
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2013

Geometric modeling and optimization over regular
domains for graphics and visual computing
Shenghua Wan
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Wan, Shenghua, "Geometric modeling and optimization over regular domains for graphics and visual computing" (2013). LSU
Doctoral Dissertations. 1827.
https://digitalcommons.lsu.edu/gradschool_dissertations/1827

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1827?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

GEOMETRIC MODELING AND OPTIMIZATION OVER REGULAR DOMAINS
FOR GRAPHICS AND VISUAL COMPUTING

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Sciences

by
Shenghua Wan

B.S., Harbin Institute of Technology, 2009
M.S., Louisiana State University, 2011

December 2013

To my family and friends

ii

Acknowledgements

At LSU, I have been very fortunate to meet so many friends and colleagues. This dissertation

would not have been made possible without their kind advice and help.

Above all, I want to express my sincerest appreciation to my advisor, Prof. Xin Li, for his

persistent guidance and patience throughout my PhD study. His knowledge and inspiration

really navigate this work to the destination. Without his encouragement, this work would

have never been completed. It is truly my honor being his student.

Meanwhile, I would also like to convey my gratitude to my PhD committee members, Prof.

Hongchao Zhang, Prof. Jagannathan Ramanujam, Prof. Bahadir Gunturk, and Prof. Ayman

Okeil. They have been very supportive and patient, and providing constructive advices on

this dissertation. I also want to thank Prof. Hongchao Zhang for the precious discussion on

the optimization problems and solvers.

I want to acknowledge Prof. Sun Chang who help me gain hands-on experience in high

performance computing and more importantly shares a lot of valuable life wisdom with me.

Furthermore, I would like to express my special thanks to all friends in Geometric and

Visual Computing Group. I am really grateful to Wuyi Yu, Huanhuan Xu, Kang Zhang,

Zhao Yin, Li Wei and Tengfei Ye for the collaboration on research projects. Their generous

willingness and patience to share the ideas and discuss all kinds of problems are greatly

appreciated. Many thanks to Wei Yu, Xiao Lin, Fei Zhao, Ning Zhang, Yang Chen, Peizhi

Chen and Jinfang Zhou for helping me accommodate to visiting life in Xiamen University.

iii

Moreover, I want to appreciate my friends, Qing Huang, Dongsheng Guan, Chuan Cai,

Bixiang Tang, Youwen Gong and many others. My life would suffer without them.

Last but not the least, I am deeply indebted to my cherished family who always trust and

support me through the years, especially my beloved wife. I would not have been able to

focus on the study and chase my dream without their persistent sustainment.

This dissertation is dedicated to my family and friends for their generous support and

encouragement.

iv

Table of Contents

Acknowledgements . iii

List of Tables . vii

List of Figures . ix

Abstract . xiii

1 Introduction . 1
1.1 Motivation and Contribution . 1

1.1.1 Spherical Parametrization . 2
1.1.2 Polycube Mapping . 3
1.1.3 Volumetric Parameterization . 5
1.1.4 Frame Field Construction and Optimization 5

1.2 Organization . 6

2 Related Work . 7
2.1 Surface Parametrization Using Harmonic Functions 7
2.2 Spherical Parameterization . 8
2.3 Polycube Mapping . 9
2.4 Volumetric Parameterization . 10
2.5 Frame Field Construction and Optimization 11

3 Efficient Hierarchical Optimization for Spherical Mapping 13
3.1 Hierarchical Spherical Parametrization . 15

3.1.1 Mapping Distortion . 15
3.1.2 Algorithm Overview . 16
3.1.3 Global Hierarchical Optimization . 17
3.1.4 Local Optimization on a Vertex . 17
3.1.5 Priority Queue . 20
3.1.6 Spherical Kernel and the Mapping Bijectivity 21
3.1.7 Analyzing Convergence of the Optimization 22

3.2 Experimental Results and Discussions . 23
3.3 Application on Spherical Harmonics Representation 28

3.3.1 Decomposition and Reconstruction 29
3.3.2 Analysis of Spherical Harmonic Reconstruction Accuracy 30
3.3.3 Deformation Analysis Using Spherical Harmonics 32

3.4 Summary . 34

4 Topology-preserving Optimization for Polycube Mapping 35

v

4.1 Algorithms Overview . 38
4.2 Constructing Initial Polycube and Mapping 40

4.2.1 Polycube Construction via Voxelization 40
4.2.2 Initial Polycube Mapping . 42

4.3 Optimizing Polycube Domain . 43
4.3.1 Barzilai-Borwein Gradient Projection Optimization Algorithm 46

4.4 Optimizing Polycube Mapping . 48
4.4.1 Efficient Mapping Recomputation . 50
4.4.2 Derivative-free Optimization Algorithm 51

4.5 Polycube Mapping for Multiple Objects . 53
4.6 Experimental Results and Discussions . 55
4.7 Summary . 60

5 Volumetric Polycube Parameterization Guided By Frame Field 61
5.1 Definitions . 61

5.1.1 Objective Energy . 62
5.1.2 Linear Constraints . 63

5.2 Experimental Results and Discussions . 64
5.3 Summary . 66

6 Frame Field Optimization Using Quaternions . 67
6.1 Frame Field Construction and Optimization 68

6.1.1 Definitions . 68
6.1.2 Quaternion Representation of Frames 70
6.1.3 Rotational Symmetry in Measuring the Smoothness of Two Frames . 70
6.1.4 Definition of Objective Energy . 73
6.1.5 Optimization . 75

6.2 Experimental Results and Discussions . 75
6.3 Summary . 78

7 Conclusions . 80

References . 83

Vita . 91

vi

List of Tables

3.1 Comparison of Distortions on Bunny between Our Method and Existing Al-
gorithms. 27

3.2 Comparison of Distortions on Cow between Our Method and Existing Algo-
rithms. 27

3.3 Comparison of Distortions on Gargoyle between Our Method and Existing
Algorithms. 27

3.4 Execution Time of Our Approach on Various Models. 28

3.5 Spherical Harmonic Reconstruction Accuracy Using Different Parameteriza-
tion Methods. Lmax is the number of frequency utilized; the number in the
right three columns indicates the reconstruction error e(M, M̂). 30

4.1 Comparisons of Different Polycube Mapping Methods. PC Constr., Opt. PC,
Sing. Control, Common PC indicate whether polycube construction can be
automatic, whether polycube shape is optimal, whether polycube complexity
can be controlled by the given restriction on singularity number, and whether
it can be used to construct a canonical domain for multiple objects, respec-
tively. 56

4.2 Runtime Table: #∆ (number of triangles); #C number of corner points, ǫ0angle
and ǫ0area are angle and area distortions before optimization; ǫangle and ǫarea
are distortions after optimization; T1 and T2 is the execution time for domain
optimization and mapping optimization (in seconds). 58

4.3 Testing different weighting on the area-stretching term (α in equation (4.4)), on

the polycube-Beethoven mapping. ǫangle and ǫarea are the corresponding angle and

area distortion. 59

6.1 Comparison of Frame Field Smoothness and Optimization Time on Rod. θ, δ,
and θmax indicate the mean rotation angle between two adjacent frames, the
standard deviation of the rotation angles, and the maximum rotation angle,
respectively. 76

6.2 Comparison of Frame Field Smoothness and Optimization Time on Bunny. . 76

6.3 Comparison of Frame Field Smoothness and Optimization Time on Fertility. 76

6.4 Comparison of Frame Field Smoothness and Optimization Time on Joint. . 77

6.5 Comparison of Frame Field Smoothness and Optimization Time on Hanger. 77

vii

6.6 Comparison of Frame Field Smoothness and Optimization Time on Rocker
Arm. 77

6.7 Number of Singularities in Optimized Frame Fields. Ns is the number of sin-
gularities in the model. 77

viii

List of Figures

1.1 Example of A Polycube for Rocker Arm Model. (a) is model Rocker Arm of
genus 1. (b) is a polycube for it with the same topology. 4

3.1 Two Cases In Great-circle Back Tracking Line Search. We have a great circle
centered at origin O passing pi and ū = −∇E(pi)

‖∇E(pi)‖
, denoted as cpi; ∇E(pi) is

the gradient of E at pi; denote the one-ring link on the mesh surrounding
pi as rpi. Let ū0 be the intersection of cpi and rpi. d0 = ū0 − pi. If E(ū0) ≤
E(pi) + δdT0∇E(pi), we update pi as p̃i = ū0 and exit. Otherwise, we choose a
closer point on the great circle ū1 =

pi+ū0

‖pi+ū0‖
to continue the search for optimal

position, which is analogous to the standard Armijo-type back tracking line
search. 20

3.2 Energy per Vertex with respect to Iterations. The vertical axis shows energy
per vertex and the horizontal axis shows the number of iterations. We do
not plot iterations at the beginning that have large energies for more clear
visualization. 24

3.3 Comparison of Spherical Domain around the Tail Region on Bunny. (a)curvilinear
spherical parameterization [1];(b) is from [2]; and (c) for Our approach. Our
approach has slightly area distortion than [2] and much better than [1]. . . . 24

3.4 Comparison of Other Spherical Parameterization Algorithms and Our Method
on the Bunny model. (a) is from [3]; (b) is from (b)[2]; (c) is from [1] and (d)
is from our method. EA and ED indicate area distortion and angle distortion.
Warmer color, e.g red, indicates larger distortion; while cooler color, e.g. blue,
indicates lower distortion. The rightmost column shows our results, which
exhibits lower angle and area distortion. 25

3.5 Comparison of Other Spherical Parametrization Algorithms and Our Method
on the Cow model. (a) is from [3]; (b) is from (b)[2]; (c) is from [1] and (d)
is from our method. EA and ED indicate area distortion and angle distortion.
Warmer color, e.g red, indicates larger distortion; while cooler color, e.g. blue,
indicates lower distortion. The rightmost column shows our results, which
exhibits lower angle and area distortion. 25

3.6 Comparison of Other Spherical Parameterization Algorithms and Our Method
on the Head model. The leftmost column is the input model and the right-
most column is the result from our method. Our approach preserves the facial
features like eyes, nose, mouth and ears more naturally. 26

ix

3.7 Comparison of Other Spherical Parametrization Algorithms and Our Method
on the Gargoyle model. (a) is from [3]; (b) is from (b)[2]; (c) is from [1]
and (d) is from our method. EA and ED indicate area distortion and angle
distortion. Warmer color, e.g red, indicates larger distortion; while cooler color,
e.g. blue, indicates lower distortion. The rightmost column shows our results,
which exhibits lower angle distortion and comparable area distortion. And our
approach is much more efficient on large-scale models like this one. 26

3.8 More Results from Our Approach. There are three subfigures for each model:
an original model subfigure, two spherical domain subfigures from different
perspective. 28

3.9 Reconstruction Results by Spherical Harmonics. Leftmost column contains
original models. Middle left column contains reconstruction only using low
frequencies, including 6 × 6 coefficients. Middle right column contains recon-
struction using 16× 16 coefficients. Rightmost column contains reconstructed
results from low and higher frequencies, including 32×32 coefficients. We can
approximate the input model better as more coefficients from higher frequen-
cies are utilized. 29

3.10 Effect on Reconstruction Accuracy from λ
µ
in Eq 3.5 on Venus. (a) 6 × 6

cofficients are used; (b) 16 × 16 coefficients are used. The optimal ratio is
about (0.2, 0.3) for this model. 31

3.11 Effect on Reconstruction Accuracy from λ
µ
in Eq 3.5 on Bunny. The optimal

ratio is when λ = 0, which means area distortion should be put much more
attention to. This might due to the long protrusion region near the ears, which
easily causes large area distortion and leads to undersampling in this region. 32

3.12 Comparison of Head Models with Different Expressions (a-i). The matching
results are illustrated in (j), where black indicates better similarity and white
indicates bigger difference. For example, following the first row of (j), (a) is
very similar to (b) and (c), and is different from (g) and (h). For example,
muscle geometry differ significantly between (a) and (h) in the mouth and
eyes regions, while their variation is less between (a) and (b,c). 33

4.1 Part of the dual graph corresponding to one facet (red node) and its neigh-
boring facets(blue node). 37

4.2 Algorithm Overview. (a) original surface with eight corner points(red). (b)(c)
initial polycube domain and mapping. (d)(e) optimized polycube domain and
mapping The harmonic energy with area distortion term is reduced from
5.4414 to 4.7812. (f) the optimized polycube mapping with eight new corner
points(blue) with a lower harmonic energy of 4.5961. (g)(h) final optimized
domain and optimized mapping after two iterations. The grid quality is im-
proved. 39

4.3 Voxelization For Polycube Construction. 41

x

4.4 Definition of Polycube Coordinates and Parameters. 44

4.5 Polycube domain optimization. (a)-(c) shows the initial polycube domain and
mapping. (d)-(f) shows the optimized polycube domains. Note the improve-
ment of the checkerboard texture mapping between (c) and (e). 46

4.6 Polycube Mapping Optimization. (a) is the model before mapping optimiza-
tion. (b,c) zoom in to show the distortion before this step. (d,e) illustrate the
distortion after mapping optimization. (g,f) show distortion after the smooth-
ing postprocess. (h) is model after smoothing. The corner points are shown
in green. With the smoothing, distortion and discontinuity across sub-region
boundaries significantly reduces. 49

4.7 Mapping Optimization of The Horse Model on a Polycube (upper row) with
60 Corner Points. The lower row shows the moving of corner points: (a) before
optimization, (b) after optimization. 50

4.8 Common Polycube Mapping for Multiple Models. Initial polycube maps of
the horse and cow are as (a) and (d); individually-optimal polycube domains
are shown in (b) and (c); the common optimal polycube domain is shown in
(f); and the final common optimal polycube mapping of both models are as
(e) and (g). Note: the common polycube balances both individually-optimal
polycubes, see the neck region. 55

4.9 Polycube Mapping of Bimba and Max-Planck. (a,d) initial mapping, (b,e)
optimized mapping. The texture mappings of grids show the reduction of
angle distortions after the optimization. (c,f) initial polycube (in upper row)
and optimized polycube (in lower row) domains. 56

4.10 Integration of Multiple Objects over a Common Polycube Domain. The horse
(a), goat (b), and cow (c) are blended in a this polycube domain. Features
from the original models can still be seen in the interpolated shape (e.g. the
mouth and neck of the horse, ears of the goat, and the tail of the cow). . . . 57

4.11 Different Initial Corner Budgets. With increase of the initial budget (from 8
to 20), the mapping quality is improved (from a,b to c,d). 58

4.12 Different Weighting Factors. (a,b) Area-stretching term α = 1000, (c,d) α =
0.01. 59

4.13 Domain Optimization on High Genus Model. (a) is the unoptimized polycube
mapping result; (b) is the optimized polycuybe mapping result, where the do-
main is updated. The optimized polycube mapping provides better remeshing
quality. 59

5.1 Hex Meshing Results Using Constructed Polycube Domain for Rocker Arm [4]. 65

5.2 Hex Meshing Results Using Constructed Polycube Domains for 3-Torus and
Bump Torus [4]. 65

xi

5.3 Hex Meshing Results Using Constructed Polycube Domains for Model Bunny
and Hand [4]. 65

6.1 Quaternion Representation of Two Frames. (a) A frame Fi can be denoted by
Fi = Ai ·I, given I is a identity reference frame and Ai is a rotation. Note that
translation is ignored here. (b) Quaternions qi, qj and qij are equivalent to ro-
tations Ai, Aj , and Aij, respectively. (c) Frames and rotations are represented
by quaternions. 70

6.2 Different Types of Parametric Lines Can Connect to Each Other in Generated
Hexahedral Mesh. (a) Normally a parametric line (e.g. iso-u) in a hex connects
to another one’s parametric line of the same type. Hex-mesh is generated by
gluing adjacent hexes. In the generated hex-mesh, different parametric lines
are not distinguished. For example, in (b) iso-u line in positive direction can
seamlessly connect to iso-u line in negative direction. In (c) iso-u line can
connect to iso-v line. The glued hexes in (a), (b) and (c) are considered the
same. 72

6.3 Distribution of Rotation Angles in Various Models. Red curves represents our
results and blue curves represent results of SRF method [5]. Horizontal axis
indicates the rotation angle in degrees. Vertical axis indicates the accumulated
percentage of rotation angles below a specific value. The closer is the curve to
shape ’Γ’(i.e. closer to left side and top side of the bounding box the subfigure),
the smoother is the frame field. Our method generates smoother frame fields.
As for the time complexity, please refer to Tables 6.1-6.6. 78

xii

Abstract

The effective construction of parametric representation of complicated geometric objects can

facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD),

Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a

3D shape, the procedure of finding such a parametric representation upon a canonical do-

main is called geometric parameterization. Regular geometric regions, such as polycubes and

spheres, are desirable domains for parameterization. Parametric representations defined upon

regular geometric domains have many desirable mathematical properties and can facilitate

or simplify various surface/solid modeling and processing computation.

This dissertation studies the construction of parameterization on regular geometric do-

mains and explores their applications in shape modeling and computer-aided design. Specif-

ically, we studies (1) the surface parameterization on the spherical domain for closed genus-

zero surfaces; (2) the surface parameterization on the polycube domain for general closed

surfaces; and (3) the volumetric parameterization for 3D-manifolds embedded in 3D Eu-

clidean space. We propose novel computational models to solve these geometric problems.

Our computational models reduce to nonlinear optimizations with various geometric con-

straints. Hence, we also need to explore effective optimization algorithms. The main contri-

butions of this dissertation are three-folded. (1) We developed an effective progressive spher-

ical parameterization algorithm, with an efficient nonlinear optimization scheme subject to

the spherical constraint. Compared with the state-of-the-art spherical mapping algorithms,

our algorithm demonstrates the advantages of great efficiency, lower distortion, and guaran-

xiii

teed bijectiveness, and we show its applications in spherical harmonics decomposition and

shape analysis. (2) We propose a first topology-preserving polycube domain optimization

algorithm that simultaneously optimizes polycube domain together with the parameteriza-

tion to balance the mapping distortion and domain simplicity. We develop effective nonlinear

geometric optimization algorithms dealing with variables with and without derivatives. This

polycube parameterization algorithm can benefit the regular quadrilateral mesh generation

and cross-surface parameterization. (3) We develop a novel quaternion-based optimization

framework for 3D frame field construction and volumetric parameterization computation. We

demonstrate our constructed 3D frame field has better smoothness, compared with state-

of-the-art algorithms, and is effective in guiding low-distortion volumetric parameterization

and high-quality hexahedral mesh generation.

xiv

1 Introduction

The effective construction of parametric representation of complicated geometric objects can

facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD),

Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a

3D shape, the procedure of finding such a parametric representation upon a canonical do-

main is called geometric parameterization. Regular geometric regions, such as polycubes and

spheres, are desirable domains for parameterization. Parametric representations defined upon

regular geometric domains have many desirable mathematical properties and can facilitate

or simplify various surface/solid modeling and processing computation.

1.1 Motivation and Contribution

The parametric representations of 3D geometric shapes can be defined upon various geomet-

ric regions. For example, surfaces with non-trivial topology can be parameterized onto an

atlas of local charts (topological disks) or another curved surface with the same geometry.

