
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2014

Scheduling in Transactional Memory Systems:
Models, Algorithms, and Evaluations
Gokarna Sharma
Louisiana State University and Agricultural and Mechanical College, gokarnanp@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Sharma, Gokarna, "Scheduling in Transactional Memory Systems: Models, Algorithms, and Evaluations" (2014). LSU Doctoral
Dissertations. 1909.
https://digitalcommons.lsu.edu/gradschool_dissertations/1909

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1909&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1909?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1909&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

SCHEDULING IN TRANSACTIONAL MEMORY SYSTEMS: MODELS,
ALGORITHMS, AND EVALUATIONS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical Engineering and Computer Science

by
Gokarna Sharma

B.E., Tribhuvan University, 2004
M.S., Vienna University of Technology/Free University of Bolzano, 2008

August 2014

Acknowledgements

First, I would like to express my sincere gratitude to my advisor Prof. Costas Busch for his con-

sistent support and guidance throughout my Ph.D. study. This long journey would not have been

possible and this dissertation would not have been in this present form without his patience, moti-

vation, and encouragement. His guidance helped me in diverse ways starting from doing research

to doing good research. I cannot imagine having a better advisor and mentor. It has truly been an

honor and pleasure to work with him.

I would also like to express my sincere gratitude to my advisory committee members: Prof. Bi-

jaya B. Karki, Prof. Rajgopal Kannan, Prof. T. Warren Liao, and Prof. Rahul Shah, for being in my

committee, their encouragement, and their insightful comments and suggestions which improved

the quality of this dissertation in many ways. Moreover, I would like to thank Dr. Jong-Hoon Kim

for his support and stimulating discussions during early years of my Ph.D. study.

I would also like to thank professors/researchers who I have had the opportunity to collaborate

with in research related/unrelated to this dissertation, and the fellow Ph.D. students and friends

who I have had the opportunity to get to know personally.

Finally, I would like to thank my family for believing in me and supporting me throughout my

life. Especially, I am grateful to my wife, Sukirti Nepal, for everything. She was on my side all

the time; she helped me whenever I needed help, supported me whenever I needed support, and

encouraged me whenever I needed encouragement.

ii

Table of Contents

Acknowledgements . ii

List of Tables . vii

List of Figures . viii

Abstract . xii

1 Introduction . 1
1.1 Transactional Memory . 1

1.1.1 Chapter Organization . 5
1.2 Transactional Memory Models . 5

1.2.1 Tightly-coupled Systems (Symmetric Communication) 5
1.2.2 Distributed Networked Systems (Asymmetric Communication) 6
1.2.3 Non-uniform Memory Access Systems (NUMA, Partially Symmetric Com-

munication) . 7
1.3 Performance Evaluation Metrics . 7
1.4 Transaction Scheduling in Tightly-Coupled Systems 8

1.4.1 Conflict Graph . 10
1.4.2 Problem Complexity . 11

1.5 Transaction Scheduling in Distributed and NUMA Systems 13
1.5.1 Problem Complexity . 15

1.6 Motivation and Objective . 15
1.6.1 Tightly-Coupled Systems . 15
1.6.2 Large-Scale Distributed Systems . 16
1.6.3 NUMA Systems . 17

1.7 Dissertation Contributions . 18
1.7.1 Tightly-Coupled Systems . 18
1.7.2 Large-Scale Distributed and NUMA Systems 19

1.8 Dissertation Organization . 21

2 Literature Review . 22
2.1 Tightly-Coupled Systems . 22
2.2 Large-Scale Distributed Systems . 27
2.3 NUMA Systems . 31

iii

3 Tightly-Coupled Systems: Execution Window Model 34
3.1 Introduction . 34

3.1.1 Theoretical Contributions . 35
3.1.2 Practical Contributions . 39
3.1.3 Chapter Organization . 40

3.2 Model and Preliminaries . 40
3.3 Offline Algorithm . 41

3.3.1 Analysis of Offline Algorithm . 43
3.4 Online Algorithm . 46

3.4.1 Analysis of Online Algorithm . 48
3.5 Adaptive Algorithm . 50
3.6 Experimental Evaluation . 51

3.6.1 Algorithm Variants Used in Experiments 53
3.6.2 Throughput Results . 56
3.6.3 Aborts per Commit Ratio Results . 61
3.6.4 Execution Window Overhead Results . 62
3.6.5 Relation Among the Choice ofC, τ , and the Dynamic Contraction/Expansion

of Frames . 66
3.7 Summary and Discussions . 69

4 Tightly-Coupled Systems: Balanced Workload Model 73
4.1 Introduction . 73

4.1.1 Contributions . 74
4.1.2 Chapter Organization . 77

4.2 Model and Preliminaries . 78
4.3 Clairvoyant Algorithm . 78

4.3.1 Analysis of Clairvoyant Algorithm . 81
4.4 Non-Clairvoyant Algorithm . 87

4.4.1 Analysis of Non-Clairvoyant Algorithm 90
4.5 Hardness of Balanced Transaction Scheduling . 93
4.6 Summary and Discussions . 96

5 Distributed Systems: General Network Model . 98
5.1 Introduction . 98

5.1.1 Theoretical Contributions . 98
5.1.2 Practical Contributions . 102
5.1.3 Chapter Organization . 102

5.2 Model and Preliminaries . 102
5.3 Hierarchical Clustering . 104

5.3.1 Labeled Cover . 104
5.3.2 Cover Hierarchy . 104
5.3.3 Spiral Paths . 106
5.3.4 Canonical Paths . 108

5.4 The Spiral Protocol . 110
5.4.1 Protocol Overview . 110

iv

5.4.2 Detailed Description . 113
5.5 Analysis of Spiral Protocol . 117

5.5.1 Correctness . 117
5.5.2 Performance of publish and lookup Requests 119
5.5.3 Performance of move Requests in Sequential Executions 122
5.5.4 Performance of move Requests in Concurrent Executions 126

5.6 Experiments . 129
5.7 Summary and Discussions . 136

6 Distributed Systems: Dynamic Analysis Framework . 138
6.1 Introduction . 138

6.1.1 Contributions . 139
6.1.2 Chapter Organization . 144

6.2 An Online Algorithm . 144
6.2.1 Network Model . 144
6.2.2 Hierarchy . 144
6.2.3 Shared Object Operations . 145

6.3 Analysis Framework . 147
6.3.1 Windows . 149

6.4 Analysis of the Online Algorithm . 155
6.4.1 Dense Windows . 156
6.4.2 Sparse Windows . 166
6.4.3 Complexity of the Online Algorithm . 169

6.5 Analysis of Existing Directories . 170
6.6 Summary and Discussions . 173

7 NUMA Systems: Load Balanced Model . 175
7.1 Introduction . 175

7.1.1 Theoretical Contributions . 177
7.1.2 Practical Contributions . 178
7.1.3 Chapter Organization . 179

7.2 Preliminaries . 179
7.2.1 Network Model . 179
7.2.2 Hierarchical Directory for the 2-Dimensional Mesh 181
7.2.3 Multi-bend Paths . 183
7.2.4 Canonical Paths . 186

7.3 The MultiBend Protocol . 187
7.3.1 Protocol Overview . 187
7.3.2 Protocol Description . 188
7.3.3 Need of Special Parent . 191
7.3.4 Load Balancing . 191

7.4 Performance Analysis . 193
7.4.1 Performance in Sequential Executions . 193
7.4.2 Performance in Concurrent Executions . 199

7.5 Extensions to the d-Dimensional Mesh . 200

v

7.6 Experimental Results . 204
7.6.1 Protocol Variants Used in Experiments . 206
7.6.2 Single Object Results . 208
7.6.3 Multiple Objects Results . 213

7.7 Summary and Discussions . 218

8 Distributed and NUMA Systems: Time and Communication Trade-offs 219
8.1 Introduction . 219

8.1.1 Contributions . 219
8.1.2 Chapter Organization . 221

8.2 Communication Cost Bounds . 221
8.3 Execution Time Bounds . 222

8.3.1 Hardness for Execution Time . 223
8.3.2 Upper Bound for Execution Time . 223
8.3.3 Lower Bound for Execution Time . 224

8.4 Time and Communication Trade-offs . 226
8.4.1 Problem Instance Description . 227
8.4.2 Fast Pipelined Schedule . 228
8.4.3 Slow Sequential Schedule . 230

8.5 Summary and Discussions . 231

9 Conclusions and Future Work . 232
9.1 Overall Dissertation Summary . 232
9.2 Future Directions . 233

9.2.1 Tightly-coupled Systems . 233
9.2.2 Distributed Networked Systems . 234
9.2.3 NUMA Systems . 235

Bibliography . 236

Appendix: Copyright Forms for Published Materials . 248

Vita . 259

vi

List of Tables

2.1 Comparison of transaction scheduling algorithms 24

2.2 Comparison of consistency algorithms . 29

3.1 The comparison of total time for different C using 16 threads 68

3.2 The ratio of average frame size using 16 threads 68

4.1 Summary of notations used in the algorithms and analysis of Sections 4.3 and 4.4 . 82

vii

List of Figures

1.1 Resolving conflicts using a contention manager 3

1.2 Serializability of transactions . 4

1.3 A tightly-coupled shared memory architecture . 6

1.4 A large-scale distributed system architecture . 6

1.5 Left: a hierarchical multilevel cache; Right: a processor communication graph. . . 7

1.6 Illustration of a multi-processor system with high speed interconnect (i.e., Intel
QPI [36]). 8

1.7 A vertex coloring problem . 12

1.8 A transaction scheduling problem . 12

3.1 Execution window model for transactional memory 35

3.2 Illustration of frame based execution in window model 42

3.3 Performance throughput results of window-based algorithm variants 55

3.4 Comparison of performance throughput results in high contention 57

3.5 Comparison of performance throughput results in medium contention 57

3.6 Comparison of aborts per commit ratio results in high contention 60

3.7 Comparison of aborts per commit ratio results in medium contention 60

3.8 Comparison of total time needed to commit 20000 transactions using 16 threads . . 63

3.9 Comparison of total time needed to commit 20000 transactions using 4 threads . . . 63

5.1 Illustration of Spiral protocol for a move request 100

5.2 Illustration of a canonical path . 108

viii

5.3 Special-parent . 120

5.4 Illustration of a sequential execution . 123

5.5 Performance of Spiral for sequential and dynamic move operations in a random
network of 128 nodes. Lower is better. 130

5.6 Performance of Spiral for sequential and dynamic move operations in a random
network of 512 nodes. Lower is better. 130

5.7 Performance of Spiral for one-shot concurrent move operations in a random net-
work of 512 nodes. Lower is better. 131

5.8 Performance comparison of Spiral and Arrow for sequential move operations in a
random network of 128 nodes. Lower is better. 131

5.9 Performance comparison of Spiral and Arrow for sequential move operations in a
random network of 512 nodes. Lower is better. 132

5.10 Performance comparison of Spiral and Arrow in the worst-case scenario of the
sequential execution of move operations in a ring network of 128 nodes. Lower is
better. 132

5.11 Performance comparison of Spiral and Arrow in the worst-case scenario of the
sequential execution of move operations in a ring network of 512 nodes. Lower is
better. 133

5.12 Performance of Spiral for sequential and concurrent lookup operations in a random
network of 128 nodes. Lower is better. 134

5.13 Performance of Spiral for sequential and concurrent lookup operations in a random
network of 512 nodes. Lower is better. 134

5.14 Performance of Spiral for 1,000 sequential and dynamic move operations in ran-
dom networks of size ranging from 10 to 2,000 nodes. Lower is better. 135

5.15 Performance of Spiral when a lookup operation is issued with non-overlapping and
overlapping move operations in random networks of size ranging from 10 to 2,000
nodes. Lower is better. 135

6.1 Illustration of time windows for σ = 2 . 152

6.2 Illustration of a Hamiltonian path P starting from the node Ns ∈ H1 and ending
in the node Nt ∈ H3 for the dense subsequence Wα

k with |Wα
k | = 4. The left

boundary edges of a group H3 are |Eb,left

3 | = 2 and the right boundary edges of H3

are |Eb,right

3 | = 2. Moreover, the left external edges of H3 are |Eext,left
3 | = 1 and

the right external edges of H3 are |Eext,right
3 | = 1. 160

ix

7.1 Illustration of the decomposition of the 23 × 23 2-dimensional mesh into type-1
sub-meshes. 182

7.2 Illustration of the decomposition of the 23×23 2-dimensional mesh into type-2 sub-
meshes. The decompositions of level 0 and level 3 are omitted from the hierarchy
of sub-meshes as they match type-1 decompositions of those levels. 182

7.3 Illustration of one-bend, two-bend, and multi-bend paths in the 23×23 2-dimensional
mesh . 184

7.4 The stretch comparison of MultiBend variants and prior DDPs 209

7.5 The cost comparison for up to 1000 move and lookup operations 209

7.6 The impact of leader change frequency and mesh sizes in the performance compet-
itive ratio of MultiBend variants for 100,000 operations 210

7.7 The load comparison of Arrow, Ballistic, and MultiBend for 100,000 move opera-
tions (the worst load per edge: Arrow 50,015 at edge 172, Ballistic 31,997 at edge
434, and MultiBend 7297 at edge 8) . 211

7.8 The load comparison of MultiBend variants for 100,000 move operations (the
worst load per edge: MultiBend-Static 35,369 at edge 172, MultiBend-One 11,858
at edge 8, and MultiBend 7297 at edge 8) . 211

7.9 The comparison of MultiBend variants for the load per edge due to leader change
frequency (the worst load per edge: MultiBend-Leader(32) 7590 at edge 257,
MultiBend-Leader(1024) 12,495 at edge 38, and MultiBend 7297 at edge 8) . . . 212

7.10 The load comparison of MultiBend variants for 1024 objects with 100 move oper-
ations per object (the worst load per edge: MultiBend-Static-First 11,258 at edge
8 and MultiBend 6926 at edge 380) . 213

7.11 The load comparison of MultiBend variants for 1024 objects with 100 move op-
erations per object (the worst load per edge: MultiBend-Static-First-Two 9108 at
edge 8 and MultiBend 6926 at edge 380) . 215

7.12 The load comparison of MultiBend variants for 1024 objects with 100 move oper-
ations per object (the worst load per edge: MultiBend-Static-Random 12,248 at
edge 8 and MultiBend 6926 at edge 380) . 215

7.13 The load comparison of MultiBend variants for 1024 objects with 100 move opera-
tions per object: a comparatively bad example (the worst load per edge: MultiBend-
Static-Last 18,470 at edge 1 and MultiBend 6926 at edge 380) 216

x

7.14 The load comparison of MultiBend variants for 576 objects with 100 operations
per object (the worst load per edge: MultiBend-Static-Random 6983 at edge 8,
MultiBend-One 5134 at edge 8, and MultiBend 3950 at edge 225) 217

8.1 The graph G for the time-communication impossibility result, with k = 2, a = 16
and b = 5. 228

xi

Abstract

Transactional memory provides an alternative synchronization mechanism that removes many lim-

itations of traditional lock-based synchronization so that concurrent program writing is easier than

lock-based code in modern multicore architectures. The fundamental module in a transactional

memory system is the transaction which represents a sequence of read and write operations that

are performed atomically to a set of shared resources; transactions may conflict if they access the

same shared resources. A transaction scheduling algorithm is used to handle these transaction

conflicts and schedule appropriately the transactions.

In this dissertation, we study transaction scheduling problem in several systems that differ

through the variation of the intra-core communication cost in accessing shared resources. Symmet-

ric communication costs imply tightly-coupled systems, asymmetric communication costs imply

large-scale distributed systems, and partially asymmetric communication costs imply non-uniform

memory access systems. We made several theoretical contributions providing tight, near-tight,

and/or impossibility results on three different performance evaluation metrics: execution time,

communication cost, and load, for any transaction scheduling algorithm. We then complement

these theoretical results by experimental evaluations, whenever possible, showing their benefits in

practical scenarios. To the best of our knowledge, the contributions of this dissertation are either

the first of their kind or significant improvements over the best previously known results.

xii

Chapter 1
Introduction

1.1 Transactional Memory

To take the full advantage of the gains allowed by Moore’s law, recent progress in multicore ar-

chitectures has led to mainstream processor manufacturers adapting multicore designs. Modern

multicore architectures enable the concurrent execution of an unprecedented number of threads.

The benefit depends on using multiple threads efficiently within applications. This gives rise to

the opportunity for extreme performance and the complex challenge of synchronization. The op-

portunity is that threads will be available to an unprecedented degree, and the challenge is that

more programmers will be exposed to concurrency related synchronization problems that until

now were of concern only to a selected few. Writing concurrent programs is a non-trivial task

because of the complexity of ensuring proper synchronization. Conventional lock-based synchro-

nization has several drawbacks which limits the parallelism offered by multicore architectures.

Coarse-grained locks do not scale. Fine-grained locks are difficult to program correctly because

locks are generally not composable. Transactional memory (TM) [76, 131] provides an alter-

native synchronization mechanism that is non-blocking, composable, and easier to write than

lock-based code [112]. TM-based synchronization has recently been included in IBM’s Blue

Gene/Q [66, 138] and Intel’s Haswell processors [35]. Previously, it was included in the .NET

framework, Intel’s STM C++ Compiler, and the UltraSPARC ROCK processor. TM is predicted

to be widely used in future processors, possibly even GPUs [53, 140]. In the research community,

several TM implementations (hardware, software, and hybrid) have been proposed and studied,

e.g., [29, 39, 40, 44, 45, 51, 52, 65, 67, 69, 72, 73, 75, 99, 100, 106, 131, 135, 141]. The TM

1

book by Harris et al. [68] provides an excellent overview of the design and implementation of TM

systems up to early spring 2010.

TM operates in a way similar to database transactions, and aggregates a sequence of shared

resource accesses (reads or writes) that should be executed atomically (by a single thread) in a

fundamental module called transaction. A transaction is a piece of code that executes a series of

reads and writes to shared memory. As for example see Fig. 1.1 where transaction T2 aggregates

a sequence of shared resource accesses starting from y = 2 to x = 3, where x and y are shared

resources. These reads and writes logically occur as a transaction at a single instance in time;

intermediate states are not visible to other (successful) transactions. TM increases parallelism

as no threads need to wait for access to a shared resource and different threads can simultane-

ously modify disjoint parts of a data structure that would normally be protected under the same

lock. A transaction ends either by committing, in which case all of the updates take effect, or by

aborting, in which case no update is effective. Each program thread generates a sequence of trans-

actions. Transactions of the same thread execute sequentially by following the program execution

flow. However, transactions of different threads may conflict when they attempt to access the same

shared memory resources. The two transactions T1 and T2 of Fig. 1.1 conflict while executing

concurrently as they try to access same shared resource x. The advantage of TM is that if there are

no conflicts between transactions then the threads continue execution without delays that would

have been caused unnecessarily if locking mechanisms were used. Thus, TM can be viewed as an

optimistic synchronization mechanism [75]. The aborted transactions waste computing resources,

energy, and reduce the overall performance of the TM system, sometimes drastically. Ideal execu-

tion of concurrent transactions should order the transactions to execute in such a way that it would

minimize the number of aborts, but such an ordering may be difficult to obtain because transactions

usually act on dynamic data and the conflicts are produced dynamically with no a priori knowledge

not even of the data items to be accessed.

Transaction conflicts are detected using conflict detection mechanisms [133]. If a transaction

T1 discovers that it conflicts with another transaction T2 (because they access a shared resource),

2

Software TM Systems
Conflict if at least a write access to some shared resource by transactions

A contention manager decides
Aborts or delay a transaction

Contention Managers can be centralized or distributed:
Each thread may have its own CM

Example:

atomic {
…
x = 2;

}

atomic {
y = 2;
…
x = 3;

}

T1 T2

Initially, x == 1, y == 1

conflict

Abort, undo changes (set x==1),
and restart

atomic {
…
x = 2;

}

atomic {
y = 2;
…
x = 3;

}

T1 T2

conflict

Abort (set y==1) and restart
OR wait and retry

Figure 1.1: Resolving conflicts using a contention manager.

then T1 has the following three choices: (i) it can give T2 a chance to finish and commit by T1

aborting itself; (ii) it can proceed and commit by forcing T2 to abort; the aborted transaction T2

then retries immediately again until it eventually commits; or (iii) it can wait (or back off) for a

short period of time and retry the conflicting access again. In other words, a conflict handling

mechanism decides which transactions should continue and which transactions should abort and

try again until they eventually commit. If the conflict handling mechanism decides in favor of T2,

then T1 will abort, undo its changes (i.e. sets x == 1 as the value 2 that was written in x while it

was executing is not successful), and restarts its execution (see the left of Fig. 1.1). If the conflict

handling mechanism decides in favor of T1, then T2 will abort, undo its changes setting y == 1,

and restarts its execution or it waits and try to commit after backing off for a while (see the right

of Fig. 1.1). This decision process leads us to the transaction scheduling problem. Typically, this

transaction scheduling problem is online in the sense that transaction conflicts are not known a

priori and they generally evolve over time.

Algorithms for this transaction scheduling problem are appealing as they need to make sure

that the resulting execution of transactions give a serializable schedule. In other words, transaction

can run concurrently but the results should follow some sequential execution. One such example is

given in Fig. 1.2. Assuming that x == 1 and y == 2 initially, executing T2 after t1 gives r1 == 2

and r2 == 3 which is a serializable schedule; similarly, executing T1 after T2 gives r1 == 1 and

r2 == 2 which is again serializable (see the left of Fig. 1.2). However, the execution scenario

shown in the right of Fig. 1.2 gives r1 == 1 and r2 == 3 which is not a serializable schedule as

3

Transactional Memory
• Transactions perform a sequence of read and write operations on

shared resources and appear to execute atomically

• TM may allow transactions to run concurrently but the results must
be equivalent to some sequential execution

Example:

• ACI(D) properties to ensure correctness

Initially, x == 1, y == 2

atomic {
x = 2;
y = x+1;

}

atomic {
r1 = x;
r2 = y;

}

T1 T2

T1 then T2 r1==2, r2==3
T2 then T1 r1==1, r2==2

x = 2;
y = 3;

T1 T2

Incorrect r1 == 1, r2 == 3

r1 = 1;

r2 = 3;

Figure 1.2: Serializability of transactions.

the execution of the sequences of the shared memory accesses of T1 and T2 interleave with each

other.

To solve the transaction scheduling problem efficiently, each transaction consults with the con-

tention manager module of the TM system for which choices to make. Contention manager mod-

ules help any transaction scheduling problem by detecting the conflicts which eventually deter-

mine whether the shared memory accesses of two or more transactions interleave. DSTM [75] is

the first software TM (STM) implementation that uses a contention manager as an independent

module to resolve conflicts between transactions and ensure progress – some useful work in done

in each time step of the execution. A major challenge in guaranteeing progress through contention

managers is to devise a scheduling algorithm which ensures that all transactions commit in the

shortest possible time. Given a set of transactions, a central optimization metric in the literature,

e.g. [9, 11, 57, 59, 117, 119], is to minimize the makespan which is defined as the duration from

the start of the execution schedule, i.e., the time when the first transaction is issued, until all trans-

actions commit. In a dynamic scenario where transactions are issued continuously, the makespan

translates to the throughput, measured as the number of committed transactions per unit of time.

The makespan of a transaction scheduling algorithm, which has minimal knowledge of the input

transactions, can be compared to the makespan of an optimal off-line scheduling algorithm, which

has complete knowledge of the resource requests, to provide a competitive ratio.

Since it is projected that a processor chip will have a large number of cores, it is important

to design TM systems which scale gracefully with the variability of the system sizes and com-

4

plexities. To achieve this goal, it is desirable to devise scheduling algorithms which have both

good theoretical asymptotic behavior and also exhibit good practical performance. Provable for-

mal properties help to better understand worst-case and average-case scenarios and determine the

scalability potential of the system. It is also equally important to design scheduling algorithms with

good performance for various reasonable practical execution scenarios. This dissertation studies

TM implementations in several system models and propose several transaction scheduling algo-

rithms that exhibit both good theoretical and practical performance.

1.1.1 Chapter Organization

The rest of the chapter is organized as follows. We proceed by models and metrics that capture

the performance evaluation of scalable TM systems in Sections 1.2 and 1.3, respectively. We

then discuss the transaction scheduling problem in these models in Sections 1.4 and 1.5. We then

discuss the motivation behind this study and present the objective in Section 1.6. In Section 1.7,

we outline contributions of our study in different TM models. We conclude this chapter in Section

1.8 with an outline of the dissertation.

1.2 Transactional Memory Models

TM has been studied mainly in three system models that we describe below. The main distinction

between these models is the variation of the intra-core communication cost in accessing shared

memory locations. The communication cost can be symmetric, asymmetric, or partially symmet-

ric. These types of communication cost models are appropriate to cover tightly-coupled systems,

large-scale distributed systems, and their combinations.

1.2.1 Tightly-coupled Systems (Symmetric Communication)

This model represents the most common scenario where multiple cores reside in the same

chip and they are connected to a single shared memory (see Fig. 1.3). A shared memory

5

refers to a (typically) large block of random access memory that can be accessed by sev-

eral different processors in a multiple-processor computer system. A shared memory sys-

tem is relatively easy to program since all processors share a single view of data and the

communication between processors can be as fast as memory accesses to a same location.We explore STM implementation bounds in:

1. Tightly-coupled
Shared Memory Systems

2. Large-Scale
Distributed Systems

3. CC-NUMA and
Hierarchical Multi-level
Cache Systems

11

Memory

…

Processor Processor Processor Processor

Level 2

Level 1

Level 3

Processor Processor

caches

Comm. network

…
Processor

Memory

Processor

Memory

Figure 1.3: Illustration of a
tightly-coupled system.

That is, processors operate on a same shared memory and the

shared memory access cost is symmetric (uniform) across dif-

ferent processors (for example, the recent multicore processors

such as Intel Xeon, AMD Opteron, Sun UntraSPARC, etc.). The

shared memory access mechanism is implemented in tightly-

coupled systems through a multi-level cache coherence algo-

rithm (see left of Fig. 1.5). Transactional memory designs in

tightly-coupled systems extend the built-in cache-coherence protocols already supported by mod-

ern architectures to provide multi-level cache coherence, so the focus is mainly on how to schedule

the transactions such that conflicts among transactions are minimized.

1.2.2 Distributed Networked Systems (Asymmetric Communication)

We explore STM implementation bounds in:

1. Tightly-coupled
Shared Memory Systems

2. Large-Scale
Distributed Systems

3. CC-NUMA and
Hierarchical Multi-level
Cache Systems

11

Memory

…

Processor Processor Processor Processor

Level 2

Level 1

Level 3

Processor Processor

caches

Comm. network

…
Processor

Memory

Processor

Memory

Figure 1.4: Illustration of a
large-scale distributed system.

This model represents the scenario of completely decentral-

ized distributed shared memory where processors are connected

through a large-scale message passing system (1.4); the transac-

tions that are running at different nodes operate on a common

shared memory space that is split among processors. Hence, the

shared memory is decentralized. Typically, the network is rep-

resented as a graph where the processors are nodes and links are

weighted edges (see right of Fig. 1.5). The distance between

processor nodes plays a significant role in the communication cost which is typically asymmetric

among different network nodes. Note that this model is general enough to also include the uniform

6

Figure 1.5: Left: a hierarchical multilevel cache; Right: a processor communication graph.

case of the tightly-coupled systems. This model is also suitable to model transaction scheduling

scenarios that arise in cloud computing systems and heterogenous architectures.

1.2.3 Non-uniform Memory Access Systems (NUMA, Partially Symmetric Communica-
tion)

This model is a bridge between tightly-coupled systems and distributed systems. It represents a

set of multiprocessors communicating through a small scale interconnection network. The inter-

connection network has a regular structure such as a grid (mesh), hypercube, butterfly, etc.; see

Fig. 1.6 for a 3-dimensional multicore processor grid. Such network topologies have been ex-

tensively studied in the literature [92] and have predictable performance guarantees in terms of

communication efficiency. There are two levels of communication: local (symmetric) communi-

cation within cores of the same processor and larger-scale (asymmetric) communication between

different processors in different areas of the network topology. High performance multiprocessors

are typically organized with such an architecture, e.g. [2, 34, 81], and their efficiency is vital for

scientific applications.

