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Abstract
Advancements in cutting edge technologies have enabled better energy efficiency as

well as scaling computational power for the latest High Performance Computing (HPC)

systems. However, complexities due to hybrid architectures as well as emerging classes

of applications, have shown poor computational scalability using conventional execution

models. Thus, alternative means of computation, that addresses the bottlenecks in compu-

tation, is warranted. More precisely, dynamic adaptive resource management feature, both

from systems’ as well as applications’ perspective, is essential for better computational

scalability and efficiency. This dissertation presents and expands the notion of Parallel

Processes as a placeholder for procedure definitions, targeted at one or more synchronous

domains, meta data for computation and resource management as well as infrastructure

for dynamic policy deployment. Additionally, it also presents use cases of Parallel Pro-

cesses for system resource management, task management, locality management, for load

balancing, access control, namespace management and performance measurement frame-

works in HPX runtime system. Further, this work lists design principles for scalability of

Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also,

to verify the usefulness of Parallel Processes, a preliminary performance evaluation of dif-

ferent task scheduling policies has been carried out using two different applications. The

first application is Unbalanced Tree Search, a dynamic graph application based on a refer-

ence implementation and implemented by this research in HPX. The other application is

MiniGhost, a stencil based application based on reference implementation, using bulk syn-

chronous parallel model. The results show that local and local-priority scheduling policies

in HPX provide better performance for different classes of applications. However under

certain application parameters, hierarchy scheduling policy performs better than both the

schedulers in UTS; meanwhile giving overall poor performance in Minighost. Similarly,

static scheduling policy show no performance gain in UTS, but shows scalable performance

for Minighost. Further, choice of task granularity for a given problem size also plays a

x



role on the performance of applications, as witnessed in UTS. These observations support

the hypothesis of the need of a dynamic adaptive resource management infrastructure, for

deploying different policies and task granularities, for scalable distributed computing.
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1 Introduction

The High Performance Computing (HPC) community is geared towards an era of ex-

treme scale systems, where use of unconventional architectures would be a norm [EE14],

partly to get better computational efficiency and energy profile, and partly to mitigate

memory limitations [McK04] and communication latencies [Mar+97]. Marking this trend,

we can witness proliferation of hybrid architectures that exhibit better power efficiency

as well as high degree of parallelism in computations being deployed in the latest HPC

systems. Traditional execution models such as OpenMP and MPI do not guarantee to

maximally harness the extreme parallelism offered by such new architectures or future gen-

eration architectures for HPC systems [Ste11]. Further, due to sheer scale of concurrency

exposed by these new systems, management of computations, with minimal synchroniza-

tion overheads and latencies is a big challenge [Bor10]. Meanwhile there are emerging

classes of applications and application frameworks that show poor scalability in current

generation systems and computation models, due to lack of adaptive task management and

granularity control [KBS09].

For an efficient mapping of applications of different types, onto current and future

generation systems, that provide extreme degree of parallelism, while minimizing compu-

tational overheads, latencies and inefficiencies, we need an execution model that takes all

these factors into account. The ParalleX execution model [Gao+07; KBS09] is one such

alternative that attempts to address the application scalability challenges in current and

future generation systems. The ParalleX execution model integrates well established and

tested concepts, making a holistic approach to the scalability challenges posed by the new

architectures as well as difficult to scale applications.
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One of the major challenges posed by extreme scale computing is management of re-

sources, both from hardware and software perspectives. The execution model slated for

systems with unprecedented levels of concurrency has to address the issue of efficiently

managing each entity in context of the astronomical size of computations. Resource man-

agement entails an efficient orchestration of complexities imposed by the billion way par-

allelism induced by unconventional hybrid architectures. Resource management also in-

volves efficient management of applications tasks, so that they are seamlessly mapped to

the available hardware, with the least penalty, as well as dynamic adaptive remapping of

tasks, depending upon how loaded the originally scheduled system resource is.

1.1 Research Objective

1.1.1 Goal

The goal of this research it to provide a new paradigm for better computation manage-

ment in context of extreme scale parallelism and unconventional hybrid system resources.

The goal of this is achieved by elucidating the notion of Parallel Processes, as a platform

for resource management and presenting some example use cases with some experimental

results. With the formalization of the notion of Parallel Processes, the goal of this dis-

sertation is to further explore the use case scenario where Parallel Processes would play a

crucial role in achieving better computational efficiency. With Parallel Processes, runtime

systems would have a better platform for seamless and scalable distributed computing using

distributed data structures, deploy better load balancing framework, that is not only based

on user defined algorithms but also system fed real time performance data. Additionally

Parallel Processes would be a platform for deploying access control framework for interact-

ing components (users or applications) in an era of multi-modal, multi-physics application

frameworks.
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1.1.2 Hypotheses

The hypotheses of this dissertation are:

Hypothesis A:

For an efficient and scalable computation for extreme scale systems with complex

applications, a resource management infrastructure is required, that is based not only

on user defined algorithms but also on real time performance data of the application.

Hypothesis B:

The scalability of the resource management infrastructure is itself dependent on the

scalability of Active Global Address Space (AGAS) service, as each component of the

resource management infrastructure is a named object.

Hypothesis C:

Withing a given resource management framework, different applications behave dif-

ferently to disparate execution policies.

Hypothesis D:

Dynamic adaptive resource management would provide better performance result,

rather than sticking just one form of execution policy or granularity control.

1.1.3 Objectives

The dissertation discusses why resource management will be an important feature that

will determine the overall computational efficiency as well as scalability of a runtime system,

based on an execution model that is designed for extreme scale computing, with both system

level as well as application level intricacies that make scaling difficult. In order to minimize

the effect of such application and system complexities on performance scalability, we discuss

ParalleX execution model, along with its runtime system implementation HPX to achieve

the following objectives:
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a. Formilize the notion of Parallel Processes as an infrastructure for distributed compu-

tation, with customizable policy deployment platform and optimal work management

framework.

b. Identify different use case scenarios of Parallel Processes as resource management

framework as well as policy deployment framework.

c. Identify design decisions for scalability of AGAS service, which impacts the overall

performance of resource management framework.

d. Utilize different scheduling policies and task granularity for task management in dif-

ferent types of applications as a foundational example for parallel processes imple-

mentation.

1.2 Technical Strategy

The technical strategy to establish a foundation for performance scalability of appli-

cations through new runtime system based on the guidelines illustrated by an execution

model for extreme scale computing comprises of:

1. Elucidation of advanced semantics of Parallel Processes.

2. Using semantics of Parallel Processes as foundation for further define framework for

resource and computation management.

3. Provide design guidelines for scalability of such resource and computation manage-

ment framework.

4. Development and use of reference implementation of different classes of applications

for testing the hypothesis proposed.

5. Experimentation and analysis of preliminary performance results of benchmark ap-

plication in context of hypotheses proposed.
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With a clear semantic representation of Parallel Processes, as building blocks, develop-

ment of resource management and access control framework, for advanced computation and

resource management of billion way parallel entities becomes much simpler and organized.

Again, identifying parameters for scalability of services or frameworks that the resource

management framework depends upon would provide a holistic approach for scalable per-

formance improvement in extreme scale computing. Finally, testing different performance

parameters of benchmark applications’ scalability, with the context of resource manage-

ment, that shows expected performance behaviors under different settings and conditions,

would verify the value of such a resource management infrastructure.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 provides an

overview of the evolving paradigms of computations the HPC community is witnessing

and establishes a need for a more sophisticated means of managing computations both

from applications’ as well as hardware resources’ perspective. Chapter 3 discusses the

ParalleX execution model with it principal concepts, discusses the software runtime sys-

tem HPX, based on ParalleX, and discusses different scheduling policies currently imple-

mented in HPX. Chapter 4 formalizes the notion of Parallel Processes and discusses many

of its important use cases. Chapter 5 outlines a list of design requirements for scalable

AGAS service. Chapter 6 presents experimental results of two different benchmark ap-

plications: Unbalanced Tree Search and Minighost for different problem sizes as well as

different scheduling policies. Chapter 7 presents some related work. Chapter 8 draws the

conclusion, discusses future research direction beyond the scope of this dissertation and

lists key contributions of this dissertation.
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2 Background

Since the introduction of first high performance computing (HPC) systems, the demand

for scalable computational power has quickly proliferated for improvement of science, tech-

nology and knowledge [Lav78]. Consequently, computation models for achieving scaling

concurrent computations for such systems also appeared and evolved, beyond the classi-

cal von Neuman model [Dij02; Dij68; Hoa02; RH02]. Together with major technological

milestones in HPC systems as well as computation models that optimized utility of such

systems, a host of complex scientific problems have become a solution target. In science

and engineering disciplines such as computational fluid dynamics (CFD), applied physics,

biology, environmental disasters, weather forecasts, energy physics, etc. computational

simulations using HPC systems, have not only provided a platform with a cutting edge

in advancing technologies, but has also resulted in break through scientific discoveries, in

both academia as well as industry [UC91][Key12].

The catalytic role of computational simulations in advancement of science and tech-

nology has ushered the HPC community into an era of massive parallelism, with the intro-

duction of massively parallel processing (MPP) systems, and commodity clusters [Pot85;

BB99]. With increased computational power, larger and more complex problems could

now be addressed. With the clear benefits, the demand and growth of more powerful HPC

systems is ever increasing. Today, we have many HPC systems that can achieve several

hundreds of tera flops to tens of peta flops [Top]. While building these massive systems

is getting cheaper per flop, increasing size and scale (hence increasing performance rate)

also increases the power profile for such systems in comparative ratio. Current HPC sys-

tems that have passed the peta scale barrier have energy footprints in the order of tens of
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MegaWatts with efficiency of hundreds of MegaFlops per watt to couple of GigaFlops per

watt [Top]. The same energy efficiency per unit computation is, however, environmentally

unsustainable if we are to move to Exascale era computing, where energy footprint of a

system is estimated between 60 - 130 megawatts [SA+09; SZS+07].

For scalability of the future HPC systems, they need to exhibit performance efficiency

in the order of 10s of gigaflops per watt. This energy efficiency has to be obtained through

new hardware architecture designs with better performance, power management as well as

through new execution models, which minimizes overheads and takes evolving hardware

architectures into consideration. From execution model perspective, sticking with older

methods of computation may lead to inefficiencies that creep into the overall productivity

of the systems. For example, as problem sizes have increased, so have the associated

data [Jos]; hence movement of huge data increases inefficiency in the computation model,

as it is not doing any productive work, thus exacerbating energy usage as well as introducing

latency overheads. Execution models that are slated for future generation HPC systems

(Exascale and beyond), should address the overheads that exist in the present computation

paradigms and practices.

Typical causes in degradation of efficiency in computation with conventional systems

and execution models are starvation, latency, overheads and waiting for contention res-

olution(SLOW) [Kai]. If there is no significant redesign of the conventional models of

computation or design and development of entirely new computation models that take the

performance degradation factors into account, such overheads would add up to significant

amount, which cannot be ignored, when the computation model is subjected to computa-

tion with billion way parallelism and extreme scale. In Exascale systems, the sheer number

of devices exposed will introduce significantly high level of concurrency issues [Ama+11b].

With the higher tendency of adopting lower clock frequency coupled with memory band-

width limitations [JSLO], the aforementioned overheads would only get worse. Therefore

such an unprecedented degree of parallelism demands radically different methods of ex-
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ploring parallelism, with fine grain work flow management schemes or dynamic grain size

control mechanisms for heterogeneous systems.

While the hardware achitecture of HPC systems is taking radical phase changes in mul-

tiple areas in order to achieve the next level of performance capabilities, there is an urgent

need for the HPC applications that need to be prepared for tranfer from current generation

HPC systems to the next generation HPC systems. The challenges are both in terms of

understanding parallelism bottlenecks in applications as well as in understanding how the

characteristic features of applications could be exploited on the massive systems to achieve

maximum resource utilization. Some of the Exascale software challenges are discussed in

the Sept, 2009 Department of Energy report [SA+09]. Important classes of applications

such as those based on Partial Derivative Equations (PDE) solvers using Adaptive Mesh

Refinement (AMR) and graph problems (bio-informatics, social networks, natural language

processing) are difficult to scale even with current massively parallel computing environ-

ments [Str+09][Lum+06]. The first category of applications require computations to be

done on a section of data for a longer time than other sections. These characteristics not

only make the execution flow unbalanced but also need more synchronizations so that data

dependencies are appropriately satisfied. As such, the applications cannot utilize more than

a fraction of compute power of the system where these applications are executed. For the

same category of problems, conventional parallel programming methods using MPI expose

only coarse grain size for the problem [KW10], thereby severely limiting scalability of such

applications. Meanwhile graph based applications quickly escalate in both volume and

complexity, that systems that do not expose adequate parallelism, with scalable resources

along with resource management features, cannot cater to the applications scalability re-

quirements. Such dynamic applications necessitate dynamic load redistribution of tasks, so

that work from heavily loaded system unit can be migrated to less loaded ones. However,

this solution approach has a limitation that data movement needs to be minimized, as it

is an additional overhead. A message driven fine grained parallelism mechanism would
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be an attractive solution for such scenarios. Apart from the two application classes men-

tioned, several other classes of applications exhibit similar execution and resource usage

traits. To achieve improved computational scalability for such problems and be able to

exploit the billion way parallelism exposed by Exascale level of computation, to minimize

overheads in the conventional model of execution, to expose dynamic grain sizes based

on the need of the applications a new execution model and programming methodology

is required [Ama+11b]. Limited computational scalability is a problem the HPC appli-

cation developers are continually striving to mitigate even in today’s Terascale systems,

which still is a big representation in the top500 list[Top]. To be able to exploit the vast

resources available in latest Petascale systems; and in future Exascale systems, the runtime

systems on such systems need to exhibit intelligent concurrent resource management and

utilization. Again, in order to achieve such high resource utilization, either the application

programmers need to be aware of the concurrency and locality attributes of the application,

which might necessitate rewrite of some parts of the application for every new programming

model introduced. Alternatively some sort of system agnostic virtualization mechanism or

runtime system/language feature that provides parallelism constructs to the applications

could be used. As a convention, application classes can be broadly categorized into two

groups from the perspective of scalability, a) Strong Scaling and b) Weak Scaling. Strong

scaling class requires applications to be very cohesive and minutely optimized with minimal

communication latency and data distribution and dependency resolution overheads. Very

few applications exhibit strong scaling behavior in todays HPC systems, as the amount of

work per compute unit decreases as we scale the applications with added resources. This is

either due to magnification of overheads, SLOW or due to serial portions of the application

limiting scalability, as depicted by Amdhal’s Law [HM08]. On the other hand, weak scal-

ing applications don’t require as much cohesive organization of computations as there is

lesser data dependence between units of computation of the applications. Per compute unit

workload stays almost level, as the application size increases are commensurate with the
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increased system resources utilized. Meanwhile, from the perspective of utilizing Exascale

systems, new trends in application development are taking precedence as ’new era’ weak

scaling applications [SHS09]. In the ’new era’ weak scaling applications, besides spatial

scaling providing much finer resolution of results, we observe additional work would be

done per unit data, such as in multi-phase, multi-scale, multi-modal, multi-physics, infor-

matics, data-mining applications. These approaches either use multiple different solution

methods or couple multiple applications to solve complex problems.

Witnessing the current trend in application development and system technology ad-

vancements, applications that will run in future generation HPC systems can be briefly

categorized as:

a. Legacy HPC applications at Exascale.

b. Coupled Models.

c. Data Intensive Data Mining Applications with huge data sets.

d. Real-time Departmental Extreme Scale Applications.

e. Framework Technology (e.g. Cactus, NAMD).

In recent years, more and more complex scientific applications are being developed

as framework technologies; as many of the the problems are multi disciplinary, where the

developed framework caters not only the requirements of a particular problem set but

is reusable in solving different other problems within the same domain (eg. CACTUS,

NAMD) [Löf+13; Phi+05]. These complex application frameworks have many complex

parts that need to be tracked and be able to provide interfaces to different specialized

modules. This has larger impact in multi-modal applications as mentioned in ’new era’

weak scaling applications. Providing such specialized interfaces would allow the domain

scientists to put more focus on their scientific work. At the Exascale level, it may be

estimated that the size and complexity of such multi-modal, multi-scale applications would
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be petabytes in size. A high-level organizing feature would be desired for tackling the

complexity and size, either provided at the language level or application framework level

or runtime framework level.

