced to copper oxide cluster. CusOs cluster can be explained that

there is hydrogen bonding between CI atom of ortho-chlorophenol and hydrogen. It is
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interesting that CugOg and CugOg clusters have weak Cu-Cl bond (2.72A and 2.93A). These
bonds can make stabilization of copper oxide clusters with ortho-chlorophenol.

From these results, we can conclude that the Cu;O- cluster has energetically preferred
adsorption with ortho-chlorophenol. Cu;O- cluster-phenol has the highest adsorption energy

(-23.06eV).

Table 4.3: Adsorption energies (kcal/mol) in copper oxide-organic compounds clusters

Clusters Adsorption Energies(kcal/mol)
CuO - Phenol -64.94
CuO - ortho-chlorophenol -61.79
CuO - para-chlorophenol -64.75
Cu,0; — Phenol -67.54
Cu,0; - ortho-chlorophenol -64.42
Cu,0; - para-chlorophenol -67.72
Cu303 — Phenol -51.14
Cu30s3 - ortho-chlorophenol -48.26
Cu303 - para-chlorophenol -51.37
Cu404 — Phenol -64.85
Cu40q - ortho-chlorophenol -61.81
Cu404 - para-chlorophenol -65.16
CusOs — Phenol -39.58
Cus0Os - ortho-chlorophenol -40.89
CusOs - para-chlorophenol -40.07
CugOg — Phenol -36.93
CugOg - ortho-chlorophenol -40.02
CugOg - para-chlorophenol -36.63
Cu;07 — Phenol -26.52
Cu;0Oy7 - ortho-chlorophenol -23.06
Cu;0Oy5 - para-chlorophenol -27.03
CugOg — Phenol -35.17
CugOg - ortho-chlorophenol -35.92
CugOg - para-chlorophenol -35.10

The results of this study have some implications of formation of PCDD/Fs from
chlorinated phenols. First, small copper oxide clusters (from CuO-Cu404) show clearly a
significant role for an adsorption between ortho-chlorophenol and copper oxide clusters from
adsorption energies. Second, big copper oxide clusters (from CusOs and CugOg) are more
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complicate to explain the correlations between copper oxide clusters and chlorides. However,
it is clearly found that phenol and chlorinated phenols can easily make adsorption as
increasing clusters size.

We have displayed the Léwdin charge, qg(given in units of |e|) distributions® of copper
oxide clusters, copper oxide-water clusters and copper oxide-organic compound clusters.
Table 4.4 shows the charges of average copper, oxygen, hydrogen, carbon, chlorine,
adsorption site oxygen and carbon. We also calculated the charges of neutral copper oxide

clusters. (Table 3.5).

—=&— Copper Oxide-Phenol
X —&— Copper Oxide-ortho-Chlorophenol
—&— Copper Oxide-para-Chlorophenol

A
A

40 |

-50 |

AEs (kcal/mol)

-60 |-

Cluster Size

Figure 4.2: Adsorption energies (kcal/mol) in copper oxide-organic compounds clusters
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Table 4.4: Average Lowdin charge distributions of copper oxide clusters, copper oxide-
water clusters and copper oxide-organic compounds clusters

Clusters Avg. Charge Distribution
gCu ¢O qH qC qCl gqo* qC*
H,O -0.58 0.29
Phenol -0.36 017 -0.11
ortho-Chlorophenol -0.34 018 -0.12 0.12
para-Chlorophenol -0.35 019 -0.11 0.088
(1) 024 -0.24
2 023 -043 031
CuO (3) 0.13 -0.34 0.18 -0.086 -0.235 0.122
4) 0.16 -034 019 -0093 016 -0.244 0.133
(5) 0.16 -035 019 -0090 0.12 -0.249 0.123
(6) 0.26 -0.26
(7) 025 -037 031
Cu,0; (8) 019 -032 0.18 -0.084 -0.231  0.125
9) 020 -031 019 -0.092 016 -0.232 0.113

(10) 020 -032 019 -0.089 012 -0.237 0.125
(1) 023 -0.23
(12) 025 -0.34 031

Cus0; (13) 021 -031 018 -0.083 -0.241  0.129
(14) 022 -030 019 -0.091 016 -0.243 0.118
(15) 022 -030 019 -0.088 012 -0.247 0.129
(16) 017 -0.17
(17) 010 -0.25 0.32

Cu,0, (18) 012 -021 019 -0.085 -0.235  0.122
(19) 0143 -021 019 -0.093 015 -0.239 0.114
(20) 042 -021 020 -0.090 012 -0.240 0.123
(21) 018 -0.19
(22) 018 -0.26 0.32

CusOs (23) 016 -0.23 018 -0.091 -0.260  0.118
(24) 017 -023 019 -0.099 022 -0.283 0.104
(25) 048 -023 019 -0.09 010 -0.272 0.123
(26) 017 -0.17
7) 017 -024 0.32

CugOs (28) 016 -021 018 -0.089 -0.268  0.138
(29) 014 -021 019 -0.090 026 -0.282 0.130
(30) 016 -021 020 -0.092 010 -0.274 0.140
(31) 015 -0.14
(32) 011 -019 0.37

