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Abstract
The 3D reconstruction of a scene from 2D images is an important topic in the field of

Computer Vision due to the high demand in various applications such as gaming, animations,

face recognition, parts inspections, etc. The accuracy of a 3D reconstruction is highly dependent

on the accuracy of the correspondence matching between the images. For the purpose of high

accuracy of 3D reconstruction system using just two images of the scene, it is important to find

accurate correspondence between the image pairs.

In this thesis, we implement an accurate 3D reconstruction system from two images of

the scene at different orientation using a normal digital camera. We use epipolar geometry to

improvise the performance of the initial coarse correspondence matches between the images.

Finally we calculate the reprojection error of the 3D reconstruction system before and after

refining the correspondence matches using the epipolar geometry and compare the performance

between them.

Even though many feature-based correspondence matching techniques provide robust match-

ing required for 3D reconstruction, it gives only coarse correspondence matching between the

images. This is not sufficient to reconstruct the detailed 3D structure of the objects. Therefore

we use our improvised image matching to calculate the camera parameters and implement dense

image matching using thin-plate spline interpolation, which interpolates the surface based on the

initial control points obtained from coarse correspondence matches. Since the thin-plate spline

interpolates highly dense points from a very few control points, the correspondence mapping

between the images are not accurate. We propose a new method to improve the performance of

the dense image matching using epipolar geometry and intensity based thin-plate spline inter-

polation. We apply the proposed method for 3D reconstruction using two images. Finally, we

develop systematic evaluation for our dense 3D reconstruction system and discuss the results.
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Chapter 1 
Introduction

In recent decades, the problem of reconstructing a 3D scene from 2D images has been one of

the important topics of research in Computer Vision area. This is due to the high demand for

the 3D content for various applications like gaming, animations, human computer interaction,

part inspection, face recognition and much more[1]. There are many scenarios where the 2D

data is insufficient for an application which in turn imposes the need to reconstruct a 3D model

from 2D images. One such example is in preserving and representing old architectural buildings

and monuments for the future generations. Taking a picture of such buildings or statues will not

give us enough information to appreciate and understand the details and the beauty, whereas a

3D model can give a realistic and detailed picture[16]. The machine vision industry has started

using 3D reconstruction technique for identifying defects in the machine parts. Earlier, a model

of the target machine part used to be built in CAD to calculate the error. This is expensive and

time consuming. By reconstructing a 3D model, the parts can be inspected in real time with

greater accuracy[17]. Another example where the 3D data out performs the 2D data is in face

recognition[1]. 2D face recognition is not invariant to illumination changes in general. Also, it

does not handle the effect of pose variation well. While in the 3D face recognition, even though

changes in the illumination changes the texture, it does not change the shape of the image. The

variation in the pose can also be recognized well in 3D face model.

The method for 3D reconstruction can be broadly classified into two types. Namely, active

and passive methods[1]. In active method, special types of light sources are used to find the depth

of the scene. For example, the depth information can be captured by Microsoft Kinect, which in

turn can be used to reconstruct a 3D scene in real-time. In passive method, no such special light

sources are used. In passive method, two types of reconstructions are possible. One is by using

calibrated rigs, where two or more cameras are placed in a fixed position around the target object.

In this method, the motion between the cameras are already known. Therefore reconstructing the

target object is not very difficult[1]. The other one is by using Structure from Motion technique

where a single camera is used to take the picture of the same scene from different orientations.

Here, the position or motion of the camera is not known. The former method is expensive and

also requires elaborate calibration setup. While in the latter method, a single normal digital

camera can be used to reconstruct the 3D scene[1]. In this thesis, we use Structure from Motion
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method to implement a 3D reconstruction system by using just two images of the scene.The

main disadvantage of using passive method for 3D reconstruction is that it does not have the

direct depth information of the scene, therefore it requires a minimum of two images of the

scene to calculate the depth information. On the other side, passive method does not require

the use of special cameras with special light properties. It can be implemented by using normal

digital cameras. There are two big challenges in passive 3D reconstruction method. The first

one is to find very accurate correspondence points between the two images as the accuracy of

3D points directly depends on the accuracy of initial correspondence points. In this thesis we

use the epipolar constraint for the initial correspondence obtained using SURF to improve the

accuracy. The second challenge is to find dense 3D points in order to represent the scene with

more details. Most of the robust algorithms available gives only coarse correspondence between

two images which is not enough to calculate the dense 3D points. In this thesis we propose a

new method to get accurate dense correspondence between the images by using thin plate spline

interpolation with intensity and epipolar constraint.

1.1 Understanding image formation

Before understanding how 3D scenes are reconstructed from image pairs it is important

to understand how two dimensional images are formed from three dimensional scenes because

taking a picture of a scene in camera is exactly the reverse process of reconstructing a 3D scene

from 2D images[1]. Consider a simple pinhole camera to understand how images are being

formed. When we click a picture in camera, rays of light from the scene passes through the

Figure 1.1: Pinhole camera model

lens in the camera and falls on the photosensitive film present inside the camera (figure 1.1).

The image formed on photosensitive film is called as photo-negative image. The image that we
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see in photograph or computer is called a photo-positive image. It is obtained by projecting

the scene in a hypothetical plane situated in front of the camera lens. The distance between

the lens and the plane in front of the camera is exactly same as the distance between lens and

the photosensitive film[1]. The center of the lens is called as the center of projection. The

hypothetical plane in front of the camera is called as image plane. The distance between the

Figure 1.2: Image formation

lens and the image plane or photosensitive film is called as focal length (f) of the camera. These

are depicted in figure 1.2. It is known that point,lines,curves and surfaces together, collectively

form a scene in three dimensional Euclidean space[1]. In order to describe the above process

Figure 1.3: Camera centered reference frame

in the form of mathematical formulas, we should define a reference frame in Euclidean space.

3



To make the calculation easier it is fruitful to choose a reference frame that will depict how the

camera has been setup[1]. The reference frame, shown in orange color in figure 1.3 is called as

camera centered reference frame. The origin O, lies in the center of projection. The Z-axis is

a line perpendicular to the image plane and passing through the origin. The X and Y axis are

parallel to the image plane. It can be seen that the camera centered reference frame exactly

defines the actual camera setup. As described before, the image plane is at a distance f from

the the origin. Therefore the image plane is at Z = f plane, where f is the focal length of the

image. To develop a mathematical relation between a point in 3D scene and a point in 2D image,

Figure 1.4: 3D-2D Image Coordinates

consider a point M in the actual scene and let m be the corresponding point in the 2D image[1].

The point m lies in the intersection of the line from M through the center of projection and the

Z = f plane as shown in (figure 1.4). If the coordinates of M is (X,Y, Z) then the coordinates

of m will be ρ(X,Y, Z) where ρ is some real number. m is nothing but an arbitrary point in the

line through M and the origin of camera centered reference frame. Since we already know that

the line from M through the center of projection intersects the image plane at Z = f , the point

of intersection of the line with the plane for m should satisfy the condition ρZ = f or in other

words ρ = f
Z . The coordinates of m can be written as (u, v, f)[1] where,

u = ρX, v = ρY, f = ρZ (1.1)
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Now by substituting ρ = f
Z in (1.1) we get

u = f
X

Z
and v = f

Y

Z
(1.2)

There are different ways of representing image coordinates with respect to the reference

frame. In perspective projection, m is represented with respect to the principal point P[1]. It is

the point where the principal Z axis of the camera meets the image plane. In Computer vision,

Figure 1.5: Representation of Image coordinates in Computer Vision

the image coordinates are represented with respect to the reference frame where the origin lies

at the top left corner[1]. The X-axis is the horizontal axis which points towards right and Y-axis

the vertical axis which points downwards as shown in(figure 1.5). There are two main reasons

to choose this type of coordinates in Computer Vision[1]. Firstly, the X and Y-coordinates

are placed in the same way in which a digital camera reads an image with CCD. Secondly,

when we say that X is the horizontal axis pointing towards right and Y is the vertical axis

pointing downwards, it automatically implies that the Z-axis is pointing away from the image

perpendicular to X and Y axis. The Z-coordinate essentially corresponds to the depth of the

scene which is the missing parameter for 3D reconstruction problem. Therefore, this type of

representation is sensible for 3D reconstruction of a scene.

The image coordinates that we discussed so far is with respect to Principal point P. It has to

be first converted in accordance with computer vision before modeling the image formation[1].