1.3 Performance Evaluation Metrics

We focus on the following metrics that are used for evaluating the formal and experimental perfor-

mance of transaction scheduling algorithms in the aforementioned TM models.

• Makespan: It measures the commit duration for the last transaction in a given input set

of transactions. This is a typical performance metric in transaction scheduling in all TM

7

Proc Proc

Proc Proc

Memory

Proc Proc

Proc Proc

Memory

3-D Multicore Processor GridInterconnection Network

Figure 1.6: Illustration of a multi-processor system with high speed interconnect (i.e., Intel QPI
[36]).

models. In a dynamic setting, the makespan translates to throughput. A primary goal for a

transaction scheduling algorithm (i.e., a contention manager) is to minimize the makespan.

• Communication cost: It concerns distributed network TM models, and measures the number

of messages sent on network links for scheduling the transactions. This metric relates to the

total utilization of the distributed system resources, and it translates to the time and energy

performance of the distributed transaction scheduling.

• Load balancing: This is particularly relevant for distributed and NUMA TM models, and it

concerns the load of the network edges and nodes that is involved in fulfilling requests for

the shared objects. Load balancing is important when energy and resource utilization needs

to be minimized.

1.4 Transaction Scheduling in Tightly-Coupled Systems

Consider a set of M ≥ 1 transactions T = {T1, T2, . . . , TM}, one transaction each in M different

threads P = {P1, . . . , PM}, and a set of s ≥ 1 shared resources R = {R1, R2, . . . , Rs}. Since

there is only one transaction in each thread, we call this problem the one-shot transaction schedul-

ing problem. Each transaction is a sequence of actions (or operations) that is either a read or a

write to some shared resourceRi, 1 ≤ i ≤ s. A resource can be read in parallel by arbitrarily many

transactions. After a transaction is issued it either commits or aborts. The sequence of actions in a

transaction must be atomic: all actions of a transaction are guaranteed to either completely occur

8

or have no effects at all. A transaction after it is issued and starts execution, it completes either

with a commit or an abort. A transaction is pending after its first action until its last action; it takes

no further actions after a commit or an abort. A pending transaction can restart multiple times until

it eventually commits. The first action of a transaction must be a read or a write and its last action

is either a commit or an abort.

Concurrent write-write actions or read-write actions to same shared resources by two or more

transactions cause conflicts between transactions. If a transaction conflicts then it either aborts or it

may commit and force all other conflicting transactions to abort. In eager conflict management TM

systems, conflicts are resolved as soon as they are detected, whereas in lazy conflict management

TM systems, conflict detection and resolution process is deferred to the end of a transaction. An

execution schedule is called greedy if a transaction aborts due to conflicts it then immediately

restarts its execution and attempts to commit again.

It is assumed that the execution time advances synchronously for all threads. Each transaction

Ti ∈ T has execution time duration τi > 0. The execution time is the total number of discrete

time steps that the transaction requires to commit uninterrupted from the moment it starts. Let

τmax := maxi τi be the execution time of the longest transaction, and τmin := mini τi be the

execution time of the shortest transaction. A resource can be read in parallel by arbitrarily many

transactions. A transaction is called read-only if it only reads the shared resources, otherwise it is

a writing transaction.

The makespan of a schedule for the transactions is defined as the duration from the start of

the schedule, i.e., the time when the first transaction is issued, until all transactions have commit-

ted. The makespan of the transaction scheduling algorithm A, denoted makespanA, for a given

instance can be compared to the makespan of an optimal off-line scheduling algorithm, denoted

makespanopt, to provide a competitive ratio. Note that the makespan and the competitive ratio

primarily depend on the workload − the set of transactions, along with their arrival times, exe-

cution time duration, and resources they read and modify [11]. Therefore, the one-shot model

described above is general enough to extend to different variations introducing some restrictions.

9

We now formally define pending commit property and makespan and competitive ratio.

Definition 1 (pending commit property [59]) A transaction scheduling algorithm obeys the

pending commit property if, whenever there are pending transactions, some running transaction

T will execute uninterrupted until it commits.

Definition 2 (makespan and competitive ratio) Given a transaction scheduling algorithm A

and a workload T , makespanA(T) is the total time A needs to commit all the transactions in

T . The competitive ratio of A on T is CRA(T) = makespanA(T)
makespanopt(T) , where opt is the optimal off-line

scheduler. The competitive ratio of A independent of T is CRA = maxT CRA(T) which is the

maximum over all workloads T .

1.4.1 Conflict Graph

Consider a set of k transactions T := {T1, . . . , Tk}. LetR(Ti) denote the set of resources used by

transaction Ti. We can write R(Ti) = Rw(Ti) ∪ Rr(Ti), where Rw(Ti) are the resources which

are to be written by Ti andRr(Ti) are the resources to be read by Ti.

Definition 3 (transaction conflict) Two transactions Ti and Tj conflict if at least one of them

writes on a common resource, that is, there is a resource R such that R ∈ (Rw(Ti) ∩ R(Tj)) ∪

(R(Ti) ∩Rw(Tj)) (we also say that R causes the conflict).

From the definition of transaction conflicts we can define the conflict graph for a set of trans-

actions. In the conflict graph, each node corresponds to a transaction and each edge represents a

conflict between the adjacent transactions.

Definition 4 (conflict graph) For a set of transactions T , the conflict graph G(T) = (V,E) is an

undirected graph, which has as nodes the transactions, V = T , and (Ti, Tj) ∈ E for any two

transactions Ti, Tj that conflict.

Let δ(Ti) denote the degree of node Ti in G. We denote C := maxi δ(Ti). Let γ(Rj) denote

the number of transactions that write to resource Rj , and let γmax := maxj γ(Rj) be the maximum

10

number among γ(Rj), 1 ≤ j ≤ s. Let λ(Ti) = |{R : R ∈ R(Ti) ∧ (γ(R) ≥ 1)}| denote the

number of resources that can be the cause of conflicts to transaction Ti, and let λmax := maxi λ(Ti)

be the maximum number of resources that cause conflicts to any transaction in T . Note that, in the

conflict graph G(T), C ≤ λmax · γmax and C ≥ γmax − 1.

1.4.2 Problem Complexity

The transaction scheduling problem that we discussed above is a NP-Hard problem. The NP

hardness result can be proven by reducing a well-known vertex coloring problem to the transaction

scheduling problem. We provide here a short description of how that reduction works. Consider a

vertex coloring problem instance that asks whether a given graph G is k-colorable [55]. A valid k-

coloring is an assignment of integers {1, 2, . . . , k} (the colors) to the vertices ofG so that neighbors

receives different colors. The chromatic number, χ(G), is the smallest k such that G has a valid

k-coloring. It is also shown in [50] that unless NP ⊆ ZPP, there does not exist a polynomial time

algorithm to approximate χ(G) with approximation ratio smaller than O(n1−ε) for any constant

ε > 0, where n denotes the number of vertices in graph G. A transaction scheduling problem

instance P asks whether a set of transaction T with a set of resourceR has makespan k time steps

assuming that each transaction has the execution time of length 1 time step.

The vertex coloring problem can be reduced to the transaction scheduling problem in polyno-

mial time. Consider an input graphG = (V,E) of the vertex coloring problem, where |V | = n and

|E| = s. We can construct a set of transactions T such that for each v ∈ V there is a respective

transaction Tv ∈ T ; clearly, |T | = |V | = n. We also use a set of resources R such that for each

edge e ∈ E there is a respective resource Re ∈ R; clearly, |R| = |E| = s. If e = (u, v) ∈ E, then

both the respective transactions Tu and Tv use the resource Re for write. Let G(P) be the conflict

graph for the transactions T . Note that G(P) is isomorphic to G. Node colors in G correspond to

time steps in which transactions in G(P) are issued. Suppose that G has a valid k-coloring. If a

node v ∈ G has a color x, then the respective transaction Tv ∈ G(P) can be issued and commit

at time step x, since no conflicting transaction (neighbor in G(P)) has the same time assignment

11

An Impossibility Result
• No polynomial time balanced transaction scheduling algorithm such

that for β = 1 the algorithm achieves competitive ratio smaller than

Idea: Reduce vertex coloring problem to transaction scheduling problem

|V| = n, |E| = s

Clairvoyant algorithm is tight

))((1 ε−Θ s

Time Step 1 Step 2 Step 3
Run and
commit

T1, T4,
T6

T2, T3,
T7

T5, T8

1

2

34

5

6
7

8

T1

T2

T3T4

T5

T6
T7

T8

R12

R48

τ = 1, β = 1

Figure 1.7: A vertex coloring problem.

An Impossibility Result
• No polynomial time balanced transaction scheduling algorithm such

that for β = 1 the algorithm achieves competitive ratio smaller than

Idea: Reduce vertex coloring problem to transaction scheduling problem

|V| = n, |E| = s

Clairvoyant algorithm is tight

))((1 ε−Θ s

Time Step 1 Step 2 Step 3
Run and
commit

T1, T4,
T6

T2, T3,
T7

T5, T8

1

2

34

5

6
7

8

T1

T2

T3T4

T5

T6
T7

T8

R12

R48

τ = 1, β = 1

Figure 1.8: A transaction scheduling problem, where τ = 1 denotes that all transaction have
execution time length of one time step and β = 1 denotes that all these transaction access shared
resource for writing only.

(color) as Tv. Thus, a valid k-coloring inG implies a schedule with makespan k for the transactions

in T . Symmetrically, a schedule with makespan k for T implies a valid k-coloring in G.

Therefore, the transaction scheduling problem is in NP and from the reduction of the vertex

coloring problem, we also obtain that the transaction scheduling problem is NP-complete. Fig. 1.8

shows the equivalent transaction scheduling problem after reducing the vertex coloring problem

given in Fig. 1.7. As the transaction scheduling problem is in NP, the exact computation of the

shortest makespan takes exponential time and therefore we try to schedule transactions such that

the makepsan is not far from the shortest makespan.

12

1.5 Transaction Scheduling in Distributed and NUMA Systems

In distributed networked and NUMA systems, transactions in T are in the network nodes or proces-

sors (one transaction each in M different processors). It is assumed that there is a shared memory

which is split (possibly equally) among the processors. Each processor has its own cache, where

copies of objects (individual entries at the shared resources) reside. When a transaction running

at a processor node issues a read or write operation for a shared memory location, the data object

at that location is loaded into the processor-local cache. Some of the shared objects needed by a

transaction may be in the shared memory of the node which is executing that transaction and some

of the shared objects may be in the shared memory of other nodes. To be able to execute the trans-

action, either the shared objects in other nodes need to be moved to the node where the transaction

is currently executing or the transaction needs to be moved to the node where the shared object

needed by that transaction currently resides. This decision depends on the implementation tech-

nique used. In a data-flow implementation [77], transactions are immobile and objects are moved

to nodes that need them. In a control-flow implementation [114], objects are immobile and trans-

actions are moved to the nodes when objects reside. In a hybrid implementation, what to move,

transactions or objects, is determined using some criteria minimizing some performance metric.

We consider in this dissertation the data-flow implementation only.

In addition to makespan (Definition 2), any transaction scheduling algorithm for TM in dis-

tributed systems needs to minimize the communication cost and network load incurred in moving

objects to the nodes that need them. Let E = {r0, r1, · · · , rl} be the l+1 shared object movements

(or operations) from source nodes si to destination nodes ti. The destination node ti for each oper-

ation ri is not known beforehand and the scheduling algorithm should find out the destination node

online while in execution. The goal is to find a path pi from si to ti, for every object movement ri,

while minimizing both the maximum congestion along any edge e (any node v) in the network and

the communication cost (the number of edges e that pi uses).

13

Definition 5 (stretch) Let A(E) =
∑l

i=1 |pi| be the total communication cost of any consistency

algorithm A while executing all the shared object operations in E , where |pi| is the number of

edges that the path pi of the request ri uses (in edge-weighted networks, |pi| translates to the total

weight of the edges in the path pi). The stretch of A on E is stretchA(E) = A(E)
A∗(E) , where A∗(E) is

the communication cost of an optimal consistency algorithm that has complete knowledge about

all the requests in E . The stretch of A independent of E is stretchA = maxE stretchA(E), which

is the maximum over all possible sets of shared object operations E .

Definition 6 (congestion approximation) Let C = maxe |{i : e ∈ pi}| be the total edge conges-

tion of any consistency algorithm A on an edge e and Cn = maxv |{i : v ∈ pi}| be the total node

congestion of any consistency algorithm A on a node v while executing the shared object opera-

tions in E , where pi is the path that is used by the request ri ∈ E . The congestion approximation

(CA) of A on the edge e while executing the set E of shared object operations is CAA(e) = C
C∗

(CAA(v) = Cn
C∗n

), where C∗ (C∗n) is the optimal congestion on the edge e (the node v) that is attain-

able by any consistency algorithm to provide an approximation ratio on congestion for any edge e

(any node v).

Congestion on network edges and nodes can adversely affect the overall performance of the

algorithm, especially in systems with limited bandwidth and/or in systems with limited computa-

tion power. For example, in sensor networks congestion can lead to random dropping of data and

dramatic increase in energy consumption [90]. Congestion minimization is very important because

it allows to evenly utilize available network resources (edges and nodes), avoiding the chance of

the system being bottleneck due to some ”hotspot” resources. This is done by reducing the com-

munication/computation load on network edges and nodes through load distribution optimization.

In NUMA systems, the cost of accessing shared resources is asymmetric across different pro-

cessors (symmetric communication within the cores of the same processor and asymmetric com-

munication between different processors), in contrast to tightly-coupled systems where the cost is

assumed to be symmetric.

14

1.5.1 Problem Complexity

A naive approach to minimize stretch is to find the required objects by flooding the object requests

to the whole network. All nodes which have objects will reply and the node which issued the

request can choose the object of its interest. Clearly, this approach is inefficient. Alternatively,

if all object information is stored at a specific node (e.g., the sink), no flooding is needed. But,

whenever an object is moved from one node to another node, the information at sink needs to be

updated, which might be a major bottleneck. Moreover, when objects move frequently, abundant

messages will be generated for the information update at the sink. Therefore, the approach should

be such that flooding and sink update at all times in not required. Moreover, flooding approach

should not be used as flooding makes congestion in each edge proportional to the number of object

requests.

1.6 Motivation and Objective

The efficiency of the TM systems relies on the good performance of the transaction scheduling al-

gorithms [59, 74, 75, 117] and it is of great importance to design transaction scheduling algorithms

which scale gracefully with the size and complexity of the system (i.e. when the number of cores

in a multiprocessor chip increases). The objective of this dissertation is to design scalable algo-

rithms for transactional scheduling in tightly-coupled, distributed, and NUMA systems. We focus

primarily on theoretical foundations and present experimental evaluations as well, when deemed

necessary.

1.6.1 Tightly-Coupled Systems

In the tightly-coupled TM model where performance is analyzed in terms of the number of shared

resources, Attiya et al. [9] provided the best known general formal competitive ratio bound of

O(s), where s is the number of shared resources. In this particular model, they also proved a

matching lower bound of Ω(s) in the competitive ratio. When the number of resources s increases,

15

the performance degrades linearly. A difficulty in obtaining better competitive ratios is that the

algorithms studied in the literature [9, 11, 45, 46, 57, 59, 70, 119] apply to the one-shot scheduling

problem, where each thread issues a single transaction. One-shot problems are directly related

with vertex coloring (Section 1.4.2), where the problem of determining the chromatic number of a

graph is reduced to finding an optimal time schedule for the one-shot problem. Since it is known

that computing an optimal coloring given complete knowledge of the graph is a very hard problem

to approximate, the one-shot problem is very hard to approximate too [84].

On the one hand, if we consider scenarios where each thread issues many transactions in se-

quence over time (i.e., the multi-shot scheduling problem), the competitive ratio degrades by a

factor of the maximum number of transactions among sequences, in the worst-case, when apply-

ing the one-shot scheduling algorithms. A natural question which we address in this dissertation

is whether there are alternative models for multi-shot scheduling problems which have the poten-

tial to improve the trivial competitive bounds obtained using the one-shot scheduling algorithms.

As we show in Chapter 3, it is indeed possible to obtain new and alternative performance bounds

(within a poly-log factor of O(s)) for multi-shot scheduling problems.

On the other hand, we are interested to address the question “is it possible to obtain better than

O(s) competitive ratio for the one-shot scheduling problem?” Note that in the non-clairvoyant

job scheduling model used by Attiya et al. [9] there are matching upper and lower bounds of

O(s) and Ω(s), respectively. We answer the aforementioned question affirmatively in Chapter

4 that it is indeed possible to obtain better than O(s) (i.e. sub-linear) competitive ratios for the

one-shot scheduling problem of Section 1.4 by just introducing two additional fairly minimalistic

assumptions.

1.6.2 Large-Scale Distributed Systems

In distributed networked systems processors that are placed in the nodes of a network communicate

through a message passing environment, in contrast to tightly-coupled architectures where commu-

nication latency is not considered. Some distributed cache-coherence (DTM) mechanism should

16

ensure that shared objects remain consistent while executing transactions in distributed TM imple-

mentations, i.e., writing to an object automatically locates and invalidates other cached copies of

that object. A DTM protocol typically supports three kinds of operations: (i) publish operation

which allows a node which created an object in its memory space to publish it so that other nodes

in the network can find it; (ii) lookup operation, the protocol should locate the current copy of the

object and move it to the requesting node’s cache (shared access), without modifying the old copy;

(iii) move operation, where a transaction attempts to access an object to update explicitly the DTM

protocol should locate the current cached copy of the object and move it to the requesting node’s

cache invalidating the old copy.

The distributed networked systems typically do not come with built-in protocols that can be

extended to provide required cache-coherence, so TM implementations in large-scale distributed

systems require building something equivalent [77]. The conflicts between transactions running

at different nodes can be handled using the scheduling algorithms designed for tightly-coupled

systems. Therefore, one of our goal will be to design scalable and efficient cache-coherence al-

gorithms for TM implementations in distributed systems. We will focus after that on whether

makespan and cost to provide cache-coherence can be minimized simultaneously.

Previous cache-coherence approaches, Arrow [43], Relay [143], Combine [10], and Ballistic

[77], were only for either specific network topologies or they do not scale well in arbitrary network

topologies. The objective is to design a DTM protocol that is suitable for arbitrary network topolo-

gies. The goal is to devise a consistency protocol which ensures that the shared object requests

by the transactions (running on some particular nodes of the network) are served with minimum

overhead in any arbitrary network. We answer this question in Chapters 5 and 6 by presenting and

analyzing a DTM protocol that is suitable for arbitrary (general) network topologies.

1.6.3 NUMA Systems

For NUMA systems, we are interested in minimizing the communication cost, makespan, and

also the network load while executing transactions. In this direction, we present and analyze a

17

distributed consistency algorithm in Chapter 7 that minimizes simultaneously the communication

cost and the network load in accessing the memory locations of the shared objects. After that we

provide a trade-off between makespan and cost to provide cache-coherence; in particular, we show

in Chapter 8 that both metrics can not be minimized simultaneously.

1.7 Dissertation Contributions

We now discuss the contributions of this dissertation in detail. Some of these contributions are

published in journals and conferences [121–130].

1.7.1 Tightly-Coupled Systems

We made the following two contributions for transaction scheduling in tightly-coupled systems.

• We propose execution window model of transactions with M threads and N transactions per

thread by extending the original one-shot model of M transactions with one transaction per

thread. We then present, formally analyze, and experimentally evaluate three scheduling al-

gorithms that are suitable for execution window model. The first algorithm Offline-Greedy

produces a schedule of lengthO(τ · (C +N · log(MN))) with high probability, where τ de-

notes execution time duration of each transaction and C denotes the number of transactions

inside the window a transaction conflicts with. The second algorithm Online-Greedy pro-

duces a schedule of length that is only a O(log(NM)) factor worse than Offline-Greedy.

The third algorithm Adaptive-Greedy is the adaptive version of the previous algorithms

which produces a schedule of length asymptotically the same as with online algorithm by

adaptively guessing the value of C. All of the algorithms exhibit competitive ratio very

close to O(s), where s is the number of shared resources, and at the same time, our algo-

rithms provide new non-trivial tradeoffs for greedy transaction scheduling that parameterize

window sizes and transaction conflicts within the execution window. We evaluate these

window-based algorithms experimentally using the sorted link list, red-black tree, skip list,

18

and vacation benchmarks. The evaluation results confirm their benefits in practical perfor-

mance throughput and other metrics such as aborts per commit ratio and execution time

overhead, along with the non-trivial provable properties of the algorithms.

• We propose balanced workload model by again extending the original one-shot model such

that if a transaction is writing, the number of write operations it performs is a constant

fraction of its total reads and writes. We then present and analyze two new polynomial time

scheduling algorithms that achieve sub-linear competitive bounds. In particular, the first

algorithm Clairvoyant is O(
√
s)-competitive and the second algorithm Non-Clairvoyant

is O(
√
s · log n)-competitive, with high probability We also prove that the performance of

Clairvoyant is close to optimal, since there is no polynomial time contention management

algorithm for the balanced transaction scheduling problem that is better than O((
√
s)1−ε)-

competitive for any constant ε > 0, unless NP ⊆ ZPP.

1.7.2 Large-Scale Distributed and NUMA Systems

We made the following two contributions for TM implementation in large-scale distributed sys-

tems.

• We present and analyze Spiral, a novel DTM algorithm for transaction scheduling which

guarantees an O(log2 n ·min{log n, logD}) stretch for object requests in general networks,

where n is the number of nodes and D is the diameter of the network. It also guarantees

poly-log approximation for lookup requests. To the best of our knowledge, this is the first

consistency protocol for distributed transactional memory that achieves poly-log approxima-

tion in general networks.

• We present a framework to analyze DTM algorithms when object requests are generated at

arbitrary moments of time and give stretch bounds for several DTM algorithms, including

Spiral.

19

The bandwidth of the network is usually the major bottleneck, especially in NUMA systems.

In the context of DTM algorithms, previous approaches including Spiral [10, 43, 77, 129, 143]

were only for different network topologies with stretch bounds (Table 2.2) and they do not control

the congestion. Therefore, we made the following contribution for TM implementation in NUMA

systems.

• We present and analyze Multibend, a novel DTM algorithm suitable for NUMA systems in

the sense that it minimizes congestion as well as stretch for d-dimensional mesh topologies.

Recall that mesh topologies are widely used in high performance parallel and distributed

computing. Particularly, for any set of object operations, Multibend achieves congestion

approximation of O(d2 · log n) and stretch of O(d · log n), where n is the number of nodes

of the mesh; the congestion approximation is optimal with in a constant factor and stretch is

optimal with a O(log log n) factor for constant d.

We then consider transaction scheduling in both distributed and NUMA systems. We focus on

whether makespan and communication cost can be simultaneously minimized. This minimization

is very important to schedule transactions with multiple objects with scalable performance. We

made the following contribution in this aspect for transaction scheduling in distributed and NUMA

systems.

• We show that there are transaction scheduling problem instances in distributed and NUMA

systems such that makespan and communication cost can not be simultaneously minimized.

This result justifies our study of DTM protocols in the sense that for the transaction schedul-

ing in these systems these two optimization problems should be independently minimized.

We then present and analyze algorithms that independently minimize either the makespan or

the communication cost and achieve near-optimal bounds.

20

1.8 Dissertation Organization

This rest of the dissertation is organized as follows: In Chapter 2, we discuss the related work on

transaction scheduling in tightly-coupled, large-scale distributed , and NUMA systems. We then

discuss results related to transaction scheduling for tightly-coupled systems in Chapters 3 and 4.

Chapter 3 is dedicated to the execution window model, the algorithms, and evaluation results. In

Chapter 4, we introduce the balanced workload model and provide two algorithms that achieve

sub-linear bounds.

We then discuss results related to transaction scheduling in distributed networked systems and

NUMA systems in Chapters 5, 6, 7, and 8. Recall that, in distributed networked and NUMA sys-

tems, transactions are scheduled and conflicts are resolved in each network node using a globally-

consistent scheduling algorithm similar to the one that is designed for TM implementation in

tightly-coupled systems. Therefore, the focus of our transaction scheduling work for distributed

networked and NUMA systems will be on how to find the shared objects needed by a transaction

efficiently from the remote nodes and provide consistency of the objects after transactions commit

and abort.

Chapter 5 is dedicated to the general network model and results on that model. We present

an framework to analyze consistency algorithms for any arbitrary execution of requests that arrive

in arbitrary moments of time in Chapter 6. In Chapter 7, we present a load balanced consistency

algorithm that is suitable for NUMA systems. In Chapter 8, we show that there are transaction

scheduling problem instances in distributed and NUMA systems such that makespan and commu-

nication cost can not be simultaneously minimized. This result justifies our study of consistency

algorithms that only minimize the communication cost (not the execution time). Finally, we con-

clude this dissertation with a short discussion and an outline of possible future research directions

in Chapter 9.

21

Chapter 2
Literature Review

In this chapter, we provide an overview of the literature on transaction scheduling in tightly- cou-

pled, distributed, and NUMA systems. We start with describing the related work in the literature,

and then present high level details of our work on obtaining new efficient scheduling algorithms

and their experimental evaluations.

2.1 Tightly-Coupled Systems

Tightly-coupled systems represent the typical scenario of a multicore chip with multilevel cache

organization, where the lower level caches are distinct to each processor, while the highest level

cache is common to all the cores in the chip (see left of Fig. 1.5). Communication costs be-

tween the processors are symmetric. In 2003, Herlihy, Luchangco, Moir, and Scherer III [75]

proposed Dynamic STM (DSTM) for dynamic-sized data structures. They give experimental re-

sults in DSTM using Polite, Aggressive, and Simple Locking contention management mecha-

nisms on IntSetSimple, IntSetRelease, and red-black tree benchmarks, and conclude that choice of

a contention management algorithm can significantly affect the transaction throughput and some

contention manager that exhibit good performance at some benchmarks may not achieve the same

performance result at other benchmarks. Scherer III and Scott [117] propose and analyze different

contention management policies considering visible and invisible versions of read accesses, and

different benchmarks that vary in complexity, level of contention, and mix of reads and writes.

Their analysis of the throughput results reveals that choice of a contention manager is crucial for

22

the performance throughput in different benchmarks. They conclude that Polka generally gives

good overall performance in most of the benchmarks even though it has no provable properties.

Most of the algorithms proposed in the literature [6, 45, 58, 75, 107, 117, 118, 142] for the

transaction scheduling problem (Section 1.4) have been assessed only experimentally by using

specific benchmarks. Guerraoui et al. [59] were the first to develop a scheduling algorithm which

exhibits non-trivial provable worst-case guarantees along with good practical performance. Their

Greedy scheduling algorithm decides in favor of old transactions using timestamps and achieves

O(s2) competitive ratio in comparison to the optimal off-line scheduling algorithm for n concur-

rent transactions that share s resources, and at the same time has good empirical performance.

They argue that this bound holds for any algorithm which ensures the pending commit property

(see Definition 1). They experimented with Greedy in DSTM [75] using the list and red-black

tree benchmarks and concluded that it achieves performance comparable to other scheduling algo-

rithms like Polka [117] and Aggressive [118] along with its provable worst-case guarantees. the

model used in Guerraoui et al. [59] is based on the model suggested by Garey and Graham [54]

for multiprocessor scheduling under resource constraints. Later, Guerraoui et al. [57] studied the

impact of transaction failures on transaction scheduling. They presented the algorithm FTGreedy

and proved an O(k · s2) competitive ratio when some running transaction may fail at most k times

and then eventually commits. A transaction is called failed when it encounters an illegal instruction

producing a segmentation fault or experiences a page fault resulting to wait for a long time for the

page to be available [57].

