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Abstract

With the advance of data acquisition techniques, massive solid geometries are being

collected routinely in scientific tasks, these complex and unstructured data need to

be effectively correlated for various processing and analysis. Volumetric mapping

solves bijective low-distortion correspondence between/among 3D geometric data,

and can serve as an important preprocessing step in many tasks in compute-aided

design and analysis, industrial manufacturing, medical image analysis, to name a

few. This dissertation studied two important volumetric mapping problems: the

mapping of heterogeneous volumes (with nonuniform inner structures/layers) and

the mapping of sequential dynamic volumes.

To effectively handle heterogeneous volumes, first, we studied the feature-aligned

harmonic volumetric mapping. Compared to previous harmonic mapping, it sup-

ports the point, curve, and iso-surface alignment, which are important low-dimensional

structures in heterogeneous volumetric data. Second, we proposed a biharmonic

model for volumetric mapping. Unlike the conventional harmonic volumetric map-

ping that only supports positional continuity on the boundary, this new model

allows us to have higher order continuity C1 along the boundary surface. This

suggests a potential model to solve the volumetric mapping of complex and big

geometries through divide-and-conquer.

We also studied the medical applications of our volumetric mapping in lung

tumor respiratory motion modeling. We were building an effective digital plat-

form for lung tumor radiotherapy based on effective volumetric CT/MRI image

matching and analysis. We developed and integrated in this platform a set of geo-

metric/image processing techniques including advanced image segmentation, finite

element meshing, volumetric registration and interpolation. The lung organ/tumor

xii



and surrounding tissues are treated as a heterogeneous region and a dynamic 4D

registration framework is developed for lung tumor motion modeling and tracking.

Compared to the previous 3D pairwise registration, our new 4D parameterization

model leads to a significantly improved registration accuracy. The constructed de-

forming model can hence approximate the deformation of the tissues and tumor.

xiii



Chapter 1
Introduction

1.1 Heterogeneous Volumetric Data Mapping

During the past decades, proliferation of 3D digital photographic/scanning devices

and shape modeling techniques boosts the number of available high quality 3D

geometric digital data. Massive volumetric models with many multiple attributes

and complex geometry are collected and need to be processed.

Computing lowly distorted volumetric mapping is a powerful tool for processing

the volumetric data because it provides one-to-one correspondence between two

given objects. It serves as an important preprocessing step in many tasks in broad

areas of computer-aided design and analysis, industrial manufacturing, medical

image analysis, and etc. Therefore it becomes an important geometric problem in

computer graphics and visualization.

Compared to the boundary surface data, solid volumetric data have richer con-

tents which include material, intensity, or any other structural information. Effec-

tive volumetric parameterization is critical to process such data that have both

boundary geometry and interior structure. But due to the much more complicated

topological and geometric structures of 3-dimensional manifolds, existing volumet-

ric mapping techniques are still inadequate.

In this work, we first propose an adaptive method to compute the feature-aligned

harmonic volumetric mapping between two given volumetric data. Compared to the

previous harmonic mapping, it supports three different type feature alignments:

feature point, feature curves and iso-surface. Thus it can handle heterogeneous

volumetric data mapping.
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Since the complexity and the size of the volumetric data increasing rapidly, we

like to solve the model by a divide-and-conquer way, which partitions the problem

into solvable sub-domains. Then the continuity along the segmentation boundary

interfaces becomes an issue since harmonic mapping only allows C0 continuity. We

further propose a biharmonic model for cross-object volumetric mapping which

can provide C1 continuity along the boundary surface. Therefore compared to the

harmonic volumetric mapping, it is more suitable for the geometric models with

complex geometry or heterogeneous interior structures.

1.2 Volumetric Data Matching for Medical

Image Analysis and Radiotherapy

Optimization

Lung cancer treatment is an important and challenging issue in the medical ra-

diation therapy. Plans of radiotherapy treatments are developed based on static

computed tomography (CT) images, while treatment is performed in moving or-

gans due to respiration. This leads to a lack of precise knowledge of the actual

position of the tumor and internal organs during treatment makes the calculation

of actual dose absorbed by the lungs and surrounding tissues unknown. This will

potentially cause some undesired damages to the around important organs.

The ideal radiotherapy guidance requires complete spatiotemporal knowledge of

the movement and deformation of the volume–the region that includes the solid

tumor and surrounding tissues and organs (lung) –to be treated. In this work, we

model the lung and the inside tumor as heterogeneous volumetric data and take

several lung/tumor objects in different time. Then we compute the volumetric

mapping between these heterogeneous lung/tumor data.

More specifically, given a time sequence of 3D CT lung tumor images, we pro-

pose a computational framework for modeling of respiratory motion of the lung
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tumor and its surrounding volumes. We build up a 4D parametric representation

for the deforming volumetric region, so that their movement can be tracked, an-

alyzed, modeled, and then predicted. Therefore the computational infrastructure

can provide an accurate guidance for lung tumor radiotherapy treatment planning

and delivery.

1.3 Overview and Contributions

Figure 1.1 illustrates the conceptual hierarchy of my research. First we develop

some volumetric mapping algorithms suitable for the heterogeneous volumetric

data which is the most common data used in our surrounding physical world.

These algorithms can be applied into various applications: texture mapping, hex-

remeshing, etc. However, in this dissertation, we will focus on the most challenging

application: lung cancer treatment in the radiotherapy management and treatment.

First, we present an efficient adaptive method to compute the harmonic volu-

metric mapping, which establishes a smooth correspondence between two given

solid objects of the same topology. We solve a sequence of charge systems based

on the harmonic function theory and the method of fundamental solutions (MFS)

for designing the map with boundary and feature constraints. Compared to the

previous harmonic volumetric mapping computation using MFS, this new scheme

is more efficient and accurate, and can support feature alignment and adaptive re-

finement. Our harmonic volumetric mapping paradigm is therefore more effective

for practical shape modeling applications and can handle heterogeneous volumetric

data. We demonstrate the efficacy of this new framework on handling volumetric

data with heterogeneous structure and nontrivial topological types.

Second, we propose a biharmonic model for cross-object volumetric mapping.

This new computational model aims to facilitate the mapping of solid models with
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FIGURE 1.1. Hierarchy of this dissertation research: volumetric mapping research (upper
row), and their applications (bottom row).

complicated geometry or heterogeneous inner structures. In order to solve cross-

shape mapping through divide-and-conquer, solid models can be decomposed into

sub-parts upon which mapping is computed individually. The biharmonic volumet-

ric mapping can be performed in each sub-region separately. Unlike the widely-used

harmonic mapping which only allows C0 continuity along the segmentation bound-

ary interfaces, this biharmonic model can provide C1 smoothness. We demonstrate

the efficacy of our mapping framework on various geometric models with complex

geometry (which are decomposed into subparts with simpler and solvable geom-
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etry) or heterogeneous interior structures (whose different material layers can be

segmented and processed separately).

Third, we propose a computational framework for modeling the respiratory mo-

tion of lung tumors based on the biharmonic volumetric mapping. It provides a 4D

parametric representation that tracks, analyzes, and models movement to provide

more accurate guidance in the planning and delivery of lung tumor radiotherapy.

Last, we present an 4D image registration algorithm for lung tumor volume

images. The registration will construct a deforming 3D model with continuous tra-

jectory and smooth spatial deformation, and the model interpolates the interested

region in the 4D (3D+T) CT images. The resultant non-rigid transformation is

represented using two 4D B-spline functions, indicating a forward and an inverse

4D parameterization respectively. The registration process solves these two func-

tions by minimizing an objective function that penalizes intensity matching error,

feature alignment error, spatial and temporal non-smoothness, and inverse incon-

sistency. We apply this algorithm for respiratory motion estimation in clinic lung

CT data. The experimental results demonstrate the efficacy of the algorithm.

1.4 Organization

This dissertation is organized as follows. Chapter 2 reviews the related work to

this report. Chapter 3 introduces the feature-aligned harmonic volumetric mapping

between two general 3D objects. Chapter 4 describes the biharmonioc volumetric

mapping based on the decomposition models. Chapter 5 presents the medical imag-

ing registration application. Chapter 6 proposes a 4D image registration framework

for lung tumor motion tracking. Chapter 7 gives the conclusion of this dissertation.
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Chapter 2
Related Work

2.1 Harmonic Maps and Surface

Parameterization.

Surface mapping computes a one-to-one continuous map between a 2-manifold and

a target domain with low distortions. It plays a critical role in various applications

of graphics, CAGD, visualization, vision, medical imaging, and physical simulation.

Having been extensively studied in the literature of surface parameterization, har-

monic maps are usually addressed from the point of view of minimizing Dirichlet

Energy. Its discrete version was first proposed by Pinkall and Polthier [5] and later

introduced to computer graphics field in work of Eck et al. [6]. By discretizing the

energy defined in [5], Desbrun et al. [7] constructed free-boundary harmonic maps.

Surface maps that minimize harmonic energy or other stretch-distortion energy

are directly used for shape blending [8] and in later shape morphing applications

[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

A lot of effective surface manipulation techniques and parameterization paradigm-

s might be generalized onto 3-manifolds. A thorough survey on surface parameter-

ization techniques is beyond the scope of this work, and we refer readers to nice

survey reports of [20], [21], and [22] for details.

2.2 Volumetric Mapping

In recent years, volumetric mapping have gained great interest due to its rich

applications in many fields such as computer-aided manufacturing [23], meshing

[24, 25], shape registration [26, 27, 28], and trivariate spline construction [29, 30,

31]. Wang et al. [27] discretize the volumetric harmonic energy on the tetrahedral
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mesh using the finite element method, parameterized volumetric shapes over solid

spheres by a variational algorithm. Xia et al.[25] and Han et al.[24] use this discrete

harmonic volumetric map in polycube parameterization. Most closely related to

this work, in [28], we compute the harmonic volumetric mapping between two

solid objects using fundamental solution methods. Later, we incorporate feature

alignment in this volumetric mapping framework [3].

Volumetric interpolation is a powerful tool for shape deformation. Ju et al. [32]

generalize the mean value coordinates [33] from surfaces to volumes to get a s-

mooth volumetric interpolation for cage based deformation. Joshi et al. [34] present

harmonic coordinates with non-negative weights for volumetric interpolation and

deformation in concave regions. Martin et al. [29] parameterize volumetric model

with trivial topology to a cylinder using the finite element method, and later gener-

alize the algorithm [30] to more complicated models with medial surfaces. Lipman

et al [35] develop Green’s coordinates for volumetric deformation. Patanè[36] uses

Radial Basis Function to approximate volumetric function along the volume data.

2.3 Shape Modeling using Biharmonic

Functions

Biharmonic equation is a fourth-order partial differential equation used to minimize

the thin-plate energy [37]. In recent years, it has been used to generate high-quality

surface patch with the given positional and derivative boundary conditions [37,

38]. Relaxing each vertex of a discrete triangle mesh with harmonic weights or

biharmonic weights can get a smooth surface [39]. Biharmonic equation is also used

to do real-time mesh deformation [40, 41]. In [40], Helenbrook defines the boundary

condition based on an explicit solution and shows the results on the 2D planar

mesh. So it is mainly applied in fluid flows. Jacobson et al. [41] set the solution of

biharmonic equation as the linear bending weights for 2D/3D shape deformation
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and the implementation is based on the mixed finite element method. Lipman

et al. [42] define the metric on 2D manifolds based on the biharmonic equation

with the normal derivative equals to zeros along the boundary. Tankelevich et

al. [43] compare surface reconstruction from points sets based on the solution of

harmonic and biharmonic equations; they develop a special boundary condition

for biharmonic equation such that it can be solved faster.

2.4 Boundary Method and MFS.

We construct the mapping through a meshless procedure by using a boundary

method calledmethod of fundamental solution (MFS). Notable work among bound-

ary methods for solving elliptic partial differential equations (PDEs) includes the

classical boundary integral equation and boundary element method (BIE/BEM),

which has been widely used in many engineering applications [44], and was intro-

duced into computer graphics for the simulation of deformable objects in [45]. One

of the major advantages of the BIE/BEM over the traditional finite element method

(FEM) and finite difference method (FDM) is that only boundary discretization is

required rather than the entire domain discretization needed for solving the PDEs

numerically. Compared with the BIE/BEM approach, the MFS uses only the fun-

damental solution in the construction of the solution of a problem, without using

any integrals over boundary elements. Furthermore, the MFS is a meshless method,

since only boundary nodes are necessary for all the computation. “Meshless” has

the advantage of simplicity that neither domain nor mesh connectivity is required

in storage and computation; so it becomes very attractive in scientific computing

and modeling [46, 47]. A comprehensive review of the MFS and kernel functions

for solving many elliptic PDE problems was documented in [48].
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2.5 Registration in Lung Radiation Therapy

Recent advances in Image-Guided Radiation Therapy emphasize the capability

of fast treatment-time tumor localization while using low imaging radiation dose.

Long et al. and Brock et al. used cubic B-splines as the respiratory motion mod-

el in the 3D/2D registration framework and showed accurate estimations of the

treatment-time Deformation Vector Fields (DVFs) by using limited-angle radio-

raphs [49] and a small number of radiographs [50] respectively. Li et al. [51] ex-

tended this framework and built the respiratory motion model by doing Principal

Component Analysis (PCA) on the 4D Respiratory-Correlated CTs acquired at

treatment simulation. They used a GPU-accelerated gradient-descent optimiza-

tion scheme that showed accurate tumor localization with a single radiograph.

There also some global methods are used to model the respiratory process[52, 53].

They estimate the lung motion by establishing temporal correspondences, e.g.,

between the maximum inhale phase and all other phases. [54] propose a unified

approach to estimate the consistent respiratory lung motion by using iterative

steps.

However, traditional gradient descent optimization approaches suffer from com-

plexity in computing the image Jacobian, and they also require a well-defined

convex metric to guarantee that the scheme reaches the global optimum.

Moreover, all previous method treat the inside tumor as a homogeneous material

as lung part to simplify the problem. In practical, the material of tumor is not the

same with the lung part. The elastic properties of these two part are different.

Treat them differently will improve the accuracy of tumor motion tracking.

In our work, we are using 3D computer graphics algorithms to model the motion

of tumor and neighboring environment. We treat the tumor as an iso-surface struc-
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ture in the lung part and we compute their registration separately. It can achieve

better result, both in accuracy and efficiency.

2.6 4D Image Registration

Compared with the conventional image registration techniques, 4D spatiotempo-

ral registration can avoid the bias caused by a predetermined reference frame, and

can enforce both spatial and temporal smoothness of the transformations, which

indicates physically nature deformations [55]. However, the study of 4D registra-

tion methods has just started and is still far from adequate. First, existing 4D

registration methods [52] are mainly guided by image intensity. The computation

therefore reduces to minimizing a non-linear problem having many local minima,

which also usually has high computational cost and, more importantly, requires

a good initial guess to reach a desirable matching. Geometry-guided approaches

such as using feature alignment constraints can effectively guide this optimization

to avoid many undesirable local minima. In this work, we develop a symmetric

framework for 4D image registration. With feature-alignment constraints and new

optimization scheme, we can get more accurate and effective registration.
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Chapter 3
Feature-aligned Harmonic Mapping

3.1 Introduction

The rapid advancement of 3D scanning techniques makes it easier to acquire mas-

sive 3D data nowadays. When data sets can be acquired in an explosive rate,

computational techniques only evolve modestly. As a result, 3D data matching,

analyzing, and searching become bottleneck for their efficient processing. Com-

pared with 2D images, 3D shapes have many distinctions including larger sets of

degrees of freedom and spatial variations in terms of geometry, topology, feature,

and material. A viable approach for the effective shape matching and analyzing is

to establish the correspondence between objects of interest, which can be computed

by either solving a non-rigid bijective registration between given objects or compos-

ing two parameterizations from both objects onto one common domain. The key is

to compute a mapping from one domain to another. When it is enough to purely

consider boundary surfaces of the 3D data, one can focus on mapping 2d-manifolds

(surfaces). Surface mapping seeks a bijection between two 2-manifolds with similar

topology, aiming for least distortion (using length-, angle-, or area- preserving as

the criterion) which dictates its effects in applications. Surface parameterization

and inter-surface mapping have been extensively studied, playing important roles

in computer graphics, and serving as ubiquitous tools for many valuable applica-

tions. For example, in computer graphics, it has been used for texture mapping,

texture transfer, and morphing animation. In geometric modeling, it has been used

for detail transfer, surface editing, mesh simplification. In CAGD, it has been used

to construct the parametric domain for continuous representations such as splines.
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In visualization, complicated geometric structures may be better visualized and

analyzed by mapping surfaces and their properties to a simpler domain. In vision

and medical imaging, it has been used for surface matching, data completion, and

so on. Surveys of surface mapping and their applications are given in [20] and [21].

Solid volumetric data have richer contents than those of the boundary surface.

When the data processing or analysis are related to material, intensity, or any

other structural information defined over the whole 3D region of the object (in-

stead of on just its boundary shell), we need to consider the shape as a 3-manifold

and study the volumetric mapping. Therefore, volumetric mapping can also ben-

efit aforementioned applications. Because of its importance, volumetric mapping

and parameterization has gained greater interest in recent years, and a few relat-

ed research work has been conducted towards various applications such as shape

registration ([27, 28, 2]), volumetric deformation ([32, 34, 35, 56]), and trivariate

spline construction ([29]), and so on. Although many valuable concepts and demos

have been presented, all indicating the importance of this technique, its study has

just started and is far from adequate. Several key limitations of existing algorithms

prevent them from being applied into real applications with complex scenarios.