In this dissertation, we study the choice of a type of canonical parametric domains that have

the same topology with the given model and a (near-) homogeneous geometry. We call such

geometric domain as a regular domain in shape parameterization. Regular domains are fa-

vorable parametric domains due to their simplicity and regularity, parametric representation

defined upon which reduces the complexity to construct mathematical models and simulate

the real-word processes in CAD, CAE and CAM, compared to the random curved compli-

cated shapes. Furthermore, geometric modeling and processing over regular domains, e.g.

parametrization, provides key-enabling technologies for many critical tasks. Unfortunately,

1

except for some rare theoretical cases, the parametrization in practice inevitably introduces

angle distortion or area distortion or some combination of both. A good parametrization fa-

vored by the downstream applications is the one which minimizes these distortions to some

extent. Generally, regular domains offer seamless parametrization with low distortion.

Overview of this dissertation. In this paper, we study the parameterizations over

regular domains and propose algorithms to minimize the distortion of the parameteriza-

tions. First, We explore surface parameterization over the regular domains, i.e. sphere and

polycube. We look for the parameterization with optimized distortion over the two regular

domains and optimized domain shape for polycube domain. Then the research is general-

ized from 2D surfaces to 3D solids. Hence we study volumetric parameterization guided by a

frame field over polycube domain. The smoothness of the frame field has a significant impact

on the distortion of the parameterization. Therefore, we investigate frame field optimization

to improve the smoothness.

1.1.1 Spherical Parametrization

A large portion of real-world 3D geometric models are bounded by closed genus-0 surfaces,

for which the sphere is the most natural parametric domain. Parametrization over the planar

domain has been studied for decades, but constructing the parameterization of a genus-0 sur-

face via these planar domains requires to cut the surface into topological disks. The cutting

seam will introduce large distortion in the resultant parametrization and hence artifacts in

the subsequent modeling and simulation tasks. The spherical domain provides opportunity

for seamless parametrization with low distortion. Spherical parametrization is key-enabling

technology for a lot of applications including shape analysis using spherical harmonics, com-

pression, morphing and etc.

However, obtaining good spherical parametrization is challenging in practice. First, the

computation algorithm must be robust to guarantee the bijectivity. Second, computing op-

timal spherical parametrization is often formulated as a non-linear optimization problem,

2

whose solving is time-consuming. Moreover, local minima existing in the non-linear opti-

mization are difficult to overcome.

In the first part of this thesis, we develop an effective hierarchical optimization scheme

to compute spherical parametrization. Among all existing state-of-the-art spherical mapping

methods, the main advantage of our method are two folded.

• It generates bijective and lowly distorted mapping results.

• The algorithm converges very efficiently, therefore it is suitable for handling huge geo-

metric models.

We also demonstrate and analyze the effectiveness of our mapping in spherical harmonics

decomposition and shape analysis.

1.1.2 Polycube Mapping

Besides the sphere, the polycube is another type of regular domains. Polycube is the surface

of a solid that consists of a few solid cubes (see Figure 1.1). Polycube mapping was first

introduced by Tarini et al [6]. It parameterizes a closed surface onto a polycube domain. A

polycube has the same topology of the input surface, and it is usually constructed to ap-

proximate the geometry of the surface. Therefore, the surface parametrization on a polycube

domain often allows much lower distortion than that over a planar domain. Meanwhile, the

polycube domain still possesses great regularity: (a) each sub-patch is a rectangle; (b) transi-

tions between adjacent patches are simple rotations and translations except on corner points.

With these advantages, the polycube mapping has been used in many graphics and shape

modeling applications such as texture mapping [6] and synthesis [7], shape morphing [8],

spline construction [9, 10], volumetric matching [11, 12] and etc.

Intuitively, on one hand, the more cubes one uses to construct the polycube, the better the

domain can approximate the original model, which brings the parametrization very small

area and angle distortion. However, this introduces more corner points, which are singularity

3

Figure 1.1. Example of A Polycube for Rocker Arm Model. (a) is model Rocker Arm of genus 1.
(b) is a polycube for it with the same topology.

points of the parametrization. They are undesirable in many tasks such as spline construction,

physics-based simulations and etc. On the other hand, if one uses fewer cubes to construct a

simpler domain with fewer corner points, the parametrization will possess larger distortion

due to the dissimilarity of geometric structures between the model and the domain shape.

Therefore, when a fundamental question is asked: what is the optimal polycube domain? A

reasonable answer can be an optimized balance between the singularity number and mapping

distortion. More specifically, we try to solve the following problem: given a surface and a

budget n of the singularity point number, what is the optimal shape of the polycube domain

so that the parametrization has the least distortion and has no more than n corners?

In the second part of this dissertation, we present an effective optimization framework

to compute polycube mapping. We develop an iterative algorithm to seek for the optimal

polycube domain and mapping, with the constraint on using a restricted number of cubes

4

(therefore restricted number of corner points). We also use our polycube mapping framework

to compute the optimal canonical polycube domain for multiple objects simultaneously for

lowly-distorted consistent parametrization.

1.1.3 Volumetric Parameterization

Surface mapping techniques have been extensively studied in the past decade. However,

parameterization over the solids is challenging. The rapid advancement of 3D scanning tech-

niques makes it easier to acquire massive 3D data nowadays. Solid volumetric data have

richer contents than those of the boundary surface. When the data processing or analysis

are related to material, intensity, or any other structural information defined over the whole

3D region of the object (instead of on just its boundary shell), we need to consider the shape

as a 3-manifold and study the volumetric mapping. Because of its importance, volumetric

parameterization has gained greater interest in recent years, and a few related research work

has been conducted towards various applications such as shape registration [13, 11, 14],

volumetric deformation [15, 16, 17, 18], and trivariate spline construction [19], and so on.

In the third part of this dissertation, we develop volumetric polycube parameterization

guided by a frame field and demonstrate its application on high-quality hexahedral mesh

generation.

1.1.4 Frame Field Construction and Optimization

Nieser et al [20] introduce a volumetric parameterization framework guided by a given frame

field. The smoothness of the frame field has a significant impact on the distortion of the

parameterization. Recently how to find a smooth frame field has attracted much attention

from the researchers in geometric modeling. A smooth frame field is desirable for many

applications, such as parametrization and remeshing.

Ray et al [21] introduced global periodic parametrization, in which a surface frame field was

utilized to guide the parametrization. The quality of the parametrization and the quality of

5

the resulting quadrilateral meshing results depends heavily on the smoothness of the guiding

frame field. For example, a bad frame field will lead to degenerate parametrization and

produce inferior quadrilateral meshing results.

In addition, the manual manipulation of the frame field is tedious in [21] and automation

becomes necessary. Though surface frame field has been studied intensively and fruitful

[22, 23, 24, 25, 26], the volumetric frame field has not been explored thoroughly.

In the fourth part of this dissertation, we propose an efficient quaternion-based frame field

optimization algorithm. Compared to state-of-the-art algorithms, our method is compact and

efficient, which is very suitable for handling large geometric models. We also provide a useful

frame field smoothing tool that will benefit for broad applications, such as parametrization

and remeshing.

1.2 Organization

The remainder of this dissertation is organized as follows. The related literature is reviewed

in chapter 2. In chapter 3, we study the problem of optimizing spherical parametrization

efficiently using hierarchical strategy. Furthermore, we also demonstrate the application of

our method in spherical harmonics computation. In chapter 4, we focus on finding a good

polycube mapping with the constraint to preserve the topology of the input surface. In

addition, we also explore the application of polycube as the common domain for inter-surface

mapping. In chapter 5, we develop volumetric polycube parameterization and demonstrate

its application on high-quality mesh generation. In chapter 6, we propose a quaternion-based

frame field smoothing algorithm and compare the smoothness of the optimized frame fields

with existing methods. Finally, we conclude this dissertation with limitation and future work

in chapter 7.

6

2 Related Work

2.1 Surface Parametrization Using Harmonic Functions

Theories and technologies in surface parametrization have been widely studied and they have

been playing critical roles in many geometric processing tasks in graphics, CAGD, visualiza-

tion, vision, medical imaging [13, 27], physical simulation, and etc. Many effective techniques

have been developed to solve the parametrization under different distortion metrics with dif-

ferent boundary conditions. A thorough review is beyond the scope of this dissertation, and

we refer the readers to three great surveys/tutorials of surface mapping and their applications

in [28, 29, 30].

One widely used scalar function used for constructing lowly-distorted surface parametriza-

tion is the harmonic function. The discrete harmonic map was first proposed by Pinkall and

Polthier [31] and introduced to the computer graphics field by Eck et al. [32]. By discretizing

the energy defined in [31], Desbrun et al. [33] constructed free-boundary harmonic maps.

Harmonic maps are preferable due to at least two important reasons: (1) it is meaningful

from physics’ point of view. A harmonic map minimizes the Dirichlet energy and leads to

a minimal surface [31]; (2) it can be easily discretized and efficiently calculated from the

computational aspect. A discrete harmonic map can be approximated either through Finite

Element Method(FEM) analysis of the harmonic energy [32], or via mimicking the mean

value property of harmonic functions [34]. The computation of discrete harmonic mapping

can be written as the optimization of a quadratic energy and be efficiently solved as a sparse

linear system.

7

2.2 Spherical Parameterization

Spherical mapping has been studied for many geometric modeling and processing applica-

tions since the past decade. Haker et al. [35] compute the conformal spherical parametriza-

tion through the stereographic projection. Gu and Yau [3] use the Gauss-Seidel iterative

approach to approximate a harmonic map. Zayer et al. [1] solve the spherical parametriza-

tion in a curvilinear coordinate system. Distortion near the cutting curve is then reduced

through a tangential Laplacian relaxation similar to [3]. An optimal cutting curve selection

is proposed by Li et al. in [36]. Gotsman et al. [37] generalize the planar barycentric coor-

dinates to spherical domain and prove its theoretical correctness. Saba et al [38] propose a

more efficient numerical solution to these non-linear equations introduced in [37]. Sheffer et

al. [39] extend their angle based flattening parametrization to spherical domain by adding

spherical constraints. Asirvatham et al. [40] present a spherical parametrization algorithm

that enforces feature constraints. Tian et al. [41] solved the model of [39] using progressive

mesh and present a hybrid stretch metric minimization to obtain spherical parametrization

with low area distortion. Li et al [42] propose a spherical parametrization algorithm using

PHT-splines. Praun and Hoppe [2] compute the spherical parametrization by minimizing a

stretch-based measure. Friedel et al [43] avoid the flip-over in the spherical parametrization

by introducing a modification of planar parametrization quality measures.

Spherical harmonics were first introduced as a type of parametric representation for radial

or stellar surfaces [44]. They are a natural and convenient choice of basis functions for

representing any twice-differentiable spherical function [45].

Spherical harmonics have several favorable properties such as orthonormality, complete-

ness, and coarse-to-fine hierarchy. These make spherical harmonics a favorable representation

in many geometric shape analysis tasks, such as 3D surface filtering [46], shape representa-

tion [47], large-scale data modeling [48], data reconstruction [49], and shape retrieval [50, 51].

8

2.3 Polycube Mapping

As a useful parametric domain, polycube maps have been studied in many different shape

modeling applications. Tarini et al [6] invented the concept of polycube map and applied it

to the texture mapping and synthesis. Fan et al [8] extended it to generate cross parametriza-

tion and morphing by mapping surfaces to polycubes then composing the map by finding the

correspondence between them. In these approaches, polycube maps are computed by extrin-

sic methods such as projections. Wang et al [9] introduced an intrinsic method for polycube

maps and built splines representation on the polycube parametric domain. Compared with

extrinsic methods, the intrinsic approach reduced the mapping distortion significantly. Later,

Wang et al [10] developed user controllable polycube maps for manifold spline construction.

Both approaches required much user involvement in polycube design. Lin et al [52] presented

an automatic polycube mapping approach, but the bijectivity was not guaranteed. Recently,

He et al [53] presented a divide-and-conquer approach for automatic polycube map construc-

tion. In that paper, the bijectivity was guaranteed and the mapping had shown low angle

and area distortion. Han et al [54] applied volumetric polycube maps to construct hexahe-

dral shell mesh. Wan et al [55] introduced a topology-preserving optimization framework

for polycube mapping, and use the polycube mapping framework to compute an optimal

common polycube domain for multiple objects simultaneously for lowly distorted consis-

tent parameterization. Xia et al [56] introduced an editable polycube mapping, based on

a divide-and-conquer strategy, which gives much more control over the quality of the in-

duced subdivision surface and makes processing of large models with complex geometry and

topology feasible. Gregson et al [57] developed a novel rotation- and position- driven defor-

mation algorithm to construct polycubes. But to get rid of topologically erroneous wedges,

a non-trivial post-processing is necessary. Yu et al [4] presented a computational framework

for polycube construction and volumetric parameterization. The algorithm has three steps:

pre-deformation, polycube construction and optimization, and mapping computation. This

9

algorithm could robustly generate a simple polycube domain shape, suitable for lowly dis-

torted volumetric parameterization. This polycube parameterization can be used for high

quality hexahedral mesh generation.

2.4 Volumetric Parameterization

Solid geometry and volumetric data have richer contents than that of surfaces. Compared

to surface mapping, volumetric parameterization is more challenging and a lof of theory on

the surface could not directly generalized to the solid. Wang et al [13] compute the discrete

volumetric harmonic mapping over tetrahedral meshes for volumetric mappings on solid

spheres. Li et al [11, 12, 58] develop meshless methods using the fundamental solution method

in computing harmonic and biharmonic volumetric maps. Martin et al [19] parameterize

volumetric models onto cylinders using the finite element method, and later generalize the

algorithm to more complicated models with medial surfaces [59]. Nieser et al [20] introduce

a CUBECOVER mapping algorithm for hexahedral meshing, and the mapping is guided

by a user-designed frame field. Huang et al [60] present a boundary-aligned 3D frame field

optimization algorithm that can automatically generate a smooth frame field from a given

surface frame field. But the resultant frame field is not guaranteed to be valid (to induce

valid mapping). Li et al [5] solve singularity-restricted frame fields to fix the singularity errors

in the direct rotational-symmetry solving. However, the generation of valid cross frame-field

(hence valid mapping) is not guaranteed. Wang et al [61] present a volumetric modeling

framework to construct a novel spline scheme called restricted trivariate polycube splines,

which develops a new trivariate hierarchical spline scheme for volumetric data representation.

Unlike conventional spline formulations and techniques, their framework is built upon a

novel parametric domain called Generalized PolyCube (GPC), comprising a set of regular

cubes being glued together. Yu et al [4] present an algorithm for polycube construction

10

and volumetric parameterization. The algorithm has three steps: pre-deformation, polycube

construction and optimization, and mapping computation.

2.5 Frame Field Construction and Optimization

Surface Frame Field Design and Applications. Ray et al [21] introduce periodic global

parametrization. Given two orthogonal piecewise linear vector fields estimated and extrap-

olated from principal curvature direction, their method solves two parametric functions,

aligned with the input vector fields by optimization, which defines a parametrization on the

surface. They also propose an automatic procedure to detect and fix the singularities in the

surface frame field. QuadCover is proposed by Kälberer et al [62], which converts a given

frame field into a single vector field on a branched covering of the 2-manifold and generates

an integrable vector field by a Hodge decomposition on the covering space. Their frame field

smoothing process is optional and adapted from the method in [63], which yields a smooth

vector field roughly aligned to the features of the surface mesh. Li et al [64] present a com-

plete interpolation scheme of vector fields on triangulated surfaces, which enables arbitrary

singularities to be represented at vertices. With their data structure, the singularity index

of a vertex in a vector field can be determined combinatorially. N-symmetry direction field

is formalized by Ray et al [24]. They demonstrate the Poincare-Hopf theorem in the case

of N-symmetry direction fields on 2-manifolds. Moreover, they also derive an efficient algo-

rithm to design a smooth frame field interpolating user defined singularities and directions.

Ray et al [25] introduce an intermediate representation of the surface frame field allowing

the intuitive design operations such as smoothing and setting directional constraints, and

restate the objective function in a way avoiding the singularities yielded by small geometric

details. Zhang et al [22] and Palacios et al [23] build systems to deign the directional field on

surface, which provides control over the topology of rotational symmetry fields on surfaces

such as removing or relocating the singularities.

11

Volumetric Frame Field Design and Applications. Based on QuadCover [62], Nieser et

al [20] introduce a first approach for generating a hexahedral mesh of an input volume with

boundary aligned cubes, which is guided by a frame field. First, a frame field is designed

with manual input from the user, which guides the interior and boundary layout of the

parametrization. Then the parametrization and the hexahedral mesh are computed in a way

aligning with the given frame field. This paper lays theoretical foundation for 3D hexahedral

parametrization and analyzes topological properties of the appropriate function space. Huang

et al [60] represent 3D frames whose smoothness is measured using spherical harmonics repre-

sentation, which is invariant to combinations of rotations around any axis by multiples of π
2
.

They construct a smooth 3D cross-frame field that is aligned with the surface normal at the

boundary. However, due to the unsolved singularities, there exists degeneracy in the volumet-

ric parametrization, which makes a hexahedron-dominant mesh but pure hexahedral mesh.

The inadmissible singularities, which leads to degeneracy in the volumetric parametrization,

are classified and treated in [65]. This paper provides a procedure for the treatment of the

defects in the singularity graph. However, there is no theoretical guarantee that all the con-

flicting geometric and topological structure can be detected using this method. Inspired by

the CubeCover method, Li et al [5] present an all-hex mesh generation framework based on

Singularity-Restricted Field (SRF). In this approach, a boundary-aligned 3D frame field is

computed for a given volume. Then the frame field is converted to be singualrity-restricted

by a set of topological operations.

12

3 Efficient Hierarchical Optimization
for Spherical Mapping

Spherical mapping is a key enabling technology in modeling and processing genus-0 close

surfaces. Spherical parametrization seeks a bijective map f : M → S between a given

closed genus-0 surface M and a unit spherical domain S. For a very wide category of solid

models that do not have handles or voids, their boundary surfaces are closed and genus-0.

The sphere is a natural parametric domain for them, because unlike planar parametrization

which needs to slice the surface M open, a spherical map provides a seamless and continuous

parametrization. Such a parametric representation could also be used to facilitate many

geometric modeling and processing applications such as re-meshing, morphing animations,

shape analysis, and so forth.

Among all bijective spherical maps, a map that introduces small metric distortion is de-

sirable. Isometry (preserving both angle and area) is ideal but usually not possible for a gen-

erally given M . We therefore seek for a map that minimizes either angle distortion, or area

distortion, or a balancing between both of them. Computing such a spherical parametriza-

tion, however, is often formulated as a non-linear optimization problem, and cannot be

computed efficiently. For example, harmonic spherical map is conformal [3]. Such a map

on triangle meshes can be computed by enforcing a vanishing Laplace-Beltrami operator

on each vertex’s tangent plane. The resultant parametrization is angle-preserving. However,

its area distortion could be very large, especially in the long and thin protrusion regions

(such as ears of the Stanford bunny). A parametrization that balances angle-distortion and

13

area-distortion is therefore often desirable. Zayer et al. [1] propose the Curvilinear Spherical

Parametrization which better overcomes area-distortion and is very efficient. Another state-

of-the-art spherical mapping algorithm is proposed by Praun and Hoppe [2]. They used the

progressive mesh to iteratively optimize the L2 stretching energy [66] defined piecewise on

the triangle mesh of M . Such a coarse-to-fine solving scheme can greatly overcome the local

minima issue which exists in almost all spherical parametrization formulations that aim to

minimize angle and area distortion together. This algorithm computes the spherical mapping

with least angle and area distortion. Inspired by this work, we also adopt the progressive

simplification and develop a hierarchical optimization scheme. But unlike [2], we utilize the

distortion energy [43] which is shown converged to the continuous energy. Furthermore, we

develop an effective hierarchical optimization scheme over the mesh (with different resolu-

tions) from both local and global aspects, to improve the mapping efficiency and efficacy

significantly [67].