The white paper on frameworks from the HPC Application Software Consortium (ASC)

march 17, 2008 [All+08] categorizes frameworks based on levels of of interoperability:

� Minimal Component Interoperability: A majority of today’s legacy HPC applications

or solvers fall into this category, where there is minimal interoperability between

applications of different domains, with applications being independent from other

applications within the same domain. Across the domain analysis has to be done

statically, after each independent application produces final results.

� Shallow Component Interoperability: Applications or solvers in this category, within

a domain, are loosely coupled at some time step or discrete event. While internal state

of each component solver is maintained, common data is exchanged using wrappers

to data interchange interfaces over a network service.

� Deep Component Interoperability: Here domain solvers share a common service in-

frastructure for communication and data management. Different solver models of a

particular domain are tightly connected at the level of interoperability. This allows

action on common data almost without involvement of movement of data.

Further, each application frameworks has its own unique data and computation require-

ments. As such a different solution approach may be needed for each application category.

Therefore, future application framework designs would need to be highly modular using

various dynamic, efficient and parallel libraries. These parallelism techniques could be ex-

pressed in separate components, thus abstracting the implementation of parallelism. Such

abstracted parallelism would minimize programming errors, meanwhile modular design

would help targeted performance optimizations and code portability.
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For better computational efficiency, future application frameworks would utilize some

form of load balancing scheduler service/s as either external or internal component; together

with dynamic performance measurement framework, which could be used as external or

integrated component module with regard to the applications framework. Load balancing

infrastructure made available outside the application framework as either external module

or runtime service makes application programming simpler and more manageable.

Another important characteristic some leading classes of applications require is data

structures/abstractions with efficient communication mechanism. While data arrays and

vectors provide an effective means of expressing parallelism via data-parallel operations [Cve;

Sub+93], data structures for graphs using pointers, pose a challenge in expressing such con-

cepts efficiently [Lum+06]. Hence, an additional level of data abstraction using arrays and

datafow streams [Xin+13], could be used help pointer based data structures to express bet-

ter parallelism. Transforming graph data, with irregular shape and sizes, into an abstract

and parallelizable construct is a desirable goal in Exascale applications.

For Exascale systems, locality is important both for containing energy footprint as

well as minimizing latency. Although modern/future hardware architecture would pro-

vide better locality support, better software techniques for improved locality is warranted.

Such improved software locality management schemes for Exascale systems would be a

fundamental requirement for better performance efficiency and scalability for Exascale ap-

plications. While opportunities of reuse of data should be heeded by the programmers

(with awareness of hardware architecture as well as programming model principles); and

programming for the programming model might expose expose appropriate API for hand

written locality management, the runtime system should also provide customizable locality

management policies that are geared to (dynamically) support the data structure require-

ments given by the application that is running. The key to expressing locality in a portable

manner is a parameterized decomposition of a dataset. For graphs, the structure of the

problem may be exploited to generate good partitions inexpensively.
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3 ParalleX Execution Model and HPX Run-
time System

3.1 ParalleX Execution Model

ParalleX is an experimental execution model which makes an attempt to addresses

many challenging aspects of Exascale computation systems that will be the norm in the

near future [KBS09; Tab+11]. ParalleX execution model adopts message driven [Eic+92]

computation model in a global address space context. ParalleX provides semantics for

better efficiency through minimization of synchronization and scheduling overheads, with

improved utilization of resources through asynchrony of work flow; provides language fea-

tures (e.g. migration) for employing dynamic adaptive load balancing. ParalleX execution

model advocates the semantics of variable granularity (fine grained to coarse grained) for

worker threads and light weight synchronization objects for scalability of not only generic

applications but also for scaling impaired applications. While sustained work is guaranteed

with fine grained parallelism when work is available, coarser grained parallelism allows the

computation to avoid costly overheads associated with creating fine grained threads, when

there is less work available.

ParalleX strives to expose several forms of parallelism, in order to attain Exascale

performance and beyond, improve strong scaling for certain classes of applications that are

scaling impaired with existing execution models; provides a foundation for accomplishing

improved scalability for classes of scientific applications, improve time and energy efficiency,

reliability and programmability. As such the ParalleX execution model has been designed to

directly address the following four primary factors in impending performance and scalability

in applications:
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� Starvation: Insufficient concurrent work to maintain high utilization of resources.

� Latencies: Time distances of remote resource access and services (such as IO or

network).

� Overheads: The time spent on resources on the critical path required to implement

parallelism and task synchronization which are not necessarily present in the sequen-

tial variant.

� Waiting for Contention Resolution: Delays due to conflicts on oversubscribed shared

resources.

The design guidelines as detailed in [Kai+14] for ParalleX as an Exascale execution

model are:

Latency Hiding:

Latencies in computation model cannot be completely avoided. There is always a

certain degree of latency involved in the general computation. We can, however, take

measures to minimize the overall effects of such latencies in computation through

techniques both software (such as asynchronous task and communication methods)

as well as hardware (latest state of art technologies) that hide latencies.

Better Granularity Control Mechanism:

It is well understood premise that if there is less available parallelism, deploying excess

resources would not bring scalability. Amdhal’s law [Amd67] just limits any such

possibility. Again, not properly utilizing available resources, when there is enough

available parallelism available also limits scalability. Hence, a balanced approach,

with feedback information through performance measurement, should be deployed

for dynamic adjustment of granularity control for mapping work to the resources

available. Granularity control should be universally available in the programming
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semantics with a choice between fine grained and coarse grained tasks, where the size

of fineness and coarseness is dictated by the runtime feedback information, resources

available as well as information fed by users.

Constraint Based Synchronization:

In many current standard programming models, global barriers are frequently used as

a means of task synchronization. Explicit barriers, during synchronization of applica-

tion’s tasks minimizes exploitable parallelism, with resources idling while waiting for

other parts of the computation to complete [Axe86]. The bulk of an application does

not need to be barrier synchronized. Only a certain part of the application may need

synchronization, which can be handled on case by case basis using constraint based

synchronization, governed by a predicate. In addition, advanced data dependency de-

termination would enable a better means of synchronizing task and resources. Such

data dependency identification would allow parts of the overall task to proceed where

it detects no data dependency, while the task segment whose data dependencies have

not been met can wait asynchronously until all its dependencies are met. Such facility

of identification of conditions for a need for synchronization should be provided by

an execution model targeting future Exascale and beyond systems.

Adaptive Locality Control for Load Balancing:

As the future generation of HPC systems become more complex and heterogeneous

and the applications size for such systems increases with uneven work loads, there

is a need to support a way of providing dynamic work distribution across localities.

Current programming models do not provide semantics for adaptive dynamic work

distribution [Mes09; Yel+07]. The ability to dynamically distribute work and data

when there is imbalance in the resource usage would significantly improve overall

runtime performance of an application.

15



Moving work to data:

Maturity in our understanding of scientific problems have allowed us to integrate

more complex models into even more intricate computation systems, it has become a

well understood observation that these computation models have to deal with huge

datasets [Jos]. Moving such huge datasets is inefficient, due to the simple fact that

data movement is itself not a productive activity. Therefore, there should be a mech-

anism to be able to move action to data. It, however, needs some ascertaining before-

hand, through empirical or analytical methods, when it is effective to move action to

data and vice-versa. The new execution model should take this important factor into

consideration.

Message Driven Computation:

Message driven computation has been gaining ground as a means of doing distributed

computing, where the sender controls how a task is invoked at a remote locality [Cha;

Aga+07]. This mechanism allows an efficient method for expressing work flow seman-

tics, than conventional message passing or data parallel computation models [Mes09;

CVG11]. The added flexibility of controlling work flow from the sender side allows

efficient and fine grained synchronization and management of tasks; as well as allow

asynchronous computation and communication to take place with better performance.

3.2 ParalleX Execution Model Components

The ParalleX execution model comprises of a collection of fundamental concepts; each

of which exposes a particular set of properties, that have been be actualized as a software

entity or hardware entity or combination of both. This section discusses the principal

components of ParalleX execution model.

3.2.1 Light Weight Threads

Light Weight Threads (LWT) are the smallest possible grain size for representation

of executable tasks. They are first class objects(i.e. they have a name), exist within the
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context of a synchronous domain and have short lifetime. If a LWT represents more than

one task, the work flow can be simple sequential function invocations, which may/may not

return value, or static dataflow objects [JHM04], or combination of both. The result of

LWT actions may update a local variable or a global variable, which is synchronized using

local synchronizing objects, discussed below.

3.2.2 Parallel Processes

Parallel Processes are semantic constructs that are used for coordination and control of

resources in a distributed environment. Minimally a Parallel Process consists of a meta data

that would contain the pertinent information, such as address of a resource, resource usage,

owner of a resource, etc., that the Parallel Process is responsible for. The semantic context

of a Parallel Process may span multiple localities(synchronous domains), i.e. a Parallel

Process may exist across multiple localities. For active Parallel Processes, a LWT would

be minimal representation of a ”context of execution” for the Parallel Process. Parallel

processes may possess child process(es). A detailed discussion on this topic is presented in

a later chapter.

3.2.3 Local Control Objects

Local Control Objects (LCO) are lightweight synchronization constructs that eliminate

the need for global barriers for distributed synchronization. The goal of an LCO is to assist

in dynamic global synchronization, in migration of objects and facilitate continuations as

well as dynamic adaptive resource management, thereby enabling parallelism with various

granularity. LCOs particularly exist in context of instantiation and synchronization of

threads, hence hold complementary information on threads being synchronized, in a global

perspective. An LCO is a finite state machine (FSM) [Sga10] whose state and data changes

with accompanying program events. LCOs are first class objects and exist in a synchronous

domain (eg. SMP systems). An LCO is always event driven and hence is instantiated

directly or indirectly when a thread needs synchronization and is instantiated both in local

or global perspective. LCOs however may continue to exist even after the thread has
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finished execution. LCOs hold a predicate, depending upon which, it changes its state

and hence allows synchronizing state change of thread(s) in context of the LCO; and an

LCO may get activated (i.e. re-associated with new threads) when a task event (action) is

incident on it.

3.2.4 Parcels

Parcels in ParalleX execution model bear the responsibility of communication paradigm,

that allows asynchronous transfer of information (data or metadata), allows remote invoca-

tion of actions (function calls) and allows distribution of control flow through continuations.

Parcels are the only means of migration of tasks objects, for dynamic adaptive load bal-

ancing in ParalleX in a distributed environment. Parcels are a type of active messages

[Eic+92] that enable message driven computation. Parcels carrying actions instantiate a

thread at the remote locality or instantiate a LCO that in turn will instantiate a thread if

synchronization on the remote action is warranted. With mobility of tasks, work can be

moved to data, which brings efficiency in situations where the data involved is too huge

to move. The conventional computation method of moving data to work would still be

possible by making a ”get()”, a simple fetch the result operation, through a parcel. Parcels

can be targeted at any first class objects that exists within a given global namespace , can

specify what actions to be performed at destination, and upon completion (absorption of

parcel at remote locality) may update remote locality state as a side-effect, which is dif-

ferent from conventional send/receive method of communication. Parcels are composed of

four fundamental fields: destination, action, data and continuation. Depending upon the

requirements for minimizing latency and throughput, parcels’ size may be small or large.

3.2.5 Percolation

Percolation is special use case scenario for parcels. Through percolation, messages

carrying work, are directly targeted at the hardware resources rather than logical data

objects [Jac+03]. This allows an efficient utilization of expensive resources, crosscutting the

overheads involved in added abstraction layers when using logical means. Percolation, thus,
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provides a means of heterogeneous computation on specialized hardware devices such as

FPGA [SW10] and GPGPUs [FM04] as a means of doing generic computing. Since, within

a synchronous domain such specialized hardware, also referred to as accelerators, have a

different address space than the generic processing units; accelerators can be targeted by

parcels, with parcel layer bridging the two architecturally disparate hardware units. Parcels

can be used to make, work and data available to the specialized units as well as transfer the

result/s from the accelerators to the originating computation unit. Since the percolation

mechanism is aware of characteristics of specialized hardware resources, relevant tasks,

when available, can always be made available to the resources with high efficiency.

Percolation allows high cost resources to be freed up, by offloading repetitive tasks to

highly specialized resources. Coupled by the asynchrony facilitated by the execution model,

task distribution to the accelerators and getting results back, using parcels, minimizes cost

of the overall computation. Through percolation, we can get coarse grained parallelism for

bulked tasks, while the accelerators themselves my expose yet another level of fine grained

parallelism for the work-data combination made available to them.

3.2.6 Active Global Address Space

The Active Global Address Space (AGAS) is a fundamental component of the ParalleX

execution model [Gao+07; KBS09; Tab+11]. AGAS provides a global virtual address for

objects in a distributed execution environment context, thus providing a means of ob-

ject visibility beyond a synchronous domain. This feature places AGAS into the class

of ”Global Address Space” programming models like Partitioned Global Address Space

(PGAS) [Yel+07] models, with a fundamental difference. AGAS provides the means to

move objects, after instantiation, across localities (conventional nodes). This aspect of

AGAS is crucial for runtime adaptive dynamic load balancing across localities in a dis-

tributed computing context.
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3.3 HPX: An Exascale Runtime System

The HPX runtime system represents a first attempt to develop a runtime system with

comprehensive APIs with semantics based on the ParalleX execution model [Kai+14]. It

is modular, feature-complete, and performance oriented representation of ParalleX model,

currently targeted at conventional architectures, such as commodity clusters [BB99] and

Symmetric Processing (SMP) systems [Gib66]. Its modular architecture allows for easy

compile time customization and minimizes the runtime memory footprint. It enables

dynamically loaded application-specific modules to extend the available functionality at

runtime. Static pre-binding at link time is also supported. Its strict adherence to the

Standard-C++ [The08] and the utilization of Boost [Var10] combines powerful compile

time optimization techniques and optimal code generation with excellent portability. HPX

is designed as an alternative to conventional computation models, such as MPI, while at-

tempting to overcome their limitations such as: global barriers, insufficient and too coarse-

grained parallelism, and poor latency hiding capabilities (difficulties in orchestrating the

overlap of computation and communication).

General Design:

HPX is a state-of-the-art parallel runtime system providing a solid foundation for

ParalleX applications while remaining as efficient, as portable, and as modular as

possible. This efficiency and modularity of the implementation is central to the design,

and dominates the overall architecture of the library (see Fig. 3.1). It exposes the

necessary modules and an API to create, manage, connect, and delete any ParalleX

components assigned to an application. The current implementation of HPX provides

the infrastructure for the following ParalleX concepts: the active global address space,

threads and their management, parcel transport and parcel management, and local

control objects.
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Figure 3.1: Modular structure of HPX implementation. HPX implements the supporting
functionality for all of the elements needed for the ParalleX model: AGAS, parcel port and
parcel handlers, HPX-threads and thread manager, ParalleX processes, LCOs, performance
counters, and the means of integrating application specific components.

Threads and their Management:

The HPX-thread manager implements a work queue based execution model very

similar to prior systems (Cilk++ [Lei09], TBB [Int10], PPL [Mic10]). In addition,

HPX-threads are first class objects with immutable global names, enabling even re-

mote management. Moving threads across localities (expensive operation) is avoided;

instead, work migrates via ”continuations” [AJ89] by sending a parcel that might

cause the instantiation of a thread at the remote locality. HPX-threads are cooper-

atively (non-preemptively) scheduled in user mode by a thread manager on top of

an OS-thread per core. The HPX-threads can be scheduled without a kernel tran-

sition, which provides a performance boost. Additionally the full use of the OS’s

time quantum per OS-thread can be achieved even if an HPX-thread blocks for any

reason.
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Parcel Transport and Parcel Management:

In HPX, parcels are an extended form of active messages [Wal82] for inter-locality

communication. Parcels are the remote semantic equivalent to creating a local HPX-

thread. If a function is to be applied locally, an HPX-thread is created; if it has to

be applied remotely, a parcel is generated and sent which will create an HPX-thread

at the remote site. Parcels are either used to move the work to the data (by apply-

ing an operation on a remote entity) or to gather small pieces of data back to the

caller. Parcels enable the message driven paradigm (as developed in TAM [Cul+93],

Split-C [Kri+93]) for distributed control flow and for dynamic resource management,

featuring a split-phase transaction based execution model. The current implemen-

tation features TCP/IP and MPI communication layer as network protocol for the

parcel transport system.

Local Control Objects (LCOs):

An LCO is an abstraction of different functionalities for event-driven HPX-thread

creation, protection of data structures from race conditions and automatic event

driven on-the-fly scheduling of work with the goal of letting every single function

proceed as far as possible. Every object which may create (or reactivate) an HPX-

thread as a result of some action exposes the necessary functionality of an LCO.

