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ABSTRACT 

 

Background: Endoleak has been reported as a major complication among patients who have 

undergone endovascular repair of their abdominal aortic aneurysm (AAA).  Several studies made 

efforts towards identifying the risk factors for the development of endoleak through various studies 

and data analyses.  Among all the findings, one result--smoking significantly lowers a patient’s risk 

for an endoleak--has been confirmed multiple times.  But such a result appears to be contradictory 

to what researchers have anticipated; yet the contradictory has not been closely studied. 

Methods: Data on endoleaks from the Department of Veterans’ Affairs Open Versus Endovascular 

Repair (OVER) randomized controlled trial was used, and 419 male subjects with smoking histories 

were included in the analysis.  A series of logistic regression models and propensity score models 

was constructed with the baseline and follow-up variables.  Multiple imputation techniques were 

utilized to minimize the impact of missing data and to improve analytical robustness.  In addition, a 

simulation study was also undertaken to better evaluate the models above. 

Results: About half (5/12) of the logistic regression models supported the significant effect on endoleak 

of smoking in the model, and a smaller proportion (3/18) of propensity score models indicated that 

smoking was a significant factor for endoleak.  Missing values had an important impact on the results.  

Although smoking’s effects were not significant for little more than half of the models, odds ratio of 

developing endoleak for current smokers were always less than 1 compared with non-current smokers, 

which may be clinically meaningful.  Results from simulation studies suggest that clinical trials with 

larger sample size might be necessary to reach a definitive conclusion on this topic. 
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INTRODUCTION 

Open heart surgery used to be the routine treatment for patients with Abdominal Aortic Aneurysm (AAA) 

more than twenty years ago
1
.  Ever since the introduction of minimally invasive endovascular stent 

grafts in 1986
2
, endovascular aneurysm repair (EVAR) had become a popular alternative treatment for 

AAA patients, partly because of the increasing recognition of EVAR’s superior advantage of decreasing 

perioperative mortality
1,3-5

.  In spite of the benefits, endovascular repair had drawbacks.  Endoleak, a 

symptom of continuous blood flow between graft and aneurysm sac, had been discovered as a major 

complication among patients who had received endovascular repair
6
.  Endoleak was also regarded as a 

signal of surgery failure in several studies
7, 8

.  Although the absence of an endoleak does not necessarily 

mean that the patient is free from risk (Gilling-Smith and his colleagues found that ruptures could happen 

to patients with no endoleak)
9
, there is no doubt that the appearance of an endoleak implies unsuccessful 

exclusion of the aneurysm.  It had been found that certain types of endoleak (for example Type I 

endoleak) were more dangerous than some other types, since these types of endoleak were  closely 

related with a higher risk of aneurysm sac enlargement, and the aneurysm sac enlargement may 

subsequently cause aneurysm rupture
10, 11

.  Consequently, patients with endoleak may have to receive 

secondary interventions to fix the related problems, and the cost of treatment increases at the same time
12

. 

 

Experience from several studies had showed that 20% - 35% of the patients undergoing endovascular 

aneurysm reparation developed endoleaks after interventions
12-15

.  Because of the high frequency and 

potential risks of endoleak, researchers had spent efforts to investigated  the risk factors for the 

development of endoleak 
11, 15-18

.  Knowledge about these risk factors can potentially assist health 

practitioners to pre-select AAA patients who may benefit from endovascular aneurysm repairation and to 
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lower the possibility of endoleak.  Studies about endoleak suggested that age, aneurysm size, smoking 

status, etc. were related with the incidence of endoleak.  In analyzing data from these risk factors, 

smokers had been identified to be at lower risk of endoleak, was is the most unexpected and least 

understood
11, 15-18

.   

 

As part of the EUROSTAR study, Marrewijk et al., Mohan et al., and Buth et al. collected pre- and 

post-operative data of AAA patients who had received endovascular repairation from 110 medical centers 

all over Europe
11,15,17

.  They reported that the non-endoleak group had lower proportion of smokers 

compared to the endoleak group.  Mohan et al. had completed the most comprehensive study among the 

three studies on the topic of smoking and endoleak
15

, and through a series of logistic regression models, 

Mohan et al. found that current smokers smoking more than 20 cigarettes per day had the lowest risk of 

endoleak compared with current smokers smoking less than 20 cigarettes, and ex-smokers.  Such results 

appeared to confirm  the hypothesis that smoking provided some protection against the development of 

endoleak.  The results above demonstrating the relation between smoking and endoleak were not 

coincidental.  Zarins et al. published similar results from their AneuRx multicenter clinical trial in 1999 

and also found higher proportions of smokers in patients without endoleak than in those with endoleak
16

. 

 

Although the results about the relation between smoking and endoleak had accumulated through different 

studies, a close scrutiny over the analysis demonstrated that results were generated through the application of 

student t-tests, chi-square tests, and/or multivariate regression models
11,15-17

.  Because smoking would 

obviously raise some ethical concerns in the context of a randomized trial, data on such topics were mostly 

observational.  Observational data could have certain disadvantages, such as unbalanced baseline 
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characteristics between two experiment arms
19

.  However, it didn’t mean that simple methodology was not 

good enough.  On the contrary, when both simple and complex methods were feasible in solving problems, 

simple methods should always be the first consideration.  We suggested that researchers should be more 

cautious when conducting analysis based on observational data.  In this context, more comprehensive analysis 

needs to be done to better understand the relationship of quitting smoke and developing endoleak.   

 

In this paper, I used both logistic regression model and propensity score model to investigate the effect of 

quitting smoke on the incidence of an endoleak in male veterans.  The analysis was based on the data from 

Open versus Endovascular Repair (OVER) trial, which was conducted by Veterans Healthcare System from 

2002 to 2011.  More description about dataset can be found in the methods section.  In addition to analyzing 

the real experiment data from OVER trial, I also used imputation methods and a simulation study to minimize 

the influence of missing data and maximize our understanding of parameter estimates in both models. 

 

METHOD 

Data source 

OVER trial was a randomized, multicenter clinical trial conducted by Veterans Affairs Cooperative Study 

Group (VACSPCC) from October 15, 2002 to October 15, 2011.  The main goal was to provide 

information on short-term and long-term comparison between open repair and endovascular repair of 

AAA.  The OVER trial enrolled 881 veterans who were 49-year or order  and who were eligible for 

both open and endovascular repair of their AAA.  Of the 891 study participants, a total of 444 were 

randomized to endovascular group and 437 were randomized to open group.  Not all subjects 

successfully received the treatment they were assigned to (31, 3.5% of the subjects failed to accept the 
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assigned treatment, including 18 subjects randomized to EVAR group and 13 subjects randomized to 

Open group).  