Cu;0; (33) 012 -018 020 -0.095 -0.348  0.128
(34) 012 -017 020 -010 015 -0.358 0.115
(35) 042 -020 021 -0.099 0097 -0.354 0.128
(36) 015 -0.15
(37) 013 -0.20 0.37

CugOs (38) 013 -018 019 -0.10 -0.366  0.094
(39) 012 -018 020 -010 022 -0.369 0.114
(40) 043 -018 021 -010 0087 -0.367 0.099
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Figure 4.3: Reaction pathway of CuO cluster. Copper/oxygen/carbon/hydrogen/chlorine
atoms are colored blue/red/white/black/green.
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Figure 4.4. Reaction pathway of Cu,O, cluster. Copper/oxygen/carbon/hydrogen/chlorine
atoms are colored blue/red/white/black/green.
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From these charge transfers of adsorption site oxygen, we investigated the correlation
between the reaction site and the charge distribution. We found that organic compounds are
likely to bind to the copper atom with the largest charge. For example, largest positive charge
copper atom (0.30) of three copper atoms in Cu3O3 cluster was reacted the water molecule
and would be structure (12).

Therefore, the charge transfer of the oxygen atom from the water molecule is
explanation that the copper atoms (Cu404, CusOs, and Cu;Oy7 clusters) of reaction sites with
the water molecule have large positive charges (0.24, 0.24, and 0.24 ).

The reaction sites of CugOg and CugOg clusters are not the copper atoms with the
largest positive charge because they have a very stable square structure at the bottom of
clusters. From these charge transfer of adsorption site oxygen, we investigated the correlation
between the charge distribution and the adsorption energies. For instance, the Léwdin charge
distributions of the adsorption site oxygens of copper oxide with phenol are -0.235, -0.231, -
0.241, -0.235, -0.260, -0.268, -0.348 and -0.366 |e| and the adsorption energies of copper
oxide with phenol are -64.94, -67.54, -51.14, -64.85, -39.58, -36.93, -26.52 and -35.17
kcal/mol that the charge distributions of adsorption site oxygen decrease which means there

IS negative charge transfer away from that site as adsorption energies decrease.

4.3 Conclusions

We have investigated the stabilities and reactivities of copper oxide clusters.
Reactions of the previously optimized neutral Cu,O, clusters with water and organic
compounds (phenol, ortho-chlorophenol and para-chlorophenol) were studied using ab
initio methods.

The energies, enthalpies, Gibbs free energies of copper oxide, copper oxide-water
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and copper oxide-organic compounds clusters were calculated to investigate their
reaction energetics. We also calculated bond lengths, adsorption energies and Lowdin
charge distributions.

It is known that chlorinated phenols are structurally closely related to PCDD/Fs and
thought as important for PCDD/Fs formation. We find that organic compounds (phenol
and chlorinated phenols) are likely to bind to the copper atom with the largest charge. For
Cus04 to CugOg clusters, we can predict the reaction site from charge distributions of
copper oxide clusters.

Our calculations of reaction energies indicate that generally ortho-chlorophenol
binds less stronglyto the surface of copper oxide clusters than phenol and para-
chlorophenol, which can be explained in two ways. First, H atom of OH group of ortho-
chlorophenol is displaced to copper oxide cluster. Second, weak Cu-Cl bonds can make
stabilization of copper oxide clusters with ortho-chlorophenol. The results can help an
understanding the mechanisms of the formation of PCDD/Fs from chlorinated phenols in

the copper oxide clusters.
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CHAPTER 5

CuO,, (n=1-6) CLUSTERS

Chemical reactions and bonding of metal oxide clusters have been researched over
the past thirty years due to their importance in the studies of combustion and health
hazards. Especially, copper atoms and oxygen atoms are studied because of bioinorganic
chemistry for dioxygen metabolism.**

Small clusters consisting of one copper atom and one oxygen atom atoms have been
studied experimentally>>®® and theoretically.?®">"9#%* Recently, a theoretical study of
CuOn, (m=1-6) clusters was conducted using DFT calculation.®* The purpose of our
research is to understand the structural, energetic and electronic properties of neutral,
positively and negatively charged copper oxide clusters. In neutral copper oxide clusters,

we found similar geometries with Massobrio et al.**

and the differences of total spin
states of the most stable isomers. For instance, they concluded that the spin of the most
stable isomers is quartet state when the number of oxygen atoms is odd, while it is
doublet state when this number is even. They used DFT calculation with a plane-wave
basis set and generalized gradient corrections. However, we found that CuO, CuO;, CuQ,
and CuOg clusters are most stable at doublet, quartet, quartet and quartet spin states,
respectively.

In this chapter, we used ab initio simulations and calculations to study the structures
and stabilities of copper oxide clusters, CuO, (n=1-6). The lowest energy structures of
neutral and charged copper oxide clusters were determined using primarily the

B3LYP/LANL2DZ model chemistry. All geometries of neutral, positively, and negatively

charged CuO,, clusters with n=1-6 are planar or near planar structures. Selected electronic
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properties, including binding energies, ionization energies, and electron affinities, were
calculated and examined as a function of n. Stabilities were examined by calculating

fragmentation channels and Léwdin charge distributions.