Let the coordinates of the principal points be (pu, pv). Then the projection of scene point M on
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the image at point m will have the coordinates considering the offset of principal points[1].

ũ = f
X

Z
+ pu and ṽ = f

Y

Z
+ pv (1.3)

The image coordinates are represented in different units for different image coordinate systems[1].

The conventional image coordinate system with respect to the principal point are expressed in

metric units. In digital camera the image points are represented in terms of pixels. The image

Figure 1.6: Pixel coordinates in digital camera

sensor in the digital camera is composed of array of pixels as shown in (figure 1.6). Each pixel

position is represented by its row and column number in the array. These are referred to as

Pixel coordinates. For example, the pixel coordinate of the first pixel in the topmost left corner

is (0, 0) and it increments towards right and downwards. In order to convert (ũ, ṽ) to pixel

coordinates, ũ and ṽ has to be divided by the pixel length and the width respectively. Let mu

be the inverse of pixel length and mv be the inverse of pixel width. The pixel coordinates (x, y)

of the point m in the image is[1],

x = mu(f
X

Z
+ pu) and y = mv(f

Y

Z
+ pv) (1.4)

Expanding (1.4)

x = (muf
X

Z
+mupu) and y = (mvf

Y

Z
+mvpv)

or

x = αx
X

Z
+ px and y = αy

Y

Z
+ py (1.5)

where αx = muf , αy = mvf , px = puf and py = pvf are the focal lengths and principal points in

x and y directions expressed in pixel coordinates. The point m in the image can be represented
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in terms of homogeneous coordinates as (x, y, 1)T Now the equation(1.5) can be expressed in the

matrix form as[1],

Zm = Z


x

y

1

 =


αx 0 px

0 αy py

0 0 1



X

Y

Z

 (1.6)

So far, we discussed about the mathematical modeling of image formation process with

respect to the camera centered reference frame. Now, when we use more than one camera

to represent the same scene then the scene is represented with respect to the non- camera

centered reference frame known as world frame[1]. As seen in (figure 1.7), now two cameras

Figure 1.7: Pixel coordinates in digital camera

are used to represent the same scene. Each camera has its own reference frame (oc, xc, yc) and

(ow, xw, yw) respectively. It is not possible to model the image formation with respect to one

camera centered reference frame in this case. The position and orientation of the camera is

described by indicating the origin, and the rotation and translation matrix describes how much

the second camera should rotate to fit the first camera centered reference frame[1]. In other

words, it describes the orientation of the camera centered reference frame with respect to the
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world frame. The final expression for the camera model is[1],

Z


x

y

1

 =


αx 0 px

0 αy py

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3





X

Y

Z

1


(1.7)

where (X,Y, Z, 1)T are the homogeneous coordinates of the scene point in real world and (x, y, 1)T

are the corresponding homogeneous coordinates on the image plane.

K =


αx 0 px

0 αy py

0 0 1

 are the intrinsic parameters of the camera.

P =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

are the extrinsic parameters of the camera.

1.2 Understanding 3D reconstruction

The previous section discussed about the process of getting 2D image coordinates from a

3D scene. In this section the process of getting 3D scene coordinates from 2D images[1] will be

discussed briefly. As we know, the images are formed from the rays of light reflected from the

scene. To obtain the lost depth information back from the 2D images it is intuitive to project

back the light rays from the image. In order to find the 3D coordinates (X,Y, Z) at point M for

the corresponding point m in the image, a ray is projected from the camera center c through

point m in the image as shown in figure 1.8. But it is clear from the Figure 1.8 that it is not

sufficient to have one ray back project from the image to find its corresponding 3D coordinates

since there is no way to find the coordinates at which the ray intersects the scene point M.

Therefore, a minimum of two images of the same scene are required to reconstruct a 3D scene

from 2D images[1]. Consider the figure 1.9. Here, the same scene is captured from two different

cameras. Let m1 be the 2D point in the first image, m2 is the corresponding point of m1 in the

second image. Now, when two rays are back projected from camera centers c1 and c2 through

m1 and m2 respectively the rays intersect at point M to give the 3D points of the scene. There

are two important approaches for 3D reconstruction. The first approach is to take two/multiple

images of the same scene from two/multiple cameras at the same time using calibrated rigs.

This is known as stereo 3D reconstruction. In this approach the motion between the cameras

8



Figure 1.8: Light rays projected back from a single camera

Figure 1.9: Light rays projected back from two cameras

are already known. The second approach is to use a single camera to take two/multiple images

of the same scene from different views. This is known as Structure from Motion. In SfM we do

not know the motion between the cameras. In this thesis we use Structure from Motion concept

to reconstruct a 3D scene using just two images of the scene.
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1.3 Pipeline for 3D reconstruction

3D reconstruction is carried out using Structure from Motion concept. Using a single digital

camera, two pictures of the same scene are taken from two different positions.Once the images

are taken,the first step is two find the correspondence between two images.Then the camera

should be calibrated to find the internal camera matrix K which gives information about the

focal length and the principal point of the camera as discussed in Section 1.1. The next step is to

calculate the extrinsic parameters which gives information about the Rotation and translation

between the two cameras as seen in Section 1.1. Once the intrinsic and extrinsic parameters are

Figure 1.10: Pipeline for 3D reconstruction

calculated, triangulation has to be done to find the 3D points of the corresponding 2D points

in the images. This will give sparse 3D reconstruction of the scene as the initial correspondence

obtained between images are sparse. Then dense image matching is done to get a lot of cor-

respondence between images. The final step is to do dense 3D reconstruction using the same

10



procedure above for dense image correspondences.The pipeline for 3D reconstruction is shown

in figure 1.10.

1.4 Organization of the thesis

The remainder of this thesis has been organized as follows: Chapter 2 discusses the prior

work in 3D reconstruction area. Chapter 3 provides an overview about camera calibration and

epipolar geometry. Chapter 4 provides the implementation of 3D reconstruction system. Chapter

5 describes the proposed method for dense 3D reconstruction using Thin plate splines. Chapter

6 presents the experimental results and discusses about the coarse and dense 3D reconstruction.
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Chapter 2 
Literature Review
2.1 Calibrating the Camera

The problem of finding the camera calibration is highly important for metric 3D Recon-

struction. It is used to find the intrinsic parameters of the camera which contains information

about focal length and principal points. Different methods of camera calibration can be seen in

the literature. In [2] and [3], camera calibration is done by using a special calibration object. A

3D object is placed in front of the camera whose geometry is already known. The calibration

object is usually a single plane or two planes placed orthogonal to each other with some regular

pattern marked on the plane. The 3D coordinates of some of the reference points on the plane

are known in the coordinate system with respect to the calibration object. The reference points

are chosen such that it is easy to obtain the coordinates of the projection of the points in the

2D image. Thus for each reference point, the 3D-2D relation is found. From this, the internal

calibration matrix or the intrinsic parameters is found. Even though the method of using 3D

calibration object in camera calibration gives very accurate results, it is very difficult to set

up the calibration object for each 3D reconstruction system. [4] uses special off-the shelf TV

cameras and lenses to calibrate the camera. The plane which undergoes a known translation is

used to impose additional constraint in order to find the camera calibration matrix. One big

downside of this method is that it requires very expensive calibration apparatus setup. Later,

many techniques were introduced for camera calibration which does not require the use of any

calibration object or special calibration setup [5], [6], [7]. In [5], the camera is made to move in

a static scene. This uses the epipolar geometry between the two images which imposes two con-

straints on cameras’ internal parameters. Thus two equations are formed for each corresponding

points between two images.Therefore, the internal parameters can be found by solving a system

of equations formed by many corresponding points between the two images. With the corre-

spondence between three images both internal and external camera parameters can be found,

if the same camera is used with constant internal parameters. This helps to reconstruct a 3D

scene up to a similarity from 2D images [6],[7]. In [8], Caprile and Torre proposed a method

which uses vanishing points for calibrating the camera. The internal camera parameters, that

is, the focal length and the principal points are recovered by taking a single image of a cube

and by using the properties of the vanishing points. The purpose of using cube is to find the set
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of parallel lines at different directions, since the vanishing points lie on the intersection of the

parallel lines. The extrinsic parameters can be found by using a pair of suitable fixed pattern

from which the vanishing points can be easily obtained.The corresponding vanishing points are

matched between two images and the rotation matrix is computed from them. The translation

vector is then found by using simple triangulation. Even though this method does not require

elaborate calibration setup, it still requires the use of cube to find the vanishing points. In

1994, Hartley proposed a self-calibration method that depends purely on rotation [9]. In this

method, the intrinsic parameters are found by using the correspondence points between three

images. The images are taken at the same point but at different orientations. In other words,

the camera is fixed at a point and rotated to three different directions to capture three pictures

of the same scene. Since there is no translation or movement in the camera, this method differs

fundamentally from [5]. It is easier to find the correspondence points between images when there

is just rotation.