Generality. It is desirable that the mapping is general and can handle 3D shapes

with variant topological types. Volumetric data from real scenarios usually have

nontrivial topology, and most existing parameterization techniques ([27, 29]) focus

on topological solid-sphere shapes. [28, 2] used the fundamental solution meth-

ods to compute harmonic volumetric mapping between 3D objects with general

topology.

Efficiency. Solving the discretized vector field over a 3D voxelized domain or

over a tetrahedral mesh usually is much slower than the surface mapping compu-

tation. The fundamental solution method of [28] is a boundary method. It reduces
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the volumetric mapping computation from the whole 3D domain to the degree

of freedom with the boundary size, to be solved by a linear system of equations.

However, it is still very time consuming to solve because the coefficient matrix is

dense and ill-conditioned.

Heterogeneity. Most existing methods consider the volumetric mapping from

homogeneous viewpoints and only compute the mapping purely based on geome-

try, without taking into account the interior structure and features. It is desirable

to develop the capability of the mapping algorithm that can accommodate het-

erogeneous structures and integrate domain expertise in geometric modeling and

processing.

In order to tackle these aforementioned limitations, this work improves the algo-

rithm of fundamental solution methods in mapping computation ([2]), and seeks a

general and effective mapping computation algorithm with better efficiency, accu-

racy, and heterogeneity. We compute harmonic volumetric mapping by improving

the fundamental solution methods of [2], and the side-by-side comparison shows

that our new approach is more efficient and accurate. Furthermore, it supports fea-

ture alignment, which is important for many practical volumetric data processing

tasks.

The main contributions of this work include:

• We use multiple fundamental solution systems and an adaptive refinement

scheme for the computation of harmonic volumetric mapping. Compared to

[2], this computation efficiency is greatly improved, so that large and complex

data can be parameterized in the new framework. In the mean time, with an

adaptive sampling scheme, the new computation also converges to a better

boundary fitting result in salient manners.
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• Our feature alignment scheme supports the computation of volumetric map-

ping composed by constrained harmonic functions that allow the alignment

between various types of features including 0-manifolds (feature points), 1-

manifolds (feature lines, such as skeletons), 2-manifolds (iso-surfaces).

The remainder of this chapter is organized as follows. We introduce the theory

and algorithms of our methods in Section 3.2, and address important implementa-

tion issues in Section 3.3. In Section 3.4, we demonstrate some experimental results,

discuss and compare our algorithms with existing volumetric mapping methods,

especially [2], and show the large efficiency/accuracy improvement over the current

method. We also show a direct application on hex meshing. Finally, we conclude

this chapter in Section 4.7.

3.2 Theory and Algorithm

A volumetric map ~f between two 3-manifolds embedding in R3 is a bijective map-

ping ~f : M1 → M2,M1 ⊂ R3,M2 ⊂ R3. The boundary constraint is a surface

mapping ~f ′ from the boundary surface of the first solid object M1, denoted as

∂M1, to the boundary surface of M2, denoted as ∂M2. The mapping ~f(p) = q

(p ∈ M1, q ∈ M2) is composed by three real functions in three axis direction-

s, i.e., ~f = (f 1, f 2, f 3). Each real function f i, (i = 1, 2, 3) maps the point p to

q(q1, q2, q3)’s corresponding component qi. This problem is then reduced to the

computation of real functions f i, (i = 1, 2, 3), with the given boundary surface

mapping constraints ~f ′ = (f ′1, f ′2, f ′3). We want the volumetric mapping to fol-

low the boundary constraints and minimize a specific metric distortion. In this

work, our object is to minimize the harmonic energy under the Dirichlet boundary

condition discussed above, defined by the boundary surface mapping.
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3.2.1 Harmonic Volumetric Mapping

Harmonicity of a mapping characterizes the smoothness of the transformation,

which is a natural phenomenon that depicts the minimized physical energy that

arises from the difference between two shapes. In the surface case, a harmonic

map (with boundary loop mapping predetermined) finds the functions with the

vanishing Laplacian everywhere, and it minimizes the Dirichlet energy and leads

to a minimal surface ([5, 6]). Intuitively speaking, finding a harmonic map between

two surfaces with fixed boundary correspondence is like computing the physical

deformation of a rubber membrane. The membrane has the source surface as its

relaxed shape configuration, and is arbitrarily wrapped onto the target shape with

the boundary constraint enforced; then we let go the membrane so that it freely

flows over the target shape, its final status indicates a harmonic map.

Similarly, for harmonic volumetric mapping, if we fix the boundary map which

is now a surface mapping between shells of the two given solid objects, we are

computing the smooth mapping of the interior region by enforcing the vanishing

3D Laplacian. This is equivalent to computing the final stable configuration of a

solid rubber subject to its boundary surface constraint.

In formulation, given two volumetric regions M1 ⊂ R3 and M2 ⊂ R3 and a

one-to-one mapping ~f ′ between their boundary surfaces ∂M1 and ∂M2: ~f ′(p) = q,

p ∈ ∂M1,q ∈ ∂M2, we seek a mapping ~f :M1 →M2 such that





∆~f(p) = 0 p ∈M1,

~f(p) = ~f ′(p) p ∈ ∂M1.

where ∆ is the Laplace operator, defined for real function f in R3 as

∆f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
,

and ∆~f = 0 for ~f = (f 1, f 2, f 3) is equivalent to ∆f i = 0 for all i = 1, 2, 3.
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Variational approaches have been proposed ([27]) for solving the harmonic volu-

metric map over tetrahedral meshes. However, like the surface mapping, the quality

of numerical solution in this type of methods heavily depends on the mesh quality.

In the surface case, it is well known that the discrete harmonic map [6] could lead

to non-bijective mapping locally when skinny triangles exist and cotangent weights

become negative. Similarly, harmonic weights ([27]) defined over edges of a tetrahe-

dral mesh, which are derived via finite element analysis has this same problem. It

has been proven that if the mesh satisfies the Delaunay criterion, then even it con-

tains obtuse triangles, the parameterization obtained using the cotangent weights

will be bijective. However, to our best knowledge, there is no similar result on the

discrete weight over tetrahedral meshes. A mesh-free procedure is more attractive

for irregular geometries specifically with nontrivial topology/structures due to its

flexibility and simplicity.

On the other hand, the linear nature of Laplacian equations indicates that the

boundary-based methods are most suitable since the interior is now determined in

an exact manner. In other words, according to the maximum principle of harmonic

functions, the value of a harmonic function never reaches maximal or minimal

values in the interior region of the domain, and values in these interior regions are

fully determined by the boundary condition. The method of fundamental solution

(MFS), based on the Green’s theory is a natural boundary mesh-free method to

solve this problem. MFS can be viewed as a modified Trefftz method, and the

basic idea is to approximate the solution by a linear combination of fundamental

solutions with sources located outside the problem domain. [28, 2] applied MFS in

the computation of harmonic volumetric mapping, where three linear systems with

one single coefficient matrix are solved to get the harmonic volumetric mapping

between two 3D objects.
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Compared to mesh-based variational methods such as [27], (1) the MFS method

is a meshless boundary method, which is more efficient than this conventional

mesh based FEM method, and with both time complexity and storage complexity

greatly reduced; (2) MFS is more general and can flexibly handle volumetric data

sets with complicated topologies, including topological noise; (3) the new MFS

framework can also handle heterogeneous materials instead of just homogeneous

shapes.

3.2.2 Method of Fundamental Solutions

We briefly review the idea of MFS in solving harmonic volumetric maps and define

the notations that are used in our algorithms.

MFS in Harmonic Volumetric Mapping. We seek three harmonic functions

(f 1, f 2, f 3) : M1 → M2, with ∆f i = 0. Since ∆ is a linear self-adjoint differential

operator and M1 is a bounded domain in R3, we can compute its Green function.

A fundamental solution of this differential equation is a function K(x,x′) such

that

∆K(x,x′) = δ(x,x′),x,x′ ∈ R3,

where δ(x,x′) is the Dirac delta function, the kernel K is defined everywhere except

the singularity point at x = x′.

Then we have

f i(x) =

∫
K(x,x′)gi(x′)dx′.

Such a kernel function K is known as the Green’s function associated with the

3D Laplacian operator ∆, and has the formula: K(x,x′) = 1
4π

1
|x−x′|

, where |x−x′|

denotes the distance between the points x and x′.

Following this scheme, solving the aforementioned harmonic mapping ~f is like

designing electric fields. For each harmonic function f i (for each axis direction),
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we compute a particle system. The outcome electric potential field of any particle

system is always a real harmonic function (guaranteed by the Kernel function),

and we only need to find the particle system that fits the boundary condition,

indicating the boundary surface mapping, coupled with three axis components.

This process of solving the best particle system simulates the computation of f i.

Suppose we have a particle system, and consider an electronic particle Qs (called

a singularity point, or a source point) outside the domain M1, the corresponding

fundamental solution for 3D Laplacian equation (i.e. its potential) on a point p

can be formulated as

K(p,Qs) =
1

4π

1

|p−Qs|
, (3.1)

where |p−Qs| denotes the distance between the point p and this particle Qs.

Therefore, considering the entire particle system {Qs} with a set of source points,

the MFS equation to evaluate f i on an interior or boundary point p is

f i( ~wi, ~Q;p) =
ns∑

n=1

wi
n ·K(p,Qn),p ∈M1, (3.2)

where suppose we have ns source points in the exterior of M1, ~Q is the 3ns-

dimensional vector concatenating positions of all ns 3D source points, and ~wi =

(wi
1, w

i
2, · · · , w

i
ns
)T is the ns-dimensional vector to be determined, which indicates

charge amount distribution on these source points.

Boundary Fitting. When every source point Qn ∈ R3, n = 1, · · · , ns is out-

side of M1, any charge distribution guarantees the vanishing Laplacian ∆f i(p) =

0, ∀p ∈ M1, only that f i might violate the boundary conditions. Source points

{Qn} should lie outside of M1, namely, locate on the boundary surface ∂M̃1 of a

region M̃1 that contains M1 (i.e. M1 ⊂ M̃1 ⊂ R3). In [2], an offset surface ∂M̃1

of M1 is created (by first computing implicit distance field d(∂M1) with respect

to ∂M1 ([57]) and then generating the polygonization ([58]) on the implicit sur-
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face d(∂M1) + δ = 0), and a set of source points are uniformly sampled on this

∂M̃1. Then it solves the charge amount on each particle such that the potential

field approximates the boundary condition. The boundary condition is the surface

mapping, whose fitting is conducted over a set of evaluation points (also called the

collocation points or constraint points) {pi ∈ M1}. Three particle systems with

their charge distribution solved in this fitting process compose the volumetric map

~f = (f 1, f 2, f 3).

Limitations of the aforementioned routine. The above algorithm of [2] has

following two key limitations:

• Computation Efficiency and Fitting Accuracy. Three dense linear sys-

tems need to be solved. Suppose we have nc collocation (evaluation) points

and ns source points, we have a Aw
i = bi system where the dimension of the

coefficient matrix A is nc×ns. A is dense since every source point contributes

to every constraint point. Furthermore, A is ill-conditioned. As suggested in

[59], [28], [2], Singular Value Decomposition (SVD), due to its stableness

against the ill-conditioned system, is chosen to solve this system. However,

SVD decomposition is slow for large matrices. For example, the solver of [2]

needs more than one day when both nc and ns exceed 20K vertices. There-

fore, when handling complex volumetric data, we have to restrict nc and ns.

This causes the salient decrease on the boundary fitting accuracy. Because

now we either (1) lack enough particles for designing fine potential fields

to well fit the boundary condition (when ns is picked to be small), or (2)

lack enough evaluation points to sample the shape variance on the boundary

(when nc is picked to be small).
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(a) (b)

(c) (d)

FIGURE 3.1. Heterogeneous Volumetric Mapping between Head-Skull-Brain and Poly-
cube-Sphere. (a) The extracted and cleaned volumetric shape has three salient iso-sur-
faces: head, skull, and brain. A target domain (d) is generated to test the efficacy of our
mapping with iso-surface constraints. (d) has a sphere, a polycube skull, and a cube insid-
e, corresponding to three iso-layers in (a). (b) and (c) show the 30% and 60% morphing
from (a) to (d), generated by linear interpolation.

• Feature Alignment. Like other volumetric mapping methods ([27, 32]), [2]

focuses on homogeneous volumetric regions where boundary surface map is

the only constraint in the mapping computation. In real scenarios, volumetric

data usually contain different materials and densities, or have salient struc-

ture inside its interior region (See Fig. 3.1(a) for example). These information

or structures are usually meaningful and should be considered. Therefore, a

scheme that can properly handle heterogeneous structure is worthwhile, so

that we will be able to align or match similar material/intensity when nec-

essary.
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(e) (f)

(g) (h)

(i) (j)

FIGURE 3.2. Heterogeneous Volumetric Mapping between Head-Skull-Brain and Poly-
cube-Sphere (cont.). (e,g) show cross-sections on the polycube-sphere domain, (f,h,i)
show corresponding cross-sections on the head-skull-brain model. The point clouds in
(e)-(i) are the sampled feature points on these iso-surfaces (e,g) and their images (f,h,i)
of the volumetric mapping. The color-encoding in (f,h) visualizes the mapping via the
transferred distance field of (e,g). In (j), we zoom in the brain iso-surface (the grey trans-
parent surface) and its fitting, green points are images of sampled points on the interior
cube in (e). The RMSE here is 0.57%.
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New Computation Scheme. To tackle these two limitations, we improve [2] as

follows.

• Instead of one function ~f :M1 → M2, we compute a set of harmonic functions

~fi such that their sum approximates ~f . The computation for each ~fi is more

efficient and numerically more stable. Each ~fi is harmonic, and therefore their

sum
∑

i
~fi is also harmonic. Each subsequent ~fi aims to refine the existing

map
∑k=i−1

k=0
~fk towards the exact boundary condition ~f ′ (which could need a

too big system [28] to solve within only one shot). Now we use less constraint

points and source points to compute each ~fi, and therefore the solving is

much faster, the boundary condition for each ~fi is δfi = ~f ′ −
∑k=i−1

k=0
~fk.

This greatly improves the speed of the mapping computation, and makes

the MFS practical for large volumetric data.

• As we will demonstrate in our experiments, with only a few ~fi, the fitting

accuracy can usually beat the algorithm of [28], and we can keep refining

it using more ~fi when necessary. Also, unlike the [2] that conducts uniform

sampling over the offset surface ∂M1, we conduct the sampling adaptively

following the geometry of the given shapes. Together with the multi-MFS

scheme, our scheme intuitively allows a flexible placement of source points.

It is well known that in MFS, the location of source points constitutes a key

issue and it has large impact on numerical stability of the MFS computation.

The locations of source points are either preassigned or determined along with

the coefficients of the linear combination. Most papers place source points

on a surface outside M1 uniformly and solve least square linear systems, but

this not always guarantees that the computed solution converges to the exact

solution as the number of source points increases. The MFS with moving
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source points has been considered by several authors (e.g. [60], [48]). This

leads to a slow nonlinear optimization, and still, it has been reported that the

initial placement of the sources is usually very important in the convergence

of these algorithms, as they converge to the first local minima encountered.

In this work, we also follow the preassign-approach that leads to linear sys-

tems. Unlike the placement scheme in [2], we allow the removal and adaptive

adding-in of new source points according to the result in the previous round,

and this mimics the adjustment of the source points during the MFS solv-

ing. We will show that our new scheme also improves the accuracy of the

mapping computation using MFS.

• Feature Alignment. We allow the setting of constraint points during

the mapping. In real applications, three types of constraints are very useful:

0-manifolds (feature points), 1-manifolds (feature curves or skeletons), and 2-

manifolds (iso-surfaces). These constraints are treated as a part of boundary

fitting. We apply an adaptive scheme to balance the feature constraint and

boundary constraint.

3.2.3 Algorithm Pipeline

Our algorithm pipeline is as follows. The input is two given solid objects M1, M2

and their boundary surface mapping

~f ′ = (f ′1, f ′2, f ′3) : ∂M1 → ∂M2.

The output is a harmonic volumetric mapping composed by a set of harmonic

functions:

~f :M1 →M2 =

i=nf∑

i=1

~fi =

nf∑

i=1

(f 1
i , f

2
i , f

3
i ),

such that on the boundary surface p ∈ ∂M1, ~f(p) = ~f ′(p) and in the interior

region: ∇2 ~f = 0.
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Each harmonic real function f j
i , i = 1, . . . , nf , j = 1, 2, 3) is solved by one linear

system Aj
iw

j

i = bj
i . In the following algorithm, we omit the indices i and j (e.g.

using the notation A instead of Aj
i ) for simplicity, assuming this will not cause

any ambiguity:

1. Place source points and collocation points. (Section 4.1)

2. Compute the coefficient matrix A, whose (u, v)th element Auv = K(Pu,Qv)

(Equation (3.1)) for the collocation point Pu and source point Qv.

3. Decompose A using Singular Value Decomposition A = UΣV∗. The decom-

posed results U,Σ,V∗ are used to solve the fitting system.

4. Set the boundary condition b at the right hand side of Auvw = b, and

b = {bk}, where bk is the boundary constraint evaluated on each collocation

point.

For each ~fi, this algorithm solves Aj
iw

j

i = bj
i . When i = 1, the boundary con-

dition is set to be a low-resolution surface mapping from M1 to M2. For i > 1,

we use a higher-resolution surface mapping, and also apply the refined boundary

fitting δ~f ′ = ~f ′ −
∑i=nf−1

i=1
~f ′
i .