 

Baseline measurements were collected for all subjects including age, height, weight, left ABI, right ABI, 

smoking status, and family history of abdominal aortic aneurysm.  After repairation, follow-up visits were 

scheduled at 1 month, 3 months and 6 months in the first year, and once every year from the second year on, . 

The follow-up visits for patients who had received endovascular repairs included computed tomography and 

plain radiography of the abdomen.  Endoleak status was ascertained at the same time. More details about 

OVER trial could be found in the published short-term and long-term reports
3,4

. 

 

Although the OVER trial collected data of the subjects in both open repair and endovascular repair groups, 

I only used the data of patients who received endovascular repair, because only those who received 

endovascular repair had the risk of developing endoleak.  The original endovascular population 

included 3 female subjects (0.68%) and they were eliminated from the analysis to keep the homogeneity 

of study group.  In addition, since our study topic was about quitting smoke, subjects who never smoked 

were also excluded.  The final data set included 419 endovascular patients.  Of all subjects, a total of 

252 were current non-smokers but had smoking history which considered as treatment group, a total of 167 

were current smokers which considered as control group.  In this study, “treatment” stood for quitting 

smoke. 

 

Data analysis 

Preliminary analysis – Population characteristics (at time of randomization) were tabulated by smoking 
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status and endoleak incidence respectively.  P values based on two sample t test (for continuous variables) 

or chi-square test (for binary variables) were also generated for each baseline variables.  For unbalanced 

variables, histograms of variables against smoking status or endoleak status were generated to better 

understand their distributions. 

 

Propensity score methods – As discussed in introduction section, data from an observational study may 

have  unbalanced characteristics between treatment group and control group.  And these differences may 

lead to biased estimation for treatment effects.  Propensity score for each subject was usually calculated in 

this context to balance the covariates differences between treatment group and control group, in order to 

reduce the bias.  The methods described by Rosenbaum and Robin
19

 were used to generate propensity score 

for the purposes of this study. 

Suppose subject i (i=1, …, N) were randomized to treatment (Zi=1) and control (Zi=0).  Given a vector 

of observed covariates, propensity score stood for the conditional probability of assignment to treatment 

(Zi=1) for this subject, and it was denoted by 

e(𝑥𝑖 -) = 𝑝𝑟(𝑧𝑖 = 1|𝑥𝑖) 

where it was assumed that 

pr(𝑧1, 𝑧2, … , 𝑧𝑛|𝑥1, 𝑥2, … , 𝑥𝑛) = -∏𝑒(𝑥𝑖)
𝑧𝑖{1 − 𝑒(𝑥𝑖)}

1−𝑧𝑖

𝑁

𝑖

 

Rosenbausm and Rubin concluded that propensity score was the coarsest balancing score of observed 

covariates x
19

.  Balancing score b(x) was defined as a function of x such that given b(x) the conditional 

distributions of x for subject in treatment group (Zi=1) and the subject in control group (Zi=0) were the same; 

in other words, given treated and controlled subjects had a same propensity score, the treatment assignment 

was strongly ignorable and the treatment effect could be calculated by the differences between the responses 
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of treated and controlled groups.  Balancing score was a bridge for non-randomized experiments to imitate 

randomized experiments.  A critical difference between randomized experiments and non-randomized 

experiment s was whether the two groups were comparable.  Specifically, randomized experiments had 

two similar treatment groups (in terms of baseline variables, and except for the treatment modality), thus 

they may be directly compared; while non-randomized experiments may have systematically different 

treatment groups and direct comparison may not be meaningful.  Through balancing the score, the subjects 

in two groups could be matched or stratified, so that t h e  meaningful treatment effect estimation could be 

achieved. 

 

Rosenbaum and Rubin also suggested that propensity score could be modeled using logistic regression or 

discriminant score 
19

.  Discriminant score utilized the assumption that observed covariates have 

multivariate normal distribution, while logistic regression models had no prior distribution assumption for 

covariates.  One requirement for both calculation methods was that the data should not contain any 

missing data.  Logistic regression was used to estimate the propensity scores.  A detailed primary 

analysis of the characteristics of estimated propensity score can be found in the Results Section(page 13).  

After propensity scores were generated, three methods – matching, stratification, and covariate adjustment 

– were used in the following analysis. 

 

Matching by propensity score: Although it was straight-forward that the subjects with similar propensity 

score in treatment group and control group were matched , several techniques such as greedy matching with 

caliper distance, optimal matching, exact matching, complete matching, and mahalanobis matching, were 

usually used and these methods could either use 1:1 matching or 1:n matching.  Austin had conducted 
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comprehensive research to compare most of these matching techniques (matching on the logit of the 

propensity score using calipers of width either 0.2 or 0.6 of the standard deviation of the logit of the 

propensity score; matching on the propensity score using calipers of 0.005, 0.01, 0.02, 0.03, and 0.1; and 5 to 

1 digit matching on the propensity score)
20,21

.  Austin concluded that matching using caliper of width of 0.2 

of the standard deviation of the logit of the propensity score and using caliper of width of 0.02 and 0.03 were 

likely to have better performance for estimating treatment effects compared with other techniques.  

Matching using caliper of width of 0.2 of the standard deviation of the logit of the propensity score was also 

used in the current analysis.  In the endoleak dataset, the sample size of the treatment group was similar to 

the sample size of the control group, so a greedy 1:1 matching with (a) 0.1 of the standard deviation of the 

logit of the propensity score; (b) 0.2 of the standard deviation of the logit of the propensity score; (c) 0.25 of 

the standard deviation of the logit of the propensity score, and (d) mahalanobis matching. 

 

Stratification, also known as subclassification, was the second major method of using propensity scores to 

adjust unbalanced characteristics between the treated and the control groups in observational studies.  

Stratification was proposed by Cochran in 1965 and the original method was only used to adjust for 

confounding variable(s)
22

.  The main problem of the original method was that with the number of 

confounding variables increasing, the number of strata or subclasses increased exponentially.  Stratifying 

by propensity score was a useful way to solve such problem.  Moreover, propensity score methods can 

generate more meaningful strata by considering all unbalanced binary and continuous variables when 

modeling.  A question that usually arose when stratifying by propensity score was the number of strata used.  

Researchers found that stratification with creating five classes was sufficient to eliminate 90 percent of the 

bias due to the unbalanced covariates in treatment and control groups
22

, and such results was supported 
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theoretically by Rosenbaum and Rubin’s article
19

.  As a result, propensity score-based stratification with 

five strata was used in the analysis in this paper.  Detailed results and diagnostics can be found in the Result 

Section (page 17). 