2.2 Image matching

The problem of finding correspondence points between two images of the same scene is the

key step in 3D reconstruction problem. Many research have been done in the development

of image matching by using a set of local interests point. In [10], Moravec proposed a stereo

matching technique using some corner detection. In this method, a local rectangular window is

considered in the image and the average changes in the image intensity is determined by shifting

the window by a small amount in different directions. If the window region has constant intensity,

then there is a very small change in all the shifts. If the window reaches an edge, then there

is a small change in the intensity along the direction of the edge but large change in intensity

in the direction perpendicular to the edge. If the window reaches a corner or an isolated point

then there is a large change in intensity along all the sides of the shifts. Thus the corner can be

identified when the change in intensity produced by all the shifts are large. Mathematically, the

change in intensity produced by the shifts is given by

Ex,y =
∑
u,v

wu,v|Ix+u.y+v − Iu,v|2 (2.1)

where w is the window,the value of w is 1 withing the specified region and 0 elsewhere. The

shifts (x, y) are (1, 0), (1, 1), (0, 1), (−1, 1) Thus for detecting the corner, it simply takes the

local maxima in min[E] greater than some specific threshold. There are some drawbacks in

this method. Firstly the result is anisotropic because the shifts used to determine the intensity
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change is very discrete. Secondly, the result is noisy due to the rectangular and binary window.

Thirdly the operator responds to the edges along with the corners since only the minimum of E

is taken into account.

The drawbacks of Moravec’s detector was overcome by Harris Detector in 1988. In [11],

Harris and Stephens proposed a combined corner and edge detector. The change in intensity E

for the small shift (x,y) is given by

E(x, y) = (x, y)M(x, y)T (2.2)

where M is a 2× 2 symmetric matrix.

M =

A C

C B

 (2.3)

M is the quadratic terms in Taylor expansion. Let α and β be the eigen values of M. The corner

response of Harris detector is given by

R = Det− kTr2 (2.4)

where,

Det is the determinant of the matrix M, given by

Det(M) = αβ = AB − C2 (2.5)

Tr is the trace of the matrix M, given by

Tr(M) = α+ β = A+B (2.6)

If the value of R is positive, then it is corner region. The negative value of R denotes the edge

region and if the R value is small, it is considered as flat region. This method is invariant to

rotation and slight changes in illumination. Harris corner detector is one of the most popular

detector and it is broadly used for many image matching applications. In [12] Zhang et al

proposed an image matching technique which mainly depends on the epipolar constraint. Thus

any number of images can be taken for the same scene and it is not required to know the position

of the cameras. But if the correspondence points are searched based on the epipolar geometry,
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then the complexity will be high. Therefore standard interest point detectors like Harris corner

detector is used to find the initial matches and then the epipolar geometry is used to eliminate

the outliers. This method has been tested for different input scenarios and it works well if the

scene has repeated input pattern.

In [13], Lowe proposed a method to find the distinctive image features that is scale and

rotation invariant and also provides robust matching across addition of noise, change in the

viewpoint of the three dimensional scene, variation in illumination and some range of affine

distortion. For the method to be scale invariant, it is clear that same window cannot be used

to detect keypoints with different scales. To address this problem, some scale-space filtering has

to be done. Generally, Laplacian of Gaussian is used which detects blobs at different scales σ.

Thus σ acts as the scaling parameter through which the keypoint (x,y) at σ scale can be found.

In this paper, SIFT (Scale Invariant Feature Transform) uses difference of Gaussian instead of

LoG, since the computational cost of LoG is high. Once DoG is found, the image which has

local extrema over different scale and space is considered as the potential scale. For rotation

invariance, the gradient magnitude and direction is calculated in the region surrounding the

keypoint. Finally the keypoint descriptors are formed by taking a 16× 16 neighborhood around

the keypoints. They are represented in the form of vectors. Images are matched by calculating

the nearest neighbors. SIFT is widely used in many applications since it is both scale and

rotation invariant.

2.3 Coarse and dense correspondence matching

Finding a good initial coarse correspondence matches between the images is a crucial step to

calculate the parameters required for 3D reconstruction. In [20], Li and Chen proposed a method

to find a non rigid coarse correspondence for volumetric images. In this method, the initial image

features are extracted and correlated using an improvised 3DSIFT algorithm known as I3DSIFT

algorithm. The feature correlation obtained using I3DSIFT algorithm is less sensitive to image

rotation and scaling [20]. Finally, the one-to-one mapping between corresponding features are

found using Improved spectral matching algorithm [20].

Even though coarse correspondence matches can be used to find the parameters required for

3D reconstruction, it is essential to find the dense correspondence matches in order to reconstruct

the scene with high details. There are various methods to find dense correspondence matches

from existing coarse correspondence such as [21], [22], [23], and [24]. In [22], Li and Xu proposed

a method for 4D Image registration in which dense correspondence matches are found from coarse

matches through interpolation technique which solves two 4D B-spline functions. The mapping
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between correspondence points is done by solving the two B-spline functions by minimizing an

objective function. The objective function is penalized for intensity matching error, feature

alignment error, spatial and temporal non-smoothness and inverse inconsistency [22]. In [23]

Li and Xu proposed another consistent feature-aligned algorithm where they first developed

forward and inverse matching models based on feature alignment constraints and then refined

the correspondence matches iteratively by using inverse consistency. In [24] Li et al proposed a

4D spatiotemporal image registration method which has both spatial and temporal smoothness.

In this method, the initial coarse feature correspondence is found using an improved 3D SIFT

descriptor which is invariant to scale and rotation. Then the dense correspondence matches

are found from the coarse correspondence matches using an intensity based deformable image

registration algorithm [24]. In [25], Li and Iyengar reviewed various methods for computing the

3D geometric data mapping where the dense correspondence matches can be calculated directly

from the 2D/3D data. In this paper, various mapping algorithms are discussed and compared

based on their formulations of objective functions, different constraints and the strategies used

for optimization [25].
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Chapter 3
Camera Calibration and Epipolar 
Geometry
3.1 Camera calibration

Camera Calibration is the most important step to get metric 3D Reconstruction. Neither

knowing the camera calibration matrices nor the position of the cameras, will result in reconstruc-

tion done using the correspondence point of the images alone to be just projectively equivalent[1].

The projective reconstruction preserves only collinearity and coplanarity. It neither preserves

parallelism nor the metric information. Hence, calibrating the camera will give information

about the focal length and Principal points which helps in reconstruction to preserve parallelism

and metric information[1].

Figure 3.1: Types of Reconstruction

The different types of reconstruction of a square is shown in (figure 3.1). It can be seen

that the square will look like a parallelogram if the calibration matrices are unknown. This is

known as affine reconstruction where the metric information is not preserved. The projective

reconstruction does not preserve even parallelism as explained above. The metric reconstruction

preserves the shape as in the original image.

Initially Camera calibration was performed by observing 2 or more planes (calibration object)

which were placed orthogonal to each other[15]. The planes had a fixed regular pattern whose

geometry in 3-D space were known. Calibration was done by observing the corners of the

pattern and equating the image coordinates with world coordinates as shown in (figure 3.2).
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Figure 3.2: Camera Calibration using Calibration object

The disadvantage of this method is that it is very difficult to setup calibration object for each

reconstruction and the process is expensive.

In [14] Zhang proposed “A flexible new technique for camera calibration”. This technique

does not require the use of any calibration object. In this method the camera is made to observe

a checkerboard pattern. The checkerboard pattern with known dimensions is printed and placed

on any planar surface. Pictures of the planar pattern are taken at different orientations by

either moving the camera or the planar surface. It is not required for the motion of camera or

the planar surface to be known.

The relationship between a 3D point M and its image projection m is given in equation 1.7.

This can be written as[14]

Zm̃ = K[R t]M̃ (3.1)

where m̃ = (x, y, 1)T is the 2D homogeneous coordinate M̃ = (X,Y, Z, 1)T is the 3D homoge-

neous coordinate

The objective is to find the K matrix which is known as internal calibration matrix. Let us

assume that the model plane is in Z = 0 plane. Therefore when we take a picture of this model

18



plane, the relationship between m̃ and M̃ is given by

Z


x

y

1

 = K

(
r1 r2 r3 t

)


X

Y

0

1


(3.2)

where ridenotes the ith column of the rotation matrix. Thus the above equation can be re-written

as

Z


x

y

1

 = K

(
r1 r2 t

)
X

Y

1

 (3.3)

The point M and its projection in the image m is related by a Homography H.

