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ABSTRACT 

Nonlinearity of power system is always one of the difficulties when dealing with dynamic 

simulation of power systems. Solving differential-algebraic equations representing power systems 

are difficult without losing nonlinearity, especially for large power systems. This thesis shows an 

alternative method to solve nonlinear dynamical power system by producing a purely differential 

representation of the power systems. This new representation converts the algebraic equations to 

differential equations in order to have an absolute differential system. By using Runge-Kutta 

algorithm to solve this differential system, the results of the power system simulations are 

compared to trapezoidal integration algorithm commonly used to solve the differential-algebraic 

equations.  

 In this thesis, IEEE 14-bus system and IEEE 118-bus system are tested with both classical 

generator model generator model and two-axis generator model in MATLAB. The proposed 

algorithm shows significantly faster convergence comparted to trapezoidal integration method in 

larger power systems. It is a great improvement to shorten the simulation time in while keeping 

the same accuracy in large power systems. 

Keywords: Runge-Kutta algorithm, differential-algebraic equation, trapezoidal, classical 

generator model, two-axis model. 
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CHAPTER 1. INTRODUCTION  

 This chapter introduces the conventional differential-algebraic (DA) model that describes 

the dynamic behavior of the power system. The transient stability analysis of the power system 

requires to solving the DA equations. One of the obstacles to solve such nonlinear equations is that 

there are no known methods available to analytically find their time domain solution, and thus, 

numerical methods are greatly utilized to solve the differential-algebraic equations.  

This chapter has three sections. The first section briefly introduces DA model using the 

generator in a general mathematical form. The second section shows the differential equations 

describing two-axis generator model in the power system. The last section talks about the algebraic 

equations when dealing with multi-machine power system. Multi-machine power system means 

many synchronous generators of different buses are interconnected together by transformers and 

transmission lines [1]. 

1.1 Power System Differential-Algebraic Model 

 The differential-algebraic equations (DAE) model the power system as follows: 

{
𝑦̇ = 𝑓(𝑥, 𝑦, 𝑢)
0 = 𝑔(𝑥, 𝑦)

                                                               (1) 

In (1), f represents all dynamic characteristics of the power system which is mainly generator 

dynamics. g explains the power balance equations for both generator buses as well as non-

generator buses. The system state variables, such as generator angle δ, generator speed ω and other 

generator dynamical parameters are shown by y. Vector x denotes all system algebraic variables, 

including bus voltages V and bus angles θ. Input vector u represents inputs to the power system 

such as generator input torque and reference voltage Vref. 
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1.2 Differential Equations 

For transient stability analysis it is necessary to introduce, two-axis model which is more 

accurate than the classical generator model [2] for extended transient analysis. Grainger and 

Stevenson (1994) gave more details about this model, which is considered in the following [3]. 

Unlike round-rotor machine, the salient-pole machine has a narrower air gap along the 

direct axis than the quadrature axis for each pole. The two-axis generator model is shown in Figure 

1. 

 

Figure 1 Two-axis generator model 

By neglecting d-axis and q-axis open circuit sub-transient time constants Tdo’’ and Tqo’’, a 

two-axis generator model generator differential equations are formed as follows as [3]: 

𝛿̇(𝑖) = 𝜔(𝑖) − 𝜔𝑠                                                                     (2) 

where δ denotes the generator angle; ω denotes the generator speed; ωs is the nominal speed of the 

generator, i represents the generator number. Next, the speed can be represented as 

     𝜔̇(𝑖) =
1

𝑀
× {𝑇𝑀(𝑖) +

𝑉𝑖

𝑥𝑑
′ (𝑖)

× [𝐸𝑑
′ (𝑖) cos(𝜃(𝑖) − 𝛿(𝑖)) +𝐸𝑞

′ (𝑖) × sin(𝜃(𝑖) − 𝛿(𝑖))]}        (3) 
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where M denotes the inertia constant of generator; TM is mechanical input torque; V denotes the 

bus voltage; x’d is the direct-axis transient reactance; E’d and E’q are the transient voltage of d-axis 

and q-axis, respectively; and θ is the angle of the bus. Variables E’d and E’q are defined as 

𝐸̇𝑞
′ (𝑖) =

1

𝑇𝑑0(𝑖)
× [(−1) ×

𝑥𝑑(i)

𝑥𝑑
′ (𝑖)

× 𝐸𝑞
′ (i) +

𝑥𝑑(i)−𝑥𝑑
′ (𝑖)

𝑥𝑑
′ (𝑖)

× V(I) × cos(𝜃(𝑖) − 𝛿(𝑖)) + 𝐸𝑓𝑑(i)]    

(4)  

and 

𝐸̇𝑑
′ (𝑖) =

1

𝑇𝑞0(𝑖)
× [(−1) ×

𝑥𝑞(i)

𝑥𝑑
′ (𝑖)

× 𝐸𝑑
′ (i) −

𝑥𝑞(i) − 𝑥𝑑
′ (𝑖)

𝑥𝑑
′ (𝑖)

× V(i) × sin⁡(𝜃(𝑖) − 𝛿(𝑖))] 

(5) 

where Td0 is the open circuit time constant of d-axis; xd is the d-axis reactance; Efd is the steady 

state internal voltage of the armature; Tqo is the open circuit time constant of q-axis; and xq is the 

q-axis reactance. Also, 

𝐸𝑓𝑑̇ (𝑖) =
1

𝑇𝐸(𝑖)
× [(−1) ∗ 𝐾𝐸(𝑖) × 𝐸𝑓𝑑(𝑖) + 𝑉𝑅(𝑖)]                               (6) 

where TE is the electrical torque; VR denotes the exciter input; and KE is an exciter gain. The exciter 

voltage dynamics is shown as 

𝑉̇𝑅(𝑖) =
1

𝑇𝐴(𝑖)
[𝐾𝐴(𝑖) × 𝑅𝐹(𝑖) − 𝑉𝑅(𝑖) − 𝐾𝐴(𝑖) ×

𝐾𝐹(𝑖)

𝑇𝐹(𝑖)
× 𝐸𝑓𝑑(𝑖) 

+𝐾𝐴(𝑖) × (𝑉𝑟𝑒𝑓(𝑖) − 𝑉(𝑖))]                                                  (7) 

where KA is the amplifier gain; RF is the rate feedback; TA denotes the amplifier time constant; Vref 

is the reference voltage; KF is the feedback gain; TF is the feedback time constant. The following 

dynamics represent the turbine dynamical behavior as 

𝑅̇𝐹(𝑖) =
1

𝑇𝐹(𝑖)
× [

𝐾𝐹(𝑖)

𝑇𝐹(𝑖)
× 𝐸𝑓𝑑(𝑖) − 𝑅𝐹(𝑖)]                                         (8) 
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𝑇̇𝑀(𝑖) =
1

𝑇𝑅𝐻(𝑖)
× [(−1) × 𝑇𝑀(𝑖) + (1 − 𝐾𝐻𝑃(𝑖) ×

𝑇𝑅𝐻(𝑖)

𝑇𝐶𝐻(𝑖)
) × 𝑃𝐶𝐻(𝑖) 

+𝐾𝐻𝑃(𝑖) ×
𝑇𝑅𝐻(𝑖)

𝑇𝐶𝐻(𝑖)
× 𝑃𝑆𝑉(𝑖)]                                                   (9) 

where PSV is the steam value position; TRH is the output torque of the steam; KHP denotes the high 

pressure turbine gain; TCH is the steam chest output torque; PCH is the steam chest pressure. 