 

Covariate adjustment was a method using propensity score directly as a covariate in modeling treatment 

effects as responses.  Other unbalanced variables after adjusting with propensity score would also be 

included in the model.  The difference between using propensity score as covariate in the regression 

model and using all variables in the regression model as covariates might be a question.  Rosenbaum 

and Rubin commented that “the point estimate of the treatment effect obtained from an analysis of 

covariance adjustment for multivariate x, in fact, equaled to the estimation obtained from univariate 

covariate adjustment for the sample linear discriminant based on x, whenever the same sample 

covariance matrix was used for both the covariance adjustment and the discriminant analysis”
19

. 

Therefore, these two methods should generate similar results.  However, as suggested in the article by 

RB D’Agostino. Jr., propensity score had the “dim-decrease” advantage
23

.  When generating 

propensity score, all related variables, including interaction terms and high order terms, can be included, 

since the goal of logistic model at that stage was for prediction and including many variables did not 

harm the results, rather would improve the accuracy.  On the contrary, parsimonious models were 

usually preferred when regression model with all variables was used for easier diagnostics and 

interpretation.  The Endoleak dataset used for analysis had more than 20 baseline variables, and thus in 

this case propensity score may provide more accurate estimation for treatment effects than regression 

model with all covariates. 
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Multiple Imputation - Missing values had always been a challenge in data analysis.  Rubin’s multiple 

imputation procedure filled in each missing position with a series of plausible values which may probably 

represent the true values
25

.  This approach provided a helpful strategy to address the missing value issue.  

In practice, several techniques had been proposed and could be easily implemented by software, including 

parametric regression method, propensity score method, and Markov chain Monte Carlo (MCMC) method
24

.  

For different missing patterns, different imputation techniques could be used.  For instance, parametric 

regression method and propensity score method fitted monotone missing data patterns, and MCMC method 

fitted any arbitrary missing pattern.  In the endoleak dataset, missing data pattern was not monotone, thus 

MCMC method had been used for the imputation process. 

 

Simulation - To better understand the variability of the parameter estimation and to further compare the 

results of logistic regression and propensity score, I simulated 100 data sets on the basis of MCMC-imputed 

endoleak data.  The first MCMC-imputed endoleak dataset was generated after 200 burn-in 

estimation-maximization algorithm lops.  At that time, the algorithm had already converged and the 

Markov chain had reached the state of stable.  The rest of the imputed endoleak datasets were generated 

with 100 iterations between one and the successive one. 

 

Each observation in the simulated data set was generated on the basis of imputed endoleak data set to make 

the simulated data similar to endoleak data.  The simulation processes of variables were different between 

continuous variables and binary variables.  For a continuous variable X, denote that the standard deviation 

of X by SDx and the simulated data point of X by Xn.  Xn was generated by 

𝑋𝑛 = 𝑋 + 𝑟𝑁(0, (0.1 × 𝑆𝐷𝑋)
2) 
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rN(0,-(0.1 × 𝑆𝐷𝑋)
2) was the random number from normal distribution with mean 0 and variance (0.1 ×

𝑆𝐷𝑋)
2.  For a binary variable Y, denote that the simulated data point of Y by Yn.  Yn was generated by 

𝑌𝑛 = 𝐼(𝑟𝑈(0,1) < 0.9) × 𝑌 + 𝐼(𝑟𝑈(0,1) ≥ 0.9) × (1 − 𝑌) 

𝑟𝑈(0,1) was the random number of uniform(0,1) distribution.  

 

The simulated data was analyzed by logistic regression and propensity score as above.  

 

RESULTS 

Preliminary analysis 

After eliminating female subjects and male subjects who had never smoked, the endoleak dataset included 

419 subjects in total.  Table1 contains the characteristics of all patients at baseline by smoking status and 

primary outcomes.  From Table 1, the first and the most unbalanced variable detected was age.  The 

average age of current smokers was 67.1, while the average age of current non-smokers was 70.8.  Current 

non-smokers were significantly older than current smokers (P value from two sample t-test was less than 

0.0001).  Age was also significantly related with endoleak occurrence (P value from two sample t-test 

equaled 0.032).  The average age of the subjects who had endoleaks was 70.5, which was larger than the 

average age of those did not have endoleaks (68.8).  Figure 1 presents the histogram of age versus smoking 

status and versus endoleak occurrence.  The figure confirmed that smokers were, on average, younger than 

non-smokers; and the subjects with endoleaks were, on average, older than subjects without endoleaks. 

 

In addition to age, weight was significantly related with smoking status or endoleak occurrence (although 

diabetes history and anticoagulants medicine taking history had borderline P value against endoleak, 0.052 
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for both variables) among all other baseline measurements.  The average weight of current non-smokers 

was 92.6kg which was greater than the average weight of current smokers, 88.0kg.  No significant 

relation was found between weight and endoleak.  Figure 2 shows the histogram of weight versus 

smoking status and versus endoleak occurrence. 

 

Table 1: Characteristics of the patients at the time of randomization 

Variables N 

Smoking Status 

P* 

Outcome 

P* 
Current 

Smokers 

(N=167) 

Current 

Non-smokers 

(N=252) 

Endoleak 

(N=125) 

No-endoleak 

(N=294) 

Continuous variables – mean (sd) 

Age-yr 419 67.1(6.8) 70.8(7.9) <.0001 70.5(8.2) 68.8(7.4) 0.032 

Height-cm 419 177.8(7.3) 177.5(7.7) 0.74 177.7(7.4) 177.6(7.6) 0.90 

Weight-kg 419 88.0(17.8) 92.6(16.3) 0.0063 90.2(16.6) 91.0(17.3) 0.67 

Left ABI 383 1.0(0.2) 1.0(0.6) 0.61 1.1(0.8) 1.0(0.2) 0.20 

Right ABI 382 1.0(0.2) 1.0(0.6) 0.75 1.1(0.9) 1.0(0.2) 0.22 

Binary variables – no. (%) 

Currently smokes  419 - - - 39(31.2) 128(43.54) 0.018 

Family history of abdominal 

aortic aneurysm 
419 29(17.4) 36(14.3) 0.39 23(18.4) 42(14.3) 0.29 

Diabetes 419 32(19.2) 57(22.6) 0.40 34(27.2) 55(18.7) 0.052 

High cholesterol 419 121(72.5) 183(72.6) 0.97 93(74.4) 211(71.8) 0.58 

Thrombosis 419 11(6.6) 11(4.4) 0.32 5(4.0) 17(5.78) 0.45 

Hypertension 419 128(76.7) 201(79.8) 0.45 101(80.8) 228(77.6) 0.46 

Emphysema 419 47(28.1) 72(28.6) 0.92 32(25.6) 87(29.6) 0.41 

Coagulopathy 419 2(1.2) 3(1.2) 0.99 2(1.6) 3(1.0) 0.62 

Stroke 419 30(18.0) 32(12.7) 0.14 18(14.4) 44(15.0) 0.88 

Cardiac disease 419 1(0.6) 1(0.4) 0.44 72(57.6) 142(48.3) 0.16 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: Beta-blockers 419 111(66.5) 163(64.7) 0.71 88(70.4) 186(63.3) 0.16 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: Aspirin 419 89(53.3) 142(56.4) 0.54 74(59.2) 157(53.4) 0.27 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: ACE 

inhibitors 
419 76(45.5) 107(42.5) 0.54 56(44.8) 127(43.2) 0.76 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: 