LCOs are used to organize flow control. A well known and prominent example of

an LCO is a ’future’ [FW76; Hal85; BH77]. It refers to an object that acts as a

proxy for a result that is initially not known, usually because the computation of

its value has not yet completed. The future synchronizes the access to this value by

optionally suspending the requesting thread until the value is available. This allows

the computation to proceed unblocked until the actual value is required to produce a

result rather than, say, incorporating it into a more complex data structure. Futures

also permit anonymous producer-consumer computation when neither the producer
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of a value, nor its consumer are known at compile time. In addition, the future

construct allows a trade-off between eager and lazy evaluations by postponing the

calculation of a value until it is actually required.

HPX provides specialized implementations of a full set of synchronization primitives

(futures, mutexes, conditions, semaphores, full-empty bits, etc.) usable to coopera-

tively block an HPX-thread, while informing the thread manager that other work can

be run on the OS-thread (core). The thread manager can then make a scheduling

decision to execute other work.

Active Global Address Space:

The AGAS service enables the characteristics feature of ”Global Address Space”,

(i.e. distributed global virtual address) for the instantiated first class objects of an

application running on multiple localities in HPX runtime system. The objective of

AGAS service is to:

� Store the mapping of a globally unique id (GID) to a tuple of local virtual

address, component id, and locality information.

� Allocate and assign GIDs to newly instantiated first class objects.

� Resolve the address of an object referred to by a GID in a global address space

context.

The global virtual address (GVA), identified by GID, of an object fully and unam-

biguously describes the location of the object referred by its GID. The GIDs assigned

to an object are immutable, hence if objects are moved across localities, they retain

their original identity.

Performance Counter Framework:

HPX performance counters provide an intrusive method of instrumenting the envi-

ronment in which an HPX application is running, exposing metrics from hardware,
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the OS, HPX runtime services, and applications. The data provided by performance

counters facilitate the development of heuristic algorithms that use introspection to

make smarter runtime decisions. A performance counter is first class object associ-

ated with a symbolic name which exposes a uniform interface for collecting arbitrary

performance data, on demand. Instrumentation utilities can connect to a running

HPX application through the parcel transport layer, query the performance counters,

and then disconnect.

3.4 Thread Scheduling Policies in HPX

In this section we discuss the different task(thread) scheduling policies that are made

available in the HPX runtime system.

3.4.1 Local Priority Scheduling Policy

In the local priority scheduling scheme, the runtime system maintains one thread

scheduling queue per operating system (OS) thread (see fig. 3.2). The runtime system

channels work to the OS threads via these individual HPX runtime system queues. Ad-

ditionally, under this policy, the thread management system in HPX maintains separate

queues: several for high priority queues and one for low priority queues. When there is work

in the high priority queues, it is executed by the first N OS threads, before any other work

are executed from the other queues. Work on the low priority queue is executed by the last

OS thread, whenever there is no more other work available. When there is an imbalance of

work load on threads, work is stolen from other work heavy queues. Further, the scheduling

policy user, also has an option to turn on NUMA sensitivity at the command line option.

When NUMA sensitivity is turned on, work stealing is done from queues associated with

the same NUMA domain first, and then the queues associated with the adjacent NUMA

domain/s. The Local Priority Scheduling Policy follows ”First In First Out” (FIFO) policy

for each user threads assigned by the runtime system to the thread management system.
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Figure 3.2: Local Priority Scheduling using FIFO Scheme.

3.4.2 Static Priority Scheduling Policy

Under the static priority scheduling policy, the thread manager maintains a work queue

per OS thread (see fig. 3.3). Threads (work) are distributed to the queues in a round robin

fashion. Like local priority scheduling policy, static priority scheduling policy also maintains

several separate queues for high priority threads and one separate queue for low priority

threads. Under this policy, there is no work stealing from other HPX thread queues.

3.4.3 ABP Priority Scheduling Policy

ABP priority scheduling policy maintains a double ended lock free queue for each

OS thread. Like local priority scheduling policy, ABP priority policy also maintains a high

priority queue for each corresponding OS threads, and one low priority thread queue. When

a queue is empty, it tries to steal work from one of the non empty high priority queues.

In ABP scheduling policy, threads are assigned to the OS threads using ”Last In First

Out” (LIFO) assignment policy. ABP scheduling policy also allows work stealing from the

adjacent user thread queues (see fig. 3.4). Thread stealing happens at the other end of the

thread queue, opposite of where thread objects are entered into the queue. Additionally,

this thread policy also allows enabling NUMA sensitivity with work stealing first happening

within the NUMA domain.
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Figure 3.3: Static Scheduling Policy using Round Robin Thread Assignment.

Figure 3.4: ABP Priority Scheduling Using LIFO Assignment.

26



3.4.4 Hierarchical Scheduling Policy

Hierarchical scheduling policy maintains a tree of ready work (fig. 3.5). The thread

scheduler makes the OS threads walk through such hierarchical tree of ready work for

the next task to be executed. The arity of such hierarchical thread queue can be varied,

with the default being two. Hierarchical scheduling policy also maintains a pair of high

priority queues and normal queues of ready work along with a single low priority queue.

For work stealing, the scheduling policy targets the parent queue of the hierarchical queues.

Extraction of ready work from each queue follows FIFO scheme.

Figure 3.5: Hierarchical Scheduling Policy using Hierarchical Queues.

3.4.5 Local Scheduling Policy

Like local priority scheduling policy, under local scheduling policy, one work (thread)

queue is maintained per OS thread, from where the runtime system makes work available

to each ready OS threads (see fig. 3.6). This scheduling policy does not maintain additional
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category of queues. Adaptive work stealing happens from one of the adjacent thread queues

which has enough work in the queue. This scheduling scheme also follows a FIFO thread

execution policy.

Figure 3.6: Local Queue Scheduling using FIFO Scheme.
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4 Parallel Processes and Their Use Cases in
HPX

4.1 Background

A computational problem by definition is not sequential. However, how we approach

problems for understanding is sequential. So in order to gain maximum flexibility and

efficiency in how we represent and solve problems, the problems can be represented or

divided into chunks with minimal dependency. After which solving each of these chunks

on its own, without following a specific order is fairly possible. For example lets take an

unbalanced directed graph problem, as depicted in figure 4.1(A). Sequential execution of the

problem would give poor performance. Equally dividing tasks among available resources is

also difficult, as we would want to minimize dependency between such segregated tasks.

P1
P2

P3
P4

P

P -> P1

P1 -> P2,P3

P3 ->P4

Parent -> Children

A B

Figure 4.1: Task decomposition of an unbalanced directed graph (A) into sub process
domains (B).
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One possible solution is to compose the problem into manageable chunks with minimal

interdependency. For example in the figure 4.1(B), problem P is decomposed into P1, P2,

P3 and P4; where P2 and P3 can be executed in parallel. In addition each process group

knows who its parent is as well as knows about its children, hence there is no of information

loss between the task groups. These manageable chunks of tasks, which can be executed in

parallel, self contained for the problem chunk, and can span multiple domains (for process

P), are what we call Parallel Processes. The conceptual elaboration of the Parallel Process

and identification of its use cases for computation and resource management in HPX is one

of the main contributions of this thesis.

4.2 Parallel Processes

The notion of a Parallel Process in ParalleX/HPX goes beyond earlier definitions of

sequential processes [Dij02; Han73] and communicating sequential processes [BHR84]; of

being encapsulation of computations (a set of related operations or actions) and the as-

sociated result or value if any. Processes in HPX additionally hold static and dynamic

information about the logical states of a computation, enabling context aware comput-

ing [SAW94]; hence allowing to safely encapsulate concepts and actions that many not

be known during static analysis. Such Processes are termed ”Parallel Processes” due to

the inherent parallelizability of operations as independent fine grained tasks (or threads),

or coarse grained tasks (or processes); either of both belonging to a single application’s

computation structure.

Thus defined Parallel Processes may exist within the context of one physical locality

or multiple physical localities, exhibiting different levels of resource oriented parallelism as

well. With multiple localities, sub processes of the distributed Parallel Processes would

exploit locality aware parallelism (where a sub-process is defined as part of a distributed

process, consisting of only a partial segment of the computation data and all the relevant

meta-data). Meanwhile, within a locality, although sub-processes can be used to exploit

the available resource’s multi threaded parallelism, one or more fine grained user level
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threads are rather executed on top of each hardware level threads to exploit the task

based parallelism [PB10; Wil09]. This is true in the context of NUMA domains in multi-

core systems [Bla+10] or Symmetric Processing systems (SMP) [Le+07] representing a

synchronous domain.

A Parallel Process may generate children processes, whose existence may be limited to

just one locality, or may be distributed across multiple localities, irrespective of where the

parent process exists; thus Parallel Processes exhibit a hierarchical structure. This allows

ordering of flow control, fast information dissemination as well as access rights control to

relevant process objects. Parallel Processes also own the context of threads that are in-

stantiated by them. Through this ownership, special thread instantiation and execution

techniques may be applied to minimize concurrency related errors (such as deadlocks, race

conditions, atomicity violations, sequential consistency) [Ber+09]. Figure 4.2 depicts the

composition of working of Parallel Processes spanning multiple localities, with feedback

control from the hardware as well as software resources, with Parallel Processes for mea-

surement framework and Parallel Processes for application working together. Components

and attributes that belong to a Parallel Process domain are discussed in further detail in

the following sections.

4.2.1 First Class Entity

Parallel Processes in the conventional sense are instances of programs in execution (with

predefined order), that have unique names and are individually assigned a fixed contiguous

memory space [Han02]. Parallel Processes, during its lifetime, may additionally store logical

states of the program at different stages, besides maintaining the meta data about its

environment and other interacting Processes. As such, Parallel Processes may require

necessary information passed to it, for change in the state of a computation or environment

as well as it may return some resulting value when called upon. Therefore, being a named

object, an analogy to application variables can be made regarding processes, where a set

of function operations similarly applicable to variables also apply for Parallel Processes.

31



Meanwhile, the state information stored about the ”procedure state” of an application

segment may change, for example after a ”get()” operation. The information thus produced

could be used by itself or other interacting processes for resource management purposes.

Hence typical operations on processes include being assigned to another named object of

same type, being passed as an argument, being returned as value of a function or being

queried about program’s state information. All these features are only possible with a

globally unique name assigned to each process object. While the name assigned cannot

be modified, the process state captured by the state variable within the process, may be

modified by the process itself or by other processes that have privileged access.

4.2.2 Process Members and Attributes

A Parallel Process by itself is just a named data object. Additionally, Parallel Processes

could have other processes as members, a collection of process threads (user level threads),

data structures that hold:

� application related information,

� process components related information, and

� process state related information.

Access to any of these data structures requires fulfillment of a set of predetermined

requirements. The Parallel Process also encapsulates a procedure description for a program

segment [Han02], as a collection of functions, which can be called in a particular order from

another process that it is tasked within a given control flow. Further processes are also

capable of maintaining a list of resources that they are in control of, such as synchronization

objects (e.g. LCOs), communication objects(buffers and queues), policy interface objects,

access rights list, etc. The collection of all such different components may be termed as

process attributes; a set or combination of which a process can use to fulfill its procedure

description (the mandate of a Parallel Process). Some of the process components and

attributes are discussed in more detail in the following sections.
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4.2.3 Process Threads

Computation Abstracts, or conventionally threads, are part of a procedure definition

of a Parallel Process that contain all the necessary information for a meaningful execution

of the given subroutine (full or part of the procedure definition) [DDH72]. Instantiated

computation abstracts, with the data, subroutine definition and execution context, termed

”process thread’” is a unit object that gets scheduled by the runtime system for execution,

which is further handed down to the operating system scheduler to be executed as machine

instructions. Process threads may also be treated as first class objects, in that, they also

are assigned a unique address and a name. So, semantically they can be called light weight

processes (slightly different than Linux light weight processes LWP) [BC05], in that they

only hold part or whole of the procedure definition and access rights to relevant data

structures within a given process or in other processes, whose value is to be delivered via

messages. Threads exist as an instance of execution context of the procedure definition of

the encapsulating process, making a Parallel Process owner of the threads created by it.

The main difference between the process and the thread it owns is, the process may span

multiple localities, while threads are strictly local, for obvious reasons.

Process threads can be of varying granularity; fine grained when available concurrency

is higher and correspondingly coarse grained when software overhead in managing concur-

rency is higher than simple bulk computation. Again, the dynamic adaptive granularity

size control of threads may be based on user fed information or through dynamic perfor-

mance measurements of tasks. Which mode to choose between can be decided using a

thread execution policy, defined beforehand. Such adaptive granularity change of threads

boosts performance when parallelism is available, and minimizes overheads when less par-

allelism is available [TJF13]. Further, different thread scheduling schemes may be applied,

which again is defined by a thread scheduling policies. Further, Process threads may be

responsible for instantiation of other process threads as well as processes. Process threads

have different execution states: ready, running, suspended (waiting, blocked) or finished.
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4.2.4 Local Control Objects

The semantics of an LCO has been discussed earlier as one of the fundamental concepts

of ParalleX Execution model. Here we discuss its relationship with processes. An LCO

object is a synchronizing construct that exists within the context of a Parallel Process and

not the other way. Hence it is local to the process. LCOs like Parallel Processes are first

class objects, hence they are movable, mutable, copyable, directly referable, etc. within the

context of the process that instantiated them. LCOs, in different instantiation scenarios,

would enable Parallel Processes to synchronize operations on different types of resources

the processes own [Hoa74].

As mentioned in section 4.2, a Parallel Process may exist across multiple localities.

LCOs enable dynamic global synchronization and migration of objects across such dis-

tributed localities. Like nested semaphores or mutexes [CHP71], LCOs can also be orga-

nized in a nested order for multilevel task parallelism synchronization [Ayg+06]. Hence,

if there are resources that are shared globally with other processes or computation ob-

jects that exist across multiple localities, a global LCO object, existing within the parent

process or one of the sibling processes, could coordinate the shared usage of the resource.

Generally, availability of resources depend upon the lifetime of a Parallel Process, however,

it might be permitted to transfer the ownership of a resource to another process, under

certain circumstances, like migration of objects.

4.2.5 Resource Ownership and Lifetime

A Parallel Process abstraction by definition allows a state change of some resources.

It contains all the relevant information and features for safely controlling and managing

a resource. Thus a process abstraction can have exclusive ownership of various resources,

that instantiates a given resource, where a resource can be a physical hardware entity

or just another software entity(eg. buffer, software cache, etc) [CYH10]. The lifetime of

resources used by an application is dictated by the process that instantiates the resource.

That process may belong to the application itself which uses the resource or may belong
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to some other application. The resource owning process may give access rights to other

processes, and synchronization amongst many interfacing processes is achieved through an

LCO or a collection of LCOs. Access rights to the resources is defined by various policies

for resource usage. The resources become inaccessible once the process owning it goes out

of context. Under special situations, like migration of processes, ownership of resources

may be transferred to other processes, ensuing the transfer of any existing LCOs pertinent

with the transferred resource(s) as well.

4.2.6 Process Communication

Inter Process Communication (IPC) is one of the methods of exchanging information

between processes for synchronization of tasks [Hoa78]. A Parallel Process may commu-

nicate with any of the children processes in a given process hierarchy relationship or with

other independent processes in a process graph. In context of HPX, with message driven

execution model semantics, IPC between Parallel Processes take place through parcels, an

implementation of active message [Eic+92] in HPX. Meanwhile IPC within a given locality

could be through any predetermined input/output mechanisms, such as method invocation,

pipes, data copy, semaphores, message queues etc., [SR08].

4.2.7 Access Rights Protocol

Without an access rights policy for a given set of resources, software or hardware, safe

usage of resources cannot be guaranteed [JT01]; particularly when the entities(processes)

owning the resources are capable of migration to a different locality . Object oriented,

message driven programming model allows us to categorize different processes with differ-

ent roles, establishing relationships such as parent-child, master-slave, producer-consumer,

etc., for flow control as well as guidance on resource usage [Chr88]. Associating access

policy based on the role assumed provides a better manageability and security amongst

the participating entities [BBU99]. In Exascale scenario, where there could be hundreds of

thousands of processes, each with a different role, a fine grained access policy is warranted,

where common objects take similar roles [Fis+09].
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In context of Parallel Processes in HPX, processes may give full access rights to the

threads, on the data stored by a given process. Children processes in a hierarchical struc-

ture of processes may be given access rights to the data held by parent, as inheritance

feature [PH00], however access rights to data from sibling processes, and hence their en-

capsulated threads is not implicitly guaranteed. Also, since the parent process controls the

lifetime of children processes, access rights to the children data may be implicit, through

ownership semantics. However the reverse is not implicit. These criteria are with the notion

of direct access of data into perspective. Access to data-structures maintained by resident

threads of the processes, children processes and sibling threads may be provided indirectly.