Zm̃ = HM̃ (3.4)

Where H = A[r1 r2 t]. H is a 3 × 3 matrix which is defined up to a scale factor. From

equation 3.4 it is clear that, there exists a homography H when the image of model plane is

taken. Let H = [h1 h2 h3]. From equation (3.4) we can write

[h1 h2 h3] = ΛK[r1 r2 t] (3.5)

where Λ is an arbitrary scalar. The two important properties of rotation matrix are[14], r1.r2 = 0

and r21 = r22. Using these properties in equation (3.5), we have

hT1K
−TK−1h2 = 0 (3.6)

hT1K
−TK−1h1 = hT2K

−TK−1h2 (3.7)

Thus,when an image of model plane is taken with a camera, the homography will give rise to

two constraints on intrinsic parameters. Let

D = K−TK−1 ≡


D11 D12 D13

D12 D22 D23

D13 D23 D33

 (3.8)
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Since D is symmetric it can be defined by a 6D vector as

d = [D11, D12, D22, D13, D23, D33]T (3.9)

If the column vector of H is hi = [hi1, hi2, hi3]T , then

hTi Dhj = uTijd (3.10)

with

uij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]T (3.11)

Therefore, the two constraints (3.6) and (3.7) on intrinsic parameters from a given homography

can be rewritten as two homogeneous equations in d

 uT12

(u11 − u22)T

 d = 0 (3.12)

In general, equation 3.12 can be written as

Ud = 0 (3.13)

If we take n images of the model plane then U is a 2n× 6 matrix. We need a minimum of two

images to get the K matrix. The solution to equation 3.13 is the eigen vector of UTU with the

smallest eigen value. Once we estimate d then all the unknowns in K can be estimated from

equation 3.8. The above results can be refined through maximum likelihood estimation which

is given in detail in [14]. This is the most convenient method as it only requires the camera to

take an image of the model plane [14].

3.2 Epipolar geometry

Concept of epipolar geometry is essential to derive the extrinsic parameters for 3D reconstruction[16].

When we take two images of the same scene from two different views for 3D reconstruction, there

prevails an intrinsic projective geometry between them which is known as the Epipolar geometry.

In other words, epipolar geometry tells us how the two views are related to each other. The

epipolar geometry does not depend on the scene structure. It depends on the cameras’ internal

parameters and their relative pose[16]. Suppose a point X in 3D space is being imaged by two
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Figure 3.3: Epipolar geometry- The camera centers c and c’, the correspondence points x and
x’, and the 3D- point X lie in a common plane π

different views at x and x′ as shown in figure 3.3, then the epipolar geometry gives the relation

between x and x′. As seen in figure 3.3 the image points x and x′ , the point X in 3D space and

the camera centers c and c′ lie in same plane. In other words x, x′, X, c and c′ are coplanar. It

can be clearly seen that the rays back projected from x and x′ intersect the point in 3D space

at X and also the rays x and x′ lie on the same plane. Let this plane be denoted as π.The line

joining the camera centers c and c′ is known as baseline. As shown in figure 3.4, the point of

intersection of the baseline with the image plane is known as epipole. Any plane which contains

the baseline is called as epipolar plane. One such epipolar plane is highlighted in green color in

figure 3.4. An epipolar line is the line where the epipolar plane intersects with the image plane.

All the epipolar line intersects at epipole. The green lines on both the images are the epipolar

lines in figure 3.4. Given point x in the first image, to find how point x′ is constrained with

respect to x, the first step is to find the plane π since we know that x, x′ and X are coplanar.

The plane π can be determined from the baseline and the ray extending from x. Once the plane

π is known, one can find the intersection of the π and the image plane. Since we know that the

point x’ also lies in plane π it is clear that x′ lies on the epipolar line l′. The ray back projected

from point x in the first image is the line l′ in the second image. Thus, it is not required to search

in the entire image for correspondence points. The search can be restricted to the epipolar line

l′[16].
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Figure 3.4: Epipolar geometry - Relationship between point x in the first image and the corre-
sponding point x′ in the second image

3.2.1 Fundamental matrix

The fundamental matrix represents the epipolar geometry in algebraic form[16]. We know

from the previous section that point x in the first image maps to the epipolar line l′ in the

second image. There is a mapping from a point to a line. This mapping is used to derive the

fundamental matrix. The map from point x through the camera center c to the line l′ can be

written as

x 7→ l′ (3.14)

This mapping can be achieved in two steps[16]. First the point x in the first image is mapped

to the corresponding point x′ in the second image which lies on the epipolar line l′. Then the

epipolar line can be easily determined by joining x′ and the epipole e′. Figure 3.5 shows one of

the methods to get point correspondence between two images. Here the corresponding points

are found by transferring point via a plane. As shown in (figure 3.5) consider a plane π that does

not pass through any of the camera centers. When a ray is back projected from point x in the

first image, it will hit the plane at point X. The point X is then projected to x′ in the second

image. This process is known as Point transfer via Plane[16]. Since point X in 3D and point x

in the first image lie on the same ray, the point x′ projected from X will lie on the epipolar line

l′ corresponding to x. Thus all the points xi in the first image and the corresponding points x′i

in the second image whose 3D points Xi lie on the same plane are projectively equivalent. When

xi and x′i are projectively equivalent to the set of points Xi which lies on the same plane, then
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Figure 3.5: Epipolar geometry - Point transfer via plane

there exists an Homography mapping between xi and x′i.

As discussed before the epipolar line l′ can be drawn by joining the points x′ and e′. This

can be written mathematically as[16]

l′ = e′ × x′ = [e′]×X
′ (3.15)

Where [e′]×X
′ is the matrix representation of the vector e′. Since we know that an homography

mapping exists between xi and x′i x’ can be written as

x′ = Hπx (3.16)

Substituting (3.16) in (3.15)

l′ = [e′]×hπx = Fx (3.17)

Where

F = [e′]×Hπ (3.18)

is the Fundamental Matrix[16].

The Fundamental Matrix is a rank 2 matrix with 7 degrees of freedom[16]. One of the most

important property of the Fundamental matrix is that if x and x’ are the corresponding points
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then

x′TFx = 0 (3.19)

This can be proved to be true because if x and x′ are the corresponding points then it is obvious

that the point x′ lies on the epipolar line l′. This can be written mathematically as

x′T l′ = 0 (3.20)

Substituting (3.17) in (3.20) we get x′TFx = 0.

The fundamental Matrix holds the transpose property[16]. That is , if F is the fundamental

matrix for a pair of cameras (1,2) then FT is the fundamental matrix for the same pair of

cameras in opposite order(2,1). Similarly if l′ = Fx is the epipolar line for the corresponding

point x, then l = FTx is the epipolar line for the corresponding point x’. These are some of the

important properties of Fundamental matrix[16].
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Chapter 4 
Implementation of 3D
Reconstruction System

This chapter explains in detail about the implementation of our 3D Reconstruction system.

Reconstruction of a scene is done by using just two images of the same scene. A normal digital

camera is used to take the images. The two images are taken from two different views in such a

way that it best describes the scene. The focal length of the camera is maintained same as the

focal length used for calibrating the camera.

4.1 Calibration of camera

The first step in reconstruction is camera calibration. As discussed in the previous chapter,

camera calibration is essential to get metric 3D reconstruction. Zhang’s algorithm[14] is used

for calibrating the camera. The details of Zhang’s algorithm is given in Chapter 3. This is

implemented in C++ using OpenCV library[17]. OpenCV has inbuilt functions for camera

calibration. To calibrate the camera at a fixed focal length, a black and white checkerboard

image is printed on a paper and placed on a planar surface as shown in figure 4.1. This is

known as model plane. Snapshots of this model plane is taken in different views. Each snapshot

accounts for one equation 3.12 as explained in Chapter 3. In theory two snapshots are required

to find all the parameters in K matrix. But in practice more than two images are required as the

input images have a good amount of noise. A minimum of eight snapshots of the model plane

in different positions are required for good results.The number of inner corners in the checker

board pattern and the size of the square is given as input. Once the input images are given,

the program checks for the input pattern in the images as shown in (figure 4.2). In this case it

checks for the corners of square in the given image. The program will throw an error if it does

not find enough good images to detect the pattern. Then all the unknown parameters in the K

matrix are determined by solving equation 3.13 which are formed by the input images.