Several other algorithms have also been proposed for the efficient transaction scheduling and

the performance of some of them has been analyzed formally [9, 11, 46, 119]. The detailed com-

parison of the results and their properties are listed in Table 2.1. Attiya et al. [9] improved the

competitive ratio of Greedy to O(s) and of FTGreedy to O(k · s), and proved a matching lower

bound of Ω(s) (Ω(k · s) when transactions may fail) for any deterministic work-conserving algo-

rithm which schedules as many transactions as possible (by choosing a maximal independent set

of transactions at each time step). The model used in Attiya et al. [9] is the non-clairvoyant job

23

Table 2.1: Comparison of transaction scheduling algorithms, where C denotes the number of con-
flicts and it can be as much as the number of shared resources s, k denotes the number of times
a transaction can fail, M denotes the number of different threads (or cores), and N denotes the
number of transactions in each thread. The assumptions of the algorithms for the failure-free case
are applied also to their versions for transaction failures.

Algorithm Model Competitive ratio Deterministic/
Randomized

Assumptions

Serializer [45], ATS
[142]

One-shot Θ(min{s,M})
[9, 46]

Deterministic -

Polka [117], Size-
Matters [107]

One-shot Ω(min{s,M})
[9, 119]

Deterministic -

Restart [46], SoA
[6]

One-shot Θ(min{s,M})
[9, 11]

Deterministic -

Greedy [59] One-shot O(s2) [59] Deterministic Unit length transactions
FTGreedy [57] One-shot O(k · s2) [57] Deterministic Transactions can fail
Greedy [59] One-shot Θ(s) [9] Deterministic -
FTGreedy [57] One-shot Θ(k · s) [9] Deterministic Transactions can fail
Phases [9] One-shot O(max{s, k log k})

[9]
Randomized Unit length transactions

RandomizedRounds
[119]

One-shot O(C · logM) [119] Randomized Equal length transac-
tions

CommitRounds
[119]

One-shot O(min{s,M})
[9, 119]

Deterministic Equal length transac-
tions

Bimodal [11] One-shot Θ(s) [11] Deterministic Bimodal workloads

Offline-Greedy
(Ch. 3)

Window O(s + log(MN))
[125]

Randomized Equal length transac-
tions; conflict graph is
known

Online-Greedy
(Ch. 3)

Window O(s · log(MN) +
log2(MN)) [125]

Randomized Equal length transac-
tions; conflict graph is
not known

Offline-Greedy
(Ch. 3)

Window O(k ·(s+log(MN)))
[125]

Randomized Transactions can fail

Online-Greedy
(Ch. 3)

Window O(k · (s · log(MN) +
log2(MN))) [125]

Randomized Transactions can fail

Clairvoyant (Ch. 4) One-shot O(
√
s) [123] Deterministic Balanced workloads

Non-Clairvoyant
(Ch. 4)

One-shot O(
√
s · logM) [123] Randomized Balanced workloads

Clairvoyant (Ch. 4) One-shot O(k ·
√
s) [123] Deterministic Transactions can fail

Non-Clairvoyant
(Ch. 4)

One-shot O(k ·
√
s · logM)

[123]
Randomized Transactions can fail

24

scheduling model, suggested by Motwani et al. [101], in the sense that it requires no prior knowl-

edge about the transactions while they are executed. They also gave a randomized scheduling

algorithm Phases that achieves O(max{s, k log k}) competitive ratio for the special case of unit

length transactions in which a transaction may fail at most k times before it eventually commits.

Schneider and Wattenhofer [119] proposed an algorithm, called RandomizedRounds, which pro-

duces a O(C · logM)-competitive schedule with high probability, for the transaction scheduling

problem with C conflicts (assuming unit delays for transactions). They also gave a deterministic

algorithm CommitRounds with O(min{s,M}) competitive ratio. The model used in Schnei-

der and Wattenhofer [119] is based on the degree of a transaction (i.e., neighborhood size) in the

conflict graph of transactions.

While previous studies, e.g. [117], showed that contention managers Polka [117] and Size-

Matters [107] exhibit good overall performance in variety of benchmarks, Schneider and Watten-

hofer’s work [119] showed that they may perform exponentially worse than their Randomize-

dRounds algorithm from the worst-case perspective. Another recent proposal for the contention

management is Serializer [45], which resolves a conflict by removing a conflicting transaction T

from the processor core where it was running, and scheduling it on the processor core of the other

transaction to which it conflicted with.

Later, Attiya et al. [11] proposed a Θ(s)-competitive algorithm for the one-shot scheduling

problem in bimodal workloads. A workload is called bimodal if it contains only early-write and

read-only transactions; a transaction is called early-write if the time from its first write access un-

til its completion is at least half of its duration [11]. The model in [11] is also non-clairvoyant

in the sense that it requires no prior knowledge about the transactions while they are executed.

Hasenfratz et al. [70] studied different schedulers to adapt the load in STM systems based on

contention. Hasenfratz et al. [70] also showed the performance improvement of these strategies

by comparing their throughput with the existing contention management policies (e.g., Karma,

Timestamp, Polka) which can not perform load adaption. Schneider and Wattenhofer [119]

proved that the scheduling algorithms Polka [117] and SizeMatters [107] are Ω(M)-competitive.

25

Attiya and Milani [11] showed that Steal-on-Abort (SoA) [6] and Serializer [45] algorithms

are Ω(M)-competitive. In SoA, the aborted transaction is given to the opponent transaction and

queued behind it, preventing the two transactions from conflicting again. Moreover, Dragojević

et al. [46] proved that Serializer [45] and adaptive transaction scheduling (ATS) [142] algo-

rithms are O(M)-competitive. ATS is the transaction scheduler which measures adaptively the

contention intensity of a thread, when the contention intensity increases beyond a threshold, it

serializes the transactions. Shrink and Restart due to Dragojević et al. [46] are the scheduling

algorithms which predict the future accesses of a transaction based on the past accesses, and dy-

namically serializes transactions based on the prediction to prevent conflicts. They are also shown

to be O(M)-competitive. Attiya et al. [9] proved that every deterministic scheduling algorithm is

Ω(s)-competitive. Combining all these results, we obtain the bounds listed in Table 2.1 for these

algorithms.

The transaction scheduling problem is also studied in several other papers, e.g. [17, 23–25, 97,

116, 132], for TM implementations in both hardware and software. However, they do not provide

the formal analysis and the performance of their techniques is evaluated through benchmarks only.

We provided novel techniques and bounds in [121–123, 125] for the formal performance anal-

ysis of transaction scheduling algorithms with respect to the makespan in tightly-coupled systems.

At the same time we have evaluated the performance of the scheduling algorithms experimentally

for other performance metrics, such as performance throughout, as well. We provide two main

scheduling models, the balanced workload model and the window-based execution model. Both

of these models aim at improving the previous formal bounds relating the makespan performance

of TM to the number of resources. In the balanced workload model, we give sub-linear bounds with

respect to the number of resources for a simple restricted version of the one-shot scheduling prob-

lem of Section 1.4. In the window-based model, we actually give an alternative bound based on the

metric of conflict number C which may be smaller than the number of resources for an extended

version of the one-shot problem of Section 1.4. In this proposal, we use the analysis modeling and

techniques based on the degree estimation of a transaction in the conflict graph similar to [119] for

26

transactional contention management in tightly-coupled shared memory architectures (particularly,

Chapters 3 and 4).

2.2 Large-Scale Distributed Systems

Distributed networked systems represent the scenario of completely decentralized distributed

shared memory where processors are placed in a network which communicate through a mes-

sage passing environment. Here, the network is represented with an arbitrary weighted graph

G = (V,E,w), where V is the set of nodes (machines), E is the set edges (interconnection links

between machines), and w is a weight function in E which reflects physical distances and delays.

This model is more abstract than the hierarchical multilevel cache, because the network could be

any arbitrary topology not restricted to any specific multiprocessor architecture. Thus, it models

distributed networks over large areas. To solve the transaction scheduling problem in distributed

systems, nodes need to use a transaction scheduling algorithm to resolve conflicts that arise while

executing transactions. To support transaction scheduling satisfying atomicity, each node is en-

riched with a transactional memory proxy module that interacts with the local node and also with

the proxies at other nodes [77]. The proxy module is asked to open the shared object when it is

needed for reading or writing by a transaction. The proxy module checks whether the object is at

the local cache, otherwise it calls an appropriate algorithm to get that object from the node that has

it. At the commit time of a transaction, proxy checks whether any object that is read and written

by that transaction was not invalidated by other transactions that are committed from other nodes.

If that is the case, the proxy asks the transaction to abort, otherwise it allows the transaction to

commit. The aborted transactions restart their execution and try to commit again.

When the proxy module of a node receives a request (from a remote node) for the shared object

that is at the local node, it checks whether a local pending transaction using it. If the object is in use,

the proxy can give the object to the requester aborting the local transaction or delay the response

for a while so that local transaction can commit. This decision is done through the scheduling

algorithm used in the nodes.

27

Several researchers [26, 38, 87, 98] presented techniques to implement TM in distributed net-

worked systems. Manassiev et al. [98] presented the lazy conflict detection and handling algorithm

based on global lock. Kotselidis et al. [87] presented the serialization/multiple lease based algo-

rithm. Bocchino et al. [26] and Couceiro et al. [26, 38] presented the commit-time broadcasting

based algorithm. Control-flow based distributed TM implementation is studied by Saad and Ravin-

dran [114]. Romano et al. [111] discussed the use of the TM programming model in the context of

the cloud computing paradigm and posed several open problems. Kim and Ravindran [85] studied

transaction scheduling in replicated data-flow based distributed TM systems. Saad and Ravindran

[114] provided a Java framework implementation, called HyFlow, for distributed TM systems. Re-

cently, Hendler et al. [71] studied a lease based hybrid distributed software TM implementation

which dynamically determines whether to migrate transactions to the nodes that own the leases, or

to demand the acquisition of these leases by the node that originated the transaction.

As transactions are scheduled and conflicts are resolved using a scheduling algorithm in each

network node, the focus in the TM implementation in distributed networked systems is on how to

find the shared objects needed by transactions efficiently from the remote nodes and provide the

consistency of the objects after transactions commit and abort. These previous algorithms [26, 38,

87, 98, 111] essentially try to provide consistency of the shared objects. However, they either use

global lock, serialization lease, or commit-time broadcasting technique which do not scale well

with the size of the network [10]. Moreover, they do not provide the formal analysis of the cost

incurred by their algorithms to support distributed transaction scheduling and the performance of

these techniques are evaluated through experiments only. Thus, it is of great importance to design

consistency algorithms that scale well with the size, complexity, and network kind of the distributed

systems, and also provide reasonable theoretical and empirical performance.

We now provide an overview of the work on designing scalable consistency algorithms for sup-

porting TM in distributed networked systems. Herlihy and Sun [77] proposed Ballistic consistency

algorithm. This algorithm is hierarchial: network nodes are organized as clusters at different lev-

els. They evaluated the formal performance of Ballistic by its stretch (i.e., the competitive ratio on

28

Table 2.2: Comparison of consistency algorithms, where SST = O(D) is the stretch of the span-
ning tree, SOT = O(D) is the stretch of the overlay tree, l ≤ n is the number of move operations
in one-shot executions, n is the number of nodes, and D is the diameter of the network.

Algorithm StretchStretch Network Runs on

sequential one-shot dynamic

Arrow
[43]

O(SST) [43] O(SST · log l) [78] O(SST · logD)
[89]

General Spanning tree

Relay
[143]

O(SST) [143] O(SST · log l) [78] O(SST · logD)
[144]

General Spanning tree

Combine
[10]

O(SOT) [10] O(SOT · log l) [78] O(SOT · logD)
[89]

General Overlay tree

Combine
[10]

O(logD) [126] O(logD) [126] O(logD) [126] Constant
dou-
bling

Hierarchical
directory (inde-
pendent sets)

Ballistic
[77]

O(logD) [77] O(logD) [77] O(logD) [126] Constant
dou-
bling

Hierarchical
directory (inde-
pendent sets)

Spiral
(Ch. 5 &
6)

O(log2 n ·
min{log n, logD})
[129]

O(log2 n ·
min{log n, logD})
[129]

O(log2 n ·
min{log n, logD})
[126]

General Hierarchical
directory (sparse
covers)

MultiBend
(Ch. 7)

O(d log n) [124] O(d log n) [124] O(d log n) [126] d-D
mesh

Hierarchical
decomposition
of the mesh

distances): each time a node issues a request for a remote shared object, compute the ratio of the al-

gorithm’s communication cost for that request to the optimal communication cost for that request.

The optimal communication cost is computed based on the shortest path distances between the re-

questing node and the node in which the request finds that object. In constant doubling networks,

their algorithm achieves amortized O(logD) stretch, where D is the diameter of the constant dou-

bling network for non-overlapping (i.e., sequential) requests to locate and move a cached copy of

an object from one node to another. In this algorithm, concurrent requests are synchronized by

path reversal: when two requests meet at some intermediate node, the second request is diverted

behind the first request.

29

The Arrow algorithm [43] originally designed for the distributed queuing problem can also

be used as the consistency algorithm for TM in distributed systems [43, 79, 137]. It maintains

a distributed queue using path reversal [102]. Zhang and Ravindran [143] proposed the Relay

consistency algorithm. Both Arrow and Relay run on a spanning tree. In Relay, the pointers lead

to the node that is currently holding the object and the pointers are changed only after the object

moves from one node to another, like the tree-based mutual exclusion algorithm of Raymond [109].

Relay has stretch O(SST) in sequential executions, where SST is the stretch of the pre-selected

spanning tree ST . They also showed that Relay efficiently reduces the worst-case number of total

abortions of transactions to O(M) in comparison to using Arrow [43, 109], which has an O(M2)

for M transactions requesting the same object. Recently, Attiya et al. [10] proposed Combine,

which runs on an overlay tree, whose leaves are the computing nodes of the system. They claimed

that Combine avoids race conditions (missing one concurrent request by another) of Ballistic

and Relay by combining requests that overtake each other as they pass through the same node.

Combine exhibits the stretch O(SOT) in sequential executions, where SOT is the stretch of the

embedded overlay tree OT . The stretch of Arrow, Relay and Combine may be as much as the

diameter of the network. Kim and Ravindran [86] proposed a technique that improves the stretch of

Relay toO(log n) in bimodal workloads in the worst-case and Θ(log(n−m)) in the average-case,

for n nodes and m reading transactions. Table 2.2 summarizes the properties of the consistency

algorithms in all possible (sequential, one-shot, and dynamic) execution scenarios. In sequential

executions, object requests do not overlap with each other, whereas object requests are issued at

the same time in one-shot executions and no further requests occur. Object requests are issued in

arbitrary moments of time in dynamic executions.

There have been endeavors analyzing the dynamic performance of distributed protocols that

are based on pre-selected spanning trees. An analysis of the Arrow protocol [43] given in [72, 89]

for an arbitrary set of (online) ordering requests generated over a period of time shows that Arrow

is O(s · logD)-competitive, where s and D, respectively, are the stretch and the diameter of the

spanning tree on which Arrow operates. Note that s can be as large as D, as for example, in ring

30

networks, giving a competitive ratio O(D · logD), which is significantly larger than ours. The

Arrow protocol, originally developed for distributed mutual exclusion [109], is one of the simplest

distributed directory protocol based on spanning trees. Along the lines of Arrow, an analysis of

the Relay protocol [143] is presented in [145], for dynamic (online) requests in the context of

distributed transactional memory, and shown that Relay is O(s · logD)-competitive, for a set of

transactions that request the same object.

We present Spiral, a novel consistency algorithm, in Chapter 5. To the best of our knowl-

edge, Spiral is the first consistency algorithm for TM in distributed systems that achieves poly-log

approximation for stretch in general networks. Previous approaches, Arrow [43], Relay [143],

Combine [10], and Ballistic [77], were only for either specific network topologies or they do not

scale well in arbitrary network topologies. For example, Ballistic is only suitable for doubling-

dimension metrics, which is not general enough to cover other network topologies; further, the

spanning tree approach of Relay [143] does not perform well on trees that do not preserve the

shortest path metric, as for example, in ring networks. Moreover, we present a framework for

analyzing distributed consistency algorithms in Chapter 6 and provide stretch bounds for several

algorithms in dynamic execution of shared object operations.

2.3 NUMA Systems

Multicore processor architectures provide interfaces that enable multicore chips to connect with

each other through high speed interconnect communication links, in order to form larger size mul-

tiprocessor systems. An example is the Intel QuickPath Interconnect (QPI) [36] which is imple-

mented in the Intel Pentium i7 Nehalem multicore architecture [37]. Fig. 1.6 illustrates an example

organization of an interconnect multiprocessor system in a 3-dimensional grid. Such large scale

architectures are suitable for high performance distributed and parallel computing. In IBM Blue

Gene/L 65,000 nodes are interconnected as a 64 × 32 × 32 3-dimensional mesh or torus [2]. Re-

cently, IBM Blue Gene/Q integrated a 5-dimensional torus [34]. Moreover, Cray XT5 [81] is also

based on a similar multiprocessor organization. These configurations are known as Non-Uniform

31

Memory Access (NUMA) systems where the shared memory is distributed among various proces-

sors. There are various ways to ensure that the caches of the cores are coherent, such as snoopy

bus algorithm, or a distributed directory organization. An important characteristic is the NUMA

factor which is related to the difference in latency for accessing data from a local memory location

as opposed to a non-local one.

Wang et al. [139] evaluated several STM implementations on a big SMP machine that uses

cache coherent NUMA (ccNUMA) architecture. They concluded that latencies due to remote

memory accesses is the key factor that influences STM performance. Lu et al. [94] proposed a

latency-based scheduling algorithm with a forecasting-based conflict prevention method to im-

prove the TM performance in NUMA systems. Kotselidis et al. [87] studied how to exploit STM

on clusters. They concluded that the performance depends on network congestion. Blagodurov et

al. [22] provided a case for NUMA-aware scheduling on multicore systems. However, they did

not consider implementing transactions. Calciu et al. [30] designed a family of reader-writer lock

algorithms tailored to NUMA architectures, extending the existing lock algorithms designed for

UMA architectures.

For NUMA systems, we are interested in minimizing the communication cost, makespan, and

also the network load while executing transactions. In this direction, we give a distributed con-

sistency algorithm, Multibend in Chapter 7 that minimizes simultaneously the communication

cost and the network load in accessing the memory locations of the shared objects. For achiev-

ing simultaneously low communication cost and low congestion (i.e., load balancing), we applied

techniques from oblivious routing [28] on d-dimensional grid network topologies, with near op-

timal congestion while maintaining small stretch (competitive ratio on distances). In particular,

we combined an oblivious routing algorithm approach with the Spiral algorithm of Chapter 5 to

obtain the desired algorithm with poly-log approximation in stretch and poly-log approximation in

congestion (with respect to optimal edge congestion). In small (constant) degree graphs, low edge

congestion implies also low node congestion. The algorithm MultiBend presented in Chapter 7

demonstrates that such a construction with dual optimization in grids is feasible.

32

In Chapter 8, we show that for the transaction scheduling in distributed and NUMA systems,

the execution time and communication cost can not be minimized simultaneously and one has to

rely on algorithms which minimize either execution time or communication cost.

33

Chapter 3
Tightly-Coupled Systems: Execution
Window Model

3.1 Introduction

In this chapter1, in order to obtain non-trivial provable properties along with promising empirical

performance, we consider the performance of program executions in windows of transactions (see

Fig. 3.1a), which has the potential to overcome some of the limitations of the coloring reduction in

certain circumstances. An M × N window W consists of M threads with an execution sequence

of N different transactions per thread. The execution window W can be viewed as a collection of

N one-shot transaction sets with M concurrent transactions in each set.

We show that we can obtain new and improved performance bounds for the multi-shot schedul-

ing problem using window-based execution of transactions. We present and evaluate a family of

window-based randomized greedy contention management algorithms where transactions are as-

signed priorities values, such that for some random initial interval in the beginning of the window

W each transaction is in low priority mode and then after the random period expires the trans-

actions switch to high priority mode. In high priority mode the transaction can only be aborted

by other high priority transactions. The random initial delays have the property that the conflict-

ing transactions are shifted inside their window and their execution times may not coincide (see

1This chapter published in:
Gokarna Sharma and Costas Busch. Window-Based Greedy Contention Management for Transactional Memory:
Theory and Practice. Distrib. Comput. 25(3):225–248, 2012. http://link.springer.com/article/10.
1007/s00446-012-0159-7

34

N1 2 3 4

N1 2 3 4

N1 2 3 4

N1 2 3 4

N1 2 3 4

N

M

(a) Before execution

N1 2 3 4

N1 2 3 4

N

N1 2 3 4

N

N’

N

M

Randomization interval

1 2 3 4

1 2 3 4

(b) After execution

Figure 3.1: Execution window model for transactional memory.

Fig. 3.1b). The benefit is that conflicting transactions can execute at different time slots and po-

tentially many conflicts are avoided. The benefits become more apparent in scenarios where the

conflicts are more frequent inside the same column (i.e., simultaneously executed) transactions

and less frequent between different column transactions. The experimental evaluation results on

different benchmarks confirm the benefits of using window-based execution of transactions as an

efficient contention management strategies in transactional memories.

The execution window model we consider here is useful in many real-world execution sce-

narios. The one prominent example is the scenario in which each thread needs to execute a job

comprises of many transactions over time, i.e., a thread running on some processor creates N ≥ 1

transactions T1, T2, · · · , TN one after another and all of them are executed sequentially on the

same processor core, i.e., Ti is executed as soon as Ti−1 has finished execution and committed. In

this multi-shot transaction scheduling scenario, the execution performance analysis based on the

window model improves significantly over the trivial approach of using one-shot analysis.

3.1.1 Theoretical Contributions

We propose the contention measure C within the window to allow more precise statements about

the worst-case complexity bound of any contention management algorithm, where C denotes the

maximum number of conflicting transactions for any transaction in the window. As there are at

most MN transactions in the window W , C ≤ MN when considering all the transactions. If we

assume that all transactions have the same duration τ , then a straightforward upper bound for the

35

makespan of the window is τ · min(CN,MN), since τ · CN follows from the observation that

each transaction in a thread may be delayed at most C times by its conflicting transactions, and

τ ·MN follows from the serialization of the transactions. The competitive ratio of the makespan

using the one-shot analysis results is bounded byO(s ·N). This is because of the need of applying

O(s)-competitive algorithm of [9] N times, in the worst case, for the transactions in W . Similarly,

using the one-shot Algorithm RandomizedRounds provided in [119] N times, the completion

time is in the worst case O(τ · CN · logM).

We give three window-based randomized greedy algorithms for the contention management

in any execution window W that perform significantly better than the trivial bounds mentioned

above. For simplicity, we assume that each transaction has the same duration τ (this assumption

can be removed; see Section 3.7). The first algorithm, Offline-Greedy, is tailored for environments

where the conflict relations and the contention measure C on the shared resources are known in

advance, while the second algorithm, Online-Greedy, is best suited to online scheduling environ-

ment where it is difficult to predict conflict relations. The third algorithm, Adaptive-Greedy, is

the adaptive version of previous algorithms which assumes no knowledge of conflict relations and

not even the conflict measure C.

Our first algorithm Offline-Greedy gives a schedule of length O(τ · (C + N · log(MN)))

with high probability. An advantage of this schedule is that if the conflicts inside the window are

bounded byC ≤ N ·log(MN) then the schedule length is within a logarithmic factor from optimal,

since τ ·N is a trivial lower bound in total execution time. This is a reasonable improvement over

the trivial approach of using N one-shot executions from the worst-case perspective. We also

show that this algorithm is O(s + log(MN))-competitive (for any choice of C). The algorithm

is offline in the sense that it uses explicitly the conflict graph of the transactions (the global view

of the system) at each time step of execution to resolve the conflicts. Moreover, as the analysis

of this algorithm depends on transactions to be deterministic (i.e., if a transaction T conflicts with

another transaction T ′, it will always conflict if they execute concurrently), it will not be able to

handle non-deterministic transactions (i.e., transactions that change their execution and conflict

36

dependencies according to some value they read). This is because non-deterministic transactions

define a conflict graph that may change over time.

Algorithm Offline-Greedy is appropriate for the broad class of scheduling with conflicts en-

vironments which generally arise in resource-constrained scheduling [54]. In such scheduling, a

subset of transactions conflict if their cumulative demand for a resource exceeds the supply of that

resource. Conflicts between transactions are modeled by a conflict graph [48], where nodes corre-

spond to transactions and edges represent conflicts between transactions. A scheduling algorithm

for these environments should know the set of transactions that conflict with each other at each

time step to resolve conflicts. There are many applications of this type of scheduling environ-

ment which generate predictable conflict patterns with known conflict graphs, such as balancing

parallel computation load, traffic intersection control, session management in local area networks,

frequency assignment is cellular networks, and dining philosophers problem [14, 18, 27, 64, 82].

Conflict measure C is generally known in these applications because all transactions only need a

constant amount of resources exclusively and each resource is required by a constant number of

transactions [119]. We can take as an example the classical dining philosophers problem with n

unit length transactions sharing s shared resources such that the transaction Ti demands only two

resource Ri and R(i+1) mod s exclusively at any time.

Our second algorithm Online-Greedy produces a schedule of length O(τ · (C · log(MN) +

N · log2(MN))) with high probability. This is only a factor of O(log(MN)) worse schedule in

comparison to Offline-Greedy. We also prove that this algorithm isO(s· log(MN)+log2(MN))-

competitive (for any choice of C). The benefit of the online algorithm is that it does not need to

know the conflict graph of the transactions to resolve the conflicts. It takes decisions based on the

local view of the system. Conflicts between transactions are resolved by randomized priorities. The

algorithm uses as a subroutine a variation of algorithm RandomizedRounds [119]. Moreover,

in contrast to Offline-Greedy, this algorithm will be able to handle non-deterministic transactions

and its competitive ratio still holds if the execution of non-deterministic transactions keeps the

maximum degree constantly at C despite committing transactions. However, if the execution of

37

non-deterministic transactions increases the maximum degree C by a factor of η the schedule

length of this algorithm also increases by the same factor. Algorithm Online-Greedy is suitable

for scheduling environments where conflicts are not known in advance and cannot be predicted

ahead of time, and it is randomized. Transactional memory contention management is usually

related to online scheduling, where the conflicts between two transactions are discovered on the fly

when they access the same shared resource at any step of the execution. It is difficult to reliably

predict conflicts in this scenario because of their changing behavior over time. The algorithms for

online scheduling should resolve such dynamic conflicts without assuming conflict knowledge of

transactions. The conflict measure C is generally bounded by the number of transactions for online

scheduling problems in the worst-case.

The assumption about the known value of C in the previous algorithms is limited in the sense

that their performance depends on the right choice of C. Our third algorithm, Adaptive-Greedy,

is the adaptive version of the online algorithm which achieves similar worst-case performance

even without the knowledge of contention measure C. It adaptively guesses the value of C starting

from C = 1, and similar to Online-Greedy, this algorithm handles also the non-deterministic

transactions.

We analyze the window-based algorithms assuming that N is uniform over all threads. For the

transaction execution in the realistic scenarios, the assumption that N is uniform over all threads

can be (somehow) limited. That is because different threads can have different number of trans-

actions (not necessarily N). We note that our assumption of uniform N for all threads is for the

analysis purpose only. As long as threads have at most N different transactions in sequence, the

performance bounds of our algorithms hold without any changes. The technique we use for the

analysis of these algorithms is similar to the one used by Leighton et al. [91] to analyze an online

packet scheduling problem.

38

3.1.2 Practical Contributions

We implement the aforementioned window-based contention management algorithms and some of

their variants. We used DSTM2 [74], which is an eager conflict management STM implementation,

that has been modified to employ the random initial delays and frame based approach to execute

transactions. The window-based algorithms are evaluated with four widely used benchmarks for

transactional memories: sorted link list [75], red-black tree [75], skip list [104], and vacation from

STAMP suite [31].

The evaluation results show that our window-based scheduling algorithms have a very reason-

able performance throughput in different TM benchmarks, comparing to other scheduling algo-

rithms used in practice. The performance comparison is with five widely known scheduling algo-

rithms available in the literature: (i) Polka [117], the overall best performing contention manager,

among the scheduling algorithms proposed in the literature, in most of the TM workloads (although

it has no provable properties); (ii) Greedy [59], the first contention manager with provable theo-

retical and practical performance properties for one-shot scheduling problem; (iii) Priority [117], a

simple static priority based contention manager; (iv) Serializer [45], a contention manager that is

generally suitable for high contention scenarios; and (v) RandomizedRounds [119], a contention

manager similar to Priority where priority of a transaction changes at every start and restart.