Having a well defined access right protocol on different components of Parallel Processes

provides us with at least a degree of protection against data corruption due to unintended

data access privileges.

4.2.8 Distributed Data Structure Abstractions

Data abstraction of the information pertinent to the context of a procedure definition

of a process is one of the principle features of Parallel Processes. Data abstraction through

Parallel Processes allows data of various types, even user defined types, to be encapsulated

and protected, allowing little or no side effects [Lis87; Sco09]. With data abstraction

in place, processes can make data available to other entities, such as local threads or

other processes, via parameter passing, IPC or parcels. Data abstraction is, thus, one

of the distinguishing difference between threads and processes, as threads by definition

lack sophisticated data abstraction mechanisms [AT88]. Further encapsulated data by

Parallel Processes may not only be related to the context of a given computation, but could

comprise of important information that help the application or runtime system manage the

computation.

There are several different approaches for facilitating a scalable distributed data struc-

tures such as distributed hash table based, range partitioning, relaxed balanced search tree,

distributed B tree [PN04], skip graphs [Sha03], global trees [Lar+08]; with different spatial
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and temporal complexities. As such using a particular method for scientific applications

as a universal solution has been elusive. Meanwhile majority of scientific applications use

array, graph and tree based data structure [WL98]. The distributed data structure in our

case would be analogous to a segmented array that can span multiple localities (nodes),

represented by process objects. The interface made available for the distributed data struc-

ture is similar to accessing and manipulation an array. Further, the hierarchical properties,

that are natural to processes, allow straightforward creation and management of trees and

graph like data structures.

Figure 4.2: Parallel Processes, through distributed data structures, are able to span mul-
tiple localities(physical nodes), and this set of localities could be dynamic. Each Parallel
Processes supports certain key attributes such as task scheduling policies, access rights,
interface to kernel handlers.

4.3 Resource Management Framework

Resources can be categorized as a) hardware entities (such as physical processing el-

ements, peripheral devices, etc.) and b) software entities (such as task queues, message

buffer, data, data files, etc.), that need to be shared with other entities. While operating

systems represent and manage physical or software entities as logical entities [Hoa74], a

37



runtime system provides additional features and proper API for using such logically rep-

resented resources according to an execution model [App90]. A runtime system targeting

Exascale systems has to manage and provide a seamless interface for using a billion way

concurrent resources. While efficiently making the computational resources available to

the consumer applications is one aspect of resource management problem, the other aspect

being effective distribution of load on the resources for efficient use of the resources.

Several aspects of an execution environment have to be considered for a resource man-

agement scheme to be an effective solution. Factors playing significant role in successful

deployment of a resource management solution require runtime dynamic data about hard-

ware performance, static and dynamic information of application characteristics as well

as user requirements. Resource allocation not only depends upon availability of resources

but also on the access policies defined for such resources . Further, a fine grained re-

source scheduling policy and control is desired for scenarios where there are two execution

frameworks working interdependently or cooperatively taking the data locality concerns

into account [Hin+11]. HPX processes can act as a foundation for a resource management

framework that encapsulates data, provides a performance measurement framework, pre-

serves user fed application specific meta-data, provides modular and fine grained object

oriented scheduling platform that uses locality and application load information for task

granularity control as well as task migration [Fis+09; WW96].

4.3.1 Resource Management

Resource management activity can be viewed from two perspectives: a) from the dy-

namic state of the system and b) from the dynamic state of the application (task). Per-

formance and scalability of application through efficient utilization of resources depends

not only on how applications are intelligently mapped to the resources, but also on how

resources are intelligently managed based on runtime performance data as well as appli-

cation’s dynamic characteristics [Cao+02]. Based on this notion of resource management,

the act of managing resources can be sub-categorized into the following types:
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� System Resource Management

Current architecture trends of many-core architecture [Int; Til] hint the future scal-

able parallel computing system will have many-core architecture with thousands of

cores per chip under economically viable energy footprint [Bor07]. However future

systems will comprise of not only many-core architecture but also a host of other

different architectures, providing a heterogeneous computing environment [Dan+10].

Although both architectural paradigms allow more parallelism, they are also prone

to introducing overhead in the form of hardware resource coordinations, if there is no

optimal mapping of application tasks to available resources. While mapping avail-

able compute cores to application’s computation entities(tasks) is a NP hard problem,

with increasing compute cores; efficient resource allocation, with minimal communi-

cation overhead is nonetheless an activity that determines ultimate throughput of a

system [Mar+07; Kob+11; Jah+13].

The purpose of a system resource management service would be to monitor available

resources’ performance and availability, and use that information in allocation of the

logical representation of system resources to the pending tasks, encapsulated in Par-

allel Processes objects. Such a resource coordination framework that allows an object

oriented approach in coordinating resources not only allows a decentralized resource

management scheme, but also allows deployment of modular resource management

and usage policies [WW96]. Fine grained resource sharing between frameworks would

allow tight integration of interacting applications (or application frameworks) that

are concurrently utilizing the compute resources [Hin+11].

� Task Management

Task Management can be categorized as software resource management activity,

where management of tasks(threads) associated with relevant queues is done, us-

ing information such as task priorities, task dependency fulfillment, and preparing
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them to be assigned to the available compute resources. One of the principal ac-

tions for task management service is task granularity control. Granularity control of

tasks can be achieved both statically as well as dynamically. While static granularity

control allows dedicated usage of resource, when the work load is balanced; dynamic

granularity control [Car+09] allows adaptive work load balancing of tasks where the

application’s tasks are highly uneven, such as in dynamic graph applications.

However, all the procedure definitions of an application are not equally paralleliz-

able. Some sections are more parallelizable than the others due to different depen-

dency issues. Adjustable assignment of task granularity depends on malleability of

an application. Such adjustment could be primarily based on application’s paral-

lelizability characteristics and secondarily on hardware performance characteristics,

coordinated by the system resource management service. Having such feature for

task size recomposition allows efficient allocation of compute resources to more scal-

able tasks [SLS07], rather than just using a backfilling technique or priority based

scheduling [Bar+08]. The fundamental task for this service layer is to figure out the

appropriate task granularity for optimal performance.

� Locality Management

Running huge applications with huge datasets is becoming more possible with the

advancement in system hardware technologies and scalable execution models, with

decreasing overhead as well as lesser energy footprint [Hu+14]. However, not ev-

ery aspect of the system hardware show linear scalability, which is particularly true

for memory. The current trend of memory design paradigms in the HPC systems

architecture will to a greater degree continue into the Exascale era, meaning some

form of memory hierarchy will be preserved in future systems. Thus the way we

write applications will imbibe principles of temporal and spatial locality principles.

Although, communication speed has also been improved with each new generation
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of communication infrastructures tailored for HPC systems [Pan14], the volume of

data explosion in applications is too big for advanced communication infrastructure

to compensate. Hence data locality optimization is fundamentally important topic

for such applications.

Significance of data locality is, however, not only limited to big data applications.

Task scheduling without analysis of data sharing pattern could lead to serious per-

formance degradation [CE94]. Better locality behavior minimizes communication

and data management overheads. There are several compiler based solutions as well

as optimization algorithms that result in better locality behavior such as hierarchical

tiling [RK+13; KRC97; Bik+06]. The newer programming models also enable better

locality preservation for applications by allowing placement of relevant tasks as close

as possible, along with the feature of task movement, rather than data movement.

Additionally having the capacity to deploy user fed policies for task placement adds

another dimension in terms of data locality improvement, as users knowledge on

application heuristics can be directly exploited. Such feature allows an intelligent

task scheduling mechanism for placing relevant task on resources as close as possible,

rather than just relying on scheduling algorithms locality heuristics [Rin08]. Parallel

Processes in HPX provides such means of providing intelligent information about

data locality for task management service, for scheduling tasks on system resources.

Parallel Processes implicitly also allows hierarchical grouping of tasks, that could

represent different levels of data locality for the underlying hardware device [Fat+06;

Bik+06]. Further, the workflow semantics that the Parallel Processes can facilitate,

would naturally co-locate new tasks, whenever created.

4.4 Load Balancing Framework

Getting better scalability of any parallel application requires careful load distribution

across all the available resources. Applications that exhibit good scalability characteristics

are often applications that can be partitioned into even chunks and whose load character-
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istics is somewhat static [KGV94]. On the other hand, applications that cannot be evenly

partitioned into regular chunks and which has dynamic load characteristics are often diffi-

cult to scale. While scalability of applications depend primarily upon characteristics of the

applications, the architecture of the resources also play a significant role in determining a

desired result. A load balancing framework thus play an important role in realizing the

desired goal of achieving better resource utilization.

In a billion way parallelism offered by future multi-threaded heterogeneous systems,

applications would also be targeted with hardware based scalability solutions, with us-

age of dedicated hardware resources for certain tasks. While management of availability

of hardware devices is coordinated by system resource management framework, load bal-

ancing framework targets application subtasks to hardware resources based on information

provided by performance measurement module about application performance and resource

availability as well as based on application attributes.

Among many load balancing schemes, randomized work stealing mechanism for threaded

systems introduced in Cilk Runtime System [Blu+95] has been thus far the most popular

mechanism for load balancing. However future Exascale systems either using a central-

ized scheme or decentralized scheme cannot always guarantee optimal performance. Thus,

a measurement based dynamic load balancing framework in decentralized systems, with

some form of global and local control mechanism is preferred [Las+13]. Some popular

schemes for load balance are sender/receiver initiated where the roles may interchange,

hierarchical balancing scheme, gradient based, dimension exchange methods, global round

robin, asynchronous round robin, graph partitioning, space filling, prefix sum and many

more [SK93; WLR93; KGV94; AB12; Zhe+10]. Each of these strategies require different

evaluation criteria to be fulfilled to be an optimal candidate policy for load balancing.

Load balancing may be achieved through thread migration across NUMA domain

within a synchronous domain and computation(action) migration across synchronous do-

mains. Efficient usage of either mechanism depends upon understanding the application
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locality properties along with the physical system and its interconnects as well as task

priority attributes [HWW93; SK93; KC98]. Such knowledge allows finding an appropriate

task with right grain size that may be migrated. Dynamic granularity control of tasks for

load balancing is important for scalability of important class of applications that require

adaptive dynamic task reconfiguration.

With so many different parameters that need to be taken into consideration for dif-

ferent applications, it is difficult to come up with a one technique fits all solution. Hence

a load balancing scheme with modular policy deployment scheme [BC03], based on the

dynamic heuristics of different techniques for relevant applications gives a more versatile

infrastructure for load balancing of application tasks. Parallel processes in HPX, provides

this modularity option through its object oriented design. In addition, Parallel Processes’

composition of tasks into process objects and its thread objects give reconfigurable task

granularity on the fly as discussed in the above section. As task dependency ordering in-

formation can be stored in Parallel Processes objects, load balancing with efficient locality

control may be achieved, through task co-location mechanism.

4.5 Access Control Framework

With sophistication of application management mechanism, through plethora of control

semantics and intelligent dynamic information analysis capabilities, applications are becom-

ing more autonomous with their own increasing decision making capabilities. Such sophis-

tication in application management frameworks are opening new opportunity of harnessing

Exascale resources, where applications of different domains may execute simultaneously,

interacting with each other for their respective specialty (e.g. multiphysics applications).

Multi-domain application simulations provide an automatic and holistic approach in solving

a problem, rather than just using a single domain specialized applications, as solution ap-

proaches of different scientific domains are usually different from others [Ama+11a]. Such

possibility necessitates a mechanism to control guaranteeing a controlled and safe exchange

of information.
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Intelligent adaptive autonomous agents of the interacting applications could use dif-

ferent mechanism for access control such as role based access control (RBAC), attribute

based access control (ABAC) and more [Fin+08; Sto11]. These mechanisms can appropri-

ately be represented by the process objects, with their intrinsic properties, adapting to the

requirements of such mechanism. The Parallel Processes’ granularity control feature would

permit a granularity oriented access control of resources [Fis+09], where relevant objects

may be chunked, with a collective access rights defined for the whole group of objects.

4.6 Namespace Management

Parallel systems of Exascale and beyond would enable a billion way parallelism which

can be exploited with equal number of computation entities [SDM11; Agh86]. An object

oriented approach for representation of such computational entities for an efficient man-

agement of parallelism has been a popular approach [Bal+97; KK93; KBS09]. Naming

the objects provide a transparent and homogeneous identification of resources, allowing a

better flexibility for controlling such resources, while hiding resource diversity and intri-

cacies [Les03]. Thus having an efficient and scalable naming system would result in an

efficient and scalable control of the named objects, which translates to superior application

scalability.

Based on the relation of objects with other entities that they interact, namespace man-

agement may take different form. To name a few, a fast lookup service with homogeneous

distribution of objects across localities may be represented using a flat namespace or us-

ing hash tables for quick access. Namespace management based on topographical view of

objects can provide fast location information about objects. Hierarchical namespace man-

agement scheme is a popular method, that additionally allows locality conscious object

management [Les03]. Each of these naming schemes have their own advantages and disad-

vantages. Based on application requirements, an appropriate scheme can be used. Name

management services practiced in CORBA, DCE, DNS [Hen06; Lei99; Ter+84]systems fol-

low a static structure for the namespace management, with the premise that named objects
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do not often move; which serves a location based naming requirements. Meanwhile, other

naming schemes, such as those followed in global address space systems need to follow a

naming system that provides a unique name to an object, for the lifetime of an application.

Such unique naming allows uniform accessibility of objects in global address space, with

minimal overheads, despite the complexity and heterogeneity of resources involved.

Parallel Processes allows a flexible way of object management through its inherent prop-

erties. While a separate bookkeeping system of object names corresponding to different

attributes of the object may allow fast resolution of object for a particular computational

requirement, it is not always optimal. Such bookkeeping necessitates maintenance of dif-

ferent namespace database based on different attributes of objects. This method not only

requires more space but also cannot guarantee scalability of the naming scheme. Parallel

Processes on the other hand maintain a structural ordering of relevant objects, based on

predetermined requirements and clues when the objects were created, with all the object

attributes in present Process’s meta-data. Name resolution based on object attributes is

just a hierarchical traversal of relevant intermediate objects. Such attribute based name

resolution has benefit not only with context oriented namespace management but also with

security of objects [Les03].

4.7 Performance Measurement Framework

An application that is exposed to a billion way parallelism requires several different

parallelization techniques for scalability and to minimize performance bottlenecks due to

SLOW. However efficacy of such parallelization techniques can only be determined through

extensive performance measurements. Through performance measurements, we can analyze

if the performance bottleneck is due to misplacement of objects of an application that

is sensitive to locality [WKN], or due to system’s architectural limitations in providing

scalable memory or network bandwidth. Insights on the cause of bottleneck provided by

such measurements can then be used to figure out overhead minimization techniques.
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True evaluation of performance characteristics in a highly parallel distributed environ-

ment requires a scalable performance measurement framework that can grow on par with

the scaling of the application as well as the resources [BNM03; LMK08]. Not only does

such performance measurement framework need to be light weight and efficient, causing

minimal perturbation to actual application’s performance, but also has to manage mas-

sive volume of resulting measurement data [Hel+03]. An application profiler can fetch

hardware performance counter information as well as software parameters that would help

post analysis of application’s performance in figuring out acute bottlenecks in software ex-

ecution [SM06]. Additionally, the information fetched through such analysis can also be

used to predict optimal performance configuration of different systems as well as software

parameters using techniques such as universal scalability law [Gun08].

Above and beyond post run analysis of applications, performance measurement frame-

work is also crucial during the application run itself. The runtime system employs different

scheduling and management techniques on tasks, messages or data items for effectuating

an optimal performance of an application. These techniques are based on performance

criteria, such as task priority, deadlines that components of a running application must

meet [Kim+00]. A well-integrated dynamic performance measurement infrastructure effi-

ciently measures active runtime dynamics of application elements. Information gathered

from such dynamic run can be used by the scheduling and management infrastructure

to continually optimize application performance; effectively creating a dynamic feedback

control system [AKN04]. Such feedback system with fine grained performance tuning mech-

anism would require less user intervention that a post run analysis method would otherwise

necessitate.