The main contributions of this chapter include

• We present an effective hierarchical optimization framework for the spherical parametriza-

tion problem. Compared with other state-of-the-art spherical mapping computation algo-

rithms, our method generates a bijective and lowly-distorted mapping, and converges effi-

ciently. Therefore, our hierarchical algorithm can be applied on large geometric models with

complex geometry (e.g. with long branches) robustly.

• We demonstrate the application of our mapping algorithm in computing spherical

harmonics representations, and use it for a potential subsequent application in shape analysis

of deformation sequences.

14

3.1 Hierarchical Spherical Parametrization

3.1.1 Mapping Distortion

The angle and area distortions of a triangle mesh can be evaluated piecewise on each triangle.

The angle distortion per triangle can be measured [68] on the map of each triangle fT : T → t:

ED(T) = cotα|a|2 + cotβ|b|2 + cot γ|c|2,

where T and t are the triangle of mesh M and its image on the parametric sphere S respec-

tively; α, β, γ are the angles in T and a, b, c are the corresponding opposite edge lengths in

t. The area distortion can be naturally measured by

EA(T) =
Area(t)

Area(T)
.

The integrated (over the area of parameter triangle t) angle and area distortions of the

entire spherical parametrization f : M → S are therefore:

ĒD(M) =

NF∑

i=1

ED(Ti)Area(ti) (3.1)

ĒA(M) =

NF∑

i=1

EA(Ti)Area(ti) (3.2)

where NF is the number of faces in this mesh.

Following the modification proposed by [43], we use the following formulations on angle and

area distortions, which provide upper bounds of the spherical integrals and avoid degeneracy

during the optimization:

ED(M) =

NF∑

i=1

d−2
i ·ED(Ti)Area(ti) (3.3)

EA(M) =

NF∑

i=1

d−2
i ·EA(Ti)Area(ti) (3.4)

15

where di is the minimum distance from the origin to triangle ti. The objective function is

their weighted sum:

E = λED(M) + µEA(M) (3.5)

where λ and µ are parameters balancing weights of angle and area distortion terms. Area

distortion is a common problem for spherical parametrization leading to under-sampling,

especially for those models with long and thin protrusions, which could cause undesirable

artifacts in applications such as spherical harmonics computation. We found that a relatively

large weight on area distortion usually provides stable and desirable parametrization; hence

in our experiments, we set λ = 0.1 and µ = 1.0 by default (also see Section 3.3.2 for how

these distortions affect spherical harmonic reconstruction accuracy).

3.1.2 Algorithm Overview

The distortion energy introduced in Section 3.1.1 is nonlinear and nonconvex. For general

models, directly optimizing the energy will get trapped in local minima inevitably. We there-

fore adopt the progressive mesh [69] to simplify the mesh into coarser resolutions and solve

the optimization hierarchically while we gradually refine the mesh back to the original tessel-

lation. The progressive scheme is similar to [2], but our optimization is developed differently

and is more efficient and effective. Given a genus-0 mesh M with n vertices, we first progres-

sively simplify it to a tetrahedron with 4 vertices, denoted as M4. We then use Mk to denote

the resolution of M with k vertices, and vki to denote the vertex which will split during the

inverse refinement process. vki is a vertex on Mk and it splits into vk+1
i and vk+1

k+1 (suppose

the newly inserted vertex is always given the id k+ 1) in the new mesh Mk+1. Based on the

above definition, the algorithm pipeline is as follows:

1. Simplify Mn to a tetrahedron M4 using progressive mesh;

2. Map M4 onto a unit sphere domain S4,get f 4 : M4 → S4;

16

3. Following the vertex split order that refines M4 back to Mn, optimize the spherical

mapping fk : Mk → Sk hierarchically.

3.1.3 Global Hierarchical Optimization

We progressively refineMk from k = 4, . . . , n, and during each vertex split vki → {v
k+1
i , vk+1

k+1},

we find a locally optimal spherical position as the image for each of these two vertices vki ,

vk+1
k+1 while fixing images of all their one-ring neighboring vertices. After every η (a constant

integer) vertex splits, we perform an optimization on all these newly placed vertices as well

as their neighboring vertices. Ideally, after each split, we can perform a local optimization

on images of vki , v
k+1
k+1, and all their neighboring vertices until we get to a local optimum.

However, this precise local optimization per every vertex split is relatively expensive and

sometimes not necessary.

Therefore, we only conduct the optimization after a set of vertices are inserted. The pa-

rameter η controls how often such optimization should be performed. A larger η indicates

fewer optimization iterations and thus better efficiency. In our experiments, η is simply set

as 40 by default since a small value leads to longer optimization time. The whole optimiza-

tion algorithm is formulated in Algorithm 1. N1(v) indicates the set of one-ring neighboring

vertices of v. ǫη and ǫF control the convergence threshold, and Iterηmax and IterFmax are the

allowed maximal iterations.

3.1.4 Local Optimization on a Vertex

After the split of a vertex vki , we need to embed the images of the two new vertices vk+1
i

and vk+1
k+1 on the sphere. Here we solve a simple local optimization to determine valid (non-

flipped) spherical locations for them. Later, after each η vertex splits, we will perform such

local optimizations on new vertices as well as their neighboring vertices together. When the

mapping of a vertex is updated and the objective energy change is bigger than a threshold,

17

Algorithm 1: Global Hierarchical Optimization

In : Initial map f 4 : M4 → S4 and progressive records for vertices to split
{v5, v6, . . . , vn}

Out: Spherical map fn : Mn → Sn

1 k ← 4; Priority queue Q = ∅
2 repeat
3 Perform vertex split vki → {v

k+1
i , vk+1

k+1};

4 Add vk+1
i , vk+1

k+1 into Q;

5 Locally optimize once the images of vk+1
i and vk+1

k+1 on the sphere, denoted as

pi = fk+1(vk+1
i) and pk+1 = fk+1(vk+1

k+1);
6 if (k mod η = 0) then
7 j = 0; Evaluate map distortion Ej .
8 repeat
9 vi = Pop(Q); optimize vi;

10 for ∀vk ∈ N1(vi), add vk to Q if vk /∈ Q;
11 j = j + 1.

12 until |Ei −Ei−1| < ǫη or j > Iterηmax;
13 Q← ∅

14 end if
15 k ← k + 1;

16 until (k=n);
17 j = 0; Evaluate map distortion Ej .
18 Insert all vertices of Mn into Q
19 repeat
20 vi = Pop(Q); optimize vi;
21 for ∀vk ∈ N1(vi), add vk to Q if vk /∈ Q;
22 j = j + 1.

23 until |Ei −Ei−1| < ǫF or j > IterFmax;

its one-ring vertices may need to be optimized again. We propagate this local refinement to

larger regions using a priority queue (details will be given in Section 3.1.5).

We develop a local optimization to find the most suitable spherical embedding of each

vertex through an efficient great-circle search, which is formulated in Algorithm 2. In this

algorithm, we do not update a vertex’s spherical embedding if the energy reduction is not

significant. A line search mechanism is employed on the great circle of the spherical domain.

The two cases in Algorithm 2 are illustrated in Figure 3.1. Note even if the initial position

introduces flip-over, the energy minimization would guide the movement of vertex’s spherical

18

Algorithm 2: Local Optimization of Spherical Position pi = f(vi) through Great-circle
Search.
In : Initial Position pi = fk(vi) ∈ Sk

Out: Optimized Position p̃i = fk+1(vi) ∈ Sk+1

1 g = ∇E(pi)
Tpi

2 if ρ(vi) ≤ ǫ then
3 Exit.
4 end if
5 if −g ≥ 0 and ρ(vi) > ǫ then
6 //Case 1 :

7 ū = −∇E(pi)
‖∇E(pi)‖

. Then we have a great circle centered at origin passing pi and ū,
denoted as cpi; denote the one-ring link on the mesh surrounding pi as rpi. Let ū0 be
the intersection of cpi and rpi. d0 = ū0 − pi.

8 k = 0.
9 while true do

10 k = k + 1.
11 if E(ūk) ≤ E(pi) + δdTk∇E(pi) then
12 update p̃i = ūk.
13 Exit.

14 else
15 ūk+1 =

pi+ūk

‖pi+ūk‖
.

16 dk+1 = ūk+1 − pi.

17 end if

18 end while

19 end if
20 if −g < 0 and ρ(pi) > ǫ then
21 //Case 2 :

22 ū0 = pi −
2g

‖∇E(pi)‖
2∇E(pi); (thus ‖ū0‖ = 1)

23 d0 = ū0 − pi.
24 k = 0.
25 while true do
26 k = k + 1.
27 if E(ūk) ≤ E(pi) + δdTk∇E(pi) then
28 update p̃i = ūk.
29 Exit.

30 else
31 ūk+1 =

pi+ūk

‖pi+ūk‖
.

32 dk+1 = ūk+1 − pi.

33 end if

34 end while

35 end if

19

image to a valid position free of flip-over. This local optimization is efficient and will converge

within finite steps (see Section 3.1.7) for detailed analysis.

Figure 3.1. Two Cases In Great-circle Back Tracking Line Search. We have a great circle centered
at origin O passing pi and ū = −∇E(pi)

‖∇E(pi)‖
, denoted as cpi ; ∇E(pi) is the gradient of E at pi; denote

the one-ring link on the mesh surrounding pi as rpi . Let ū0 be the intersection of cpi and rpi .
d0 = ū0 − pi. If E(ū0) ≤ E(pi) + δdT0∇E(pi), we update pi as p̃i = ū0 and exit. Otherwise, we
choose a closer point on the great circle ū1 = pi+ū0

‖pi+ū0‖
to continue the search for optimal position,

which is analogous to the standard Armijo-type back tracking line search.

3.1.5 Priority Queue

When optimizing spherical images of the vertices, we iteratively pick a vertex to do its

local optimization. The order of picking vertices is important and it could greatly affect the

result and computation efficiency. Intuitively, we shall optimize the vertex whose movement

potentially reduces the distortion energy most significantly. Both the magnitude of the first

order KKT [70] violation and the distance the vertex can move are critical for the energy

reduction. For example, in a region whose spherical mapping shrinks severely, KKT violations

of the objective functions on vertices could be big, but spherical embedding of these vertices

could not move much (since all these spherical triangles are already very small) before flipover

appear. Then moving such vertices may not have high priority. We therefore use the first

order KKT violation magnitude multiplying the potential moving distance as the key for

this priority queue.

20

Therefore, for the priority queue in Algorithm 1, we adopt the following priority function

τ defined on vi’s spherical image pi:

τ(vi) = ρ(vi) · d (3.6)

where d is the distance from pi (vi’s image on sphere) to the boundary of its spherical kernel

(see Section 3.1.6) along the negative gradient direction. And ρ is the magnitude of the first

order KKT optimality violation:

ρ(vi) = ‖∇E(pi)‖

√
1− (

∇E(pi)T · pi
‖∇E(pi)‖

)2 (3.7)

where ∇E(pi) is the gradient of the objective function E of Eq 3.5 at vertex vi. Note that the

feasibility condition ‖pi‖ = 1 is always guaranteed by the construction of the Algorithm 2.

In our experiments, we simply use the average distance from pi to its spherical one-ring to

approximate d. τ(vi) therefore estimates the aforementioned potential function reduction at

vertex vi, measured via the first order KKT optimality condition violation ρ at pi multiplied

by d.

3.1.6 Spherical Kernel and the Mapping Bijectivity

The spherical kernel can be defined on the spherical polygon formed by the one-ring neigh-

boring vertices of a vertex vi. It is defined and can be computed as the intersection of the open

hemispheres defined by the spherical polygon edges. To avoid the flip-over on the spherical

parameterization, we shall maintain a valid spherical embedding. This can be guaranteed

if every vertex is inside its spherical kernel. We generalize the planar kernel computation

algorithm [71] onto the spherical triangle mesh. The computation is efficient and takes O(k),

where k is the number of vertices on the spherical polygon.

The bijectivity of the spherical mapping can be shown. First, during local optimization,

a non-flipped local region will not be converted into a flipped local region. Therefore, if we

can guarantee the initial spherical embedding during the entire progressive refinement is

21

valid, then our final parameterization is non-flipped. Through induction, we can show that a

valid initial spherical embedding can always be constructed during vertex split. (1) After the

progressive simplification, the mesh is simplified to a tetrahedron M4 with 4 vertices, which

can be embedded on the sphere. (2) Suppose the meshMk with k vertices has a valid spherical

embedding, and the next refinement is to do the vertex split from vki to (vk+1
i , vk+1

k+1), then the

spherical kernel for vki is not empty. Then it can be shown that non-empty spherical kernel

regions for vk+1
i , vk+1

k+1 can always be constructed [2]. Therefore, a valid spherical embedding

for the refined mesh Mk+1 exists and can be used as the initial spherical positions for the

next insertion and refinement. The mapping bijectivity is therefore guaranteed.

3.1.7 Analyzing Convergence of the Optimization

The first order KKT optimality condition of minE(pi), subject to ‖pi‖ = 1 can be written

as

∇E(pi)− λpi = 0, pTi pi = 1. (3.8)

where λ ∈ R is Lagrange multiplier associated with the ball constraints. By considering

pTp = 1, which is guaranteed by the algorithm, we have λ = ∇E(pi)
Tpi. Then, the 2-norm

residue of the left hand side of the first equation in Eq 3.8 can be written as

ρ(vi) = ‖∇E(pi)‖

√

1− (
∇E(pi)T · pi
‖∇E(pi)‖

)2 = 0 (3.9)

which can be considered as the magnitude of the violation of KKT condition. When ρ(vi) is

not small, pi is not close to a local minimum. Then, because the angle between the asymptotic

searching directions given in Algorithm 2 and the negative gradient direction of the energy

function is an acute angle, the Armijo-type great-cirle back tracking line search described in

Algorithm 2 will be successful within a finite number of steps and a sufficient energy value

reduction relative to the KKT violation ρ(vi) will be obtained. This would force the first

order KKT violation ρ(vi) goes to zero, since the energy function value is always bounded

above from zero.

22

Globally, the objective function energy is also bounded below, actually nonnegative, and

monotonically decreasing in each phase of the Algorithm 1. Furthermore, the great-circle back

tracking line search conditions in Algorithm 2 will prevent the step size getting too small

and the energy value will be reduced sufficiently when pi is far away from local minimum.

Therefore, globally, the total energy will decrease relatively rapidly to a minimum value.

The graphs of the total distortion energy E per vertex in the optimization are depicted in

Figure 3.2. In these figures we can observe that the energy drops severely in the beginning

and the slope of the graph asymptotically goes towards zero with increasing number of

iterations. This indicates that our approach finally converges.

3.2 Experimental Results and Discussions

To perform side-by-side comparisons, we have implemented the harmonic spherical map-

ping [3], curvilinear spherical parameterization [1], and we obtained mapping results from

the progressive spherical parameterization of [2]. We also parameterize various input models

using our algorithm under different weights. In experiments demonstrated in this section, we

use λ = 0.1 and µ = 1.0.

Figure 3.3 shows the spherical images of the bunny using different parameterization meth-

ods. Like the spherical harmonic map, the curvilinear mapping [1] (a) could lead to a unnatu-

rally stretched region around the tail region of Bunny; the progressive mapping computation

result from [2] (b) relieves this artifact by dispersing the vertices in this region. Our mapping

result, as shown in (c), provides a further less stretched parameterization in comparison with

both (a) and (b).

Figure 3.4 and 3.5 demonstrate the effectiveness of our approach on Bunny(34K vertices)

and Cow(11K vertices) by color-encoding angle and area distortions of the spherical mappings

computed by [3], [1], and [2]. We can see that results of our method in the rightmost column

are in cooler color, and therefore it has lower angle and area distortions.

23

(a) Spherical Parametrization of the Bunny Model

(b) Spherical Parametrization of the Cow Model

Figure 3.2. Energy per Vertex with respect to Iterations. The vertical axis shows energy per vertex
and the horizontal axis shows the number of iterations. We do not plot iterations at the beginning
that have large energies for more clear visualization.

Figure 3.3. Comparison of Spherical Domain around the Tail Region on Bunny. (a)curvilinear
spherical parameterization [1];(b) is from [2]; and (c) for Our approach. Our approach has slightly
area distortion than [2] and much better than [1].

Figure 3.6 demonstrates the results of our approach on the Head (13K vertices) model

side by side compared with [3] and [1]. Our approach introduces smaller angle and area

24

(a)[3] (b)[2] (c)[1] (d)Ours

Figure 3.4. Comparison of Other Spherical Parameterization Algorithms and Our Method on the
Bunny model. (a) is from [3]; (b) is from (b)[2]; (c) is from [1] and (d) is from our method. EA and
ED indicate area distortion and angle distortion. Warmer color, e.g red, indicates larger distortion;
while cooler color, e.g. blue, indicates lower distortion. The rightmost column shows our results,
which exhibits lower angle and area distortion.

(a)[3] (b)[2] (c)[1] (d)Ours

Figure 3.5. Comparison of Other Spherical Parametrization Algorithms and Our Method on the
Cow model. (a) is from [3]; (b) is from (b)[2]; (c) is from [1] and (d) is from our method. EA and
ED indicate area distortion and angle distortion. Warmer color, e.g red, indicates larger distortion;
while cooler color, e.g. blue, indicates lower distortion. The rightmost column shows our results,
which exhibits lower angle and area distortion.

distortions, and hence better preserves the facial features like eyes, nose, mouth and ears on

the sphere.

Numerically, the spherical mapping results of Bunny, Cow and Gargoyle, computed by [3],

[2] and [1] are compared with our approach in Tables 3.1, 3.2 and 3.3. The visualization of

25

Input [3] [1] Ours

Figure 3.6. Comparison of Other Spherical Parameterization Algorithms and Our Method on the
Head model. The leftmost column is the input model and the rightmost column is the result from our
method. Our approach preserves the facial features like eyes, nose, mouth and ears more naturally.

ED and EA is placed in Figures 3.4, 3.5 and 3.7 respectively, where cooler color indicates

less distorted triangle map and warmer color indicates more distorted triangle map.

(a)[3] (b)[2] (c)[1] (d)Ours

Figure 3.7. Comparison of Other Spherical Parametrization Algorithms and Our Method on the
Gargoyle model. (a) is from [3]; (b) is from (b)[2]; (c) is from [1] and (d) is from our method.
EA and ED indicate area distortion and angle distortion. Warmer color, e.g red, indicates larger
distortion; while cooler color, e.g. blue, indicates lower distortion. The rightmost column shows our
results, which exhibits lower angle distortion and comparable area distortion. And our approach is
much more efficient on large-scale models like this one.