𝑃̇𝐶𝐻(𝑖) =
1

𝑇𝐶𝐻(𝑖)
× (𝑃𝑆𝑉(𝑖) − 𝑃𝐶𝐻(𝑖))                                          (10) 

𝑃̇𝑆𝑉(𝑖) =
1

𝑇𝑆𝑉(𝑖)
× (𝑃𝐶(𝑖) − 𝑃𝑆𝑉(𝑖) −

𝜔(𝑖)

𝜔𝑠×𝑅(𝑖)
)                                    (11) 

where TSV denotes the steam value torque; PC denotes the output of a load reference motor; R is 

the speed regulation. 

For generator classical model, there are five parameters for generator, δ,⁡ω,⁡TM, PCH, PSV. 

The last three parameters are turbine parameters, which stay the same with two-axis generator 

model. Generator angle δ is also the same function as (2). However, due to the lack of the transient 

status, the classical generator model keep the internal voltage constant, which leads to a different 

function of ω as 

ω =
1

𝑀
[𝑇𝑀(𝑖) − 𝐸𝑔(𝑖) ×

𝑉(𝑖)×sin⁡(𝛿(𝑖)−𝜃(𝑖))

𝑥𝑑
′ ]                                       (12) 

where Eg denotes the internal voltage. 

1.3 Algebraic Equations 

 There are two sets of algebraic equations, stator equation and network power balance 

equations.  

The stator power balance equations can be derived by the following algebraic equations as 
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𝑃𝐿𝑖 +∑𝐵𝑖𝑗𝑉𝑖[𝐸𝑞𝑗
′ sin(𝜃𝑖 − 𝛿𝑗) +𝐸𝑑𝑗

′ cos( 𝜃𝑖 − 𝛿𝑗)]

𝑛𝑔

𝑗=1

+ ∑ 𝐵𝑖𝑗𝑉𝑖

𝑁𝑏+𝑛𝑔

𝑗=𝑛𝑔+1

𝑉𝑗 sin(𝜃𝑖 − 𝜃𝑗) = 0 

(13) 

−𝑄𝐿𝑖 +∑ 𝐵𝑖𝑗𝑉𝑖[𝐸𝑞𝑗
′ cos(𝜃𝑖 − 𝛿𝑗) − 𝐸𝑑𝑗

′ sin(𝜃𝑖 − 𝛿𝑗)]
𝑛𝑔
𝑗=1 + ∑ 𝐵𝑖𝑗𝑉𝑖

𝑁𝑏+𝑛𝑔
𝑗=𝑛𝑔+1 𝑉𝑗 cos(𝜃𝑖 − 𝜃𝑗) = 0                                                                                                                                         

(14) 

where PLi and QLi denote the active power and reactive power of the load on bus i; and Bij represents 

the susceptance between bus i and bus j. The non-generator bus power balance algebraic equations 

are shown as 

𝑃𝐿𝑖 + ∑ 𝐵𝑖𝑗𝑉𝑖
𝑁𝑏+𝑛𝑔
𝑗=𝑛𝑔+1 𝑉𝑗 sin(𝜃𝑖 − 𝜃𝑗) = 0                                       (15) 

−𝑄𝐿𝑖 +∑ 𝐵𝑖𝑗𝑉𝑖
𝑁𝑏+𝑛𝑔
𝑗=𝑛𝑔+1 𝑉𝑗 cos(𝜃𝑖 − 𝜃𝑗) = 0                                      (16)          

where Nb denotes the number of buses, ng denotes the number of generators.                                                                                                             

The stator variables relationship can be derived from circuit model of Figure 2 in [3], 

 

Figure 2 Stator algebraic relationship diagram 
 

 The network power balance diagram of Bus i is depicted in Figure 3. 
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Figure 3 Network power balance diagram of Bus i 

In Figure 3, Pgi and Qgi denote the real power generation and reactive power generation. 

Pi,sch, Qi,sch denote the scheduled power entering the network. PLi and QLi denote the demand power 

of the load on Bus i. Pi and Qi are the calculated value that flow to the network. By calculating the 

power difference ΔP and ΔQ as (17) and (18), then adjusting them to as close as to zero, power 

balance equation are obtained. 

∆P𝑖 = 𝑃𝑖,𝑠𝑐ℎ − 𝑃𝑖                                                        (17) 

∆Q𝑖 = 𝑄𝑖,𝑠𝑐ℎ − 𝑄𝑖                                                      (18) 

The differential and algebraic equations need to be solved together to obtain the power 

system states. However, duo to nonlinearity involved in the power system model, this is not easy. 

Previous work used linearization to solve for power system states.  

Based on (1) both differential equations and algebraic equations are linearized as: 

∆𝑥̇ =
𝜕𝑓

𝜕𝑥
× ∆𝑥 +

𝜕𝑓

𝜕𝑦
× ∆𝑦 +

𝜕𝑓

𝜕𝑢
× ∆𝑢                                               (19) 

0 =
𝜕𝑔

𝜕𝑥
× ∆𝑥 +

𝜕𝑔

𝜕𝑦
× ∆𝑦                                                         (20) 

 By solving (20),  

∆y = (
𝜕𝑔

𝜕𝑦
)−1 ×

𝜕𝑔

𝜕𝑥
× ∆𝑥                                                         (21) 

is obtained. 
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 Substitute (21) to (19), a new differential equation that contains algebraic properties shows 

as 

∆𝑥̇ = [
𝜕𝑓

𝜕𝑥
−

𝜕𝑓

𝜕𝑦
× (

𝜕𝑔

𝜕𝑦
)
−1

×
𝜕𝑔

𝜕𝑥
] × ∆𝑥 +

𝜕𝑓

𝜕𝑢
× ∆𝑢                                 (22) 

 

There are some limitations of linearization method. One of the most critical disadvantages 

is the process of linearization cause the losing of nonlinearity. Some natural effects of nonlinear 

system are neglected and the system behaves as a linear system. Another limitation is the 

linearization is based on certain operating point, the system can only be estimated or predicted 

around that point. It cannot detects system’s global behavior [4]. 
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CHAPTER 2. CONVENTIONAL POWER SYSTEM TRANSIENT 

ANALYSIS ALGORITHMS 

This chapter introduces the dynamic power system simulation. The conventional tools for 

power system dynamical analysis use trapezoidal integration algorithm to solve differential-

algebraic equations. More detailed algorithms that consider dynamic characteristics of generator 

stators and transmission lines include Runge-Kutta algorithm. These algorithms will be explained 

here. 