5.1 Method

5.1.1 MC Simulation and DFT Calculation

312 and

We performed ab initio Monte Carlo simulation (using Gaussian 0
homegrownscripts) to locate stable geometric structures for CuO, clusters with n=1-6.
The simulations used multiple starting geometries for each cluster size. The temperature

was decreased from 2000K to 300K for up to 300MC steps.
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Figure 5.1: Monte Carlo simulation of CuO, cluster. Copper/oxygen atoms are colored
white/black.

69



To calculate the total energy at each MC step, we used Gaussian 03 program™? with
B3LYP (Becke’s 3-parameter exchange functional with Lee-Yang-Parr correlation energy
functional)'*"**3" and 6-31G** basis set"™™® but all configurations of each MC step
were not optimized. About 300 MC steps were needed to reach the equilibrium state. The
Monte Carlo simulations of CuQ4 cluster are shown in Figure 5.1. We generate initial
structure: O atom is attached optimized CuOj3 cluster. We performed 300 MC steps to find
the local energy of CuQy, cluster.

These geometries were optimized using standard ab initio methods using the
GAMESS™ quantum chemistry package. The smaller clusters were then used as starting
points to look for the global minimum geometries for larger clusters where the Monte
Carlo procedure was not practical. We used the B3LYP (Becke’s 3-parameter exchange

107,113,114

functional with Lee-Yang-Parr correlation energy functional) version of DFT

with LANL2DZ basis set.

5.2 Results

5.2.1 Geometric Structures

The optimized structures, bond lengths, angles and Léwdin charge distributions of
neutral, positively and negatively charged CuO, clusters with n=1-6 are shown in Figure
5.1-3. The low-lying spin states (i.e., singlet, doublet, triplet, and quartet) of a given
cluster were considered in the calculations.

In single copper oxides clusters, all neutral, positively and negatively charged
optimized structures are planar or near planar. Theoretical values of Cu-O calculated with
different methods, along with the experimental values, are also included for comparison

in Table 5.2. Our calculated values of bond length (1.81A), dissociation energy (2.44eV)
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and electron affinity (1.35 eV) are in agreement with experimental data (1.72 A, 2.79 eV
and 1.78eV).2% Massobrio et al.** found the most stable CuO cluster at quartet spin state;
however, our result is that the doublet spin state CuO cluster is more stable than the

quartet spin state CuO cluster.
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Figure 5.1: Optimized structures, bond lengths, angles and Léwdin charge distributions

(parenthesis) of neutral CuO, clusters with n=1-6. Copper/oxygen atoms are colored
white/black.
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Figure 5.2: Optimized structures, bond lengths, angles and Léwdin charge distributions
(parenthesis) of positive charged CuO, clusters with n=1-6. Copper/oxygen atoms are
colored white/black.
The bond length (1.81A) of neutral Cu-O in CuO cluster is longer than that of
charged clusters (1.76A and 1.74A). Charged CuO cluster is formed by removing or

entering an electron from an oxygen 2pz orbital which is weakly antibonding. The spin
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states of optimized structures are doublet, singlet and singlet at neutral, positively and
negatively charged clusters, respectively. The experimental bond length of CuO™ (singlet
state)®® is 1.67 A, which is shorter than ours (1.74 A).

Three isomers of CuO, clusters have been proposed®: OCuO, CuOO bent, and CuO,
side-on in doublet and quartet spin states. They found OCuO linear cluster is most stable
at doublet spin state. According to our results, the lowest structure of CuO; is similar to
the Massobrio et al. calculation, but quartet spin state neutral CuO, cluster is more stable
than doublet spin state cluster. Bond lengths are also different: our calculation is 1.81A
and that of Massobrio et al.** is 1.73A. The lowest structure of positive charge CuO,
cluster is CuO; side-on at triplet spin state. The lowest structure of negatively charged
CuO; cluster is OCuO linear cluster at triplet state. The bond length of positively charged

CuO; cluster (2.01A) is longer than neutral (1.81A) and negatively charged clusters

(1.79A).
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Figure 5.3 Optimized structures, bond lengths, angels and Léwdin charge distributions

(parenthesis) of negative charged CuO, clusters with n=1-6. Copper/oxygen atoms are
colored white/black.

Two isomers of CuOs clusters have been proposed®: CuOs, ozonide and OCuO; in
their quartet and doublet spin states. OCuO, cluster is found to be most stable at quartet

spin state, which is in good agreement with our results. Our calculated bond lengths
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(average 1.92A) of Cu-O of neutral CuOjs clusters are longer than those of our negatively
charged cluster (average 1.82A) and the Massobrio et al. neutral result (average 1.83A).
The lowest structure of positively charged CuOj; clusters is not OCuO, but CuO3 ozonide
at singlet spin state. The lowest structure of negatively charged CuOs cluster is OCuO, at
single spin state. The angle of O-Cu-O of negatively charged CuOs cluster (45°) is larger

than our neutral CuOs cluster (41°) and that of Massobrio et al. (42°).

Table 5.1: Spin states, ionization potential (eV), electron affinities (eV) and binding
energy of CuO, (n=1-6) clusters.