The conclusion from the evaluation results is that window-based scheduling algorithms achieve

comparable performance with Polka, and outperform Greedy, Priority, Serializer, and Random-

izedRounds in most of the benchmarks used in the experiments, sometimes by significant mar-

gins. The evaluation results confirm the benefits of our window-based scheduling algorithms in

practical performance throughput and other transactional metrics such as aborts per commit ratio

and execution time overhead. Moreover, we study the relation among the choice of the conflict

measure C, the time step τ , and the size of the frames on the performance of window algorithms

in different benchmarks in different amounts of contention. The results show that the impact of

these parameters can be minimized using a novel technique of dynamic contraction and expansion

of frames in the execution window model.

39

To summarize, our algorithms have comparable experimental performance to Polka, and at the

same time, have provable theoretical performance guarantees. Therefore, our algorithms combine

good characteristics from theory and practice. This is a very significant step toward designing

scalable transactional memory schedulers that cope with the increased number of cores and system

complexity in multi-core architectures.

3.1.3 Chapter Organization

The rest of the chapter is organized as follows: We present the execution window model for trans-

actional memory in Section 3.2. We present and formally analyze three different randomized

transaction scheduling algorithms in Sections 3.3, 3.4, and 3.5. We present the brief description of

the algorithm variants and the benchmarks used in the experiments, and the evaluation results in

Section 7.6. Section 3.7 concludes the chapter with some discussions.

3.2 Model and Preliminaries

Consider a set of at most M ≥ 1 threads P := {P1, · · · , PM}. We consider a model that is based

on an M ×N execution window W consisting of a set of transactions T (W) := {(T11, · · · , T1N),

(T21, · · · , T2N), . . . , (TM1, · · · , TMN)}, where each thread Pi issues N transactions Ti1, · · · , TiN

in sequence, so that Tij is issued as soon as Ti(j−1) has committed. This departs from the one-shot

model given in Section 1.4 where N = 1 (one transaction per thread). However, similar to the one-

shot model, transactions share a set of s ≥ 1 shared resources R, i.e. R(Ti) denotes the resources

read or written by Ti. For the purpose of analysis, we assume that all transactions have the same

execution time duration τ = τij and this time does not change over time.

Assuming that there is one transaction per thread, the conflict graph G(T (W)) can be used to

obtain a simple greedy schedule of the transactions as follows. Compute a C + 1 vertex coloring

of the conflict graph. All transactions of same color can commit simultaneously. The transactions

can be scheduled in a greedy manner by giving a different priority to each transaction color. This

produces a greedy schedule of length makespan = τ · (C + 1). Since C ≤ λmax · γmax, we have

40

that makespan ≤ τ · (λmax · γmax + 1). Further, since C ≥ γmax − 1, makespanopt ≥ τ · γmax.

Since λmax ≤ s, the competitive ratio of the schedule is λmax + 1 = O(s).

3.3 Offline Algorithm

We present and analyze Algorithm Offline-Greedy (Algorithm 1), which is an offline greedy

contention resolution algorithm in the sense that it uses the conflict graph explicitly to resolve

conflicts of transactions. In addition to M and N , we assume that each thread Pi knows Ci, which

denotes the maximum number of transactions that any transaction in Pi conflicts with; namely,

using the conflict graph G(T (W)), Ci := maxj δ(Tij). Note that C := maxiCi.

Time is measured in discrete time steps, where each time step represents the duration τ of

the transactions. We divide time into frames (see Fig. 3.2), which are time periods of duration

Θ(τ · ln(MN)) (namely, each frame consists of Φ = Θ(ln(MN)) time steps for the Offline-

Greedy algorithm)2. Then, each thread Pi is assigned an initial random time period consisting of

qi frames as shown in Fig. 3.2, where qi is chosen randomly, independently and uniformly from the

range [0, αi − 1], where αi = Ci/ ln(MN). Moreover, each transaction Tkl, 1 ≤ l ≤ N , of each

thread Pk, 1 ≤ k ≤ M , is assigned to frame Fkl = qk + (l − 1), which we call the assigned frame

for Tkl. Each transaction has two priorities either of: low or high. Transaction Tij is initially in low

priority. Transaction Tij switches to high priority in the first time step of frame Fij = qi + (j − 1)

(this is the assigned frame for Tij) and remains in high priority thereafter until it commits. For

example, the assigned frame for T23, the third transaction of thread 2, is F23 as given in Fig. 3.2,

which is the third frame after the random delay q2 for thread 2. In the analysis, we show that with

high probability each transaction commits in its assigned frame.

The priorities are used to resolve conflicts. A high priority transaction may only be aborted

by another high priority transaction. A low priority transaction is always aborted if it conflicts

2Note that for the non-integral values of Φ, Φ′, αi, etc., we perform the rounding up to the smallest following
integer, that is, Φ = dΘ(τ · ln(MN))e, Φ′ = dΘ(τ · ln2(MN))e, αi = dCi/ ln(MN)e, etc. For reasons of clarity
and simplicity, we do not explicitly show this rounding of non-integral values in algorithms description and analysis,
as it does not affect their performance bounds.

41

N1 2

1 32

N

51 2 3 4M

1 32 4

1

5

4

3

2

1

N

1

q
1

q
2

q
3

q
4

{

F
23

F
11

F
12

F
1N

F
3N

F
31

F
21

F
22

F
42

F
41

F
M2

F
M1

F
44

F
M4

F
43

F
M3

F
M5

T
h
r
e

a
d

s

Frame of size

Figure 3.2: Illustration of initial random delays and frame based execution in window model.

Algorithm 1: Offline-Greedy
Input: An M ×N window W of transactions with M threads, each with N transactions;

Each thread Pi knows Ci, the maximum number of transactions in W that any
transaction in Pi conflicts with; Each transaction has the same duration τ ;

Output: A greedy execution schedule for the window of transactions W ;

1 Divide time into frames consisting of Φ = 1 + (e2 + 2) · ln(MN) time steps;
2 Each thread Pi chooses a random number qi ∈ [0, αi − 1] for αi = Ci/ ln(MN);
3 Each transaction Tij is assigned to frame Fij = qi + (j − 1);
4 foreach time step t = 0, 1 · τ, 2 · τ, 3 · τ, . . . do
5 Phase 1: Priority Assignment
6 foreach transaction Tij do
7 if t < Fij · τ · Φ then Priority(Tij)← 1 (low); else Priority(Tij)← 0 (high);

8 Phase 2: Conflict Resolution
9 begin

10 Let Gt be the conflict graph at time t;
11 Compute GH

t and GL
t , the subgraphs of Gt induced by high and low priority nodes,

respectively;
12 Compute IH ← I(GH

t), maximal independent set of nodes in graph GH
t ;

13 Q← low priority nodes adjacent to nodes in IH ;
14 Compute IL = I(GL

t \Q), maximal independent set of nodes in graph GL
t after

removing Q nodes;
15 Commit IH ∪ IL;

with a high priority transaction. Let Gt denote the conflict graph of transactions at time step t

which evolves while the execution of the transactions progresses. Note that the maximum degree

of Gt is bounded by C, but the effective degree between high priority transactions is lower. At

each time step t we select to commit a maximal independent set of transactions in Gt. We first

42

select a maximal independent set IH of high priority transactions, then remove this set and its

neighbors from Gt, and then select a maximal independent set IL of low priority transactions

from the remaining conflict graph. The transactions that commit are IH ∪ IL. As the maximal

independent set at each time step can be computed in polynomial time by a simple distributed

algorithm, e.g. Luby [95], the algorithm estimates the schedule in polynomial time.

The intuition behind the algorithm is as follows: consider a thread i and its first transaction in

the window Ti1. According to the algorithm, Ti1 becomes high priority in the beginning of frame

Fi1. Because qi is chosen at random among Ci/ ln(MN) positions it is expected that Ti1 will con-

flict with at mostO(ln(MN)) transactions in its assigned frame Fi1 which become simultaneously

high priority in Fi1. Since a time frame contains Φ = Θ(ln(MN)) time steps, transaction Ti1 and

all its high priority conflicting transactions will be able to commit by the end of time frame Fi1,

using the conflict resolution graph. The initial randomization period of qi · Φ time steps will have

the same effect to the remaining transactions of the thread i, which will also commit within their

assigned frames.

3.3.1 Analysis of Offline Algorithm

We study the makespan and the competitive ratio of Algorithm Offline-Greedy. According to the

algorithm, when a transaction Tij is issued, it will be in low priority until the respective frame Fij

starts. As soon as Fij starts, the transaction Tij will begin executing in high priority (if it didn’t

commit already). Let A denote the set of conflicting transactions with Tij in the conflict graph

G(T (W)). Let A′ ⊆ A denote the subset of conflicting transactions with Tij which become high

priority during frame Fij (simultaneously with Tij).

Lemma 3.3.1 If |A′| ≤ Φ− 1 then transaction Tij will commit in frame Fij .

Proof. Due to the use of the high priority independent sets in the conflict graph Gt, if in time

t during frame Fij transaction Tij does not commit, then some conflicting transaction in A′ must

commit. Since there are at most Φ− 1 high priority conflicting transactions, and the length of the

frame Fij is exactly equal to Φ time steps, Tij will commit by the end of frame Fij . ut

43

Note that Lemma 3.3.1 holds even if we include in A′ also transactions that become high pri-

ority before Fij , but were still active in this frame. However, we do not consider these transactions

in A′ because this scenario occurs with very low probability (at most (MN)−2) as we show below

in Lemma 3.3.3 and all these scenarios are considered in Lemma 3.3.4. We show next that it is

unlikely that |A′| > Φ− 1. We use the following Chernoff bound:

Lemma 3.3.2 (Chernoff Bound 1) Let X1, X2, . . . , Xn be independent Poisson trials such that,

for 1 ≤ i ≤ n, Pr(Xi = 1) = pri, where 0 < pri < 1. Then, for X =
∑n

i=1Xi, µ = E[X] =∑n
i=1 pri, and any δ > e2, Pr(X > δ · µ) < e−δ·µ.

Lemma 3.3.3 |A′| > Φ− 1 with probability at most (1/MN)2.

Proof. Let Ak ⊆ A, where 1 ≤ k ≤ M , denote the set of transactions of thread Pk that conflict

with transaction Tij . We partition the threads P1, . . . , PM into 3 classes Q0, Q1, and Q2, such that:

• Q0 contains every thread Pk which either |Ak| = 0, or |Ak| > 0 but the positions of the

transactions in Ak are such that it is impossible to overlap with Fij for any random intervals

qi and qk.

• Q1 contains every thread Pk with 0 < |Ak| < αi, and at least one of the transactions in

Ak is positioned so that it is possible to overlap with frame Fij for some choices of random

intervals qi and qk.

• Q2 contains every thread Pk with αi ≤ |Ak|. Note that |Q2| ≤ Ci/αi = ln(MN).

Let Yk be a random binary variable, such that Yk = 1 if in thread Pk any of the transactions in

Ak becomes high priority in Fij (same frame with Tij), and Yk = 0 otherwise. Let Y =
∑M

k=1 Yk.

Note that |A′| = Y . Denote prk = Pr(Yk = 1). We can write Y = Z0 + Z1 + Z2, where

Z` =
∑

Pk∈Q` Yk, for 0 ≤ ` ≤ 2. Clearly, Z0 = 0. and Z2 ≤ |Q2| ≤ ln(MN).

Recall that for each thread Pk there is a random initial interval with qk frames, where qk is

chosen uniformly at random in [0, αk−1]. Given the random choice of Pk, 0 < prk ≤ |Ak|/αi < 1,

44

since there are |Ak| < αi conflicting transactions in Ai and there are at least αi random choices for

the relative position of transaction Tij . Consequently,

µ = E[Z1] =
∑
Pk∈Z1

prk ≤
∑
Pk∈Z1

|Ak|
αi

=
1

αi
·
∑
Pk∈Z1

|Ak| ≤
Ci
αi
≤ ln(MN).

By applying the Chernoff bound of Lemma 3.3.2 we obtain that

Pr(Z1 > (e2 + 1) · µ) < e−(e
2+1)·µ < e−2·ln(MN) = (MN)−2.

Since Y = Z0 + Z1 + Z2, and Z2 ≤ ln(MN), we obtain

Pr((|A′| = Y) > ((e2 + 2) · µ = Φ− 1)) < (MN)−2,

as needed. ut

Lemma 3.3.4 All transactions commit by the end of their assigned frames with probability at least

1− (MN)−1.

Proof. From Lemmas 3.3.1 and 3.3.3, Φ time steps do not suffice to commit transaction Tij within

its assigned frame Fij with probability at most (NM)−2 (we call this a bad event). Considering all

the MN transactions in the window a bad event for any of them occurs with probability at most

MN · (MN)−2 = (MN)−1. Thus, with probability at least 1 − (MN)−1, all transactions will

commit within their assigned frames. ut

Since C := maxiCi, the makespan bound of the algorithm follows immediately from Lemma

3.3.4.

Theorem 3.3.5 (Makespan of Offline-Greedy) Algorithm Offline-Greedy produces a schedule

of length O(τ · (C +N · log(MN))) with probability at least 1− (MN)−1.

Since in the conflict graphG(T (W)), C ≤ λmax ·γmax, we have thatmakespan = O(τ ·(λmax ·

γmax + N · log(MN))). Further, since C ≥ γmax − 1 and τ ·N is a lower bound on the schedule

45

length, makespanopt ≥ τ · max(γmax, N). Therefore, the competitive ratio of the schedule is

O(λmax + log(MN)) = O(s+ log(MN)).

Corollary 3.3.6 (Competitive Ratio of Offline-Greedy) The makespan of the schedule produced

by Algorithm Offline-Greedy has competitive ratio O(s + log(MN)) with probability at least

1− (MN)−1.

3.4 Online Algorithm

A limitation of Algorithm 1 is that the conflict graph of the transactions is assumed to be known at

each time step. We present and analyze Algorithm Online-Greedy (Algorithm 2) which removes

this limitation. This algorithm is called online in the sense that it does not depend on knowing

the dependency graph to resolve conflicts. In addition to M and N , we assume that each thread

Pi knows Ci. This algorithm is similar to Algorithm 1 with the difference that in the conflict

resolution phase we use as a subroutine a variation of Algorithm RandomizedRounds proposed

by Schneider and Wattenhofer [119]. The makespan of the online algorithm is slightly worse than

the offline algorithm, since the duration of the frame (the frame size), as shown in Fig. 3.2, is now

Φ′ = O(τ · ln2(MN)).

There are two different priorities associated with each transaction under this algorithm. The

pair of priorities for a transaction Tij is given as a vector 〈π(1)
ij , π

(2)
ij 〉, where π(1)

ij represents the

Boolean priority value either of low or high (with respective values 1 and 0) as described in

Algorithm 1, and π(2)
ij ∈ [1,M] represents the random priorities used in Algorithm Randomize-

dRounds [119]. The conflicts are resolved in lexicographic order based on the priority vectors, so

that vectors with lower lexicographic order have higher priority.

Conflicts are resolved as follows. When a transaction Tij is issued, it starts to execute imme-

diately in low priority (π(1)
ij = 1) until the respective randomly chosen time frame Fij starts where

it switches to high priority (π(1)
ij = 0). Once in high priority, the field π(2)

ij will be used to resolve

conflicts with other high priority transactions. A transaction chooses a discrete number π(2)
ij uni-

formly at random in the interval [1,M] on start of the frame Fij , and after every abort. In case of a

46

Algorithm 2: Online-Greedy
Input: An M ×N window W of transactions with M threads, each with N transactions;

Each thread Pi knows Ci, the maximum number of transactions in W that any
transaction in Pi conflicts with; Each transaction has the same duration τ ;

Output: A greedy execution schedule for the window of transactions W ;

1 Divide time into frames of Φ′ = 16 · e · Φ · ln(MN) time steps, where
Φ = 1 + (e2 + 2) · ln(MN);

2 Each thread Pi chooses a random number qi ∈ [0, αi − 1] for αi = Ci/ ln(NM);
3 Each transaction Tij is assigned to frame Fij = qi + (j − 1);
4 Associate pair of priorities 〈π(1)

ij , π
(2)
ij 〉 to each transaction Tij;

5 foreach time step t = 0, 1 · τ, 2 · τ, 3 · τ, . . . do
6 Phase 1: Priority Assignment
7 foreach transaction Tij do
8 if t < Fij · τ · Φ′ then Priority π(1)

ij ← 1 (low); else Priority π(1)
ij ← 0 (high);

9 Phase 2: Conflict Resolution
10 if π(1)

ij == 0 (Tij has high priority) then
11 On (re)start of transaction Tij;
12 π

(2)
ij ← random integer in [1,M];

13 On conflict of transaction Tij with transaction Tkl;
14 if π(1)

ij < π
(1)
kl then abort(Tij, Tkl);

15 else if π(1)
ij > π

(1)
kl then abort(Tkl, Tij);

16 else if π(2)
ij < π

(2)
kl then abort(Tij, Tkl);

17 else abort(Tkl, Tij);
// In case a transaction Tij aborts Tkl because π

(2)
ij < π

(2)
kl ,

then when Tkl restarts it cannot abort Tij until Tij
commits or aborts

conflict of a transaction Tij with another transaction Tkl, if the Boolean priority value π(1)
ij < π

(1)
kl ,

then Tij aborts Tkl. If π(1)
ij > π

(1)
kl , then Tkl aborts Tij . If the Boolean priority value for both Tij

and Tkl is the same (this happens only when they are high priority at the same frame), then we use

the random priority number of Tij and Tkl to resolve conflict. If π(2)
ij < π

(2)
kl , then the transaction

Tij proceeds and Tkl aborts; otherwise (in the case where π(2)
ij ≮ π

(2)
kl), the transaction Tkl proceeds

and Tij aborts. (The procedure abort(Tij, Tkl) in Algorithm 2 aborts transaction Tkl.) Note also

that when the aborted transaction Tkl restarts, it cannot abort Tij until Tij has been committed or

aborted.

47

3.4.1 Analysis of Online Algorithm

In the analysis given below, we study the makespan, the response time, and the competitive ratio

of Algorithm Online-Greedy. The analysis is based on the following adaptation of the response

time analysis of a one-shot transaction problem with algorithm RandomizedRounds [119]. It

uses the following Chernoff bound:

Lemma 3.4.1 (Chernoff Bound 2) Let X1, X2, . . . , Xn be independent Poisson trials such that,

for 1 ≤ i ≤ n, Pr(Xi = 1) = pri, where 0 < pri < 1. Then, for X =
∑n

i=1Xi, µ = E[X] =∑n
i=1 pri, and any 0 < δ ≤ 1, Pr(X < (1− δ) · µ) < e−δ

2·µ/2.

Lemma 3.4.2 (Adaptation from Schneider and Wattenhofer [119]) Given a one-shot transac-

tion scheduling problem with U transactions, the time span a transaction T needs from the moment

it is issued until commit is 16 · e · (dT + 1) · logU with probability at least 1− 1
U2 , where dT is the

number of transactions conflicting with T .

Proof. Consider the respective conflict graph G of the one-shot problem. Let NT denote the set

of conflicting transactions for T (these are the neighbors of T in G). Let dT = |NT | ≤ U . Let yT

denote the random priority number choice of T in range [1, U]. The probability that for transaction

T no transaction K ∈ NT has the same random number is:

Pr(@K ∈ NT |yT = yK) =

(
1− 1

U

)dT
≥
(

1− 1

U

)U
≥ 1

e
.

The probability that yT is at least as small as yK for any transaction K ∈ NT is 1
dT+1

. Thus, the

chance that yT is smallest and different among all its neighbors in NT is at least 1
e·(dT+1)

. If we

conduct 16 · e · (dT + 1) · lnU trials, each having success probability 1
e·(dT+1)

, then the probability

that the number of successes Z is less than 8 · lnU becomes:

Pr(Z < 8 · lnU) < e−2·lnU =
1

U2
,

using the Chernoff bound of Lemma 3.4.1. ut

48

Lemma 3.4.3 In Algorithm Online-Greedy all transactions commit by the end of their assigned

frames with probability at least 1− 2 · (MN)−1.

Proof. According to the algorithm, a transaction Tij becomes high priority (π(1)
ij = 0) in frame

Fij . When this occurs the transaction will start to compete with other transactions having high

priority. Lemma 3.3.3 from the analysis of Algorithm 1 implies that the effective degree of Tij

with respect to high priority transactions is dT > Φ − 1 with probability at most (MN)−2 (we

call this bad event-1). From Lemma 3.4.2, if dT ≤ Φ − 1, the transaction will not commit within

16 · e · (dT + 1) · log(MN) ≤ Φ′ time slots with probability at most (MN)−2 (we call this bad

event-2). Therefore, Tij does not commit in Fij when either bad event-1 or bad event-2 occurs,

which happens with probability at most (MN)−2 + (MN)−2 = 2 · (MN)−2. Considering now all

the MN transactions, the probability of failure is at most 2 · (MN)−1. Thus, with probability at

least 1− 2 · (MN)−1, every transaction Tij commits during the Fij frame. ut

The makespan and the competitive ratio of the algorithm follow immediately from Lemma

3.4.3.

Theorem 3.4.4 (Makespan of Online-Greedy) Algorithm Online-Greedy produces a schedule

of length O(τ · (C · log(MN) +N · log2(MN))) with probability at least 1− 2 · (MN)−1.

Corollary 3.4.5 (Competitive Ratio of Online-Greedy) The makespan of the schedule produced

by Algorithm Online-Greedy has competitive ratioO(s · log(MN)+log2(MN)) with probability

at least 1− 2 · (MN)−1.

In the analysis above, we assumed that the effective degree dT of a transaction Tij (which be-

comes high priority in the beginning of frame Fij) with respect to other high priority transactions in

Fij is known but it does not have the knowledge whether dT is constant. In some special cases, the

performance bounds of Algorithm Online-Greedy can be improved. Let us consider the classical

dining philosophers problem [14] where dT is constant (at most 2) for all transactions Tij ∈ T (W)

49

Algorithm 3: Adaptive-Greedy
Input: An M ×N execution window W with M threads each with N transactions, where

C is unknown;
Output: A greedy execution schedule for the window of transactions;

1 Code for thread Pi;
2 begin
3 Initial contention estimate Ci ← 1;
4 repeat
5 Online-Greedy(Ci, W);
6 if bad event then
7 Ci ← 2 · Ci ;

8 until all transactions are committed;

(irrespective of the value of C). This is because each shared resource is only required by a con-

stant number of transactions and all transactions only need a constant amount of shared resource

accesses exclusively. In such executions, the frame size of Φ′ = O(τ · ln(MN)) is sufficient

for all the high priority transactions in Fij to commit by the end of it, with high probability, and

the Online-Greedy algorithm achieves the total makespan and the competitive ratio the same as

Offline-Greedy.

3.5 Adaptive Algorithm

A limitation of Algorithms 1 and 2 is that the values Ci need to be known in advance for each

thread Pi. We present the Algorithm Adaptive-Greedy (Algorithm 3) in which each thread can

guess the individual values of Ci. The algorithm works based on the exponential back-off strategy

used by many scheduling algorithms developed in the literature such as Polka [117].

Each thread Pi starts with assuming Ci = 1. Based on the current estimate Ci, the thread

attempts to execute Algorithm 2, for each of its transactions assuming the window size M × N .

Now, if the choice of Ci is correct then each transaction of the thread Pi in the window W should

commit by the end of the assigned frame in which it becomes high priority. Thus, all transactions

of thread Pi should commit within the time estimate of Algorithm 2 which is Li = O(τ · (Ci ·

log(MN) + N · log2(MN))). However, if during Li thread Pi is unable to commit one of its

50

transactions within its assigned frame (we call this a bad event), then thread Pi will assume that

the choice of Ci is incorrect, and will start over again with the remaining transactions assuming

C ′i = 2 ·Ci. Eventually thread Pi will guess the value of C ′i for the window W , such that the actual

value Ci of the thread Pi is C ′i/2 < Ci ≤ C ′i, and all its transactions will commit within their

respective time frames. It is easy to see that the correct choice of dCie will be reached by a thread

Pi within logdCie iterations. The total makespan and the competitive ratio are asymptotically the

same as with Algorithm 2.

3.6 Experimental Evaluation

The experimental evaluation aims to investigate the performance benefits of the window-based

contention management algorithms by executing several benchmarks using different contention

configurations (ranging from low contention to high contention). The platform used to execute

benchmarks is a 2 x quad-core Intel Xeon Processor 2.4 GHz system with 6GB RAM and hyper-

threading on (total 16 cores), running Ubuntu 10.04, and using Java 1.6.0 27. We perform our

experiments in DSTM2 [74], an eager conflict management STM implementation, using the default

shadow factory and visible reads. Experiments are executed with M = 1, 2, 4, 8, and 16 threads,

and N = 50 transactions in sequence for a execution window, unless otherwise stated. We limit

our experiments to maximum 16 concurrent threads, because, in practice, the platform we used for

the experiments can not execute more than 16 threads concurrently without context switching. We

run the experiments for 10 seconds and the data plotted are the average of 6 experiments.

DSTM2, like other STMs (e.g., TL2 [44], RSTM [99], TinySTM [52]), creates a number of

threads that concurrently execute transactions. We extend this into a thread pool model by adding

a thread-safe work queue java.util.concurrent.LinkedBlockingDeque to each thread. We use

multiple work queues (one work queue per thread) to overcome significant serialization overhead

when fetching the transactions using some locking mechanism from a single work queue only. The

transactions submitted for execution are first distributed to work queues in a round robin manner.

51

Threads then acquire transactions from the head of their own queue when their current transaction

commits.

The benchmarks used to evaluate our window-based algorithms are three simple benchmarks

sorted link list [75], red-black tree [75], skip list [104], and a complex benchmark vacation from

the STAMP suite [31]. Hereafter, we refer them as List, RBTree, SkipList, and Vacation, respec-

tively for clarity and conciseness. The benchmarks are configured to generate different amounts of

transactional conflicts (i.e., low contention to high contention scenarios) that facilitate us to eval-

uate the algorithms we proposed in this chapter. Particularly, we measure the experimental results

using three different contention scenarios (i.e., amount of contention): (i) Low contention − each

transaction needs to perform only 20% update operations; (ii) Medium contention − each transac-

tion needs to perform 60% update operations, hence medium amount of contention; and (iii) High

contention− each transaction needs to do 100% update operations, hence high contention. That is,

increasing percentage of update operations increase significantly the contention probability among

transactions.

We proceed with briefly describing each benchmark used in the experiments. The List bench-

mark transactionally inserts and removes random numbers into a sorted linked list. Similarly, the

RBTree benchmark transactionally inserts and removes random numbers into a tree. The SkipList

is a benchmark that stores a sorted list of items, using a hierarchy of linked lists that connect in-

creasingly sparse subsequences of the items. The insertion and removal of an item in the SkipList

is also done transactionally. List, RBTree, and SkipList are configured to perform randomly se-

lected insertion and deletion of transactions with equal probability. Vacation is a benchmark from

the STAMP suite which simulates a travel booking database with three tables to hold bookings

for flights, hotels, and cars. Each transaction simulates a customer making several bookings, and

thus several modifications to the database. High contention scenario is achieved by configuring

Vacation to execute many transactions which perform large number of modifications to the travel

booking database.

52

3.6.1 Algorithm Variants Used in Experiments

We now briefly describe the window-based algorithm variants used in the experimental evalua-

tion (see Fig. 3.3 for their performance throughput in high contention scenarios). We did not use

Offline-Greedy algorithm of Section 3.3 in the evaluation because it resolves conflicts based on

the conflict graph, which requires global knowledge.

• Online: is the same algorithm described in Section 3.4.

• Online-Dynamic: is the improved version of Online algorithm where frames are dynami-

cally contracted or expanded based on the amount of contention inside the frame (see Sec-

tions 3.6.2 and 3.6.5 for details).

• Adaptive: is same as the one described in Section 3.5.

• Adaptive-Improved: is the variant of Adaptive algorithm where the new contention mea-

sure value C ′i is calculated based on the contention intensity (CI) calculation similar to Yoo

and Lee [142].