Anticoagulants 
419 15(9.0) 27(10.7) 0.56 18(14.4) 24(8.2) 0.052 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: Other platelet 

inhibitors 
337 8(6.3) 16(7.7) 0.63 11(10.5) 13(5.6) 0.11 

* P value of two sample t-test (for continuous variables) or chi-square test (for binary variables). 
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¶ Medications last 6 months prior to randomization. 
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Figure 1: Histogram of age by smoking status (left) and by endoleak occurrence (right).  X-axis stands for age, 

ranging from 50 to 90.  Y-axis stands for incidence percent.  The two plots on the upper side are age for current 

non-smokers (left) and for subjects with no endoleaks (right).  The two plots on the lower side are age for 

current smokers (left) and for subjects with endoleaks (right).  For age and smoking status, P value from two 

sample t-test is less than 0.0001.  For age and endoleak, P value from two sample t-test equals 0.032.  
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Age Age 

Weight by Smoking Status Weight by Endoleak 

Figure 2: Histogram of weight by smoking status (left) and by endoleak occurrence (right).  X-axis stands for 

age, ranging from 52(52.5) to 187(187.5).  Y-axis stands for incidence percent.  The two plots on the upper 

side are weight for current non-smokers (left) and for subjects with no endoleaks (right).  The two plots on the 

lower side are weight for current smokers (left) and for subjects with endoleaks (right).  For weight and 

smoking status, P value from two sample t-test is less than 0.0063.  For age and endoleak, P value from two 

sample t-test equals 0.67.  
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Another issue in the table 1 was the missing values for three variables – left ABI 36(8.6%), right ABI 

37(8.8%), and other platelet inhibitor use history 82(19.6%).  To better understand the missing pattern, 

baseline characteristics were compared between subjects who had missing values and subject who were 

observed.  The results were demonstrated in Table 2.  And all subjects who missed left ABI measurement 

also missed right ABI.  But only one subject with the right ABI value missing, had the variable of left ABI 

not missing.  Therefore, left ABI miss/not-miss in the analysis (left column) was used to represent results 

for left ABI and right ABI.  From Table 2, it was discovered that subjects who had ABI values missing 

were significantly taller (P= 0.0072) and significantly less likely to take aspirin medicines (P= 0.04).  In 

addition, subjects who had other platelet inhibitor medication history missing had significantly lower 

proportions of AAA family history and thrombosis history (P=0.0086). 

 

Table 2: Check the balance of missing observations 

Variables 

Left/Right ABI* 

P** 

Medication: Other platelet 

inhibitors 
P** 

Not missing 

(N=383/382) 

Missing 

(N=36/37) 

Not missing 

(N=337) 

Missing 

(N=82) 

Continuous variables – mean (sd) 

Age 69.2(7.6) 70.9(8.0) 0.20 69.4(7.8) 68.9(7.0) 0.61 

Height-cm 177.3(7.5) 180.9(7.7) 0.0072 177.6(7.3) 177.6(8.5) 0.98 

Weight-kg 90.8(17.0) 90.6(18.4) 0.95 89.9(15.6) 94.0(22.0) 0.11 

Left ABI - - - 0.99(0.2) 1.12(1.0) 0.29 

Right ABI - - - 0.99(0.2) 1.11(1.1) 0.32 

Binary variables – no. (%) 

Currently smokes 154(40.2) 13(36.1) 0.63 128(38.0) 39(47.6) 0.11 

Endoleak 118(30.8) 7(19.4) 0.15 105(31.2) 20(24.4) 0.23 

Family history of 

AAA 
59(15.4) 6(16.7) 0.84 60(17.8) 6(6.1) 0.0086 

Diabetes 83(21.7) 6(16.7) 0.48 74(22.0) 15(18.3) 0.47 

High cholesterol 281(73.4) 23(63.9) 0.22 248(73.6) 56(68.3) 0.34 

Thrombosis 20(5.2) 2(5.6) 0.93 22(6.5) 0(0) 0.018 
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Hypertension 302(78.9) 27(75.0) 0.59 266(78.9) 63(76.8) 0.68 

Emphysema 106(27.7) 13(36.1) 0.28 92(27.3) 27(32.9) 0.31 

Coagulopathy 5(1.3) 0(0) 0.49 5(1.5) 0(0) 0.27 

Stroke 58(15.1) 4(11.1) 0.51 47(14.0) 15(18.2) 0.32 

Cardiac disease 199(52.0) 15(7.0) 0.44 165(49.0) 49(60.0) 0.18 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: 

Beta-blockers 
252(65.8) 22(61.1) 0.57 220(65.3) 54(65.9) 0.92 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: 

Aspirin 
217(56.7) 14(39.9) 0.040 194(57.6) 37(45.1) 0.042 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: ACE 

inhibitors 
171(44.7) 12(33.3) 0.19 151(44.8) 32(39.0) 0.34 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: 

Anticoagulants 
40(10.4) 2(5.56) 0.35 31(9.2) 11(13.4) 0.25 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: 

Other platelet 

inhibitors 

22(7.1) 2(6.9) 0.96 - - - 

* Left ABI had 36 missing observations and right ABI had 37 missing observations. The missing 

observations shared 36 subjects in common (36 subjects were missing both left and right ABI values).  

Calculation in this column was based on left ABI observations. 

** P value of two sample t-test (for continuous variables) or chi-square test (for binary variables). 

 

Consequently based on the evidence above it was hard to conclude that the three variables were missing 

randomly.  On the other hand, 419 subjects might not large enough to definitively make a precise 

conclusion.  Under this circumstance, four datasets were constructed and used for further analysis: (i) one 

with all variables but incomplete subjects; (ii) one with all subjects and variables with no missing value; (iii) 

one filled with logistic regression; and (iv) one filled with multiple imputation.  