Note that our algorithm takes the boundary surface mapping ~f ′ as an input. We

briefly discuss how to obtain such a surface mapping In Section 4.3.

3.3 Implementation and Discussion
3.3.1 Source Points and Collocation Points Placement

In order to set up the coefficient matrix for boundary fitting, first we need to place

source points and collocation points. The ns source points Q̃ = {Q1,Q2, . . . ,Qns
}

are particles in the exterior ofM1 and nc collocation points P̃ = {P1,P2, . . . ,Pnc
}

are evaluation points on the boundary ∂M1. We solve the weights (charge amount)
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(a) (b) (c)

FIGURE 3.3. Volumetric Mapping from the solid Cyberware Male model to Female
model. Their skeletons are illustrated in (a). The mapping with skeleton matched are
illustrated in (b) via one cross section: the distance field color-encoding on the female
(right) model is transferred to its corresponding point on the male (left) model. (c) shows
the skeleton fitting: the green curve shows the target skeleton (i.e. the skeleton of the
female), images of sampled points on the male skeleton are visualized as red points. The
skeleton RMSE fitting error is 0.54%.

distribution wi, i = 1, . . . , ns on all source points Q̃ so that ~f(Pi) satisfies the

boundary condition approximately.

The distribution of source and collocation points greatly affects the numerical

stability and therefore the mapping efficiency and quality. The boundary error is

sensitive to the collocation and source points, so appropriately sampling Q̃ and

P̃ is critical. In 2D cases, theoretic studies have been conducted for analytical

and simply connected domains, for example, when M1 ⊂ R2 is a planar disk

[60], uniformly sampling both collocation and source points is ideal and leads to

exponential decreasing on boundary fitting errors. WhenM1 ⊂ R2 is analytic, there

is also discussion on the existence of optimal placement [61], and one suggestion

is to take a conformal mapping Ψ from the unit disk D to M1, and place Q̃ and

P̃ on Ψ’s images of the evenly sampled points on the parametric circle. However,

for more complicated domain shapes in 2D, or in our 3D case that M1 ⊂ R3,
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TABLE 3.1. Source and collocation points placement using geometry-adaptive (GA) sam-
pling and uniform (UN) sampling. The experiment is conducted on mapping vase-lion
model with 40k vertices to a solid sphere, cRatio = 0.05, sRatio = 0.05, and the offset
surface is 0.15 times object size distant. The boundary fitting error indicates the bound-
ary mapping quality. Using geometry-adaptive sampling leads to less boundary error.

S-Pts C-Pts Boundary Fitting Error Collocation Error
UN UN 0.0563971760 0.0499722402

GA UN 0.0546669675 0.0270761958
UN GA 0.0544260284 0.0469717138

GA GA 0.0484185840 0.0449218356

the optimal placement is still unknown. [2] shows that placing source points on

a nearby offset surface produces more accurate mapping result. We also adopt

the offset surfaces scheme but add in adaptivity, following both the geometry and

sequential fitting errors.

3.3.2 Sampling Collocation Points

In 2D analytical boundary scenarios ([48]), uniformly sampled P̃ usually leads to

a stable system and good approximation, therefore is suggested as the strategy

for preassigning collocation points. [2] follows this strategy, and uses the uniform

sampling scheme of [62] to generate evenly distributed collocation points on ∂M1.

The total number of collocation points (source points) is controlled by an aspect

ratio cRatio = nc/n(∂M1) (sRatio = ns/n(∂M1)), where n(∂M1) is the total ver-

tex number of ∂M1.

However, our multi-level MFS solving shows that for most 3D piecewise-linear

domains, adaptively sampling these collocation points following local geometry

could lead to better convergence on boundary fitting errors. Intuitively, more e-

valuation points shall be placed on highly-detailed regions for better sampling the

boundary variance. Our geometry adaptive sampling algorithm is as follows:
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1. Tessellate the boundary surface where we need to do the sampling: it is

the domain boundary ∂M1 for collocation points, and offset surface ∂M̃1 for

source points.

2. Refine M1 (for collocation points sampling) or ∂M̃1 (for source points sam-

pling) by subdivision and get a dense mesh ∂M ′.

3. Conduct surface simplification on ∂M ′ using the quadric error metric [63],

which efficiently produces a good-quality approximated simplified mesh ∂M∗.

The vertex number of ∂M∗ is determined by our sampling budget.

4. Vertices of mesh ∂M∗ are used as sampling points.

Table 3.1 illustrates our experiments conducted on the spherical mapping of a

vase-lion model with 40k vertices, and the mapping is for cRatio = 0.05, sRatio =

0.05, and the offset distance is 0.15 times object size. It clearly shows the advan-

tage of geometry-adaptive sampling over uniform sampling in placement of both

collocation points and source points.

3.3.3 Sampling Source Points

We place source points following three aspects.

• Geometry-adaptive Sampling. In the coarsest level (f0 computation),

we conduct geometry-adaptive sampling on source points to determine their

locations.

• Even Partitioning. In finer levels, we partition sampled source points {Qv}

into several subsets evenly. Each time we only use a subset of charge points

for efficient boundary fitting.
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• Adaptive Deletion/Insertion. Meanwhile, in each step, we remove redun-

dant source points by analyzing the diagonal matrix from the SVD decompo-

sition (see Section 4.2 for details), and adaptively add in extra source points

near the regions with large fitting errors by projecting badly fitted boundary

points onto the offset surface.

3.3.4 Solving MFS Linear Systems by SVD

The boundary fitting is reduced to solving linear systems A~w = ~b. A can be dense

and ill-conditioned [59], so regular linear system solvers such as Gaussian elimi-

nation, LU, and QR decompositions usually fail to produce a stable solution. As

suggested in [59] and [2], we use Singular Value Decomposition (SVD) to decom-

pose A. There are three reasons.

1. It generates accurate and stable results when the coefficient matrix is highly

ill-conditioned.

2. It flexibly gets to the least-square solution for over constrained boundary

conditions (which always happen in our multi-round MFS solving).

3. Furthermore, in our approach, we also use the diagonal matrix Σ to adaptive-

ly remove redundant singularity points. When the singular value is small (in

all our experiment, we set the threshold to 1e−5), the corresponding source

point does not contribute much to the potential field, and therefore we re-

move them in the source point set from subsequent linear system solving and

MFS evaluations.

3.3.5 Surface Mapping as Boundary Condition

The boundary condition of our harmonic volumetric mapping is a surface mapping

between ∂M1 and ∂M2. Existing inter-surface mapping techniques [8, 9, 10, 11,
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12, 13, 64] can be used for creating the boundary surface mapping. Although

surface mapping is not the focus on this work, as discussed in [2], it is desirable

to have a low distorted surface mapping, and [2] illustrates an example that larger

angular distortion oftentimes leads to worse volumetric mapping result. However,

it is still unknown that how exactly quality of boundary mapping and interior

mapping relate. Intuitively, area preserving is also important (salient shrinkage on

boundary mapping shall lead to large volume distortion). [2] uses [15] for boundary

surface mapping computation which leads to least angular distortion, in our work,

we use [1] to generate boundary surface mapping, which could (1) better balance

area stretch and angle distortion, and (2) allow surface feature points and curves

alignment which better fits our current framework.

3.3.6 Feature Alignment

Feature and structure constraints are important issues in processing many real

volumetric data. Specifically, three types of features are commonly considered:

0-manifolds (feature points), 1-manifolds (feature lines), and 2-manifolds (iso-

surfaces).

Feature point alignment. Since we are using a meshless paradigm, all the

feature alignment shall naturally be handled in terms of points. We can simply

add the feature constraint defined on each point into the linear system as a new

boundary condition. So each new pair of feature points for alignment corresponds

to an additional row in the coefficient matrix A and the boundary condition vector

b.

Feature line alignment. For feature lines (for instance, skeletons) matching,

we similarly sample and put in point-by-point constraints to A. Feature curves

such as skeletons are usually represented as a piecewise graph. Fig. 3.3(a) shows

an example, in which one wants the volumetric mapping follows skeleton structure
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and is guided by the movement or deformation of the skeleton. Existing skeleton

extraction algorithms ([65, 66, 67, 68]) usually do not guarantee that the extract-

ed skeletons from different objects are isomorphic even when these shapes are

very similar. However, most skeletonization algorithms can preserve the homo-

topic structure of the shape and therefore their skeletal graphs are topologically

equivalent. Detail discussion on feature lines extraction, their topology, and their

matching is far beyond the scope of this work, and we refer readers to the survey

paper [69]. In our experiment (Fig. 3.3), we use [65] to extract the skeleton and

apply 1-manifold restamping algorithm of [70] to get dense point-by-point corre-

spondence between skeletons of the cyberware Male and Female models. Fig. 3.3

(b) visualizes the volumetric map result using the color-encoded distance field.

The distance of each interior point to the boundary surface is computed and color-

encoded, such a color is transferred to its corresponding point under the mapping.

This visualizes the mapping behavior. (c) illustrates the skeleton fitting: in the

interior of the target Female model, the green curve is its skeleton Sk2. Sample

points from the skeleton of the source Male model should match Sk2, and the red

points shows their images under the mapping. The rooted mean square fitting error

is 0.5%.

Feature surface alignment. With two feature surfaces to match, we need

to compute inter-surface maps between them. The inter-surface parameterization

methods, which we used to generate boundary surface correspondence, can be ap-

plied to get such a map. Then we simply include corresponding point pairs as the

boundary conditions. Fig. 3.1 and Fig. 3.2 show an example of a volumetric map-

ping over the heterogeneous data Head-Skull-Brain model, which has three salient

iso-surfaces: the outer boundary is a genus-0 (head) surface, and the interior skull

iso-surface is genus-2, within which there is a genus-0 brain surface. We generate
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a parametric domain (d) to test the efficacy of our mapping on heterogeneous 3D

data with iso-surface constraints. The outer head boundary surface is mapped onto

a sphere boundary, the skull iso-surface is constrained on the polycube skull, while

the brain iso-surface is mapped to a small cube inside. (b,c) show the 30% and

60% morphing from (a) to (d), generated by linear interpolation. (e,g) show two

cross-sections on the polycube-sphere domain, and (f,h) show their corresponding

cross-sections on the head-skull-brain model. The point clouds in (e)-(i) show sam-

ple points on the iso-surface (e, g), and their images after the volumetric mapping

(f-i). Locations of these feature points in (g-i) demonstrate that the iso-surface con-

straints are precisely fitted, and the volumetric mapping align the feature surface

very well.

Feature alignment as soft constraints and weights. As discussed above,

features are aligned in a least square sense together with the boundary fitting

process, so they are treated as soft constraints. Compared with the massive point

number on the boundary, if feature points (or samplings on feature lines) are con-

sidered as ordinary collocation points, they might be overshadowed by boundary

collocation points during the fitting. We balance this by assigning each sample fea-

ture point an extra weight w. This is equivalent to enforcing this feature w times.

In all our experiments, we take w = 20 for feature points. This effectively leads to

more precise feature alignment.

Unlike the traditional FEM-based methods that simply fixes feature vertices to

enforce the constraints, in this section we discuss our method that blends several

harmonic functions to get the feature-aligned map. In each iterative refinement, we

use a harmonic function, so the resultant map, i.e. the summation of these functions

is still globally harmonic, and there is no obvious flip-over or discontinuity around

the feature regions. In the mean time, while the feature constraints is precisely
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enforced, the boundary fitting accuracy could decrease a little bit (i.e. the RMSE

increases slightly on the boundary).

3.4 Experimental Results and Applications

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3.4. Spherical Volumetric Mapping. A solid sphere (a) is mapped to a solid
Max-Planck model (b), the color-coded distance field on the Max-Planck model (c) is
transferred onto corresponding points on the sphere (d) for visualizing the map. An Omo-
tondo model (e) is mapped onto the solid sphere (a), and we transfer the color-encoded
distance field of sphere (f) onto the Omotondo region (g). The color-coding scheme is
illustrated in (h), red indicates maximum values while blue indicates minimum values.

We conduct a few volumetric mapping experiments over various volumetric data,

with different sizes, topology and geometry complexities. We illustrate some of

these mapping results in Fig. 3.4 and Fig. 3.5. We use the color-encoded distance

field to visualize the mapping result. When a map ~f : M1 → M2 is computed,

the color-encoded (red indicates the maximum while blue indicates the minimum,

see Fig. 3.5(h)) distance field defined on one region can be transferred to another

region, by plotting the color of a point P ∈M1 on its corresponding image ~f(P) ∈
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3.5. Mapping Between Solid Objects and Polycubes. Polycubes (a,e) are
mapped to two-torus (b) and kitten (f), respectively. Color-encoded distance field of
(c,g) are transferred under the mapping to (d,h).

M2 (or inversely, plotting the color of P ∈ M2 on ~f(P) ∈ M1). This visualization

shows the effect of the map. For example, when we transfer the distance field

defined on the Max-Planck model (Fig. 3.4(c) to the sphere, we can see a color-

encoded head-shaped level-set in (d), while the original distance field of a sphere

is concentric as shown in (f).

We also conduct thorough comparison between our method and the algorithm

of [2]. Table 3.2 illustrates the side-by-side statistics. Using MFS [2], the cRatio

(and sRatio), indicating the ratio of the number of collocation points (and source

points) over the number of boundary points are listed in the CR (and SR) column;

the computation times (in seconds) and rooted mean square errors (object size
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TABLE 3.2. Efficiency and Accuracy Comparison. A lot of 3D solid models have been
tested, from data with small vertex size to large size. Using MFS [2]: CR and SR (cRatio
and sRatio of the mapping), computation time (in second), and theRMSE (rooted mean
square error of the boundary fitting) are listed; using the new computation framework,
in the same row we list the statistics of the corresponding CR*, SR*, nf (number of
harmonic maps we solved), computation time, and RMSE∗.

Models (Vertex #) CR SR Time(S) RMSE CR* SR* nf Time*(S) RMSE*

Omotondo/Sphere (3K) 0.4 0.8 220.41 0.01649 0.4 0.8 6 42.41 0.001514

PCube/2-Torus (6.6K) 0.4 0.8 2393.10 0.00490 0.4 0.8 6 426.23 0.00475
Male/Female (6.3K) – – – – 0.2 2 10 1000.68 0.00485
PCube/Skull (29K) – – – – 0.03 0.03 7 14.42 0.01764

Vaselion/Sphere (40K) – – – – 0.1 0.2 6 1440.39 0.0230
PCube/Kitten (80K) – – – – 0.05 0.05 6 666.48 0.0139
PCube/Horse (100K) – – – – 0.01 0.02 6 23.82 0.01449

normalized to a unit box) are also given. Using multiple MFS computation pro-

posed in this work, we list the number of harmonic functions we computed in the

column of nf , and show corresponding ratios, time, and errors in columns of CR*,

SR*, Time*, RMSE*, respectively. As we addressed previously, due to the efficien-

cy issue, MFS[2] is not able to handle large volumetric data or feature alignment,

therefore statistics on corresponding cells are blank. The statistics show that our

algorithm improves the computation of [2] in both efficiency and accuracy.

Fig. 3.6 plots the reducing of boundary error during each iterative step i of

computing mapping functions ~fi.

3.4.1 Hex-Remeshing

A direct application for volumetric mapping is hex-mesh generation. Regular mesh

structure is highly desirable for finite element analysis and physically-based defor-

mations/simulations, because regular meshes provide great efficiency for geometry

processing and physically-based computation [71]. Given a 3D solid data M , we

first generate a solid polycube model P , then we compute the surface mapping

~f ′ : ∂M → ∂P and volumetric mapping ~f : M → P . With ~f we can transfer the

regular structure on P to M . On a solid polycube, a regular hexahedral structure

can be easily generated, and since [72] introduced the concept of surface polycube

map, several techniques ([73, 74, 75, 76]) have been proposed to (automatically)
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FIGURE 3.6. Boundary Rooted Mean Square Error of Volumetric Mappings.

construct polycube, and the surface-polycube mapping. In all of our experiments,

we construct our polycubes using the algorithm of [73]. Fig. 3.7 illustrates an ex-

ample of using a unit solid cube to remesh the solid David head. The original model

M2 is shown in (a), and the hex mesh of the parametric cube M1 is shown in (b).

We compute the volumetric map ~f :M1 →M2 from the cube to David head. Then

~f(M1) is a solid with the hex connectivity of M1 and the head shape of M2, and it

is the remeshed David head, as illustrate in (c) and (d). Fig. 3.8 shows a few more

examples. A hex-remeshed two-hole torus is shown in (a). The hex-mesh structure

of the polycube (b) is used to remesh the kitten, shown in (c,d). Polycube (e) is

used to remesh the Chinese horse model (f-h). (f, g) visualize the result hex-mesh

in its interior regions from two different cross-sections.