Spin

state IP EA Ep
CuO | doublet

CuO  CuO" | singlet 1225  1.35 1.22
CuO" | singlet

CuO; | quartet

CuO,  CuO," | triplet  7.56 3.38 1.45
CuO, | triplet
CuO3 | quartet

CuOs  cuos* | singlet 9.85 247 178
CuOg3 | singlet
CuO4 | quartet

CuOs  cuO," | triplet 1032  3.07  2.00
CuQ4 | triplet
CuOs | quartet

CuOs CuOs" | triplet  9.89 2.60 1.98
CuOs | triplet
CuOg | quartet

CuOs CuOg" | singlet 10.89  3.70 1.91
CuQg™ | triplet

We have proposed optimized neutral, positively and negatively charged CuO, clusters;
the geometry corresponds to two CuO, side-on units sharing a common Cu atom.
Massobrio et al. have proposed five CuOy clusters (doublet and quartet spin states), of
which the most stable CuQ, cluster has the same geometry as ours. However, spin state is

different from ours. Our calculation is quartet spin state of lowest CuQ, cluster and the
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Massobrio et al. calculation is doublet state of lowest CuO, cluster. The lowest structure

of positively charged CuOy cluster is similar to neutral CuO, cluster. Two Cu-O bonds of
four Cu-O bonds in negatively charged CuO, cluster are broken. The Cu-O bond length

of positively charged CuO, cluster (average 1.99A) is longer than the bond lengths of our
neutral (average 1.96A) and negatively charged (average 1.88A) clusters and Massobrio

et al. CuQ, calculations (average 1.87A).

Table 5.2: The calculated values of bond length (Re in angstrom), dissociation energy (De in

eV), the frequency (o in cm-1) and electron affinity (EA in eV) of CuO are compared with
experimental values.

Re(A) De(eV) w(cm™) EA(eV) Method

1.72 2.79 640 1.78 Exp®
1.76 587 DFT"
1.74 DFT*
1.81 2.44 571 1.35 ours

Neutral CuOs cluster is highly symmetrical and yields similar compact planar
arrangements for quartet spin state. This structure consists of one ozonide Cu(O3) and
one Cu(O,) side-on unit. Bond Cu-O bond lengths of our neutral CuOs calculation are
2.03A and 2.04A at Cu(O3) and Cu(O,) side-on unit, respectively. Massobrio et al.
suggested the same geometry: bond lengths of Cu-O are 1.97A and 1.98A at Cu(Os) and
Cu(O,) side-on units.** We found that the Cu-O bond lengths of the neutral CuOs cluster
(average 2.03A) are longer than those of our charged clusters (CuOs": average 1.96A,
CuOs": average 1.90) and of the Massobrio et al. CuOs clusters calculations (average
1.98A). At the lowest structures of positively charged CuOs cluster, one of the Cu-O
bonds at Cu(Os) side-on unit is broken. At the lowest structures of negatively charged
CuOs cluster, one of the Cu-O bonds at Cu(O3) and Cu(O,) side-on unit is broken.

Neutral CuOg cluster is planar and consists of two Cu(Os) units. We have suggested

that the lowest energy of neutral, positively and negatively charged CuOg clusters at
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quartet, singlet and triplet spin states are more stable. However, Massobrio et al.
suggested that the doublet spin state of neutral CuOg cluster is more stable. In the lowest
structures of charged CuOg clusters, two CuO bonds are broken, each in a Cu(Os3) unit.
The positively and negatively charged CuOg clusters have lowest energy at singlet and
triplet spin states. The Cu-O bond lengths of our neutral CuOg cluster (average 2.01A)
are longer than those of our charged clusters (CuOs": average 1.94A, CuOg: average

1.92A) and the Massobrio et al. calculations (average 1.97A).

Binding Energy/total atom numbers (eV)

1.0 |-

1 L | i | 1 | L | L |
1 2 3 4 5 6
Cluster Size, n

Figure 5.4: Binding energies of neutral CuO, clusters with n=1-6.

5.2.2 Binding Energies and Second Difference Energies

The binding energies of CuO, (n=1-6) clusters are shown in Figure 5.4. The

definitions of binding energies of single copper oxide clusters are expressed as
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Eb=

[ E(Cu) + n E(0) — E(Cu0,)]/(total atom number) @)

with the triplet state of an oxygen atom.

The CuOq cluster has exhibited local maxima (2.00eV) of binding energies; it has the
highest stability and is often used to identify so-called “magic clusters.” We define the
energy variation in the formula as A%E(n) = [E(n+1) — E(n)] - [E(n) — E(n-1)], which is
the second difference of total energies for CuO, (n=1-6) clusters. The special stability of
CuQq cluster can be seen from the second difference energies of Figure 5.5, which also
shows a peak CuQ, cluster. CuOs and CuOg clusters in single copper oxide clusters are

CuOy clusters solvated by O and O, molecules.