 

Logistic regression and diagnostics 

Logistic regression models were built with different variable selection techniques (no selection, forward 

selection, backward selection, and stepwise selection).  Criteria (significance level) for variable entry in 

forward and stepwise selection was set at 0.05, significance level for variable elimination in backward and 
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stepwise selection was set at 0.10.  As suggested in the section above, analysis was conducted with three 

datasets.  Part of the results including P value, OR estimate, and confidence interval of OR estimate of 

current smokes generated by logistic regression models were listed in Table 3.  An expanded result table 

containing the final model information can be found in the Appendix.  In addition, Figure 3 was generated 

to better illustrate the odds ratio estimation and confidence intervals.  From Figure 3, one can deduce that 

odds ratio for current smoking was around 0.6, although more than half (7/12) of the confidence interval 

contained the value of 1.  Of the three datasets, the one with all variables had two insignificant P values, 

the one with all subjects but partial variable list had 3 out of 4 P values significant, and the one filled with 

multiple imputation data had all P value significant. 

Table 3: Logistic regression results.  

 

Include all variables* (308 subjects) 

Variable selection 

method
** 

Currently smokes 

P OR estimate 
95% Wald 

Confidence Interval 

No selection 0.084 0.61 0.34 1.07 

Forward 0.022 0.55 0.33 0.92 

Backward 0.12 0.65 0.38 1.11 

Stepwise 0.022 0.55 0.33 0.92 

Include only no-missing variables
¶
 (419 subjects) 

Variable selection 

method
**

 

Currently smokes 

P OR estimate 
95% Wald 

Confidence Interval 

No selection 0.074 0.65 0.40 1.04 

Forward 0.019 0.59 0.38 0.92 

Backward 0.025 0.60 0.38 0.94 

Stepwise 0.019 0.59 0.38 0.92 

Data filled with multiple imputation (all variables, 419 subjects) 

Variable selection 

method
**

 

Currently smokes 

P OR estimate 
95% Wald 

Confidence Interval 

No selection 0.060 0.63 0.38 1.02 

Forward 0.063 0.64 0.40 1.03 

Backward 0.063 0.64 0.40 1.02 
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Stepwise 0.063 0.64 0.40 1.03 

*All variables = Current smoking, age, height, weight, AAA family history, diabetes, high cholesterol, 

thrombosis, emphysema, coagulopathy, stroke, cardiac disease history, beta blocker, aspirin, ACE inhibitor, 

anticoagulants, platelet inhibitor, left ABI, and right ABI.  

**Significance criteria: SLENTRY=0.05, SLSTAY=0.10. 
¶
All variables except left ABI, right ABI, and platelet inhibitor. 

 

 

Figure 3: OR estimate and confidence interval by logistic regressions.  Left four lines stand for OR 

confidence intervals calculated with data including all variables.  Four lines in the middle stand for OR 

confidence intervals calculated with data including all subjects.  And right four lines stand for OR 

confidence intervals calculated with data filled by multiple imputation.  

 

For all the logistic regression models, the Hosmer and Lemeshow goodness-of-fit test was used to assess the 

overall fitness of the models.  Predicted probability diagnostics plot, leverage diagnostics plot, and 

influence on the model fit and parameter estimates plot were used to identify the outliers and 

high-influenced plots.  Results of goodness-of-fit test can be found in Table 4.  All the logistic models 

listed in the table had P value greater than 0.05, indicating that none of the model fit was significantly bad.  

The predicated probability diagnostics plots, leverage diagnostics plots, and influence on the model fit and 
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parameter estimation plots were provided in the Appendix. 

 

Table 4: Logistic regression model diagnostic (Hosmer and Lemeshow Goodness-of-fit test) 

Model selection 

method 
Model Detail 

Hosmer and Lemeshow Goodness-of-fit 

test 

Chi-square DF Pr>ChiSq 

Include all variables* (308 subjects) 

No selection 
Logit(endoleak) = Current Smokes + All 

variables 
13.31 8 0.10 

Forward 
Logit(endoleak) = Current Smokes + Beta 

Blocker 
0.076 2 0.96 

Backward 
Logit(endoleak) = Current Smokes + Age + 

Aspirin + Anticoag + PlateletInhib 
12.07 8 0.14 

Stepwise 
Logit(endoleak) = Current Smokes + Beta 

Blocker 
0.076 2 0.96 

Include only no-missing variables
¶
 (419 subjects) 

No selection 
Logit(endoleak) = Current Smokes + All 

variables 
9.48 8 0.30 

Forward Logit(endoleak) = Current Smokes - - - 

Backward 
Logit(endoleak) = Current Smokes + 

Diabetes + Anticoag 
0.22 3 0.97 

Stepwise Logit(endoleak) = Current Smokes - - - 

Data filled with multiple imputation (all variables, 419 subjects) 

No selection 
Logit(endoleak) = Current Smokes + All 

variables 
12.14 8 0.15 

Forward 
Logit(endoleak) = Current Smokes + Age + 

Diabetes + Right_ABI + PlateletInhib 
6.62 8 0.58 

Backward 

Logit(endoleak) = Current Smokes + Age + 

Family History + Diabetes + Anticoagulants 

+ Right_ABI + PlateletInhib 

9.90 8 0.27 

Stepwise 
Logit(endoleak) = Current Smokes + Age + 

Diabetes + Right_ABI + PlateletInhib 
6.62 8 0.58 

 

Propensity score analysis and diagnostics 

The first step of implementing propensity score methodology was to generate propensity scores.  In the 

logistic regression models that calculated propensity score, all the available baseline effects were included 

and variable lists varied by data set.  Figure 4 showed the histograms of propensity scores by smoking 

status in different datasets, one could see that propensity scores in all data sets had significantly different 
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distributions (P values of two sample t-test were less than .0001 in all cases).  Although the distributions of 

propensity score were different, the ranges of distributions for smokers and non-smokers almost overlapped.  

In this situation, matching using propensity score can allow for reasonable matched pairs and can also 

improve the results by matching cases to similar controls.  In addition, covariate adjustment and 

stratification with propensity score may also worked well because of the comparability of case and control 

groups.  Therefore, it appeared that the propensity score method addressed the problem well. 

 

Include all variables (308 subjects)     Include only no-missing variables (419 subjects) 

 
            Data filled by multiple imputation (all variables, all subjects) 

       

Figure 4: Histograms of propensity score by smoking status for data set including all variables (top left), 

data set including all subjects and only no-missing variables (top right), data set filled by multiple 

imputation (bottom).  X-axis was estimated probability (propensity score estimate).  Y-axis is frequency.  

Yellow dotted lines were normal approximation based on data.  P values of two sample t-test for all three 

situations are less than .0001.  
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The results by multiple propensity score methods were presented in Table 5.  First, it was noticed that 

the numbers of matched pairs were pretty satisfactory, especially in the second and third data sets. The 

first dataset included all variables but only 308 subjects (118 current smokers and 190 current 

non-smokers), which was less than the second and third data sets, and thus less matched pairs.  For the 

second dataset, no less than 130 pairs were matched, that was 68 percent of all cases or 80 percent of the 

all the controls.  Second, from the perspective of results, all confidence intervals of odds ratios of current 

smoking included 1 in the range except in three cases.  To understand the results better, the results of 

odds ratio estimation and confidence intervals were presented in Figure 5.  Compared with Figure 3, the 

odds ratio estimation demonstrated in Figure 5 had a larger range (0.47 to 0.77).  In addition, larger 

proportions of confidence intervals included 1 in Figure 5 compared to in Figure 3.  To conclude, more 

evidence pointed towards the suggestion that smoking was not significantly related with endoleak 

occurrence after propensity score methods were used. 