2.1 Trapezoidal Integration Algorithm 

 The trapezoidal integration method converts the differential equation into an algebraic 

equation and solve it using numerical methods. For a general differential equation 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡) 

one has 

If⁡𝑡 = 𝑡0,⁡𝑥 = 𝑥0,  

If⁡𝑡 = 𝑡1 = 𝑡0 + ⁡Δ𝑡, then x can be estimated integral form: 

𝑥1 = 𝑥0 + ∫ 𝑓(𝑥, 𝜏)𝑑𝜏
𝑡1

𝑡0
                                                  (23) 

In trapezoidal integration algorithm, integral area is approximately equal to 

trapezoidal area, as was shown in Figure 4 below: 

 

 

Figure 4 Trapezoidal integration algorithm integral area 

 



10 

 

For (22),  

𝑥1 = 𝑥0 +
Δ𝑡

2
[𝑓(𝑥0, 𝑡0) + 𝑓(𝑥1, 𝑡1)] 

or  

𝑥1 − 𝑥0 −
Δ𝑡

2
[𝑓(𝑥0, 𝑡0) + 𝑓(𝑥1, 𝑡1)] = 0                              (24) 

When⁡t = 𝑡𝑛+1 , the general relationship for 𝑥 is: 

𝑥𝑛+1 − 𝑥𝑛 +
Δ𝑡

2
[𝑓(𝑥𝑛, 𝑡𝑛) + 𝑓(𝑥𝑛+1, 𝑡𝑛+1)] = 0                                 (25) 

2.2 Model Development 

In this thesis, two-axis generator model system and classical generator model are utilized 

to simulate a synchronous generator. Although these two systems have distinct differential 

expressions, the process of simulating them is the same. The process is based on Newton-Raphson 

method. By building the Jacobian matrix and reducing the error, the trapezoidal integration 

algorithm can obtain a precise result. Jacobian matrix is a matrix that is formed all by first order 

partial derivatives in a particular pattern. 

There are three status of whole system: pre-fault condition, during the fault condition, and 

after the fault condition. The simulation follows the steps below: 

1) Input the Bus, line data, generator data, faulted time, fault cleared time and simulation 

time. 

2) Initialize all the parameters, including variables and invariables. 

3) Calculate the differences ΔF1 related of all algebraic equations regarding to all power 

balance equations. 

4) Calculate difference ΔF2 related to differential equations, which is explained later. 
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5) Form the Jacobian matrix, using the derivatives of all equation pertaining to steps 4 and 

5 and calculate the variable changes. 

6) Update the variables by using the calculated variable changes and define the error 

7) If the error is smaller than 10-5, then go to step 3. Otherwise, go to step 9. 

8) Renew all the variables initial value, time interval and save simulation results. 

9)  If current simulation time is smaller than the maximum simulation time, go to step 3. 

Otherwise output the results. 

2.2.1 Newton-Raphson Algorithm 

Newton-Raphson is a widely adopted iterative algorism for nonlinear equation sets. It is 

also the widely used computerized algorism for power system load flow, especially for larger 

system [6]. Assume the nonlinear equation set is: 

{
∆𝐹1(𝑥, y) = 0

∆𝐹2(𝑥, y) = 0
                                                    (26) 

Its approximate solutions are 𝑥1
(0)

, ⁡𝑥2
(0)
,⁡…,⁡𝑥𝑛

(0)
,⁡𝑦1

(0)
, ⁡𝑦2

(0)
,⁡…,⁡𝑦𝑚

(0)
 , n denotes the number 

of dynamics, m denotes the number of algebraic variables, assume that the difference between 

approximate solutions and exact solutions are ∆𝑥1, ∆𝑥2, …, ∆𝑥𝑛, ∆𝑦1, ∆𝑦2, …, ∆𝑦𝑚 then, 

{
∆𝐹1(𝑥1

(0)
+ ∆𝑥1, 𝑥2

(0)
+ ∆𝑥2, … , 𝑥𝑛

(0) + ∆𝑥𝑛, 𝑦1
(0)

+ ∆𝑦1, 𝑦2
(0)

+ ∆𝑦2, … , 𝑦𝑚
(0) + ∆𝑦𝑚) = 0

∆𝐹2(𝑥1
(0)

+ ∆𝑥1, 𝑥2
(0)

+ ∆𝑥2, … , 𝑥𝑛
(0) + ∆𝑥𝑛, 𝑦1

(0)
+ ∆𝑦1, 𝑦2

(0)
+ ∆𝑦2, … , 𝑦𝑚

(0) + ∆𝑦𝑚) = 0
                      

            (27) 

Expanding each equation with Taylor series, take the first equation as example: 

∆𝐹1(𝑥1
(0) + ∆𝑥1, 𝑥2

(0) + ∆𝑥2, … , 𝑥n
(0) + ∆𝑥n, 𝑦1

(0)
+ ∆𝑦1, 𝑦2

(0)
+ ∆𝑦2, … , 𝑦𝑚

(0) + ∆𝑦𝑚)

= ∆𝐹1(𝑥1
(0), 𝑥2

(0)… , 𝑥𝑛
(0), 𝑦1

(0)
, 𝑦2

(0)
, … , 𝑦𝑚

(0)
) +

𝜕∆𝐹1
𝜕𝑥1

|
0

∆𝑥1 + 
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𝜕∆𝐹1
𝜕𝑥2

|
0

∆𝑥2 +⋯+
𝜕∆𝐹1
𝜕𝑥𝑛

|
0

∆𝑥𝑛
𝜕∆𝐹1
𝜕𝑦1

|
0

∆𝑦1 +
𝜕∆𝐹1
𝜕𝑦2

|
0

∆𝑦2 +⋯+
𝜕∆𝐹1
𝜕𝑦𝑚

|
0

∆𝑦𝑚 + 𝜙1 = 0 

or shorten as  

  ∆𝐹(𝑥(0) + ∆𝑥, 𝑦(0) + ∆𝑦) = ∆𝐹(𝑥(0), 𝑦(0)) + ∑
𝜕∆𝐹

𝜕𝑥i
|
0
∆𝑥i

𝑛
𝑖=1 + ∑

𝜕∆𝐹

𝜕𝑦j
|
0

∆𝑦𝑗
𝑚
𝑗=1 + 𝜙1 = 0 

                             (28) 

In the equation, ⁡
𝜕∆𝐹1

𝜕𝑥1
|
0

,
𝜕∆𝐹1

𝜕𝑥2
|
0

, …, 
𝜕∆𝐹1

𝜕𝑥𝑛
|
0

 , ⁡
𝜕∆𝐹1

𝜕𝑦1
|
0

, 
𝜕∆𝐹1

𝜕𝑦2
|
0

, …, 
𝜕∆𝐹1

𝜕𝑦𝑚
|
0

 are estimated by 

substituting  𝑥1
(0), 𝑥2

(0)… , 𝑥𝑛
(0), 𝑦1

(0), 𝑦2
(0)… , 𝑦𝑚

(0)
 into (27). 𝜙1 is a function of product of high-order 

partial derivative of  ∆𝐹1 and high order contains∆𝑥1,∆𝑥2, …,∆𝑥𝑛,⁡∆𝑦1,∆𝑦2, …,∆𝑦𝑚.  When the 

approximate solution is close to exact solution, the high order of ∆𝑥 and ∆𝑦 can be ignored, such 

that  𝜙1 can be ignored as well. Therefore, 

∆𝐹1(𝑥1
(0), 𝑥2

(0), … , 𝑥𝑛
(0), 𝑦1

(0), 𝑦2
(0)… , 𝑦𝑚

(0)) +
𝜕∆𝐹1
𝜕𝑥1

|
0

∆𝑥1 + 

𝜕∆𝐹1
𝜕𝑥2

|
0

∆𝑥2 +⋯+
𝜕∆𝐹1
𝜕𝑥𝑛

|
0

∆𝑥𝑛
𝜕∆𝐹1
𝜕𝑦1

|
0

∆𝑦1 +
𝜕∆𝐹1
𝜕𝑦2

|
0

∆𝑦2 +⋯+
𝜕∆𝐹1
𝜕𝑦𝑚

|
0

∆𝑦𝑚 = 0 

∆𝐹2(𝑥1
(0)
, 𝑥2

(0)
, … , 𝑥𝑛

(0)
, 𝑦1

(0), 𝑦2
(0)… , 𝑦𝑛

(0)) +
𝜕∆𝐹1
𝜕𝑥1

|
0

∆𝑥1 + 

𝜕∆𝐹1
𝜕𝑥2

|
0

∆𝑥2 +⋯+
𝜕∆𝐹1
𝜕𝑥𝑛

|
0

∆𝑥𝑛
𝜕∆𝐹1
𝜕𝑦1

|
0

∆𝑦1 +
𝜕∆𝐹1
𝜕𝑦2

|
0

∆𝑦2 +⋯+
𝜕∆𝐹1
𝜕𝑦𝑚

|
0

∆𝑦𝑚 = 0 

 (29) 