3.5 Summary

We present a feature-aligned volumetric harmonic mapping computation algorith-

m using methods of fundamental solutions. The map ~f is composed by a set

35



(a) (b) (c) (d)

FIGURE 3.7. Hex Remeshing of the Solid David Head. (a) The original mesh structure of
the David Head. (b) A simple cube domain that the hexahedral mesh is generated upon.
(c) The remeshed David head and (d) a cross-section to show the interior structure.

of harmonic functions {~fi} which can be efficiently solved. Also, our adaptive

source/collocation points placement improves the numerical issue of MFS solv-

ing. Therefore, our algorithm largely improves the existing harmonic volumetric

mapping computation algorithm using MFS [2]. The new algorithm has better effi-

ciency and accuracy, and it supports feature points, curves, or surfaces alignment,

which is important for integrating/matching heterogeneous volumetric data that

have intrinsic interior structure. We demonstrate that harmonic volumetric map-

ping can be conducted on large data, heterogeneous data, and data with feature

to match, which can not be handled properly in [2].
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3.8. Hex Remeshing. (a) illustrates a hex-remeshed solid two-torus using the
the polycube of Fig. 3.5(a). The hex mesh on the polycube for remeshing solid kitten is
shown in (b). The remeshed kitten is illustrated in (c, d). (e)-(h) show the hex-remeshing
for a solid Chinese horse model.
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Chapter 4
Biharmonic Volumetric Mapping

In previous chapter, we studied the feature-aligned harmonic volumetric mapping

and solved it in an effective multi-level strategy. However, the bijectiveness of har-

monic volumetric mapping only has been proved to exist in several special types

of shape domains. In some highly complex shape domains the bijectiveness of

the harmonic volumetric mapping can not be guaranteed. In this case, we need ex-

plore an effective mapping computation framework through domain decomposition

methods. In this chapter, we introduce a new volumetric mapping method called

biharmonic volumetric mapping which is suitable for high complex shape domains

and heterogeneous objects.

4.1 Introduction

Computing lowly distorted volumetric mapping between two given objects is an

important geometric problem in computer graphics and visualization. It serves as

an important preprocessing step in many tasks in broad areas of compute-aided de-

sign and analysis, industrial manufacturing, medical image analysis, and etc. With

the advance of data acquisition techniques, massive volumetric models with many

multiple attributes and complex geometry are collected and need to be processed.

Surface mapping has been extensively studied and many effective algorithms have

been developed to handle shells of 3D objects. However, many real-world objects

are volumetric and have interior contents. Effective volumetric parameterization is

critical to process such data that have not only boundary geometry but also interior

material/structures. Due to the much more complicated topological and geometric

structures of 3-dimensional manifolds, existing volumetric mapping techniques are
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still inadequate. A desirable volumetric mapping model should usually have the

following properties:

1) Generality : many real-world volumetric models have complicated geometry

and interior structure (e.g. multiple material layers), therefore, the mapping

algorithm needs to be general and can handle data with nontrivial topological

types.

2) Efficiency : volumetric models usually have much bigger sizes, compared with

surface data, while computational efficiency is important in many engineering

applications.

An effective computation strategy to handle huge-size and geometrically complex

volumetric models is through divide-and-conquer based on model decomposition.

We can partition the complex model into solvable sub-domains for individual pro-

cessing. Such a partitioning is often desirable and sometime necessary. First, unlike

surface parameterization, bijective (i.e. no degeneracy or flip-over) volumetric map

may not exist globally between two solid models with complex geometry. Second,

volumetric models are often so big that the direct computation is prohibitive and

efficient computation conducted on smaller sub-domains is preferred.

3) Smoothness : a mapping indicates a transformation between two solid object-

s; it should be smooth, i.e., minimizing the stretch of the transformation

and thus physically natural. Individually computed maps on subparts should

compose a global map with smooth transition across the cutting interfaces.

4) Feature-preserving : volumetric models usually have different materials, rich

interior structures and features. The mapping should be feature-aware. For

example, corresponding features points/curves or layers of materials should

be aligned correctly.
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5) Linear Precision: if the mapping (deformation) of the boundary surface fol-

lows a linear transformation, an induced volumetric mapping in the interior

region that reproduces this transformation (see Section 4.4) is natural and

therefore desirable.

Our goal is to develop a volumetric mapping model with these desirable properties.

The harmonic function is widely used in shape mapping and deformation, be-

cause it indicates the vanishing Laplacian inside the domain. A volumetric map is

a harmonic map if all its three components are harmonic. It minimizes the stretch-

ing energy and therefore indicates a physically natural transformation between

two solid domains. A discrete harmonic mapping can be computed efficiently by

solving a linear system. However, harmonic volumetric mapping has its limitation

in a divide-and-conquer computation framework. Individually computed harmonic

maps could have undesirable discontinuity across the partitioning boundary in-

terface. Typically, one is only able to enforce C0 continuity across the mapping

boundary. In other words, we can have only the positional constraints on the

boundary points, but not their derivatives at the same time. Only C0 continuity

along the boundary interface introduces undesirable artifacts in parameterization

and subsequent applications such as meshing, texture mapping, deformation, and

physical simulations. Specifically, when volumetric parameterization is used for

iso-geometric analysis, higher continuity is often required.

Therefore, we propose to use a biharmonic model to construct the mapping

on decomposed sub-domains with C1 continuity. The boundary condition in both

positions and normal derivatives can be controlled, hence we can obtain better

smoothness across the cutting interface in a divide-and-conquer computation. Het-

erogeneous volumetric models with multiple materials can also be segmented and

parameterized in a similar manner.
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The main contributions of this chapter include:

1. We propose a biharmonic model to solve volumetric mappings for 3D het-

erogenous data, following the surface mapping and boundary normal con-

straints. Compared with the harmonic map, it provides better boundary

continuity control.

2. We develop a biharmonic volumetric mapping computation framework based

on the method of fundamental solutions. Complex models can be decomposed

and then parameterized effectively.

3. We demonstrate the effectiveness of our method on various models and show

its applications in hex-remeshing and temporal data analysis.

We organize the remainder of this chapter as follows. In Section 4.2, we formulate

the problem and give an overview of our method. Algorithm details on the bound-

ary positional constraint and normal derivative constraint configurations will be

discussed in Section 4.3.1 and Section 4.3.2, respectively. We discuss the properties

of biharmonic volumetric mapping and some implementation details in Section 4.4,

and show experiment results in Section 4.5. We apply our biharmonic mapping in

hex-remeshing and temporal data parameterization in Section 4.6.

4.2 Algorithm Overview
4.2.1 Problem Definition

We consider the computation of the mapping Φ : Ω → M , where volumetric

domains Ω,M ⊂ CR3 are embedded in 3-dimensional space.





∇4Φ = 0, in Ω,

Φ = f, on ∂Ω,

∂Φ
∂n

= g, on ∂Ω,

(4.1)
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where ∂Ω and ∂M denote the boundary surface of Ω andM , n is the surface normal

on the domain boundary, ∂Φ/∂n then denotes the outward normal derivative, f

and g are prescribed functions: f is decided by a given surface mapping f : ∂Ω →

∂M , and ∂Φ
∂n

indicates the derivative along the normal direction on each boundary

point. The mapping (vector function Φ) can be decomposed into three components

φ1, φ2, φ3 for x, y, z axis directions, each of which should be biharmonic.

Under reasonable (enough smoothness) assumption of f and g, the biharmonic

model in eq (4.1) can be uniquely solved given a pair of boundary conditions f

and g. A proof is sketched in the appendix. In our experiments, we found that for

most real-world volumetric data, our computed surface mapping f and derivative

constraint g satisfy this smoothness assumption.

4.2.2 Solving Biharmonic Mapping using MFS

Using the method of fundamental solutions (MFS) [77], the solution (for simplicity,

we use φ to denote each component φi) to equation (4.1) can be approximated by a

linear combination of fundamental solutions of both the harmonic and biharmonic

equations:

φ(h,b,Q,x) =

Ns∑

j=1

hjH(qj,x) +

Ns∑

j=1

bjB(qj,x) (4.2)

where

• kernels: H(qj ,x) = 1/(4π|qj −x|) is the fundamental solution of the harmonic

term, and B(qj ,x) = |qj − x|/(8π) is the fundamental solution of the bihar-

monic term;

• Q = {q1, . . . ,qNs} is a 3Ns-dimensional vector, representing the set of Ns

singularity points, each qj = [q3j−2, q3j−1, q3j ]
T ∈ CR3 denotes the position of

a singularity point,
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• h = [h1, h2, . . . , hNs]
T and b = [b1, b2, . . . , bNs]

T are vectors of harmonic and bi-

harmonic coefficients associated with these Ns singularity points, i.e. the degree

of the freedom to control the boundary fitting.

The vanishing bilaplacian operator on φ is enforced by the fundamental solutions

H and B, we only need to ensure the function satisfy the boundary condition.

This boundary fitting is performed on a set of Nc collocation points defined on the

domain boundary ∂Ω. The kernel function H(qj,x) with respect to qj (therefore,

can also be directly denoted as Hqj
(x)) is not defined on this singularity point

x = qj . Therefore, singularity points {qj} need to be sampled outside the function

domain, i.e., on a surface ∂Ω′ outside Ω, Ω ⊂ Ω′. It has been shown [2] that an

effective MFS system can be constructed by computing an offset surface outside

∂Ω then adaptively sampling {qj}.

To perform boundary fitting on each constraint point x ∈ ∂Ω, we evaluate

φ(x) using equation (4.2). The boundary constraints are then φ(x) = f(x) and

∂φ(x)
∂n(x)

= g(x). Enforcing these constraints on all collocation points reduces to a

linear system Aw = t, where the coefficient matrix A’s dimension is 2NC ∗ 2NS,

w is the unknown 2NS-dimensional coefficient vector [h,b]T , and t is the 2NC-

dimensional vector indicating the boundary condition evaluated on collocation

points. When NC > NS, this system is an over-determined system. With this

condition we can solve the system directly. Usually, the coefficient matrixA is dense

and ill-conditioned, we can use truncated Singular Value Decomposition (SVD) to

improve its numerical stability [2, 78]. In our work, we set NC < NS, and use a

regularization term to avoid over fitting (see Section 4.4.5). We found this approach

gives better numerical efficiency and stability in our mapping computation.

The biharmonic equation (4.1) can be solved using this above collocation method

through a 3-step pipeline: (1) place singularity and collocation points, (2) on col-
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location points, formulate boundary constraints evaluated by coefficients (to be

solved) associated with these singularity points, (3) solve a linear system to get all

the coefficients, enforcing the boundary constraints.

4.2.3 Mapping through Model Decomposition

When the volumetric regions Ω and M are simple, we can directly compute their

mapping φ : Ω →M using the above method. However, when Ω and M have com-

plex topology or geometry, mapping computation through a divide-and-conquer

scheme based on model decomposition is desirable. Specifically, we consistently par-

tition Ω andM into corresponding sets of sub-parts {Ω1, . . . ,Ωn} and {M1, . . . ,Mn},

such that the (1) topology of Ωi and Mi are the same and (2) the dual graphs of

their decompositions are isomorphic [1]. Then, on each corresponding pair Ωi and

Mi, we compute the volumetric mapping φi : Ωi → Mi using the above method

individually. The computation of this consistent decomposition and corresponding

boundary constraints include the boundary positional constraint function f and

the boundary normal derivative constraint function g is not the main focus of this

work, but will be briefly discussed in Section 4.3.

4.3 Boundary Condition Setting

This section elaborates the computation of boundary constraints f and g in equa-

tion (4.1).

The boundary positional constraint function f is decided by the boundary sur-

face mapping between ∂Ω and ∂M . In this work, we construct the surface mapping

f through model decomposition (Section 4.3.1).

Function g is usually unknown. In order to have smoothness across cutting

boundaries, we derive g from f by using a local to global affine approximation

technique, namely, we use local affine transformations to approximate a global
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mapping. It will ensure the unchanged normal derivative along the boundary in-

terface (Section 4.3.2).

4.3.1 Positional Constraints by Surface Mapping

We will first discuss our positional constraints setting on a simple volumetric do-

main then talk about the decomposition and mapping for complex models in the

divide-and-conquer scheme.

FIGURE 4.1. Decomposition and Mapping of the Boundary Surface of a 3D Model. (a-b)
shows the computation of the pants decomposition [1]. (c) illustrated the parameteriza-
tion of two corresponding pants patches, and the composed mapping.

Surface mapping on a single volumetric domain. To compute the volumet-

ric mapping φ : Ω →M , we need to solve the surface map f between the boundaries

∂Ω and ∂M . Cross-surface parameterization methods such as [79, 15, 1, 12, 13]

can be used for computing f . In this work, we use a harmonic inter-surface map

to serve as the boundary positional constraint of our biharmonic volumetric map.

We briefly recap our computation algorithm, which is based on [15, 1].

Given a surface ∂Ω with G genus and B boundaries, first, we remove the topo-

logical handles, and get a surface (base patch) ∂Ω′ with G + B boundaries and

some handle patch. If G + B = 1, ∂Ω′ is a topological disk ; if G + B = 2, ∂Ω′
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is a topological cylinder ; if G + B = 3, ∂Ω′ is a topological pants patch (a handle

patch is also a topological pants patch). For G + B > 3, ∂Ω′ can be decomposed

into several topological pants patches (See [1] for detailed constructive algorithm:

iteratively remove a pants patch from ∂Ω′ and reduce the boundary number of ∂Ω′

by 1, until ∂Ω′ itself becomes a pants patch). Figure 4.1(a-b) shows an example of

the pants decomposition.

Then, any ∂Ω, reduced to one of the above three topological types, can be param-

eterized using the harmonic map on the canonical disk, cylinder, and topological

hexagons. The corresponding patch ∂M is parameterized likewise. We can then

compose the parameterization and get the mapping f : ∂Ω → ∂M . Figure 4.1(c)

shows the process of parameterization of two corresponding pants patch over reg-

ular hexahedrons and the composed inter-patch surface map.

Divide-and-conquer scheme. Complex Ω andM can be decomposed into sub

solid parts {Ωi} and {Mi}. We need to have a new surface mapping scheme that

set up positional constraints between ∂Ωi and ∂Mi separately.

Many shape decomposition techniques have been developed in computer graphics

literature (see [80] and [81] for thorough surveys); most of these are for partition-

ing a single surface following its own geometry. Here, for the mapping purpose,

the partitioning of Ω and M need to be consistent (i.e., each sub-part Ωi has same

topology with its corresponding part Mi, and the dual graphs of these two decom-

positions are isomorphic). At the same time, decomposition of heterogeneous solid

domains may need to follow the materials, semantics, or geometry of the objects.

Volumetric decomposition is not the main focus of this work. Similar to [79, 12],

we first get the consistent decomposition on the surface. Then we use minimal

surfaces to fill the topological disks along the interior boundary interface.
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To obtain the consistent volumetric decomposition, we first get the consistent

surface decomposition. Conventional consistent surface mesh segmentation is done

interactively [12, 82], via tracing shortest paths connecting manually placed mark-

ers. It can also be computed using automatic manner using such as [1, 12].

In our experiments, we first compute the consistent surface decomposition and

inter-surface mapping using the algorithm of [1]. Then it can be extended into

the interior volumes. It is computed through a consistent region growing upon the

tetrahedral meshes [83]. We start with the compatible skeletal graphs of the two

given models, and simultaneously propagate towards boundary with guaranteed

visibility. Such a growing can ensure the topologically coherent adjacency relation-

ship among neighboring sub-regions and provide a consistent volumetric decompo-

sition (the dual graphs of decompositions of the two models are isomorphic). More

implementation details can be found in [83]. Through this way we can decompose

the Ω andM into n subregions that Ω = {Ω1,Ω2, . . . ,Ωn},M = {M1,M2, . . . ,Mn}.

For each φi : Ωi → Mi, we can compute it using the above surface mapping algo-

rithm for single volumetric domain.

4.3.2 Normal Derivative Constrains by Affine
Approximation

In this section, we give an algorithm to compute the normal derivative function g

by using affine approximation.

When we handle heterogeneous and decomposed volume data, we want to enforce

higher continuity across the cutting interface. Since any directional derivative can

be decomposed into the tangent derivative and normal derivative, so C1 continuity

consists of tangent derivative continuity and normal derivative continuity. From

differential geometry, we know tangent derivative continuity can be ensured by the

consistence of positional constraints. Then we need to choose a function g as the
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normal derivative function such that the derivative of the mapping will not change

when it goes across the sub-region boundaries.

Here we adopt an affine approximation method to set normal derivative bound-

ary condition g for constraint points. We build an affine transformation matrix for

each constraint point. Then we define normal derivative function g on this point ac-

cording to this local affine function. Given the surface mapping f : ∂Ω → ∂M . For

a vertex x ∈ ∂Ω, whose one-ring neighboring vertices are x1, x2, . . . , xn (Fig. 4.2),

we compute a local affine function Φx(x) = Ax ×x+Dx, x ∈ ∂Ω. The global map-

ping is Φ(x) = {Φx(x)} for x ∈ ∂Ω. So the normal derivative boundary condition

of the biharmonic function Φ is given as ∂Φ(x)
∂n

= AT
x × n on point x.

The Ax, Dx on each point x ∈ ∂Ω can be computed from the surface mapping

on the one-ring region in the following linear system





f(x1) = Ax × x1 +Dx

f(x2) = Ax × x2 +Dx

...

f(xn) = Ax × xn +Dx

(4.3)

where Ax is 3 × 3 and Dx is 3 × 1. We solve this system using the least square

method to get Ax, Dx. If the affine transformation is degenerated, e.g., a planar

local region is transformed into another planar region, the rank of the coefficient

matrix of the system (4.3) reduces to 3 and the linear system becomes under-

determined. We still compute Ax, Dx that are the least squares solutions and have

the smallest L2 norm.

For a point x along the boundary interface, no matter which volumetric region

it belongs to, it will be mapped to a same target point f(x). According to our

computation of Φx(x), the point from different volumetric regions will get the
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FIGURE 4.2. Local Linear Approximation. x1, x2, ..., x6 are the one-ring of the vertex x,
under the surface mapping f they becomes f(x1), f(x2), ..., f(x6). In this local region, f
is approximated by the linear transformation Φx(x).

same value of Ax, Dx. That is, it will have the same normal derivative function gx.