 

Table 5: Propensity score models results.  

Include all variables* (308 subjects) 

Methods
 

Currently smokes 

Matched 

pairs 
P OR estimate 

95% Wald 

Confidence Interval 

Covariate adjustment - 0.090 0.62 0.36 1.08 

Stratification - 0.092 0.62 0.36 1.08 

Greedy 1 to 1 0.1 logit ps.sd matching 95 0.062 0.53 0.27 1.03 

Greedy 1 to 1 0.2 logit ps.sd matching 97 0.040 0.49 0.25 0.97 

Greedy 1 to 1 0.5 logit ps.sd matching 101 0.030 0.47 0.24 0.93 

Mahalanobis matching 99 0.25 0.69 0.37 1.30 

Include only no-missing variables
¶
 (419 subjects) 

Methods 

 Currently smokes 

Matched 

pairs 
P OR estimate 

95% Wald 

Confidence Interval 

Covariate adjustment - 0.079 0.66 0.41 1.05 

Stratification - 0.058 0.63 0.39 1.02 

Greedy 1 to 1 0.1 logit ps.sd matching 130 0.30 0.72 0.38 1.34 
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Greedy 1 to 1 0.2 logit ps.sd matching 133 0.50 0.82 0.46 1.45 

Greedy 1 to 1 0.5 logit ps.sd matching 141 0.36 0.77 0.44 1.35 

Mahalanobis matching 136 0.19 0.70 0.42 1.19 

Data filled with multiple imputation (all variables, 419 subjects) 

Methods 

 Currently smokes 

Matched 

pairs 
P OR estimate 

95% Wald 

Confidence Interval 

Covariate adjustment - 0.083 0.66 0.41 1.06 

Stratification - 0.076 0.65 0.41 1.05 

Greedy 1 to 1 0.1 logit ps.sd matching 129 0.091 0.59 0.32 1.09 

Greedy 1 to 1 0.2 logit ps.sd matching 131 0.11 0.63 0.35 1.12 

Greedy 1 to 1 0.5 logit ps.sd matching 141 0.04 0.55 0.31 0.98 

Mahalanobis matching 99 0.26 0.70 0.37 1.31 

*All variables = Currently smokes, age, height, weight, family history, diabetes, high cholesterol, 

thrombosis, emphysema, coagulopathy, stroke, cardiac disease history, beta blocker, aspirin, ACE inhibitor, 

anticoagulants, platelet inhibitor, left ABI, and right ABI.  
¶
All variables except left ABI, right ABI, and platelet inhibitor. 

 

 

Figure 5: OR estimate and confidence interval by propensity score methods.  Left six lines stand for OR 

confidence intervals calculated with data including all variables.  Six lines in the middle stand for OR 

confidence intervals calculated with data including all subjects.  And right six lines stand for OR 

confidence intervals calculated with data filled by multiple imputation.  

 



24 
 

To make sure that propensity score matching did make the case and control groups more balanced,   

standardized differences of each variable before and after matching were checked in all models.  

Table 6 listed the standardized differences of all variables before and after matching in greedy 1:1 

matching with 0.1 logit propensity score standard deviation using data including all variables.  

Standardized difference equal to 0.1 usually indicated a big unbalance between the two groups.  

Before matching, age (sdd=0.51), weight (sdd=0.28), right ABI (sdd=0.11), stroke (sdd=0.12), and 

medication-beta blocker (sdd=0.15) were all considered unbalanced variables.  Age was the most 

unbalanced variable and had standardized difference 0.51 which demonstrated a substantial 

unbalance.  After matching, almost all variables were balanced except for right ABI (sdd=0.15) and 

cardiac disease (sdd=0.15), which were just mildly unbalanced.  And in the following analysis, right 

ABI and cardiac disease were added to the model to ensure the minimum bias caused by unbalanced 

variables. 

 

Table 6: Check balance before and after matching with propensity score: standardized difference. 

(Use Greedy 1 to 1 0.1 logit ps.sd matching applying to data including all variables as an example) 

Variables 
Current smokers vs. Current non-smokers 

By smoking status By endoleak occurrence 

Continuous variables 

Age-yr 0.51 0.076 

Height-cm 0.031 0.023 

Weight-kg 0.28 0.023 

Left ABI 0.084 0.002 

Right ABI 0.11 0.15 

Binary variables 

Family history of abdominal 

aortic aneurysm 
0.083 0.056 

Diabetes 0.068 0.025 

High cholesterol 0.008 0.048 

Thrombosis 0.074 0.000 
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Hypertension 0.029 0.029 

Emphysema 0.006 0.071 

Coagulopathy 0.009 0.085 

Stroke 0.12 0.056 

Cardiac disease 0.069 0.15 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: Beta-blockers 0.15 0.045 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: Aspirin 0.059 0.000 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: ACE 

inhibitors 
0.028 0.021 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: 

Anticoagulants 
0.053 0.076 

𝐌𝐞𝐝𝐢𝐜𝐚𝐭𝐢𝐨𝐧¶: Other platelet 

inhibitors 
0.023 0.039 

 

Because of the differences between logistic regression results (Table 3) and propensity score results 

(Table 5), one would question whether the data matched by propensity score would still generate the same 

results if logistic regression models were applied.  Following this hypothesis, logistic regressions were 

used in the propensity-score-matching to generate datasets and the results.  The results presented in Table 

7 indicated that more results were significant in some datasets, especially the data sets including all 

variables.  However, in datasets including all subjects and datasets filled with multiple imputations, all 

the results were not significant. 