4.2 Feature detection and extraction

The accuracy of 3D reconstruction totally depends on how well the correspondence points

are found between the images. If the point correspondence between the images are not accurate,

then this will lead to wrong Fundamental Matrix which will finally give erroneous reconstruction.

Therefore this is a very crucial step in 3D reconstruction. There are a wide variety of detectors

and descriptors being proposed in literature. Choosing a right detector and descriptor plays
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Figure 4.1: Model plane for Camera Calibration

Figure 4.2: Input Pattern in the checkerboard image

a vital role in reconstructing a scene from images of the same scene. In our implementation,

SURF(Speeded Up Robust Features) has been used for feature detection and extraction[18].

The reason for choosing SURF is that it is computationally fast, robust and scale and rotation

invariant[18]. The first step is Feature Detection,that is finding interest points in both the

images. For example finding the corners, edges, T-junction,etc. Once the interest points have

been found in both the images, the next step is to find the feature descriptors. Feature extractors
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or descriptors means representing the interests points in low dimensions. It is highly essential to

reduce the dimensionality while representing the interest points otherwise the computation will

take a very long time for matching the interest points. Also the input data can be redundant,

hence it is better to reduce the dimensions of the features extracted that will define the features

best for matching it with other features in different images. For example some of the feature

descriptors can be the intensity of that point, orientation of the area surrounding the point,

gradients of the area surrounding this point etc. SURF uses reduced descriptors compared to

other algorithms[18], which is the main reason for it to be computationally fast. SIFT(Scale-

Invariant Feature transform)[13] keypoint and Descriptor is also scale and rotation invariant but

the difference between SURF and SIFT is that SIFT approximates Laplacian of Gaussian with

Difference of Gaussian in order to find the scale-space whereas SURF approximates Laplacian

of Gaussian by using box filter. The advantage of using box filter is that the convolution can

be easily calculated by using integral images. To determine the orientation SURF uses wavelet

responses which can also be determined easily using integral images. SURF is faster than SIFT

but in terms of performance both of them are comparable to each other. The details of SURF

keypoints and descriptors can be found in [18]. SURF is implemented using OpenCV library.

OpenCV has functions for finding SURF keypoints and descriptors. In our implementation, the

two images of the same scene at different views are given as input. SURF gives only coarse

correspondence between two images as it looks for interests points like corners,edges,blobs, T-

junction etc. This will not give correspondence points for every pixel in the image but the

keypoints found are highly robust. Fewer, highly robust keypoints are sufficient to calculate the

cameras’ extrinsic parameters. Thus SURF is used to find initial coarse correspondence for 3D

reconstruction.

4.3 Feature matching

Once the keypoints and descriptors are found in each image, the features are matched be-

tween the two input images. In our implementation, brute force matcher has been used for

Feature matching[17]. For every feature in the first image, the descriptors of that feature is

taken and it is compared with the descriptors of all the other features in the second image using

the distance of the vectors. The matcher returns the feature points in both the images that has

least distance between them. The distance of the feature vector is calculated using l2 − norm.
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For example, if

X =



x1

x2

x3

.

.

xn


(4.1)

is the feature descriptor of the first image and

Y =



y1

y2

y3

.

.

yn


(4.2)

is the feature descriptor of the second image. Then the l2−norm of the first and second feature

descriptors will be

|X| =

√√√√ n∑
k=1

|xk|2 (4.3)

and

|Y | =

√√√√ n∑
k=1

|yk|2 (4.4)

respectively.

The distance between the two feature descriptors is given by

d = |X| − |Y | (4.5)

For each feature in the first image, d is calculated for all the features in the second image.

The features which returns the least d are considered to be the best match. BF matcher is

implemented using OpenCV. The function BFmatcher() returns the best match between two

images. Brute force matcher can also be used to return k best matches instead of one match.

BFmatcher.knnmatch() returns k best matches in OpenCV. In our implementation two best

matches are returned for each feature to perform some tests. Figure 4.3 shows the feature
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Figure 4.3: Feature Matching using Brute Force matcher

matching between two images. Feature matching is done by Brute Force matcher which returns

two best matches for each feature. SURF keypoints and descriptors are used for feature detection

and extraction.

4.3.1 Ratio test

As seen in (figure 4.3) Brute Force matcher gives some wrong matches. To eliminate the

wrong matches, ratio test is performed. Let d1 and d2 be the two best distances which gives

the least difference between two feature descriptors, returned by Brute Force knn matcher. The

ratio of d1 and d2 is calculated.

d1
d2
≤ τ (4.6)

If the ratio is lesser than or equal to the given threshold τ as in (equation 4.6), then the matches

are considered to be good. All the other matches can be eliminated. From the(figure4.4) it is

clear that ratio test improves the accuracy of the matching between the input images.

4.4 Computation of the fundamental matrix

The epipolar geometry and the Fundamental matrix was explained in detail in Chapter 3.

From (equation 3.19) we know that x′TFx = 0. This property is very essential to find the Fun-

damental matrix from the correspondence points of the images.There are so many methods to

find fundamental matrix from the point correspondence between the images. In our implementa-

tion we use Automatic computation of F using RANSAC and normalized 8-point algorithm[16].

ALGORITHM
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Figure 4.4: Brute Force Matching after ratio test

(i) The initial coarse correspondence found using SURF and Brute Force matcher is given as

input for the computation of F.

(ii) A random sample of minimum 8 correspondences are chosen and F is computed using nor-

malized 8-point algorithm.

(iii) The distance d⊥ is calculated for each correspondence pairs. Calculation of d⊥ is explained

in section 4.5.

(iv) If the distance d⊥ is lesser than t pixels, then those correspondence pairs are considered as

inliers.

(V) The above process is repeated from step (ii) for N samples, where N is determined adaptively

which will be explained in detail below.

4.4.1 Normalized 8-point algorithm

The objective is to find F from x′TFx = 0[16].

Where x = (x, y, 1), x′ = (x′, y′, 1) and F =


f11 f12 f13

f21 f22 f23

f31 f32 f33

. Expanding the above equation,

we get

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (4.7)
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For n set of points ,the above equation can be written as a set of linear equations of the form

AF̂ =



x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

. . . . . . . . .

. . . . . . . . .

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1


F̂ = 0 (4.8)

Where F̂ is the 9× 1 vector form of F. F is obtained by solving the equation 4.8, using Singular

Value Decomposition. F corresponds to the smallest singular value of A. Before solving the

equation, x and x′ are normalized as it will improve the stability of the results and conditioning

of the problem. Normalization is done by translating and scaling the points so that all the three

points in x and x′ do not have large difference between them.

ALGORITHM[16]

(i) The image coordinates are transformed to x̃i = Txi and x̃′i = T ′x′i, where T and T ′ are the

normalizing transformation matrix.

(ii) F is determined by taking Singular Value decomposition for the equation 4.8.

(iii) F is replaced by F̃ such that it satisfies the singularity constraint detF̃ = 0. For details

refer to [16].

(iv)F is finally denormalized by setting F = T ′F̃ T .

4.5 Distance measurement d⊥

For every estimate of F , d⊥ is calculated for all the correspondence pairs. d⊥ is calculated

either by using reprojection error or by using Sampson approximation to reprojection error[16].

The distance measures tells us whether the given pair of corresponding points satisfies the epipo-

lar geometry or not.

4.6 Adaptive estimation of number of samples N

Initially N is chosen high to ensure that at least one of the points are free from outliers

with the probability p[16]. Let w be the probability that the given points are inliers. Then the

probability that the given points are outliers will be ε = 1−w. At least N selections are needed,

each consisting of s points. This can be translated mathematically as

(1− ws)N = 1− p (4.9)
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Thus[16]

N = log(1− p)/log(1− (1− ε)s) (4.10)

Initially ε is set to 1 so that N =∞ with the probability p = 0.99. Some sample correspondence

points are chosen and the inliers are counted using d⊥. Once the inliers are counted ε is updated

by using the formula ε = (1−w)/(Total number of points). The new N is calculated from

equation 4.10. This is continued till N samples have been performed[16].