So we can see the point along the boundary interface, it not only keeps position

consistence through boundary surface mapping, but also has normal derivative

consistency. We also show in Section 4.4 this biharmonic volumetric mapping keeps

linear precision property.

4.4 Properties, Implementation, and

Evaluations

In this section, we discuss properties, implementation details, and evaluations of

our volumetric mapping.

4.4.1 Linear Precision Property

A function φ has the linear precision property if it can reproduce a linear function

exactly: given a set of function values of φ(vi) = r(vi), vi ∈ ∂Ω for any linear

function r, then φ(x) = r(x), x ∈ Ω [84].

Linear precision property is desirable in describing shape deformation [34]. For

example, when the boundary surface transforms rigidly, it will be natural to see

the interior region also transforms in the same rigid manner.
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Linear precision of harmonic maps. Suppose φ is a harmonic function, i.e., it

is a solution to Laplace’s equation: ∇2φ(x) = 0, x ∈ Ω, and satisfies the boundary

condition φ(vi) = r(vi), vi ∈ ∂Ω, where r(x) is a linear function. Then since φ and r

satisfy the same boundary conditions and are both solutions to Laplace’s equation

(the linear function r is also a harmonic function), by the uniqueness of solutions

to Laplace’s equation, they must be the same function φ ≡ r. So the harmonic

mapping φ keeps the linear precision property [85].

Linear precision of our biharmonic maps: Whether biharmonic mapping

has the linear precision property is determined by the setting of its boundary con-

dition. When its boundary positional constraints are decided by a linear function,

using our normal derivative setting discussed in the last section, the computed

biharmonic map has the linear precision property.

Suppose the surface mapping f is a global linear transformation φ(x) = r(x) =

Ax+D, x ∈ ∂Ω. The local linear function φx(x) = Ax×x+Dx where Ax andDx are

computed from its one-ring transformation, and we have φx(x) = φ(x) = Ax +D

(i.e., Ax = A,Dx = D). The normal derivative function ∂φ(x)
∂n

= g = {gx|x ∈

∂Ω} = {AT
x ×n|x ∈ ∂Ω} = AT ×n. While ∂r(x)

∂n
= AT ×n. So, we have ∂φ(x)

∂n
≡ ∂r(x)

∂n

and φ(x) ≡ r(x), x ∈ ∂Ω. Also φ, r are both solutions to biharmonic’s equation

(∆2r(x) = 0, since r is a linear function). According to the uniqueness solution of

biharmonic’s equation [86], we have φ ≡ r. Therefore, this biharmonic mapping

keeps the linear precision property.

4.4.2 Mapping Bijectivity

Bijectivity should usually be ensured in mapping computation. For general giv-

en shapes, finding volumetric mapping with guaranteed bijectivity is usually very

difficult. To our best knowledge, mapping construction algorithms with guaran-

teed bijectivity are only known on simple shapes such as convex or star regions.
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Our biharmonic model, like the harmonic map, can not guarantee the mapping

bijectivity when the two given models are general shapes. However, our idea of

processing complicated models through decomposition and divide-and-conquer is

one potential direction to avoid the degeneracy/flipover caused by the model’s

complex topology/geometry. The shape will be decomposed into sub-parts with

simple geometry, whose parameterization is more often bijective.

In practice, we can check the bijectivity of a parameterization by computing

the Jacobian value on each tetrahedron or hexahedron (after remeshing). If all

Jacobian values are larger than 0, then this piecewise linear mapping function is

bijective. For regions with negative Jacobian, it is also possible to develop heuristic

adaptive decomposition to further partition these regions. In our experiments, we

have performed this Jacobian evaluation, and observed that following our proposed

boundary condition, the resultant biharmonic mapping remains bijective. Figure

4.8(d)(h) lists our computed Jacobian statistics.

4.4.3 Other Boundary Condition Setting Strategies

A unique biharmonic mapping can be specified by the positional constraint function

f and normal derivative function g. The position constraints are decided by the

surface mapping f between boundaries of the source Ω and the boundaries of target

model M .

A harmonic inter-surface map is a simple choice for f . We can analyze its con-

tinuity across the boundary of adjacent sub-parts. Any directional derivative can

be expressed by the combination of the normal derivative ∂
∂n

and two tangential

derivatives ( ∂
∂τ1

, ∂
∂τ2

) with the absolute value of coefficients less than one.

∂

∂d
= cosα

∂

∂n
+ cosβ

∂

∂τ1
+ cosγ

∂

∂τ2
; (4.4)
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where the direction cosine of d is (cosα, cosβ, cosγ) along the direction n, τ1, τ2 and

cosα2 + cosβ2 + cosγ2 = 1.

Using harmonic surface mapping, the only discontinuity issue could appear on

the segmentation curves on the boundary surface. On each such curve c shared by

two adjacent regions, the harmonic surface mapping can guarantee C1 continuity

on the normal direction n and the tangential direction τ1 along c. Therefore the

difference of the any directional derivative from the adjacent domains is bounded

by the difference of the tangential derivatives ∂
∂τ2

resulting from the the separately

computed surface harmonic maps. This term is usually quite small. In most of our

experiments, |∂f1
∂τ2

− ∂f2
∂τ2

| < 0.02.

Using biharmonic surface mapping with a carefully developed boundary con-

dition will provide first order smoothness along the cutting curve on the surface

boundary. However, solving a 4th order biharmonic equations on the surface is

much more expensive. Harmonic mapping is also biharmonic and provides relative-

ly good boundary condition, so we simply use it for boundary positional constraint.

After fixed the surface mapping f , then each given derivative function g will indi-

cate a unique specific biharmonic mapping. Besides using our linear approximation

method to decide function g, here we also explain two other ways to construct g.

Harmonic-based boundary condition. This boundary condition first needs

to compute the harmonic volumetric mapping in each region. Then it computes

each biharmonic volumetric mapping with g equals to the average value of the

normal derivative of its neighboring harmonic mappings.

We can see in this case if there is only one region, the resultant biharmonic

mapping will be exactly the harmonic mapping. If there are more than one region,

the intuition behind it is to both capture the harmonic mapping’s good properties

and improve the continuity along the boundary interface. We can verify that this
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boundary condition has C1 continuity and also keeps linear precision property (See

Appendix for details).

The main disadvantages of this boundary condition setting is its increased com-

putation complexity, since the computation of the g is based on the harmonic

results. The total computational time doubles.

Clamped boundary condition. Another natural yet simple setting is to have

g = 0. Setting the normal derivative function to zeros gives an implicit tangent

boundary condition. This is different from the harmonic solution which has tangent

discontinuity. We can see this boundary condition also satisfies ∂Φ1(x)
∂n1(x)

= ∂Φ2(x)
∂n1(x)

= 0,

when x ∈ ∂Ω12. So it has C1 continuity along the boundary interface. But it does

not keep linear precision property, because ∂Φ1(x)
∂n1(x)

= 0 which is usually inequivalent

to ∂r(x)
∂n

= AT × n.

4.4.4 Measuring Mapping Distortion

Our computation algorithm does not depend on a tessellation of the volumetric

region Ω and it has closed form. In order to measure the mapping distortion, we

implement a metric on the tesselated tetrahedral mesh of Ω (without ambiguity,

we also denote this tet-mesh as Ω). We evaluate the mapping φ(vi) for each vertex

vi ∈ Ω, while linearly interpolate the mapping inside each tetrahedron. Considering

the Jacobian of the transformation defined on each tetrahedron, we can measure

its condition number. As suggested in [87], such a condition number is an indicator

of the Jacobian and is invariant to scale and rotation.

Suppose a tetrahedron T consists of four vertices vn, n = 0, 1, 2, 3 with coordi-

nates Xn ∈ R3. Define edge vectors ek,n = Xk −Xn with k 6= n and k = 0, 1, 2, 3.

Vertex vn has three incident edge vectors, en+1,n, en+2,n and en+3,n, where all the

indices are modulo four. The Jacobian matrix at node n, denoted by MT,n, is
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composed of the columns of these edge vectors, namely,

MT,n = (−1)n(en+1,n, en+2,n, en+3,n).

Suppose under the mapping, the original tetrahedron deforms to a new tetra-

hedron T ′, whose corresponding matrix is MT′,n. Consider the matrix Sn that

transforms MT,n to MT′,n. Then Sn = MT′,n ·M−1
T,n. We can verify that Sn is in-

dependent of n. Therefore we write S = MT′,n ·M−1
T,n. Then the condition number

of a tetrahedron is:

k(S) = |S||S−1|,

where MT,n is invertible when T has the positive volume. k(S) measures the condi-

tion number of the transformation between the original and mapped tetrahedron.

We adopt the Euclidean norm of S: |S| = [tr(STS)]1/2, then k(S) ≥ 3 where in the

optimal case k(I) = |I||I−1| = 3. We use k(S) to evaluate the volumetric mapping

computed on tetrahedral meshes.

Fig. 4.3 shows a comparison on the polycube parameterization of Max-Planck

model (also see Fig. 4.8(a,b)), using harmonic and biharmonic mappings. From the

distributions of the tetrahedral condition numbers shown in Fig. 4.3 (a,b), we can

see that the biharmonic mapping and harmonic mapping have similar stretching

distortion. But for the boundary elements, the biharmonic model introduces less

stretching in their transformations. This is visualized in Fig. 4.3 (c,d), where the

boundary tetrahedra deformed from polycube domain under biharmonic mapping

are less stretched than the deformation guided by the harmonic map.

4.4.5 Improving Computation Efficiency

In Section 4.2.2, the boundary fitting for φ is formulated as solving a linear system

Aw = t and it is solved by using SVD. However, SVD decomposition is slow for

large matrices. To handle complex volumetric data, we have to restrict the size
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FIGURE 4.3. (a) The tetrahedral condition number distributions of the harmonic and
biharmonic maps; (b) the tetrahedral condition number on the boundary elements; (c,d)
Polycube parameterization of the Max-Planck model using harmonic and biharmonic
mappings, (c) shows the deformed tetrahedra mesh under the harmonic map, while (d)
shows the deformed tetrahedra mesh under the biharmonic map.

of constraints points and singularity points NC and NS. This may significantly

reduces the boundary fitting accuracy: either we lack enough particles (when NS

is small) for designing fine fields to fit the boundary condition, or we lack enough

constraint points (when NC is small) to sample and reflect the shape variance on

the boundary. In [3], the truncated SVD is used to avoid overfitting and improve the

numerical stability and efficiency. The computation of SVD is still very expensive

for big solid models.

To improve the stability (overcome the singularity of the linear system and

avoid over-fitting) and improve the efficiency of the boundary fitting, we apply

an additional regularization term to impose penalty on the norm of coefficients of

singularity points, which is also known as ridge regression [88],

E3 =

NS∑

j=1

h2j +

NS∑

j=1

b2j .

The new boundary fitting is formulated as minimizing

E = E1 + E2 + αE3, (4.5)

where

E1 =

NC∑

i=1

∣∣∣∣∣∣

NS∑

j=1

(hjH(qj ,pi) + bjB(qj,pi))− f(pi)

∣∣∣∣∣∣

2

,
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E2 =

NC∑

i=1

∣∣∣∣∣∣

NS∑

j=1

(hj∇H · n(pi) + bj∇B · n(pi))− g(pi)

∣∣∣∣∣∣

2

,

and {p1, . . . ,pNC
} are a set of constraint points sampled on the domain boundary

pi ∈ ∂Ω. α > 0 is a parameter which controls the weight balance of boundary

fitting and regularization. Note that (4.5) is still quadratic, which could be de-

noted as E = 1
2
xtrAx + btrx + c, where the positive definite matrix A can be

pre-assembled. With an appropriate α, the minimization of this quadratic energy

E can be efficiently solved using LU-decomposition. Compared with SVD, this will

significantly improve the computational efficiency and numerical stability. There-

fore, this framework can now handle big volumetric data more efficiently.

TABLE 4.1. Statistics Comparison between the SVD solver [3] and the new solver. The
constraint point ratio Nc/NΩ and source point ratio Ns/NΩ are 0.4 and 0.8 respectively,
where NΩ is the number of vertices on the source boundary surface ∂Ω. The computation
time is measured in seconds.

Model LU SVD

Model Name NΩ Time
Boundary Fitting

Error
Time

Boundary Fitting
Error

Omotondo/Sphere 3002 54.66 0.4308165e-3 555.31 0.13626636e-2

PCube/2-Torus 6622 388.32 0.2532e-3 3626.03 0.1e-2

Sphere/Max-Planck 9002 946.08 0.111371e-4 8568.29 0.1890862e-3

Sphere/Igea 15002 469 0.46195e-5 1180 0.8689456e-3

To pick a suitable parameter α, we first show that α is related to the con-

dition number of the coefficient matrix A. The numerical stability of the sys-

tem depends on the condition number of the coefficient matrix. Smaller condition

number indicates better numerical stability. Suppose we set a threshold value K

for the condition number of A, namely, to make cond(A) ≤ K. Then from E-

qn. (4.5), E = E1 + E2 + αE3, the coefficient matrix A also consists of 3 terms

A = A1+A2+αA3 where the semi-definite matrix A1 comes from E1, semi-definite

matrix A2 comes from E2, and diagonal matrix A3 comes from E3.
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We can compute the singular value of A1 + A2. Let σmax be the maximum

singular value of A1+A2 and its minimum singular value is 0 (since A1 and A2 are

under-determined). Also the singular value of A3 is 1. So the condition number of

the matrix A is cond(A) = α+σmax

α
. From cond(A) ≤ K, it has α+σmax

α
≤ K and

σmax

K−1
≤ α.

Second, according to [89], if we solve the linear system Ax = b by LU decompo-

sition, and the elements of A and b are accurate up to s decimal places to the left

of the decimal point (s ≈ 10−13 based on IEEE 754 float type) and cond(A) ≈ 10t,

where t ≤ s, then the computed solution is accurate to about s− t decimal places

to the left of the decimal point.

So, we set the threshold value of condition number K based on the desired

accuracy of the solution, then calculate α from such K. In our experiments, we

take K ≈ O(106), then the computed solution is with O(10−7) accuracy. For the

spherical mapping of the Omotondo model, we have σmax = 36825.09 and set

K = 2.5 ∗ 106, then α ≥ 36825.09
2.5∗106−1

≈ 0.015. Similar computation can be applied in

other models.

We test this on several models and show the side-by-side comparison on their

running time and boundary fitting error, using same numbers/positions of source

and constraint points. And the boundary fitting error is the average squared dis-

tances |f(pi)−Φ(pi)|
2,pi ∈ ∂Ω between the target boundary points and the images

of boundary points under the mapping. The results are shown in table 4.1, which

shows the improvement on both the computation efficiency and fitting accuracy.
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4.5 Experimental Results

We implement our mapping computation in C++ and perform experiments on a

3GHz Pentium-IV PC with 4G RAM. Our experimental data include the hetero-

geneous data and decomposed volume data.

4.5.1 Mapping Heterogeneous Volume Data

FIGURE 4.4. Parameterization of an heterogeneous Head Model onto a Cube Do-
main(surface vertex number is 20k). (a)The cube domain, (b) the head model, with
the brain region to be mapped onto the interior cube in (a). The derivative discontinuity
(δn = |∂Φ1

∂n − ∂Φ2
∂n |, x ∈ ∂Ω1) of the harmonic mapping (c) versus biharmonic mapping

(d). Mapping distortion and boundary smoothness are also illustrated through paramet-
ric coordinates in (e) and (f), shown from a cross-section along Y-axis. (g-i) visualize
the biharmonic mapping distribution using the transferred distance field: (g) the original
distance field; (h,i) the transferred fields in x and y directions.
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Figure 4.4 illustrates an example of multiple-layered volumetric model. We try

to parameterize a head model (b) onto a cube domain Ω (a), with the brain region

and the other layers being handled separately: we want the brain region M1 ⊂M

inside the head to be mapped to the smaller cube region Ω1 inside Ω, and we denote

the region outside the brain as M2 = M\M1, whose corresponding parametric

domain is Ω2 = Ω\Ω1. If we consider the volumetric mapping on both M1 and M2

: Φ1 : Ω1 → M1 and Φ2 : Ω2 → M2, naturally, along the brain cortex iso-surface

∂Ω1, we want the mappings Φ1 and Φ2 to be smooth and obtain not only the

positional continuity but also derivative consistency. If the harmonic volumetric

mapping is used to handle both regions separately, then the derivative transition

along the isosurface is not smooth, as indicated by the parametric coordinates in

(e) . When we use the biharmonic volumetric mapping, we can guarantee the nice

derivative smoothness, as shown in (f). The derivative discontinuity δn = |∂Φ1

∂n
−

∂Φ2

∂n
|, x ∈ ∂Ω1 is computed and color-encoded in (c) and (d) to show numerically

the mapping smoothness along the cutting boundary. Through the side-by-side

comparison, biharmonic mapping demonstrates much better smoothness. We also

use the color-encoded distance field to visualize the mapping result. When a map

Φ : Ω →M is computed, the color-encoded (red indicate the maximum while blue

indicates the minimum) distance field defined on one object can be transferred

to the other, by plotting the color of a point P ∈ Ω on its corresponding image

φ(P) ∈ M (or inversely, plotting the color of P ∈ M on φ(P) ∈ Ω). We visualize

the biharmonic volumetric mapping result in (g-i) by the transferred distance field

from head/brain to the cube. Figure (g) shows the distance field defined on the

head/brain domain while the transferred distance field are shown in (h) and (i)

from cross sections in x- and y- directions.
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4.5.2 Mapping Decomposed Volume Data

FIGURE 4.5. Biharmonic Mapping on Decomposed Models. (a) decomposition of a solid
torus model; (b) a corresponding parametric domain; (c) color-encoded distance field
on the parametric domain; (d) transferred distance field under the mapping; (e) bound-
ary derivative errors δn under both harmonic and biharmonic mapping indicates the
biharmonic mapping leads to smooth derivative transition.