Parallel Processes provide an effective platform for achieving both the roles, as a place-

holder for collecting data and center for feedback control system, of the performance mea-

surement framework. The performance measurement related entity that a Parallel Pro-

cesses would represent can be integrated as a cooperating part to the computational com-
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ponent of the application’s Parallel Processes. Such tight coupling of computational and

measurement framework allows a fine grained analysis of performance of an application.

Scalability of the ensuing performance measurement framework would be on par with the

scalability of the application, yet maintaining a minimal footprint on system resources.

To avoid communication overhead through transfer of large volume of performance related

data, only minimal relevant information can be transferred to the final aggregating compo-

nent that analyses a particular aspect of performance bottlenecks. The same infrastructure

would again be useful for effective dynamic fine tuning of the application at runtime, since

the performance data is recent and fine grained.
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5 AGAS Design Guidelines

The characteristic features of AGAS service and its purpose has been discussed in chap-

ter 3, sections 3.1 and 3.3. To enable scalable dynamic relocation of objects in a global

address space context, AGAS needs to be a distributed service. In addition, distributed

scalability of Parallel Processes and its functionality is directly dependent upon an scalable

AGAS service, as each Parallel Processes entity is a first class object. As such, to realize

a scalable and robust AGAS service in a distributed heterogeneous system, certain design

requirements need to be fulfilled. Such design requirements include: address space scalabil-

ity concerns, latency concerns, guaranteeing correctness of name resolution, fault tolerance,

and associated attributes for object migration. In the following sections, we discuss some of

the requirements that need to be addressed by an implementation of AGAS service. While

these guidelines are generic, and apply for any distributed systems, an attempt is made to

be as specific as possible, for the AGAS service.

5.1 Distributed AGAS service

If the current hardware architecture design trend is an indicator of what will be a

paradigm for distributed computing, the global address space for the runtime system needs

to span across hundreds of thousands of cores and accelerators on thousands of conventional

nodes. Future generation HPC applications would also be equally nontrivial in complexity

and size, where multi-domain interacting applications would be the norm [All+08]. From an

object oriented programming context, this translates into billions of compute unit objects.

An effective and efficient address resolution of large volumes of named objects require AGAS

services to have multiple distributed servers, coordinating address resolution across the

entire address space. During the implementation of such distributed servers, some design
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questions that may need answering can be: a) Should all the data, the AGAS servers

maintain, be always loaded into memory or can some part be offloaded into persistent

storage, for retrieving it later?; b) What policy should the AGAS service take to remove

the reference to an object that no longer exists, across the AGAS table instances?; c)

What impact, integrating access policy into the AGAS service, will have on performance

of AGAS service, and what is the best possible alternative to enable access policy for

namespace management?; d) For unified application framework, where two interacting

applications of different domains run at the same time, will having a single AGAS server

for both applications give better performance or will having two separate AGAS servers

a better approach?; and e) What will an efficient distributed service layout be, that is,

whether the AGAS tables will have single unique tables or is replication of tables allowed

to enable software caching of the table entries?

5.2 Asynchronous Coherent Table Management

The primary goal of AGAS service is to maintain a distributed table that stores the

mapping of a unique global id (GID) to corresponding tuple of local virtual address (LVA),

component id, and locality information. Additionally AGAS service may maintain a table of

GIDs with corresponding symbolic names. For sanity of data maintained by AGAS tables,

the load/store operations need to be atomic, while performing the whole address resolution

task as an asynchronous operation resulting in an overlap of synchronization overheads

with communication overheads. However, depending upon performance requirements of

fast address translation of neighboring objects versus always correct address resolution;

and using design decisions mentioned in section 5.1, an appropriate coherence model can

be identified and employed for the distributed AGAS servers [Tan94].

5.3 Correctness

The AGAS service must make certain guarantees about the accuracy of its address

resolution service, based on locality of an object. In this regard, AGAS service must

answer two fundamental questions: a) Is the object local? and b) If the object is not local,
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where can it be found? The degree of correctness to which these questions are answered

may be relaxed depending upon performance requirements in a distributed environment;

as the information in one end of the distributed system may take considerable time to be

relayed to the other end. This also depends upon the coherency protocol decision taken, as

discussed in section 5.2. Despite of whatever relaxation scheme is followed for correctness,

a minimal requirement for the AGAS service that needs to be esured is about the query

for local objects. If a query on an object originates from a locality where the object itself

resides (i.e. a local query), then the resolution should always be correct. Meanwhile it

would be permissible for the first query resolution be negative, for an object, even if the

object is indeed locally present. Correctness does not mean that AGAS must always give

the correct answer, it merely means that the circumstances in which AGAS may answer

incorrectly are well defined.

5.4 Fault Tolerance

Being a namespace management service for distributed resources, system or appli-

cation related, that span multiple localities, the AGAS service has to take account for

certain failures such as response failure, halting crash,byzantine faults, etc., [Cri93; Sch90].

Depending on the design decisions taken, as mentioned in section 5.1, the layout of the

distributed servers could be distributed client-server [BNM03] model, P2P model [Sch01]

or other distributed service architecture. To address different kinds of faults, AGAS can

follow different protocols, through redundancy (data replication) [GS97] and checkpoint-

ing [ZHK06; ZSK04] measures. Based on different fault tolerance mechanism followed, a

response protocol should be followed in the event of a failure. Using real-time constraints

such as response deadlines and expected success probabilities [KMR08], AGAS service can

restart the concerned server in a different locality or migrate the contents of the previous

AGAS server to several other live servers. Such mechanism augments the fault tolerance

mechanisms already existing for the runtime system, hence improving scalability in future

Exascale systems.
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5.5 Features for Object Migration

Migration of first class objects, i.e. objects with names, is a distinguishing feature of

the AGAS programming model when compared to other popular global address space pro-

gramming models. Migration is the process of moving arbitrary objects from a constrained

execution resource to a less constrained resource, when possible. For an effective object

migration feature, the migration mechanism relies on three entities:

1. Serialization Service, which provides a means of flattening any data structure into a

sequence of bytes and to recreate this data structure from the byte sequence at the

receiving end.

2. The Parcel Transport Layer, which provides a fast means of transporting data across

localities.

3. Migration Decision Service, supplies automatic dynamic resource management based

on continuous performance metrics on the constrained resources, for better applica-

tion scalability and efficiency.

For the object migration feature to work properly, an efficient mechanism that ensures

immutability and uniqueness of object names (GIDs, and symbolic names, when in context)

should be in place. This feature eliminates additional AGAS service overheads by avoiding

tracking name aliases of objects to be migrated.
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6 Experiments and Results

6.1 Applications

The experimental applications used in this thesis have been implemented in HPX with

multi-threaded and distributed version of two different types of applications, a dynamic

graph type application and stencil based application following a Bulk Synchronous Pro-

cessing (BSP) model. However the experiments for the applications have been conducted

on single nodes to meet the objectives outlined by this thesis.

6.1.1 UTS Benchmark

One of the benchmark application chosen for verifying the theory proposed on util-

ity of Parallel Processes in the above sections is Unbalanced Tree Search (UTS). UTS

is a well studied benchmark for dynamic graph problems; and has been used to study

the performance characteristics of a variety of parallel systems as well as programming

models [Oli+07]. It is a notoriously difficult to scale problem. This synthetic benchmark

however mimics characteristics of several scientific research fields, such as informatics, social

sciences, etc. Figure 6.1 shows and example of how a UTS graph may grow.

UTS is a tree(graph) traversal problem, where the nodes in the trees of the artifi-

cial benchmark are implicitly constructed, using a process named Galton-Watson Pro-

cess [Har63]. In this process, except for the root node, every other node is generated using

the information obtained from the parent, applying a cryptographic hash function on a

combination of parent node’s attributes and child index (from a fixed children count), for

deterministic results [Oli+07]. The constructed nodes need only be retained while on the

depth first search stack. Although the distribution of subtree sizes is same for each node,

the generated children number varies widely; with frequent small subtrees and occasionally
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very huge subtrees. For fast processing of the graphs, that is, traversing each nodes in the

graph, there is no benefit in choosing one node first from the other as the expected size

of the search space is same. This feature makes UTS similar to any real dynamic graph

type problem. So the performance characteristics observed with different settings can be

directly related to real world settings.

Since each node is self-contained, i.e. has all the information to create its children,

parallel tree traversal is possible. For parallel tree traversal, a set of empty stack or queue

is generated and assigned to HPX threads, and an initial root node is assigned to any of

the instantiated stack. As the initial stack gets heavier, other HPX threads with empty

stack, initiates stealing work from the heavy stack. Traversing the nodes in the stack by

the thread is continued until its stack empties, after which the thread becomes idle. Such

idle thread initiates, load balancing by moving one or more node(s) from non-empty stack

of another working thread to its empty stack. Hence, work stealing is initiated by idle

threads, without active participation of victim thread.

Work stealing is done in chunk sizes, granularity of work stolen, with larger chunk sizes

amortizing synchronization overhead of work stealing in the exploration of the ’j’ nodes.

However, the expected number of children to be generated for each of the j-nodes cannot

be guaranteed, although the probability of children count for each node is same. So, there

is no advantage in selecting one node over other for stealing. Hence the choice of chunk

size has to be a balance between load imbalance and communication cost.

The implementation of UTS in HPX closely follows reference implementation [Uts],

implementing two work(node) queues, local queue for extracting work and storing work,

and shared queue for for work stealing for load balancing.

6.1.2 MiniGhost

Minighost [BVH] is one of many scientific application proxies presented in Mantevo

Project [Man], that is self contained and feature fundamental performance characteristics

of the class of applications it belongs to. Minighost uses finite differencing method to solve
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Figure 6.1: Example representation of Unbalanced Graph generated by UTS application.

equations, using difference stencils to update the grid as a function of each point and its

neighbors, within a given discrete time step. The evaluation method of finite difference

method naturally super imposes onto parallel processing architecture and single program

multiple data (SPMD) programming model.

The computation of finite difference equations can be represented as stencils of grid

points, where each evaluation in a given time-step depends upon the corresponding values

of neighboring grid points, and/or corresponding values at the same grid point in previous

time-steps, as depicted in figure 6.2. On parallel systems, such stencil based problems

can be distributed as subproblems on available processes, with each process working on

a section of the total grid points. Each subproblem computation requires data exchange

from its neighboring processes, called boundary exchange. Transfer of relevant data to the

neighboring processes happen via inter-process communication.

The conventional approach for such boundary value exchange has been bulk-synchronous

parallel programming model [Che+96], where barrier synchronization happens at the end of

each time step evaluation, so that each grid point is at the same phase of the computation,
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Figure 6.2: Representation of Stencil Based computation with halo exchange regions.

as depicted in figure 6.3. Since, every point does not necessarily take the same amount of

time, such barrier synchronization imposes significant overhead due to processor(/thread)

idling. Although, different data-aggregation techniques have minimized inter-process com-

munication, allowing scalable performance uptill now; at Exascale problem size, both from

application as well as systems perspective, scalability seems to be a big challenge [BVH].

P1 P2 P3 P4 PN

Local Computations

Global Communication

Barrier

Figure 6.3: Bulk Synchronous Parallel Programming Model.
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In this study, the reference implementation of MiniGhost ported into HPX is used.

As mentioned in previous sections, with many of the established computational concepts

adopted by ParalleX computation model, as well as a flexible and simple AGAS program-

ming model, HPX provides a unique opportunity to move away from conventional program-

ming techniques. The port of MiniGhost into HPX provides the opportunity to study the

performance characteristics of the application class using finite difference method following

an asynchronous computation as well even-driven point synchronization of (computation)

tasks as well as resources.

6.2 Experimental Setup

Systems Used for Experimentation: The experiments in this thesis have been done on

Marvin and Trillian nodes of Hermione test cluster at Center for Computation and Tech-

nology, LSU. Each Marvin node has 16 cores, with two sockets each along with dedicated

memory for a NUMA domain. Each socket has 8 CPU cores with clock frequency of 2.7

GHz (3.5 GHz turbo). Symmetric multi-threading is two way dedicated for the NUMA do-

mains. The micro-architecture class of the processors is Intel Sandy Bridge. Each NUMA

domain has 24 GB dual channel DDR3 RAM, with system aggregate memory of 48 GB.

The OS used by the SMP system is 64 bit Linux with kernel version of 3.8.13.

Each Trillian node in the Hermione cluster has 64 AMD Opteron processors, with 4

sockets. Each socket has 16 cores, with 8 cores for the two NUMA domains within the

socket. Each CPU core has clock frequency of 2.1 GHz (3.0 GHz turbo for 8 or less cores;

2.4 GHz turbo for more than 8 cores). The micro-architecture class of the processors is

Bulldozer. Each NUMA Node has 16GB dual channel DDR3 RAM, with system aggregate

memory of 128GB. The OS used by each Trillian node is 64 bit Linux with kernel version

of 3.8.13.

6.3 UTS Experiments

Reference implementation of UTS benchmark ported into HPX, were executed on single

SMP Marvin and Trillian nodes, with following parameter variations:
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(a). A variation in assignment of CPU cores, hence OS threads to the HPX application.

This setting incrementally made more resource available to the application, of given

fixed size.

(b). A variation in the problem size from approximately 110 million nodes and 3 billion

nodes.

(c). A variation in the task granularity stolen, of 8 nodes, 20 nodes and 32 nodes.

(d). A variation of scheduling policy for each run configuration, using local-priority, static,

local, hierarchy and abp-priority scheduling policies, described in section 3.4.

6.3.1 UTS Experiment Results

In this section, results of various experiments done on UTS benchmark is discussed. The

results presented in figures 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 show performance of UTS application

in HPX, using five different scheduling policies local-priority, abp-priority, local, hierarchy

and static. The graph type variations for this set of experiment are Geometric(1) and

Binomial(3), using chunk-size of 20 for work stealing. Each figure is further discussed

below.

The figure 6.4 shows the performance of UTS benchmark run on Marvin node, with

OS threads varying between 1 and 16. The graph type is Geometric(1) with problem size

of approximately 4 million graph nodes(or work nodes). The figure shows the performance

of different scheduling policies, where the static policy has the has the least desired per-

formance. Meanwhile, the performance of other scheduling policies, though better than

static policy, do not show steading scaling performance, both compared to its previous

performance trend as well as compared with the performance of other scheduling policies,

for the given problem type and size.

The figure 6.5 shows the performance of UTS benchmark run on Marvin node, with

upto 16 OS thread runs for Geometric(1) graph type, with problem size of approximately

100 million graph nodes. Of the different scheduling policies selected the static policy still
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Figure 6.4: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 4 million nodes for Geometric(1) graph type, using different
scheduling policies.

show no scaling behavior; with performance deteriorating further as the level of hardware

concurrency increases. Meanwhile, the other scheduling policies show scaling behavior,

with similar patterns, and eventually flattening out after 8 and more cores for this problem

type and size.

The figure 6.6 shows the performance of UTS benchmark run on Marvin node, with

upto 16 OS threads runs for Geometric(1) graph type, with problem size of approximately

4 billion graph noes. Out of the five scheduling policies selected, static policy still does not

scale in this setting. Another thread scheduling policy, hierarchy, shows poor performance

at lesser OS thread count, and gradually catches up with other scheduling policies. In this

setting, all the scheduling policies show slight performance perturbations as we increase

more OS threads.
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Figure 6.5: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 100 million nodes Geometric(1) graph type, using different
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Figure 6.6: Performance Measurement of UTS benchmark in HPX with chunk size 20 and
problem size of approximately 4 billion nodes, for Geometric(1) graph type, using different
scheduling policies.
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Figure 6.7: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 4 million nodes for Binomial(3) graph type, using different
scheduling policies.

The figures 6.7, 6.8, 6.9 show performance of the UTS benchmark of Binomial(3) type

on Marvin node, again with upto 16 thread variations. The problem sizes again vary from

approximately 4 million, to 110 million to 3 billion. Again, in all the test configurations,

the static scheduler, which does not do any work stealing, even though the UTS application

does load balancing on its own, show no performance gain as the number of OS threads are

increased. Other schedulers however show better better scaling compared to type 1 graph,

with lesser perturbations. For T3L graph type, the abp-priority scheduler shows degraded

performance.

The figure 6.10 shows the performance of UTS on Marvin node, with binomial(1) graph

type, of 3 billion size, using chunk size of 32. Compared to the previous runs of same type

but with chunk size 20, the different schedulers seem to show performance fluctuations.