 

Table 7: Logistic regression with propensity-score-matching generated datasets 

Include all variables* 

Using dataset generated by
 

 Currently smokes 

Method Matched 

Pair 
P OR estimate 

95% Wald 

Confidence Interval 

Greedy 1 to 1 0.1 logit ps.sd matching 

No selection 95 0.032 0.46 0.23 0.94 

Forward 95 0.049 0.52 0.27 1.00 

Backward 95 0.053 0.52 0.27 1.01 

Stepwise 95 0.049 0.52 0.27 1.00 

Greedy 1 to 1 0.2 logit ps.sd matching 

No selection 97 0.028 0.46 0.23 0.92 

Forward 97 0.048 0.51 0.26 1.00 

Backward 97 0.053 0.52 0.26 1.01 
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Stepwise 97 0.048 0.51 0.26 1.00 

Greedy 1 to 1 0.5 logit ps.sd matching 

No selection 101 0.023 0.49 0.22 0.90 

Forward 101 0.041 0.50 0.26 0.97 

Backward 101 0.041 0.50 0.26 0.97 

Stepwise 101 0.041 0.50 0.26 0.97 

Mahalanobis matching with 0.2 logit 

ps.sd 

No selection 99 0.28 0.69 0.35 1.36 

Forward 99 0.34 0.73 0.39 1.39 

Backward 99 0.38 0.75 0.39 1.43 

Stepwise 99 0.34 0.73 0.39 1.39 

Include only no-missing variables
¶
 

Using dataset generated by 

  Currently smokes 

Method Matched 

pairs 
P OR estimate 

95% Wald 

Confidence Interval 

Greedy 1 to 1 0.1 logit ps.sd matching 

No selection 130 0.20 0.69 0.39 1.22 

Forward 130 0.17 0.68 0.39 1.19 

Backward 130 0.15 0.66 0.38 1.16 

Stepwise 130 0.17 0.68 0.39 1.19 

Greedy 1 to 1 0.2 logit ps.sd matching 

No selection 133 0.43 0.80 0.46 1.39 

Forward 133 0.38 0.79 0.46 1.34 

Backward 133 0.39 0.79 0.46 1.36 

Stepwise 133 0.38 0.79 0.46 1.34 

Greedy 1 to 1 0.5 logit ps.sd matching 

No selection 141 0.20 0.70 0.41 1.21 

Forward 141 0.16 0.69 0.40 1.16 

Backward 141 0.16 0.69 0.40 1.16 

Stepwise 141 0.16 0.69 0.40 1.16 

Mahalanobis matching with 0.2 logit 

ps.sd 

No selection 136 0.14 0.65 0.37 1.15 

Forward 136 0.18 0.68 0.39 1.19 

Backward 136 0.18 0.68 0.39 1.19 

Stepwise 136 0.18 0.68 0.39 1.19 

Data filled with multiple imputation (all variables, all subjects) 

Using dataset generated by 

  Currently smokes 

Method Matched 

pairs 
P OR estimate 

95% Wald 

Confidence Interval 

Greedy 1 to 1 0.1 logit ps.sd matching 

No selection 128 0.10 0.61 0.34 1.10 

Forward 128 0.15 0.66 0.38 1.16 

Backward 128 0.15 0.66 0.38 1.16 

Stepwise 128 0.15 0.66 0.38 1.16 

Greedy 1 to 1 0.2 logit ps.sd matching 

No selection 131 0.11 0.62 0.35 1.11 

Forward 131 0.12 0.64 0.37 1.12 

Backward 131 0.14 0.66 0.38 1.15 

Stepwise 131 0.12 0.64 0.37 1.12 

Greedy 1 to 1 0.5 logit ps.sd matching No selection 141 0.078 0.61 0.35 1.06 
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Forward 141 0.098 0.64 0.37 1.09 

Backward 141 0.098 0.64 0.37 1.09 

Stepwise 141 0.098 0.64 0.37 1.09 

Mahalanobis matching with 0.2 logit 

ps.sd 

No selection 99 0.37 0.73 0.37 1.44 

Forward 99 0.44 0.77 0.41 1.48 

Backward 99 0.46 0.78 0.41 1.50 

Stepwise 99 0.44 0.77 0.41 1.48 

 

Simulation 

A total of one hundred datasets had been generated by multiple imputation and the following simulation 

process.  Then, these data sets were analyzed by logistic regression and propensity score method as 

described above.  The results were collected and summarized in Tables 8 and 9.  First, the p value 

estimations and OR estimations in the two tables were stable over different methods, except for the p 

value estimation of propensity score method with mahalanobis matching.  All the means of odds ratio 

estimations of developing endoleaks in smoking subjects versus non-smoking subjects remained 

between 0.75 and 0.80. 

 

Further, neither the results of p value nor the results of odds ratio were significant.  All the confidence 

intervals of P values contained 0.05 and all the confidence intervals of odds ratio included 1.  Therefore, 

we failed to conclude that smoking was a significant factor.   Last but not the least, although 1 was 

included in the confidence intervals of odds ratio estimates, all the odds ratio estimations were smaller 

than 1, which provided evidence to support that smoking had a protective effect on endoleak incidence.   

 

In summary, simulations indicated that smokers may have lower risk of developing endoleak compared 

with non-smokers, although this effect was not significant in this analysis.  Larger sample size might be 
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necessary for further confirming this finding. 

 

Table 8: Simulation: logistics regression 

Variable selection 

method
 

Currently smokes 

P OR 

Mean 
95% Confidence 

Interval 

Estimate 

mean 

95% Confidence 

Interval 

95% Prediction 

Interval 

No selection 0.32 (0.004, 0.96) 0.77 (0.5, 1.16) (0.32, 1.86) 

Forward 0.28 (0.002, 0.85) 0.77 (0.51, 1.18) (0.34, 1.80) 

Backward 0.30 (0.003, 0.90) 0.78 (0.52, 1.18) (0.33, 1.80) 

Stepwise 0.29 (0.002, 0.85) 0.77 (0.51, 1.17) (0.34, 1.80) 

 

Table 9: Simulation: propensity score 

Methods
 

Currently smokes 

P OR 

Mean 

95% 

Confidence 

Interval 

Estimate 

mean 

95% Confidence 

Interval 

95% Prediction 

Interval 

Covariate adjustment 0.32 (0.005, 0.91) 0.80 (0.52, 1.15) (0.33, 1.81) 

Stratification 0.33 (0.005, 0.90) 0.79 (0.53, 1.15) (0.34, 1.80) 

Greedy 1 to 1 0.1 logit ps.sd matching 0.32 (0.003, 0.88) 0.76 (0.44, 1.20) (0.25, 2.0) 

Greedy 1 to 1 0.2 logit ps.sd matching 0.31 (0.003, 0.91) 0.78 (0.46, 1.23) (0.26, 2.04) 

Greedy 1 to 1 0.5 logit ps.sd matching 0.30 (0.0036, 0.93) 0.77 (0.45, 1.20) (0.26, 2.02) 

Mahalanobis matching 0.09 (0, 0.64) 0.75 (0.46, 1.13) (0.39, 1.42) 

 

 

DISCUSSION 

Several studies have investigated the risk factors for endoleak in recent years and had made significant 

progress
11,15-18

.  Although not every studies included smoking as a potential risk factor, all studies that 

had included smoking in the analysis found that the proportions of previous or current smokers who had 

developed an endoleak were smaller
11,15-17

.  The methods used in these studies were either multivariate 

(logistic) regression techniques or chi-square tests.  In order to address the finding that smokers may 

have lower incidence of endoleaks, a few explanations were given in the above studies: Buth et al. 

suggested that changes in the coagulation profile of the blood caused by smoking may lead to a tendency 
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of quick occlusion of small vessels, which caused the spontaneous heal of endoleaks
15,17

.  The analysis 

described in this project confirmed the conclusion that the odds of developing endoleak for current 

smokers were smaller than the odds of developing endoleak for current non-smokers even if the 

confidence intervals of odds ratio were not statistically significant.  Compared to the previous studies, 

this study used more sophisticated statistical approaches/analytical techniques and utilized more 

relavantcovariates in the analysis. 