• Adaptive-Improved-Dynamic: is the variant of Adaptive-Improved where frames are dy-

namically contracted or expanded similar to Online-Dynamic.

Online and Online-Dynamic algorithms require to know the contention measure Ci (in ad-

dition to M and N) for each thread Pi to choose random initial delay of qi frames. For the

simplicity in the evaluation, we assume that C = MN for each Pi, 1 ≤ i ≤ M , in any con-

tention scenarios (see Section 3.6.5 for the study on the effect of this choice of C in Online and

Online-Dynamic algorithms in medium and low contention scenarios) and Pi is assigned an ini-

tial random period consisting of qi frames chosen randomly from the range [0, α − 1], where

α = C/ ln(MN). For example, as we assumed N = 50, for the number of threads M = 2,

C = 100 and α = d100/ ln(100)e = 22. That is, each thread Pi chooses randomly a number

between 0 to 21 which gives the number of frames as initial random period for Pi. Moreover, we

fix a timestamp (i.e., a time step) of size τ = 100 microseconds for List and RBTree, and τ = 20

53

microseconds for SkipList and Vacation, empirically, by running each benchmark sequentially for

100 seconds in a single thread and finding the longest execution time duration of a single transac-

tion among the committed transactions. The execution time of transactions is significantly longer

in List and RBTree due to the long chain of nodes that must be traversed and the time needed to

rebalance the tree, respectively. In contrast, SkipList and Vacation have moderate length transac-

tions, mainly due to the layer structure (with less number of layers) and the moderate read and

write set sizes, respectively. We implement window-based algorithms in DSTM2 in such a way

that if a transaction aborts before the time step τ expires (because its execution time duration is

less than τ), the transaction will be restarted in the beginning of the new time step.

Recall that window-based scheduling algorithms use the randomized time period at the begin-

ning of the window and the frames of predefined time steps for the execution of transactions having

high priority in the beginning of each frame. Due to the randomized interval, the probability of

conflict among transactions that are in high priority at particular frame is very low. As a result,

they may finish execution and commit sufficiently before the end of the frame. In this situation,

we use a simple busy-waiting (i.e., spinning) mechanism in a while loop to make each thread wait

until the new frame starts. As the threads do not need to wait for the very long time for the current

frame to finish, the busy-waiting mechanism that we use wastes very little CPU time.

The performance of our window-based algorithm variants is also compared through experi-

ments with the following scheduling algorithms (see Figs. 3.4 and 3.5 for throughput comparison

in high and medium contention scenarios). We briefly describe them here (the detailed description

can be found in [45, 59, 117, 119]):

• Polka [117]: combines Karma [117] and Backoff [117] by giving the enemy transaction

exponentially increasing amounts of time to commit, for a number of iterations equal to the

difference in the transactions’ priorities, before aborting the enemy transaction. This is the

overall best performing contention manager, among the scheduling algorithms proposed in

the literature, in most of the TM workloads.

54

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

List Benchmark

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

RBTree Benchmark

 4

 6

 8

 10

 12

 14

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

SkipList Benchmark

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

Vacation Benchmark

Online
Online-Dynamic

Adaptive
Adaptive-Improved

Adaptive-Improved-Dynamic

Figure 3.3: Performance throughput results of window-based algorithm variants in high contention.
Higher is better.

• Greedy [59]: aborts the younger transaction between the two conflicting transactions based

on static timestamps, unless the older transaction is suspended or waiting. This is the first

contention manager which has non-trivial theoretical provable properties along with promis-

ing empirical performance.

• Priority [117]: is a static priority-based manager, where the priority of a transaction is its

start time, that aborts lower priority transactions during conflicts. This is a very simple

contention manager available in the literature.

• Serializer [45]: is a contention manager, which upon detecting a conflict between two con-

currently executing transactions, aborts one transaction and moves it to the (per-core) trans-

actions work queue of the other. This serializes transactions so that they will not conflict

again. It is generally suitable for high contention scenarios.

• RandomizedRounds [119]: is a contention manager which resolves conflicts based on dis-

crete random priorities assigned to transactions at every start and restart. This is a variation

of Priority in the sense that priority of a transaction is not static.

55

3.6.2 Throughput Results

The throughput results of different window-based algorithm variants in List, RBTree, SkipList,

and Vacation benchmarks are given in Fig. 3.3 for high contention scenarios. The dynamic vari-

ants Online-Dynamic and Adaptive-Improved-Dynamic improve the throughput compared to

their static variants Online and Adaptive-Improved in all the benchmarks. In comparison to On-

line, the throughput improvement by Online-Dynamic is generally 1.1–5 fold in List, 1.1–2 fold

in RBTree, 1.1–1.7 fold in SkipList, and 1.1–1.8 fold in Vacation. Similarly, the throughput im-

provement by Adaptive-Improved-Dynamic is generally 1–2 fold in List, 1.1–1.7 in RBTree, 1–2

in SkipList, and 1–1.3 in Vacation than Adaptive-Improved. The results of Adaptive also com-

pare similarly as of Adaptive-Improved compares to Adaptive-Improved-Dynamic. Moreover,

the performance variance is generally minimal between the two best performing window-based

algorithm variants Online-Dynamic and Adaptive-Improved-Dynamic. Adaptive-Improved-

Dynamic performs little worse than Online-Dynamic due to the time needed by it to adapt to the

contention measure Ci for each thread Pi, which however, is not needed in latter one as it assumes

a fixed value of Ci for each Pi and executes transactions accordingly. However, the trade-off is, if

the assumed value of Ci is incorrect (generally smaller than the actual value of conflict measure for

each Pi), Online-Dynamic may perform worse than Adaptive-Improved-Dynamic, and generate

also the large number of bad events. The reason is that due to the incorrect choice of C, the ran-

domization period might not be sufficient to shift the conflicting transactions to different time slots

so that many of the conflicts are avoided. We do not list the throughput results of window algo-

rithms for medium and low contention scenarios as they show patterns similar to high contention

scenarios.

The remaining time between the last transaction in the frame commits and the end of the frame

is wasted in Online, Adaptive, and Adaptive-Improved algorithms. This is because transactions

that are in high priority at that frame may have very short execution time duration in comparison

to τ (the execution time of the longest transaction) we considered, and also they may induce a very

few number of conflicts. The Online-Dynamic and Adaptive-Improved-Dynamic algorithms

56

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

List Benchmark

 2

 4

 6

 8

 10

 12

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

RBTree Benchmark

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

SkipList Benchmark

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3.4: Comparison of performance throughput results in high contention. Higher is better.

 0

 5

 10

 15

 20

 25

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

List Benchmark

 0

 5

 10

 15

 20

1 2 4 8 16C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s
(x

 1
0

3
/s

ec
)

Number of threads

RBTree Benchmark

 10

 15

 20

 25

1 2 4 8 16

C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s(
x

 1
0

3
/s

ec
)

Number of threads

SkipList Benchmark

 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1 2 4 8 16

C
o

m
m

it
te

d
 t

ra
n

sa
ct

io
n

s(
x

 1
0

3
/s

ec
)

Number of threads

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3.5: Comparison of performance throughput results in medium contention. Higher is better.

work based on dynamic contraction of the frames to utilize the remaining time in frames, i.e., as

soon as last transaction inside a particular frame finishes, the new frame is started. This helps in

reducing the overhead imposed by random delay in the beginning of the window and the size of

the frames. It also helps in minimizing the busy-waiting time of the threads waiting for the current

57

frame to finish. That is why, as shown in Fig. 3.3, the performance throughput of dynamic variants

is always better in comparison to their static variants Online, Adaptive, and Adaptive-Improved

in all the benchmarks. Therefore, in the rest of the chapter, we only focus on the comparison of the

best performing window variants with other scheduling algorithms in the literature. Moreover, the

value of C = MN we assumed for Online and Online-dynamic algorithms for high contention

scenarios may not be suitable for them in medium and low contention scenarios. We analyze, in

detail, the effect of the choice ofC on the performance of Online and Online-Dynamic algorithms

in medium and low contention scenarios in Section 3.6.5.

The throughput comparison of our algorithms with Polka, Greedy, Priority, Serializer, and

RandomizedRounds in List, RBTree, SkipList, and Vacation benchmarks is given in Figs. 3.4

and 3.5 for high and medium contention scenarios (we omit the throughput results of low con-

tention as they show similar patterns), respectively. We compare the performance of window-

based algorithms with Polka because it is the overall best performing contention manager among

the scheduling algorithms proposed in the literature, for most of the TM benchmarks (although

it has no provable theoretical bounds). Similarly, we compare with Greedy because it is the

first contention manager that exhibits non-trivial provable worst-case guarantees along with good

empirical performance. We are specially interested to the comparison results of window-based al-

gorithm variants with Greedy because of its both theoretical and practical performances. Priority

is the simplest contention manager for comparison which decides to abort the transaction based on

priority comparison. Moreover, we compare with Serializer because it is claimed to be suitable

for high contention scenarios, and RandomizedRounds because it may give better performance

using discrete randomized priorities.

The conclusion from the performance throughput results is that our window-based schedul-

ing algorithms always improve throughput over Greedy in List, RBTree, and Vacation in high

contention scenarios (see Fig. 3.4), sometimes by significant margins. This is from large transac-

tion delays in Greedy incurred due to a transaction waiting for another transaction, which is not

needed in window algorithms. The performance improvement is generally 3–6 fold in List, 3–4

58

fold in RBTree, and 3 fold in Vacation than Greedy, in high contention scenarios. In SkipList, the

throughput of our algorithms is comparable to Greedy due to generally low conflict probability of

SkipList benchmark. The throughput results are also comparable to Polka in all the benchmarks,

except Vacation where window-based algorithm variants outperform by 1.3–2× (see Fig. 3.4).

Polka performs well due to its careful combination of transaction priorities and exponential wait-

ing mechanisms to resolve conflicts.

Similarly, the window-based scheduling algorithms outperform Serializer in List and SkipList

by 2–4× and 1.5–2×, respectively (see Fig. 3.4). This is due to the serialization overhead of the

basic serializing contention manager without any proactive scheme we used in the experiments,

which lowers the throughput of Serializer compared to window algorithms. In RBTree and Va-

cation, the throughput results of window algorithms are comparable to Serializer. Moreover, the

window variants outperform RandomizeRounds in both List and RBTree by 2–3× (see Fig. 3.4).

Window algorithms throughput is also comparable to RandomizedRounds in both SkipList and

Vacation. The throughput comparison of our algorithms with Priority is also similar as their com-

parison with RandomizedRounds in high contention scenarios. This is because of the similarity

of the two algorithms (Priority and RandomizedRounds) in assigning priorities to transactions;

the only difference is that one maintains static priority even after the transaction restarts while

another assigns new random priority after every (re)start. Moreover, even our algorithms use a

variation of RandomizedRounds for conflict resolution, they perform better because the number

of transactions conflicting with some transaction T inside a frame is very low (at most Φ) compared

to RandomizedRounds, where it may be as much as M in each time step of execution.

The throughput comparison of our window-based scheduling algorithms in medium contention

scenarios is given in Fig. 3.5. Because of the less number of conflicts, the throughput of all al-

gorithms is generally high in medium contention scenarios in comparison to their throughput in

high contention scenarios. Our algorithms outperform Greedy in List and Vacation, whereas the

results are comparable in RBTree and SkipList. Similarly, the throughput results are compara-

ble to Polka in all the benchmarks; Polka outperforms our algorithms in List and RBTree by the

59

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

List Benchmark

 0

 5

 10

 15

 20

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

RBTree Benchmark

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

SkipList Benchmark

 0

 2

 4

 6

 8

 10

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3.6: Comparison of aborts per commit ratio results in high contention. Lower is better.

 0

 2

 4

 6

 8

 10

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

List Benchmark

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

RBTree Benchmark

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

SkipList Benchmark

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16

N
u

m
b

er
 o

f
ab

o
rt

s/
co

m
m

it

Number of threads

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3.7: Comparison of aborts per commit ratio results in medium contention. Lower is better.

factor of 2 only. Our algorithms outperform Serializer in SkipList and Vacation by the factor

of 1.3–2, whereas the results are comparable in List and RBTree. Moreover, our algorithms out-

perform RandomizedRounds in List, SkipList, and Vacation by the factor of 1.1–1.8, whereas

the throughput is comparable in RBTree. In comparison to Priority, the throughput of our algo-

60

rithms is 1.2–1.8× better in List and Vacation; in RBTree and SkipList, the throughput results are

comparable.

The results given in Figs. 3.4 and 3.5 also show that throughput results scale better with the

increasing number of threads when the amount of contention decreases. The reason is that, as all

threads modify the data structure in very high contention scenarios, the scalability is affected by

the number of conflicts increases in proportional to the increasing number of concurrent threads.

In contrast, in medium and low contention scenarios, the number of conflicts does not increase that

significantly with the increasing number of threads compared to the number of conflicts in very

high contention scenarios, hence it helps in achieving scalable throughput.

3.6.3 Aborts per Commit Ratio Results

Aborts per commit is the ratio of number of aborts to the number of commits of transactions. It

is another metric used to measure the efficiency of the contention manager in utilizing the com-

puting resources. The higher aborts per commit ratio signifies the waste of computing resources

due to the aborted transactions. Figs. 3.6 and 3.7 show aborts per commit ratio results in high and

medium contention scenarios (the results in low contention show similar patterns; hence omitted).

The results indicate that best performing window-based algorithm variants reduce the number of

aborts per commit ratio in List, RBTree, and Vacation significantly in comparison to Greedy, Pri-

ority, Serializer, and RandomizedRounds (1.5–7× less). This is because window algorithms

keep conflict degree low in each time step in comparison to Greedy, Priority and Randomize-

dRounds, where it may be as much as the number of concurrent threads. Moreover, window

algorithms also minimize aborts through randomization which helps conflicting transactions exe-

cute at different time slots so that many conflicts are avoided. The number of aborts in Serializer

is due to the scheme where transactions may conflict again after the serialization.

Similarly, the number of aborts per commit of window algorithms are comparable to Polka

(only 1.1–3× more) in all benchmarks except Vacation, where window-based algorithm variants

outperform by 1.5–4× (see Figs. 3.6 and 3.7). This is because Polka does not immediately abort

61

the enemy transaction after conflict; it gives the enemy transaction exponentially increasing time

to commit, which significantly minimizes number of aborts. The aborts per commit ratio results

are comparable for all strategies in SkipList, due to the low conflict probability of transactions in

it, in comparison to other benchmarks.

Moreover, similar to the throughput results of Section 3.6.2, the number of aborts per commit

also decreases with the increasing number of threads when the amount of contention decreases.

That is, the number of aborts per commit ratio in medium contention scenarios (see Fig. 3.7) is

generally lower compared to the number of aborts per commit ratio in high contention scenarios

(see Fig. 3.6) in all the benchmarks. This is because, as all threads modify the data structure in

very high contention scenarios, transactions usually experience repeated number of conflicts be-

fore commit with the number of concurrent threads increases. In contrast, in medium and low

contention scenarios, the number of repeated conflicts does not increase that significantly with the

increasing number of threads, hence it helps in lowering the number of aborts. The serializing

schemes, such as Serializer and Steal-On-Abort, generally give the lower number of aborts per

commit ratio in all contention scenarios, but due to the use of serialization and/or transaction re-

ordering to avoid repeat conflicts, their throughput does not scale proportionally with the increasing

number of threads, when conflicts are more frequent only inside the same column transactions.

3.6.4 Execution Window Overhead Results

We measure the overhead of execution window model by allowing the window-based algorithm

variants to execute 20000 randomly generated transactions in each benchmark and take into ac-

count the total time needed to commit all of them. Figs. 3.8 and 3.9 show the results for the total

time needed for different scheduling algorithms (window-based algorithms and others) to commit

20000 randomly generated transactions on List, RBTree, SkipList, and Vacation benchmarks under

different amounts of contention, using 16 and 4 threads, respectively.

Our best performing algorithms (Online-Dynamic and Adaptive-Improved-Dynamic) al-

ways need less time than Greedy, Priority, and RandomizedRounds in List and RBTree (see

62

 0

 5

 10

 15

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

List Benchmark

 0

 5

 10

 15

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

RBTree Benchmark

 0

 1

 2

 3

 4

 5

 6

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

SkipList Benchmark

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3.8: Comparison of total time needed to commit 20000 transactions using 16 threads. Lower
is better.

 0

 10

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

List Benchmark

 0

 5

 10

 15

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

RBTree Benchmark

 0

 1

 2

 3

 4

 5

 6

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

SkipList Benchmark

 0

 2

 4

 6

 8

 10

Low Medium High

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)

Amount of contention

Vacation Benchmark

Online-Dynamic
Adaptive-Improved-Dynamic

Polka
Greedy
Priority

Serializer
RandomizedRounds

Figure 3.9: Comparison of total time needed to commit 20000 transactions using 4 threads. Lower
is better.

Fig. 3.8), using 16 threads, in all contention scenarios. This is due to the large transaction delays

in Greedy and due to the high degree of conflict among transactions in Priority and Random-

izedRounds. The time needed in List and RBTree by Online-Dynamic is 1.5–2.8× less than

63

Greedy, 1.4–2.7× less than Priority, and 1.2–1.8× less than RandomizedRounds; the time

needed is only 1.2–2.5× more than Polka. The time needed by Polka is lower due to the combi-

nation of good behaviors of Karma and Backoff, which give an enemy transaction sufficient time

to commit before aborting it. Similarly, the time needed by Adaptive-Improved-Dynamic in List

and RBTree is 1.3–2.7× less than Greedy, 1.25–2.6× less than Priority, and 1.1–1.7× less than

RandomizedRounds; it only needs time the factor of 1.3–2.6 more than Polka. Similar results

can be seen in List and RBTree, using 4 threads, for both window algorithms (see Fig. 3.9).

Moreover, Online-Dynamic performs 1.1× better than Serializer in medium and low con-

tention scenarios, while its performance is comparable in high contention scenarios, using 16

threads. Using 4 threads, the performance of Online-Dynamic is either comparable or little worse

than Serializer in all contention scenarios. The worse performance of Serializer in high con-

tention scenarios is due to the serialization overhead of transaction reordering. It signifies that

repeat conflicts among different column transactions are usually low in the benchmarks we used

for evaluation. The time performance of Adaptive-Improved-Dynamic also compares similarly

as of Online-Dynamic compares to Serializer in List and RBTree.

In the SkipList, the overhead is high (1.2–2× worse) in our algorithms in all contention sce-

narios, using 16 threads, due to initial randomization period and time needed for adaptive guessing

of contention (not from the time needed to execute transactions), which is not generally needed in

other scheduling algorithms (see Fig. 3.8). Moreover, our algorithms achieve comparable time per-

formance in medium and high contention scenarios as of other scheduling algorithms in SkipList,

while using only 4 threads in execution (see Fig. 3.9). However, the performance of our algorithms

in SkipList is worse in low contention scenarios by at most a factor of 2. As overhead of our

algorithms in SkipList is generally high compared to other benchmarks, we also evaluate window

algorithms without random initial delay to see whether it helps in minimizing overhead in SkipList.

The conclusion from such experiments is that it helps in reducing the overhead by the factor of at

most 1.8 in high contention scenarios in SkipList, but it creates also the significantly large num-

ber (upto 27% in some of the execution windows) of bad events (the transactions that could not

64

commit within the particular frame where they switched to high priority). This is because, without

the initial random delay, there will be at most M concurrent transactions released by M different

threads inside a frame (similar to one-shot scheduling problem), such that all the transactions could

not commit by the end of that frame. One solution to avoid these bad events is to expand the frame

till all the transactions inside that frame commit (see Section 3.6.5 for details on dynamic expan-

sion of frames), which again ends up giving the time performance that is comparable to SkipList’s

performance with initial random delay as shown in Figs. 3.8 and 3.9.

In Vacation, window-based variants outperform Polka, Greedy, and Serializer, but give com-

parable performance to Priority and RandomizedRounds (see Fig. 3.8), while using 16 threads

for execution. The reason behind it is similar to the reasons we give in Section 3.6.2 for throughput

results because maximizing throughput automatically helps in minimizing the total execution time.

The time needed in Vacation by Online-Dynamic is 1.1–1.2× less than Polka, 1.1–1.7× less than

Greedy, and 1.1–1.25× less than Seriaizer; the time needed is only 1.2× more than Priority

and RandomizedRounds, in high and medium contention scenarios, using 16 threads. In low

contention, window algorithms perform similar to Priority and RandomizedRounds. In contrast,

RandomizedRounds appears to be the best performing contention manager for execution trials in

Vacation, using 4 threads (see Fig. 3.9). This is because of the RandomizedRounds algorithm’s

low maximum degree of conflict among transactions in Vacation. Our window algorithms still

outperform Greedy and Serializer using 4 threads, whereas they exhibit similar performance as

of Polka and Priority. In summary, in low and medium contention scenarios, the overhead can

be visible like in SkipList, but in high contention scenarios, the overhead due to randomization is

negligible like in List, RBTree, and Vacation. Therefore, the benefits we achieve from window-

based scheduling algorithms are more significant in high contention scenarios than the benefits we

achieve in low contention scenarios. We can also conclude from the execution patterns that the

overhead lowers with the number of threads decreases, and also with the decreasing amount of

contention in most of the benchmarks.

65

3.6.5 Relation Among the Choice of C, τ , and the Dynamic Contraction/Expansion of
Frames

The performance of window-based scheduling algorithms directly depends on the right choice of

the contention measure C and the time step τ , in addition to M and N . As we can fix N and the

number of threads M is generally known, we focus in this section how to choose C and τ for the

better performance of the window algorithms. The choice ofC impacts on the initial random period

and the choice of τ impacts on the frame size. For Online and Online-Dynamic algorithms, their

performance depends on both C and τ , but as adaptive variants (Adaptive, Adaptive-Improved,

and Adaptive-Improved-Dynamic) adaptively guess C, their performance depends mainly on the

choice of the time step τ . In high contention scenarios, it is reasonable to assume all transactions

conflict with each other, i.e. C = MN , for Online and Online-Dynamic algorithms, however

for medium and low contention scenarios, this value of C may not be suitable. Moreover, it is

generally difficult to come up with the right value of C that works for medium and low contention

scenarios, without applying some guessing techniques.

We argue in this section that the use of dynamic contraction/expansion of the frames helps in

lowering the impact of the choice of C and τ in the performance of window algorithms. Particu-

larly, we compare the performance of the Online and Adaptive-Improved algorithms with their

dynamic variants Online-Dynamic and Adaptive-Improved-Dynamic, respectively, for the total

time needed to commit 20000 randomly generated transactions in low, medium, and high con-

tention scenarios. For the purpose of experimentation, we manually calculate the right value of C

and the frame sizes for every execution window for Online in each contention scenario and exe-

cute the transactions inside that window accordingly. In Online-Dynamic, we assume C = MN

for each contention scenario and execute the transactions inside every window using dynamic con-

traction of the frames (i.e., we start the new frame as soon as all transactions inside a particular

frame commit). Similarly, we compare Adaptive-Improved with Adaptive-Improved-Dynamic

for frame sizes. For comparison, we manually determine the frame sizes for each execution win-

dow for Adaptive-Improved, whereas the dynamic contraction of frames is used in Adaptive-

66

Improved-Dynamic. The τ we used in static variants is the maximum among the execution times

of transactions inside every execution window.

The comparison of total time needed by the algorithms to commit 20000 transactions using 16

threads in different contention scenarios is given in Table 3.1. The experimental results show that

the dynamic variant Online-Dynamic can achieve the similar performance as of Online without

the right choice of both the value of C and the frame sizes. However, the variance in total time

depends on the workload where the algorithms are executed and also on the amount of contention.

In SkipList and Vacation, Online-Dynamic achieves very similar time performance (with low

variance) in each contention scenario because of generally shorter transactions in them compared to

List and RBTree. Similarly, Adaptive-Improved-Dynamic achieves the performance comparable

to Adaptive-Improved without the right choice of frame sizes (see Table 3.1). The variance in

time performance is generally minimal between two adaptive variants in all the benchmarks in all

contention scenarios. This is because as they guess C, the only impact in total time is due to τ

which is usually very low compared to random delay incurred from higher values of C. Moreover,

results also show that the difference in total time by both static and their dynamic variants decreases

with the increasing amount of contention. These aforementioned benefits are due to the dynamic

contraction of the frames which helps in reducing the influence of the choice of the contention

measure C and also the time wasted in frames in the performance of dynamic variants.

Moreover, in some cases, due to the incorrect choice of time step τ and/or the contention mea-

sure C (generally smaller than the their actual values) for initial random period, all the transactions

that are in high priority inside a particular frame may not commit until the end of the frame. In

such situations we can expand the frame till all the transactions commit, which we call dynamic ex-

pansion of frames. The basic expansion of the frame can be obtained by adding an extra frame. As

window-based scheduling algorithms obey pending commit property, even if all the transactions

conflicts with each other and they need to be serialized, all transactions, with very high probability,

finish by the end of the frame, if the choice of C and τ are correct. Thus, dynamic expansion of

frames is generally not needed.

67

Table 3.1: The comparison of total time needed to commit 20000 transactions by four different
window algorithms in different contention scenarios, using 16 threads. In Online, the right value
of C and frame sizes are calculated manually for each contention scenario, however in Online-
Dynamic, we assume C = MN for all contention scenarios and perform dynamic contraction of
frames. As adaptive variants guess C, we compare them for frame sizes only.

Algorithm Contention List RBTree SkipList Vacation

Online
Low 2.1 1.8 1.2 1.4
Medium 3.1 2.9 1.8 2.3
High 4.2 4.0 2.1 2.8

Online- Low 2.4 2.2 1.5 1.7
Dynamic Medium 3.7 3.3 2.2 2.7

High 4.8 4.6 2.2 3.2

Adaptive- Low 2.5 2.1 1.3 1.6
Improved Medium 3.4 3.1 2.2 2.4

High 4.1 4.8 2.6 3.2

Adaptive- Low 2.6 2.3 1.5 1.6
Improved- Medium 4.1 3.4 2.4 2.5
Dynamic High 5.3 5.1 2.7 3.4

Table 3.2: The ratio of average frame size of the dynamic variants of window algorithms compared
to their static variants to commit 20000 transactions in different contention scenarios, using 16
threads. We assume C = MN for both Online and Online-Dynamic algorithms in all contention
scenarios.

Algorithm Contention List RBTree SkipList Vacation

Online- Low 0.53 0.49 0.35 0.41
Dynamic Medium 0.68 0.57 0.45 0.52

High 0.87 0.80 0.57 0.73

Adaptive- Low 0.44 0.45 0.31 0.39
Improved- Medium 0.66 0.55 0.46 0.50
Dynamic High 0.80 0.76 0.56 0.69

We now compare the frame sizes of the static and dynamic variants of window algorithms

to measure the time that was wasted in the frames by the static variants. We assume for this

comparison that the frame sizes are same for both static and dynamic variants before the execution

and they are also sufficient for all the transactions that are in high priority inside every frame of the

68

window to commit before the frame expires, even if serialization among transactions is needed. In

execution, Online and Adaptive-Improved do not change the frame size, i.e., frames are fixed, but

Online-Dynamic and Adaptive-Improved-Dynamic dynamically contract and expand the frames

according to contention inside that particular frame. In this setting we compute the average frame

size for dynamic variants and compare with the frame size of static variants. The ratio of average

frame size of the dynamic variants of window algorithms in comparison to their static variants

to commit 20000 transactions using 16 threads in different contention scenarios is given in Table

3.2. Results show that dynamic variants always perform better and minimize the overhead due to

frame sizes in the performance of window algorithms. In SkipList and Vacation, dynamic variants

observe very small frame sizes compared to their static variants in all contention scenarios. This

is due to shorter transactions in SkipList and Vacation, and also due to the low conflict degree

among them. Dynamic variants also perform better than their static variants in List and RBTree

in all contention scenarios, but the frame sizes are not reduced drastically due to relatively longer

transactions with high conflict degree among them.