These are linear system equations. They can be modified to matrix equations: 

 [
∆𝐹1(𝑥

(0), 𝑦(0))

∆𝐹2(𝑥
(0), 𝑦(0))

] = [

𝜕∆𝐹1

𝜕𝑥

𝜕∆𝐹1

𝜕𝑦

𝜕∆𝐹2

𝜕𝑥

𝜕∆𝐹2

𝜕𝑦

] [
∆x
∆y
]                       (30) 

Or simplified as: 

ΔF = JΔX                                                               (31) 
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Where J is the Jacobian matrix of function𝑔𝑖; 𝛥𝑋 is column vector ofΔ𝑥𝑖 and ofΔ𝑦𝑖; 𝛥𝐹 is 

the difference column vector, which denotes the difference of all differential-algebraic equations. 

ΔF is the tracking difference that the system tries to reach at zero. ∆𝐹1⁡represents the difference 

calculated by using trapezoidal integration algorithm as   

∆F1 = 𝑥𝑛+1 − 𝑥𝑛 −
∆𝑡

2
× [𝑓(𝑥𝑛, 𝑦𝑛, 𝑢) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1, 𝑢)] = 0                      (32) 

For two-axis generator model, there are 10 parameters that need to be concerned, which 

are δ,⁡ω,⁡Eq’, Ed’, Efd, VR, RF, TM, Pch, Psv. All these variables denote as𝑥𝑖.⁡. ∆F2 presents the power 

difference as (13) and (14), as well as ∆F1 shows difference for dynamic variables, repeat to every 

generator bus. In addition, ∆F2 utilizes (15) and (16) for calculating power balance of every node.  

Substituting 𝑥𝑖
(0)

and 𝑦𝑖
(0)

 into the function, each elements of ΔF and J can be estimated. 

𝑥𝑖
(0)

 and 𝑦𝑖
(0)

can be calculated by any means to solve linear matrix equations. After the first 

iteration, the new value of  𝑥𝑖 is𝑥𝑖
(1)

= 𝑥𝑖
(0)

+ Δ𝑥𝑖
(0)

, as well as 𝑦𝑖Substitute 𝑥𝑖
(1)

 and 𝑦𝑖
(1)

 into the 

equation, the new value of each element of ΔF and J can be estimated, so that calculate 𝑥𝑖
(1)

 and 

𝑦𝑖
(1)

 as 

𝑥𝑖
(2)

= 𝑥𝑖
(1)

+ Δ𝑥𝑖
(1)

                                                     (33) 

𝑦𝑖
(2)

= 𝑦𝑖
(1)

+ Δ𝑦𝑖
(1)

                                                     (34) 

The final solution of (34) is generated through iterations by iterations. 

The calculation steps of Newton-Raphson are shown below: 

1) Set the initial value for each bus voltage 𝑉(0)、𝜃(0) and each generator dynamics denoted 

as𝑦𝑖
(0)

. 

2) Estimate power difference vectorΔ𝑃(0), Δ𝑄(0) and using trapezoidal integration algorithm 

to estimateΔ𝐹2
(0)

. 
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3) Estimate each element of Jacobian matrix. 

4) Solve the equation and ∆X 

5) Modify each variable: 

{
𝑥(1) = 𝑥(0) + ∆𝑥(0)

𝑦(1) = 𝑦(0) + ∆𝑦(0)
                                                        (35) 

6) Estimate Δ𝐹(1) with 𝑥(1) and𝑦(1). 

7) Examine convergence. The condition of convergence is: 

|Δ𝐹(𝐾)| < 𝜀                                               (36) 

where |Δ𝐹(𝐾)| is the absolute value of maximum element of vector⁡Δ𝐹(𝐾). It can show the 

power difference of final results. In this case𝜀 = 10−5. 

8) If|Δ𝐹(𝐾)| < 𝜀, output simulation results, otherwise repeat from step 3 and iterate until 

satisfy condition of convergence. 

The error detection loop shows as Figure 5. 

2.3 Runge-Kutta Method and Procedure 

Power system is a nonlinear system, which includes differential equations and algebraic 

equations as discussed above. However, it is always challenging to solve them both at the same 

time. In this method, a purely differential equations are formed and simulated by using Runge-

Kutta method. Runge-Kutta algorithm is widely used in simulation program and based on the 

known derivatives of equations and initial value of all variables. Here are the basic rules of this 

method. 
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Figure 5 Error detection loop 

 

Runge-Kutta method is very similar to Taylor series solution. Different order of Runge-

Kutta method is depended on different items reserved from Taylor series expansion. The more 

effective items are reserved, the higher order Runge-Kutta method can get, and the more accurate 

the results are. 

In this paper, forth order Runge-Kutta method is used. For step (n+1), the general function 

for x is: 

𝑥𝑛+1 = 𝑥𝑛 +
1

6
[𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4]                              (37) 
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where, 

𝑘1 = 𝑓(𝑥𝑛, 𝑡𝑛)Δ𝑡                                                       (38) 

𝑘2 = 𝑓 (𝑥𝑛 +
𝑘1

2
, 𝑡𝑛 +

Δ𝑡

2
)Δ𝑡                                            (39) 

𝑘3 = 𝑓(𝑥𝑛 +
𝑘2

2
, 𝑡𝑛 +

Δ𝑡

2
)Δ𝑡                                              (40) 

𝑘4 = 𝑓(𝑥𝑛 + 𝑘3, 𝑡𝑛 + Δ𝑡)Δ𝑡                                              (41) 

The physical explanations for the previous formulas are shown below: 

 𝑘1= (slope of beginning time step) Δ𝑡 

𝑘2= (first approximation of slop of middle time step) Δ𝑡 

𝑘3= (second approximation of slop of middle time step) Δ𝑡  

𝑘4= (slope of last time step) Δ𝑡 

Δ𝑥 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                                         (42) 

Consequently, Δ𝑥⁡is the increment value of⁡𝑥. It depends on the weighted average of slope 

of beginning, middle and last point of time step. 

In this algorithm test, dynamic stability is simulated and analyzed. Dynamic stability 

concerns the influence of a small fault that lasts a long time with control devices [3]. In this case, 

the system is tested in relatively long time in fault situation and without any control applications. 

For example, [5] provides a renewable energy source to control the whole system. 