 

The propensity score method was chosen to analyze the data due to its ability to balance the dissimilar 

characteristics between case and control groups.  In reality, smokers and non-smokers usually had 

systematically different characteristics, such as age and cardiac disease history.  As in the case of the VA 

trial’s endoleak dataset, it had been discovered in the preliminary analysis that current non-smokers were 

older and heavier than current smokers, which might cause bias to the following analysis.  After 

matching or stratifying by propensity score, the difference between characteristics of smokers and 

non-smokers became small.  The second positive aspect about propensity score was that all suspected 

covariates can be contained in the model, which was in contrast with the parsimonious variable selection 

in logistic regressions.  Including more variables in the model was able to further minimize the bias and 

improve fit of the model, and the VA endoleak data set included more than 20 variables.  Lastly, but not 

the least, propensity score method fitted the scenario of the question very well.  Hernan and Taubman 

argued that it was important to have a well-defined intervention when raising questions about the 

investigation of causal relationships
26

.  In the current study, the main interest was the presence or not of a 

causal relationship between smoking and risk of endoleak development.  A randomized trial with smoking 

cessation as intervention to reduce the incidence of endoleaks in this patient population may be difficult, 
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although not impossible, to implement.  Therefore, all subjects with a smoking history were included and 

propensity score was used to itimate the endoleak study with an ideal randomized experiment trial. 

 

However, propensity score method had its own limitations.  First, as suggested by Rubin and Rosenbaum, 

propensity score can only balance the observed covariates
19

.  If the study was biased by unmeasured or 

hidden covariates, the propensity-score-generated results would not be corrected.  Second, not all 

observations were used in the analysis.  One might observe the differences between the total number of 

subjects in the data set and the number of subjects left after matching.  This partial-use of information may 

also cause bias. 

 

The pros and cons of logistic regression and propensity score method had been discussed for a few years, and 

no consensus had been reached.  Two recent literature review studies concluded that treatment effects 

estimated by propensity score methods and regression techniques were similar to each other, while another 

simulation study found that propensity score method provided systematically better estimation for treatment 

effect compared with logistics regression
27,28

.  In the current study, the results of propensity score and 

logistic regression were similar.  Although they both generated odds ratio estimations less than 1, one may 

observe that propensity score had less significant p value estimations and wider confidence interval for odds 

ratio.  Two reasons may provide possible explanations: (a)   The sample size was reduced after matching 

by propensity score and such reduction increased the estimated standard deviation of odds ratio estimations 

and widened the confidence intervals; (b) The propensity score indeed decreased the bias and made the 

estimations shift towards null effects.  Larger sample sizes were needed to decide which one(s) was the 

reason(s) for the differences. 
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In addition to the potential drawbacks of the propensity score methodology, this study had other limitations. 

For instance, all the subjects in the study were male.  This may restrict the finding to only male patients. 

Another limitation was the missing data.  Although multiple imputation techniques and simulation were 

used to decrease the impact of the missing data, the missing pattern was impossible to detect through the 

existing data and negative influence may still exist. 

 

Smoking cessation had almost always been found as a beneficial intervention towards improving cardiac 

health, especially for patients after cardiac surgeries
31-34

.  It has been reported that patients who had quitted 

smoking experienced a significant reduction in sudden cardiac death
27 

and had a significant decrease in 

mortality after myocardial infarction
30

.  However, the pros and cons of smoking for patients after 

endovascular repair needed further examination and discussion. 
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Appendix 1: Logistic regression (with whole model column).  

Include all variables* (308 subjects) 

Variable selection 

method
** 

Currently smokes 

Whole model 
P OR estimate 

95% Wald 

Confidence Interval 

No selection 0.084 0.61 0.34 1.07 Logit(endoleak) = Current Smokes + All variables 

Forward 0.022 0.55 0.33 0.92 Logit(endoleak) = Current Smokes + Beta Blocker 

Backward 0.12 0.65 0.38 1.11 
Logit(endoleak) = Current Smokes + Age + 

Aspirin + Anticoag + PlateletInhib 

Stepwise 0.022 0.55 0.33 0.92 Logit(endoleak) = Current Smokes + Beta Blocker 

Include only no-missing variables
¶
 (419 subjects) 

Variable selection 

method** 

Currently smokes 

Whole model 
P OR estimate 

95% Wald 

Confidence Interval 

No selection 0.074 0.65 0.40 1.04 Logit(endoleak) = Current Smokes + All variables 

Forward 0.019 0.59 0.38 0.92 Logit(endoleak) = Current Smokes 

Backward 0.025 0.60 0.38 0.94 
Logit(endoleak) = Current Smokes + Diabetes + 

Anticoag 

Stepwise 0.019 0.59 0.38 0.92 Logit(endoleak) = Current Smokes 

Data filled with multiple imputation (all variables, 419 subjects) 

Variable selection 

method** 

Currently smokes 

Whole model 
P OR estimate 

95% Wald 

Confidence Interval 

No selection 0.0601 0.63 0.38 1.02 Logit(endoleak) = Current Smokes + All variables 

Forward 0.0632 0.64 0.40 1.03 
Logit(endoleak) = Current Smokes + Age + 

Diabetes + Right_ABI + PlateletInhib 

Backward 0.063 0.64 0.40 1.02 

Logit(endoleak) = Current Smokes + Age + 

Family History + Diabetes + Anticoagulants + 

Right_ABI + PlateletInhib 

Stepwise 0.063 0.64 0.40 1.03 
Logit(endoleak) = Current Smokes + Age + 

Diabetes + Right_ABI + PlateletInhib 

*All variables = Currently smokes, age, height, weight, family history, diabetes, high cholesterol, 

thrombosis, emphysema, coagulopathy, stroke, cardiac disease history, beta blocker, aspirin, ACE inhibitor, 

anticoagulants, platelet inhibitor, left ABI, and right ABI.  

**Significance criteria: SLENTRY=0.05, SLSTAY=0.10. 
¶
All variables except left ABI, right ABI, and platelet inhibitor. 
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