1.0 |
L
05 |-
[ |
0.0 |-
= "

-0.5 |-
[ |

1.0
1 1 | 1 |
2 3 4 5

Cluster Size, n

Figure 5.5: Second difference of the energy of CuO,, clusters with n=1-6
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5.2.3 lonization Potential and Electron Affinities
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Figure 5.6 Calculated adiabatic ionization potential (IP) and electron affinities (EA) of

CuOy, clusters with n=1-6

Figure 5.6 represents adiabatic ionization potential (IP(Xn)=E(X,")-E(X,)) and

electron affinities (EA(Xn)=E(X,)-E(X;). [Ps and EAs have been calculated taking the

lowest structural energies, which are adiabatic energies. Generally, the IPs and EAs are

oscillating for n odd (even); we obtain that IP increases (decreases). In this case, IPs are

showing a stabilization for n=3-5 while EAs are oscillating. They had experimented with

the magnetic-bottle time-of-flight (MTOF) photoelectron spectrometer for CuOy (x=0-

6).”® They had investigated the electron affinities, and we can compare their results with

ours. It is interesting that the geometries are different for CuOs and CuOg clusters. They
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suggested (O-Cu)(O,), for CuOs cluster and CuO,(0O,), for CuQOg cluster. Our calculated
EAs, are 1.35eV (1.78eV), 3.38eV (3.47eV), 2.47eV (3.53eV), and 3.07eV (3.09eV) for
CuO, Cu0,, CuO3 and CuQsy, respectively. The parentheses show experimental data. The

calculated EAs of CuO, and CuOQy clusters are in good agreement with experimental data.

5.2.4 HOMO-LUMO Gaps and Fragmentation Channels

40 |

e
n
1

Gap (HOMO-LUMO) (eV)

Cluster Size. n

Figure 5.7 Calculated HOMO-LUMO gap of neutral CuO, clusters with n=1-6

The calculated HOMO-LUMO gaps of neutral CuO, (n=1-6) clusters are shown in
Figure 5.7. The gaps are very sensitive to correlated effects due to the cluster geometry.

Among neutral clusters, CuOs cluster has the smallest HOMO-LUMO gap of 2.04eV and
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CuOs cluster has the largest HOMO-LUMO gap, 3.46eV. It is interesting that HOMO-
LUMO gaps are increased from CuO3 to CuOy rapidly.

The HOMO-LUMO gap is considered to be an important parameter in terms of the
chemical stability of clusters: a large energy gap corresponds to larger reactivity stability. The
large HOMO-LUMO gaps are found at n=4, 5, and 6. Therefore, we know CuQ, cluster has
particularly stability from second difference energies and HOMO-LUMO gaps. In fact, the
second different energies reflect thermodynamic stability and the HOMO-LUMO gaps show
potential chemical reactivity; they have no direct relationship. For example, CuOy4 has large
second difference energy; however, it has a relatively small HOMO-LUMO gap. The

calculated HOMO-LUMO gaps for neutral CuO, (n=1-6) clusters are shown in figure 5.7.

Table 5.3: Fragmentation channels of CuO, clusters with n=1-6

CuO, (n=1-6)

En+m — En+ En AE (kcal/mol)
CuO—-Cu+0O 56.18
CuO; — Cu+ O 9.80
— CuO0O+0 44.25
CuO3 ->Cu+0,+0 73.82
— CuO + O, 17.64
— CuO,+ 0O 64.03
CuO; - Cu+ 02+ 0, 48.89
— CuO0+0,+0 83.34
— CuO,+ O, 39.09
— CuO3+ O 65.70
CuOs - Cu+0,+0,+0 93.13
— CuO0+0,+ 0, 36.96
— CuO,+ 02+ 0 83.34
— CuO3z+ 0O, 19.31
— CuO, O 44.24
CuOg —>Cu+ 0+ 0+ 09 36.38
— Cu0+0,+0,+0 70.83
— CuO,+ 0, + Oy 26.58
— CuO3+0,+ 0 53.19
— CuO4+ 0O, -12.51
— CuO5+ 0O 33.87

79



The fragmentation energy of CuOg in becoming CuO, + O, is the lowest value (-
12.51 kcal/mol), which we would like to emphasize as the most favorable pathway to
break the clusters. CuO,, CuOs, CuO4, CuOs and CuOg can dissociate into Cu+ Oy, CuO
+ Oy, CuO,+ Oy, CuO3 + O, and CuO4 + Oy, respectively. From CuO, to CuOg clusters,

their fragmentation products contain an O, molecule.

5.2.5 Lowdin Charge Distributions

The calculations of Léwdin charge distributions® of Cu and O are shown Figure 5.1-
5.3

Lowdin charges of the Cu atoms are 0.24 |e| for CuO, -0.0013 |e| for CuO,, 0.050 |e|
for CuOg, 0.13 |e| for CuQy, 0.16 |e| for CuOs, and 0.19 |e| for CuOg in neutral clusters.
Average Léwdin charges of the O atoms are -0.24 |e| for CuO, 0.0007 |e|] for CuO,, -0.020
le| for CuQg, -0.032 |e| for CuQy, -0.054 |e| for CuOs, and -0.030 |e| for CuQOg in neutral
clusters.

Lowdin charges of the Cu atoms are 0.95 |e| for CuO, 0.71 |e| for CuO,, 0.62 |e| for
CuOg3, 0.39 |e| for CuQy, 0.33 |e| for CuOs, and 0.26 |e| for CuOg in positive charged
clusters. Average Lowdin charges of the O atoms are 0.048 |e| for CuO, 0.15 |e| for CuOs,
0.16 |e| for CuOg, 0.16 |e| for CuQy, 0.20 |e| for CuOs, and 0.12 |e| for CuOg in positive
charged clusters.