The procedure of this algorithm is as Figure 6: 
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Figure 6 Runge-Kutta algorithm procedure 

 

CHAPTER 3. POWER SYSTEM DYNAMICAL MODEL DEVELOPMENT  

This chapter explains the development of power system dynamic model. It is divided into 

three parts. In the first section, all equations are developed. Then we focuses on the system 

modeling and simulation background introduction. In this section, all basic settings are provided 

and explained. Finally, simulation results and analysis is shown, which is the comparison of two 

method. In this chapter the benefits of Runge-Kutta method is shown, that is, without losing the 

accuracy, but saving lots of time. 
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3.1 Center of Inertia Coordinate Frame 

 Center of Inertia coordinate is a replacement of synchronization rotational coordinate axes, 

which is a time varying coordinate axes. It contributes to show the dynamic behavior of each 

generator. Essentially, it can isolate the vibration or energy of transient status from stability 

analysis. 

 Power system center of inertia follows the equations below: 

𝑀𝑖 =
2×𝐻𝑖

𝜔𝑠
                                                         (46) 

𝛿𝑐𝑜𝑖 =
1

𝑀𝑡
∑ 𝑀𝑖 × 𝛿𝑖
𝑛
𝑖=1                                                   (47) 

𝜔𝑐𝑜𝑖 =
1

𝑀𝑡
∑ 𝑀𝑖 × (𝜔𝑖 − 𝜔𝑠)
𝑛
𝑖=1                                           (48) 

where⁡𝑀𝑡 = ∑ 𝑀𝑖
𝑛
𝑖=1 , Mi is the rotor inertia time constant. Hi is the inertia constant. 

 Under the center of inertia coordinate axes frame, generator angle, generator speed and bus 

angle can represent as: 

δ = 𝛿𝑖 − 𝛿𝑐𝑜𝑖                                                            (49) 

ω = 𝜔𝑖 −𝜔𝑐𝑜𝑖                                                            (50) 

φ = 𝜃𝑖 − 𝛿𝑐𝑜𝑖                                                            (51) 

where⁡𝛿𝑖,⁡𝜔𝑖, 𝜃𝑖 are the absolute value of generator angle, generator speed and bus angle. δ, ω, φ 

are the generator angle, generator speed and bus angle that regards to the center of inertia, which 

are used thought out all the Runge-Kutta algorithm. 

3.2 Algebraic Equations Differentiation 

 One of the major challenges of power system is solving and simulating the differential-

algebraic equations. In this method, all algebraic equations need to be converted to differential 



19 

 

equations in order to have a pure differential equations. Take two-axis generator model as an 

example: 

𝜕∆𝑃

𝜕𝑥
=⁡

𝜕∆𝑃

𝜕𝑉
× 𝑉̇ +

𝜕∆𝑃

𝜕𝜑
× 𝜑̇ +

𝜕∆𝑃

𝜕𝛿
⁡× 𝛿̇ +

𝜕∆𝑃

𝜕𝐸𝑞
′ × 𝐸𝑞′̇ +

𝜕∆𝑃

𝜕𝐸𝑑
′ × 𝐸𝑑

′̇ = 0⁡                       (52) 

𝜕∆𝑄

𝜕𝑥
=⁡

𝜕∆𝑄

𝜕𝑉
× 𝑉̇ +

𝜕∆𝑄

𝜕𝜑
× 𝜑̇ +

𝜕∆𝑄

𝜕𝛿
⁡× 𝛿̇ +⁡

𝜕∆𝑄

𝜕𝐸𝑞
′ × 𝐸𝑞′̇ +

𝜕∆𝑄

𝜕𝐸𝑑
′ × 𝐸𝑑

′̇ = 0                       (53) 

 By solving (52) an (53) for 𝑉̇ and𝜑̇, the algebraic equations can be converted to a set of 

dynamic equations as follow： 

[
𝑉̇
𝜑̇
] = [

𝐴 𝐶
𝐵 𝐷

]
−1

× [
𝐸 𝐺 𝐾
𝐹 𝐻 𝐿

] × [

𝛿̇
𝐸̇𝑞
′

𝐸̇𝑑
′

]                                     (54) 

where  

A=⁡
𝜕∆𝑃

𝜕𝑉
, C=

⁡𝜕∆𝑃

𝜕𝜑
, E=⁡

𝜕∆𝑃

𝜕𝛿
, G=⁡⁡

𝜕∆𝑃

𝜕𝐸𝑞
′ , K=

𝜕∆𝑃

𝜕𝐸𝑑
′ , B=⁡

𝜕∆𝑄

𝜕𝑉
, D= ⁡

𝜕∆𝑄

𝜕𝜑
 , F= ⁡

𝜕∆𝑄

𝜕𝛿
, H=⁡⁡

𝜕∆𝑄

𝜕𝐸𝑞𝑗
′ , L= ⁡

𝜕∆𝑄

𝜕𝐸𝑑𝑗
′ .  

Specifically, 

𝑎𝑖𝑖 = ∑ 𝐵𝑖+𝑛,𝑗[𝐸𝑞𝑗
′ sin(𝜑𝑖+𝑛 − 𝛿𝑗) + 𝐸𝑑𝑗

′ cos(𝜑𝑖+𝑛 − 𝛿𝑗)] + ∑ 𝐵𝑖+𝑛,𝑗
𝑁+𝑛
𝑗=𝑛+1 𝑉𝑗 sin(𝜑𝑖+𝑛 −

𝑛
𝑗=1

𝜑𝑗) + 𝑑𝑃⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁. 𝑖 ≠ 𝑗)              (55) 

and 𝑎𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 sin(𝜑𝑖+𝑛 − 𝜑𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑗 = 𝑛 +1, 𝑛 + 2, … , 𝑁 + 𝑛)           (56) 

denote the elements of A. Next, C is represented as 

𝑐𝑖𝑖 = 𝑉𝑖+𝑛∑𝐵𝑖+𝑛,𝑗[𝐸𝑞𝑗
′ cos(𝜑𝑖+𝑛 − 𝛿𝑗) − 𝐸𝑑𝑗

′ sin(𝜑𝑖+𝑛 − 𝛿𝑗)]

𝑛

𝑗=1

+ 𝑉𝑖+𝑛 ∑ 𝐵𝑖+𝑛,𝑗

𝑁+𝑛

𝑗=𝑛+1

𝑉𝑗 cos(𝜑𝑖+𝑛 − 𝜑𝑗) − 𝑉𝑖+𝑛
2 𝐵𝑖+𝑛,𝑖+𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁. 𝑖 ≠ 𝑗) 

(57) 
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and 𝑐𝑖𝑗 = −𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 𝑉𝑗cos(𝜑𝑖+𝑛 − 𝜑𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … , 𝑁.⁡⁡𝑗 = 𝑛 +1, 𝑛 + 2,… ,𝑁 + 𝑛)       

(58) 

Then,  

𝑒𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗[𝐸𝑑𝑗
′ sin(𝜑𝑖+𝑛 − 𝛿𝑗) − 𝐸𝑞𝑗

′ cos(𝜑𝑖+𝑛 − 𝛿𝑗)] 

(𝑖 = 1,2, … , 𝑁. 𝑗 = 𝑛 + 1, 𝑛 + 2,… ,𝑁 + 𝑛)         (59) 

denote the elements of E. Matrix G has elements as 

𝑔𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 sin(𝜑𝑖+𝑛 − 𝛿𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁.⁡⁡𝑗 = 1,2, … , 𝑛)⁡               (60) 