FIGURE 4.6. Biharmonic Mapping on Decomposed Models. (a) decomposition of a solid
rocker-arm model; (b) a corresponding parametric domain; (c) color-encoded distance
field on the parametric domain; (d) transferred distance field under the mapping; (e)
boundary derivative errors δn under both harmonic and biharmonic mapping indicates
the biharmonic mapping leads to smooth derivative transition.

Figure 4.5 and 4.6 show our biharmonic mapping computation applied on de-

composed Torus and Rocker-arm models. The decomposition of the torus and

Rocker-arm are illustrated using colors in (a). The corresponding target shape is

shown in (b). We parameterize each sub-region of torus onto a convex cell (as indi-

cated by the corresponding color). Adjacent sub-regions share a surface interface

and we enforce the positional consistency as well as the derivative constraint g with

local linear approximation setting across the boundary. The color-encoded distance

field computed on each convex shape (c) is transferred into the rocker-arm (d) (i.e.

the color of each point x on Ω is rendered on Φ(x) ∈M) to visualize the mapping
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result. Figure 4.5(e) and Figure 4.6(e) illustrate the normal derivative discontinuity

δn along the cutting boundary. Compared with harmonic mapping, our biharmonic

mapping with derivative boundary condition enforced along the cutting boundary

brings a parameterization with smooth derivative transition across the boundary.

4.6 Applications

In this section, we apply our model in the hex-remeshing and 3D dynamic temporal

data registration.

4.6.1 Hex-remeshing

FIGURE 4.7. Biharmonic Mapping on Isis Decomposed Model(surface vertex number
is 20k). (a) The polycube domain; (b) the corresponding Isis parametric domain; The
regular hex-structure on the cubes transferred onto the Isis model using (c) harmonic
mapping and (d) biharmonic mapping.

The hex-remeshing converts the tessellation of a volumetric model from a tetra-

hedral mesh to a hexahedral mesh. An effective hexahedral remeshing is desirable

in many scientific and engineering tasks such as finite element simulation and

iso-geometric analysis, because a high-quality hexahedral mesh can significantly

facilitate the computation and analysis in many of these tasks.
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FIGURE 4.8. Biharmonic Polycube Mapping for Hex-remeshing. A cube model (surface
vertex number: 12.5k) (a) is used to parameterize the Max Planck’s head model (b), and
the resultant hexahedral meshing of the Max Planck model is shown in (c). A poly-cube
model (surface vertex number: 100k) (e) is used to parameterize the Chinese horse model
(f), and the resultant hexahedral mesh is shown in (g). (d) and (h) show the distributions
of Jacobian value of the deformed hexahedra.

We apply our biharmonic volumetric mapping to hex-remeshing through the

polycube domain. A polycube domain is a shape glued by a lot of small regular

cubes [90]. The basic idea is to compute the mapping between a solid modelM and

a solid polycube domain Ω. Then on Ω we can sample points regularly and obtain

a perfect hexahedral mesh, then with the mapping this hexahedral mesh can be

transformed into the geometry of M . If the mapping φ has very small distortion,

the generated hexahedral mesh for M has very good quality.

In our experiment, we construct the polycube domain and obtain the surface

mapping between the model and the polycube boundary using the method intro-

duced in [82], then compute the volumetric mapping use the algorithm we pro-

posed. We also compare our result with that generated through harmonic volu-

metric mapping suggested in [2].

Figure 4.4(e,f) show an example of hex-remeshing of heterogeneous volumet-

ric models. The side-by-side comparison shows that compared with the harmonic
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mapping, the biharmonic mapping generates a more smooth and therefore more

desirable hexahedral mesh.

Figure 4.7 shows the parameterization of the Isis model M (b) to the polycube

domain Ω (a). M is decomposed into two sub-parts: M = {M1,M2}, where M1 is

mapped to the upper cube and M2 is mapped to the lower cube. The transferred

hex-meshes from the polycube to Isis model are shown in (c) and (d), based on

the harmonic and biharmonic volumetric mappings, respectively. We can see the

biharmonic mapping provides significantly better smoothness along the cutting

boundary.

We show some more biharmonic polycube hex-remeshing results in Figure 4.8.

We parameterize a Max planck’s head model (b) onto a unit cube (a), then the

remeshed model is shown in (c). The hex-remeshing of a Chinese-horse model is

shown in (e-g). We use the scaled Jacobian metric [91] which has a range [-1,1] with

1 being optimal to measure the quality of the generated mesh. The distribution of

the Jacobian value in (d,h). And our results are comparable to the paper [92].

4.6.2 Consistent Parameterization of Temporal Data

Another application of our biharmonic volumetric mapping is registration. Regis-

tration has been a ubiquitous technique, which is widely used in many applications

in computer vision, computational medicine, and etc. An accurate registration in-

dicates the natural differences between models in a quantitative way, and benefit

the subsequent analysis tasks. Here we use a medical example to demonstrate the

usage of biharmonic volumetric mappings in 3D dynamic temporal registration

(See next chapter for more detail).

Our experiment is conducted on the temporally scanned lung data collected

during multiple respiratory cycles of some patient having the lung tumor. The

goal is to accurately register the deforming volumetric region, so that the tumor’s
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deformation (and its related motion) can be described, analyzed, and used to guide

the subsequent radiation (in which the the beam should correctly target the tumor

without touching surrounding normal organs or tissues) [93].

Due to the natural heterogeneous property of the data we need to handle, the

model decomposition is desirable. Also it is necessary to preserve the C1 continuity

across the boundary of lung and tumor domains. For example, for vessels that are

surrounding organs and tissues, as shown in Figure 4.9, when we segment the or-

gan from the surrounding environment, these vessels are also cut apart across the

partitioning boundary. Transformations (mappings) inside and outside the parti-

tioning boundary are computed separately but their transitions shall naturally be

smooth.

FIGURE 4.9. Vessels Near the Tumor.

Figure 4.10 shows some registration/matching results computed using bihar-

monic mapping. In (a), the volumetric models are extracted from three different

time frames during one respiratory cycle. We parameterize all these data onto a

common sphere domain for the consistent parameterization. To analyze the motion

and deformation of the tumor region (red), it shall be mapped onto the red small

sphere, while the left region of its surrounding lung tissue shall be mapped to the

left outside region. Then we compute our biharmonic model on these two sub-parts
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separately while preserving C1 continuity along the iso-surface. The mapping re-

sults are visualized using the transferred distance field from the canonical domain

(b) to each model shown in (c). With the consistent parameterization over the

canonical sphere, the registration between any pair of the models can be comput-

ed immediately, as shown in (c). The motion and deformation of the entire lung

region can then be depicted on the sphere domain, and used to predict the tumor’s

trajectory.

FIGURE 4.10. Dynamic registration of the heterogeneous lung/tumor models (total sur-
face vertex number is 20k). (a) The sphere domain and deformed lung/tumor models;
(b) The distance field of the sphere domain; (c) The transferred distance field and reg-
istration results of lung/tumor models.

4.7 Summary

We propose a biharmoinc volumetric mapping computation framework using the

fundamental solution method. Compared with harmonic mapping, the biharmonic

mapping allows better boundary control. In a divide-and-conquer computation

framework for mapping huge, complex, or heterogeneous volumetric models, this

biharmonic model is desirable because it can provide nice smoothness across the

cutting boundary. Our proposed boundary derivative setting algorithm can ensure

the linear precision property of our biharmonic transformation. Compared with

harmonic mapping based on fundamental solutions [2, 3], our new solving scheme

is also more accurate and efficient.
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One limitation of our current volumetric mapping framework is that this map-

ping result depends on the boundary surface mapping. Intuitively, the volumetric

mapping and its boundary surface mapping are closely related to each other. S-

moother boundary surface mapping will give us better volumetric mapping. How-

ever, instead of computing surface mapping first, directly solving the volumetric

mapping could be more natural in some scenarios. We will explore along this di-

rection in the near future.

We will also explore the computation of biharmonic inter-surface mapping, and

the numerical improvement of the computational efficiency and accuracy. Further-

more, we will explore other applications of biharmonic volumetric mapping.
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Chapter 5
Medical Application

In previous chapter, we introduced two works in volumetric mapping for hetero-

geneous volumetric data. And biharmonic volumetric mapping can ensure higher

continuity along the boundary.

In this chapter, we will build a computational framework for modeling the respi-

ratory motion of lung tumors based on the biharmonic volumetric mapping. This

framework provides a 4D parametric representation that tracks, analyzes, and mod-

els movement to provide more accurate guidance in the planning and delivery of

lung tumor radiotherapy.

5.1 Introduction

Lung cancer is the most common cause of cancer related deaths in the US, with

only 10 to 15 percent of lung cancer patients surviving five years after diagnosis.

more than half of all solid tumors receive external beam ionizing radiation as part

of treatment that combines radiotherapy with chemotherapy or with surgery and

chemotherapy. The ultimate goal of radiation treatment, or radiotherapy, is to

treat the disease while avoiding damage to the normal tissue and critical organs

that surround the tumor.

Much research is directed to lung can radiotherapy, yet there is room for signifi-

cant improvement. Conventional radiotherapy involves administering a prescribed

tumor-killing dose, typically around 50 to 70 Gray (Gy: a unit of absorbed radiation

dose) over anywhere from 25 to 35 sessions, or treatment fractions.

Technological advances and a deeper understanding of radiobiology–the study of

how human tissue responds to high doses of x-ray radiation therapy–have enabled

67



two alternative. The first is to deliver the same total dose in significantly fewer

fractions, say one to five, and accompany delivery with improved image guidance

using offline and online projection x-ray imaging and computed tomography(CT).

The second is to increase the total radiation dose using the historical dose per

fraction(2Gy) with the same image guidance. Literature on lung tumor irradiation

have frequently cited the benefits to local tumor control of escalating the dose per

fraction.

The spatial relationship of lung tumors with important normal tissue structures,

such as the spinal cord, esophagus, heart, brachial plexus, normal lung tissue,

bronchial tree, and trachea, make total dose escalation infeasible in many cases.

Moreover, the motion of tumor during respiration complicates radiation treatment

planning for lung cancer. The respiratory cycles also involves movement of normal

tissue structure. This movement heavily influences tumor motion, which in turn

affects the tumor’s surrounding organs. For these reasons, treatment planning for

intrathoracic radiation (radiation within the chest cavity) requires tools that can

provide the highest delivery precision and accuracy.

To meet that need, we propose a lung tumor modeling and computational frame-

work that facilitates the tracking and prediction of respiratory movement and the

deformation of organs surrounding the tumor. Preliminary results of our frame-

work’s application show that, relative to existing methods, it is more accurate and

computationally efficient in the radiotherapy treatment of lung cancer. It is also

flexible enough to generalize to the radiotherapy treatment of other pathologies.

5.2 Radiotherapy’s Challenges

Radiotherapy treatment typically begins with the patient entering the radiation

treatment room and lying supine on the treatment table, as in Figure 5.1. For lung
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radiotherapy treatment, the patient is generally in a customized immobilization

device to limit natural motion during treatment. In-room lasers ensure that the

patient is in the right 3D position with respect to the radiation treatment machine.

FIGURE 5.1. A patient being treated with external beam radiotherapy using a Varian
linear accelerator. Accuracy is essential in lung cancer treatment because respiratory
movements can cause the tumor and its surrounding tissue to move and change shape.

Outside the treatment room, physicians and staff take mega- and kilovolt images

of the patient to make sure that the subsequent radiation will adequately treat

the tumor. Finally, the radiotherapist initiates the radiation treatment, carefully

monitoring the patient during the process.

Studies have amassed considerable scientific evidence on both the benefits of dose

escalation and the perils of normal tissue toxicity, and there have been tremendous

gains in radiotherapy planning and delivery precision. These developments have

made it critical for radiotherapy treatment to accurately capture the geometry
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of the temporarily deforming organ, particularly in lung cancer radiotherapy, in

which respiratory motion causes thoracic anatomy to change continuously in all

four dimensions–3d space and time.

The ideal radiotherapy guidance requires complete spatiotemporal knowledge of

the movement and deformation of the volume–the region that includes the solid

tumor and surrounding tissues and organs–to be treated. However, pretreatmen-

t imaging remains one of the weakest aspects of current radiotherapy guidance.

Typically, radiotherapists use 4DCT to acquire raw CT images or projections over

several respiratory cycles. An external motion monitor aids in phase or amplitude

sorting, placing projections into bins according to respiratory phase or displace-

ment, respectively. Pretreatment imaging ends with the generation of a time series

of 3D volumes, which describes the volume’s motion over a single representative

cycle.

Typically, radiotherapists use a maximum- or average-intensity projection (MIP

or AIP) from all phases to define a motion-inclusive internal target volume. The

MIP represents the superposition; the AIMP is the average. The internal target

volume servers as the basis for a treatment plan and becomes the ground truth for

the subsequent radiotherapy stages.

Although researchers have proposed various strategies to improve 4DCT-based

planning and delivery paradigms, several fundamentally challenging issues remain

to be tackled:

One issue is cycle-to-cycle complexities. As Figure 5.2 shows, respiratory motion

is more complex than a single cycle can characterize. MIF and AIP images do not

account for these complexities, which can lead to errors. Another challenges stems

from forcing CT projection data from several cycles into a few respiratory phase

bins, which can lead to severe artifacts. Figure 5.3 shows some examples of these
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severities. Indeed, one study found that 45 of 50 patients had at least one artifact,

ranging in size from 4.4 to 56.0 mm (mean magnitude of 11.6mm).

FIGURE 5.2. Representative lung tumor motion traces recorded from four patients us-
ing the Synchrony system. The traces are indicative of the wide variety of respiratory
patterns that are observed clinically. (Image from Y.Suh et al., ”An Analysis of Thoracic
and Abdominal Tumor Motion for Stereotacic Body Radiotherapy Patients,” Physics in
Medicine and Biology, July 2008, pp. 3634-3640.)

Finally, at 29 to 40 milliSieverts (mSv: Sievert is the unit of any of the quantities

expressed as dose equivalent), the equivalent dose for 4DCT is about four times

higher than that for 3DCT (3 to 10 mSv). Such a high imaging dose discourages

more frequent imaging and long-term monitoring.

These challenges make it highly desirable to have a computational radiotherapy-

guidance strategy that users a 4D motion model developed from 4D magnetic

resonance imaging (MRI) and a planning 3DCT acquired at a reference phase.

The idea is to update the model with real-time position information and then

deliver the corresponding updated radiation fluence map (a 2D map of the x-ray

intensity distribution from the medical linear accelerator).
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FIGURE 5.3. Examples of motion-induced artifacts observed in lung 4DCT. Clockwise
from top left: blurring, duplicate, incomplete, and overlapping artifacts. (Image from
T.Yamamoto et al., ”Retrospective Analysis of Artifacts in Four-dimensional CT Images
of 50 Abdominal and Thoracic Radiotherapy Patients,” Int’l J. Radiation Oncology,
Biology, and Physiology, vol.72,no.4,2008,pp.1250-1258.)

5.3 Computational Framework

To accurately model the tumor and surrounding sensitive structures, we developed

a 4DCT geometric modeling framework that tackles several important tasks in ana-

lyzing and processing 3DCT volumes and sequential fluoroscopy images (projected

2D images). Our current framework uses temporally dense MR images (sliced 2D

images) to refine our integrated 3DCT volumes. Registering MR images with 3D

volumes is usually simpler and can be more robust.

A 4D model parameterizes irradiation volume temporally. From this deforming

4D parametric model, it is possible to extract a tight planning margin to spare

normal tissues from dose radiation during delivery.

As Figure 5.4 shows, our framework has two phases: off-line modeling and plan-

ning, and online prediction and delivery. As their names imply, the first phase
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focuses on modeling tumor motion and planning radiotherapy, while the second

phase helps guide treatment delivery.

FIGURE 5.4. Two phases in the computational framework. The first phase, offline mod-
eling and planning, emphasizes radiotherapy planning and is based on CT and magnetic
resonance (MR) scans. The second phase focuses on online prediction and treatment
delivery. Real-time scanned 2D images aid in synchronizing and refining the 4D mod-
el, which the system uses to predict the tumor’s trajectory and geometry and guide
treatment delivery.

5.4 Offline Modeling and Planning

The offline phase is concerned with modeling the tumor’s motion and deformation.

To better predict tumor movement, which could be affected by neighboring organs

and tissues during respiration, the model covers the entire neighboring volume

region.

Contour Segmentation. The first step in this phase is to clearly segment the

tumor and surrounding structures within the potential irradiated volume from 3D-
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CT or MR images. Because reliable 3D image segmentation against noise is critical

at this stage, we developed the template-guided graph cut (TGGC) algorithm.

To perform the 3D graph cut, the algorithm uses a novel metric that combines

image intensity (noise filtered) and a predesigned implicit scalar field that captures

the template shape and serves as a reference. TGGC reaches globally optimal

segmentation; simple user interactions can iteratively and adaptively refine the

extracted contour. A postprocess uses morphological operations (performing open

then close operations with radius-3 disks) to smooth the extracted contour.