26

Table 3.1. Comparison of Distortions on Bunny between Our Method and Existing Algorithms.

#Vertices = 34K

[3] [1] [2] Ours
#Flipover 2585 0 3 0

ED(M) 50.79 63.57 78.07 61.37
EA(M) 22.80 25.46 14.01 14.24

Time(s) 2397 91 600 58

Table 3.2. Comparison of Distortions on Cow between Our Method and Existing Algorithms.

#Vertices = 11K

[3] [1] [2] Ours
#Flipover 2536 2 0 0

ED(M) 51.19 73.15 117.32 69.92
EA(M) 32.85 23.79 14.35 15.49

Time(s) 224 28 420 21

Table 3.3. Comparison of Distortions on Gargoyle between Our Method and Existing Algorithms.

#Vertices = 100K

[3] [1] [2] Ours
#Flipover 6106 9 0 0

ED(M) 51.66 78.80 81.17 81.79
EA(M) 93.61 141.66 41.48 47.70

Time(s) 24393 1151.4 1380 193

Figure 3.8 illustrates some more mapping results computed by our algorithm. The exe-

cution times of our method on 9 models (whose vertex sizes vary from 11K to 400K) are

reported in Table 3.4. Our implementation is unoptimized and the experiments are conducted

on a desktop compute with AMD Athlon X2 2.9GHz CPU and 2GB RAM.

Our experiments and comparisons indicate:

• Our parametrization produces mappings with lower angle and area distortions;

• Our optimization is more efficient, especially for large-scale models;

• Our approach generates bijective spherical mappings.

27

Figure 3.8. More Results from Our Approach. There are three subfigures for each model: an original
model subfigure, two spherical domain subfigures from different perspective.

Table 3.4. Execution Time of Our Approach on Various Models.

Models Cow Frog Bunny Horse David Venus Gargoyle Armadillo Buddha

#Vert 11K 25K 34K 48K 50K 50K 100K 106K 400K
Time(s) 21 48 58 89 111 70 193 250 526

3.3 Application on Spherical Harmonics Representation

A function f(θ, φ) defined on a sphere can be decomposed as the sum of its harmonics as

follows.

f(θ, φ) =

∞∑

l=0

m=l∑

m=−l

almYlm(θ, φ)

where Ylm is spherical harmonics of degree l and order m, defined as follows.

Ylm(θ, φ) =

√
2l + 1

4π

(l − |m|)!

(l + |m|)!
Plm(cosθ)e

imφ

where Plm is known as associated Legendre polynomial. the coefficients of spherical harmonics

decomposition alm can be calculated as:

alm =

∫ 2π

0

∫ π

0

Y ∗
lm(θ, φ)f(θ, φ)sin(θ)dθdφ

28

3.3.1 Decomposition and Reconstruction

To convert a given closed genus-0 triangle mesh M into a spherical harmonics representation,

we adopt the following intrinsic computation:

1. Compute the spherical parametrization f : S →M ;

2. The x, y, and z component of M can be considered as three spherical height functions,

x(θ, φ), y(θ, φ) and z(θ, φ), respectively;

3. Compute the spherical harmonic coefficients of these three height functions.

After obtaining the spherical harmonics coefficients of a spherical function f(θ, φ), we

can reconstruct and approximate this function from its coefficients. Given a user-specified

maximum degree Lmax, we can calculate the approximating function on S:

f̂(θ, φ) =

Lmax∑

l=0

m=l∑

m=−l

almYlm(θ, φ)

Then surface M is reconstructed through reconstructing all its three spherical height func-

tions x(θ, φ), y(θ, φ) and z(θ, φ). Figure 3.9 illustrates the reconstruction results.

Figure 3.9. Reconstruction Results by Spherical Harmonics. Leftmost column contains original
models. Middle left column contains reconstruction only using low frequencies, including 6×6 coef-
ficients. Middle right column contains reconstruction using 16× 16 coefficients. Rightmost column
contains reconstructed results from low and higher frequencies, including 32 × 32 coefficients. We
can approximate the input model better as more coefficients from higher frequencies are utilized.

29

Table 3.5. Spherical Harmonic Reconstruction Accuracy Using Different Parameterization Methods.
Lmax is the number of frequency utilized; the number in the right three columns indicates the
reconstruction error e(M,M̂).

Lmax harmonic curvilinear ours
[3] [1]

Bunny 6 0.1190 0.1028 0.0891
16 0.0709 0.0730 0.0424
32 0.0643 0.0669 0.0247

Venus 6 0.0299 0.0455 0.0279
16 0.0117 0.0160 0.0113
32 0.0088 0.0102 0.0083

Cow 6 0.3480 0.2424 0.1474
16 0.2317 0.1547 0.0813
32 0.1470 0.1161 0.0591

Horse 6 0.3236 0.2698 0.1653
16 0.2440 0.1792 0.0740
32 0.1976 0.1401 0.0563

Armadillo 6 0.3151 0.1962 0.1260
16 0.2127 0.1106 0.0309
32 0.1725 0.0900 0.0222

3.3.2 Analysis of Spherical Harmonic Reconstruction Accuracy

We can evaluate the reconstruction accuracy by calculating an error term e(A,B) = max{disAB , disBA}

according to the Hausdorff distance [72]: disAB is defined as the average value of D(Ai),

where D(Ai) is the minimum distance from point Ai ∈ A to another set B. Therefore, we

use e(M, M̂) to measure the distance from the original mesh M to its spherical harmonic

reconstruction M̂ .

We conduct the reconstruction experiments on a set of models and show their reconstruc-

tion accuracy in Table 3.5. As number of utilized frequencies Lmax increases, the reconstruc-

tion error e(A,B) decreases. We can therefore obtain a progressive surface reconstruction.

For models with long and thin protrusions, e.g. cow and horse, curvilinear map [1] is better

than harmonic map [3]; when models are smooth, such as Venus, harmonic map exhibits

lower reconstruction error. Meanwhile, our results are better than both [1] and [3], which

30

demonstrates that our proposed parameterization is ideal for spherical harmonic computa-

tion and analysis.

Furthermore, we also check how angle versus area distortions, i.e. the ratio λ
µ
in Eq 3.5,

influences the reconstruction accuracy is also explored. Figure 3.10 and 3.11 illustrate this

influence on Venus and Bunny. In both of the two figures, (a) 6× 6 coefficients are used; (b)

16× 16 coefficients are used.

Figure 3.10. Effect on Reconstruction Accuracy from λ
µ
in Eq 3.5 on Venus. (a) 6× 6 cofficients are

used; (b) 16× 16 coefficients are used. The optimal ratio is about (0.2, 0.3) for this model.

Figure 3.10 indicates the optimal ratio for spherical harmonics is roughly within (0.2, 0.3)

for Venus. This indicates that the angle and area distortion should be balanced together.

Either the dominance of angle distortion or area distortion will yield large reconstruction

error. In Figure 3.11, it is a bit different. The reconstruction has smaller error when λ is

very small. This indicates that the attention to area distortion should be paid much more

than to angle distortion. This situation might be due to the long protrusion region near the

ears. It is prone to have huge area distortion near the ears, since it is usually mapped to a

very tiny region on the sphere and the parametric triangle area is close to zero. These will

severely increase the spherical harmonics reconstruction error. Based on these experiments,

we observe that for rounded objects we shall choose a balanced ratio λ
µ
while for objects

31

Figure 3.11. Effect on Reconstruction Accuracy from λ
µ
in Eq 3.5 on Bunny. The optimal ratio is

when λ = 0, which means area distortion should be put much more attention to. This might due
to the long protrusion region near the ears, which easily causes large area distortion and leads to
undersampling in this region.

with long protrusions, area-preserving is more important for effective spherical harmonic

decomposition/reconstruction.

3.3.3 Deformation Analysis Using Spherical Harmonics

With lowly distorted spherical mapping, closed genus-zero surfaces can be parameterized

onto a canonical sphere domain and converted to spherical harmonics effectively. Then we

can analyze the shape using its spherical harmonics representations. We develop a simple

experiment on a set of head models with different expressions (therefore, different geome-

try) [73] to demonstrate this.

For a spherical function f , upon a given frequency l:

fl(θ, φ) =
m=l∑

m=−l

almYlm(θ, φ),

we can define the energy of this frequency using the following L2-norm:

‖fl(θ, φ)‖ =

√∫ 2π

0

∫ π

0

fl(θ, φ)f
∗
l (θ, φ)sinφdφdθ.

An important property of spherical harmonics is that the energy in each frequency of given

signal is rotation invariant [50, 74]. Hence, this spherical harmonics representation is a

32

rotation-invariant descriptor for shape analysis. In our experiment, we analyze a deformation

sequence, and measure the difference between different frames (i.e. their geometric shapes)

by matching their spherical harmonic energies of various frequencies. The difference between

two spherical functions f and g can be calculated as

Dn(f, g) =
n∑

l=0

(‖fl(θ, φ)‖ − ‖gl(θ, φ)‖)
2.

Figure 3.12 shows a set of deformed head models with different expressions. In terms of

shape differences, we can consider facial expressions introduces the geometric deviations on

the face especially around the eyes and mouth region. These deformed heads are all genus-0

models. So we can simply fill holes on them to make them a topological sphere. Then we

compute their spherical harmonics and measure differences between different expressions

using the above function Dn(). From the chart shown in (j), we can analyze their similarity.

For example, from the first row of (j), we see a is very similar to b and c, and is different

from g and h.

Figure 3.12. Comparison of Head Models with Different Expressions (a-i). The matching results are
illustrated in (j), where black indicates better similarity and white indicates bigger difference. For
example, following the first row of (j), (a) is very similar to (b) and (c), and is different from (g)
and (h). For example, muscle geometry differ significantly between (a) and (h) in the mouth and
eyes regions, while their variation is less between (a) and (b,c).

33

Spherical harmonics computation and spherical harmonic analysis just show a simple ex-

ample of applications of our spherical parametrization. Our lowly distorted spherical mapping

provides an effective intrinsic parametric representation of genus-0 surfaces. While spherical

harmonics only encode the global property of 3D models, the spherical parametrization pro-

vides an enabling tool to analyze the shape’s local differential properties. In the future, we

will explore deformation analysis by combining both global property and local property.

3.4 Summary

In this chapter, an effective spherical parametrization algorithm that minimizes angle and

area distortions is presented. An effective hierarchical spherical optimization scheme to solve

it is developed. Compared with other state-of-the-art spherical mapping computation al-

gorithms, this method generates a bijective and lowly-distorted mapping, and converges

efficiently. Finally the effectiveness of this spherical parametrization in spherical harmonics

computation and shape analysis is also demonstrated.

34

4 Topology-preserving Optimization
for Polycube Mapping

Computing the parametrization of 3D shapes (surfaces/solids) on specific canonical domains

is an important problem in shape modeling, and it can facilitate many computer graphics

and geometric processing tasks. Although the sphere is a natural domain for genus-0 surfaces,

there are a lot of models whose genus is higher than 0. In that case, the sphere might not

be a suitable domain for them. Instead, polycube can serve as the parametric domain for

surfaces of arbitrary genus.

Composed of a set of small cubes, a polycube well approximates the geometry of the free-

form model yet possesses great regularity; therefore, it can serve as a nice parametric domain

for free-form shape modeling and analysis. Polycube mapping was first introduced by [6]. It

parameterizes a closed surface onto a polycube domain, which is composed of a set of small

cubes. A polycube has the same topology of the given surface, and it is usually constructed

to approximate the geometry of the surface. Therefore, the surface parametrization on a

polycube domain often has much smaller distortion than that on a planar domain. Meanwhile,

the polycube domain still possesses great regularity; each sub-patch is a rectangle; transitions

between adjacent patches are simple rotation and translation except on corner points. Due to

many of these advantages, the polycube mapping has been used in many graphics and shape

modeling applications such as texture mapping [6] and synthesis [7], shape morphing [8],

spline construction [9, 10], and volumetric matching [11].

35

Intuitively, the more cubes one uses to construct the polycube, the better the domain can

approximate the original model, which brings parametrization very small area and angle

distortion. However, corner points are singularity points of the parametrization. They are

undesirable in many tasks such as spline construction [9, 10], physics-based simulations [75],

etc. On the other hand, if one uses fewer cubes to construct a simpler domain with fewer

corner points, the parametrization will possess larger distortion due to the dissimilarity of

geometric structures between the model and the domain shape. Therefore, when a funda-

mental question is asked : what is the optimal polycube domain? A reasonable answer can

be an optimized balancing between the singularity number and mapping distortion. More

specifically, we try to solve the following problem: given a surface S and a budget n of the

singularity point number, what is the optimal shape of the polycube domain P so that the

parametrization f : S → P has the least distortion and P has no more than n corners?

Depending on applications, different metrics (angle distortion, area distortion, isometry

distortion, etc) have been studied and used to measure the mapping quality. Harmonic func-

tions are most widely used in constructing lowly distorted mapping. With a fixed boundary

condition, a function φ(x, y) is harmonic if it is a solution of the Laplace’s equation. When

a boundary condition is given, φ is a minimizer of the Dirichlet energy [31, 32] and it pos-

sesses great smoothness. For example, conformal parametrization can be constructed by two

conjugate harmonic functions [76, 77]. In this chapter, we use harmonic functions to con-

struct polycube mapping, minimizing a metric energy composed by shape-preserving and

area-preserving terms. The framework is general and can be used for other metrics. A sim-

ilar idea, proposed by Pietroni et al [78], considered the trade off between the mapping

distortion and the simplicity of the domain, solves the surface parametrization over abstract

domains by locally optimizing the mapping on subregions then globally smoothing it [55].

Now the optimal polycube maps can be formulated as solving argminE(P, f) for a given

shape S, where energy function E is defined on any mapping f : S → P and P is a

36

polycube with n corners. Since the domain P is part of the optimization, it is extremely

difficult. We restrict our optimization to a subspace of this problem, which we call a topology-

preserving polycube mapping. Specifically, given an initial polycube domain P = {Pi}, the

topology of the polycube P is defined by its dual graph (see Figure 4.1) DM = {DV,DE}.

DV = {dv1, . . . , dvn} are nodes corresponding to rectangle subpatches {Pi}. DE is a set

of edges: an edge [dvi, dvj] is in DE, if Pi and Pj are adjacent to each other. We say two

polycubes P = {P1, . . . , Pn} and Q = {Q1, . . . , Qm} are topologically equivalent, if their dual

graphs DP and DQ are isomorphic. Therefore, given an initial polycube P , our goal is to

find the optimal polycube P ′ and the mapping f that minimizes distortion E(P, f), in the

same topological equivalence class (without changing the structure of its dual graph).

Figure 4.1. Part of the dual graph corresponding to one facet (red node) and its neighboring
facets(blue node).

This chapter has three main contributions.

• We formulate the above optimal polycube mapping problem, and present a polycube

mapping computation framework based on the given restricted complexity of polycube

domain;

37

• We develop efficient optimization solvers to seek the topology-preserving optimal poly-

cube domain and mapping iteratively.

• We extend the polycube optimization algorithm to multiple objects, for the construc-

tion of the common optimal domain for multiple models.

4.1 Algorithms Overview

A polycube domain P is composed of a set of rectangular patches Pi. A polycube map is

therefore composed of a set of rectangle maps. We use the harmonicity and area distortion

to measure the mapping quality and optimize the domain shape as well as the mapping.

Ideally, given a metric, we shall simultaneously optimize the polycube domain P as well as

the mapping f : S → P to minimize the distortion E(f). We can formulate this as minimizing

E(x,y) = E(x1, x2, . . . , x3n, y1, y2, . . . , y3n), with the constraints that (x3i−2, x3i−1, x3i) is a

point on S, and (y3i−2, y3i−1, y3i) is the corresponding corner point on the polycube P , for

i = 1, . . . , n.

Directly solving this nonlinear optimization is highly expensive. As will be discussed

shortly (Section 4.3 and 4.4), the derivatives of E over y can be computed efficiently, but

the derivatives of E over x could not be computed in practice. Without derivatives of the

object function, this optimization with complicated constraints is difficult even for moder-

ately large n. To make full use of the partial derivative information of the objective function,

we iteratively do the optimization over x (for optimal polycube corner mapping) and y

(for optimal polycube domain shape) separately. Hence, gradient based nonlinear optimiza-

tion methods using the derivatives of ∂E/∂y can be developed to efficiently optimize the

subproblem E(x,y) for fixed x. Meanwhile, a derivative-free optimization algorithm is de-

veloped to optimize the subproblem E(x,y) for fixed y. During each iteration, when the

shape of every rectangle and the mappings of its four corner points are determined, we can

compute/update the mapping efficiently (see Section 4.2 and Section 4.4). The proposed

38

iterative polycube mapping optimization framework therefore has the following three steps

(illustrated in Figure 4.2).

Figure 4.2. Algorithm Overview. (a) original surface with eight corner points(red). (b)(c) initial
polycube domain and mapping. (d)(e) optimized polycube domain and mapping The harmonic
energy with area distortion term is reduced from 5.4414 to 4.7812. (f) the optimized polycube
mapping with eight new corner points(blue) with a lower harmonic energy of 4.5961. (g)(h) final
optimized domain and optimized mapping after two iterations. The grid quality is improved.

1. Initial Polycube Domain Construction (Section 4.2). Given a budget number of corner

points, an initial polycube domain is constructed either automatically or manually,

meeting the corner point budgets; then the corner point mapping and the initial poly-

cube mapping are computed.

2. Optimizing Polycube Domain Shapes (Section 4.3). Preserving the topology of the

polycube, the scaling of sub-patches is optimized so that mapping energy is minimized.

3. Optimizing Polycube Mapping (Section 4.4). Without changing shape of the polycube,

the surface-polycube mapping is optimized by searching the optimal corner point map-

ping.

39

Algorithm 3: Optimal Polycube Mapping.

input : surface S, corner point number n;
output: polycube mapping f : S → P ;

1 Construct an initial polycube P0, whose corner point number ≤ n;
2 Compute an initial mapping fi : S → Pi; i = 0;
3 repeat
4 i← i+ 1;
5 Optimize the polycube domain Pi, s.t. distortion of mapping fi−1 is minimized;
6 Optimize the polycube map fi : S → Pi;

7 until |Pi − Pi−1| < ǫ;
8 Perform a global smoothing.

The framework is formulated in Algorithm 3. Note that in our iterative process, we keep

on optimizing scaling factors of sub patches and the corner points. Then (1)polycube domain

optimization takes corner points decided by the current mapping fi as the input and solve

scaling of subpatches to reduce mapping distortion; and (2) polycube mapping optimization

uses the scaled polycube Pi+1 as the target domain and optimizes the location of corner

points. This iterative refinement converges when the polycube domain shape Pi does not

change any longer.

4.2 Constructing Initial Polycube and Mapping

The initial polycube can be constructed manually [6, 9], or automatically [52, 53]. We also

use a simple voxelization algorithm (Section 4.2.1) to generate the polycube. Since this

initial polycube and maps (Section 4.2.2) will be optimized to minimize the distortion, a

simple, efficient, and adaptive (to different corner budgets) scheme such as this voxelization

algorithm is sometimes enough. The following optimization framework is general, and can

optimize an initial polycube mapping constructed via different methods.