3.7 Summary and Discussions

We considered greedy scheduling algorithms for transactional memory for M × N windows of

transactions with M threads and N transactions per thread. We presented algorithms with new for-

mal bounds and experimentally evaluated their variants using List, RBTree, SkipList, and Vacation

benchmarks on DSTM2. These algorithms are efficient, adaptive, and improve on the worst-case

performance of previous results which were based on one-shot scheduling problem. The evaluation

results confirm the benefits of window-based algorithms in practical performance throughput and

other transactional metrics such as aborts per commit ratio, execution time overhead, etc., along

with their non-trivial provable properties. These algorithms present new trade-offs in the design

and analysis of scheduling algorithms, which is certainly a step forward in the quest to design scal-

able scheduling algorithms for software transactional memory implementations. Moreover, the

comparable performance achieved by our algorithms with respect to Polka suggests the existence

69

of strategies that may outperform Polka and also have both theoretical and practical performance

guarantees.

The execution window model we studied in this chapter is (somehow) restrictive in assuming

a fixed set of threads, all of which are ready for execution at the beginning of the window. Nev-

ertheless, window-based algorithms operate correctly even if threads have different release times,

and new threads arrive during the execution window. As long as the total number of concurrent

threads in the system after the arrival of new threads does not exceed M and the value of the con-

flict measure C remains the same, the execution window model guarantees the same performance

bounds proved in Sections 3.3, 3.4, and 3.5 for window algorithms. When new threads arrive, they

can choose independently and uniformly the random initial delay consisting of qi frames from the

range [0, (C/ ln(MN))− 1], and as soon as the delay expires, start executing transactions.

However, when the total number of concurrent threads exceeds M and/or the value of C

changes (resp. the conflict graph) due to the arrival of new threads, the window algorithms given in

Sections 3.3, 3.4, and 3.5 may not guarantee that all the transactions that switched to high priority

at the starting of some particular frame Fij finish execution and commit, with high probability,

before the frame expires. This is because due to the change in M and/or C after the arrival of new

threads, the original value of qi may not provide sufficient random delay in the beginning of the

window and the original frame Fij of size O(ln(MN)) time steps may not be sufficient to commit

all the transactions having high priority inside it before it expires, as qi and Fij change with the

new values of M and C. However, the correctness of the algorithms is still not affected. Similar

to Algorithm 3 for guessing C, an adaptive algorithm can be designed to guess the right value of

M for the window model where threads arrive and leave frequently. As Algorithm 3 guesses the

value of C, it works perfectly even if both C and the conflict graph change due to the arrival of

new threads, as long as total number of concurrent threads does not exceed M .

When we consider variable time durations for the transactions, in the makespan bounds ex-

pressions in Theorems 3.3.5 and 3.4.4 of our algorithms we can replace the parameter τ with τmax,

which is the maximum duration of any transaction in the window. The impact is that in the com-

70

petitive ratio in Corollaries 3.3.6 and 3.4.5 there will appear an additional factor τmax/τmin, where

τmin is the minimum duration of any transaction in the window. In the algorithms, the basic time

step duration is changed from τ to τmax. Note that with variable time delays the transactions are

not perfectly aligned when they enter a frame. In Offline-Greedy, this doesn’t cause a problem

when we compute the independent sets. On the other hand, we need to modify Online-Greedy so

that when a high-priority transaction aborts, it always gives the right of way to the transaction that

aborted it.

With this work, we are left with two main issues for future work. First, in the theoretical

performance analysis, we plan to explore alternative algorithms where the randomization does not

occur at the beginning of each window but rather during the execution of the algorithm by inserting

random periods of low priority between the subsequent transactions in each thread. We will also

consider the theoretical analysis of the dynamic expansion and contraction of the execution window

to preserve the contention measure C. This will result in more practical algorithms with good

performance guarantees.

Second, in the empirical performance analysis, as window-based algorithms exhibit encourag-

ing performance in different benchmarks, we plan to evaluate them for other performance measures

such as wasted work, repeat conflicts, average committed transactions duration, average response

time, etc. Wasted work metric is the ratio which measures the proportion of execution time spent

in executing aborted transactions and it is useful in measuring the cost of aborted transactions in

terms of computing resources. Similarly, repeat conflicts measures the amount of time spent in

executing aborted transactions. Aborts per commit ratio, wasted work, and repeat conflicts are

related and minimizing the one metric automatically improve the performance on other metric. In

this sense, they complement each other. However, aborts per commit ratio and repeat conflicts

ignore the execution durations of the aborted and committed transactions. Since window model

reduced the number of aborts using randomization, which in turn should have reduced the average

committed transactions duration and repeat conflicts. At last, the average response time bounds

the time spent by individual transaction in the system. We also plan to continue our evaluation

71

in other more complex benchmarks from the STAMP suite [31] (such as kmeans, bayes, genome,

etc.) and also from STMBench7 [60] benchmark. Moreover, due to some of the inherent over-

heads associated with DSTM2 implementation, we plan to evaluate our algorithms using other

STM implementations such as TinySTM [52] and TL2 [44] to judge accurately the benefits of the

window-based contention manager variants.

72

Chapter 4
Tightly-Coupled Systems: Balanced
Workload Model

4.1 Introduction

As we discussed in Chapter 1, in the model where performance is analyzed in terms of the num-

ber of shared resources, Attiya et al. [9] provided the best known general formal competitive ratio

bound of O(s), where s is the number of shared resources. Moreover, Attiya et al. [9] provided a

matching lower bound of Θ(s). When the number of resources s increases, the performance de-

grades linearly. A difficulty in obtaining better competitive ratios is that the scheduling problem of

n concurrent transactions is directly related to the vertex coloring problem which is a hard problem

to approximate [84]. A natural question which we address in this chapter1 is whether it is possi-

ble to obtain better competitive ratios for the one-shot scheduling problem. As we show below,

it is indeed possible to obtain sub-linear competitive ratios for the balanced transaction schedul-

ing problem. Moreover, we provide a new harness result for any one-shot transaction scheduling

problem by reducing the well-known graph coloring problem to the transaction scheduling prob-

lem. Note that we use the analysis modeling and techniques based on the neighborhood degree

estimation of a transaction in the conflict graph similar to Chapter 3.
1This chapter published in:

Gokarna Sharma and Costas Busch. A Competitive Analysis for Balanced Transactional Memory Workloads. Al-
gorithmica 63(1–2):296–322, 2012. http://link.springer.com/article/10.1007/s00453-011-
9532-3

73

4.1.1 Contributions

In this chapter, we study contention management in the context of balanced workloads which

have better performance potential for transactional memory. A balanced workload consists of a set

of transactions in which each transaction has the following property: if the transaction performs

write operations, then the number of writes it performs is a constant fraction of the total number

of operations (read and writes) of the transaction. We define the balancing ratio β in Section

7.2 which expresses the ratio of write operations of a transaction to the overall operations of the

transaction. The balancing ratio is bounded as 1
s
≤ β ≤ 1, since a writing transaction writes to at

least one resource. In fact, the ratio β bounds the maximum and the minimum number of writes

out of the overall reads and writes of a transaction, and β = Θ(1) for all the writing transactions

in balanced workloads.

As advocated in [11, 60], transactional memory workloads are read-dominated: transactions

do not need write access to resources most of their duration. This includes read-only transactions,

where transactions only observe data and do not modify it, and late-write transactions, where

transactions first search for the data and perform insertion or deletion only after they locate it.

Balanced workloads include read-only transactions, and also late-write transactions in which the

number of writes are at some fraction of the total reads and writes. A similar argument holds

for early-write transactions that write most of their duration [11]. Balanced workloads naturally

include read-only transactions, but we assume that there is at least one transaction that performs

writes, since otherwise the scheduling problem is trivial (no conflicts).

Balanced transactional memory workloads represent interesting and practical transaction mem-

ory scheduling problems. For example, balanced workloads represent the case where we have

small sized transactions each accessing a small (constant) number of resources, where trivially

β = Θ(1), such as mini-transactions − simple atomic operations on a small number of locations

[8]. Other interesting scenarios are transactional memory workloads which are write intensive,

where transactions perform many writes, as for example in scientific computing applications where

transactions have to update large arrays.

74

We present two new contention management algorithms which are especially tailored for bal-

anced workloads and analyze their theoretical performance boundaries from the worst-case per-

spective. The first algorithm, Clairvoyant, is tailored for environments where the conflict relations

on shared resources are known in advance, while the second algorithm, Non-Clairvoyant, is best

suited to online scheduling where it is difficult to predict conflict relations. Both algorithms are

greedy and able to resolve conflicts in polynomial time.

Our first algorithm, Clairvoyant, is appropriate for the broad class of scheduling with conflicts

environments which generally arise in resource-constrained scheduling [54]. In such scheduling,

a subset of transactions conflict if their cumulative demand for a resource exceeds the supply of

that resource. Conflicts between transactions are modeled by a conflict graph [48], where nodes

correspond to transactions and edges represent conflicts between transactions. There are many

applications of this type of scheduling environment which generate predictable conflict patterns

with known conflict graphs, such as balancing parallel computation load, traffic intersection con-

trol, session management in local area networks, frequency assignment is cellular networks, and

dining philosophers problem [14, 18, 27, 64, 82]. Properties of balanced workloads hold in these

applications due to the specific pattern of accesses on resource locations, as for example in the clas-

sical dining philosophers problem with s shared resources [14], where a transaction Ti demands

resource Ri and R(i+1) mod s exclusively at any time.

Algorithm Clairvoyant is O
(
` ·
√

s
β

)
-competitive, where s is the number of shared re-

sources, and ` expresses the logarithm ratio of the longest to shortest execution times of the transac-

tions (the transaction execution time is the time it needs to commit uninterrupted from the moment

it starts). For balanced transactional memory workloads where β = Θ(1), and when transaction ex-

ecution times are close to each other, i.e. ` = O(1), Algorithm Clairvoyant isO(
√
s)-competitive.

This algorithm is greedy and has the pending commit property (where at least one transaction ex-

ecutes uninterrupted each time). However, it depends on assigning priorities to the transactions

based on the explicit knowledge of the transaction conflict graph at each time step of execution.

That is, the algorithm should know the set of transactions that conflict with each other (which can

75

be represented in the form of conflict graph) to resolve conflicts. In other words, the Algorithm

Clairvoyant takes decision based on the complete set of transactions (the global view of the sys-

tem) at each time step of the execution. The conflict graph is highly dynamic and evolves while

the execution of the transactions progresses. It also assumes that each transaction knows how long

is its execution time and how many resources it accesses.

Our second algorithm, Non-Clairvoyant, is suitable for scheduling environments where con-

flicts are not known in advance and cannot be predicted ahead of time. Transactional memory

contention management is usually related to online scheduling, where the conflicts between two

transactions are discovered on the fly when they access the same shared resource at any step of the

execution (i.e., conflicts between transactions are not known in advance). It is difficult to reliably

predict conflicts in this scenario because of their changing behavior over time. The scheduling

algorithms for online scheduling should resolve such dynamic conflicts without assuming conflict

knowledge of transactions. Algorithm Non-Clairvoyant, is suitable for such online scheduling

and it is randomized.

Algorithm Non-Clairvoyant achieves O
(
` ·
√

s
β
· log n

)
competitive ratio, with high proba-

bility, at least 1− 1
n

, where n is the number of transactions concurrently executing in n threads. For

balanced transactional memory workloads, where β = Θ(1), and when transaction execution times

are close to each other, i.e. ` = O(1), Algorithm Non-Clairvoyant is O(
√
s · log n)-competitive.

Its competitive ratio is only a O(log n) factor worse in comparison with Clairvoyant, but does not

require explicit knowledge of the conflict graph. That is, the algorithm does not need to know the

set of transactions that conflict with each other to resolve conflicts. In other words, the Algorithm

Non-Clairvoyant takes decision based on the the local view of the system at each time step of the

execution. The local knowledge of the set of transactions in the system is provided by the random-

ized priorities (as discrete numbers) that are assigned to each transaction uniformly at random from

some interval on startup and after every abort. In case of a conflict the transaction with the smallest

priority number proceeds and the other aborts. This algorithm is also greedy. This algorithm uses

as a subroutine a variation of the RandomizedRounds scheduling algorithm by Schneider and

76

Wattenhofer [119] which uses randomized priorities as described above to resolve conflicts from

the local knowledge of the system and doesn’t require knowledge of the conflict graph.

The O(
√
s) bound of Algorithm Clairvoyant that appears in Section 4.3 is actually close to

optimal. Through a reduction from the graph coloring problem, we show that it is impossible to

approximate in polynomial time any transaction scheduling problem with β = 1 and ` = 1 with a

competitive ratio smaller than O((
√
s)1−ε) for any constant ε > 0, unless NP ⊆ ZPP.

When transactions may fail (not as a result of a conflict), we show in Section 4.6 that a simple

adaption of our algorithms has a competitive ratio of at most O
(
k · ` ·

√
s
β

)
for Clairvoyant

and at most O
(
k · ` ·

√
s
β
· log n

)
for Non-Clairvoyant, with high probability, assuming that a

transaction may fail at most k times before it eventually commits, for some k ≥ 1. For balanced

transactional memory workloads, where β = Θ(1), and when transaction execution times are close

to each other, i.e. ` = O(1), the adaption of Algorithm Clairvoyant is O(k ·
√
s)-competitive and

the adaption of Non-Clairvoyant is O(k ·
√
s · log n)-competitive.

To our knowledge, these results are significant improvements over the best previously known

bound ofO(s) (O(k·s) when transactions may fail) for transactional memory contention managers.

For general workloads (including non-balanced workloads), where transactions are equi-length

(` = O(1)), our analysis gives O(s) competitive worst case bound, since β ≥ 1/s. This bound

matches the best previously known bound ofO(s) for general workloads. The parametrization of β

that we provide gives more tradeoffs and flexibility for better scheduling performance, as depicted

by the performance of our algorithms in balanced workloads.

4.1.2 Chapter Organization

The rest of the chapter is organized as follows. We present our TM model and definitions in Section

7.2. We present and formally analyze two new randomized algorithms, Clairvoyant and Non-

Clairvoyant, in Sections 4.3 and 4.4, respectively. The hardness result of balanced transaction

scheduling is presented in Section 4.5. Section 4.6 concludes the chapter with a short discussion.

77

4.2 Model and Preliminaries

Consider a system of M ≥ 1 threads Q := {Q1, . . . , QM} with a finite set of s shared resources

R := {R1, . . . , Rs}. We consider batch execution problems, where the system issues a set of M

transactions T := {T1, . . . , TM} (transactional memory workload), one transaction Ti per thread

Qi.

For any transaction Ti we define the balancing ratio β(Ti) = λw(Ti)
λ(Ti)

as the ratio of number of

writes versus the total number of resources it accesses. For a read-only transaction β(Ti) = 0. For

a writing transaction it holds 1
s
≤ β(Ti) ≤ 1, since there will be at least one write performed by Ti

to one of the s resources. We define the global balancing ratio as the minimum of the individual

writing transaction balancing ratios: β := min(Ti∈T)∧(λw(Ti)>0) β(Ti). We define balanced trans-

actional memory workloads as follows (recall that we consider workloads with at least one writing

transaction):

Definition 7 (Balanced Workloads) We say that a workload (set of transactions) T is balanced if

β = Θ(1).

In other words, in balanced transactional memory workloads the number of writes that each writing

transaction performs is a constant fraction of the total number of resource accesses (for read or

write) that the transaction performs. In fact, β bounds the maximum and the minimum number of

writes out of the total resource accesses.

4.3 Clairvoyant Algorithm

We describe and analyze Algorithm Clairvoyant (see Algorithm 4), which depends on the prior

knowledge of the conflict graph. We start with a high level overview of the algorithm. We di-

vide the transactions into groups according to execution time duration, and further into subgroups

according to the number of resources they access. We then assign an order among groups and

subgroups, where lower order subgroups (groups) have always higher priority than higher order

subgroups (groups). The higher priority transactions abort lower priority transactions at the time

78

of conflicts. The priorities within the same subgroup are determined by computing a maximal

independent set in the conflict graph of pending transactions. We obtain tight competitive ratio

bounds by separating the analysis of the different groups and subgroups, which is feasible due to

their ordering. In particular, in a group the ratio of execution time durations is at most 2, and in a

subgroup the ratio between number of shared resources accessed is bounded by 2. These constants

simplify the competitive ratio analysis and makes it easier to obtain an aggregate bound for all

transactions when we combine the respective results from all groups and subgroups. The balanc-

ing ratio β appears as a lower bound in the makespan analysis of a subgroup, and hence it is one

of the factors in the competitive ratio analysis. Then, parameter β is important when we combine

the bounds from the various groups and subgroups and it appears in the final bound expression.

Now we proceed with the details of Algorithm Clairvoyant. The writing transactions are di-

vided into ` groups A0, A1, . . . , A`−1, where ` =
⌈
log
(
τmax

τmin

)⌉
+ 1, in such a way that Ai contains

transactions with execution time duration in range [2i · τmin, (2
i+1 · τmin − 1)], for 0 ≤ i ≤ ` − 1

(Line 1 of Algorithm 4). Each group of transactions Ai is then again divided into κ subgroups

A0
i , A

1
i , . . . , A

κ−1
i , where κ = dlog se+1, such that each transaction T ∈ Aji accesses (for read and

write) a number of resources in range λ(T) ∈ [2j, 2j+1−1], for 0 ≤ j ≤ κ−1 (Line 2 of Algorithm

4). We assign an order to the subgroups in such a way that Aji < Alk if i < k or i = k∧ j < l (Line

3 of Algorithm 4). Note that some of the subgroups may be empty. The read-only transactions are

placed into a special group B which has the highest order (Lines 1, 3 of Algorithm 4).

The intuition behind the algorithm is as follows: at any time t the pending transactions are

assigned a priority level which determines which transactions commit or abort. A transaction is

assigned a priority which is either: high or low. Let Πh
t and Πl

t denote the set of transactions

which will be assigned high and low priority, respectively, at time t. In conflicts, high priority

transactions abort low priority transactions. Conflicts between transactions of the same priority

level are resolved arbitrarily. Suppose that Ât is the lowest order subgroup that contains pending

transactions at time t. Only transactions from Ât can be given high priority, that is Πh
t ⊆ Ât.

79

Algorithm 4: Clairvoyant
Input: A set T of n transactions with global balancing ratio β;
Output: A greedy execution schedule;

1 Divide writing transactions into ` = dlog(τmax

τmin
)e+ 1 groups A0, A1, · · · , A`−1 in such a way

that Ai contains transactions with execution time duration in range
[2i · τmin, (2

i+1 · τmin − 1)]; Read-only transactions are placed in special group B;
2 Divide Ai again into κ = dlog se+ 1 subgroups A0

i , A
1
i , · · · , Aκ−1i in a way that each

subgroup Aji contains transactions that access a number of resource in the range
[2j, 2j+1 − 1];

3 Order the groups and subgroups such that Aji < Alk if i < k or i = k ∧ j < l; special group
B has highest order;

4 foreach time step t = 0, 1, 2, 3, . . . do
5 Set Definitions:
6 Tt: set of transactions that are pending; // T0 ← T
7 Ât: lowest order group that contains pending transactions;
8 T̂t: set of transactions in Ât which are pending; // T̂0 ← Â0

9 Ŝt: set of transactions in T̂t which were started before t;
10 Ŝ ′t: set of conflicting transactions in Tt which conflict with Ŝt;
11 Ît : maximal independent set in the conflict graph G(T̂t \ Ŝ ′t);
12 Priority Assignment:
13 High priority transactions: Πh

t ← Ît ∪ Ŝt;
14 Low priority transactions: Πl

t ← Tt \ Πh
t ;

15 Conflict Resolution:
16 Execute all pending transactions;
17 On conflict of transaction Tu with transaction Tv:
18 if (Tu ∈ Πh

t) ∧ (Tv ∈ Πl
t) then abort(Tu, Tv);

19 else abort(Tv, Tu);
// abort(Tu, Tv) aborts transaction Tv

We now give the details on how the priorities of transactions (i.e., high Πh
t , and low Πl

t priority

sets) are determined and conflicts are resolved. The priorities are determined according to the

conflict graph for the transactions. Lets divide the transactions in different sets (Lines 6–11 of

Algorithm 4) according to their start time, ordering among groups and subgroups, and conflicts

with other transactions at time t. Let Tt denote the set of all transactions which are pending at time

t (Tt includes all transactions which have been started executing at or before time t but not aborted

or committed yet). (Initially, T0 ← T .) Let T̂t denote the pending transactions of Ât at time t.

80

(Initially, T̂0 ← Â0.) Let Ŝt denote the set of transactions in T̂t which are pending and have started

executing before t but have not yet committed or aborted. Let Ŝ ′t denote the set of transactions in

Tt which conflict with Ŝt. Let Ît be a maximal independent set in the conflict graph G(T̂t \ Ŝ ′t).

Then, the set of high priority transactions at time t is to be Πh
t ← Ît ∪ Ŝt (Line 13 of Algorithm 4).

The remaining transactions are given low priority, that is, Πl
t ← Tt \Πh

t (Line 14 of Algorithm 4).

Note that the transactions in Πh
t do not conflict with each other. The transactions Πh

t will remain

in high priority in subsequent time steps t′ > t until they commit, since the transactions in Ŝt′ are

included in Πh
t′ . In case of conflict between Tu and Tv, if Tu ∈ Πh

t and Tv ∈ Πl
t then Tu aborts

Tv; otherwise Tv aborts Tu (Lines 17, 19 of Algorithm 4). (The routine abort(transaction Tu, Tv)

aborts transaction Tv.) The aborted transaction immediately restarts and tries to commit again.

This algorithm is clairvoyant in the sense that it requires explicit knowledge of the various con-

flict relations at each time t. That is, the algorithm should know the set of transactions that conflict

with each other at each time step to resolve conflicts. In other words, the Algorithm Clairvoyant

takes decision based on the complete set of transactions (the global view of the system) at each

time step of the execution. The conflict graph is highly dynamic and evolves while the execution

of the transactions progresses. The algorithm is greedy, since at each time step each pending trans-

action is not idle. The algorithm also satisfies the pending commit property since at any time step t

at least one transaction from Ât will execute uninterrupted until it commits. Clearly, the algorithm

computes the schedule in polynomial time.

4.3.1 Analysis of Clairvoyant Algorithm

We now give a competitive analysis of Algorithm Clairvoyant. In the next results we will first

focus on a subgroup Aji and we will assume that there are no other transactions in the system. We

give two independent bounds for the competitive ratio for Aji . Then, we give the competitive ratio

bound for a group Ai of transactions by combining the competitive bounds of κ subgroups. At last,

we give the overall performance bound for all the transactions in T by combining the competitive

ratio bounds of ` groups of writing transactions and a special group B of read-only transactions.

81

Table 4.1: Summary of notations used in the algorithms and analysis of Sections 4.3 and 4.4.

τmin, τmax : mini τi,maxi τi (execution time of the shortest and the longest transaction in
T , respectively)

Ai, A
j
i , B : A group, a subgroup, and a special group of read-only transactions, respec-

tively

`, κ :
⌈
log
(
τmax
τmin

)⌉
+ 1, dlog se + 1 (number of groups Ai and subgroups Aji , re-

spectively)
τ jmin, τ

j
max : 2i · τmin, 2

i+1 · τmin − 1 (execution time of the shortest and the longest trans-
action in Aji , respectively)

λr(T), λw(T), λ(T) : Number of resources which are being accessed by transaction T for read,
write, and either read or write, respectively

λjmin, λ
j
max : 2j , 2j+1−1 (minimum and maximum number of resources that reads or writes

a transaction in Aji , respectively)
γ′ : maxv∈[1,s] γ

j
i (Rv), where γji (Rv) is the number of transactions in Aji that

write resource Rv, 1 ≤ v ≤ s

Before analyzing the bounds, we give here a brief description of the notations we use through-

out the analysis. As writing transactions are divided into groups according to execution time dura-

tion, the duration of each transaction T ∈ Aji will be in range [τ jmin, τ
j
max], where τ jmin = 2i · τmin

and τ jmax = (2i+1 · τmin − 1) are the execution time of the shortest and the longest transaction,

respectively. As a particular group Ai is divided again into subgroups according to resources and

irrespective of execution time duration τ jmax ≤ 2 · τ jmin for each subgroup Aji . Similarly, according

to the division of writing transactions in subgroups, note that for each transaction T ∈ Aji , the num-

ber of resources used by T is in range λ(T) ∈ [λjmin, λ
j
max], where λjmin = 2j and λjmax = 2j+1 − 1

are the minimum and the maximum number of resources needed by T for either read or write,

respectively. Also for each subgroup, λjmax ≤ 2 · λjmin. We summarize some of the notations used

throughout the analysis of the algorithms in Table 4.1 for clarity.

We now prove the first independent bound which is deduced from the analysis of lower and

upper bounds based on the degree of a transaction (the neighborhood) in the conflict graph of the

transactions in Aji .

82

Lemma 4.3.1 If we only consider transactions in subgroup Aji , then the competitive ratio is

bounded by CRClairvoyant(A
j
i) ≤ 2 · λjmax + 2.

Proof. Let γji (Rv) denote the number of transactions in a subgroup Aji that write resource Rv, 1 ≤

v ≤ s. Let γ′ := maxv∈[1,s] γ
j
i (Rv), the maximum number among γji (Rv), 1 ≤ v ≤ s. Since

there is only one subgroup, Ât = Aji . A transaction T ∈ Aji conflicts with at most λjmax · γ′ other

transactions in the same subgroup. If transaction T is in low priority it is only because some other

conflicting transaction in Aji is in high priority. If no conflicting transaction is in high priority then

T becomes high priority immediately. Since a high priority transaction executes uninterrupted

until it commits, it will take at most λjmax · γ′ time steps until all conflicting transactions with T

have committed. Thus, it is guaranteed that in at most λjmax · γ′ · τ jmax time steps T becomes high

priority. Therefore, T commits by time (λjmax · γ′+ 1) · τ jmax. Since T is an arbitrary transaction in

Aji , the makespan of the algorithm is bounded by:

makespanClairvoyant(A
j
i) ≤ (λjmax · γ′ + 1) · τ jmax.

There is a resource that is accessed by at least γ′ transactions ofAji for write, i.e., there are γ′ nodes

which degree is at least γ′− 1. All these transactions have to be serialized because they all conflict

with each other in accessing the common resource. Therefore, the optimal makespan is bounded

by:

makespanopt(A
j
i) ≥ γ′ · τ jmin.

When we combine the upper and lower bounds we obtain a bound on the competitive ratio of

the algorithm:

CRClairvoyant(A
j
i) =

makespanClairvoyant(A
j
i)

makespanopt(A
j
i)

≤ (λjmax · γ′ + 1) · τ jmax

γ′ · τ jmin

≤ 2 · λjmax + 2.

ut

83

We now give the second independent bound which is deduced from the analysis of upper and

lower bounds based on the pending commit and the balancing ratio properties for the transactions

in Aji . From the pending commit property, the makespan of Algorithm Clairvoyant, in the worst-

case, is bounded by the serialization of all transactions in Aji . But, the optimal algorithm can

uniformly distribute the write accesses of transactions in Aji among the available shared resources

so that the number of transactions conflict in accessing a shared resource R be minimized. The

balancing ratio β gives the minimum number of transactions that write a particular resourceR ∈ R

such that serialization among the transactions accessing R is needed because of conflicts. Thus, β

will appear in the lower bound of makespan, and also in the competitive ratio of the algorithm.

Lemma 4.3.2 If we only consider transactions in subgroup Aji , then the competitive ratio is

bounded by CRClairvoyant(A
j
i) ≤ 4 · s/β

λjmax
.

Proof. Since the algorithm satisfies the pending commit property (Definition 1), if a transaction

T ∈ Aji does not commit, then some conflicting transaction T ′ ∈ Aji must commit. Therefore, the

makespan of the algorithm is bounded by:

makespanClairvoyant(A
j
i) ≤ |A

j
i | · τ jmax.