The details of computation of F using RANSAC can be seen in [16]

4.7 Refining fundamental matrix

The accuracy of initial correspondence points plays an important role in determining a good

fundamental matrix. If the system of equations (4.8) are solved with erroneous correspondence

points, then the Fundamental matrix obtained will not be accurate since it depends only on

the correspondence points. Even though ratio test eliminates some wrong matches based on the

distance between first two matching for each feature, there might some erroneous matches which

satisfies the ratio test because of the wrong matches for each feature being present very close

to each other. In our method we have added another test based on epipolar geometry. As we

discussed in the previous section, The computation of F using RANSAC eliminates the outliers

based on the distance measure. This distance measures tells us whether the correspondence

points satisfies the epipolar geometry. Once all the matches that do not satisfy the epipolar

geometry are eliminated then the Fundamental matrix is recalculated using the inliers which

was obtained from the initial calculation of Fundamental Matrix as input. The algorithm to

calculate the final fundamental matrix is as follows

ALGORITHM[16]

(i) The coarse correspondence obtained from SURF is given as input.

(ii) The Initial Fundamental Matrix is calculated as described in section 4.4

(iii)The inliers got from the Fundamental Matrix is taken as new input.

(iv) The Final fundamental matrix is calculated using the same method as above but with inliers

as the input correspondence points.

4.8 Computation of essential matrix

The Essential matrix can be considered as the special case of Fundamental Matrix[16]. The

fundamental matrix has information about both intrinsic and extrinsic camera parameters. In

order to get the extrinsic parameters from the Fundamental matrix, the assumption about cali-

bration matrix K has to be removed from the fundamental matrix F . The Fundamental matrix
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without intrinsic parameters is known as Essential matrix. Unlike Fundamental Matrix, the

Essential matrix has five degrees of freedom and additional constraints[16]. Once the K matrix

is found as described in section 4.1, the inverse of K can be applied to the input points x and

x′ to remove the effect of intrinsic pare meters. Thus the input coordinates without assumption

about intrinsic parameters can be written as

x̂ = K−1x (4.11)

x̂′ = K−1x′ (4.12)

The coordinates defined in equations 4.11 and 4.12 are known as normalized image coordinates

Similarly the normalized camera matrices can be defined as

P ′ = K−1K[R|t] (4.13)

Thus, the fundamental matrix corresponding to the pair of normalized camera matrices P = [I|0]

and P ′ = [R|t] are known as Essential Matrix. Like Fundamental matrix, Essential matrix also

has the property

x̂′TEx̂ = 0 (4.14)

Substituting equation 4.11 and 4.12 in equation 4.14, we get

x′TK ′−TEK−1x = 0 (4.15)

Comparing equation 4.14 with the relation x′TFx = 0 for fundamental matrix, we get

E = K ′TFK (4.16)

The important constraint in Essential matrix is that two of the singular values in Essential

matrix should be equal and the third value should be zero[16]. Essential matrix can be easily

found once we know Fundamental Matrix and Camera Calibration matrix K.

4.9 Retrieving camera matrices from essential matrix

Let us assume that the first camera matrix is

P = [I|0] (4.17)
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In order to compute the second camera matrix P ′, the essential matrix has to be factorized to

SR[16]. This is due to the additional constraint introduced by Essential matrix as discussed in

the previous section. E is decomposed as

E = [t]×R = SR (4.18)

For decomposition, let us use two matrices

W =


0 −1 0

1 0 0

0 0 1

 (4.19)

where W is the orthogonal matrix.

Z =


0 1 0

−1 0 0

0 0 0

 (4.20)

where Z is the skew-symmetric matrix.

Let the Singular Value Decomposition of E be Udiag(1, 1, 0)V T . From equation 4.19 and

4.20 the factorization can be defined as

S = UZUT (4.21)

and

R = UWV T or UWTV T (4.22)

If the signs are ignored then there are two possibilities for R. The translation part t for the

camera matrix P’ is determined from the factorization (4.21), up to a scale from S = [t]×. Since

St = 0

U(0, 0, 1)T = u3 (4.23)

which is the third column of U . It is not possible to determine the sign of E, hence t. Therefore

for each essential matrix E there are four possible choices for camera matrix P ′, two for rotation

34



and two for translation as follows

P ′ = [UWV T |+ u3] or [UWV T | − u3] or [UWTV T |+ u3] or [UWTV T | − u3] (4.24)

The geometric interpretation of four possible solutions for reconstruction from Essential Matrix

E is given in the following figures. Between figure 4.5, 4.7 and 4.6, 4.8 the baseline is reversed.

Between figure 4.5, 4.6 and 4.7, 4.8 the camera B is rotated 180 degree about the baseline. It

can be seen that, of all the figures, only in figure 4.5 the reconstructed point lies in front of both

the cameras. Therefore this is the right solution for P ′ among all the four possibilities. The

camera matrix P ′ can be found only after reconstructing the 2D points. From the geometric

interpretation it is clear that, for the reconstructed points to lie in front of both the cameras

the Z coordinate should be positive. In our implementation P ′ is calculated for all the four

possibilities. The number of reconstructed points with positive Z is counted for all the four

solutions. The P ′ matrix which corresponds to the maximum number of Z with positive value

Figure 4.5: First possible reconstruction

Figure 4.6: Second possible reconstruction

is considered as the second camera matrix. Once the camera matrices P and P ′ are found, the
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Figure 4.7: Third possible reconstruction

Figure 4.8: Fourth possible reconstruction

next is to triangulate the two points x and x′ in the first and second image respectively, to get

the 3D point X.

4.10 Triangulation

Triangulation is the final step in 3D reconstruction. Once the camera matrices re found,

the relation between 2D points and 3D points can be written as x = PX and x′ = P ′X[16].

Due to some errors in obtaining x and x′, there will not be a point X that can exactly satisfy

the above two equations. Thus the method for triangulation should be invariant under any

transformations. The process of triangulation can be generally represented as

X = τ(x, x′, P, P ′) (4.25)
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The triangulation can be considered to be invariant under a transformation H if

τ(x, x′, P, P ′) = H−1τ(x, x′, PH−1, P ′H−1) (4.26)

In our implementation, we have used linear inhomogeneous method to triangulate the 2D

points[16].The relation x = PX involves only homogeneous vectors. That is x and PX has

the same direction but different magnitude which differs by some non zero scale factor. This

relation can be expressed in terms of vector cross product as[16]

x× (PX) = 0 (4.27)

Expanding equation 4.27

x(p3TX)− (p1TX) = 0 (4.28)

y(p3TX)− (p2TX) = 0 (4.29)

x(p2TX)− y(p1TX) = 0 (4.30)

where piT represents the ith row of the matrix P . Equation 4.28 and 4.29 are linearly indepen-

dent, while equation 4.30 is linearly dependent on equation 4.28. Therefore each point can be

represented by just two linear equations 4.28 and 4.29. x = PX and x′ = P ′X can be written

in the form

AX = 0 (4.31)

where,

A =



xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T


(4.32)

Equation 4.31 can either be solved by finding the singular vector corresponding to the

smallest singular value of A or by solving a set of inhomogeneous equation[16]. By setting

X = (X,Y, Z, 1)T , equation 4.31 can be converted to inhomogeneous equations

AX = B (4.33)
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where

A =



xp31 − p11 xp32 − p12 xp33 − p13

yp31 − p21 yp32 − p22 yp33 − p23

xp′31 − p′11 xp′32 − p′12 xp′33 − p′13

yp′31 − p′21 yp′32 − p′22 yp′33 − p′23


(4.34)

B = −



xp34 − p14

yp34 − p24

xp′34 − p′14

yp′34 − p′24


(4.35)

Equation 4.33 can be solved by using singular value decomposition. Thus the 3D points (X,Y,Z)

are calculated for each pair of 2D points (x,y) and (x’,y’)[16].
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Chapter 5
Proposed Method for Dense 3D 
Reconstruction

Once the initial coarse 3D points are found, the next step is to find the dense 3D recon-

struction from the two input images. The coarse reconstruction does not provide enough 3D

points to describe the scene or an object in detail. Therefore it is necessary to do dense 3D

reconstruction of the scene. The first step here is to find the dense correspondence between the

input images. This is the most challenging step in 3D reconstruction problem as the accuracy of

the 3D points directly depends on the accuracy of the correspondence points. After finding the

corresponding points, it is not required to calculate the Fundamental and Camera matrix again.

They will remain the same for the given input images. Finally, the dense correspondence points

can be triangulated using the F and P matrix calculated in the previous chapter from the initial

correspondences to get the dense 3D points. In this thesis, we proposed a new method to find

the dense correspondence between the two images using intensity and epipolar geometry based

Thin-Plate Spline interpolation.