The figure 6.11 shows performance of binomial(1) type on Trillian node, with chunk size

of 32. In the latter scenario, the scaling behavior is better, upto 64 OS threads for the

given problem size. This tells that the architectural difference between the two hardware
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Figure 6.8: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 110 million nodes for Binomial(3) graph type, using different
scheduling policies.
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Figure 6.9: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies.
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Figure 6.10: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies.
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Figure 6.11: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 3 billion nodes, for Binomial(3) graph type, using different
scheduling policies on Trillian node.

platforms, Marvin and Trillian, with different NUMA settings, do not put much impact on

the performance of UTS application.
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Figure 6.12: Comparison of Performance Measurement of UTS benchmark in HPX with
different chunk sizes for Binomial(3) graph type of size approx. 4 million, using hierarchical
scheduling policy on Trillian node.

The figures 6.12, 6.13 and 6.14 show comparison of performance of binomial(3) graph

type , for problem sizes of approximate 4 million, 110 million and 3 billion with three

chunks sizes 8, 20 and 32 for each comparison, using hierarchy scheduling policy. The

comparisons show that certain chunk size selection gives higher performance, where the

combined effect of overhead due to synchronization for load balancing and the limit of

parallelism due to an unbalanced queue are both minimal. Also for all the chunk sizes,

for smaller problem sizes, see figure 6.12 the performance degrades after 16 OS threads.

This is due to synchronization overheads due to less available work. As the problem size is

increased, as we see in figures 6.13 and 6.14 the scaling of the application also improves.

In addition to that, we can also observe that higher chunk size gives better performance as

the problem size increases, due to amortization of synchronization overheads. Additional

experiments on the UTS benchmark application, for different graph types, chunk sizes,

architectures and scheduling policy variations is listed in Appendix B.
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6.3.2 Summary

From the results discussed above, it can be inferred that:

(a). The application’s behavior with different schedulers differ with different problem sizes.

(b). For dynamic unbalanced graph types, active load balancing by the runtime system

makes significant impact on performance

(c). Even for the same type of application, under different application parameters, the

scheduler may perform differently and

(d). Different problems within same application class may need extra attention in task

management for better performance characteristics.

6.4 MiniGhost Experiments

Reference implementation of Minighost in HPX, was experimented on single SMPs,

Marvin and Trillian nodes, with parameter variations of:

(a). An incremental assignment of CPU cores, hence OS threads to the HPX applica-

tion. This setting incrementally made more resource available to the application, of

given size. Again, the OS thread-core allocation were chosen with NUMA effect into

perspective.

(b). A variation of scheduling policy for each run configuration, using local-priority, static,

local, hierarchy and abp-priority scheduling policies.

(c). Problem size variation of 3D grid points of 100x100x100, 200x200x200 and 400x400x400

dimensions.

(d). Stencil evaluation methods: 2D5PT(21), 2D9PT(23) and 3D27PT(24).

For the experiment, the additional parameter applied to the applications were: number

of variables, 40; number of steps was set to 20 with reduction value of 10% of the variables

in each time step.
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6.4.1 MiniGhost Experiment Results

In this section, the results of various experiments done on Minighost benchmark is is

discussed. The results presented in figures 6.15, 6.16, 6.17 and 6.18 show the performance

of Minighost application in HPX, using five different scheduling policies. The scheduling

policies are same ones used in UTS benchmark experiment, which are local-priority, abp-

priority, local, hierarchy and static. The following figures discuss the findings in more

detail.

The figure 6.15 shows the performance of Minighost application of problem size 100x100x100,

using stencil-23. The performance graph shows that while performance of some scheduling

policies are better than the others, most of them follow general trend of better scaling

besides the hierarchy scheduling policy. The most important distinction from the UTS

results and this result is that the static scheduling policy is also showing better scaling per-

formance, in similar trend with other scheduling policies. This distinguishes the difference

in requirements of scheduling policies for the two applications.
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Figure 6.15: Performance Measurement of MiniGhost benchmark application, using stencil
23 and gridsize 100 in HPX for different scheduling policies.
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The figure 6.16 shows the performance of Minighost application of problem size 200x200x200,

using stencil-23. The performance graph shows that the performance of different schedul-

ing policies are almost same except for the hierarchy scheduler. For hierarchy scheduler,

the performance is poorer for smaller OS thread assigned, and gradually improves as the

number of OS thread count increased.
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Figure 6.16: Performance Measurement of MiniGhost benchmark application, using stencil
23 and gridsize 200 in HPX for different scheduling policies.

The figure 6.17 shows the performance of Minighost application of problem size 400x400x400,

using stencil-23. The performance graph shows that the performance of different scheduling

policies are similar to what we witnessed in the previous setting shown in figure 6.16 except

for the time taken by the application at each OS thread configuration, which is higher than

the previous run, as the problem size is also bigger.

The figure 6.18 shows the performance comparison of Minighost application of problem

size 100x100x100, using stencil-21 on Marvin and Trillian nodes. The performance graph

shows that, besides the role played by the speed of CPU for each architecture, there is only

slight difference in performance due to the scheduling policies between the two hardware

architectures used in this experimentation. Further experimentation results with different
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Figure 6.17: Performance Measurement of MiniGhost benchmark application, using stencil
23 and gridsize 400 in HPX for different scheduling policies.

stencil methods, problem sizes and on different architecture is presented in Appendix B.

6.4.2 Summary

From the results discussed above, it can be inferred that:

(a). For stencil based applications, that follow bulk-synchronous protocol, active load

balancing by the runtime system does not necessarily translate in big performance

gain.

(b). Performance under certain scheduling policies are not always same with respect to

other scheduling policies; under certain situation one is better than other, and vice-

versa.

6.5 Final Summary

Performance of scheduling policies primarily depend upon the applications’ character-

istic. It also depends upon the parameters that control or define the granularity of the

task size for that application. Within the same application class, a particular execution

policy may not always translate into better performance, and a closer task coordination
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Figure 6.18: Performance Measurement of MiniGhost benchmark application, using sten-
cil 21 and gridsize 100 in HPX for different scheduling policies and two different system
architectures.

may be needed to show any advantageous effect of an execution policy. Also some exe-

cution policy may not be suitable for optimal performance. Now, across the application

domains, a scheduling policy showing poor performance for the application might show

better performance results with another application. Thus, from our observations from the

experiments on the two different types of applications, we can infer that for applications

with dynamic characteristics and non-uniform work load, a framework for adaptive task

control is needed, where the task granularity as well as scheduling policies can be chosen

at runtime.
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7 Related Work

Chapel [CCZ04] is a parallel programming language that supports multi-threaded

execution model, enables locality awareness for data distribution in a Partitioned Global

Address Space (PGAS) [Yel+07] context. Chapel presents the concept of Domains [Dia+]

as a named indexed set object that may represent data structures of different types and

which can distributed across multiple localities (nodes in conventional sense). Chapel also

supports concurrent task deployment via threads and synchronization of concurrent tasks

is achieved via synchronizing variables. While individual concepts driving the Chapel

programming model are powerful, Chapel does not provide a comprehensive approach of

unifying these concepts with computational entities as well as the available resources, and

represent it as a single entity.

Co-Array Fortran (CAF) [Coa+03] is an extension to Fortran Programming Language

(Fortran 90), integrating communication and synchronization primitives as part of the lan-

guage, following a Global Address Space programming model. New extension allowed direct

addressing of parts of an array/data structure that is distributed across localities, via just

indexing. Further extension of the language as CAF 2.0 allowing dynamic allocation of

arrays, better synchronization primitives, with split-phase barriers, asynchronous commu-

nication, locality sensitive data allocation, etc. [MC+09]. While these features do take care

of requirements for application scalability, they do not take into account the requirements

for applications where adaptive work management needs to be taken into account. Selec-

tive mapping of the co-arrays to designated localities is not supported, which limits the

flexibility in task and resource management. CAF is also a PGAS language.
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X10 is another object oriented programming language introducing notion of places,

regions and distributions to support parallelism of computation across a multiple heteroge-

neous system nodes with non-uniform data access using partitioned global address space as

address resolution mechanism [ESS04] [ESS05]. X10 puts forth the notion of light weight

threads that allows execution of finegrained tasks, with places representing the collection

of such threads and relevant data. X10 has several synchronization semantics, in the form

of clocks, unconditional atomic sections, conditional atomic sections, etc. X10 further

supports heterogeneous and asynchronous computation through asynchronous partitioned

global address space [Sar+10]. For communication X10 uses a form of active messages

and a heuristic flow control mechanism to avoid deadlocking of resources [Aga+07]. These

excellent features makes X10 on of the leading PGAS languages that takes resources het-

erogeneity as well as asynchrony in computations into account. However, X10 still lacks

the concept of composing these ideas into a unison, for effective resource management with

dynamic adaptive policy deployment features.

Titanium is yet another object oriented programming language that follows PGAS

model, with explicit parallel SPMD control model [DBY05; KSY05]. It provides a distinc-

tion between local and global memory, for exploiting locality properties of application pro-

grams. Titanium details a process as a thread of control, with collection of processes terms

as a team. Sharing of information between processes is done via shared variables, data-

structures and function calls that allows access to these variables/data-structures [PNHY].

UPC is a message driven, distributed programming language that follows SPMD model,

in PGAS context [HIY03]. UPC allows data affinity with the threads where they are

created, with better locality behavior. In UPC, load distribution is static, with lacking

features for dynamic load balancing. Again, without much granularity size variation of

threads, fine grained adaptive tuning of thread sizes is not possible, limiting scalability of

certain class of applications. Further, UPC does not consider namespace and access policy

management schemes for scalable and secure operation of multi-domain applications.
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Charm++ [KK93]is an object oriented, message driven parallel programming language

written in C++. Charm++ is influenced by actors model [Agh86], where communication

for concurrent objects happen only through messages. Charm++ features distributed ob-

jects, called chares, for distributed computation management. Charm++ also employs an

extensive load balancing schemes based on performance measurements, with migration of

objects as one of the mechanisms. While Charm++ has many of the advanced features that

is required for load balancing in a hybrid environment, it does not provide the semantics

for task management along with customizable fine grained policy deployment. For complex

applications to be able to show better performance on complex system architectures, an

adaptive dynamic computation management framework with the ability to deploy different

access and execution policies is becoming more necessary.
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8 Conclusions and Future Direction

This dissertations contributes in the conceptual outlining of Parallel Processes as a

platform for deployment of a of scalable resource management framework. Parallel Pro-

cesses can provide a universal and scalable platform for orchestration of computation, even

with intricate dependencies, for a wide variety of applications, with a promise of scalability.

This is partly also due to the flexibility of structuring of relevant sub-processes as well as

means of decoupling non-relevant sub-processes of the overall Parallel Processes structure.

Such targeted execution facility also allows deployment of selective execution, management

and access policies for interacting objects within the Parallel Process hierarchy. Also, for

scalable Parallel Process deployment, a scalable naming service is essential.

The contributions of this thesis is briefly discussed below:

� A holistic approach to address the scalability challenges in Exascale and beyond

computing.

� Defined a conceptual framework for designing infrastructure for resource and compu-

tation management in an era of extreme scale computations.

� Provided a comprehensive list of guidelines and use cases for Parallel Processes for

control, coordination and access policy of applications in emerging classes of interde-

pendent, multi-domain application frameworks as well as scalability impaired appli-

cations.

� Discussed and identified the design requirements for AGAS service to be a scalable

namespace management service in a global address space context. This in turn ensures

scalability of Parallel Processes, as AGAS is a required service for it.
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� Demonstrated the need of adaptive dynamic runtime resource management for ap-

plications within the same class as well as across different application classes.

� Showed the significance of dynamic load balancing, not only from an application’s

perspective but also from the runtime system’s perspective.

� Implemented UTS benchmark in HPX programming model, based on reference im-

plementation.

Further exploring means of storing meta data about all the relevant distributed sub-

processes, either using distributed container, or having a distributed indexing scheme for

distributed processes or sub-processes would be next incremental step for realizing an scal-

able resource management framework. In addition to the scalable referencing scheme or dis-

tributed data storage mechanism, close integration of performance measurement framework

would enable placement of a feedback system for dynamic adaptive resource management.

Again, as discussed in the earlier sections, scalability of the resource management

framework using Parallel Processes is directly dependent upon the scalability of AGAS

system, with an efficient mechanism for facilitation of namespace management for migration

of objects for distributed load balancing. So an implementation and experimentation of

this topic could be a possible avenue of exploration.

In addition to this, Parallel Processes could be a platform for access control mechanism

for interacting applications in a multi-modal, multi-physics scenario; as well as for defining

access rules, on data objects, for third party users . Placement of such mechanism would

limit unintended behavior in computation. Implementation and experiments on efficiency

of an access policy framework for multi-application, multi-modal framework systems could

be a next achievable target.

Different applications with different computation paradigms show different performance

characteristics on different networking of system hardware. A universal network design for

systems hardware has been an illusive target. With Parallel Processes, a most generic
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network architecture could be used to organize network flow at the software level,when

needed, according to the requirements of the applications in context, hence promising

better performance.
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[Löf+13] Frank Löffler et al. “Cactus: Issues for Sustainable Simulation Software”. In:
CoRR abs/1309.1812 (2013). url: http://arxiv.org/abs/1309.1812.

[Phi+05] James C Phillips et al. “Scalable molecular dynamics with NAMD”. In: Jour-
nal of computational chemistry 26.16 (2005), pp. 1781–1802.

[All+08] Gabrielle Allen et al. HPC Application Software Consortium Summit Concept
Paper. Tech. rep. HPC-ACS Planning Workshop, 2008.

[Cve] std::vector.

[Sub+93] Jaspal Subhlok et al. “Exploiting Task and Data Parallelism on a Multi-
computer”. In: In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 1993, pp. 13–22.

[Xin+13] Reynold S. Xin et al. “GraphX: A Resilient Distributed Graph System on
Spark”. In: First International Workshop on Graph Data Management Expe-
riences and Systems. GRADES ’13. New York, New York: ACM, 2013, 2:1–
2:6. isbn: 978-1-4503-2188-4. doi: 10.1145/2484425.2484427. url: http:
//doi.acm.org/10.1145/2484425.2484427.

[Tab+11] A. Tabbal et al. “Preliminary Design Examination of the ParalleX System
from a Software and Hardware Perspective”. In: SIGMETRICS Performance
Evaluation Review 38 (2011), p. 4.

78

http://dx.doi.org/10.1109/IPDPS.2009.5161014
http://dx.doi.org/10.1109/IPDPS.2009.5161014
http://portal.acm.org/citation.cfm?id=1586640.1587714
http://portal.acm.org/citation.cfm?id=1586640.1587714
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2010.5470773
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2010.5470773
http://arxiv.org/abs/1309.1812
http://dx.doi.org/10.1145/2484425.2484427
http://doi.acm.org/10.1145/2484425.2484427
http://doi.acm.org/10.1145/2484425.2484427


[Eic+92] T.v. Eicken et al. “Active Messages: A Mechanism for Integrated Commu-
nication and Computation”. In: Computer Architecture, 1992. Proceedings.,
The 19th Annual International Symposium on (1992), pp. 256–266.

[Kai+14] Hartmut Kaiser et al. “HPX A Task Based Programming Model in a Global
Address Space”. In: Proceedings of the 8th International Conference on Par-
titioned Global Address Space Programming Models. Eugene, Oregon, USA:
ACM, 2014.

[Amd67] Gene M. Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20, 1967,
spring joint computer conference. AFIPS ’67 (Spring). Atlantic City, New
Jersey: ACM, 1967, pp. 483–485. doi: 10.1145/1465482.1465560. url:
http://doi.acm.org/10.1145/1465482.1465560.

[Axe86] Tim S. Axelrod. “Effects of synchronization barriers on multiprocessor per-
formance”. In: Parallel Computing 3.2 (1986), pp. 129 –140. issn: 0167-8191.
doi: http://dx.doi.org/10.1016/0167-8191(86)90030-X. url: http:
//www.sciencedirect.com/science/article/pii/016781918690030X.

[Mes09] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 2.2. Stuttgart, Germany: High Performance Computing Center
Stuttgart (HLRS), 2009.

[Yel+07] Katherine Yelick et al. “Productivity and Performance Using Partitioned
Global Address Space Languages”. In: Proceedings of the 2007 International
Workshop on Parallel Symbolic Computation. PASCO ’07. London, Ontario,
Canada: ACM, 2007, pp. 24–32. isbn: 978-1-59593-741-4. doi: 10.1145/

1278177.1278183. url: http://doi.acm.org/10.1145/1278177.1278183.