Recall the definition of balancing ratio that for any transaction Ti, β(Ti) = λw(Ti)/λ(Ti). Each

transaction T ∈ Aji accesses at least λw(T) resources for write out of total λ(T) ∈ [λjmin, λ
j
max]

resources. Since we only consider transactions in Aji , according to the definition of β, λw(T) ≥

β · λjmin ≥ β · λ
j
max

2
for the transaction T . Consequently, by the pigeonhole principle, there is a

resource R ∈ R which is accessed by at least

∑
T∈Aji

λw(T)

s
≥ |A

j
i | · β · λjmax

(2 · s)

transactions for write. That is, when |Aji | transactions in the subgroup Aji access the shared re-

sources, the minimum number of transactions that access a particular resource R ∈ R is at least

84

the ratio of the sum of λw(T) among all T ∈ Aji (i.e., total number of writes of all transactions)

to the total number of resources s in the system. Similar to Lemma 4.3.1, all these transactions

accessing R have to be serialized because they conflict with each other. Therefore, the optimal

makespan is bounded by:

makespanopt(A
j
i) ≥

|Aji | · β · λjmax

2 · s
· τ jmin.

When we combine the above bounds of the makespan we obtain the following bound on the

competitive ratio of the algorithm:

CRClairvoyant(A
j
i) =

makespanClairvoyant(A
j
i)

makespanopt(A
j
i)

≤ |Aji | · τ jmax

|Aji |·β·λ
j
max

2·s · τ jmin

≤ 4 · s/β
λjmax

.

ut

From Lemmas 4.3.1 and 4.3.2, we obtain:

Corollary 4.3.3 If we only consider transactions in subgroup Aji , then the competitive ratio of the

algorithm is bounded by CRClairvoyant(A
j
i) ≤ 4 ·min

{
λjmax,

s/β

λjmax

}
.

Recall that lower order subgroups of Ai have always higher priority than higher order sub-

groups and the transactions requiring few resources reside in the lower order groups. Corollary

4.3.3 exhibits that one can choose from two independent bounds to work on the one which gives

the minimum competitive ratio for the balanced transaction scheduling problem. We now con-

tinue to provide a bound for the performance of each individual group Ai (Lemma 4.3.4), where

execution time of transactions does not appear in competitive bound, since the ratio of execution

time duration of the longest and the shortest transaction in each subgroup Aji , 0 ≤ j ≤ κ, is at

most a factor of 2. This will help to provide bounds for all the transactions T (Theorem 4.3.5) by

basically combining the competitive ratios of ` such groups, which in the worst-case perspective

appears from the execution commit ordering starting from the lowest order group to the highest

order group.

85

Lemma 4.3.4 If we only consider transactions in group Ai, then the competitive ratio of the algo-

rithm is bounded by CRClairvoyant(Ai) ≤ 32 ·
√

s
β

.

Proof. Since the maximum number of resource accesses by a transaction T ∈ Aji λjmax = (2j+1−

1), Corollary 4.3.3 gives for each subgroup Aji competitive ratio

CRClairvoyant(A
j
i) ≤ 4 ·min

{
2j+1 − 1,

s/β

2j+1 − 1

}
≤ 8 ·min

{
2j,

s/β

2j

}
.

When we consider all the κ subgroups of a group Ai, the competitive ratio of each subgroup

Aji forms a bitonic sequence with single maximum (i.e., peak) at the subgroup log(s/β)
2

. Let ψ =

log(s/β)
2

. Note that

min

{
2j,

s/β

2j

}
≤ 2j,∀j ∈ [0, bψc]; and

min

{
2j,

s/β

2j

}
≤ s/β

2j
= 22·ψ−j,∀j ∈ [bψc+ 1, κ− 1].

Group Ai contains κ subgroups of transactions and the subgroups are ordered based on the

resources where higher priority is given to transactions requiring few resources. In the worst case,

Algorithm Clairvoyant will commit the transactions in each subgroup according to their order

starting from the lowest order subgroup and ending at the highest order subgroup, since that’s the

order that the transactions are assigned a high priority. Therefore,

CRClairvoyant(Ai) ≤
κ−1∑
j=0

CRClairvoyant(A
j
i)

=

bψc∑
j=0

CRClairvoyant(A
j
i) +

κ−1∑
j=bψc+1

CRClairvoyant(A
j
i)

≤ 8 ·

 bψc∑
j=0

2j +
k−1∑

j=bψc+1

22·ψ−j


≤ 8 ·

(
2 · 2ψ + 2 · 2ψ

)
= 32 ·

√
s

β
.

ut

86

Theorem 4.3.5 (Competitive Ratio of Clairvoyant) For set of transactions T , Algorithm Clair-

voyant has competitive ratio CRClairvoyant(T) = O
(
` ·
√

s
β

)
.

Proof. In the algorithm, groups are ordered based on the execution time of transactions where

higher priority is given to short transactions. As there are ` groups of transactionsAi, and one group

B, in the worst case, Algorithm Clairvoyant will commit the transactions in each group according

to their order starting from the lowest order group and ending at the highest order group. Clearly,

the algorithm will execute the read-only transactions in group B in optimal time. Therefore, using

Lemma 4.3.4, we obtain:

CRClairvoyant(T) ≤
`−1∑
i=0

CRClairvoyant(Ai) + CRClairvoyant(B)

≤
`−1∑
i=0

32 ·
√
s

β
+ 1 = 32 · ` ·

√
s

β
+ 1.

ut

The corollary below follows immediately from Theorem 4.3.5.

Corollary 4.3.6 (Balanced Workload) For any balanced workload with β = Θ(1) and when

` = O(1), Algorithm Clairvoyant has competitive ratio CRClairvoyant = O(
√
s).

Through a reduction from vertex coloring, we prove in Theorem 4.5.1 (Section 4.5), that there

does not exist a polynomial time algorithm for every input instance with β = 1 and ` = 1 of

the transaction scheduling problem such that the algorithm achieves competitive ratio smaller than

O((
√
s)1−ε) for any constant ε > 0. This implies that theO(

√
s) bound of Algorithm Clairvoyant

given above in Corollary 4.3.6 is arbitrarily close to optimal as ε approaches 0.

4.4 Non-Clairvoyant Algorithm

A limitation of Algorithm 4 is that the conflict graph of transactions to be known at each time

step to resolve conflicts. We present and analyze Algorithm Non-Clairvoyant (see Algorithm 5)

87

Algorithm 5: Non-Clairvoyant
Input: A set T of n transactions with global balancing ratio β;
Output: A greedy execution schedule;

1 Divide transactions into ` = dlog(τmax

τmin
)e+ 1 groups A0, A1, · · · , A`−1 in such a way that Ai

contains transactions with execution time duration in range [2i · τmin, (2
i+1 · τmin − 1)];

Read-only transactions are placed in special group B;
2 Divide Ai again into κ = dlog se+ 1 subgroups A0

i , A
1
i , · · · , Aκ−1i in a way that each

subgroup Aji contains transactions that access a number of resource in the range
[2j, 2j+1 − 1];

3 Order the groups and subgroups such that Aji < Alk if i < k or i = k ∧ j < l; special group
B has highest order;

4 foreach time step t = 0, 1, 2, 3, . . . do
5 Execute all pending transactions; // at t = 0 issue all transactions
6 On (re)start of transaction T :
7 r(T)← random integer in [1, n];
8 On conflict of transaction Tu ∈ Aji with transaction Tv ∈ Alk:
9 if Aji < Alk then abort(Tu, Tv);

// Compare order of subgroups

10 else if Aji > Alk then abort(Tv, Tu);
11 else if r(Tu) < r(Tv) then abort(Tu, Tv);

// The case Aji = Alk
12 else abort(Tv, Tu);

// In case a transaction Tu aborts Tv because
r(Tu) < r(Tv), then when Tv restarts it cannot abort
Tu until Tu commits or aborts

which removes this limitation. This algorithm is similar to Clairvoyant given at Section 4.3 with

the difference that the conflicts are resolved without explicitly knowing the conflict graph.

The intuition behind the algorithm is as follows: similar to Algorithm Clairvoyant, the transac-

tions are organized in groups and subgroups (Lines 1, 2 of Algorithm 5) and lower order subgroups

(groups) have always higher priority than higher order subgroups (groups) (Line 3 of Algorithm

5). At each time step t, let Ât denote the lowest order subgroup. Clearly, the transactions in

Ât have higher priority than the transactions in all other subgroups, and in case of conflicts only

the transactions in Ât win. When transactions in the same subgroup conflict, the conflicts are

resolved according to discrete random priority numbers. A transaction T , as soon as it starts ex-

88

ecution, chooses a discrete priority number r(T) uniformly at random in the interval [1, n], i.e.,

r(T) ∈ [1, n]. The transaction with small priority number wins at the time of conflict.

We now give the details on how the algorithm resolves conflicts. In case of a conflict of transac-

tion Tu ∈ Aji with another transaction Tv ∈ Alk (Line 8 of Algorithm 5), the order of the subgroups

Aji and Alk is compared first. If Aji is lower order subgroup than Alk, then Tu aborts Tv (Line 9 of

Algorithm 5). If Aji is higher order subgroup than Alk, then Tv aborts Tu (Line 10 of Algorithm

5). If Aji and Alk are basically the same subgroup, we use the random priority number of Tu and

Tv to resolve conflict (Lines 6, 6 of Algorithm 5). If r(Tu) < r(Tv), then Tu aborts Tv (Line 11

of Algorithm 5); otherwise (in the case where r(Tu) ≮ r(Tv)), Tv aborts Tu (Line 12 of Algo-

rithm 5). When the aborted transaction Tv restarts, it cannot abort Tu until Tu has been committed

or aborted. After every abort, the newly started transaction chooses again a new discrete priority

number uniformly at random in the interval [1, n] (Lines 6, 6 of Algorithm 5). This is a different

technique than the timestamp approach of Greedy [59], where transactions retain the timestamp

even after abort. The idea of randomized priorities has been introduced originally by Schneider

and Wattenhofer [119] in their Algorithm RandomizedRounds.

This algorithm is non-clairvoyant in the sense that it does not depend on knowing explicitly

the conflict graph to resolve conflicts. That is, Algorithm Non-Clairvoyant takes decision based

on the the local view of the system at each time step of the execution. The local knowledge of

the set of transactions in the system is provided by the randomized priorities that are assigned to

each transaction uniformly at random from the interval [1, n] on startup and after every abort as

described in aforementioned paragraph. The algorithm is greedy but does have the pending commit

property. The groups and subgroups can be implemented in the algorithm since we assume that

each transaction knows its execution time and the number of resources that it accesses. Clearly,

the algorithm computes the schedule in polynomial time.

89

4.4.1 Analysis of Non-Clairvoyant Algorithm

In the analysis given below, we study the properties of Algorithm Non-Clairvoyant and give its

competitive ratios. We now give two independent competitive bounds for some subgroup Aji and

later extend the results to all the transactions in T . The proofs are similar as in the analysis of

Algorithm Clairvoyant and given here for the sake of completeness.

Lemma 4.4.1 If we only consider transactions in subgroup Aji , then the competitive ratio is

bounded by CRNon−Clairvoyant(A
j
i) ≤ 64 · e · λjmax · lnn with probability at least 1− |A

j
i |

n2 .

Proof. Recall the notion defined in Lemma 4.3.1 that γ′ = maxv∈[1,s] γ
j
i (Rv), where γji (Rv)

denote the number of transactions in a subgroup Aji that write Rv, 1 ≤ v ≤ s. Since there is only

one subgroup, a transaction T ∈ Aji conflicts with at most dT ≤ λjmax · γ′ other transactions in the

same subgroup. From Lemma 3.4.2, it will take at most

x = 16 · e · (λjmax · γ′ + 1) · τ jmax · lnn

time steps until T commits, with probability at least 1− 1
n2 . Considering now all the transactions in

Aji , and taking the union bound of individual event probabilities, we have that all the transactions

in Aji commit within time x with probability at least 1 − |A
j
i |

n2 . Therefore, with probability at least

1− |A
j
i |

n2 , the makespan is bounded by:

makespanNon−Clairvoyant(A
j
i) ≤ 16 · e · (λjmax · γ′ + 1) · τ jmax · lnn.

Similar to Lemma 4.3.1, there is a resource that is accessed by at least γ′ transactions of Aji

for write so that all these transactions have to be serialized because of the conflicts. Therefore, the

optimal makespan is bounded by

makespanopt(A
j
i) ≥ γ′ · τ jmin.

90

By combining the upper and lower bounds, we obtain a bound on the competitive ratio:

CRNon−Clairvoyant(A
j
i) =

makespanNon−Clairvoyant(A
j
i)

makespanopt(A
j
i)

≤ 16 · e · (λjmax · γ′ + 1) · τ jmax · lnn
γ′ · τ jmin

≤ 32 · e · (λjmax + 1) · lnn

≤ 64 · e · λjmax · lnn,

with probability at least 1− |A
j
i |

n2 . ut

Lemma 4.4.2 If we only consider transactions in subgroup Aji , then the competitive ratio is

bounded by CRNon−Clairvoyant(A
j
i) ≤ 64 · e · s/β

λjmax
· lnn with probability at least 1− |A

j
i |

n2 .

Proof. Since for any transaction T ∈ Aji , dT ≤ |NT | ≤ |Aji | − 1, similar to the proof of Lemma

4.4.1, with probability at least 1− |A
j
i |

n2 , the makespan is bounded by:

makespanNon−Clairvoyant(A
j
i) ≤ 16 · e · |Aji | · τ jmax · lnn.

Similar to Lemma 4.3.2, the optimal makespan is bounded by:

makespanopt(A
j
i) ≥

|Aji | · β · λjmax

2 · s
· τ jmin.

When we combine the above bounds of the makespan we obtain a bound on the competitive

ratio:

CRNon−Clairvoyant(A
j
i) =

makespanNon−Clairvoyant(A
j
i)

makespanopt(A
j
i)

≤ 16 · e · |Aji | · τ jmax · lnn
|Aji |·β·λ

j
max

2·s · τ jmin

≤ 64 · e · s/β
λjmax

· lnn,

with probability at least 1− |A
j
i |

n2 . ut

91

From Lemmas 4.4.1 and 4.4.2, we obtain:

Corollary 4.4.3 If we only consider transactions in subgroup Aji , then the competitive ratio of the

algorithm is bounded by CRNon−Clairvoyant(A
j
i) ≤ 64 · e ·min

{
λjmax,

s/β

λjmax

}
· lnn with probability

at least 1− |A
j
i |

n2 .

Similar to the analysis of Algorithm 4, we now provide a bound for the performance of indi-

vidual groups in Algorithm 5 which will help to provide bounds for all the transactions.

Lemma 4.4.4 If we only consider transactions in group Ai, then the competitive ratio of the algo-

rithm is bounded by CRNon−Clairvoyant(Ai) ≤ 512 · e ·
√

s
β
· lnn with probability at least 1− |Ai|

n2 .

Proof. Since λjmax = (2j+1 − 1), Corollary 4.4.3 gives for each subgroup Aji competitive ratio

CRNon−Clairvoyant(A
j
i) ≤ 64 · e ·min

{
2j+1 − 1,

s/β

2j+1 − 1

}
· lnn

≤ 128 · e ·min

{
2j,

s/β

2j

}
· lnn,

with probability at least 1− |A
j
i |

n2 . Following the proof steps as in Lemma 4.3.4, we obtain:

CRNon−Clairvoyant(Ai) ≤ 512 · e ·
√
s

β
· lnn.

This bound holds with with probability at least 1 −
∑κ−1
j=0 |A

j
i |

n2 = 1 − |Ai|
n2 , since

∑κ−1
j=0 |A

j
i | = |Ai|.

ut

Theorem 4.4.5 (Competitive Ratio of Non-Clairvoyant) For a set of transactions T , Algorithm

Non-Clairvoyant has competitive ratio CRNon−Clairvoyant(T) = O
(
` ·
√

s
β
· log n

)
with proba-

bility at least 1− 1
n

.

Proof. Similar to the proof of Theorem 4.3.5, as there are ` groups of transactions Ai, and one

group B, in the worst case, Algorithm Non-Clairvoyant will commit the transactions in each

92

group according to their order starting from the lowest order group and ending at the highest order

group. Clearly, the algorithm will execute the read-only transactions in group B in optimal time.

Therefore, using Lemma 4.4.4 we obtain:

CRNon−Clairvoyant(T) ≤
∑̀
i=1

CRNon−Clairvoyant(Ai) + CRNon−Clairvoyant(B)

≤
`−1∑
i=0

512 · e ·
√
s

β
· lnn+ 1

= 512 · e · ` ·
√
s

β
· lnn+ 1,

with probability at least 1−
∑`−1
i=0 |Ai|
n2 = 1− n−1, since

∑`−1
i=0 |Ai| = |T | = n. ut

The corollary below follows immediately from Theorem 4.4.5.

Corollary 4.4.6 (Balanced Workload) For any balanced workload with β = Θ(1) and when

` = O(1), Algorithm Non-Clairvoyant has competitive ratio CRNon−Clairvoyant = O(
√
s · log n)

with probability at least 1− 1
n

.

4.5 Hardness of Balanced Transaction Scheduling

In this section, we show that the performance of Clairvoyant is close to optimal by reducing the

graph coloring problem to the transaction scheduling problem. Similar reductions from vertex

coloring to conflict graphs appear in several previous work (e.g., [12]). However, we provide here

the reduction details for the sake of completeness.

A VERTEX COLORING problem instance asks whether a given graph G is k-colorable [55]. A

valid k-coloring is an assignment of integers {1, 2, · · · , k} (the colors) to the vertices of G so that

neighbors receive different integers. The chromatic number, χ(G) is the smallest k such that G has

a valid k-coloring. We say that an algorithm approximates χ(G) with approximation ratio q(G)

if it outputs u(G) such that χ(G) ≤ u(G) and u(G)/χ(G) ≤ q(G). Typically, q(G) is expressed

only as a function of n, the number of vertices in G. It is well known that VERTEX COLORING

93

problem is NP-complete. It is also shown in [50] that unless NP ⊆ ZPP, there does not exist a

polynomial time algorithm to approximate χ(G) with approximation ratio smaller than O(n1−ε)

for any constant ε > 0, where n denotes the number of vertices in graph G.

A TRANSACTION SCHEDULING problem instance P asks whether a set of transactions T with

a set of resources R has makespan k time steps. We give a polynomial time reduction of the

VERTEX COLORING problem to the TRANSACTION SCHEDULING problem P . Consider an input

graph G = (V,E) of the VERTEX COLORING problem, where |V | = n and |E| = s. We construct

a set of transactions T such that for each v ∈ V there is a respective transaction Tv ∈ T ; clearly,

|T | = |V | = n. We also use a set of resourcesR such that for each edge e ∈ E there is a respective

resource Re ∈ R; clearly, |R| = |E| = s. If e = (u, v) ∈ E, then both the respective transactions

Tu and Tv use the resource Re for write. Since all transaction operations are writes, we have that

β = 1. We take all the transactions to have the same execution length equal to one time step, that

is, τmax = τmin = 1, and ` = 1.

Let G(P) be the conflict graph for the transactions T . Note that G(P) is isomorphic to G.

Node colors in G correspond to time steps in which transactions in G(P) are issued. Suppose that

G has a valid k-coloring. If a node v ∈ G has a color x, then the respective transaction Tv ∈ G(P)

can be issued and commit at time step x, since no conflicting transaction (neighbor in G(P)) has

the same time assignment (color) as Tv. Thus, a valid k-coloring in G implies a schedule with

makespan k for the transactions in T . Symmetrically, a schedule with makespan k for T implies a

valid k-coloring in G.

It is easy to see that the TRANSACTION SCHEDULING problem is in NP. From the reduction of

the VERTEX COLORING problem, we also obtain that TRANSACTION SCHEDULING problem is

NP-complete. Further, we see that the reduction given above is gap preserving with gap preserving

parameter ρ = 1 [80].

From the above reduction, we have that an approximation ratio q(G) of the VERTEX COLOR-

ING problem implies the existence of a scheduling algorithmA with competitive ratio CRA(T) =

q(G) of the respective TRANSACTION SCHEDULING problem instance P , and vice-versa. Since

94

s = |R| = |E| ≤ (n2 − n)/2, an (
√
s)1−ε competitive ratio of A implies at most an n1−ε approxi-

mation ratio of VERTEX COLORING. Since, we know that unless NP ⊆ ZPP, there does not exist

a polynomial time algorithm to approximate χ(G) with approximation ratio smaller than O(n1−ε)

for any constant ε > 0, we obtain a symmetric result for the TRANSACTION SCHEDULING prob-

lem P :

Theorem 4.5.1 (Approximation Hardness of TRANSACTION SCHEDULING) Unless NP ⊆

ZPP, we cannot obtain a polynomial time transaction scheduling algorithm such that for every

instance with β = 1 and ` = 1 of the TRANSACTION SCHEDULING problem the algorithm

achieves competitive ratio smaller than O((
√
s)1−ε) for any constant ε > 0.

Theorem 4.5.1 implies that the O(
√
s) bound of Algorithm Clairvoyant, given in Corollary

4.3.6 (Section 4.3) for β = Θ(1) and ` = O(1), is arbitrarily close to optimal as ε approaches 0.

We observe that some instances of the TRANSACTION SCHEDULING problem can be trans-

formed into other instances with smaller number of resources and isomorphic conflict graphs. For

example, the problem instance with n transactions and (n2−n)/2 resources (accessed pairwise by

transactions) forms a clique of size n, while there is a problem with only one resource (accessed

by all n transactions) which also forms a clique of size n. As an interesting consequence of The-

orem 4.5.1, there are non-trivial problem instances with s ≥ n − 1 shared resources such that it

is not always possible to find in polynomial time (unless NP ⊆ ZPP) an instance with smaller

number of resources and isomorphic graphs. If every instance P with s ≥ n − 1 resources can

be replaced in polynomial time with an instance P ′ with at most f(s) < s resources, we could

obtain a polynomial time algorithm for the VERTEX COLORING problem with O(n1−ε) approx-

imation for some constant ε > 0. The argument behind it is that starting with some arbitrary

connected graph G = (V,E) we obtain through the reduction described above in polynomial time

a scheduling problem P and then in polynomial time a scheduling problem P ′, such that G is

isomorphic to G(P) and G(P ′), where P has |V | = n transactions and |E| = s ≥ n − 1 shared

resources, and P ′ has also n transactions and at most f(s) < s shared resources. Algorithm 4 gives

O(
√
f(s)) competitive ratio for the schedule of P ′ which givesO(

√
f(s)) competitive ratio for P

95

and O(
√
f(|E|)) approximation for χ(G). Taking f(x) = x1−ε for any chosen 0 < ε ≤ 1, since

|E| = O(n2), we obtain an O(n1−ε) approximation for the chromatic number of G in polynomial

time, which is a contradiction using the known result of [50] (unless NP ⊆ ZPP).

4.6 Summary and Discussions

We have studied the competitive ratios achieved by transactional contention managers on balanced

transactional memory workloads. The contention management algorithms presented in this chapter

achieve close to optimal competitive bounds on balanced workloads. We also establish hardness

results on the competitive ratios in our balanced workload model by reducing the well known NP-

complete vertex coloring problem to the transaction scheduling problem. These are the first such

results that show competitive ratio bounds smaller than best previously known O(s) competitive

ratio bound can be achieved using reasonable assumptions for the contention management policies.

When we consider a system in which transactions are faulty; if a transaction Ti running at

time t fails (not as a result of a conflict), the execution of Ti needs to be restarted subsequently

by the contention manager. Following Guerraoui et al. [57] we also assume that a transaction may

fail at most k times, for some k ≥ 1, before it eventually commits. The transaction is imme-

diately restarted after each failure. Definitely, for any transaction Ti, our algorithms may run Ti

almost to completion at most k times due to at most k subsequent restarts in its execution due

to a failure before it eventually commits in the (k + 1)-th round. This gives the upper bound in

processing time of Ti to (k + 1)τi. This implies if each transaction fails at most k times then in

the competitive ratio bound expressions of a simple adaption of our algorithms there will appear

an additional factor of k, i.e., the adaption of Clairvoyant is O
(
k · ` ·

√
s
β

)
-competitive and the

adaption of Non-Clairvoyant is O
(
k · ` ·

√
s
β
· log n

)
-competitive, with high probability. For

balanced workloads, where β = Θ(1), and when transaction execution times are close to each

other, i.e. ` = O(1), the adaption of Algorithm Clairvoyant is O(k ·
√
s)-competitive and the

adaption of Non-Clairvoyant is O(k ·
√
s · log n)-competitive.

96

There are several interesting directions for future work. As advocated in [75], our algorithms

are conservative − abort at least one transaction involved in a conflict − as it reduces the cost to

track conflicts and dependencies. It is interesting to look whether the other schedulers which are

less conservative can give improved competitive ratios by reducing the overall makespan. First,

our study can be complemented by studying other performance measures, such as the average

response or waiting time or the average punishment time of transactions under balanced workloads.

Second, while we have theoretically analyzed the behavior of balanced workloads, it is interesting

to see how our contention managers compare experimentally with prior transactional contention

managers, e.g., [7, 45, 46, 59, 70, 107, 130, 142].

97

Chapter 5
Distributed Systems: General Network
Model

5.1 Introduction

In this chapter1, we present a data-flow distributed implementation of transactional memory (DTM)

protocol that is suitable for arbitrary network topologies. Previous approaches, Arrow [43], Relay

[143], Combine [10], and Ballistic [77], were only for either specific network topologies or they

do not scale well in arbitrary network topologies (see Table 2.2 in Chapter 2 for the comparison of

results). Our protocol ensures that all three operations for shared objects are served with minimum

overhead in any arbitrary network. In order to analyze the DTM protocol, we model the network

as a weighted graph, where graph nodes correspond to processors and graph edges correspond to

communication links between processors. In the analysis, similar to previous proposals [10, 43,

77, 143] for DTMs, we consider transactions with only one shared object. This protocol can be

generalized to accommodate transactions with multiple objects by appropriately replicating the

protocol for each shared object.

5.1.1 Theoretical Contributions

We propose a novel DTM protocol called Spiral which is suitable for general graphs. Spiral is

a directory-based protocol implemented on a hierarchy of clusters. There are h + 1 = O(logD)

cluster levels such that cluster diameters increase exponentially. In each cluster one node is chosen

1This chapter accepted for publication in:
Gokarna Sharma and Costas Busch. Distributed Transactional Memory for General Networks. Distrib. Comput.,
Preprint, 2014. http://link.springer.com/article/10.1007/s00446-014-0214-7

98

to act as a leader which is used to communicate with different level clusters. Clusters may overlap

and the same node may act as a leader in multiple levels. At the bottom level (level 0) each cluster

consists of individual nodes, while at the top level (level h) there is a single cluster for the whole

graph with a special leader node called root. Only the bottom level nodes can issue requests for

the shared object, while the nodes in higher levels are used to propagate the requests in the graph.

The protocol maintains a directory path which is directed from the root to the bottom-level

node that owns the shared object. The directory path is updated whenever the object moves from

one node to another. In order to get access to the object, each bottom level node uses a spiral path

to intersect the directory path and then reach the object. The spiral path is built by visiting upward

the leader nodes in all the clusters that the node belongs to starting from the bottom level up to

the top level. The name of the protocol is inspired by the spiral path form which slowly unwinds

outwards while it visits cluster leaders of higher levels.

The directory path is built upon the spiral paths of nodes initiating operations in the graph.

As soon as the object is created by some bottom level node, it publishes the object by following

its spiral path towards the root, making each parent pointing to its child and hence forming the

initial directory path. Fig. 5.1a shows the leaders in the cluster hierarchy after the successful

publish operation of v with directory path from the root u3 to v. When some node u issues a

move request, the request goes upward following u’s spiral path until it intersects the directory

path to v (Figs. 5.1b−5.1d). While going up, the move request also sets downward links toward

u. The move request resets the directory path it follows while descending towards the owner v

(Figs. 5.1e−5.1g); the directory path now points to u. As soon as the move request reaches v, the

object is forwarded to u along some shortest path (Fig. 5.1h). A lookup operation is served similar

to move without modifying the directory path.

Spiral guarantees:

• O(log4 n) stretch for any lookup operation, and

• O(log2 n · logD) stretch for move operations.