5.1 Thin-plate splines

In [19] Bookstein proposed a new method for interpolating surface with few initial scattered

data over the surface known as thin-plate spline. This technique provides a smooth interpolation

between a set of points known as control points. The surface is interpolated based on a condition

that the surface passes through all the control points with least bending. Thus these control

points acts as a position constraints which will lead to less bending. The surface is defined by[19]

z(x, y) = −U(r) = −r2logr2 (5.1)

where r is the distance
√
x2 + y2. The negative sign indicates that the surface is slightly dented

in this pose. Positive sign indicates that the surface is slightly convex in this pose.

In this thesis, thin-plate spline is used for finding the dense correspondence between the

images. We already have the initial correspondence points between the images which was calcu-

lated from SURF and epipolar geometry. These initial correspondence points are considered as

the control points. In order to find the mapping between the images. If (x, y) is the position of

a pixel in the first image then after moving the camera the new position of the corresponding
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pixel should be (x + dx, y + dy) in the second image. Thus for each pixel in the first image,

the displacement (dx, dy) has to be found to get the corresponding pixel position in the second

image. The surface which is least bent is given by

fy(x, y) = a1 + axyx+ ayyy +

n∑
i=1

wiyU(|Piy − (y)|) (5.2)

where the first three terms can be considered as the least square fitting term that defines the

plane which best fits all the control points[19]. The last term provides the bending energy which

are given by n control points. Pi is the set of control points in the first image. (x, y) is the point

in the first image for which the corresponding point has to be found in the second image. wi is

the weight associated with the input control points. Before finding the mapping, the initial step

is to find all the weights wi for the given control points. Once the weights are calculated then all

the values can be given to (5.2) to get the mapping separately in x and y direction.To calculate

the weights, let us first define the following matrices

K =



0 U(r12) ... U(r1n)

U(r21) 0 ... U(r2n)

... ... ... ...

U(rn1) U(rn2) ... 0


(5.3)

where K is a n× n matrix.

P =



1 x1 y1

1 x2 y2

... ... ...

1 xn yn


(5.4)

where P is a 3× n matrix.

L =

K | P

PT | O

 (5.5)

where L is a (n+ 3)× (n+ 3) matrix. O is a 3× 3 matrix of Zeros. The initial correspondence

points in the second image can be compiled together in the form of matrix as

V =

x′1 x′2 ... x′n

y′1 y′2 ... y′n

 (5.6)
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Some zeros are appended at the end of the V matrix to match the dimensions with L matrix.

Let new matrix Y be

Y = (V |0 0 0)T (5.7)

Let the weights W = (w1, w2, ..., wn) and the coefficients a1, ax, ay together be defined as

(W |a1 ax ay)T .Thus the relation to calculate the weights and the coefficients is

L−1Y = (W |a1 ax ay)T (5.8)

The details of thin-plate spline interpolation can be seen in [19]. Equation (5.8) can be solved

by LU Decomposition. Once the weights and coefficients are calculated, they can be substituted

in (5.2) to get the displacement (dx, dy) for each point (x, y) in the the first image. In this way

Thin-Plate Spline can be used to find the dense correspondence between two images.

5.2 Modified thin-plate spline interpolation

It is challenging to get highly dense reconstructed points from just two views of the image.

Usually images of the same scene are taken from multiple views to get high correspondence

points between the images which will in turn give dense reconstructed points. Thin plate spline

interpolation gives good mapping for each pixel in one image to find the corresponding point in

the other image.But, the interpolation of the surface is purely based on the initial control points.

In this thesis, the initial control points obtained from the SURF features and descriptors are

in the range of thousands, while the final dense correspondence points between the images are

expected to be in the range of millions. Since the ratio of the final and initial correspondence

points are in the range of thousands, the final matching points obtained from thin-plate spline

are not very accurate. Therefore, in this thesis we propose a new method to improve the accuracy

of dense image matching using two additional constraints.

The first constraint is based on the epipolar geometry between the two views. The Fun-

damental matrix has already been calculated for the two input images to find the coarse 3D

reconstructed points. From equation 3.19, the condition for the two correspondence points to

satisfy the epipolar constraint is x′TFx = 0. This condition is used to check whether the match-

ing points obtained from the thin-plate spline interpolation have satisfied the epipolar geometry.

Practically x′TFx will not be equal to zero. Therefore this constraint is checked for a particular

threshold range between tu and tl. If

tl ≤ x′TFx ≤ tu (5.9)
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then the correspondence points are considered for 3D reconstruction. The upper and lower

thresholds are chosen adaptively depending on how much error can be tolerated for each picture.

The reason for choosing the threshold adaptively is that different images might have different

range of thresholds to get dense correspondence points. If the threshold ranges are very close to

zero then the reprojection error will be very low and it increases as the threshold range moves

away from the ideal value zero. To find the lower and upper threshold, bins of width 0.025

are created between the range -1 and 1 with the initial value of zero in each bin. The value

of x′TFx is calculated for each correspondence points. If the value of x′TFx falls within the

range of any particular bin, then the corresponding bin is incremented by one. This gives the

frequency distribution of the values of epipolar constraint between -1 and 1. The range of the

thresholds can be chosen depending on the percentage of dense correspondence points required

with respect to the input images. There is a trade off between the number of matching points

and the reprojection error. If the constraints are kept closer to Zero, then the number of dense

correspondence points obtained will be lesser but the reprojection error will be lower. On the

other hand if the threshold ranges are chosen little away from zero, the number of dense corre-

spondence points obtained will be higher but the reprojection error will also be increased. The

users can change the percentage of correspondence points required for reconstruction depending

on the percentage of error that can be tolerated for different applications.

The Second constraint is based on the intensity variation between the two images. The

correspondence points which have same intensity values are considered for the 3D reconstruction.

Practically, there might be a minor variation in the intensity values between two views due to the

change in pose and the effect of illumination accordingly. Therefore, the difference in intensities

less than a particular threshold is chosen as the second constraint to get the matching points

for the reconstruction. Let I1 be the intensity value of the pixel in the first image and I2 be the

intensity value of the image in the second image. Let ∆I be the difference in intensities of each

pixels between the two images.

∆I = I1 − I2 (5.10)

If the difference in intensities of each correspondence points is less than the average value of the

intensity difference between the two images, then the corresponding points are considered for

reconstruction. If

|∆I| < Average(

n∑
i=1

|∆Ii|) (5.11)

where, n is the total number of correspondence points.
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Adding these two constraints to the output of image matching points obtained from thin-

plate spline interpolation have improved the accuracy of the dense 3D reconstruction.

43



Chapter 6 
Results

In this thesis, Canon PowerShot SX170 IS is used to take all the images. The resolution of

the image is 3456 × 4608. The camera is first calibrated to get the intrinsic parameters. The

coarse 3D reconstruction is done for the given two input images. The extrinsic parameters and

the correspondence points calculated from the coarse 3D reconstruction are used for dense 3D

reconstruction.

6.1 Camera calibration

Camera calibration is done by using OpenCV [17]. Eight snapshots of the checkerboard

pattern are taken in different positions as shown in figure 6.1. All the eight images are taken

at a constant focal length.The number of inner corners of the square in the checkerboard and

the size of the square in the checkerboard are given as input. In the checker board pattern used

for this thesis, the number of inner corners are 9× 6 and the size of the square is 50 pixels.The

program gives the internal calibration matrix K.

K =


3.5595342957150860× 103 0 2.3035000000000000× 103

0 3.5595342957150860× 103 1.7275000000000000× 103

0 0 1


It is sufficient to calibrate the camera once for different inputs unless the focal length is changed.

The same focal length is maintained throughout for taking all the results.

6.2 Coarse 3D reconstruction

Once the camera is calibrated, two images of the same scene are taken at different positions

by moving the camera with the same focal length used for camera calibration. The two input

images are shown in figure 6.2 and 6.3. Features are extracted using SURF and matched using

Brute Force Matcher.