4.2.1 Polycube Construction via Voxelization

Given a solid object M , supposing its boundary surface is represented by a triangle mesh

S = (Vs, Es,Fs) where Vs, Es,Fs are vertex, edge, and face sets, we construct a polycube

domain P = (Vp, Ep,FP) and corresponding corner points mapping using a voxelization

40

algorithm. Figure 4.3 illustrates a polycube construction example of a Buddha model through

voxelization.

Figure 4.3. Voxelization For Polycube Construction.

We use an octree to represent the object. The subdivision starts from a rectangular bound-

ing box. Each cell (rectangular cuboid) can be labeled as inside or outside. We remove all

interior faces that are shared by two inside cells, and finally merge all inside cells to one

polycube P . The remaining faces form the boundary surface of P . We further merge these

remaining faces to a set of big rectangle facets of the polycube. Iteratively, we merge two

adjacent faces if the result remains a planar convex polygon. After merging, only rectangle

facets are left. The vertices of these rectangles are called corner points, denoted as VCP .

And the edges of the rectangles form the connectivity of the corner points ECP . For each

corner v ∈ VCP , we use the simple projection method [6] to find its corresponding points on

S. Without ambiguity, we also call these corresponding points corner points on S, denoted

as VCS; they will be mapped to corners in the initial polycube mapping. The voxelization

41

algorithm is simple, automatic and efficient. Moreover, the octree’s depth can be adaptively

decided by the number of corner points.

Voxelization approaches sometimes provide unnecessary zigzagged domain shapes when

the geometry of the object is not well aligned with principal axes, which can be undesirable.

Then other polycube domain construction algorithms (e.g. [6, 9, 52, 53]) may be used to

construct the initial mapping, and our subsequent optimization paradigm can still be applied

to refine the domain shape and improve mapping quality.

4.2.2 Initial Polycube Mapping

Given the initial polycube P , corner point correspondences VCS, VCP , and cube edges ECP , we

compute an initial polycube mapping f : S → P as follows. Denote the position of each vertex

v on S as X = (x0, x1, x2) and its image on the polycube as U = f(X) = (u0, u1, u2) ∈ P ;

also denote three components of the vector function f as f 0, f 1, and f 2.

A discrete harmonic parametrization [32] is a bijective map from S to a 2D (u,v)-domain,

h : S → D,S ⊂ R3, D ⊂ R2 such that the discrete harmonic energies of both u and v

components are minimized. When the target planar domain D is convex, and a diffeomorphic

boundary mapping is given, the harmonic mapping h is bijective. Therefore, we decompose S

to multiple patches, each of which will be mapped to a rectangle facet Pi on P . The harmonic

energy of a mapping function on k-th (k=1,2,3) component is defined as

Hk =
1

2

∑

i

∑

vj∈N(vi)

wij(f
k(Xi)− fk(Xj))

2, (4.1)

where N(vi) is the set of all 1-ring neighboring vertices of vi. wij =
1
2
(cotαij + cot βij) is

the well known cotangent weight [32] defined on the edge [vi, vj] ∈ ES, where αij and βij are

two angles opposite to the edge [vi, vj].

For each polycube edge in [vpi, vpj] ∈ ECP , vpi, vpj ∈ VCP , we trace curves to connect their

corresponding points vsi, vsj ∈ VCS using shortest paths following algorithms introduced in

42

[79]. After this, the harmonic mapping computation is straightforward. We parameterize

these traced paths to polycube edges using the arc-length parametrization. On each facet

of the polycube, corner and edge mapping decides the boundary condition and the interior

mapping can be computed by solving two sparse linear systems [32].

4.3 Optimizing Polycube Domain

Given a polycube mapping f : S → P = {fi : Si → Pi} defined on a set of topological

rectangle patches on S. We want to find the optimal re-scaled Pi so that mapping distortion is

minimized. We use a distortion energy E composed of the harmonic energies H t(f), t = 0, 1, 2

and an area-stretching term A(f).

H t =
∑

Pk

H t
k =

∑

Pk




∑

ei,j∈Pk

1

2
wij(f

t(Xi)− f t(Xj))
2


 ; (4.2)

A =
∑

Pk

∑

Fi,j,h∈Pk

(∆(Ui, Uj, Uh))
2

∆(Xi, Xj, Xh)
; (4.3)

E = H0 +H1 +H2 + αA; (4.4)

where ∆(Xi, Xj, Xh) and ∆(Ui, Uj, Uh) denote the original area of triangle (vi, vj, vh) and

the area of its image under the mapping; Pk is a facet of polycube and Fi,j,h is a triangle on

this facet; α is a weighting factor balancing the harmonic and area-stretching terms.

When optimizing the polycube shape, we restrict our re-scaling on Pi such that (1) it pre-

serves the total area of the polycube, and (2) it doesn’t increase the number of corner points.

Specifically, we divide the polycube P into different rectangular facets in each coordinate

plane (see Figure 4.4).

First, we sort the coordinates of all corner points in three axes, and denote them as

{αi
j}, i = 0, 1, 2, j = 0, . . . , Ni. We translate the left-bottom of the polycube to the origin, so

that any αi
0 = 0.

43

Figure 4.4. Definition of Polycube Coordinates and Parameters.

Then supposing a facet Pk is perpendicular to the ut coordinate axis, we (1) denote the

coordinate of Pk in ut axis as αt
j , and (2) on each patch perpendicular to ut, denote its

corresponding coordinates as [αt+1
j , αt+1

j+1] and [αt+2
j , αt+2

j+1]. The superscript indicates the cor-

responding axis (u0, u1, or u2), so t + 1 actually denotes (t + 1) mod 3. In our following

derivations, the addition of superscripts denotes their addition modulo 3.

Now we can denote the length of each segment in ut-axis as βt
j+1 = αt

j+1−α
t
j ; and adjacent

facets (faces connected by a same polycube edge) should share a same corresponding scaling

factor β, to prevent the increase of corner points.

Therefore, supposing a rectangle domain Pk is perpendicular to the axis ui, (i = 0, 1, 2), we

denote the two corresponding segment lengths of the rectangle as βi+1(Pk), β
i+2(Pk), their

initial lengths as β̃i+1(Pk), β̃
i+2(Pk), initial harmonic energies as H̃ i+1

Pk
, H̃ i+2

Pk
, and initial area

stretching energy as ÃPk
. These constants β̃i+1(Pk), β̃

i+2(Pk), H̃
i+1
Pk

, H̃ i+2
Pk

, ÃPk
are determined

by the initial mapping. Then the harmonic energy of all sub-patches that are perpendicular

to ui, with respect to the their scalings can be written as:

Ei
H(αi

1, . . . , α
i
Ni−1, β

i
1, . . . , β

i
Ni−1)

=
∑

Pk

(
βi+1(Pk)

)2
C̃i+1
k +

(
βi+2(Pk)

)2
C̃i+2
k ,

(4.5)

44

where C̃ i+1
k and C̃ i+2

k are constants decided by the initial mapping:

C̃ i+1
k =




H̃ i+1
Pk(

β̃i+1(Pk)
)2


 , C̃ i+2

k =




H̃ i+2
Pk(

β̃i+2(Pk)
)2


 ;

Considering all three axes, the global harmonic energy of the polycube mapping is:

EH

(
{αi

j , β
i
j},∀i = 0, 1, 2, j = 1, . . . , Ni − 1

)

= E1
H(α0

1, . . . , α
0
N1−1, β

0
1 , . . . , β

0
N1−1)

+E2
H(α1

1, . . . , α
1
N2−1, β

1
1 , . . . , β

1
N2−1)

+E3
H(α2

1, . . . , α
2
N3−1, β

2
1 , . . . , β

2
N3−1);

(4.6)

The area stretching term of the mapping is :

EA

(
{αi

j , β
i
j},∀i = 0, 1, 2, j = 1, . . . , Ni − 1

)

=
∑

Pk

(
βi+1(Pk)β

i+2(Pk)
)2

C̃k;
(4.7)

where C̃k is a constant decided by the initial mapping:

C̃k =




ÃPk(
β̃i+1(Pk)β̃i+2(Pk)

)2


 .

Finally, we have the entire distortion energy:

E({αi
j, β

i
j}) = EH + EA; (4.8)

subject to the constraints:






αi
1 = βi

1,

αi
1 + βi

2 = αi
2,

αi
2 + βi

3 = αi
3,

· · ·

βi
j > 0, ∀j = 1, . . . , Ni, i = 0, 1, 2,

∑
Pk

βi+1(Pk)β
i+2(Pk) = Ãrea,

(4.9)

where Ãrea =
∑

Pk
β̃i1(Pk)β̃

i2(Pk); the last equation preserves the total area of the polycube

domain. Figure 4.5 shows an example of an optimized polycube for the Beethoven model

45

based on the initial polycube mapping. The original polycube (b) is re-scaled to (d); as the

grid texture mapping visualized, the distortion of the original mapping (a) reduces when the

polycube shape changes (f); as in the zoom-in view (e), the angle distortion is smaller than

that in (c).

Figure 4.5. Polycube domain optimization. (a)-(c) shows the initial polycube domain and mapping.
(d)-(f) shows the optimized polycube domains. Note the improvement of the checkerboard texture
mapping between (c) and (e).

4.3.1 Barzilai-Borwein Gradient Projection Optimization Algorithm

In order to solve the energy E({αi
j , β

i
j}) in equation (4.8) subject to constraints in equa-

tion (4.9), we will strictly enforce all the bound and linear constraints, and put the last

nonlinear constraint as a penalty term λ
(∑

Pk
βi+1(Pk)β

i+2(Pk)− Ãrea
)2

in the objective

function. As a result, this optimization problem could be formulated as minimization of a

nonlinear function with bound and linear constraints, i.e.,

min F E(x)

s.t. x ∈ Ω := {x : Ax = b, bl ≤ x ≤ bu}, (4.10)

46

where x ∈ Rn is the vector of variables {αi
j, β

i
j}, n = 2(N1 + N2 + N3), bl and bu ∈ R

n

are the bound constraints, and A is an m by n matrix with b ∈ Rm denoting the linear

constraints. Although the objective function is continuously differentiable, the dimension n

of our reformulated problem generally can be large, and the explicit computation of the

Hessian is difficult. Hence, first order method, which only requires gradient information,

is preferred. To solve (4.10), we develop the following nonmonotone gradient projection

algorithm, which is also an iterative algorithm: given the starting x0, our algorithm takes

the following iterations

xk+1 = xk + αkdk, (4.11)

where k is the iteration number, αk is a stepsize and dk is the searching direction defined as

dk = PΩ(xk −
1

λBB
k

gk)− xk.

Here, PΩ is the projection on the feasible set Ω, gk = ∇f(xk) and λBB
k , k ≥ 1 is the

so called Barzilai-Borwein [80] stepsize parameter generated by satisfying a quasi-Newton

property, i.e.

λBB
k = arg min

λ≥λ0

‖Λ(λ)sk−1 − yk−1‖2, (4.12)

where sk−1 = xk−xk−1, yk−1 = gk−gk−1, Λ(λk) = λkI, and λ0 is a positive constant. Hence,

the proposed λBB
k , when k ≥ 1, obtained from (4.12), is

λBB
k = max

{
sTk−1yk−1

sTk−1sk−1

, λ0

}
, (4.13)

and λBB
0 can be arbitrarily defined as a positive number and we set λBB

0 = ‖g(x0)‖∞ and

λ0 = 10−10 in practice. This BB initial stepsize (4.13) has been extensively studied recently

and been shown to perform much better than steepest descent type gradient projection

methods [81, 82]. However, to maintain the efficiency, the stepsize αk in (4.11) must be

obtained by a nonmonotone line search. In our experiments, we use the non-monotone line

search developed in [83, 84].

47

4.4 Optimizing Polycube Mapping

In Section 4.3, we fix the corner point mapping f(VCS) → VCP to optimize the shape

of polycube domain. We further reduce the mapping distortion by moving vertices VCS

(without ambiguity, we also call them corner points) over S. Any 2-dimensional manifold

S can be parameterized to an atlas Ω = {Ωi}, and locally any point on S: (x1, x2, x3) ∈ S

can be represented as a 2D coordinate (r1, r2) on a local planar chart. We construct local

parametrization gi : Si → Ωi by mapping the C-ring neighboring regions (in our experiments,

we set C = 20) of each initial corner point ∈ VCS to a unit disc Ωi. Any neighboring points

on the domain Ωi are continuously parameterized. Let N be the number of the corner points

N = |VCP |. The optimization will be conducted on all charts {Ω1, . . . ,ΩN} simultaneously by

searching the optimal N corner points, represented as coordinates ({r1, r2, . . . , r2N−1, r2N}),

where (r2k−1, r2k) corresponds to (r1, r2) on chart Ωk.

This problem is formulated as minimizing the distortion energy E of the map f decided

by the corner maps:

E(r1, r2, . . . , r2N) = H1(f) +H2(f) +H3(f) +A(f), (4.14)

the harmonic energies and area stretching of function f are defined following equation (4.2)

and equation (4.3).

For polycube mapping with N corner points, the dimension of this optimization problem is

2N . f is determined by these 2N parameters, and can be efficiently computed (Section 4.4.1),

but since we need to retrace the shortest paths as the sub-patch boundaries, we do not

have the closed form for f or its derivative. Therefore, we use a derivative-free optimizer

(Section 4.4.2) to solve this problem.

As indicated in Algorithm 3, we iteratively perform domain optimization (Section 4.3) and

mapping optimization (this section) until the polycube domain does not change. Despite the

optimization of both the domain shape and the corner mapping, the angle distortion near

48

the subregion boundary (e.g. polycube corners, edges) can be large due to the usage of

harmonic mapping with fixed boundary. We perform a smoothing process to further reduce

the distortion. Smooth transition functions [85] can be easily computed between adjacent

polycube faces, then parameterization/smoothing can be computed on a flattened domain

covering this boundary region. We adopt the smoothing algorithm of [86] to refine the map

near polycube corner/edge regions.

Figure 4.6 illustrates an iteration of domain mapping optimization on a Beethoven model.

Corners in (a) are adjusted to new positions (f). Meanwhile, the mapping distortion energy

reduces, which can also be visualized in the zoom-in regions (d,e vs b,c). If we perform an

aforementioned smoothing, the distortion near the boundary region can be further reduced

(f,g).

Figure 4.6. Polycube Mapping Optimization. (a) is the model before mapping optimization. (b,c)
zoom in to show the distortion before this step. (d,e) illustrate the distortion after mapping op-
timization. (g,f) show distortion after the smoothing postprocess. (h) is model after smoothing.
The corner points are shown in green. With the smoothing, distortion and discontinuity across
sub-region boundaries significantly reduces.

Figure 4.7 shows an iteration of our polycube map optimization on the horse model; the

initial horse mapping (a) on a polycube with 60 corner points is optimized; the resultant

mapping (b) has smaller angular and area distortion.

49

Figure 4.7. Mapping Optimization of The Horse Model on a Polycube (upper row) with 60 Cor-
ner Points. The lower row shows the moving of corner points: (a) before optimization, (b) after
optimization.

4.4.1 Efficient Mapping Recomputation

The typical computation for harmonic surface mapping on each rectangle sub-patch involves

solving two systems of linear equations. This can be time consuming when we need to re-

compute it and re-evaluate its distortion in every step during the optimization. Since the

boundary condition of the mapping always changes gradually, we can utilize a more efficient

linear equation updating algorithm CHOLMOD [87] to accelerate the mapping recomputa-

tion.

Mapping on each sub-patch is harmonic, so the coefficient matrix is sparse, symmetric and

positive definite. This special property makes it feasible to utilize Cholesky decomposition

to solve and update the linear systems very quickly. Initially, we precompute the shortest

paths between all pairs of vertices using the Floyd-Warshall algorithm and store predecessor

50

matrices on shortest paths. This takes O(n3) preprocessing time, where n is the number of

vertices. During each iteration, when corner points are replaced by some of their neighboring

points, between each pair of corners, we retrace corresponding shortest paths in O(k) time

where k is the number of vertices on this path. The coefficient matrix only changes slightly (a

few rows and columns proportional to the number of mutable boundary conditions due to the

change of corner points). This infers an efficient solution-update algorithm. Davis and Hager

[87] proposed an approach of dynamic supernodal sparse Cholesky update and downdate,

which produces a solution for the newly update linear system without repeatedly computing

the coefficient matrix and solving the system. After an initial Cholesky decomposition at a

cost of O(n3), the decomposition can be updated in O(N), where N is the number of changed

entries in Cholesky factor, which is typically much smaller than the size of the mesh, leading

to efficient harmonic mapping update. The similar approach was introduced to graphics and

shape modeling [88] for dynamically updating harmonic fields design.

With this efficient mapping update technique, we can re-evaluate the objective function

for a given new planar coordinates for corner points on S. Since the parameterization (and

therefore the corner selection) is continuous, we dynamically split each corresponding triangle

(where each parametric corner point locates) into three and update the accumulated energy

accordingly.

4.4.2 Derivative-free Optimization Algorithm

The objective function (4.14) can be reformulated in the following format

min Φ(x) =
∑m

i sgn(i) f 2
i (x),

s.t. bl ≤ x ≤ bu, (4.15)

where x ∈ Rn, bl and bu ∈ R
n are the bound constraints, and sgn(i) = ±1 is the sign in

front of the squares of fi, i = 1, . . . , m. The main difficulty of solving this problem is that

51

the explicit derivatives are not available. We develop a trust region based derivative-free

algorithm in spirit similar to the approach proposed in [89]. Our algorithm does not require

the derivative information of the objective function, nor does it explicitly approximate the

derivative. Instead, at each iteration it builds a local quadratic model of the objective function

by multivariate interpolation in combination with trust region techniques. More specifically,

at each iteration, the algorithm adaptively chooses a set of interpolation points Yk, with

(n+1) ≤ |Yk| ≤ (n+1)(n+2)/2, where k is the iteration number and |Yk| is the cardinality

of Yk. Our algorithm takes the following major steps:

Step 0 (Initialization) Set up initial starting guess x0, trust region radius ∆0 and sampling

points Y0. Build initial trust region model on Y0 and set k = 0.

Step 1 (Criticality step) Choose a base point yk ∈ Yk and calculate the gradient of our

model. If the gradient is sufficiently small, stop. Otherwise, make sure the model is well-

posed [89] in a trust region with radius proportional to the norm of model gradient.

Step 2 (Step calculation) Solve the following trust region subproblem :

min φk(d),

s.t. ‖d‖ ≤ ∆k

l ≤ xk + d ≤ u, (4.16)

where φk(d) is a local quadratic model of Φ(x) in a trust region with radius ∆k. Here,

‖ · ‖ is the 2-norm.

Step 3 (Acceptance of the trial step) Compute the ratio of actual and predicted function

reduction

rk =
Φ(xk)− Φ(xk + dk)

φk(0)− φk(dk)
,

where dk is the minimizer of (4.16). If rk > 0, then xk+1 = xk+dk; otherwise, xk+1 = xk.