Also, 

𝑘𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 cos(𝜑𝑖+𝑛 − 𝛿𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁.⁡⁡𝑗 = 1,2, … , 𝑛)⁡⁡⁡⁡⁡⁡⁡          (61) 

denote the elements of K. Another Matrix B is introduced as 

𝑏𝑖𝑖 = ∑ 𝐵𝑖+𝑛,𝑗[𝐸𝑞𝑗
′ cos(𝜑𝑖+𝑛 − 𝛿𝑗) + 𝐸𝑑𝑗

′ sin(𝜑𝑖+𝑛 − 𝛿𝑗)] + ∑ 𝐵𝑖+𝑛,𝑗
𝑁+𝑛
𝑗=𝑛+1 𝑉𝑗 cos(𝜑𝑖+𝑛 −

𝑛
𝑗=1

𝜑𝑗) − 𝑑𝑄⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁. 𝑖 ≠ 𝑗)                  (62) 

and 𝑏𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 cos(𝜑𝑖+𝑛 − 𝜑𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑗 = 𝑛 +1, 𝑛 + 2,… ,𝑁 + 𝑛)⁡             (63) 

Where after,  

𝑑𝑖𝑖 = −𝑉𝑖+𝑛∑𝐵𝑖+𝑛,𝑗[𝐸𝑞𝑗
′ sin(𝜑𝑖+𝑛 − 𝛿𝑗) − 𝐸𝑑𝑗

′ cos(𝜑𝑖+𝑛 − 𝛿𝑗)]

𝑛

𝑗=1

+ 

𝑉𝑖+𝑛∑ 𝐵𝑖+𝑛,𝑗
𝑁+𝑛
𝑗=𝑛+1 𝑉𝑗 sin(𝜑𝑖+𝑛 − 𝜑𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁. 𝑖 ≠ 𝑗)                   (64) 

and 𝑑𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 𝑉𝑗sin(𝜑𝑖+𝑛 − 𝜑𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁.⁡⁡𝑗 = 𝑛 +1, 𝑛 + 2,… ,𝑁 + 𝑛)    

(65) 

denote the elements of D. Along with Matrix D, 

𝑓𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗[𝐸𝑞𝑗
′ sin(𝜑𝑖+𝑛 − 𝛿𝑗) − 𝐸𝑑𝑗

′ cos(𝜑𝑖+𝑛 − 𝛿𝑗)] 

(𝑖 = 1,2, … ,𝑁. 𝑗 = 𝑛 + 1, 𝑛 + 2,… ,𝑁 + 𝑛)                       (66) 
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denote the elements of F. Besides,  

ℎ𝑖𝑗 = 𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 cos(𝜑𝑖+𝑛 − 𝛿𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … ,𝑁.⁡⁡𝑗 = 1,2, … , 𝑛)                (67) 

denote the elements of H. The last matrix L is explicated as 

𝑙𝑖𝑗 = −𝑉𝑖+𝑛𝐵𝑖+𝑛,𝑗 sin(𝜑𝑖+𝑛 − 𝛿𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2, … , 𝑁.⁡⁡𝑗 = 1,2, … , 𝑛)                (68) 

3.3 Variables Change in Fault and After Fault Condition  

 In classical generator model, the generator’s internal voltages stay unchanged. However, 

with introducing the transient parameters to the generators, the internal voltage is no longer 

constant. In spite of this, E’d and E’q still stay constant at the moment of fault. From Figure 2, the 

internal voltage has one element Iq that relates to the changed variables bus voltage V and bus angle 

θ, which are immediately changed when a fault is injected or cleared as  

𝐼𝑞 =
𝑉×sin(𝛿−𝜃)

𝑥𝑞
                                                      (69) 

 In Runge-Kutta algorithm, the previous status of Iq is used for the faulted or after-fault 

condition. Similar to trapezoidal integration algorithm, the simulation is separated into three parts, 

pre-fault, fault, and after-fault periods. The initial values need to be calculated for every status, 

especially for fault condition and after-fault condition. For example, when there is a fault, the line 

impedance of the system changes. Based on this new impedance and pre-fault internal voltage and 

generator angle, bus voltages and bus angles for faulted condition are initialized.  The same 

procedure is done for after-fault condition. The small-disturbance rotor angle stability analysis 

cannot be utilized in long-term simulation [7] because the error is accumulated in fault condition 

and for generator angles due to linearization error. They could keep increasing or decreasing until 

the system collapses if the fault stays so long. 
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CHAPTER 4 SIMULATION RESULTS AND ANALYSIS 

4.1 System Modelling and Simulation Background 

All two-axis generator model systems run for 10 seconds (classical generator model 

systems run for 5 seconds) in order to get the most efficiency and clear simulation results. First 

few seconds is no fault condition, which means there is no fault in the system. From then on, a 

ground fault happens on Bus 8, the value is 1j or 5j. The fault is cleared after a short assumed time 

(normally, the fault is about 0.1 second or 0.2 second, for presenting result reason, in these 

simulations, fault is cleared after a longer time) and the system is back to no fault condition for the 
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rest simulation time. There are four major parameters that are compared, including bus voltage, 

bus angle, generator angle and generator speed. In addition, the efficiency of these two method is 

compared. 

4.1.1 Load-Impedance Conversion  

As discussed above, there is no resistance in the transmission lines. In Runge-Kutta 

method, the impedance of the whole system keep constant. However, in trapezoidal integration 

algorithm, the system is keeping the active power and reactive power constant. For comparison 

reasons, the trapezoidal method uses modified bus data, which converts all the load to impedance 

in pre-fault condition and keeps it constant.  

Table 1 is the load chart of IEEE 14 bus system: 

 

 

Table 1 Load Chart of 14 Bus System 

 

Bus No. 

Active 

Generation 

Pg (p.u.) 

Reactive 

Generation 

Qg (p.u.) 

Active 

Load Pl 

(p.u.) 

Reactive 

Load Ql 

(p.u.) 

Conductance 

G  

(p.u.) 

Susceptance 

B 

 (p.u.) 

1 0 0 0 0 0 0 

2 0.183 0.297 0 0 0 0 

3 -0.942 0.044 0 0 0 0 

4 -0.112 0.047 0 0 0 0 

5 0 0.174 0 0 0 0 

6 0 0 0.478 -0.039 0 0 

7 0 0 0 0 0 0 

8 0 0 0.076 0.016 0 0 

9 0 0 0.595 0.166 0 0.19 
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10 0 0 0.39 0.058 0 0 

11 0 0 0.035 0.018 0 0 

12 0 0 0.061 0.016 0 0 

13 0 0 0.135 0.058 0 0 

14 0 0 0.349 0.05 0 0 

The procedure to convert all the load to the conductance G and susceptance B is to use 

Newton-Raphson load flow method to calculate the bus voltages and angles.  Then as the function: 

G =
𝑃𝑙

𝑉2
                                                              (70) 

 

B =
𝑄𝑙

𝑉2
                                                              (71) 

After the conversion process, the trapezoidal integration algorithm uses the new modified 

bus data as Table 2, 

Table 2 Modified Bus Data for IEEE 14 Bus System 

 

Bus No. 

Active 

Generation 

Pg (p.u.) 

Reactive 

Generation 

Qg (p.u.) 