Lowdin charges of the Cu atoms are -0.53 |e| for CuO, -0.54 |e| for CuOy, -0.25 |e| for
CuQg, -0.11 |e| for CuQy, -0.052 |e| for CuOs, and -0.12 |e| for CuOg in positive charged
clusters. Average Lowdin charges of the O atoms are -0.47 |e| for CuO, -0.23 |e| for CuO,,
-0.25 |e| for CuQg, -0.22 |e| for CuQy, -0.19 |e| for CuOs, and -0.15 |e| for CuOg in positive

charged clusters.
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5.2.6 Calculated Single Copper Oxide Reactions

Calculated energies for reactions of single copper with oxygens are shown in Table
5.4. The energy of the Cu + 20, reaction to form CuOy is the lowest value (-48.89
kcal/mol). We have also calculated the fragmentation energies of (CuO), n=1-6 clusters
for various dissociation pathways in Table 5.3 In single copper oxide clusters, the most
favorable pathways of CuO,, (n=1, 3, and 5) and (n=2, 4, and 6), usually contain pure

copper and CuO cluster, respectively.

Table 5.4: Calculated energies (in kcal/mol) for reactions between single copper and
oxygen

Reaction (kligle/:ggl)
Cu + 1/20, — CuO -10.86
Cu + O, — Cu0O, -9.80
Cu + 3/20, — CuOs -28.51
Cu + 20, — CuOq4 -48.89
Cu + 5/20; — CuOs -47.82
Cu + 30, — CuOs -36.38

5.3 Conclusions

We have investigated the structural and electronic properties of single copper oxide
clusters using density functional calculation. We found the lowest energy structures are
plane or near plane for all neutral, positive and negative single copper oxide clusters.

We have compared our results with those of Massobrio et al. and concluded that we
have similar geometries in neutral single copper oxide clusters, but the spin states of the

lowest energy structures are different (neutral CuO, CuO,, CuO,4 and CuOg clusters). The
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spin states of our simulations are all quartet spin states except CuO cluster (doublet spin
state). The spin states found in the Massobrio et al. results are doublet spin states of even
number oxygen clusters and quartet spin states of odd number oxygen clusters.
From binding energies and second difference energies, we confirmed that CuQ,
cluster has the highest stability and is often used to identify so-called “magic clusters.”
The fragmentation energy of CuOg in becoming CuO4 + O, is the lowest value (-
12.51 kcal/mol), which we would like to emphasize as the most favorable pathway to

break the clusters.
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CHAPTER 6

CONCLUDING REMARKS

Nanoparticles are formed largely by combustion sources as primary PM emissions.
Nanoparticles are not efficient captured by air control devices, are transported long
distance and penetrate deep into the respiratory system. In combustion systems,
nanoparticles are mixtures of organic and inorganic compounds and include a number of
transition metals (iron or copper). The production of these transition metal-organic
complexes results in lung injury, inflammation, alterations in pulmonary host defense and
DNA damage.

Polychlorinated dibenzo-p-dioxins and polychlorinated furans (PCDD/F or dioxin)
are the most toxic known environmental pollutants. PCDD/Fs formations can be
explained that transition metal oxides and chlorides play a significant role. Therefore, we
have performed a detailed study of copper oxide clusters and their reactions with phenol
and chlorinated phenols.

We have studied small copper oxide clusters using ab initio Monte Carlo
simulations. These copper oxide clusters were then optimized using standard ab initio
methods using GAMESS quantum chemistry package. We used the B3LYP version of
DFT in combination with the LANL2DZ basis set. Comparison with existing
experimental work demonstrated that the LANL2DZ basis set is in best agreement.

In our studies of copper oxide clusters, we have particularly emphasized several
aspects: 1) geometric structures, 2) binding energies and second different energies, 3)
ionization potential and electron affinities, 4) HOMO-LUMO gaps, and 5) Lowdin

charge distributions.
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In CunOy, clusters with n=1-8, a transition from planar to nonplanar geometries occurs
at n=4. The negatively charged Cu,4O, cluster is a planar structure. Atomization energies
and second difference energies show that CusOs cluster has highest stability. We find that
odd numbered copper oxide clusters have higher stabilities than even numbered copper
oxide clusters, which can be explained in two ways. First, the Cu-O-Cu angles are
relatively close to tetrahedral values and correlate reasonably well with second difference
energy. Second, small rings lead to ring strain and a loss of stability. The even numbered
clusters have small rings (3- and 4-membered) and the odd numbered clusters have large
rings (6- and 7 membered). Therefore, we expect that odd numbered copper oxide
clusters (CugQOg, Cup1041...) will be most stable.

lonization potentials have some oscillations with cluster size, as these are typical for
clusters. The lowest fragmentation energy of CugOg cluster (dissociation to CusOs + CuO)
is, we would like to emphasize, the most favorable pathway to break the cluster. We also
expect that bigger copper oxide clusters than CugOg cluster would dissociate to contain a
CuO cluster as small copper oxide clusters. (From CuO to CugOg clusters)

We have investigated the stabilities and reactivities of copper oxide clusters.
Reactions of the previously optimized neutral Cu,O, clusters with water and organic
compounds (phenol, ortho-chlorophenol and para-chlorophenol) were studied using ab
initio methods.

The energies, enthalpies, Gibbs free energies of copper oxide, copper oxide-water
and copper oxide-organic compounds clusters were calculated to investigate their
reaction energetics. We also calculated bond lengths, adsorption energies and Lowdin
charge distributions.