[Cha] The Charm++ Parallel Programming System Manual. Vesion 6.5.0. Parallel
Programming Laboratory, University of Illinois at Urbana-Champaign.

[Aga+07] Shivali Agarwal et al. “Deadlock-free Scheduling of X10 Computations with
Bounded Resources”. In: Proceedings of the Nineteenth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures. SPAA ’07. San Diego, Califor-
nia, USA: ACM, 2007, pp. 229–240. isbn: 978-1-59593-667-7. doi: 10.1145/
1248377.1248416. url: http://doi.acm.org/10.1145/1248377.1248416.

[CVG11] Long Chen, O. Villa, and G.R. Gao. “Exploring Fine-Grained Task-Based
Execution on Multi-GPU Systems”. In: Cluster Computing (CLUSTER),
2011 IEEE International Conference on. 2011, pp. 386–394. doi: 10.1109/
CLUSTER.2011.50.

[JHM04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. “Advances
in Dataflow Programming Languages”. In: ACM Comput. Surv. 36.1 (Mar.

79

http://dx.doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/http://dx.doi.org/10.1016/0167-8191(86)90030-X
http://www.sciencedirect.com/science/article/pii/016781918690030X
http://www.sciencedirect.com/science/article/pii/016781918690030X
http://dx.doi.org/10.1145/1278177.1278183
http://dx.doi.org/10.1145/1278177.1278183
http://doi.acm.org/10.1145/1278177.1278183
http://dx.doi.org/10.1145/1248377.1248416
http://dx.doi.org/10.1145/1248377.1248416
http://doi.acm.org/10.1145/1248377.1248416
http://dx.doi.org/10.1109/CLUSTER.2011.50
http://dx.doi.org/10.1109/CLUSTER.2011.50


2004), pp. 1–34. issn: 0360-0300. doi: 10.1145/1013208.1013209. url:
http://doi.acm.org/10.1145/1013208.1013209.

[Sga10] Kyriakos N. Sgarbas. “Automata Theory with Modern Applications by James
A. Anderson, Cambridge University Press, 2006, Viii+256 Pages”. In: SIGACT
News 41.2 (June 2010), pp. 43–46. issn: 0163-5700. doi: 10.1145/1814370.
1814384. url: http://doi.acm.org/10.1145/1814370.1814384.

[Jac+03] A. Jacquet et al. “An Executable Analytical Perfromance Evaluation Ap-
proach for Early Performance Prediction”. In: In Proc. of the Workshop on
Massively Parallel Processing held in conjunction with Intl. Parallel and Dis-
tributed Processing Symposium (IPDPS-03). Nice, France, 2003.

[SW10] Hartmut F.-W. Sadrozinski and Jinyuan Wu. Applications of Field-Programmable
Gate Arrays in Scientific Research. 1st. Bristol, PA, USA: Taylor & Francis,
Inc., 2010. isbn: 1439841330, 9781439841334.

[FM04] James Fung and Steve Mann. “Using Multiple Graphics Cards As a General
Purpose Parallel Computer: Applications to Computer Vision”. In: Proceed-
ings of the Pattern Recognition, 17th International Conference on (ICPR’04)
Volume 1 - Volume 01. ICPR ’04. Washington, DC, USA: IEEE Computer So-
ciety, 2004, pp. 805–808. isbn: 0-7695-2128-2. doi: 10.1109/ICPR.2004.968.
url: http://dx.doi.org/10.1109/ICPR.2004.968.

[Gib66] Charles T. Gibson. “Time-sharing in the IBM System/360: Model 67”. In:
Proceedings of the April 26-28, 1966, Spring Joint Computer Conference.
AFIPS ’66 (Spring). Boston, Massachusetts: ACM, 1966, pp. 61–78. doi:
10.1145/1464182.1464190. url: http://doi.acm.org/10.1145/1464182.
1464190.

[The08] The C++ Standards Committee. Working Draft, Standard for Programming
Language C++. 2008. url: {http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2008/n2798.pdf}.

[Var10] Various. Boost C++ Libraries. 2010. url: http://www.boost.org.

[Lei09] Charles E. Leiserson. “The Cilk++ concurrency platform”. In: DAC ’09: Pro-
ceedings of the 46th Annual Design Automation Conference. San Francisco,
California: ACM, 2009, pp. 522–527. isbn: 978-1-60558-497-3. doi: 10.1145/
1629911.1630048. url: http://dx.doi.org/10.1145/1629911.1630048.

[Int10] Intel. Intel Thread Building Blocks 3.0. http://www.threadingbuildingblocks.org.
2010. url: http://www.threadingbuildingblocks.org/.

[Mic10] Microsoft. Microsoft Parallel Pattern Library. http://msdn.microsoft.com/en-
us/library/dd492418.aspx. 2010. url: http://msdn.microsoft.com/en-
us/library/dd492418.aspx.

80

http://dx.doi.org/10.1145/1013208.1013209
http://doi.acm.org/10.1145/1013208.1013209
http://dx.doi.org/10.1145/1814370.1814384
http://dx.doi.org/10.1145/1814370.1814384
http://doi.acm.org/10.1145/1814370.1814384
http://dx.doi.org/10.1109/ICPR.2004.968
http://dx.doi.org/10.1109/ICPR.2004.968
http://dx.doi.org/10.1145/1464182.1464190
http://doi.acm.org/10.1145/1464182.1464190
http://doi.acm.org/10.1145/1464182.1464190
{http://www.open-std.org/jtc1/sc22/wg21/docs/papers/ 2008/n2798.pdf}
{http://www.open-std.org/jtc1/sc22/wg21/docs/papers/ 2008/n2798.pdf}
http://www.boost.org
http://dx.doi.org/10.1145/1629911.1630048
http://dx.doi.org/10.1145/1629911.1630048
http://dx.doi.org/10.1145/1629911.1630048
http://www.threadingbuildingblocks.org/
http://msdn.microsoft.com/en-us/library/dd492418.aspx
http://msdn.microsoft.com/en-us/library/dd492418.aspx


[AJ89] A. W. Appel and T. Jim. “Continuation-passing, closure-passing style”. In:
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. Austin, Texas, United States: ACM,
1989, pp. 293–302. isbn: 0-89791-294-2.

[Wal82] David W. Wall. “Messages as active agents”. In: Proceedings of the 9th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. POPL
’82. Albuquerque, New Mexico: ACM, 1982, pp. 34–39. isbn: 0-89791-065-
6. doi: http : / / doi . acm . org / 10 . 1145 / 582153 . 582157. url: http :

//doi.acm.org/10.1145/582153.582157.

[Cul+93] David E. Culler et al. “A compiler controlled Threaded Abstract Machine”.
In: Journal of Parallel and Distributed Computing 18 (1993), pp. 347–370.

[Kri+93] A. Krishnamurthy et al. “Parallel programming in Split-C”. In: Supercomput-
ing ’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing.
Portland, Oregon, United States: ACM, 1993, pp. 262–273. isbn: 0-8186-
4340-4. doi: 10.1145/169627.169724. url: http://dx.doi.org/10.1145/
169627.169724.

[FW76] Daniel P. Friedman and David S. Wise. “CONS Should Not Evaluate its
Arguments”. In: ICALP. 1976, pp. 257–284.

[Hal85] Robert H. Halstead Jr. “MULTILISP: a language for concurrent symbolic
computation”. In: ACM Trans. Program. Lang. Syst. 7 (4 1985), pp. 501–
538. issn: 0164-0925. doi: http://doi.acm.org/10.1145/4472.4478. url:
http://doi.acm.org/10.1145/4472.4478.

[BH77] Henry C. Baker Jr. and Carl Hewitt. “The incremental garbage collection
of processes”. In: SIGART Bull. New York, NY, USA: ACM, 1977, pp. 55–
59. doi: http://doi.acm.org/10.1145/872736.806932. url: http:

//doi.acm.org/10.1145/872736.806932.

[Han73] Per Brinch Hansen. Operating System Principles. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1973. isbn: 0-13-637843-9.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. “A Theory of Commu-
nicating Sequential Processes”. In: J. ACM 31.3 (1984), pp. 560–599. issn:
0004-5411.

[SAW94] B. Schilit, N. Adams, and R. Want. “Context-Aware Computing Applica-
tions”. In: Proceedings of the 1994 First Workshop on Mobile Computing Sys-
tems and Applications. WMCSA ’94. Washington, DC, USA: IEEE Computer
Society, 1994, pp. 85–90. isbn: 978-0-7695-3451-0. doi: 10.1109/WMCSA.

1994.16. url: http://dx.doi.org/10.1109/WMCSA.1994.16.

[PB10] Artur Podobas and Mats Brorsson. “A Comparison of some recent Task-
based Parallel Programming Models”. In: Proceedings of the 3rd Workshop

81

http://dx.doi.org/http://doi.acm.org/10.1145/582153.582157
http://doi.acm.org/10.1145/582153.582157
http://doi.acm.org/10.1145/582153.582157
http://dx.doi.org/10.1145/169627.169724
http://dx.doi.org/10.1145/169627.169724
http://dx.doi.org/10.1145/169627.169724
http://dx.doi.org/http://doi.acm.org/10.1145/4472.4478
http://doi.acm.org/10.1145/4472.4478
http://dx.doi.org/http://doi.acm.org/10.1145/872736.806932
http://doi.acm.org/10.1145/872736.806932
http://doi.acm.org/10.1145/872736.806932
http://dx.doi.org/10.1109/WMCSA.1994.16
http://dx.doi.org/10.1109/WMCSA.1994.16
http://dx.doi.org/10.1109/WMCSA.1994.16


on Programmability Issues for Multi-Core Computers, (MULTIPROG’2010),
Jan 2010, Pisa. Qc 20120214. 2010.

[Wil09] Anthony Williams. C++ concurrency in action: practical multithreading. Man-
ning, 2009.

[Bla+10] Sergey Blagodurov et al. “A Case for NUMA-aware Contention Management
on Multicore Systems”. In: Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques. PACT ’10. Vienna,
Austria: ACM, 2010, pp. 557–558. isbn: 978-1-4503-0178-7. doi: 10.1145/
1854273.1854350. url: http://doi.acm.org/10.1145/1854273.1854350.

[Le+07] H. Q. Le et al. “IBM POWER6 Microarchitecture”. In: IBM J. Res. Dev.
51.6 (Nov. 2007), pp. 639–662. issn: 0018-8646. doi: 10.1147/rd.516.0639.
url: http://dx.doi.org/10.1147/rd.516.0639.

[Ber+09] Emery D. Berger et al. “Grace: Safe Multithreaded Programming for C/C++”.
In: Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications. OOPSLA ’09. Orlando,
Florida, USA: ACM, 2009, pp. 81–96. isbn: 978-1-60558-766-0. doi: 10.1145/
1640089.1640096. url: http://doi.acm.org/10.1145/1640089.1640096.

[Han02] Per Brinch Hansen. “The Origin of Concurrent Programming”. In: ed. by Per
Brinch Hansen. New York, NY, USA: Springer-Verlag New York, Inc., 2002.
Chap. RC 4000 Software: Multiprogramming System, pp. 153–197. isbn: 0-
387-95401-5. url: http://dl.acm.org/citation.cfm?id=762971.762976.

[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, eds. Structured Programming.
London, UK, UK: Academic Press Ltd., 1972. isbn: 0-12-200550-3.

[BC05] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005. isbn: 0596005652.

[TJF13] Peter Thoman, Herbert Jordan, and Thomas Fahringer. “Adaptive Granu-
larity Control in Task Parallel Programs Using Multiversioning”. In: Pro-
ceedings of the 19th International Conference on Parallel Processing. Euro-
Par’13. Aachen, Germany: Springer-Verlag, 2013, pp. 164–177. isbn: 978-3-
642-40046-9. doi: 10.1007/978-3-642-40047-6_19. url: http://dx.doi.
org/10.1007/978-3-642-40047-6_19.

[Hoa74] C. A. R. Hoare. “Monitors: An Operating System Structuring Concept”. In:
Commun. ACM 17.10 (Oct. 1974), pp. 549–557. issn: 0001-0782. doi: 10.
1145/355620.361161. url: http://doi.acm.org/10.1145/355620.

361161.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Parnas. “Concurrent control with
“readers” and “writers””. In: Commun. ACM 14.10 (1971), pp. 667–668.
issn: 0001-0782.

82

http://dx.doi.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/1854273.1854350
http://doi.acm.org/10.1145/1854273.1854350
http://dx.doi.org/10.1147/rd.516.0639
http://dx.doi.org/10.1147/rd.516.0639
http://dx.doi.org/10.1145/1640089.1640096
http://dx.doi.org/10.1145/1640089.1640096
http://doi.acm.org/10.1145/1640089.1640096
http://dl.acm.org/citation.cfm?id=762971.762976
http://dx.doi.org/10.1007/978-3-642-40047-6_19
http://dx.doi.org/10.1007/978-3-642-40047-6_19
http://dx.doi.org/10.1007/978-3-642-40047-6_19
http://dx.doi.org/10.1145/355620.361161
http://dx.doi.org/10.1145/355620.361161
http://doi.acm.org/10.1145/355620.361161
http://doi.acm.org/10.1145/355620.361161


[Ayg+06] Eduard Ayguade et al. “Employing Nested OpenMP for the Parallelization
of Multi-zone Computational Fluid Dynamics Applications”. In: J. Parallel
Distrib. Comput. 66.5 (May 2006), pp. 686–697. issn: 0743-7315. doi: 10.
1016/j.jpdc.2005.06.019. url: http://dx.doi.org/10.1016/j.jpdc.
2005.06.019.

[CYH10] Wen Ren Chen, Wuu Yang, and Wei Chung Hsu. “A lock-free cache-friendly
software queue buffer for decoupled software pipelining”. In: Computer Sym-
posium (ICS), 2010 International. 2010, pp. 997–1006. doi: 10.1109/COMPSYM.
2010.5685364.

[Hoa78] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM
21.8 (Aug. 1978), pp. 666–677. issn: 0001-0782. doi: 10 . 1145 / 359576 .

359585. url: http://doi.acm.org/10.1145/359576.359585.

[SR08] W. Richard Stevens and Stephen A. Rago. Advanced Programming in the
UNIX Environment, Second Edition. 2nd. Addison-Wesley Professional, 2008.
isbn: 0321525949, 9780321525949.

[JT01] Trent Jaeger and Jonathon E. Tidswell. “Practical Safety in Flexible Access
Control Models”. In: ACM Trans. Inf. Syst. Secur. 4.2 (May 2001), pp. 158–
190. issn: 1094-9224. doi: 10.1145/501963.501966. url: http://doi.acm.
org/10.1145/501963.501966.

[Chr88] T. W. Christopher. “Message Driven Computing and Its Relationship to Ac-
tors”. In: SIGPLAN Not. 24.4 (Sept. 1988), pp. 76–78. issn: 0362-1340. doi:
10.1145/67387.67405. url: http://doi.acm.org/10.1145/67387.67405.

[BBU99] John Barkley, Konstantin Beznosov, and Jinny Uppal. “Supporting Relation-
ships in Access Control Using Role Based Access Control”. In: Proceedings of
the Fourth ACM Workshop on Role-based Access Control. RBAC ’99. Fairfax,
Virginia, USA: ACM, 1999, pp. 55–65. isbn: 1-58113-180-1. doi: 10.1145/
319171.319177. url: http://doi.acm.org/10.1145/319171.319177.

[Fis+09] Jeffrey Fischer et al. “Fine-Grained Access Control with Object-Sensitive
Roles”. In: Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming. Genoa. Italy: Springer-Verlag, 2009, pp. 173–
194. isbn: 978-3-642-03012-3. doi: 10.1007/978-3-642-03013-0_9. url:
http://dx.doi.org/10.1007/978-3-642-03013-0_9.

[PH00] Raju Pandey and Brant Hashii. “Providing fine-grained access control for
Java programs via binary editing.” In: Concurrency - Practice and Experi-
ence 12.14 (2000), pp. 1405–1430. url: http://dblp.uni-trier.de/db/
journals/concurrency/concurrency12.html#PandeyH00.