Number of features extracted from the first image = 6839

Number of Features extracted from the second image = 7138

Number of matches found using Brute Force Matcher = 6839

Number of matches found after the Ratio test = 860
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Figure 6.1: Input Checkerboard pattern at different positions
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Figure 6.2: Input image at the first position

Figure 6.3: Input image at the second position

Initial Fundamental Matrix obtained from the 860 correspondence matches after ratio test:

F =


−2.772436229134866× 10−9 4.482524822130676× 10−7 −0.0005783909327605752

−3.105722919622621× 10−7 1.6045291879357× 10−8 −0.008948060348659193

0.0003577196703114516 0.00834701170539276 1
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Figure 6.4: Initial matches from Brute Force Matcher

Figure 6.5: Matches after ratio test

Number of matches obtained from Fundamental matrix using RANSAC = 465

Final Fundamental matrix obtained from 465 correspondence matches:

F1 =


−2.607874× 10−9 4.095421× 10−7 −0.000536

−2.570963× 10−7 8.274342× 10−9 −0.008689

0.000292 0.008094
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Figure 6.6: Final matches found from Fundamental Matrix using RANSAC

The camera matrix P:

P =


−0.998122 0.000432 −0.061262 0.987120

−0.000274 −0.999997 −0.002584 0.017525

0.061263 0.002563 −0.998118 −0.159021


The epilines for the correspondence points in both the images are given inf figure 6.7 and 6.8.

Figure 6.7: Epilines in the first image for the corresponding points in the second image
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Figure 6.8: Epilines in the second image for the corresponding points in the first image

The triangulated 3D points from the 2D images are rendered using a tool called Plotviz [27]. The

accuracy of the correspondence points between the images greatly affect the 3D reconstructed

points. The 3D reconstructed points are given for the input correspondence matches obtained

before and after refining the matches using Fundamental matrix with RANSAC to show visually

how improving the accuracy of image matching points improves the results of 3D reconstructed

points.

Figure 6.9 shows the four different views of the 3D reconstructed points which is recon-

structed from the correspondence point matches before refining the matches using Fundamental

matrix with RANSAC. It can be seen that there are many wrong points in 3D around the

cube. Figure 6.10 shows the four different views of final 3D reconstructed points which is recon-

structed from the correspondence point matches after refining them using Fundamental matrix

with RANSAC. It is clear from the figure 6.10 that there are no wrong points in the reconstructed

image. This eliminates the need to adjust the 3D points after reconstruction. The Reprojection

error is calculated to measure the performance of the system.

CALCULATING THE REPROJECTION ERROR

Let (xOi, yOi) represent the 2D points of either of the input correspondence matches between

two images. Let (xRi, yRi) be the 2D points calculated by reprojecting the reconstructed 3D
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Figure 6.9: Four different views of 3D Reconstructed points of the cube before refining the image
matching points
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Figure 6.10: Four different views of 3D Reconstructed points of the cube after refining the image
matching points
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points using (1.7). Then the average reprojection error ε is given by

ε =
1

n

n∑
i=1

√
(xRi − xOi)2 + (yRi − yOi)2

x2Ri + y2Ri
(6.1)

where n is the total number of correspondence points. The average reprojection error is calculated

for the reconstruction before and after refining the matches.

Table 6.1: Average Reprojection Error

Method Average Reprojection error

Before refining the matches 0.01

After refining the matches 0.002

From table 6.1 it can be seen that the reprojection error has been improved after refining the

correspondence matches using Fundamental matrix with RANSAC by eliminating the outliers

that does not satisfy the epipolar geometry.

6.3 Dense 3D reconstruction

Dense image correspondence between the images are obtained using thin-plate spline inter-

polation. This is implemented using C++ and OpenCV. Once the corresponding image matches

are found,the performance of feature matching is improved by adding the epipolar constraint.

The threshold range for the epipolar constraint are found adaptively using the frequency distri-

bution of deviation of epipolar constraint.For the two input images,

The total number of correspondence matches found using thin-plate spline = 29,14,303

The frequency distribution of deviation of epipolar constraint is given in figure 6.11. The epipo-

lar constraint x′TFx is calculated for all the correspondence points obtained from thin-plate

spline. The value of the epipolar constraint is taken between -1 and 1 with a bin width of 0.05.

The number of correspondence matches whose epipolar constraint value falls between -1 and 1

is plotted as shown in figure 6.11. Any value deviating from zero is considered as error. Since

it is not practically possible to have the constraint as zero, a small deviation from zero can be

considered for reconstruction. The more the value deviates, the higher is the reprojection error.

The user can decide how much deviation to be considered depending on the number of satisfying

points required to reconstruct the structure of the object. Based on the percentage of correspon-

dence points chosen by the user, the program calculates the lower and upper threshold range for

the epipolar constraint. For the input cube images, 75 percent of the total dense correspondence

points is given as input.
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Figure 6.11: Epilines in the first image for the corresponding points in the second image

• The lower threshold = -0.025

• The upper threshold = 0.075

• Thus the correspondence points, −0.025 ≤ x′TFx ≤ 0.075 are considered for 3D recon-

struction.

• The total number of correspondence matches found after applying epipolar constraint =

22,85,824

• The constraint based on intensity is applied using (5.11).

• The total number of correspondence matches found after applying intensity constraint =

16,64,267

• The reprojection error after applying intensity and epipolar constraint = 0.0020698

Different views of dense 3D reconstruction of the cube is given below. The 3D points are rendered

using Meshlab [26].
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Figure 6.12: Different views of 3D reconstruction of cube

Figure 6.13: Different views of 3D reconstruction of cube

Figure 6.14: Different views of 3D reconstruction of cube

Figure 6.15: Different views of 3D reconstruction of cube

6.4 Systematic evaluation of 3D reconstruction system

The dense 3D reconstruction system is evaluated using three methods as explained below.
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6.4.1 Texturing the 3D points

The 3D points are colored/textured using the intensity values from the two 2D images. To

verify the correctness of the dense correspondence points visually, the intensity values used to

color the dense 3D points are obtained by mixing equal half of the intensity values from both

the images. This is given by

If = (0.5× I1) + (0.5× I2) (6.2)

where If is the intensity value used to color the 3D points. I1 and I2 are the intensity values of

each pixels in the first and second image respectively.

Figure 6.16: Input images for texturing

Figure 6.17: Textured 3D points obtained by taking 50 percentage of intensity values from both
the input images

It can be seen from Figure 6.17 that, the textured 3D points resembles the original input

images in spite of mixing the intensity values from both the images.
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6.4.2 Reprojection error

The reprojection error is calculated for dense 3D reconstruction which is similar to the

calculation done in coarse 3D reconstruction. Let (xOi, yOi) represent the 2D points of either of

the input correspondence matches between two images. Let (xRi, yRi) be the 2D points calculated

by reprojecting the reconstructed 3D points using (1.7). Then the average reprojection error ε

is given by

ε =
1

n

n∑
i=1

√
(xRi − xOi)2 + (yRi − yOi)2

x2Ri + y2Ri
(6.3)

where n is the total number of correspondence points. The average reprojection error for the

reconstruction of cube given in Figure 6.16 = 0.002

6.4.3 Comparison between real object and simulated measurement

The simulated 3D model is measured and compared with the real object measurement. The

distance between different points are measured in real object as well as the simulated model.

If both the measurements match each other, then the 3D reconstruction system is said to be

accurate. For the cube object mentioned above, the distance between the top and bottom edge is

measured at various places in both real and simulated model. Since the cube has equal dimension

at all corners, this is verified by calculating the distance between the edges in all corners. In figure

Figure 6.18: Measurement of the reconstructed model

6.18, different lines shows the distance measure between two points considered for comparison

with real objects. It can be seen from figure 6.19 that the real object and simulated measurement

match each other. The overall error in measurement = 0.001
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Figure 6.19: Comparison table between real object and simulated measurement

6.5 Conclusion

The coarse and dense 3D reconstruction of a scene from 2D images is implemented using

C++ and OpenCV. The accuracy of the correspondence points found using SURF is improved

by adding a constraint using fundamental matrix. This improved the accuracy of the coarse

3D reconstruction which id shown by calculating the reprojection error. Dense 3D correspon-

dence points id found using thin-plate spline interpolation and its performance is improved using

intensity and epipolar geometry based constraints. The reprojection error of the dense 3D re-

construction system is calculated and compared with the reconstruction done using thin-plate

spline correspondence. Adding additional constraints improved the accuracy of the reconstructed

points. Systematic evaluation of 3D reconstruction is done by texturing, calculating reprojection

error and comparing the real object and simulate measurement. One drawback of using thin-

plate spline interpolation for dense correspondence matches is that the final dense point matches

depends on the initial control points. If the initial control points does not have enough feature

points all over the object, then the interpolation might not be good. Therefore the future work

can be focused on finding a good geometry or feature based matching that will give uniform

initial correspondence matches for the object.
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