Active 

Load Pl 

(p.u.) 

Reactive 

Load Ql 

(p.u.) 

Conductance 

G  

(p.u.) 

Susceptance 

B 

 (p.u.) 

1 0 0 0 0 0 0 

2 0.183 0.297 0 0 0 0 

3 -0.942 0.044 0 0 0 0 

4 -0.112 0.047 0 0 0 0 

5 0 0.174 0 0 0 0 

6 0 0 0 0 0.4464 0.0364 

7 0 0 0 0 0 0 

8 0 0 0 0 0.0706 -0.0149 

9 0 0 0 0 0.5425 0.0386 

10 0 0 0 0 0.3562 -0.0530 
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11 0 0 0 0 0.0314 -0.0162 

12 0 0 0 0 0.0541 -0.0142 

13 0 0 0 0 0.1205 -0.0518 

14 0 0 0 0 0.3205 -0.0459 

In this way, these two algorithm are simulated under the same circumstance, which is 

constant impedance condition. 

4.1.2 Generator Replacement 

 In order to reduce the complexity of the system and to simplify the computational process, 

all the generators are moved to the top buses. The main procedure is as Figure 7: 
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Figure 7 Generator replacement procedure flow 

4.2 Simulation Results and Analysis 

In this section, two strategies are compared with simulation results and analysis the 

difference of those two in data prospective in fault condition. When a small disturbance inject to 

the system, the generator angle and speed will derive from the steady state value and cause a 

vibration [5].  This can be divided to two sections. In the first section, IEEE 14 bus system is 

simulated and compared. The generator in the system is classical generator model, which is the 

simplest model. Second section focuses on two-axis generator model. Three system is simulated 

and analyzed, which including IEEE 14 bus system and IEEE 118 bus system. 
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4.2.1 Classical Generator Model  

From the beginning to 2 seconds, all parameters keep constant for both cases because it is 

steady state when there is no fault. From 2 to 3 second, which is the fault situation, the system is 

in transient stability situation. The system adjusts all the parameters and causes the vibration. After 

3 second is fault clear situation. Because of the change of generator parameters, such as generator 

angle and speed, the system is keeping vibrating in the rest of the simulation. The diagram of 14 

Bus system shows as Figure 8. Figure 9 shows the δ of all generators. 

 

Figure 8 14 Bus diagram 
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                             (a)                                                                        (b) 

 

                             (c)                                                                        (d) 

 

(e)  

Figure 9 Comparison of δ for two methods of classical generator model power system. (a) 

Gen 1_ δ (b) Gen 2_ δ (c) Gen 3_ δ (d) Gen 4_ δ (e) Gen 5_ δ 
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As figure shows, they all perfectly match with trapezoidal method. What needs to be 

mentioned here is the δ shown above is the δ respect to the center of inertia δ. In practice, δ will 

keep increasing to infinity. As to δ respect to COI δ, it is easier and clearer to compare. In this 

figure, the generator angle becomes steadier after the fault cleared, but never back to normal 

condition because of the change of initial point. Figure 10 shows the five generator speed. 

 

                             (a)                                                                        (b) 

 

                             (c)                                                                        (d) 

Figure 10 ω of all generators simulated for classical generator model system. (a) Gen 1_ω 

(b) Gen 2_ω (c) Gen 3_ω (d) Gen 4_ω (e) Gen 5_ω  
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(e)  

Figure continued 

As shown above, they are the ω of all generators. It is the same as the δ, all ω are respect 

to COI ω for a better comparison. These two methods again show a great match in ω prospective. 

And combine the δ, these two methods have perfectly matches on generator side in whole 

simulation period. Figure 11 and Figure 12 reveal the comparison of two algebraic parameters. 

 

(a) (b) 

Figure 11 All 14 bus voltages of classical generator model system. (a) Bus 1_V (b) Bus 

2_V (c) Bus 3_V (d) Bus 4_V (e) Bus 5_V (f) Bus 6_V (g) Bus 7_V (h) Bus 8_V (i) Bus 9_V (j) 

Bus 10_V (k) Bus 11_V (l) Bus 12_V (m) Bus 13_V (n) Bus 14_V 
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                                (c)                                                                   (d) 

 

                               (e)                                                                        (f)  

 

                              (g)                                                                        (h)  

Figure continued 
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                                        (i)                                                                         (j)  

 

                           (k)                                                                        (l)  

 

                            (m)                                                                        (n)  

Figure continued 

From this figure, a clearly significant voltage jump happens at 2 second because of the 

fault, for both methods, to the same after fault value. From bus 1 to bus 5 are all generator buses, 

which have relatively smaller change when suddenly a fault or the fault suddenly is cleared. That 
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is because the generator can balance those differences. However, for other buses that have only 

load on them, the magnitude of the bus voltage has around 0.01 -0.03 p.u. change. That is around 

1% voltage jump or drop. Normally, the maximum voltage change the industry can endure is 5%. 

So even this small fault can make great difference. In Figure 8, bus8 connects to bus 2, bus 4, and 

bus 6. Because of the generator bus has the capability to absorb some energy and mostly reduce 

the voltage change. However, load bus, bus 6 has nothing to do with the fault. That is why bus 8 

and bus 6 are most effected by the fault and increase the voltage 0.03 p.u., which is pretty huge 

difference on industry side and may cause great damage. 

 

(a) (b) 

Figure 12 All 14 bus angles of classical generator model system. (a) Bus 1_ φ (b) Bus 2_ 

φ (c) Bus 3_ φ (d) Bus 4_ φ (e) Bus 5_ φ (f) Bus 6_ φ (g) Bus 7_ φ (h) Bus 8_ φ (i) Bus 9_ φ (j) 

Bus 10_ φ (k) Bus 11_ φ (l) Bus 12_ φ (m) Bus 13_ φ (n) Bus 14_ φ 
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                             (c)                                                                        (d) 

 

                            (e)                                                                        (f)  

 

                            (g)                                                                        (h)  

Figure continued 
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(i) (j)  

 

                            (k)                                                                        (l)  

 

                            (m)                                                                        (n)  

Figure continued 

 The same procedure for the bus angle, φ is calculated respect to COI δ for a better 

comparison results. Combine this figure and last voltage figure, these two methods have the same 

results and accuracy for 14 bus classical generator model power system on the network side. 
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However, Runge-Kutta method takes 5.4 seconds to run the main program, it is 18 times shorter 

than trapezoidal method, which takes 97 seconds. It is more efficiency to run the Runge-Kutta 

method without losing accuracy to have the same great performance.  

4.2.2 Two-axis Generator Model  

In this section, two-axis generator model is simulated. The fault happens at 2 second, and 

lasts for 0.5 second. The whole simulation time is 10 seconds. The fault is 1j for smaller system 

and for 118 bus system, both small fault and larger fault is simulated. First of this section, a smaller 

14 bus system is tested. Figure 13 shows the comparison of δ for two methods of 14 bus two axis 

power system. 