[Lis87] Barbara Liskov. “Keynote Address - Data Abstraction and Hierarchy”. In:
Addendum to the Proceedings on Object-oriented Programming Systems, Lan-

83

http://dx.doi.org/10.1016/j.jpdc.2005.06.019
http://dx.doi.org/10.1016/j.jpdc.2005.06.019
http://dx.doi.org/10.1016/j.jpdc.2005.06.019
http://dx.doi.org/10.1016/j.jpdc.2005.06.019
http://dx.doi.org/10.1109/COMPSYM.2010.5685364
http://dx.doi.org/10.1109/COMPSYM.2010.5685364
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://dx.doi.org/10.1145/501963.501966
http://doi.acm.org/10.1145/501963.501966
http://doi.acm.org/10.1145/501963.501966
http://dx.doi.org/10.1145/67387.67405
http://doi.acm.org/10.1145/67387.67405
http://dx.doi.org/10.1145/319171.319177
http://dx.doi.org/10.1145/319171.319177
http://doi.acm.org/10.1145/319171.319177
http://dx.doi.org/10.1007/978-3-642-03013-0_9
http://dx.doi.org/10.1007/978-3-642-03013-0_9
http://dblp.uni-trier.de/db/journals/concurrency/concurrency12.html#PandeyH00
http://dblp.uni-trier.de/db/journals/concurrency/concurrency12.html#PandeyH00


guages and Applications (Addendum). OOPSLA ’87. Orlando, Florida, USA:
ACM, 1987, pp. 17–34. isbn: 0-89791-266-7. doi: 10.1145/62138.62141.
url: http://doi.acm.org/10.1145/62138.62141.

[Sco09] Michael L. Scott. Programming Language Pragmatics, Third Edition. 3rd.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009. isbn:
0123745144, 9780123745149.

[AT88] Mehmet Aksit and Anand Tripathi. “Data Abstraction Mechanisms in SINA/ST”.
In: SIGPLAN Not. 23.11 (Jan. 1988), pp. 267–275. issn: 0362-1340. doi:
10.1145/62084.62107. url: http://doi.acm.org/10.1145/62084.62107.

[PN04] Adriano Di Pasquale and Enrico Nardelli. “Scalable Distributed Data Struc-
tures: A Survey.” In: WDAS. Ed. by Adriano Di Pasquale, Fabrizio Luccio,
and Enrico Nardelli. Vol. 9. Proceedings in Informatics. Carleton Scientific,
Jan. 5, 2004, pp. 87–111. isbn: 1-894145-08-9. url: http://dblp.uni-

trier.de/db/conf/wdas/wdas2000.html#PasqualeN00a.

[Sha03] Gauri Shah. “Distributed Data Structures for Peer-to-peer Systems”. PhD
thesis. New Haven, CT, USA: Yale University, May 2003.

[Lar+08] D. Brian Larkins et al. “Global Trees: A Framework for Linked Data Struc-
tures on Distributed Memory Parallel Systems”. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing. SC ’08. Austin, Texas: IEEE
Press, 2008, 57:1–57:13. isbn: 978-1-4244-2835-9. url: http://dl.acm.org/
citation.cfm?id=1413370.1413428.

[WL98] Jan-Jan Wu and Pangfeng Liu. “Distributed Data Structure Design for Sci-
entific Computation”. In: Proceedings of the 12th International Conference
on Supercomputing. ICS ’98. Melbourne, Australia: ACM, 1998, pp. 227–234.
isbn: 0-89791-998-X. doi: 10.1145/277830.277879. url: http://doi.acm.
org/10.1145/277830.277879.

[App90] Andrew W. Appel. A Runtime System. 1990.

[Hin+11] Benjamin Hindman et al. “Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center”. In: Proceedings of the 8th USENIX Confer-
ence on Networked Systems Design and Implementation. NSDI’11. Boston,
MA: USENIX Association, 2011, pp. 22–22. url: http://dl.acm.org/

citation.cfm?id=1972457.1972488.

[WW96] Carl A. Waldspurger and William E. Weihl. “An object-oriented framework
for modular resource management”. In: In IWOOOS. IEEE Computer Soci-
ety. 1996.

[Cao+02] Junwei Cao et al. “ARMS: An Agent-based Resource Managsement System
for Grid Computing”. In: Sci. Program. 10.2 (Apr. 2002), pp. 135–148. issn:
1058-9244. url: http://dl.acm.org/citation.cfm?id=1239955.1239959.

84

http://dx.doi.org/10.1145/62138.62141
http://doi.acm.org/10.1145/62138.62141
http://dx.doi.org/10.1145/62084.62107
http://doi.acm.org/10.1145/62084.62107
http://dblp.uni-trier.de/db/conf/wdas/wdas2000.html#PasqualeN00a
http://dblp.uni-trier.de/db/conf/wdas/wdas2000.html#PasqualeN00a
http://dl.acm.org/citation.cfm?id=1413370.1413428
http://dl.acm.org/citation.cfm?id=1413370.1413428
http://dx.doi.org/10.1145/277830.277879
http://doi.acm.org/10.1145/277830.277879
http://doi.acm.org/10.1145/277830.277879
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1239955.1239959


[Int] Intel Xeon Phi Coprocessor - the Architecture, howpublished = http: //

https: // software. intel. com/ en-us/ articles/ intel-xeon-phi-

coprocessor-codename-knights-corner , note = Accessed: 04-20-2014.

[Til] TILE-Gx Processor Family, howpublished = http: // http: // www. tilera.

com/ products/ processors/ TILE-Gx_ Family , note = Accessed: 04-20-
2014.

[Bor07] Shekhar Borkar. “Thousand Core Chips: A Technology Perspective”. In: Pro-
ceedings of the 44th Annual Design Automation Conference. DAC ’07. San
Diego, California: ACM, 2007, pp. 746–749. isbn: 978-1-59593-627-1. doi:
10.1145/1278480.1278667. url: http://doi.acm.org/10.1145/1278480.
1278667.

[Dan+10] Anthony Danalis et al. “The Scalable HeterOgeneous Computing (SHOC)
benchmark suite”. In: in Proc. 3-rd Workshop on General-Purpose Compu-
tation on Graphics Processing Units (GPGPU3. 2010, pp. 63–74.

[Mar+07] C.A.M. Marcon et al. “Evaluation of Algorithms for Low Energy Mapping
onto NoCs”. In: Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on. 2007, pp. 389–392. doi: 10.1109/ISCAS.2007.378471.

[Kob+11] Sebastian Kobbe et al. “DistRM: Distributed Resource Management for On-
chip Many-core Systems”. In: Proceedings of the Seventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Syn-
thesis. CODES+ISSS ’11. Taipei, Taiwan: ACM, 2011, pp. 119–128. isbn:
978-1-4503-0715-4. doi: 10.1145/2039370.2039392. url: http://doi.

acm.org/10.1145/2039370.2039392.

[Jah+13] Janmartin Jahn et al. “Runtime Resource Allocation for Software Pipelines”.
In: Proceedings of the 16th International Workshop on Software and Compil-
ers for Embedded Systems. M-SCOPES ’13. St. Goar, Germany: ACM, 2013,
pp. 96–99. isbn: 978-1-4503-2142-6. doi: 10.1145/2463596.2486156. url:
http://doi.acm.org/10.1145/2463596.2486156.

[Car+09] Ewerson Carvalho et al. “Evaluation of Static and Dynamic Task Mapping
Algorithms in NoC-based MPSoCs”. In: Proceedings of the 11th International
Conference on System-on-chip. SOC’09. Tampere, Finland: IEEE Press, 2009,
pp. 87–90. isbn: 978-1-4244-4466-3. url: http://dl.acm.org/citation.
cfm?id=1736530.1736547.

[SLS07] Gerald Sabin, Matthew Lang, and P. Sadayappan. “Moldable Parallel Job
Scheduling Using Job Efficiency: An Iterative Approach”. In: Proceedings of
the 12th International Conference on Job Scheduling Strategies for Parallel
Processing. JSSPP’06. Saint-Malo, France: Springer-Verlag, 2007, pp. 94–114.
isbn: 978-3-540-71034-9. url: http://dl.acm.org/citation.cfm?id=
1757044.1757049.

85

http://https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://http://www.tilera.com/products/processors/TILE-Gx_Family
http://http://www.tilera.com/products/processors/TILE-Gx_Family
http://dx.doi.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667
http://dx.doi.org/10.1109/ISCAS.2007.378471
http://dx.doi.org/10.1145/2039370.2039392
http://doi.acm.org/10.1145/2039370.2039392
http://doi.acm.org/10.1145/2039370.2039392
http://dx.doi.org/10.1145/2463596.2486156
http://doi.acm.org/10.1145/2463596.2486156
http://dl.acm.org/citation.cfm?id=1736530.1736547
http://dl.acm.org/citation.cfm?id=1736530.1736547
http://dl.acm.org/citation.cfm?id=1757044.1757049
http://dl.acm.org/citation.cfm?id=1757044.1757049


[Bar+08] R. Baraglia et al. “Backfilling Strategies for Scheduling Streams of Jobs On
Computational Farms”. In: Making Grids Work. Springer US, 2008, pp. 103–
115. isbn: 978-0-387-78447-2. doi: 10.1007/978-0-387-78448-9_8. url:
http://dx.doi.org/10.1007/978-0-387-78448-9_8.

[Hu+14] Han Hu et al. “Toward Scalable Systems for Big Data Analytics: A Technol-
ogy Tutorial”. In: Access, IEEE 2 (2014), pp. 652–687. issn: 2169-3536. doi:
10.1109/ACCESS.2014.2332453.

[Pan14] Robert Pan. “Ethernet versus Infiniband”. In: Canadian Young Scientist
Journal 2014.2 (2014), pp. 11–11. doi: 10.13034/cysj-2014-010. eprint:
http://dx.doi.org/10.13034/cysj-2014-010. url: http://dx.doi.
org/10.13034/cysj-2014-010.

[CE94] Christopher Connelly and Carla Schlatter Ellis. Workload Characterization
and Locality Management for Coarse-Grain Multiprocessors. Tech. rep. 1994.

[RK+13] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Optimiz-
ing Parallelism, Locality, and Recomputation in Image Processing Pipelines”.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’13. Seattle, Washington, USA:
ACM, 2013, pp. 519–530. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.
2462176. url: http://doi.acm.org/10.1145/2491956.2462176.

[KRC97] M. Kandemir, J. Ramanujam, and A. Choudhary. Compiler Algorithms for
Optimizing Locality and Parallelism on Shared and Distributed Memory Ma-
chines. 1997.

[Bik+06] Ganesh Bikshandi et al. “Programming for Parallelism and Locality with
Hierarchically Tiled Arrays”. In: Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP ’06.
New York, New York, USA: ACM, 2006, pp. 48–57. isbn: 1-59593-189-9. doi:
10.1145/1122971.1122981. url: http://doi.acm.org/10.1145/1122971.
1122981.

[Rin08] Martin C. Rinard. “Locality Optimizations for Parallel Computing Using
Data Access Information.” In: International Journal of High Speed Computing
9.2 (July 8, 2008), pp. 161–179. url: http://dblp.uni-trier.de/db/
journals/ijhsc/ijhsc9.html#Rinard97.

[Fat+06] Kayvon Fatahalian et al. “Sequoia: Programming the Memory Hierarchy”. In:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC ’06.
Tampa, Florida: ACM, 2006. isbn: 0-7695-2700-0. doi: 10.1145/1188455.
1188543. url: http://doi.acm.org/10.1145/1188455.1188543.

[KGV94] Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vempaty. “Scalable
Load Balancing Techniques for Parallel Computers”. In: J. Parallel Distrib.

86

http://dx.doi.org/10.1007/978-0-387-78448-9_8
http://dx.doi.org/10.1007/978-0-387-78448-9_8
http://dx.doi.org/10.1109/ACCESS.2014.2332453
http://dx.doi.org/10.13034/cysj-2014-010
http://dx.doi.org/10.13034/cysj-2014-010
http://dx.doi.org/10.13034/cysj-2014-010
http://dx.doi.org/10.13034/cysj-2014-010
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/1122971.1122981
http://doi.acm.org/10.1145/1122971.1122981
http://doi.acm.org/10.1145/1122971.1122981
http://dblp.uni-trier.de/db/journals/ijhsc/ijhsc9.html#Rinard97
http://dblp.uni-trier.de/db/journals/ijhsc/ijhsc9.html#Rinard97
http://dx.doi.org/10.1145/1188455.1188543
http://dx.doi.org/10.1145/1188455.1188543
http://doi.acm.org/10.1145/1188455.1188543


Comput. 22.1 (July 1994), pp. 60–79. issn: 0743-7315. doi: 10.1006/jpdc.
1994.1070. url: http://dx.doi.org/10.1006/jpdc.1994.1070.

[Blu+95] Robert D. Blumofe et al. “Cilk: An Efficient Multithreaded Runtime System”.
In: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPOPP ’95. Santa Barbara, California,
USA: ACM, 1995, pp. 207–216. isbn: 0-89791-700-6. doi: 10.1145/209936.
209958. url: http://doi.acm.org/10.1145/209936.209958.

[Las+13] E. Laskowski et al. “Dynamic Load Balancing Based on Applications Global
States Monitoring”. In: Parallel and Distributed Computing (ISPDC), 2013
IEEE 12th International Symposium on. 2013, pp. 11–18. doi: 10.1109/

ISPDC.2013.11.
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Appendices

A Terminologies

BSP: Bulk Synchronous Processing.

Exaflops: 10E18 floating points operations per second.

FIFO: First In First Out.

First Class Entity: Objects with a name.

FLOPS: Floating Point Operations Per Second.

HPC: High Performance Computing.

IPC: Inter Process Communication.

LCO: Local Control Objects (synchronizing constructs).

LIFO: Last In First Out.

Locality: 1) A synchronous domain in conventional sense; 2) Temporal/Spatial Locality.

Node: A Synchronous domain; in context of application, a vertex of a graph.

NUMA: Non Uniform Memory Access.

OS: Operating System

Processes: Named objects encapsulating a procedure definition.

SLOW: Starvation, latency, overheads, waiting for contention resolution.

SMP: Symmetric Multi-Processing.

SPMD: Single Program Multiple Data.
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B Experiment Results
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Figure B.1: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 4 million nodes for Binomial(3) graph type, using different
scheduling policies on Marvin node.
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Figure B.2: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 110 million nodes for Binomial(3) graph type, using different
scheduling policies on Marvin node.
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Figure B.3: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies on Marvin node.
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Figure B.4: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 4 million nodes for Binomial(3) graph type, using different
scheduling policies on Marvin node.
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Figure B.5: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 110 million nodes for Binomial(3) graph type, using different
scheduling policies on Marvin node.
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Figure B.6: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies on Marvin node.
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Figure B.7: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 4 million nodes for Geometric(1) graph type, using different
scheduling policies on Marvin node.
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Figure B.8: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 4 million nodes for Geometric(1) graph type, using different
scheduling policies on Marvin node.
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Figure B.9: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 4 million nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.10: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 110 million nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.11: Performance Measurement of UTS benchmark in HPX with chunk size 20
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64

Ti
m

e 
(s

)

Cores

UTS _T3(~4 million)_Chunk 8 On Different Schedulers

local-priority

priority_abp

local

hierarchy

static

Figure B.12: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 4 million nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.13: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 110 million nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.14: Performance Measurement of UTS benchmark in HPX with chunk size 8
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.15: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 4 million nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.16: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 110 million nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.
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Figure B.17: Performance Measurement of UTS benchmark in HPX with chunk size 32
and problem size of approx. 3 billion nodes for Binomial(3) graph type, using different
scheduling policies on Trillian node.

102



0

2

4

6

8

10

12

14

16

18

1 2 4 6 8 16

Ti
m

e 
(s

)

Cores

STENCIL21_100_ with NUMA Control

local-priority

priority_abp

local

hierarchy

static

Figure B.18: Performance Measurement of MiniGhost benchmark application, using sten-
cil 21 and gridsize 100 in HPX for different scheduling policies.
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Figure B.19: Performance Measurement of MiniGhost benchmark application, using sten-
cil 21 and gridsize 200 in HPX for different scheduling policies.
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Figure B.20: Performance Measurement of MiniGhost benchmark application, using sten-
cil 21 and gridsize 400 in HPX for different scheduling policies.
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Figure B.21: Performance Measurement of MiniGhost benchmark application, using sten-
cil 24 and gridsize 100 in HPX for different scheduling policies.
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Figure B.22: Performance Measurement of MiniGhost benchmark application, using sten-
cil 24 and gridsize 200 in HPX for different scheduling policies.
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Figure B.23: Performance Measurement of MiniGhost benchmark application, using sten-
cil 24 and gridsize 400 in HPX for different scheduling policies.
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Figure B.24: Performance Measurement of MiniGhost benchmark application, using sten-
cil 21 and gridsize 200 in HPX for different scheduling policies.
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