We find that organic compounds (phenol and chlorinated phenols) are likely to bind

to the copper atom with the largest charge. For Cu,O4 to CugOg clusters, we can predict
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the reaction site from charge distributions of copper oxide clusters.

Our calculations of reaction energies indicate that generally ortho-chlorophenol
binds less strongly to the surface of copper oxide clusters than phenol and para-
chlorophenol, which can be explained in two ways. First, H atom of OH group of ortho-
chlorophenol is displaced to copper oxide cluster. Second, weak Cu-Cl bonds can make
stabilization of copper oxide clusters with ortho-chlorophenol.

The results can help an understanding the mechanisms of the formation of PCDD/Fs
from chlorinated phenols in the copper oxide clusters.

We have also investigated the structural and electronic properties of single copper
oxide clusters (CuO, n=1-6) using density functional calculation. We found the lowest
energy structures are plane or near plane for all neutral, positively and negatively single
copper oxide clusters.

The spin states of our simulations are all quartet spin states except CuO cluster
(doublet spin state). We have compared our results with those of Massobrio et al. and
concluded that we have similar geometrics in neutral single copper oxide clusters, but the
spin states of the lowest energy structures are different (neutral CuO, CuO,, CuO, and
CuOg clusters). The spin states of our simulations are all quartet spin states except CuO
cluster (doublet spin state). The spin states found by Massobrio et al. are doublet spin
states of even number oxygen clusters and quartet spin states of odd number oxygen
clusters.

From binding energies and second difference energies, we confirmed that CuQ,
cluster has the highest stability and is often used to identify so-called “magic clusters.”

The fragmentation energy of CuOg in becoming CuO,4 + O; is the lowest value (-
12.51 kcal/mol), which we would like to emphasize as the most favorable pathway to

break the clusters.
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APPENDIX B
MONTE CARLO SIMULATION CODE

#Gaussian Script

#!/bin/tcsh
#PBS -A cct_cuo 01
#PBS -q workq
# the queue to be used. "small" is the only queue available at present.
#PBS -l nodes=4:ppn=2
#PBS -1 cput=120:00:00
# requested CPU time.
#PBS -l walltime=120:00:00
# requested Wall-clock time.
#PBS -o output-file
# name of the standard out file to be "output-file".
#PBS -j oe
# standard error output merge to the standard output file.
#PBS -N cu6o6_17
# name of the job (that will appear on executing the gstat command) to be "syschk™.
#
set NPROCS="wc -1 $PBS_NODEFILE |gawk '//{print $1}"
setenv g03root /usr/local/packages
setenv GAUSS_SCRDIR /var/scratch/
source $03root/g03/bsd/g03.login
set NODELIST = (-vv -nodelist """ “cat $PBS_NODEFILE" "" -mp 2)
setenv GAUSS LFLAGS " $NODELIST "
#move to directory with input file
cd ~gbae/mc/
# Change this line to reflect your input file and output file
set NATOMS =12 #atom number
set NPASSES = 300
set PASS =0
mc_gaussian_setup_initial
g03l < g03mc.inp > g03mc.out
grep "SCF Done:" g03mc.out>en_initial.out
mc_recover_energy_initial
mvV mc_recover_energy.out initial_energy.out
while ($PASS < $NPASSES)
echo $PASS > npasses
set ATOM =0
while (SATOM < $SNATOMS)
echo $ATOM > current_atom.pos
mC_propose_move
mC_gaussian_setup
g03l < g03mc.inp > g03mc.out
grep "SCF Done:" g03mc.out>en.out
MC_recover_energy
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mc_decide
@ ATOM ++
end
cat current_coordinates.pos >> trajectory
cat initial_energy.out >> potential
cat en.out >> newenergy
cat tstar >> alltstar
@ PASS ++
end
# executes the executable.
rm $GAUSS_SCRDIR/*
#Removes the scratch files
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c

22

23

mc_decide

dimension r(3,1000)
character*2 atom_name(1000)
character*8 com
real*8 newenergy,inienergy,tstar,tlstar,t2star
open(unit=1,file="random’,status="old")
read(1,*) ix
read(1,*) iy
read(1,*) iz
read(1,*) ia
read(1,*) itrial
read(1,*) iaccep
read(1,*) tlstar
read(1,*) t2star
read(1,*) nmc
close(1)
open(unit=1,file="npasses’,status="old")
read(1,*) npasses
close(1)
npasses=npasses+1
tstar=t1star+((npasses-1.d0)/(nmc-1.d0))*(t2star-t1star)
open(unit=3,file="tstar',status="unknown")
write(3,*) tstar
itrial=itrial+1
open(unit=1,file="mc_recover_energy.out',status="old")
read(1,22) newenergy
format(e20.10)
close(1)
open(unit=2,file="initial_energy.out',status="old")
read(2,23) inienergy
pot=inienergy
format(e20.10)
close(2)
trans=-(newenergy-inienergy)/tstar
if(trans .ge. log(unirand(ia))) then
laccep=iaccep+1
open(unit=3,file="new_coordinates.pos',status="old")
open(unit=4,file="current_coordinates.pos',status="old")
read(3,*) natoms
write(4,*) natoms
read(3,*) com
write(4,*) com
do k1=1,natoms
read(3,*) atom_name(k1),r(1,k1),r(2,k1),r(3,k1)
write(4,*) atom_name(k1),r(1,k1),r(2,k1),r(3,k1)
enddo
close(3)
close(4)
pot=newenergy
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endif
open(unit=2,file="initial_energy.out',status="unknown’)
write(2,*) pot
open(unit=1,file="random’,status="unknown’)
write(1,*) ix