52

Step 4 (Trust region radius update) Update trust region radius by

∆k+1 =






1
2
‖dk‖ if rk < 0.1,

max{1
2
∆k, ‖dk‖} if 0.1 ≤ rk < 0.7,

max{∆k, 2‖dk‖} if rk ≥ 0.7,

If rk ≥ 0.1, form Yk+1 from Yk by merging new point xk+1. Set k = k + 1, go to Step 1.

Step 5 (Model improvement) This step applies only when rk < 0.1. In this case, before

shrinking the trust region radius, make sure the model is well-posed [89] in the current

trust region. Set k = k + 1, go to Step 1.

One critical advantage of this algorithm is using the least Frobenius norm updating strat-

egy [90] to update the quadratic model (4.16). Hence, to build our quadratic model, we only

need O(n) (in our experiments, 2n + 1) function evaluations, while normally (n + 1)(n +

2)/2 = O(n2) number of valuations are required for building a fully quadratic model (Note,

(n+1)(n+2)/2 could be much bigger than 2n+1 for relatively large n). In addition, at each

iteration, only one new function evaluation is required to update the local quadratic model.

Therefore, our approach is usually more efficient [91, 89] than other widely used strategies

in derivative-free optimization, such as using finite-difference to approximate derivatives [92]

or some direct search methods [93]. Global convergence of the algorithm as well as the

good local geometry of the set of interpolation points are guaranteed by trust region tech-

niques [89][90].

4.5 Polycube Mapping for Multiple Objects

We also demonstrate an application of our polycube mapping framework in multiple objects

mapping. Polycube can be used as a canonical base domain for multiple objects (preferably,

these objects have the same topology and similar geometry). Our framework can be used

to generate such a common regular domain, and multiple objects are parameterized onto

this single polycube with low distortion. Multiple shapes can be analyzed, processed, and

53

integrated over this single domain. Supposing we have a set of models {S1, . . . , Sn} to be

integrated. We construct a common polycube P using S1. We also compute initial mapping

fi between P and each Si, i = 1, . . . , n. Then simultaneously, we optimize P and the mapping

fi : Si → P using the above proposed framework. The final polycube domain P is the one

that minimizes the total distortion of multiple polycube parametrization E =
∑

i E(fi). The

final polycube is an optimal domain for all these models. Inter-surface mapping between

two models Si and Sj can be composed and optimized over the this domain as fi,j : Si →

Sj = f−1
j ◦ fi. We visualize our optimal polycube and the mapping results using inter-object

morphing by linearly interpolating them over the common polycube domain.

Specifically, we construct initial polycube P for S1 and use projection to determine corner

points mapping. However, this simple projection approach does not work well when we

map P to other models S2, S3, . . . , Sn, especially when Si is not geometrically similar to P .

Especially for this situation (when we want to map a surface to a dissimilar polycube), we

compute the initial polycube mapping in the following more robust way (Note that any other

suitable polycube mapping approach can also be used to generate initial fi). We partition P

and each Si consistently (i.e. the segmentation of P and Si has the isomorphic dual graph);

then compute the mapping fi : Si → P by merging all individual sub-region mappings. Such

an approach based on canonical pants decomposition is introduced in [94]. We briefly recap

the basic idea, and refer readers to [94] for details. The pants patch is a genus-0 surface with

3 boundaries. Any surface (except for a few trivial cases) can be decomposed into a set of

pants patches, including g handle patches and a base patch, where g is the genus. The base

patch is then further iteratively partitioned into a set of pants patches. Finally, every pants

patch is decomposed into two sub-patches, each of which can be parameterized on a regular

planar hexagon. Therefore, the global surface mapping between two objects is composed by

parameterizations of sub-patches on these hexagonal domains. This approach can easily and

robustly handle the surface mapping between two objects with arbitrary topology and feature

54

points, therefore it is suitable here for generating initial mapping fi : Si → P . Figure 4.8

shows an example of using the above approach to construct optimal common polycube for

the horse and the cow. Individually optimal polycubes for the horse and cow are shown in

(b) and (c), and initial polycube maps are visualized in (a) and (d); the optimal common

polycube is shown in (f). Specifically, a compromise can be seen in the neck region. The final

common polycube mappings are visualized in (e) and (g).

Figure 4.8. Common Polycube Mapping for Multiple Models. Initial polycube maps of the horse
and cow are as (a) and (d); individually-optimal polycube domains are shown in (b) and (c); the
common optimal polycube domain is shown in (f); and the final common optimal polycube mapping
of both models are as (e) and (g). Note: the common polycube balances both individually-optimal
polycubes, see the neck region.

4.6 Experimental Results and Discussions

We compare the properties of our polycube mapping framework with existing methods and

list them in Table 4.1. Our method generates the optimal polycube within the same topo-

logical class, and the complexity of the polycube is flexibly bounded by the given number

of singularities. We test our optimization framework on a few 3D shapes. Figure 4.9 shows

55

the optimization on Bimba and Max-planck. The texture-mapped rectangular grids become

closer to squares, indicating the reducing of angle distortion.

Figure 4.9. Polycube Mapping of Bimba and Max-Planck. (a,d) initial mapping, (b,e) optimized
mapping. The texture mappings of grids show the reduction of angle distortions after the opti-
mization. (c,f) initial polycube (in upper row) and optimized polycube (in lower row) domains.

Table 4.1. Comparisons of Different Polycube Mapping Methods. PC Constr., Opt. PC, Sing. Con-
trol, Common PC indicate whether polycube construction can be automatic, whether polycube
shape is optimal, whether polycube complexity can be controlled by the given restriction on sin-
gularity number, and whether it can be used to construct a canonical domain for multiple objects,
respectively.

PC Opt. Sing. Common
Methods Constr. PC Control PC

Tarini[6] manual no manual no
Wang[9] manual no manual no
Wang[10] manual no manual no
Lin[52] auto. no no no
He[53] auto. no yes no
Ours auto. yes yes yes

Figure 4.10 shows a common polycube parameterization for multiple objects. We parame-

terize the horse, cow, and goat onto an optimized common polycube domain. (a-c) visualize

the geometry represented on the polycube parameterization (using the connectivity of the

polycube), then we can easily interpolate them and generate a “mixed creature”. (d) shows

56

an interpolated shape with 20%-horse, 50%-goat, and 30%-cow. Features of horse, goat, and

cow can be seen on the final interpolated shape.

Figure 4.10. Integration of Multiple Objects over a Common Polycube Domain. The horse (a), goat
(b), and cow (c) are blended in a this polycube domain. Features from the original models can still
be seen in the interpolated shape (e.g. the mouth and neck of the horse, ears of the goat, and the
tail of the cow).

The quality of polycube mapping can be measured by area distortion ǫarea and angle

distortion ǫangle [95].

ǫarea(T) =
area(∆M ′(T))

area(∆M (T))
+

area(∆M(T))

area(∆M ′(T))

ǫangle(T) =
cotα|a2|+ cotβ|b2|+ cotγ|c2|

2area(∆M(T))

The closer the values of ǫarea and ǫangle is to 1, the better the quality of polycube mapping

we get. The statistics and performance of our test cases are reported in Table 4.2.

Intuitively, the more complicated the polycube domain is used, the more freedom we have

to optimize its shape. Moreover, generally when the polycube is closer to the original model,

we can get a less distorted/stretched polycube mapping. Figure 4.11 illustrates an example

on the Beethoven model. When only one cube is used as the parameterization domain, the

distortion is larger (a,b), compared with the mapping constructed on a more complicated

polycube domain (c,d). On the other hand, a more complicated polycube domain indicates

57

Table 4.2. Runtime Table: #∆ (number of triangles); #C number of corner points, ǫ0angle and ǫ0area
are angle and area distortions before optimization; ǫangle and ǫarea are distortions after optimization;
T1 and T2 is the execution time for domain optimization and mapping optimization (in seconds).

Models #∆ #C ǫ0angle ǫ0area ǫangle ǫarea T1 T2

Isis 5K 8 1.261 1.429 1.134 1.385 0.52 112
Beethoven 21K 20 1.387 1.563 1.215 1.236 7.74 504
Max-Planck 10K 8 1.104 1.477 1.060 1.395 1.36 33

Bimba 30K 20 1.292 1.243 1.283 1.209 10.62 744
horse 16K 60 1.352 1.302 1.258 1.229 11.72 1842
cow 39K 60 1.198 1.210 1.191 1.161 21.21 2898
goat 21K 60 1.359 1.304 1.241 1.190 10.83 2032

more corner points (singularities) [9] and potentially more-distorted parameterization across

sub-region boundaries.

Figure 4.11. Different Initial Corner Budgets. With increase of the initial budget (from 8 to 20),
the mapping quality is improved (from a,b to c,d).

We also adjust the weighting factor α in Eq 4.4 to see different mapping results. Table 4.3

shows the different angle and area distortion under different settings. α = 1.0 was used when

we perform our other experiments. Figure 4.12 illustrates this mapping result. When the area

term is emphasized, a more uniform but less conformal mapping is obtained (a,b); when α

is small, the angle distortion is reduced (c,d).

Moreover, our approach also applies to high-genus models. In Figure 4.13, an example is

provided on model Torus, where the polycube domain is optimized. (a) is the unoptimized

58

Figure 4.12. Different Weighting Factors. (a,b) Area-stretching term α = 1000, (c,d) α = 0.01.

Table 4.3. Testing different weighting on the area-stretching term (α in equation (4.4)), on the
polycube-Beethoven mapping. ǫangle and ǫarea are the corresponding angle and area distortion.

α 0.1 0.5 1.0 1.5
ǫangle 1.219 1.235 1.253 1.264

ǫarea 1.380 1.316 1.292 1.281

polycube mapping result; (b) is the optimized polycuybe mapping result, where the domain

is updated. The optimized polycube mapping provides better remeshing quality.

Figure 4.13. Domain Optimization on High Genus Model. (a) is the unoptimized polycube mapping
result; (b) is the optimized polycuybe mapping result, where the domain is updated. The optimized
polycube mapping provides better remeshing quality.

59

4.7 Summary

In this chapter, an interactive optimization framework to solve the optimal polycube map-

ping problem is proposed. Because directly solving optimal polycube domain and mapping

together is too expensive, polycube domain shape and polycube mapping are iteratively op-

timized separatively, to make full use of the available partial derivative information of the

objective function. An efficient non-linear optimization algorithm with linear bound con-

straints for the first sub-problem is developed to find a optimized polycube domain. For

the second sub-problem, an efficient derivative-free solver is developed, making use of the

summation-of-square structure of the objective function; and a fast mapping re-computation

algorithm to accelerate the evaluation in the optimization process is proposed. The polycube

mapping framework has been demonstrated effective in several experiments, and can be used

to construct common polycube domains for multiple objects.

60

5 Volumetric Polycube Parameteri-
zation Guided By Frame Field

Solid volumetric data have richer contents than those of the boundary surface. When the data

processing or analysis are related to material, intensity, or any other structural information

defined over the whole 3D region of the object (instead of on just its boundary shell), we

need to consider the shape as a 3-manifold and study the volumetric parameterization.

Computing volumetric parameterization is a fundamental problem and is very important

for geometric modeling and processing of solid data in scientific and engineering fields. It

serves as an important preprocessing step in many tasks of CAD, CAE, CAM, medical

image analysis and etc. Therefore, we would like to generalize the parameterization from

the surfaces to the solids. In this chapter, volumetric polycube parameterization guided by

frame field is presented. A frame is defined as a collection of three coupled unit orthogonal

vectors X = (v0,v1,v2), which is usually represented by a 3 × 3 unitary matrix. A frame

field contains a set of frames {Xi} defined over a manifold.

5.1 Definitions

Given a solid M , a volumetric parameterization is defined as

f : M → Ω, (5.1)

where Ω ⊂ R3. f is establishing three scalar parametric functions on the given model M . In

the discrete representation, the solid M is given as a tetrahedral mesh containing a set of

tetrahedra (or tets). In that case, f is piecewise linear function. The gradient or Jacobian

61

J of this vector function f(x, y, z) = (fu, f v, fw), (x, y, z) ∈ M and (fu, f v, fw) ∈ Ω is a

matrix containing three column vectors

J = ∇f =

[
∇fu ∇f v ∇fw

]
(5.2)

where ∇fu = [∂f
u

∂x

∂fu

∂y

∂fu

∂z
]T , ∇f v = [∂f

v

∂x

∂fv

∂y

∂fv

∂z
]T and ∇fw = [∂f

w

∂x

∂fw

∂y

∂fw

∂z
]T are 3× 1

vectors. Discretely, the gradient defined on tet-i is a constant denoted by ∇fi. When the

determinant on tet-i ‖∇fi‖ = 0, we call it a singularity, since ∇fi is singular. Generally,

there exist singularities in the volumetric parameterization.

5.1.1 Objective Energy

As in Eq 5.2, the gradient of the parametric function and the frame field can be both

represented by matrices. The parameterization can be controlled by a frame field through

minimizing the different between the gradient and the frame field. Based on this idea, Nieser

et al [20] propose CUBECOVER algorithm to compute a volumetric mapping by minimizing

the functional:

E =
∑

i

‖∇fi −Xi‖
2 · ti (5.3)

where ∇fi indicates the gradient of the parametric function to be solved, and Xi indicates

the frame defined in tet-i, and ti is the volume of tet-i. In other words, the difference between

the given frame field Xi and the gradient of the parametric function is to be minimized. The

Frobenius norm is used here.

According to Wang et al [13], the gradient of a parametric function f defined on tet-i with

respect to u, v, w coordinates can be discretized as 3× 1 vectors, i.e. ∇fu
i , ∇f

v
i and ∇fw

i .

∇fu
i =

1

3ti
Sfui (5.4)

∇f v
i =

1

3ti
Sfvi (5.5)

∇fw
i =

1

3ti
Sfwi (5.6)

62

where ∇fi = [∇fu
i ∇f

v
i ∇f

w
i] is a 3 × 3 matrix containing three 3 × 1 vectors, and S is a

3 × 4 constant matrix resulting from signed triangle face area and face normal vectors. fui ,

fvi and fwi are three 4× 1 vectors, indicating the parametric values of 4 vertices in tet-i.

5.1.2 Linear Constraints

The solid M is usually parameterized onto an atlas of local charts (topological disks). Each

local chart is represented by a tet. A piece of the parametric function is defined for each tet.

The volumetric parameterization is then defined by local mapping and the transition among

them. Intuitively, given two adjacent tet-i and tet-j, and the local pieces of the parametric

function are fi and fj respectively, the transition from fi to fj is usually described by rigid

transformation, namely rotation and translation. Formally, they are related by

fj = Πijfi + gij (5.7)

where Πij is called matching matrix that can be any 3D rotation and gij is called gap vector

that can be any 3D translation.

Therefore, on a face triangle ∆pqr shared by tet-i, and tet-j, the parametric function f

to be solved is required to satisfy the following transition functions:

f(p)j = Πijf(p)i + gij (5.8)

f(q)j = Πijf(q)i + gij (5.9)

f(r)j = Πijf(r)i + gij (5.10)

where f(p)j, f(q)j, and f(r)j are three 3×1 vectors indicating the parametric values of three

corners on ∆pqr, respectively. They are unknown variables.

Singularity. Given an interior edge e surrounded by cyclically ordered tets (t0, ..., tβ),

and any point p on e, the parametric function f should respect the transition functions in

63

Eq 5.8, 5.9, and 5.10, i.e.

f |t1(p) = Πt0t1f |t0(p) + gt0t1 ,

f |t2(p) = Πt1t2f |t1(p) + gt1t2 , . . .

and after plugging each equation into its successor we get:

f |t0(p) = type(e, t0) · f |t0(p) + ḡ

⇔ (Id− type(e, t0))f |t0(p) = ḡ (5.11)

for some constant vector ḡ = [ḡ0 ḡ1 ḡ2]
T , which depends on the gap gtiti+1

where i =

0, 1, . . . , β − 1. This equation is true for any point p on the edge. If type(e, t0) = Πtβt0 ·

Πtβ−1tβ · · ·Πt1t0 is not identity, the edge e is called a singularity. If Πij is chosen as identity

and gij is chosen as zero vector, there is no interior singularity within the volume. However,

other types may be introduced and details are discussed in chapter 6.

5.2 Experimental Results and Discussions

We compute volumetric parameterization for various solid models, in which polycube domain

is constructed for given geometric models and used as the boundary constraints [4]. The

optimization of the objective energy in Eq 5.3 leads to a system of linear equations. The

volumetric parameterization is obtained by solving the linear system. The experiments are

conducted on a workstation with 2.27 GHz Xeon CPU and 4GB memory.

Hexahedral Remeshing. Regular hex structure ΩH can be generated on the polycube

domain Ω. After the parameterization f : M → Ω computed on the tetrahedral mesh of

M , we simply resample all the vertices of ΩH on M by f−1 using barycentric interpolation.

Figures 5.1-5.3 illustrate our hex meshing results generated from the volumetric parameter-

ization for various models.

64

Figure 5.1. Hex Meshing Results Using Constructed Polycube Domain for Rocker Arm [4].

(a) Bump Torus (b) 3-Torus

Figure 5.2. Hex Meshing Results Using Constructed Polycube Domains for 3-Torus and Bump
Torus [4].

(a) Bunny (b) Hand

Figure 5.3. Hex Meshing Results Using Constructed Polycube Domains for Model Bunny and
Hand [4].

65

5.3 Summary

In this section, we present an effective volumetric polycube parameterization guided by

frame field for given solids. This polycube parameterization usually does not have interior

singularities and hence is desirable for many computer-aided design/engineering tasks such

as spline construction. We demonstrate this parameterization’s application in high-quality

hexahedral mesh generation for 3D solid geometric models.

66

6 Frame Field Optimization Using Quater-
nions

In chapter 5, we have demonstrated the volumetric parameterization guided by a prede-

fined frame field. The smoothness of the frame field significantly affects the quality of the

parameterization and resultant hexahedral mesh generation. In this chapter, we study the

automatic construction and optimization of a 3D frame field for volumetric parameteriza-

tion. Besides re-meshing, the frame field is also utilized in many applications in computer

graphics and geometric modeling, such as texture synthesis, non-photorealistic rendering,

pen-and-ink sketching, fluid simulation, parametrization and spline construction.

We recap the definition of 3D frame field: a frame is defined as a collection of three coupled

unit orthogonal vectors X = (v0,v1,v2), which is usually represented by a 3 × 3 unitary

matrix. A frame field contains a set of frames {Xi} defined over a manifold. For example,

given a tetrahedral mesh M , a frame is assigned to each tetrahedron. The volumetric frame

field is a 3D extension of the 2D frame field on surfaces.

The quality of a parametrization and resulting quadrilateral/hexahedral mesh depends

heavily on the guiding frame field, which describes the trend of the parametric lines. The

directions of the parametric lines are related to the distortion of the meshing element from

a square/cube and encode the topological structure of the quadrilateral/hexahedral mesh.