Figure 5.5 and 5.6 show our preliminary results. Figures 5.6a through 5.6d

show that TGGC is superior to existing segmentation methods in extracting the

object of interest from the image background. Figure 5.6a through 5.6c show

the results of using the level set, watershed, and original graph cut methods, re-

spectively. Compared with the level set method, a popular method of segmenting

medical image data, TGGC takes about a third of the computation time to segment

the entire 3DCT volume. The segmentation also more tightly bounds the tumor’s

contour. Although faster than TGGC, the watershed method leads to significant

over-segmentation, an outcome that TGGC avoids.

From Volume Image to a Tetrahedral Mesh. After extracting contours of

both the tumor and surrounding structures, our framework models both the geom-

etry and material of the entire volume instead of modeling only boundary shells. It

then adaptively tetrahedralizes (converts a volume image into a tetrahedral mesh)

the irradiated volume.

Figure 5.7 illustrates an example of a tetrahedral representation of a tumor and

surrounding tissue. Such a finite element representation is much sparser than the

grid-based image representation, and any local region can be coarsened or refined

adaptively when necessary. This effectively represents the region’s inherent struc-
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(a) (b)

FIGURE 5.5. Tumor segmentation from CT images. (a) Segmentation performed in 3D;
the red solid is the tumor; (b) segmentation visualized in a cross-section.

ture, while conforming to important features and materials. It is then possible to

use a linear interpolation or a spline function to represent the deforming irradiated

volume.

One critical issue is how to compute the optimal sampling points for tetrahe-

dralization. Given the number of sample points, the goal is to minimize the mean

square error (mean of the square difference) between the linear interpolation and

the corresponding original intensity values. Intuitively, selected points should bal-

ance the uniformity and the sampling of sharp features. It is then possible to use

Delaunay tetrahedralization to tessellate the model on these sampled points.

Volumetric Mapping and Interpolation. After representing volumetric re-

gions of interest using tetrahedral meshes, our algorithm computes bijective volu-

metric mapping to consistently parameterize 3D volumes and then interpolate the

4D temporal model.

Bijective volumetric mapping involves computing a lowly distorted mapping (s-

mall angle and area distortion, which is physically natural) between two consecu-
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FIGURE 5.6. Comparison of segmentation results. Tumor contour segmentation based
on (a) level set method, (b) watershed method, (c) original graph cut method, and our
TGGC algorithm (d) without de-noise and (e) with de-noise. The final segmentation (e)
is suitable for subsequent tumor modeling and tracking tasks.

(a) (b)

FIGURE 5.7. Tumor and surrounding lobe:(a) contour surfaces and (b) adaptive con-
version to a tetrahedral mesh.

tive volumes through a coarse-to-fine framework. Initially, the algorithm extracts

corresponding features and matches them in 3D. Then taking these features as soft

constraints, it computes surface and volumetric mappings between corresponding

contours and volumes. The result is a consistent parameterization of all temporally

sequential volumes onto one common domain D(u, v, w).

With this one-to-one correspondence in hand, the algorithm can crete a con-

tinously deforming 4D model–M(u, v, w, t)–by computing the physically natural

shape interpolation between two consequent models. Given the (u, v, w) parameter

coordinate in the domain, it can trace a point’s trajectory under different time t;
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similarly, given any t, it can obtain the 3D volume’s location and geometry at that

moment.

4D Model Refinement. The first three steps inn this phase rely on CT images,

which can have very high resolution and thus very good spatial accuracy. However,

CT imaging requires a high dose, and a frequent and long CT imaging sequence is

impossible. For this reason, CT-sampled volumes tend to be temporally sparse.

To compensate for this disadvantage, our algorithm refines the 4D model com-

puted in the previous mapping and interpolation step using a sequence of 3D MR

images and cross-model volumetric parameterization to register the volume from

the MRI and the interpolated volume. It can then correct the consistently deform-

ing 4D model according to the matching results. The refined continuous parametric

4D model is ready for use in determining the trajectory and geometry of the volume

of interest.

5.5 Refining the 4D Model and Predicting

Motion

In the online phase, our framework uses real-time scanned 2D images (orthogonally

mounted x-ray) to synchronize and refine the 4D model. From the refined 4D

model, the framework can then predict the tumor’s trajectory and geometry. This

prediction makes it easier to optimize the treatment beam to target the most

desirable radiation positions.

Model Synchronization and Refinement. During radiation delivery, it is

possible to obtain a 2D time series of x-ray projection images and register them

with the moving 3D model. Our framework then uses the results of the matching

to correct the 4D model. The optimal mapping is searchable within a conservative

time range, starting from the last synchronized point.
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Beam Radiation Optimization. With the deforming 3D volume, it is possi-

ble to optimize the beam’s radiation direction. As Figure 5.8 shows, ideally, the

beam should be planned so that it can see the tumor clearly without being visu-

ally blocked by other organs. Otherwise, the radiation will hit those organs before

it reaches the tumor. To solve this problem, we propose using an efficient hier-

archical integer linear program (HILP). Our recent work in autonomous robotic

environment inspection has demonstrated that HILP scheme can be very efficient

in solving this challenging 3D region-inspection problem.

FIGURE 5.8. Tracking temporally deforming tumor and surrounding lobe. The red area
represents the tumor under two times sequences. Green and blue lines indicate the corre-
spondence between the solid regions in the two time frames (the 3D tumor and the lobe
at the bottom row are rotated 90 degrees in the y-axis to better visulize the matching).
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5.6 Summary

Our computation framework and platform for lung tumor modeling and tracking

can greatly enhance radiotherapy planning and delivery, in large part because it ef-

fectively integrate reliable 3D image segmentation; volumetric modeling, analysis,

and parameterization; physical and geometric interpolation; and tracking tech-

niques. Generalizing our computation paradigm would allow other medical plan-

ning and treatment regimens to benefit from this integration.

Our framework already cuts segmentation preprocessing time by roughly two-

thirds, and we expect advances in parallelism to decrease that time even further.

Segmentation preprocessing takes O(nlogn) time and O(n) space, where n is the

pixel number of each volume image. We can solve volumetric mapping computation

within O(m3) time and O(m2) space, where m is the vertex number of interested

objects.

All these geometric computation algorithms are local and can be effectively

parallelized. Using GPUs can improve the entire pipeline’s efficiency. We plan to

explore a GPU implementation and expect to achieve significant efficiency im-

provement in both offline data analysis and planning, and greater optimization of

real-time treatment.
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Chapter 6
4D Registration for Motion Modeling

In previous chapter, given a sequence of volume image, we built the motion esti-

mation model to describe the movement and deformation of lung and tumor based

on the pairwise 3D mapping or registration. The do the interpolation to get a

deforming 4D motion model. This 3D pairwise registration can ensure accurate

inter-image matching and good spatial smoothness of the deformation. However,

in the temporal dimension, such interpolated motion can be non-smooth and thus

not physically natural. In this chapter, we present a 4D image registration based

on a 4D (3D spatial + 1D temporal) free-form B-spline deformation model, which

ensures interpolated motions with both spatial and temporal smoothness [94].

6.1 Introduction

Image registration is important in medical image analysis and image-guided radio-

therapy management. For example, in lung cancer radiotherapy, it can establish

the correspondences among the 4D (sequential volume) CT images. This corre-

spondence can then be used to build a motion estimation model that describes the

movement and deformation of organs during respiratory cycles.

Pairwise 3D Registration. Given a sequence of volume images, the convention-

ally popular registration approach is through the pairwise 3D registration, which

computes a set of mapping functions fij between image i and image j. These reg-

istrations {fij} can be interpolated to obtain a deforming volumetric model. 3D

registration algorithms often approximate natural deformation between two shapes

through minimizing certain physical deformation energies [95, 96, 97] or geometric

smoothness [52, 98]. Pairwise 3D registrations have two general limitations. One

80



is its sensitivity to the selection of the reference frame, especially when describing

a motion sequence undergoing large deformations.

More importantly, the second limitation of 3D piecewise registration is its lack

of control on the smoothness of the resultant motion trajectory. High quality 3D

image registration may provide accurate inter-image matching, but in the temporal

dimension, the motion/deformation composed from the individually computed 3D

matching is often not smooth and thus less physically natural [53].

4D Registration. Registration across sequential images can be solved in a 4D

space directly. This can avoid the bias caused by the selection of a predetermined

reference frame, and can directly enforce both spatial and temporal smoothness

of the transformation to indicate more physically natural deformations. This is

called the 4D Registration [53, 52, 54, 99], which attracts a lot of attentions re-

cently. Metz et al. [52] construct a common domain, and solve a 4D registration

by reducing intensity matching errors. The computation is resolved to minimiz-

ing a non-linear and non-smooth optimization problem with many local minima,

which requires a good initial guess to get a desirable matching. Geometric infor-

mation such as feature correspondence can guide the optimization to avoid many

undesirable local minima. Wu et al. [54] suggest a 4D registration framework uti-

lizing both image intensity and feature guidance, and solve the registration on a

refined implicit domain for lung image data. They also propose a groupwise regis-

tration scheme [100] by iteratively resolving feature correspondence and thin-plate

spline deformation, which demonstrates high matching accuracy for brain image

registration. This method, however, is relatively expansive. Xu et al. [101] also

integrate feature guidance in 4D-image registration to improve the matching per-

formance. To model the respiratory motion which is nearly periodic, the algorithms

of [52, 101] use a geometric constraint that enforces the average deformation to be
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identity. This constraint assumes the inhale and exhale phases are symmetric and

the temporal samplings on these two phases are uniform, which are often not the

case.

Main Contributions. In this chapter, we propose a symmetric registration com-

putational model that uniformly incorporates a set of geometric, intensity, and

motion characteristics. The transformation is represented using two 4D spline func-

tions, which can be used to easily construct a continuously deforming parametric

geometry that tracks the respiratory motion of the lung tumors/organs from the

sequential CT scans. The experimental results demonstrate significant performance

improvement from existing registration/tracking models in matching accuracy, tra-

jectory smoothness, and transition inverse consistency.

6.2 Algorithm
6.2.1 Feature Extraction and Matching

To handle the registration of volumetric images, Scovanner et al. [102] proposed a

3D SIFT descriptor and applied it in action recognition. Cheung and Hamarneh

extended SIFT to N-Dimension SIFT [103] (N-SIFT) and showed its effectiveness

on volumetric images. However, neither descriptor is scale or rotation invariant.

In order to adequately describe medical images of deforming organs, we try to

improve the existing 3D SIFT descriptor in this work.

The procedure of N-SIFT includes scale space extrema detection, orientation as-

signment, descriptor construction and matching [103]. For an input volume image,

we first extend method [104] to locate its keypoints with sub-pixel accuracy.

One limitation of N-SIFT is that it performs poorly when some local regions

rotate. To reduce its sensitivity to rotation, multiple directions (rather than just

one dominant direction used in [102]) can be assigned to a keypoint region. We

calculate an orientation histogram of a region around the keypoint with width 6∗σ
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where σ is the scale of the keypoint. This orientation histogram has 36 × 36 bins

covering 360◦ of the orientations. The highest peak of the histogram corresponds

to the dominant direction. Here, we consider local peaks within 80% of the highest

peak also to be the directions of the keypoint region. Region that is chosen in the

construction of the descriptors can be reoriented according to its directions by mul-

tiplying its rotation matrixes [102]. Descriptors are constructed on the reoriented

regions. Multiple directions make our 3D SIFT more robust to the image rotation.

N-SIFT is also not scale-invariant, since it computes the descriptor based the

original image and the size of the region around the keypoint is fixed. Here we

propose a scale selection method to deal with scale change. We construct the

descriptors on the corresponding Gaussian smooth image. The region around the

keypoint is defined and divided into 4×4×4 patches. We set its patch size to be

3 ∗ σ which is related to its scale. In this way, our descriptor perform much more

scale invariant.

For the matching process, since N-SIFT matches descriptors directly, a point may

be matched to more than one point. Some of the matchings are wrong. Hence, we

further conduct a RANSAC algorithm to deal with this one-to-many correspon-

dence issue and remove the outliers. In our work, before doing 4D registration we

first perform feature extraction and matching between every two consecutive vol-

ume images, then choose those consistent correspondences that appear in all time

frames.

A simple example is given in Fig. 6.1 to demonstrate the rotation invariance of

the new descriptor. A lung CT volume image (dimension 465×300×20) is used as

the reference; its subsequent image has rotated by 20◦ along Z axis (this happens

when the patient rotates). We compare the correspondences found using N-SIFT

and our improved 3DSIFT. N-SIFT method extracts fewer matching pairs and has
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some error matchings while our algorithm works correctly and find more matched

features. Note that this matching is done on volume images although we only

illustrate a 2D cross section.

(a) N-SIFT (b) Improved 3DSIFT

FIGURE 6.1. Feature Extraction and Matching.

6.2.2 4D Free-form B-spline Deformation

FIGURE 6.2. Model illustration.

Given sequential volume images I1, I2, . . . , IΓ, where each image Ii(x) : Ωi →

R,x ∈ Ωi ⊂ R3 is a 3D intensity function1, we want to compute a temporally

deforming 3D model T (x, t) : Ω × R → R3,Ω ⊂ R3 that correlates all the input

1For sequential CT scans, their parametric domains Ωi simply overlay in R3
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images, as illustrated in Figure 6.2. A point x ∈ Ωi in Ii is correlated with a

point x′ in Ij by x′ = T (T−1(x, ti), tj). Then, a continuous 4D deforming image

I(x, t) can be constructed using the intensity function defined in the first image

I1, namely, I(x, t) = I1(T (x, t1)).

To obtain this deforming parametric geometry and the deforming image, we

need to explicitly compute two 4D functions: (1) a forward 4D parameterization

T , spatially defined on a common parametric domain, T : Ω × R → R3, and (2)

its inverse mapping H = T−1 : R3 × R → Ω which maps coordinate space of the

deforming images Ωi(⊂ R3)×R to the common domain.

To model the nonrigid freeform deformations of human organs during respiratory

cycles, we use 4D B-spline functions to approximate these two transformations T

andH , through which both the spatial and temporal smoothness can be formulated

easily. The B-spline approximation for T can be formulated as:

T (y) = x+
∑

yk∈Ny

pkβ
r(y − yk), (6.1)

where y = (x, t), yk is a knot on the parametric domain Ω ×R; βr(·) is the r-th

order multidimensional B-spline polynomial (here we take r = 3); pk ∈ R3 are

B-spline control points to be solved, and Ny denotes y’s neighboring local support

regions where the basis functions are nonzero. The knots yk are defined on a 4D

regular grid, uniformly overlaid the 4D image.

Because the inverse of B-spline transformation cannot be derived in close-form

and the B-spline-approximated T may not be injective, we explicitly approximate

this inverse mapping using another B-spline transformation H using a same for-

mulation to eq (6.1). Then with T and H , a transformation F ij from any frames

i to j can be composed as
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F ij(x) = T (H(x, ti), tj),x ∈ Ωi. (6.2)

The entire 4D registration problem is formulated as an optimization on T and H

that minimizes an objective function:

E = EI + αEF + λES + ρEC , (6.3)

where EI measures the intensity matching error, EF measures the feature align-

ment, ES measures the spatial and temporal smoothness of the deformation, EC

measures the inverse consistency, and α, λ, ρ are weighting factors.

Intensity Matching Error. With the assumption that the corresponded points

have the same intensity, the registration should minimize the intensity differences of

corresponded points. We can derive the intensity difference between corresponded

points in any pair of images Ii and Ij taken in time ti and tj . For any point x ∈ Ωi

in time ti, its corresponding location in time tj can be composed by H and T .

The accumulated difference between Ii(x) and the intensity of its corresponding

coordinate in tj can be formulated as:

ẼI =
1

|S||Γ|2

∑

ti∈Γ

∑

tj∈Γ

∑

x∈Si

(Ij(T (H(x, ti), tj))− Ii(x))
2, (6.4)

where Si is the sets of spatial voxel coordinates in each Ωi and for ∀i, |S| = |Si|.

Simultaneously solving both T and H is expensive. We first solve a forward pa-

rameterization T , then iteratively, fix the parameterization in one direction and

optimize the other (see Section 6.2.3 for the complete algorithm).

To solve the initial forward parameterization T without knowing H , we formulate

the reduction of intensity error by minimizing the intensity variance:
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TI =
1

|S||Γ|

∑

x∈S

∑

t∈Γ

(It(T (x, t))− Ī(x))2, (6.5)

where Ī(x) is the average intensity value follows the forward parameterization:

Ī(x) = 1
|Γ|

∑
t∈Γ It(T (x, t)). S ⊂ Ω are the spatial voxel coordinates (e.g. coordi-

nates of all the pixels) and Γ ⊂ R contains the temporal coordinates indexing

temporal sample images. After obtaining the initial T , we iteratively optimize H

and T by minimizing:

EI = TI + ẼI . (6.6)

Feature Alignment Error. The optimization only guided by intensity has

many local minima, and geometric features can help effectively avoid many unde-

sirable solutions.

Using the algorithm of [105], we extract feature points using a slightly modified

3D SIFT algorithm, then compute a set of consistently corresponded feature points

{pij} across the entire sequence of images, where pij indicates the i-th feature point

on time tj, where i = 1, . . . , N, j = 1, . . . , |Γ|.