write(1,*) iy

write(1,*) iz

write(1,*) ia

write(1,*) itrial

write(1,*) iaccep

write(1,*) tlstar

write(1,*) t2star

write(1,*) nmc

stop

end

real*4 function unirand(ix)

if(ix .le. 0) ix=1333
1ly=ix*54891
if(iy) 5,6,6

5 1y=iy+2147483647+1

6 y=iy
IX=ly
unirand=y*.4656613e-9
return
end
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C mc_gaussian_setup

dimension r(3,1000)
character*2 atom_name(1000)
character*8 com
open(unit=1,file="new_coordinates.pos',status="old")
read(1,*) natoms
read(1,*) com
do k1=1,natoms
read(1,*) atom_name(k1),r(1,k1),r(2,k1),r(3,k1)
enddo
close(1)
open(unit=2,file="g03mc.inp’',status="unknown’)
write(2,*) '%chk=/panasas/scratch/gbae/cu6o6_17.chk’
write(2,*) '%NProcLinda=4"'
write(2,*) '%NProcShared=2"
write(2,*) "
write(2,*) '#b3lyp/6-31g** geom=coord guess=read’
write(2,*) "
write(2,*) 'title’
write(2,*) "
write(2,*) '0 1'
do k2=1,natoms

write(2,*) atom_name(k2),r(1,k2),r(2,k2),r(3,k2)
enddo
write(2,*) "
stop
end
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¢ mc_gaussian_setup_initial

dimension r(3,1000)
character*2 atom_name(1000)
character*8 com
open(unit=1,file="current_coordinates.pos',status="old")
read(1,*) natoms
read(1,*) com
do k1=1,natoms
read(1,*) atom_name(k1),r(1,k1),r(2,k1),r(3,k1)
enddo
close(1)
open(unit=2,file="g03mc.inp’',status="unknown’)
write(2,*) '%chk=/panasas/scratch/gbae/cu6o6_17.chk’
write(2,*) '%NProcLinda=4"'
write(2,*) '%NProcShared=2"
write(2,*) "
write(2,*) #b3lyp/6-31g** geom=coord'
write(2,*) "
write(2,*) 'title’
write(2,*) "
write(2,*) '0 1'
do k2=1,natoms

write(2,*) atom_name(k2),r(1,k2),r(2,k2),r(3,k2)
enddo
write(2,*) "
stop
end
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C mC_propose_move
dimension r(3,1000)
character*2 atom_name(1000)
character*8 com
open(unit=1,file="random’,status="old")
read(1,*) ix
read(1,*) iy
read(1,*) iz
read(1,*) ia
read(1,*) itrial
read(1,*) iaccep
read(1,*) tlstar
read(1,*) t2star
read(1,*) nmc
close(1)
open(unit=1,file="current_coordinates.pos',status="old")
read(1,*) natoms
read(1,*) com
do k1=1,natoms
read(1,*) atom_name(k1),r(1,k1),r(2,k1),r(3,k1)
enddo
close(1)
open(unit=2,file="current_atom.pos',status="old")
read(2,*) k1
kl=k1+1
delr=0.2d0
dx=2.d0*delr*(unirand(ix)-0.5d0)
dy=2.d0*delr*(unirand(iy)-0.5d0)
dz=2.d0*delr*(unirand(iz)-0.5d0)
r(1,k1)=r(1,k1)+dx
r(2,k1)=r(2,k1)+dy
r(3,k1)=r(3,k1)+dz
open(unit=1,file="random’,status="unknown’)
write(1,*) ix
write(1,*) iy
write(1,*) iz
write(1,*) ia
write(1,*) itrial
write(1,*) iaccep
write(1,*) tlstar
write(1,*) t2star
write(1,*) nmc
open(unit=3,file="new_coordinates.pos',status="unknown")
write(3,*) natoms
write(3,*) com
do k2=1,natoms
write(3,*) atom_name(k2),r(1,k2),r(2,k2),r(3,k2)
enddo
stop
end
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real*4 function unirand(ix)

if(ix .le. 0) ix=1333
Iy=ix*54891
if(iy) 5,6,6

5 iy=iy+2147483647+1

6 y=iy
iIX=iy
unirand=y*.4656613e-9
return
end
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C MC_recover_energy

real*8 b
character*28 a
open(unit=1,file="en.out',status="old")
read (1,22) a,b

22  format(a27,e20.10)
close(1)
open(unit=2,file="mc_recover_energy.out',status="unknown’)
write(2,*) b
close(2)
stop
end

c mc_recover_energy_initial

real*8 b

character*28 a
open(unit=1,file="en_initial.out',status="old")
read (1,22) a,b

22  format(a27,e20.20)
close(1)
open(unit=2,file="mc_recover_energy.out',status="unknown’)
write(2,*) b
close(2)
stop
end
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