Hence a good frame field is essential. Manually setting the frame field is tedious and

error-prone. Therefore automatic generation of the frame field is necessary. Compared with

volumetric frame field, the manipulation of the surface frame field has been studied more

67

thoroughly [21, 62, 64, 24, 25, 26, 57, 60, 23, 22]. The surface frame field optimization

or smoothing utilizes the property that a frame on a triangle in the surface mesh can be

represented by an angle, which simplifies the formulation and solution of the optimization

problem.

However, the generalization from surface frame field to volumetric frame field is not

straightforward. There is not enough work on volumetric frame field smoothing [20, 60]

compared with the surface frame field. The representation of 3D frame field is complicated,

and the singularity structure is quite different from the one in surface frame field, which

makes optimization of the frame field more difficult.

In this chapter, we propose an effective frame field optimization framework based on

quaternion representation which is very efficient. Our contribution is that we introduce a

compact representation of the frame field based on quaternions, which accelerates the opti-

mization. Compared with the previous work on volumetric frame field smoothing [60, 65], our

representation yields fewer number of variables in the optimization solving process, which

improves the efficiency of the optimization.

6.1 Frame Field Construction and Optimization

6.1.1 Definitions

Formally, a frame is defined as a collection of three ordered unit orthogonal vectors X =

(v0,v1,v2). Therefore a frame in 3D can be represented by a 3× 3 unitary matrix. A frame

field is a set of frames, each of which is defined in a tetrahedron. For any tetrahedron ti,

there is a frame Xi associated with ti. Considering a reference frame, the frame defined on

a tetrahedron ti is represented by a relative rotation matrix indicating the rotation from the

reference. Without loss of generality, the reference frame is simply selected as the identity

matrix.

68

The quaternion is a number system extending the complex number. A quaternion is a four

dimensional complex number defined as q = w + xi + yj + zk, indicating a rotation about

the axis
−→
d = (d0, d1, d2) for angle α with respect to the right hand rule. Hence there are two

equivalent notations for a quaternion in Eq 6.1 and 6.2.

q = (w, x, y, z) (6.1)

q = (cos
α

2
,
−→
d · sin

α

2
) (6.2)

Here w = cos α
2
, x = d0 sin α

2
, y = d1 sin α

2
and z = d2 sin α

2
where α ∈ [0, π].

Important Rules of Quaternion Calculations. Given quaternions q = (w, x, y, z),

qi = (wi, xi, yi, zi) and qj = (wj, xj , yj, zj), some important rules of quaternion calculations

are given as follows.

• Conjugate: q̄ = (w,−x,−y,−z).

• Norm: ‖q‖ =
√

w2 + x2 + y2 + z2

• Reciprocal: q−1 = q̄

‖q‖2
.

• Product: qi · qj = (wiwj − xixj − yiyj − zizj, wixj + xiwj + yizj − ziyj, wiyj − xizj +

yiwj + zixj, wizj + xiyj − yixj + ziwj).

Conversion between Quaternion and Rotation Matrix in 3D. A quaternion q =

(w, x, y, z) and a 3×3 rotation matrix A = [aij] can be converted to each other. For example,

a quaternion q can be converted to a matrix A by

A =




1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy

2xy − 2wz 1− 2x2 − 2z2 2yz + 2wx

2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2



.

Converting a rotation matrix to a quaternion is a bit more challenging and requires some

tricks to avoid numerical instability.

69

Figure 6.1. Quaternion Representation of Two Frames. (a) A frame Fi can be denoted by Fi = Ai ·I,
given I is a identity reference frame and Ai is a rotation. Note that translation is ignored here. (b)
Quaternions qi, qj and qij are equivalent to rotations Ai, Aj, and Aij , respectively. (c) Frames and
rotations are represented by quaternions.

6.1.2 Quaternion Representation of Frames

Given a frames Fi defined on a tetrahedra as shown in Figure 6.1-a, it can be denoted by

Fi = Ai · I (6.3)

where Ai is a rotation from a global reference frame I. Note that the translation is ignored

here. Furthermore, the rotation from frame Fi to Fi can be denoted by

Aij = Fj · F
−1
i (6.4)

If I is chosen as identity transformation, a frame Fi is equivalent to Ai according to Eq 6.3.

Moreover, rotations Ai, Aj and Aij can be naturally represented by quaternions qi, qj and qij ,

as shown in Figure 6.1-b. Therefore, a frame can be represented by a quaternion equivalently.

If symmetry is not considered(defined in Sec 6.1.3), the transitional rotation between two

frames qi and qj is measured by another quaternion qij in Eq 6.5, illustrated in Figure 6.1-c.

qij = qj · q
−1
i (6.5)

6.1.3 Rotational Symmetry in Measuring the Smoothness of Two Frames

The formulation in Eq 6.5 is evaluating the magnitude of rotation from three vectors in

one frame to the corresponding vectors in an adjacent frame. That evaluation method is

for a simple frame field. A wide class of applications in computer graphics, such as texture

70

synthesis [96] or re-meshing [97], requires to use objects of higher symmetry than simple

frame field, i.e. objects invariant by rotations of 90 ·k degrees about single u−, v− or w−axis

where k ∈ Z [24]. In that case, one vector, e.g. u-axis in a frame can correspond to a different

vector, e.g. v−axis in an adjacent frame. This concept is called rotational symmetry in the

frame field and can be used to introduce interior singularities in the parameterization and

reduce the distortion [24]. Specifically, in a ”perfectly smooth” rotational symmetric frame

field (there is no deviation),the transformations rotating a frame to another one without

distinguishing the specific types of vectors contain 24 rotations, namely identity, rotation

about single u−, v− and w−axis for 90, 180 and 270 degrees, and the composite of the

aforementioned rotations. The aforementioned 24 rotations form a group called chiral cubical

symmetry group , denoted by G in this thesis.

Figure 6.2 illustrates the local effects of allowing rotational symmetry in parameterization

and subsequent mesh generation. In these three examples, the parametric lines are connected

in different ways. Without rotational symmetry, a parametric line (e.g. iso-u) in a local chart

connects to another local chart’s parametric line of the same type as shown in Figure 6.2-a.

After the parameterization, hexes could be extracted by intersecting the traced parametric

lines. Then a hex-mesh is generated by gluing generated adjacent hexes. If rotational sym-

metry is allowed, in the generated hex-mesh, different parametric lines are not distinguished.

For example, as shown in Figure 6.2-b positive iso-u line can seamlessly connect to negative

iso-u line. Figure 6.2-c shows another example, iso-u line is connected with iso-v line. When

using these parameterization to generate hexahedral meshes, all these three meshing results

are valid.

Once the symmetry is considered, the smoothness of two frames q0 and q1 should be the

minimum rotation angle, after applying any rotation in G on the transitional rotation q01. For

example, the energy of 120-degree rotation should be equivalent to the energy of 30-degree

71

Figure 6.2. Different Types of Parametric Lines Can Connect to Each Other in Generated Hexahe-
dral Mesh. (a) Normally a parametric line (e.g. iso-u) in a hex connects to another one’s parametric
line of the same type. Hex-mesh is generated by gluing adjacent hexes. In the generated hex-mesh,
different parametric lines are not distinguished. For example, in (b) iso-u line in positive direction
can seamlessly connect to iso-u line in negative direction. In (c) iso-u line can connect to iso-v line.
The glued hexes in (a), (b) and (c) are considered the same.

rotation. Formally, the smoothness is defined as

Esmooth(q0, q1) =min
π01

θ01 (6.6)

where θ01 is the rotation angle in the quaternion s = π01 · q01 and π01 ∈ G is represented by a

quaternion. According to Eq 6.2, s = (cos θ
2
,
−→
d · sin θ

2
). Here θ is the actual rotational angle

between the two frames.

In surface parameterization, rotational symmetry was studied in designing smooth surface

frame field [24, 23]. It is non-trivial to generalize such symmetry in volumetric frame field

smoothing, since representing the symmetry continuously in optimization is very challenging.

First, previous volumetric frame field smoothing methods [60, 5] use softly constrained energy

which represents the symmetry through an indirect way, where the symmetry is denoted by

matrices. Hence orthonormalization is necessary to round the approximated solution to a

valid rotation matrix. Second, more importantly, unless manually constructed or adjusted,

frame fields do not usually lead to non-degenerate volumetric parameterization. Finally, in

contrast to the surface frame field, symmetry for 3D frame fields cannot be formulated by

simple one-parameter 2D rotations in the tangent planes [60].

72

Quaternion is a natural and direct way to indicate the symmetry in rotation. One of the

benefits of using this representation is that quaternions are always valid rotations, where

complicated orthonormalization is not required. Normalization of quaternions is usually re-

quired, which is very simple.

Moreover, since G contains 24 equivalent classes of rotations, the condition π01 ∈ G requires

rounding rotation π01 to one of the 24 rotations. If π01 were represented by a matrix, the

geometric meaning of the rounding process is obscure. However, if π01 is represented by a

quaternion, the geometry meaning is intuitive: rounding π01 to a rotation in G because their

rotation angles and axes are close to each other respectively. This rounding is necessary since

it is very difficult to solve the problem if π01 changes discretely.

6.1.4 Definition of Objective Energy

Given two frames defined on adjacent tetrahedra ti and tj, denoted by qi and qj , the rotation

from qi to qj is denoted by qij = qj · q
−1
i . When symmetry is considered, the rotation between

them is denoted by sij = (s0ij , s
1
ij, s

2
ij, s

3
ij) as defined in Eq 6.7.

sij = πij · qij (6.7)

According to the definition of quaternions in Eq 6.2, the first component of sij is related to

the rotation angle θij , formally in Eq 6.8.

s0ij = cos
θij
2

(6.8)

where generally θij ∈ [0, π], or θij ∈ [0, π
2
] considering the symmetry. A straightforward way

to measure the smoothness is using the rotation angles as shown in Eq 6.9.

Esimple(fij) = θij = 2 arccos s0ij (6.9)

where tj and tj share a face fij . This involves inverse trigonometric function arccosx, which

is non-linear and not differentiable at x = kπ, k ∈ Z.

73

To get rid of such arccos function, an approximated objective energy can be defined using

cos
θij
2
, as shown in Eq 6.10.

E(fij) = −(s
0
ij)

2 = − cos2
θij
2

(6.10)

This formulation is desirable approximation and simplification because y = cos x
2
function

ismonotonically decreasing in the interval x ∈ [0, π]. Consequently, E and Esimple achieve

maxima and minima at the same time, i.e. when θij = 0 (minimum) or θij =
π
2
(maximum).

According to the properties of quaternions, s0ij is related to qi, qj defined on the two adjacent

tetrahedra, as shown in Eq 6.11.

s0ij = m0
ij(wiwj − xixj − yiyj − zizj)

−m1
ij(wixj + xiwj + yizj − ziyj)

−m2
ij(wiyj − xizj + yiwj + zixj)

−m3
ij(wizj + xiyj − yixj + ziwj)

(6.11)

where πij = (m0
ij , m

1
ij , m

2
ij, m

3
ij), qi = (wi, xi, yi, zi), and qj = (wj , xj, yj, zj) will be the vari-

ables in later optimization. The overall objective energy can be formulated as the summation

of E(fij) over all the interior faces in a volumetric mesh, as shown in Eq 6.12.

E =
∑

fij

E(fij) (6.12)

where fij are shared by two adjacent tetrahedra ti and tj .

This objective energy is to be minimized subject to the spherical constraints, i.e. the

quaternions, such as qi, qj and πij , should be normalized, as follows.

w2
i + x2

i + y2i + z2i = 1

w2
j + x2

j + y2j + z2j = 1

(m0
ij)

2 + (m1
ij)

2 + (m2
ij)

2 + (m3
ij)

2 = 1

74

6.1.5 Optimization

The problem of volumetric frame field smoothing has been formulated as a 6-degree polyno-

mial objective function subject to 4D spherical constraint. We apply an efficient great-circle

search optimization algorithm [67] which minimizes the objective energy subject to the spher-

ical constraints. We avoid repetition in this chapter and refer the readers to [67] for details

about the optimization algorithm.

6.2 Experimental Results and Discussions

The experiments are run on a laptop with 2.1GHz Intel Core i3-2310M CPU and 12GB

RAM. The results are compared with a state-of-the-art method [5] in the rotation angles

between two adjacent frames in the field. In order to have same boundary frame field for fair

comparison on one model, we extract and adopt the boundary frames of the data provided

by [5], which is generated from principal-dominant cross fields on boundary surfaces.

Numerical results and timings for various models are reported in Tables 6.1-6.6, where

θ, δ, and θmax indicate the mean rotation angle between two adjacent frames, the standard

deviation of the rotation angles, and the maximum rotation angle, respectively. The initial

guess of the interior frames are set as identity. Compared with [5], our method generates

smoother frame field whose rotation angle between two adjacent frames is smaller statisti-

cally. In addition, our method is more efficient, since there are fewer number of variables and

the constraints are less complicated when quaternion representation is used.

The number of singularities in the optimized frame fields is reported in Table 6.7. Ns is

the number of singularities in the model. Here the number of singularities is counted as the

summation of the number of simple singularity curves and the number of intersection nodes

of the singularity curves.

Figure 6.3 illustrates the distribution of rotation angles between adjacent frames in the

smoothed frame field generated by our methods and [5], where red curves represent our

75

Table 6.1. Comparison of Frame Field Smoothness and Optimization Time on Rod. θ, δ, and
θmax indicate the mean rotation angle between two adjacent frames, the standard deviation of the
rotation angles, and the maximum rotation angle, respectively.

#Tets= 41K

θ δ θmax Time(s)
SRF [5] 59.95 57.49 180.00 7.9

Ours 11.52 21.56 102.27 3.2

Table 6.2. Comparison of Frame Field Smoothness and Optimization Time on Bunny.

#Tets= 153K

θ δ θmax Time(s)

SRF [5] 96.79 61.07 180.00 33.0

Ours 7.26 20.09 108.70 13.4

results and blue curves represent results in [5]. In the subfigures, horizontal axis indicates

the rotation angle in degrees, and vertical axis indicates the accumulated percentage of

rotation angles below a specific degree. Note that the closer is the curve to shape ’p’(i.e.

closer to left side and top side of the bounding box of the subfigure), the smoother is the

frame field. Compared with [5], our method generates smoother frame fields. An interesting

phenomenon can be noticed that the smoothing of the largest model Rocker Arm consumes

surprisingly less time compared with other models. The reason for this is the objective energy

moves to a local minima soon after the starting point.

Remarks. Though the Poincarë-Hopf index theorem [24] provides theoretical guarantee

to find a frame field which is valid for surface parameterization, given a 3D frame field,

whether it leads to a valid volumetric parameterization and the existence of resultant all-hex

re-meshing is an open problem. Therefore, we focus on the smoothing of a volumetric frame

field, while dealing with the singularity of a generated frame field is beyond the scope of this

dissertation. There exists work trying to propose various heuristic postprocessing methods

Table 6.3. Comparison of Frame Field Smoothness and Optimization Time on Fertility.

#Tets= 179K

θ δ θmax Time(s)
SRF [5] 100.30 57.00 180.00 35.0

Ours 10.49 23.10 109.80 14.1

76

Table 6.4. Comparison of Frame Field Smoothness and Optimization Time on Joint.

#Tets= 187K

θ δ θmax Time(s)
SRF [5] 87.92 70.32 180.00 34.4

Ours 7.47 23.30 100.21 12.71

Table 6.5. Comparison of Frame Field Smoothness and Optimization Time on Hanger.

#Tets= 215K

θ δ θmax Time(s)

SRF [5] 105.73 63.11 180.00 40.7
Ours 11.75 26.32 101.13 28.7

Table 6.6. Comparison of Frame Field Smoothness and Optimization Time on Rocker Arm.

#Tets= 254K

θ δ θmax Time(s)
SRF [5] 54.97 53.70 180.00 46.9

Ours 2.97 13.24 105.88 4.2

Table 6.7. Number of Singularities in Optimized Frame Fields. Ns is the number of singularities in
the model.

Model Rod Bunny Fertility Joint Hanger Rocker Arm

Ns 946 2563 3552 397 1250 663

77

(a) Rod (b) Bunny (c) Fertility

(d) Joint (e) Hanger (f) Rocker Arm

Figure 6.3. Distribution of Rotation Angles in Various Models. Red curves represents our results
and blue curves represent results of SRF method [5]. Horizontal axis indicates the rotation angle
in degrees. Vertical axis indicates the accumulated percentage of rotation angles below a specific
value. The closer is the curve to shape ’Γ’(i.e. closer to left side and top side of the bounding box
the subfigure), the smoother is the frame field. Our method generates smoother frame fields. As for
the time complexity, please refer to Tables 6.1-6.6.

to remedy an incorrect frame field that yields degenerated parameterization, but none has

guaranteed success [65, 5]. Such postprocessing techniques includes modifying the matching

matrices [65] and/or improper singular edge collapse [5]. Here improper singularity is the

singular edge that yields degenerated parameterization.

6.3 Summary

In this chapter, quaternions are used to represent the frames for fast and effective volumetric

frame field smoothing. Compared with existing representations of the frames, the dimension

of the optimization variables is reduced, and the formulation of objective energy as well

as the constraints on the variables is simplified. Thanks to this compact representation, a

previously proposed great-circle search optimization algorithm in chapter 3 is able to be

78

applied which deals with spherical constraints. The experimental results indicate that this

proposed approach generates smoother frame field and is more efficient.

79

7 Conclusions

To summarize, in this dissertation we have studied the construction of parameterization on

regular geometric domains and explored their applications in shape modeling and computer-

aided design.

In chapter 3, we develop an effective progressive spherical parameterization algorithm, with

an efficient nonlinear optimization scheme subject to the spherical constraint. Compared with

state-of-the-art spherical mapping algorithms, our method demonstrates the advantages of

great efficiency, lower distortion, and guaranteed bijectiveness, and we show its applications

in spherical harmonics decomposition and shape analysis.

Spherical mapping is not suitable for high-genus surfaces but polycube domain can handle

this problem well. Therefore, in chapter 4, we propose a first topology-preserving polycube

domain optimization algorithm that optimizes polycube domain together with the param-

eterization to balance the mapping distortion and domain simplicity. We develop effective

nonlinear geometric optimization algorithms dealing with variables with and without deriva-

tives. This polycube parameterization algorithm can benefit the regular quadrilateral mesh

generation and cross-surface parameterization.

Surface parameterization has been widely investigated but the research for solids is not

enough. Hence in chapter 5, we develop volumetric parameterization guided by frame field

and demonstrate its application on high-quality mesh generation. A limitation is that such

local chart based algorithm would introduce more variables and lead to larger linear systems,

80

which requires a large-scale solver for sparse linear systems. We plan to extend the application

of the volumetric parameterization for heterogeneous volumes [58] and large-scale models.

In chapter 6, we develop a novel quaternion-based optimization framework for 3D frame

field construction and volumetric parameterization computation. We demonstrate our con-

structed 3D frame field has better smoothness, compared with state-of-the-art algorithms,

and it is effective in guiding low-distortion volumetric parameterization and high-quality

hexahedral mesh generation.