 

(a) (b) 

Figure 13 Comparison of δ for two methods of 14 bus two axis power system. (a) Gen 1_ 

δ (b) Gen 2_ δ (c) Gen 3_ δ (d) Gen 4_ δ (e) Gen 5_ δ 
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                             (c)                                                                        (d) 

 

         (e)  

Figure continued 

 It is clear that compare to classical generator model, two-axis generator model is more 

complex and these two methods have some difference in δ comparison. In the sub-Figure (c), when 

a fault is injects, δ of generator 3 increases suddenly for both methods. However, they jump to 

different after fault value. In addition, all δ do not match in the same magnitude, especially for 

generator 5. Runge-Kutta method has a larger vibration than trapezoidal method. The following 

figure (Figure 14) displays the comparison of generator speed of two methods. Figure 15 shows 

the bus voltage of 14 bus two-axis generator model system. 
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(a) (b) 

 

                             (c)                                                                        (d) 

 

(e)  

Figure 14 ω of all generators simulated for 14 bus two-axis generator model system. (a) 

Gen 1_ω (b) Gen 2_ω (c) Gen 3_ω (d) Gen 4_ω (e) Gen 5_ω  
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(a) (b) 

 

 

                             (c)                                                                        (d) 

 

                            (e)                                                                        (f)  

Figure 15 All 14 Bus voltage of 14 bus two-axis generator model system. (a) Bus 1_V (b) 

Bus 2_V (c) Bus 3_V (d) Bus 4_V (e) Bus 5_V (f) Bus 6_V (g) Bus 7_V (h) Bus 8_V (i) Bus 

9_V (j) Bus 10_V (k) Bus 11_V (l) Bus 12_V (m) Bus 13_V (n) Bus 14_V 
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                            (g)                                                                        (h)  

 

                            (i)                                                                        (j)  

 

                            (k)                                                                        (l)  

Figure continued 
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                            (m)                                                                        (n)  

Figure continued 

The comparison is promising. However, there is still 10-4 difference for the voltage change 

of these two method when facing a fault. Then, Figure 16 shows as following. 

 

(a) (b) 

Figure 16 All 14 Bus angles of 14 bus two-axis generator model system. (a) Bus 1_ φ (b) 

Bus 2_ φ (c) Bus 3_ φ (d) Bus 4_ φ (e) Bus 5_ φ (f) Bus 6_ φ (g) Bus 7_ φ (h) Bus 8_ φ (i) Bus 

9_ φ (j) Bus 10_ φ (k) Bus 11_ φ (l) Bus 12_ φ (m) Bus 13_ φ (n) Bus 14_ φ 
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                             (c)                                                                       (d) 

 

                            (e)                                                                        (f)  

 

                            (g)                                                                        (h)  

Figure continued 
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                            (i)                                                                        (j)  

 

                            (k)                                                                       (l)  

 

                            (m)                                                                        (n)  

Figure continued 

After the comparison, the results turn out that almost all φ are unmatched. Especially the 

faulted bus and load bus connected to it, which are bus 8 and bus 6.  
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After repeatedly testing, the reason may be the stator algebraic equations. When substitute 

the stator equations to power balance algebraic equations, previous voltage and bus angle are used. 

However, when deal with faulted situation, the pre-fault stator variables cannot be used because 

of the immediately changed variables. The simulation above is using the previous stator variables, 

which cause the different initial after fault value for all variables, even some changes are very 

small. 

The second part of this section is to test a larger system, modified 118 bus system with 20 

generators on first 20 buses. Figure 17 gives a diagram of 118 bus system. In case a small fault will 

not have great effects to the system, 5j fault is injected to have a remarkably change. Several 

important results are shown, full results in Appendix A. Figure 18 shows an enlarged figure of 118 

bus system based on the faulted bus. Figure 19 and Figure 20 give an opinion of the comparison 

of selected generator angles. Figure 21 shows the generator angle of two selected generator bus. 

Figure 22 and Figure 23 explain the comparison of bus voltages and bus angles that are selected 

as an example.  
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Figure 17 Modified 118 bus system diagram 
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Figure 18 Relative buses connect to faulted bus 

 

                             (a)                                                                        (b) 

Figure 19 Selected δ of 118 bus two-axis generator model system. (a) Gen 7_ δ (b) Gen 

8_ δ 
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                             (a)                                                                        (b) 

Figure 20 Selected δ of 118 bus two-axis generator model system. (a) Gen 10_ δ (b) Gen 

20_ δ 

 As shown in figures above, it is clear that these two methods results match with each other 

in this larger system, even for the after fault initial value is the same for every δ. In addition, Figure 

20 (a) and (b) show the same changes when the status changes.   

 

                             (a)                                                                        (b) 

Figure 21 Selected ω of 118 bus two-axis generator model system. (a) Gen 7_ ω (b) Gen 

8_ ω 

Figure 21 shows the largest shock range ω, which are the faulted bus and the closest 

generator bus. All the other ω matches and smooth for whole simulation time. 
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                             (a)                                                                        (b) 

 

                             (c)                                                                        (d) 

Figure 22 Selected bus voltage of 118 bus two-axis generator model system. (a) Bus 8_V 

(b) Bus 30_V (c) Bus 44_V (d) Bus 51_V 

 The above Figure 22 shows faulted bus and buses that have different distance from the 

fault bus. The 30 directly connects to bus 8, bus 44 is far away from the faulted bus, and bus 51 is 

even farther. As it shows, on faulted bus, the voltage jumps almost 0.03 p.u., which gives more 

than 2% voltage change. On the connected bus, the voltage jump reduces to 0.003 p.u., which 

because the generator on bus 8 tries to keep the voltage constant and not to influence other buses. 

For not being connected bus or even farther buses, the influence of the fault is too small to notice, 

that is shown in (d). 
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                             (a)                                                                        (b) 

 

                             (c)                                                                        (d) 

Figure 23 Selected φ of 118 bus two-axis generator model system. (a) Bus 8_ φ (b) Bus 

30_ φ (c) Bus 44_ φ (d) Bus 51_ φ 

 Even though some bus voltages have almost no change, but φ changes significantly for 

every buses. The φ change is related to the inner power balance of the whole system and can be hardly 

predicted. 

 In this larger system simulation, the results of two methods comparison are great in both 

frequency and magnitude. Besides, the Runge-Kutta method takes 400 seconds, compares to 

trapezoidal method’s 14300 seconds, it is 35.8 times shorter.  
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CHAPTER 5. CONCLUSIONS AND FUTRUE WORK 

5.1 Conclusions 

 In this thesis, a new methodology is used to solve differential-algebraic equations. To 

reduce the complexity of solving it, all algebraic equations are converted to differential equations. 

This pure differential equations are solved by Runge-Kutta algorithm and compared to previous 

trapezoidal integration algorithm. For classical generator model generator systems, these two 

methods have exactly the same results and Runge-Kutta algorithm’s simulation time is about 20 

times shorter than the other. When switching to the two-axis generator model generator system, 

Runge-Kutta algorithm’s result on smaller system is inaccurate, because the fault can greatly 

change generator variables, which cannot be assumed or predicted before fault. However, for 

larger system like 118 bus system, even a larger fault cannot have this much influence on generator 

side. The results of these two algorithms match again. This is because the larger system have more 

generators that capable to reduce the influence of the fault in order to avoid the fault attack to the 

rest of the system. When the fault is huge or more solid, the same results are shown as the smaller 

system. 

5.2 Future Work 

 The next step of this study is to solving the stator algebraic equation when facing a fault. 

By bypassing the stator algebraic equation, the system can be simulated correctly when a fault is 

injected for both smaller system and larger one.  
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APPENDIX A: ALL SIMULATION RESULTS FOR 118 BUS SYSTEM 
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