Each consistently corresponded feature point has a parametric coordinatemi, i =

1, . . . , N in Ω, which is mapped to the feature pit in image It at time t. The feature

correspondence in the forward parameterization should penalize the deviation of

T (mi, t) from pit:

TF =
1

N |Γ|

∑

t∈Γ

N∑

i=1

||pit − T (mi, t)||
2, (6.7)

For the inverse parameterization H , the variance of H(pij, j) should be minimized:

HF =
1

N |Γ|

N∑

i=1

∑

t∈Γ

||H(pit, t)− H̄(pi∗)||, (6.8)
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where H̄(pi∗) =
1
|Γ|

∑
t∈ΓH(pi,t, t) is the average coordinates of the i-th feature pi∗.

Finally, the entire feature alignment error is:

EF = TF +HF . (6.9)

Deformation and Motion Smoothness. The transformation (hence both

parameterizations T and H) should be spatially and temporally smooth. The 2nd-

order derivatives of the B-spline transformation functions can be derived as the

smoothness energy to minimize:

ES = TS +HS;

TS = 1
|S||Γ|

∑
x∈S

∑
t∈Γ(||

∂2T
∂x2 ||

2
F + ||∂

2T
∂t2

||2 + 2|| ∂
2T

∂x∂t
||F );

HS = 1
|S||Γ|

∑
x∈Si

∑
t∈Γ(||

∂2H
∂x2 ||

2
F + ||∂

2H
∂t2

||2 + 2|| ∂
2H

∂x∂t
||F ).

(6.10)

Inverse Consistency. The registration problem between two time frames Ii

and Ij should be symmetric, i.e. the correspondences established between Ii and

Ij do not depend on the order we choose to deform [106]. Since the transformation

between Ii and Ij is composed from T and H , this can be reached by making the

composition of T and H to be an identity transformation as much as possible. The

inverse consistency can be measured by:

EC =
1

|S||Γ|

∑

x∈Si

∑

t∈Γ

||T (H(x, t), t)− x||2 +
1

|S||Γ|

∑

x∈S

∑

t∈Γ

||H(T (x, t), t)− x||2,

(6.11)

6.2.3 Solving the Optimization

Simultaneously solving T and H reduces to a very expensive optimization prob-

lem. We develop an iterative algorithm to seek for the optimal solution. During

each iteration, T (or H) is solved using a gradient-based optimization method al-

gorithm proposed in [52], which uses a stochastic sampling strategy to reduce the
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computational cost. With the B-spline representation we derive the derivatives of

EF , ES, EC explicitly, and we use the finite difference approximation to get the

derivatives of EI .

We first solve a forward parameterization T by minimizing E = TI +αTF + ρTS

from equations (6.5,6.7,6.10), then with T fixed, we solve its inverse parameter-

ization H by minimizing the entire objective function E in equation 6.3. Then

iteratively, we fix one parameterization and revise its inverse parameterization,

until the energy reduction is smaller than a threshold. This optimization algorith-

m is formulated as follows.

1) Compute an initial forward parameterization T by minimizing TI +αTF +ρTS ;

2) Fix T , and solve H by minimizing E;

3) Fix H , and solve T by minimizing E;

4) If E converges, STOP; otherwise GOTO 2).

6.3 Experimental Results

We implement our registration model via a multi-resolution strategy and use linear

interpolation in the spatial domain for the derivation of intensity values for any

point not on a grid. Our algorithm was implemented in C++ using an Intel Xeon

X5570 @2.93 GHz, 8GB RAM. In our experiments, we set the weight factors as

α = 0.1, λ = 0.5, ρ = 0.5.

6.3.1 Experiments using Public Datasets

We perform 4D registration using our algorithm on two public benchmark dataset-

s: POPI [4] and DIR-lab [107]. The dataset from POPI has one 4D CT series

including ten 3D volume images (482 × 360 × 141 pixels) representing ten differ-

ent phases of one breathing cycle. We also select five datasets from the DIR-lab

dataset (Case-1 to Case-5) where lardmarks are available. Each dataset contains
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TABLE 6.1. The landmark predication error Di and its standard deviation σi (in mm)
of ith time frame on the POPI-data [4]. D̄ is the average MTRE.

D1(σ1) D2(σ2) D3(σ3) D4(σ4) D5(σ5) D6(σ6) D7(σ7) D8(σ8) D9(σ9) D0(σ0) D̄

3D
Reg.[52]

3.6(2.3) 2.3(1.8) 2.1(1.7) 2.2(2.0) 2.4(2.3) 2.9(2.4) 2.8(2.3) 2.1(1.7) 2.1(1.5) 2.7(2.1) 2.5

4D
Reg.[52]

3.8(2.3) 2.6(2.0) 2.2(1.8) 2.2(2.0) 2.5(2.2) 2.9(2.3) 2.8(2.3) 2.2(1.8) 2.2(1.5) 2.8(2.2) 2.6

4D
Reg.[101]

2.1(1.6) 1.8(1.5) 1.6(1.3) 1.6(1.2) 2.1(1.4) 2.4(1.7) 2.1(1.6) 1.7(1.0) 1.6(1.2) 1.9(1.6) 1.9

Our 1th

iter.
1.9(1.4) 1.6(1.2) 1.6(1.3) 1.8(1.5) 2.0(1.7) 2.0(1.7) 2.0(1.6) 1.6(1.2) 1.7(1.1) 2.2(1.6) 1.9

Our 2th

iter.
1.1(0.8) 1.2(0.9) 1.3(0.9) 1.2(0.8) 1.5(0.9) 1.5(1.0) 1.4(1.1) 1.1(0.6) 1.2(0.8) 1.2(0.8) 1.3

Our 3th

iter.
1.1(0.8) 1.2(0.9) 1.3(0.9) 1.2(0.8) 1.5(0.9) 1.5(1.0) 1.4(1.1) 1.1(0.6) 1.2(0.8) 1.2(0.8) 1.3

TABLE 6.2. The landmark predication error and its standard deviation Di(σi) (in mm)
for the registration of DIR-LAB 4D dataset: i = 1 to 5 for Case-1 to Case-5.

D1(σ1) D2(σ2) D3(σ3) D4(σ4) D5(σ5)

3D Reg.[52] 2.03(1.09) 0.72(0.44) 0.99(0.71) 1.14(0.81) 1.64(1.70)

4D Reg.[52] 2.12(1.09) 0.92(0.61) 1.39(0.93) 1.44(0.96) 1.85(1.69)

4D Reg.[101] 1.58(0.99) 0.70(0.57) 0.79(0.55) 0.91(0.75) 1.41(1.36)

Our Reg. 1.28(0.76) 0.56(0.34) 0.59(0.43) 0.69(0.49) 1.10(0.94)

6 sequential volume images. This CT pixel unit can be converted to real physical

space units millimeter by multiplying a scaling factor which can be extracted from

the image header file. Consistent landmarks are also available in the benchmark to

measure how accurately their transformations are predicted. Denote the landmarks

on frame-t as Qt = {qt,1, qt,2, . . . , qt,n}, we evaluate the prediction accuracy of the

registration using a Mean Target Registration Error (MTRE) on the landmarks on

frame r:

Dr =
1

n|Γ|

∑

t∈Γ

∑

qr,i∈Qr

||F rt(qr,i)− qt,i||, (6.12)

where F rt is the transformation between frames r and t, composed by the forward

and inverse parameterizations following equation (6.2).

Unlike existing 4D parameterization methods that solve mappings in two di-

rections separately, our model uses a symmetric objective function that can be
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FIGURE 6.3. Convergence of Energy E.

optimized with guaranteed convergence. Fig. 6.3 shows the convergence of the en-

ergy E (eq-(6.3)) when parameterizing the POPI dataset. Our algorithm converges

in 4 iterations.

We compared our registration results with existing 3D pairwise registration [52]

and 4D registration [52, 101] algorithms using the benchmark data from POPI and

DIR-lab. The results are documented in Table 6.1 and Table 6.2. On the POPI

dataset, we evaluated the registration using the matching error of the consistent

40 landmarks. On each of DIR-lab datasets, both maximum inhale and exhale

phases possess 300 landmarks, whose matching errors were used to evaluate the

registration accuracy.

Our algorithm results in significantly smaller MTRE errors, i.e., better accuracy

of landmarks prediction. Furthermore, in practice, the breathing cycles are often

sampled in a non-perfectly uniform manner: the exhale is longer than the inhale.

In this case, the geometric constraints adopted in [52] and [101], which enforces
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the average movement of each point during the entire cycle to be identity, will not

be correct. The geometric smoothness cost (eqn 6.10) suggested in our framework

is a more robust description against this non-uniformity.

For lung motion tracking purpose, we first segment the lung contours using a

template-guided 3D graph-cut algorithm improved from [93], and construct a finite

element mesh model, then we temporally deform this 3D model and get an explicit

tracking of them during respiratory cycles. Figure 6.4 illustrates a few snapshots

of this tracking. In (a), a surface contour is segmented from image I1, (b) shows

the tracking contour in the 6-th time frame. (d) and (e) color-encode displacement

fields computed in 1st and 6th time frames (Blue to Red: smaller to bigger dis-

placement). One can also measure the registration accuracy by performing an extra

segmentation on some image Ii, then compare the deviation from this segmenta-

tion to the predicted surface geometry. In (c), we compute the Hausdorff distance

between two surfaces and color-encode this deviation. This Hausdorff illustrated

matching, between the maximum inhalation (I6) and maximum exhalation status

(I1) which undergoes a largest deformation, infers the maximum matching errors

during the respiratory cycles.

6.3.2 Motion Modeling of Our Clinical Lung Tumor Scans

Similarly, we use our 4D registration algorithm to build a deforming 3D finite

element mesh model to track the motions of the lung and tumor captured in

our clinic CT scans. The second row of Fig. 6.5 shows the segmented lung/tumor

contour surfaces. The tracking and motion estimation of the lung and tumor during

the entire respiratory cycle can be computed, as illustrated in the last row. The

colors on the 2nd and 3rd surfaces encodes the Hausdorff difference between the

deformed and target contour surfaces.
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(a)S1 from I1 (b) F 16(S1) and I6 (c) Registration Error on I6

(d) Displacement field in 1st time frame (e) Displacement field in 6th time frame

FIGURE 6.4. Lung/Tumor Tracking via a Deforming Surface Geometry. (a,b) illustrate
the 3D iso-surfaces with the volume images (through the iso-x and iso-z cross sections).
Red contours are the intersection between the cross section planes and the deforming
lung surface. (a) shows the segmented iso-surface S1 on I1 while (b) shows the tracking
result, which is the intersection of F 16(S1) and I6. (d,e) color-encode on the tracked
geometry F 16(S1) its displacement field from S1. (c) color-encodes the registration error,
which is the Hausdorff distance from F 16(S1) to S6 (the iso-surface directly extracted
from I6).

Given two images Ii and Ij , we compute a difference image between the deformed

Ii and Ij to evaluate the registration accuracy. Specifically, this difference image is

Ii(x)− Ij(T
ij(x)) and can be normalized:

δijI(x) =





|Ii(x)−Ij(T
ij(x))|

Ii(x)+Ij(T ij(x))
, Ii(x) + Ij(T

ij(x)) 6= 0

0, otherwise
(6.13)

Small δI indicates accurate registration. The first row of Fig 6.5 visualizes the

2D projection of the difference images between I1, I4, and I4, I8. We can see the

difference values are small with the mean difference value of 0.48 ∗ 10−3 and 1.2 ∗

10−3. These indicate that our registration introduces small matching errors. To

further refine the matching near the regions with bigger registration error, in the

near future, we will develop hierarchical trivariate T-spline function to support
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adaptive refinement. More knots/control points can be inserted adaptively into

these regions to reduce the registration error.

FIGURE 6.5. Dynamic contour and surface tracking and registration.

6.4 Summary

We propose an effective 4D registration algorithm for dynamic volume images. The

4D parameterization is represented using two coupled B-spline functions and solved

by minimizing an objective function E measuring intensity matching, feature align-

ment, spatial and temporal smoothness, and transitive inverse-consistency. Com-

pared with existing 3D and 4D registration models, this algorithm has unique

advantages in matching dynamic volume image sequences that undergo relatively

big nonrigid deformation and/or are non-uniform in the temporal dimension. To

minimize E, we alternatively optimize the forward and inverse parameterizations

T and H , which iteratively refines each other in a symmetric manner. Our exper-
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imental results demonstrate that this computational model greatly improves the

registration accuracy of existing methods.
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Chapter 7
Conclusion

In this dissertation, we have studied on heterogeneous and dynamic volumetric

data mapping for graphics and medical imaging applications. We first proposed an

efficient way to compute feature-aligned harmonic volumetric mapping using the

fundamental solution methods. It allows the alignment between three types of fea-

ture including feature points, feature lines and iso-surfaces. Then we improved the

harmonic volumetric model to a biharmonic volumetric model which is a fourth-

order partial different equation. Compared to the previous harmonic model, this

can ensure higher continuity along the boundary. Thus it is more suitable for high

complex volumetric data and heterogeneous data. Then we developed a computa-

tional framework for modeling the respiratory motion of lung tumors. We treated

the lung with a tumor inside as a heterogeneous data and modeled its motion by

computing biharmonic volumetric mapping between two 3D volumetric data. Last,

we developed a 4D image registration algorithm to parameterize temporal CT lung

volume images and used it for lung tumor motion analysis and tracking.
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morphing. In Proc. SIGGRAPH, pages 343–350, 1999.

[10] T. Michikawa, T. Kanai, M. Fujita, and H. Chiyokura. Multiresolution in-
terpolation meshes. In Proc. Pacific Graphics, pages 60–69, 2001.

[11] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations.
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Appendix A: Existence of Biharmonic
Functions on a Solid Domain
This appendix is to show that the biharmonic problem in eq (1) is well-posed in
the framework of Sobolev spaces (cf. [108] and references therein).
Let Ω ⊂ R3 be a bounded smooth domain or a polyhedron , f ∈ H7/2(∂Ω)

and g ∈ H5/2(∂Ω) where H7/2(∂Ω) and H5/2(∂Ω) are fractional Sobolev spaces as
defined in [108]. In practice, we only require a finite sampling of the functions f
and g. Consider the following problem

∇4Φ = 0 in Ω, (7.1a)

Φ = f on ∂Ω, (7.1b)

∂Φ

∂n
= g on ∂Ω, (7.1c)

where n denotes the outer normal of Ω and the boundary conditions (7.1b) and
(7.1c) are understood in trace sense. By trace theorem1, there exist ζ ∈ H4(Ω)
such that ζ = f on ∂Ω and ∂ζ/∂n = g on ∂Ω. Moreover,

‖ζ‖H4(Ω) ≤ C(‖f‖H7/2(∂Ω) + ‖g‖H5/2(∂Ω)) (7.2)

where C is a constant depending on Ω. Then Φ solves (7.1a)-(7.1c) if and only if
ψ = Φ − ζ ∈ H2(Ω) solves the following biharmonic equation with homogeneous
Dirichlet boundary condition

∇4ψ = −∇4ζ in Ω (7.3a)

ψ = 0 on ∂Ω, (7.3b)

∂ψ

∂n
= 0 on ∂Ω, (7.3c)

Following the classical variational approach (cf. Chapter 1 & Chapter 7 in [108]),
the problem (7.3a)-(7.3c) is uniquely solvable in H2(Ω). Moreover,

‖ψ‖H2(Ω) ≤ C(‖∇4ζ‖L2(Ω).) (7.4)

where C is a constant depending only on Ω.
Therefore, the problem (7.1a)-(7.1c) has a unique solution in H2(Ω). Moreover,

it follows from (7.2) and (7.4) that the solution depends continuously on the data
f and g, i.e.,

‖Φ‖H2(Ω) ≤ C(‖f‖H7/2(∂Ω) + ‖g‖H5/2(∂Ω))

1Trace theorem is standard for smooth domains but becomes complicated for nonsmooth domains (Cf.[109]).
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Appendix B: Harmonic-based boundary
condition
This appendix is to illustrate the way to set g according to the harmonic volumetric
mapping results.
Assume we have two adjacent regions Ω1 and Ω2, and their interface boundary

is ∂Ω12 (see Fig.7.1). First, we compute two harmonic volumetric mapping Φh
1 ,Φ

h
2

for each region according to their surface mapping. Then we compute their bihar-
monic volumetric mapping Φ1,Φ2. We set g based on the harmonic results:

∂Φ1(x)
∂n1(x)

=





∂Φh
1 (x)

∂n1(x)
, if x ∈ ∂Ω1 & x /∈ ∂Ω12,

1
2(

∂Φh
1 (x)

∂n1(x)
+

∂Φh
2 (x)

∂n1(x)
), if x ∈ ∂Ω12

∂Φ2(x)
∂n2(x)

=





∂Φh
2 (x)

∂n2(x)
, if x ∈ ∂Ω2 & x /∈ ∂Ω12,

−1
2(

∂Φh
1 (x)

∂n1(x)
+

∂Φh
2 (x)

∂n1(x)
), if x ∈ ∂Ω12

If we compute the biharmonic map on just one region Ω, the resultant bihar-
monic mapping will be exactly the harmonic mapping. If a model decomposed into
multiple regions {Ωi}, for the point along the boundary interface x ∈ ∂Ω12, we set
g to be the average value of the normal derivative of that two harmonic mappings.
Since n1 = −n2, then we have ∂Φ1(x)

∂n1(x)
= ∂Φ2(x)

∂n1(x)
, ∀x ∈ ∂Ω12. So this boundary con-

dition has C1 continuity along the boundary interface. It is easy to verify that it
also keeps linear precision property: Φh

1 ,Φ
h
2 satisfy linear precision property, then

their linear combination will also satisfies linear precision property.

FIGURE 7.1. The decomposed domain illustrating the harmonic-based boundary condi-
tion.
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