The limitations of the studied algorithms in this dissertation include: (1) Obtaining a lowly

distorted mapping for models with the long branch regions is still difficult. Besides, for an

extension of this work, we would like to exploit the parallelism in the global optimization

scheme by decomposing the given surface into a few individual regions [98, 99, 94] on which

local optimization of different vertices can be executed simultaneously without interrupting

each other. (2) Feature alignment in the polycube mapping can benefit many graphics ap-

plications such as morphing and registration. However, this is challenging and has not been

well discussed/solved in existing polycube mapping literature. Within our current frame-

work, on a subpatch, directly enforcing the harmonic mapping to map an interior feature

point to a specific position on the polycube domain may cause local flip-over around the

feature point. One possible approach is to simply add feature alignment as a soft constraint

in the mapping optimization step, such that feature matching errors are penalized like the

angle-distortion and area-distortion terms. To enforce a hard constraint on feature matching,

additional domain partitioning [94] to make the features on the subpatch boundary can be

another solution. Surface decomposition has been widely studied (see surveys [100, 101]). (3)

The algorithm in chapter 4 can not change the topology of the polycube domain. A possible

polycube construction with topological operations is studied in [4]. (4) Though the Poincarë-

Hopf index theorem [24] provides theoretical guarantee to find a frame field which is valid

for surface parameterization, whether a given 3D frame field can lead to valid volumetric

81

parameterization and resultant all-hex re-meshing is an open problem. It seems plausible

that we could start from a trivial but valid frame field such as identities, and constrain the

searching of frame field within a subspace that would not violate the sufficient conditions

discussed in [4, 65] such as only allowing identities and rotations about single axis and avoid-

ing two different types of matching matrices in a triangle face. We will study this problem

in the near future.

82

References

[1] Rhaleb Zayer, Christian Rossl, and Hans-Peter Seidel. Curvilinear spherical param-
eterization. In Proceedings of the IEEE International Conference on Shape Modeling
and Applications 2006, Washington, DC, USA, 2006. IEEE Computer Society.

[2] Emil Praun and Hugues Hoppe. Spherical parametrization and remeshing. ACM
Trans. Graph., 22:340–349, July 2003.

[3] Xianfeng Gu and Shing-Tung Yau. Global conformal surface parameterization. In
Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pages 127–137, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics As-
sociation.

[4] Wuyi Yu, Kang Zhang, Shenghua Wan, and Xin Li. Optimizing polycube domain
construction for hexahedral remeshing. Computer-Aided Design, in press, 2013.

[5] Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo. All-hex meshing
using singularity-restricted field. ACM Trans. Graph., 31(6):177:1–177:11, November
2012.

[6] M. Tarini, K. Hormann, P. Cignoni, and C. Montani. Polycube-maps. In ACM SIG-
GRAPH, pages 853–860, 2004.

[7] Hongwei Li, Kui-Yip Lo, Man-Kang Leung, and Chi-Wing Fu. Dual poisson-disk
tiling: An efficient method for distributing features on arbitrary surfaces. IEEE TVCG,
14(5):982–998, 2008.

[8] Zhengwen Fan, Xiaogang Jin, Jieqing Feng, and Hanqiu Sun. Mesh morphing us-
ing polycube-based cross-parameterization: Animating geometrical models. Comput.
Animat. Virtual Worlds, 16(3-4):499–508, 2005.

[9] Hongyu Wang, Ying He, Xin Li, Xianfeng Gu, and Hong Qin. Polycube splines. In
SPM, pages 241–251, New York, NY, USA, 2007. ACM.

[10] Hongyu Wang, Miao Jin, Ying He, Xianfeng Gu, and Hong Qin. User-controllable
polycube map for manifold spline construction. In SPM, pages 397–404, New York,
NY, USA, 2008. ACM.

83

[11] Xin Li, Xiaohu Guo, Hongyu Wang, Ying He, Xianfeng Gu, and Hong Qin. Harmonic
volumetric mapping for solid modeling applications. In SPM, pages 109–120, New
York, NY, USA, 2007. ACM.

[12] Xin Li, Huanhuan Xu, Shenghua Wan, Zhao Yin, and Wuyi Yu. Feature-aligned
harmonic volumetric mapping using mfs. Computers & Graphics, 34(3):242 – 251,
2010.

[13] Yalin Wang, Xianfeng Gu, Tony F. Chan, Paul M. Thompson, and Shing tung Yau.
Volumetric harmonic brain mapping. In ISBI 04: IEEE International Symposium on
Biomedical Imaging: Macro to Nano, pages 1275–1278, 2004.

[14] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin. Meshless harmonic volumetric
mapping using fundamental solution methods. IEEE Trans. on Automation Science
and Engineering, 6, 2009.

[15] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular
meshes. ACM Trans. Graph., 24(3):561–566, July 2005.

[16] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. Harmonic
coordinates for character articulation. ACM Trans. Graph., 26(3), July 2007.

[17] Yaron Lipman, David Levin, and Daniel Cohen-Or. Green coordinates. ACM Trans.
Graph., 27(3):78:1–78:10, August 2008.

[18] Nicu D. Cornea, Deborah Silver, and Patrick Min. Curve-skeleton properties, applica-
tions, and algorithms. IEEE Transactions on Visualization and Computer Graphics,
13(3):530–548, May 2007.

[19] T. Martin, E. Cohen, and R. M. Kirby. Volumetric parameterization and trivariate b-
spline fitting using harmonic functions. Computer Aided Geometry Design, 26(6):648–
664, August 2009.

[20] M. Nieser, U. Reitebuch, and K. Polthier. Cubecover parameterization of 3d volumes.
Computer Graphics Forum, 30(5), 2011.

[21] Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. Periodic global
parameterization. ACM Trans. Graph., 25(4):1460–1485, 2006.

[22] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector field design on surfaces.
ACM Trans. Graph., 25(4):1294–1326, October 2006.

[23] Jonathan Palacios and Eugene Zhang. Rotational symmetry field design on surfaces.
ACM Trans. Graph., 26(3), July 2007.

[24] Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry direction field
design. ACM Trans. Graph., 27(2):10:1–10:13, 2008.

[25] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. Geometry-aware direction
field processing. ACM Trans. Graph., 29(1):1:1–1:11, 2009.

84

[26] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation.
ACM Trans. Graph., 28(3):77:1–77:10, July 2009.

[27] Xin Li, Zhao Yin, Li Wei, Shenghua Wan, Wei Yu, and Maoqing Li. Symmetry and
template guided completion of damaged skulls. Computers and Graphics, 35(4):885–
893, 2011.

[28] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Ad-
vances in Multiresolution for Geometric Modelling, pages 157–186, 2005.

[29] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their appli-
cations. Found. Trends. Comput. Graph. Vis., 2(2):105–171, 2006.

[30] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameterization: Theory and practice.
In ACM Siggraph 2007 Course, volume 11, pages 1–87, 2007.

[31] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics, 2(1):15–36, 1993.

[32] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Mul-
tiresolution analysis of arbitrary meshes. In SIGGRAPH, pages 173–182, 1995.

[33] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes.
Computer Graphics Forum, 21(3):209–218, 2002.

[34] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–
27, 2003.

[35] Steven Haker, Sigurd Angenent, Allen Tannenbaum, Ron Kikinis, Guillermo Sapiro,
and Michael Halle. Conformal surface parameterization for texture mapping. IEEE
Transactions on Visualization and Computer Graphics, 6:181–189, April 2000.

[36] Zhong Li, Yao Jin, Xiaogang Jin, and Lizhuang Ma. Approximate straightest path
computation and its application in parameterization. The Visual Computer, 28:63–74,
2012. 10.1007/s00371-011-0600-0.

[37] Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical parameter-
ization for 3d meshes. ACM Trans. Graph., 22:358–363, July 2003.

[38] Shadi Saba, Irad Yavneh, Craig Gotsman, and Alla Sheffer. Practical spherical embed-
ding of manifold triangle meshes. In Proceedings of the International Conference on
Shape Modeling and Applications 2005, pages 258–267, Washington, DC, USA, 2005.
IEEE Computer Society.

[39] A. Sheffer, C. Gotsman, and N. Dyn. Robust spherical parameterization of triangular
meshes. Computing, 72:185–193, April 2004.

[40] Arul Asirvatham and Emil Praun. Consistent spherical parameterization. In in: In-
ternational Conference on Computational Science, pages 265–272, 2005.

85

[41] Haishan Tian, Yuanjun He, and Yong Wu. A new approach of progressive spherical
parameterization. In 9th International Conference on Computer Aided Design and
Computer Graphics, page 5 pp., dec. 2005.

[42] Ying Li, Zhouwang Yang, and Jiansong Deng. Spherical parameterization of genus-
zero meshes using the lagrange-newton method. In 10th International Conference on
Computer Aided Design and Computer Graphics, page 32, 2007.

[43] Ilja Friedel, Peter Schröder, and Mathieu Desbrun. Unconstrained spherical parame-
terization. In ACM SIGGRAPH 2005 Sketches, New York, NY, USA, 2005. ACM.

[44] R.B.Schudy and D.Ballard. Towards an anatomical model of heart motion as seen in
4d cardiac ultrasound data. In in 6 th Conf on Computer Applications in radiology
ans Computer Aided Analysis of Radiological Images, pages 366–376, 1979.

[45] G. B. Arfken and H. J. Weber. Mathematical Methods for Physicists. Academic Press,
Orlando, 1985.

[46] Kun Zhou, Hujun Bao, and Jiaoying Shi. 3d surface filtering using spherical harmonics.
Computer-Aided Design, 36(4):363–375, February 2004.

[47] M.Mousa, R.Chaine, and S.Akkouche. Frequency-based representation of 3d point-
based surfaces using the spherical harmonics. ICCVG’06, International Conference on
Computer Vision and Graphics, September 2006.

[48] Li Shen and Moo K. Chung. Large-scale modeling of parametric surfaces using spher-
ical harmonics. IEEE 3DPVT 2006: Third International Symposium on 3D Data Pro-
cessing, Visualization and Transmission, pages 294–301, June 2006.

[49] Chengming Zou, Guanghui Zhao, and Edwin R.Hancock. Reconstructing 3d facial
shape using spherical harmonics. In ICIAP’09 Proceedings of the 15th International
Conference on Image Analysis and Processing, pages 949–957, 2009.

[50] M.Kazhdan, T.Funkhouser, and S.Rusinkiewicz. Rotation invariant spherical harmonic
represetation of 3d shape descriptors. Symposium on Geometry Processing, pages 167–
175, June 2003.

[51] Panagiotis Papadakis, Ioannis Pratikakis, Stavros Perantonis, and Theoharis Theo-
haris. Efficient 3d shape matching and retrieval using a concrete radialized spherical
projection representation. Pattern Recognition, 40(9):2437–2452, 2007.

[52] J. Lin, X. Jin, Z. Fan, and C. C. L. Wang. Automatic polycube-maps. In GMP, pages
3–16, 2008.

[53] Y He, H. Wang, C.-W. Fu, and H. Qin. A divide-and-conquer approach for automatic
polycube map construction. Comput. Graph., 33(3):369–380, 2009.

[54] Shuchu Han, Jiazhi Xia, and Ying He. Hexahedral shell mesh construction via volu-
metric polycube map. In SPM, SPM ’10, pages 127–136, New York, NY, USA, 2010.
ACM.

86

[55] Shenghua Wan, Zhao Yin, Kang Zhang, Hongchao Zhang, and Xin Li. A topology-
preserving optimization algorithm for polycube mapping. Computer & Graphics,
35(3):639–649, June 2011.

[56] Jiazhil Xia, Ismael Garcia, Ying He, Shi-Qing Xin, and Gustavo Patow. Editable
polycube map for gpu-based subdivision surfaces. In Symposium on Interactive 3D
Graphics and Games, pages 151–158, 2011.

[57] James Gregson, Alla Sheffer, and Eugene Zhang. All-hex mesh generation via volu-
metric polycube deformation. Computer Graphics Forum, 30(5):1407–1416, 2011.

[58] Huanhuan Xu, Wuyi Yu, Shiyuan Gu, and Xin Li. Biharmonic volumetric mapping us-
ing fundamental solutions. IEEE Transactions on Visualization and Computer Graph-
ics, 19(5):787–798, 2013.

[59] T. Martin, G. Chen, S. Musuvathy, E. Cohen, and C. D. Hansen. Generalized swept
mid-structure for polygonal models. Comput. Graph. Forum, 31(2):805–814, 2012.

[60] Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. Boundary aligned smooth 3d
cross-frame field. ACM Trans. Graph., 30(6):143:1–143:8, 2011.

[61] Kexiang Wang, Xin Li, Bo Li, Huanhuan Xu, and Hong Qin. Restricted trivariate
polycube splines for volumetric data modeling. IEEE Transactions on Visualization
and Computer Graphics, 18(5):703–716, 2012.

[62] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover - surface parame-
terization using branched coverings. Computer Graphics Forum, 26(3):375–384, 2007.

[63] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In Proceedings of the
27th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’00, pages 517–526, New York, NY, USA, 2000.

[64] Wan-Chiu Li, Bruno Vallet, Nicolas Ray, and Bruno Levy. Representing higher-order
singularities in vector fields on piecewise linear surfaces. IEEE Transactions on Visu-
alization and Computer Graphics, 12(5):1315–1322, 2006.

[65] Jin Huang, Tengfei Jiang, Yuanzhen Wang, Yiying Tong, and Hujun Bao. Automatic
frame field guided hexahedral mesh generation. Technical Report MSU-CSE-12-9,
Department of Computer Science, Michigan State University, East Lansing, Michigan,
August 2012.

[66] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture mapping
progressive meshes. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’01, pages 409–416, New York, NY, USA, 2001.
ACM.

[67] Shenghua Wan, Tengfei Ye, Maoqing Li, Hongchao Zhang, and Xin Li. An efficient
spherical mapping algorithm and its application on spherical harmonics. SCIENCE
CHINA Information Sciences, Special Issue of Computational Visual Media Conference
2012., in press, 2013.

87

[68] K. Hormann and G. Greiner. Mips: An efficient global parametrization method. Curve
and Surface Design: Saint-Malo 1999, pages 153–162, 2000.

[69] Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’96, pages 99–108, New
York, NY, USA, 1996. ACM.

[70] J. Nocedal and S. J. Wright. Numerical Optimization, 2006.

[71] D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a
polygon. J. ACM, 26(3):415–421, July 1979.

[72] Gnter Rote. Computing the minimum hausdorff distance between two point sets on a
line under translation. Information Processing Letters, 38:123–127, 1991.

[73] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes.
ACM Trans. Graph., 23:399–405, August 2004.

[74] Martin J.Mohlenkamp. A user’s guide to spherical harmonics. http://www.ohio.

edu/people/mohlenka/research/uguide.pdf, 2011.

[75] X. Guo, X. Li, Y. Bao, X. Gu, and H. Qin. Meshless thin-shell simulation based on
global conformal parameterization. IEEE TVCG, 12(3):375–385, 2006.

[76] X. Gu and S.-T. Yau. Global conformal surface parameterization. In Proc. Symp.
Geometry Processing, pages 127–137, 2003.

[77] N. Ray, W. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic global parameterization.
ACM TOG, 25(4):1460–1485, 2006.

[78] N. Pietroni, M. Tarini, and P. Cignoni. Almost isometric mesh parameterization
through abstract domains. Visualization and Computer Graphics, IEEE Transactions
on, 16(4):621 –635, 2010.

[79] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. In ACM
SIGGRAPH, pages 179–184, 2001.

[80] Jonathan Barzilai and Jonathan M. Borwein. Two-Point Step Size Gradient Methods.
IMA Journal of Numerical Analysis, 8(1):141–148, 1988.

[81] Ernesto G. Birgin, Mario Mart Jos, and Marcos Raydan. Nonmonotone spectral pro-
jected gradient methods on convex sets. SIAM Journal on Optimization, pages 1196–
1211, 2000.

[82] Yu-Hong Dai, William W. Hager, Klaus Schittkowski, and Hongchao Zhang. The cyclic
barzilai-borwein method for unconstrained optimization. IMA Journal of Numerical
Analysis, 26:604–627, 2006.

[83] Yu-Hong Dai and Hongchao Zhang. Adaptive two-point stepsize gradient algorithm.
Numerical Algorithms, 27:377–385, 2001.

88

[84] William W. Hager and Hongchao Zhang. A new active set algorithm for box con-
strained optimization. SIAM J. on Optimization, 17:526–557, August 2006.

[85] Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart.
Spectral surface quadrangulation. ACM Trans. Graph., 25:1057–1066, July 2006.

[86] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing of 3D
models. ACM Trans. Graph., 23(3):861–869, 2004.

[87] Timothy A. Davis and William W. Hager. Dynamic supernodes in sparse cholesky
update/downdate and triangular solves. ACM Trans. Math. Softw., 35:27:1–27:23,
2009.

[88] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Yueshan Xiong. Technical section: Dynamic
harmonic fields for surface processing. Comput. Graph., 33:391–398, June 2009.

[89] H. Zhang, A. R. Conn, and K. Scheinberg. A derivative-free algorithm for the least-
squares minimization. SIAM Journal on Optimization., 20:3555–3576, 2010.

[90] M. J. D. Powell. Least frobenius norm updating of quadratic models that satisfy
interpolation conditions. Math. Program., 100:183–215, May 2004.

[91] Jorge J. Moré and Stefan M. Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM J. Optimization, 20(1):172–191, 2009.

[92] Jorge Moré. The levenberg-marquardt algorithm: Implementation and theory. In
G. Watson, editor, Numerical Analysis, volume 630 of Lecture Notes in Mathematics,
pages 105–116. Springer Berlin / Heidelberg, 1978.

[93] Charles Audet and J. E. Dennis, Jr. A pattern search filter method for nonlinear
programming without derivatives. SIAM J. on Optimization, 14:980–1010, 2004.

[94] X. Li, X. Gu, and H. Qin. Surface mapping using consistent pants decomposition.
IEEE TVCG, 15(4):558–571, 2009.

[95] P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization method.
In In IMR, pages 201–213, 2003.

[96] Greg Turk. Texture synthesis on surfaces. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’01, pages 347–354, New
York, NY, USA, 2001. ACM.

[97] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Des-
brun. Anisotropic polygonal remeshing. ACM Trans. Graph., 22(3):485–493, July
2003.

[98] W. Yu and X. Li. Computing 3d shape guarding and star decomposition. Computer
Graphics Forum, 30:2087–2096, 2011.

89

[99] Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas J. Guibas. Shape decom-
position using modal analysis. Computer Graphics Forum, 28:407–416, 2009.

[100] Alexander Agathos, Ioannis Pratikakis, Stavros Perantonis, Nikolaos Sapidis, and
Philip Azariadis. 3D mesh segmentation methodologies for CAD applications.
Computer-Aided Design & Applications, 4(6):827–841, 2007.

[101] Ariel Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum,
27:1539–1556, 2008.

90

Vita

Shenghua Wan was born in the city of Nanchang of Jiangxi Province in China in 1987.

He graduated from Harbin Institute of Technology, Heilongjiang Province, China in July

2009 with the bachelor’s degree in Computer Science with the award of excellent thesis. One

month later, He joined the doctoral program in the department of Electrical and Computer

Engineering in Louisiana State University, Baton Rouge, USA. During the pursuit of PhD

degree, he obtained a master’s degree in Electrical Engineering from the School of Electrical

Engineering and Computer Science in Louisiana State University in 2011.

91