99

(a) Initially, the owner
node v publishes the object

(b) Node u issues a move
request

(c) The request continues
up phase

(d) Directory path found,
new owner node u

(e) The request goes down,
discarding old pointers

(f) The request continues
down phase

(g) The request reaches the
owner node v

(h) Object is moved di-
rectly from v to u

Figure 5.1: Illustration of Spiral protocol for a move request. The move request is issued by node
u for the object at node v and the nodes shown in the figure from level 1 to 3 are leader nodes of
the respective clusters.

The publish cost is proportional to the diameter of the network and it is a fixed initial cost which

is only considered once and compensated by the costs of the lookup and move operations which

are issued thereafter. For move operations, the above stretch is obtained for two kinds of exe-

cution scenarios after the object is being published: (i) sequential executions which consist of a

non-overlapping sequence of move operations, and (ii) concurrent executions where a set of move

operations are issued simultaneously. The reason for considering sets of move operations is be-

cause they provide small amortized cost compared to considering individual operations. Note that

lookup operations have always small cost even when considered individually. To the best of our

knowledge, this is the first DTM protocol that achieves poly-log stretch in general graphs.

The small stretch of the Spiral protocol is achieved due to the novel use of a (σ, χ)-labeled

cover hierarchy. Each level i of clusters is a sparse cover with locality γi = Θ(2i), such that for

each node there is at least one cluster that contains the whole γi neighborhood of that node, the

diameter of any cluster does not exceed σγi, and each node belongs to at most χ clusters. The

novelty is that in every level we assign a label to each cluster that corresponds to number between

100

1 and χ. The spiral path of a node v visits all the leaders of all the clusters that v belongs to starting

from level 0 up to level h. The combination [level,label] specifies the order that clusters are to be

visited when forming the spiral path. Since v may belong up to χ clusters in a level, the labels

define the order that the clusters are to visited inside the level. We provide a (O(log n),O(log n))-

labeled cover hierarchy which is derived from the hierarchical graph partition in [62]. This sparse

cover hierarchy enables to bound the lengths of the spiral paths, and also bound the distance of the

intersections of the spiral paths with respect to the the origin node distances, which further give

the aforementioned bounds on lookup and move operations. It also helps to avoid race conditions

that may occurs in concurrent executions. In other words, during concurrent execution of move

operations, Ballistic [77] may need to lock simultaneously multiple parent nodes in the same level

and probe them sequentially which may introduce blocking (a request may need to wait at some

immediate level before probing its parents), while in Spiral only one node needs to be locked at a

time in the spiral path which avoids blocking (details are in Section 5.7).

The concept of Spiral (and also Ballistic [77]) is similar to the location-aware DHTs to locate

nearest neighbors, tracking mobile users, compact routing, and related problems (e.g., [15, 20, 88,

103, 105, 136]). However, these approaches provide efficient techniques only to locate copies and

when the objects move autonomously (without being requested). The techniques for DTM provide

mechanisms that can make moving, looking up, and republishing of objects efficient and also avoid

race conditions that might occur while synchronizing concurrent requests.

The lower bounds known for some immediately related problems including mobile user [15]

and universal TSP tour [56, 63, 83], also apply in our case. The mobile user problem lower

bound of Ω(log n/ log log n) by Alon et al. [4] for various networks including the hypercube, and

any highly expanding graph, applies immediately for our sequential execution scenario of move

operations, since each move operation corresponds to a relocation of a mobile object from one

node to another. The universal TSP tour lower bounds, such as Ω(
√

log n/ log log n) by Jia et

al. [83] for Euclidean metrics, Ω(6
√

log n/ log log n) by Hajiyaghayi et al. [63] for n × n grid,

and Ω(log n) by Gorodezky et al. [56] for Ramanujan graphs, apply to our concurrent execution

101

scenario of move operations, since the solution provided by our protocol can be easily converted to

give a universal TSP tour on an arbitrary graph. Our results thus imply that Spiral is not far from

being optimal, showing that hierarchical labeled covers yield near-optimal bounds for DTMs.

5.1.2 Practical Contributions

For performance guarantees of Spiral is real world scenarios, we implemented and experimented

it for its performance in random networks of different sizes that are generated using the Erdős-

Rényi model [47]. We compared also the performance of Spiral with the performance of Arrow

[43] in those networks. This comparison is also extended to ring networks of different sizes for

the performance tradeoffs in the worst-case. These experimental results confirmed our theoretical

findings and showed the benefits of using the hierarchy of clusters approach.

5.1.3 Chapter Organization

The rest of the chapter is organized as follows: We present the network model in Section 5.2. In

Section 5.3, we give our novel construction of sparse cover hierarchy. We present the details of

Spiral in Section 5.4. We then formally analyze the Spiral protocol in Section 5.5. We present

experimental evaluation results in Section 5.6. Section 5.7 concludes the chapter with some dis-

cussions.

5.2 Model and Preliminaries

We start with some necessary definitions. We represent a distributed network as a weighted graph

G = (V,E,w), with nodes (network machines) V , where |V | = n, edges (interconnection links

between machines) E ⊆ V × V and edge weight function w : E → R+. We assume that

w(u, u) = 0 for any u ∈ V . A path p in G is a sequence of nodes, with respective sequence of

edges connecting the nodes, such that length(p) =
∑

e∈pw(e). For convenience, we will treat

paths as walks which may consist of a single node or the same node may be repeated. A sub-path

102

of p is any path obtained by a subsequence of consecutive nodes in p; we may also refer to a sub-

path as a fragment of p. For simplicity assume that G is connected, that is, there is a path in G

between any pair of nodes. Let dist(u, v) denote the shortest path length (distance) between nodes

u and v. The k-neighborhood of a node v is the set of nodes which are within distance at most

k from v (including v). The diameter D is the maximum shortest path distance over all pairs of

nodes in G.

We assume that G represents a network in which nodes do not crash, it implements FIFO

communication between nodes (i.e. no overtaking of messages occurs), and messages are not lost.

As can be observed in Table 2.2, most of the DTM protocols (with the exception of Combine)

have also the FIFO assumption. We also assume that, upon receiving a message, a node is able to

perform a local computation and send a message in a single atomic step. Moreover, we treat each

node in the graph G as a process. Each process pci has local variables. Processes also have states

(including initial states and possibly also final states), while variables take on values. We define a

system as a collection of processes, where processes communicate via message passing between

links. A configuration is a complete description of the system at some point in time, i.e., the state

of each process and the state of each local variable. In other words, a configuration captures the

current snapshot of the entire system. There is a (unique) initial configuration in which every

process is in its initial state.

An event is a step in which a process pci either (i) executes some local computation (compu-

tation event) or (ii) delivers a message to some other process pcj (delivery event), which provides

a change to the process’s state. An execution interval is a finite or infinite alternating sequence

C0, φ0, C1, φ1, C2, · · · , where Ck is a configuration, φk is an event, and the application of φk to Ck

results in Ck+1, for every k = 0, 1, · · · . An execution constitutes an execution interval in which

C0 is the initial configuration. Moreover, we say that a process state is quiescent if there is no

sequence of events from that state in which a message is sent (i.e., process will not send another

message until it receives a message). A configuration is said to be quiescent if no messages are in

transit and every process is in a quiescent state.

103

5.3 Hierarchical Clustering

We describe how to represent the network as a hierarchy of clusters. Based on those clusters we

will define paths that are used by our DTM algorithm.

5.3.1 Labeled Cover

A node cluster is any set of nodes X ⊆ V . The diameter of a cluster X is the maximum distance

between any of its nodes, namely, diam(X) = maxu,v∈X dist(u, v), where distances are with

respect to G.

A cover is any set of clusters Z = {X1, X2, . . . , Xk} such that each node in u ∈ V belongs to

at least one cluster in Z. Let Z(u) denote the set of clusters that u belongs to in Z. The diameter

of cover Z is the maximum diameter of its clusters: diam(Z) = maxX∈Z diam(X). We say that Z

has locality γ, if for a node u, there is some clusterX ∈ Z such that it contains the γ-neighborhood

of u ∈ X .

A χ-labeling of Z, for some positive integer χ, is an assignment of integer labels to its clusters,

λ(Xi) ∈ {1, 2, . . . , χ}. A χ-labeling is valid if for each node u ∈ V every cluster that contains u

has a different label, that is, if Xi, Xj ∈ Z(u), i 6= j, then λ(Xi) 6= λ(Xj).

Definition 8 (labeled cover) Z is a (σ, χ, γ)-labeled cover when it satisfies the following proper-

ties: Z is a cover with locality γ, diam(Z) ≤ σγ, and accepts a valid χ-labeling.

5.3.2 Cover Hierarchy

We now give the definition of a hierarchy of labeled covers with exponentially increasing locality:

Definition 9 (labeled cover hierarchy) Z = {Z0, Z1, . . . , Zh} is a (σ, χ)-labeled cover hierarchy

when each Zi, 1 ≤ i ≤ κ, is a (σ, χ, γi)-labeled cover with locality γi = 2i−1, where Z0 = V (each

node in V is a cluster by itself) and h = dlogDe+ 1. We say that Zi ∈ Z is the level i cover, and

any cluster X ∈ Zi is a level i cluster.

104

We present a (O(log n),O(log n))-labeled cover hierarchy. The structure is based on well-

known ideas for clustering the graph to approximate graph distance metrics by distributions over

tree metrics [19, 49]. Specifically, we borrow the clustering technique used by Gupta, Hajiaghayi,

and Räcke [62] (which in turn is an extension of the scheme proposed by Fakcharoenphol, Rao,

and Talwar [49]). We present the results in the context of labeled covers. Note that some other

clustering methods including the early work of Awerbuch and Peleg [13] can also be used in our

construction.

The construction in [62] is based on laminar partition hierarchies which they define as follows.

A partition of G is a cover consisting of disjoint clusters of nodes. A laminar partition hierarchy

P = {P0, P1, . . . , Ph′}, where h′ = dlogDe, has the following properties: (i) Ph′ is a single cluster

that consists of all nodes in V ; (ii) each Pi is a partition with diameter at most 2i; (iii) each cluster

in Pi is completely contained in some cluster in Pi+1, for 0 ≤ i ≤ h′ − 1. They also define

the notion of α-padded node v ∈ V with respect to P to be a node whose α2i-neighborhood is

included in a cluster of Pi in every level i, where 0 ≤ i ≤ h′. They prove the existence of a

family of l = O(log n) laminar partition hierarchies F = {P1,P2, . . . ,P l}, such that every node

v ∈ V is Ω(1/ log n)-padded in at least one of the partition hierarchies in F . The construction in

[62] is randomized, and its correctness (padding property) holds with high probability. The family

of hierarchical partitions can be computed in polynomial time. The authors also mention that the

construction can be de-randomized with standard techniques.

Lemma 5.3.1 There is a (O(log n),O(log n))-labeled cover hierarchy Z , which can be con-

structed in deterministic polynomial time.

Proof. We transform the family of laminar partition hierarchies F to an appropriate (σ, χ)-labeled

cover hierarchyZ . Let a = 1/(c log n) be the padding ofF for some constant c. The cover Zi ∈ Z

is obtained from the union of all the level ji = i+blog(c log n)c partitions, namely, Zi =
⋃
P∈F Pji ,

for 1 ≤ i ≤ h; in case ji > h′, then, we use Zi =
⋃
P∈F Ph′ . We set Z0 = V , namely every node

in level 0 is a cluster.

105

The locality of Zi is γi ≥ α2ji ≥ 2i−1 · c log n/c log n = 2i−1, since a-padding implies

that there is a cluster C in partition level ji that includes a node u and its α2ji neighborhood,

and this cluster C appears in level i of Z . Note that according to the definition of the partition,

diam(Zi) ≤ 2ji ≤ 2i · c log n ≤ 2cγi log n. Therefore, we can set σ = 2c log n.

We can get a χ-labeling of each cover Zi as follows. If a cluster X ∈ Zi came from partition

hierarchy Pk then it obtains label λ(X) = k. This implies that we will have χ = l = O(log n)

labels. The resulting labeling is valid, since for each level Zi ∈ Z , each cluster is obtained from

a different partition hierarchy in F , and thus we can not have any two clusters in Zi(u) with the

same label. ut

We normalize the (σ, χ)-labeled cover hierarchy Z obtained from Lemma 5.3.1 to satisfy the

following properties which will be useful in our algorithms:

i. At level 0 each node in V belongs to exactly one cluster which consists only of the node itself.

ii. Cover Zh (highest level) contains χ copies of the cluster that contains all nodes V , where

χ = O(log n), each copy obtained from a different partition hierarchy in F . We will keep

only one copy and remove the rest so that there is only one cluster at level h of the hierarchy.2

iii. In any level i, 1 ≤ i ≤ h− 1, of Z each node u ∈ V belongs to exactly χ clusters (one cluster

from each partition hierarchy of F); that is, |Zi(u)| = χ. Repeated clusters will be treated as

different and will be assigned a different label.

5.3.3 Spiral Paths

Let Z = {Z0, Z1, . . . , Zh} be a (σ, χ)-labeled cover hierarchy as obtained from Lemma 5.3.1.

Based on Z , we define a path p(u) for each node u ∈ V which will refer to as the “spiral” path

of u. The path p(u) is built by visiting designated leader nodes in all the clusters that u belongs to

starting from level 0 up to h. In each level, the clusters are visited according to the order of their

2To be more precise Θ(log log n) of the highest covers are equal to Zh but in those (except Zh) we will not remove
the replicated clusters.

106

labels. From an abstract point of view, the path forms a spiral which slowly unwinds outwards

while it visits cluster leaders of higher levels which are possibly further away from u.

Let Xi,j(u) ∈ Zi(u) denote the cluster at level i, 1 ≤ i ≤ h− 1, that u belongs to and has label

j. We will refer to level i, label j, as the sub-level (i, j). Note that level i consists of χ sub-levels

(i, 1), (i, 2), . . . , (i, χ), for 1 ≤ i ≤ h − 1. Levels 0 and h are special cases which consist of a

single sub-level each which for convenience we denote as (0, χ) and (h, 1), respectively. We can

order the sub-levels lexicographically so that (i, j) < (i′, j′) if i < i′, or i = i′ and j < j′. We

define the function next(i, j) (resp. prev(i, j)) to return the sub-level immediately higher (resp.

lower) than (i, j).

In every cluster X we choose a designated leader node chosen arbitrarily which we denote as

`(X). Denote the leader of cluster Xi,j(u) as `i,j(u) = `(Xi,j(u)). Since Zh consists of a single

sub-level it has a unique leader which we denote `h,1(u) = r. Trivially, every node u ∈ V is a

leader of its own cluster at level 0, `0,χ(u) = u.

For any pair of nodes u, v ∈ V , let s(u, v) denote a shortest path from u to v. For any

set of nodes u1, u2, . . . , uk ∈ V , let s(u1, u2, . . . , uk) denote the concatenation of shortest paths

s(u1, u2), s(u2, u3), . . . , s(uk−1, uk). The spiral path p(u) is formed by taking the concatenation

of the shortest paths that connect the ascending sequence of leaders starting from node u (sub-level

(0, χ)) up to node r (sub-level (h, 1)). Formally, we define the spiral path as follows:

Definition 10 (spiral path) The spiral path of node u is:

p(u) = s(u, `1,1(u), . . . , `1,χ(u)︸ ︷︷ ︸
level 1

, `2,1(u), . . . , `2,χ(u)︸ ︷︷ ︸
level 2

, . . . , `h−1,1(u), . . . , `h−1,χ(u)︸ ︷︷ ︸
level h− 1

, r).

We say that two paths intersect if they have a common node. We also say that two spiral paths

intersect at level i if they visit the same leader node at level i.

Lemma 5.3.2 For any two nodes u, v ∈ V , their spiral paths p(u) and p(v) intersect at level

min{h, dlog(dist(u, v))e+ 1}.

107

Proof. It is trivial to see that p(u) and p(v) intersect in level h at node r. Suppose ι =

dlog(dist(u, v))e + 1 ≤ h. From the definition of Z from Section 5.3.1, the clusters at level ι

have locality γι = 2ι−1 ≥ dist(u, v). Thus, some cluster X ∈ Zι(u) will contain v. Therefore, the

paths p(u) and p(v) intersect in leader node `(X). ut

5.3.4 Canonical Paths

Figure 5.2: Illustration of a
canonical path.

In the analysis of the distributed directory-based consistency algo-

rithm, we will examine paths which are obtained from fragments

of spiral paths. These paths start at level 0 and are concatena-

tions of shortest paths connecting leaders at successive sub-levels,

where pairs of successive leaders are from clusters of the same

node. One such example is shown in Fig. 5.2 on the right which

depicts a canonical path q with down-pointing arrows between

nodew and node v6 obtained from the fragments of the spiral paths

of nodes u and v. For w the sub-path of q between v4 to v6 is the

fragment of the spiral path of v, the sub-path between u2 to v4 is

the fragment of the spiral path of u, and the sub-path between w

to u2 is the fragment of its own spiral path. We will refer to such

paths as canonical. Formally, we define the canonical paths as follows:

Definition 11 (canonical path) A canonical path q up to sub-level (k, ι) ≤ (h, 1) is of the form

q = s(x0,χ, x1,1, . . . , x1,χ︸ ︷︷ ︸
level 1

, x2,1, . . . , x2,χ︸ ︷︷ ︸
level 2

, . . . , xk,1, . . . , xk,ι︸ ︷︷ ︸
level k

),

such that for any two consecutive nodes xi,j and xnext(i,j), where (0, χ) ≤ (i, j) < (k, ι), there is a

node y ∈ V with xi,j = `i,j(y) and xnext(i,j) = `next(i,j)(y).

We will refer to x0,χ and xk,ι as the bottom and top nodes of q, respectively. The bottom node

is always at level 0. A canonical path can be either partial when the top node is below level h

108

(below the level of the root), or full when the top node is the root r. A spiral path p(u) is a full

canonical path which is derived from Definition 11 by taking y to be equal to u at every sub-level

up to (h, 1). Any prefix of a spiral path is a partial canonical path. We continue to bound the length

of a canonical path when we use the (σ, χ)-labeled cluster hierarchy from Lemma 5.3.1.

Lemma 5.3.3 For any canonical path q up to level k (and any sub-level (k, ι)), length(q) ≤

c32
k+2 log2 n, for some constant c3.

Proof. Consider two consecutive nodes xi,j, xnext(i,j) ∈ q, where (0, χ) < (i, j) < (k, ι). From the

definition of canonical paths, there is a node y ∈ V with xi,j = `i,j(y) and xnext(i,j) = `next(i,j)(y).

Therefore,

dist(xi,j, xnext(i,j)) = dist(`i,j(y), `next(i,j)(y))

≤ dist(y, `i,j(y)) + dist(y, `next(i,j)(y))

≤ diam(Xi,j(y)) + diam(Xnext(i,j)(y))

We explore two cases:

i. next(i, j) = (i, j + 1): clusters Xi,j(y) and Xnext(i,j)(y) are at the same level i. We

have diam(Xi,j(y)) ≤ σγi and diam(Xnext(i,j)(y)) ≤ σγi. Since from Lemma 5.3.1

σ = O(log n), and γi = 2i−1, we get σγi ≤ c12
i−1 log n, for some constant c1. Thus,

dist(xi,j, xnext(i,j)) ≤ c12
i log n.

ii. next(i, j) = (i+1, 1): clustersXi,j(y) andXnext(i,j)(y) are at levels i and i+1, respectively.

We have that diam(Xi,j(y)) ≤ σγi ≤ c12
i−1 log n and diam(Xnext(i,j)(y)) ≤ σγi+1 ≤

c12
i log n. Which gives dist(xi,j, xnext(i,j)) ≤ c1(2

i−1 + 2i) log n ≤ c12
i+1 log n.

We define the following subpaths of q:

qi = s(xi−1,χ, xi,1, xi,2, . . . , xi,χ), for 1 ≤ i < k

qk = s(xk−1,χ, xk,1, xk,2, . . . , xk,ι)

109

When we apply case ii for the first two nodes in qi and case i for the remaining pairs of nodes,

we obtain length(qi) ≤ χc12
i log n. Since from Lemma 5.3.1 χ = O(log n), we have that χ ≤

c2 log n, for some constant c2. Therefore, length(qi) ≤ c1c22
i+1 log2 n. Similarly, length(qk) ≤

c1c22
k+1 log2 n. Finally, we obtain:

length(q) =
k∑
i=1

qi ≤ c1c2(log2 n)
k∑
i=1

2i+1

≤ c1c22
k+2 log2 n ≤ c32

k+2 log2 n,

for some constant c3 = c1c2. ut

5.4 The Spiral Protocol

We present our protocol (Algorithms 6–8) which implements a DTM for shared objects over a

graph G.

5.4.1 Protocol Overview

Consider some shared object ξ. The protocol guarantees that any moment of time only one node

holds the shared object ξ which is the owner of the object. The owner is the only node who can

modify the object (write the object); the other nodes can only access the object for read. Our

protocol provides three basic operations to access ξ:

• publish(ξ): this operation is issued by the creator of ξ when the object is introduced into the

network so that other nodes can find it. Node u becomes the first owner of ξ. Note that the

publish operation is applied only once for ξ when the object is created.

• lookup(ξ): a node issues this operation to obtain a read-only copy of the object from the

owner (without changing the owner).

• move(ξ): a node issues this operation to become the owner of the object in order to be able

to modify it. The object moves from the previous owner to the new, by putting an object

110

copy to the new owner and invalidating the copy from the previous owner. If necessary, a

move operation invalidates also the read-only copies of the previous owner.

The three operations of the protocol are implemented upon a (σ, χ)-labeled cover hierarchy Z

provided by Lemma 5.3.1. Let r be the root node of G as specified by Z . The basic idea is to

maintain a directory path which is a directed path from the root node r to the bottom-level node

that currently owns the shared object ξ. Initially, the directory path is formed from the spiral path

p(u) of the creator node u when it issues the publish(ξ) operation by assigning pointers along the

edges of p(u) directed toward u.

A lookup(ξ) operation issued by a node v uses its own spiral path p(v) which intersects with

the directory path and then leads to the object ξ. Let u be the owner of the object. Let x be

the intersecting node of spiral path p(v) and the directory path to u. The intersecting node x is

guaranteed to exist because in the worst case scenario the paths intersect at the root r. The lookup

is implemented in two phases: (i) in the up phase, a request message is sent from v upward in the

hierarchy Z along the spiral path p(v) towards the root r until the request intersects at a node (i.e.

node x) with the directory path; (ii) in the down phase, the request message follows the directory

path from node x to the object owner; then the owner sends a copy of ξ to v (along some shortest

path).

A move(ξ) operation issued by v is similar to the lookup operation, with the only difference

that it simultaneously modifies the directory path to point toward v. In the up phase, the move

operation sets the directions of the edges in the fragment of p(v) between v and x to point toward

v. In the down phase it deletes the downward pointers (or links) in the fragment of the directory

path from x to u. Now the new directory path points toward v. When the down phase reaches u,

v obtains a copy of the object and invalidates u’s copy. This process has resulted to a canonical

directory path that consists of two spiral path fragments, a fragment of u’s spiral path between r

and x and a fragment of v’s spiral path between x and v. Subsequent move operations may result

into further fragmentation of the directory path into multiple (more than two) spiral path fragments.

111

A downward path is any canonical path whose edges are directed to point down. The directory

path is the only full downward path in the network which has its top node at root r. Move operations

result to the creation of partial downward paths whose top nodes are at levels below r. Partial

downward paths coexist temporarily with the directory path during the up phase or the down phase

of move requests. In the example above, before v’s move request reaches the intersection x there

is a partial downward path to v that coexists with the old directory path to u. In the down phase

after the move request reaches the intersection x there is a partial downward path to u that coexists

with the new directory path to v. These partial downward paths are temporary and last up to the

end of the respective phase, after which only the directory path will exist.

Concurrent lookup and move requests may be served through partial downward paths instead

of the directory path. These requests are queued while the new directory path is being formed.

For example, consider the scenario where a lookup operation is issued by a node w concurrently

with the move operation of v. Suppose also that the lookup and move requests intersect in their

up phase paths before their requests reach the directory path to u. Then the lookup request will

descend down to v through a partial downward path while the move request ascends to x. The

lookup will request the read-only copy of the object ξ from v. However, v may not have the copy

of ξ yet. In this case, w’s request is queued in v and it will be served when v receives ξ.

In the scenario wherew’s operation was a move, then two partial downward paths would coexist

at the same time with the directory path until the up phases of u and v intersect. After that again

two partial paths can coexist until the down phase of w reaches v and before the up phase of v

reaches x. The result is that the move request from w will be queued after v. Similarly, multiple

concurrent move operations temporarily lead to the formation of multiple partial downward paths

to the origins of the requests. The move operations get queued in the origin nodes forming a

distributed queue of move operations. Eventually, every move operation will be served by passing

the object from the current owner at the head of the queue to the next node in the queue.

Last, we want to note that after several move operations the directory path may become highly

fragmented. In such cases a lookup request may not find immediately the directory path to the

112

Algorithm 6: Publish request handling
// y = `i,j(u) is the level (i, j) leader node, x(= `prev(i,j)(u)) is its

child, and parentp(u)(y) is its parent, all in the spiral path p(u)

of the leaf node u.
1 When y receives m = 〈u, up, publish〉 from x:
2 begin
3 y.link = x; // set downward pointer
4 if y is not a root node then
5 send m to parentp(u)(y) ; // continue up phase

shared object ξ, even if the lookup originates near ξ. In order to avoid this situation and guarantee

efficient lookup we introduce the notion of a special parent node, such that whenever a downward

link is formed at a node z the special parent of z is also informed about z holding a downward

pointer. The special parent is selected in such a way that any nearby lookup, close to z will either

reach z or its special parent. The details appear below in the special description of the algorithm.

5.4.2 Detailed Description

We describe Algorithms 6–8 that implement publish, lookup, and move, respectively. We denote

a message m (in the system) by a triple 〈id, phase, type〉, where id ∈ N is the identifier of the

request, phase ∈ {up, down} are the phases, and type ∈ {publish, lookup, move} are the type of

requests.

When a transaction at some node v needs the shared object ξ for read (resp. write) it consults

with the transaction interface of the proxy module first. If the shared object is in the local cache

of that node the proxy immediately provides that object to the transaction. If not, the transaction

interface of the proxy module issues a lookup message m = 〈v, up, lookup〉 (resp. move message

m = 〈v, up, move〉) to the network interface. After this, the network interface handles the lookup

(resp. move) request using Algorithm 7 (resp. Algorithm 8) to fetch the shared object, based on

the type of request it receives from the transaction interface. To publish the created object, if any,

by a node u, the transaction interface simply issues a publish message m = 〈u, up, publish〉 to the

network interface which is then handled by Algorithm 6. The network interface is also responsible

113

Algorithm 7: Lookup request handling
// y = `i,j(v) is the level (i, j) leader node and parentp(v)(y) is its

parent, both in the spiral path p(v) of the leaf node v.
Moreover, x(= `prev(i,j)(v)) is y’s child in the lookup up phase and

x(= `next(i,j)(v)) is y’s parent in the lookup down phase.

1 When y receives m = 〈v, phase, lookup〉 from x:
2 begin
3 if m = 〈v, up, lookup〉 then // lookup up phase
4 if y.link = ⊥ then // link null
5 if y.slink.isEmpty() = True then // y’s slink list is empty
6 sendm to parentp(v)(y);
7 else send 〈v, down, lookup〉 to y.slink.sendFirst() ;
8 else send 〈v, down, lookup〉 to y.link;

9 if m = 〈v, down, lookup〉 then // lookup down phase
10 if y is a leaf node then
11 send the read-only copy of ξ to v and remember v;
12 else sendm to y.link;

for handling transient messages that it will receive from other nodes, besides providing interface

to the local transactions.

Before giving details of Algorithms 6–8, we define notations of parent and special-parent, that

we use in the protocol description. We denote a parent node y of a node x in the spiral path p(u)

of a bottom-level node u as y = parentp(u)(x), where if y = `i,j(u) is the level (i, j) leader of u in

p(u) then x = `prev(i,j)(u). Note that `0,χ(u) = u. The special-parent node is defined as follows:

Definition 12 (special-parent) We denote a special-parent node of y at level (i, j) in the spiral

path p(u) of u as sparentp(u)(y), such that sparentp(u)(y) is the leader node of one of the clusters

X ∈ Zk(u) at level k, where k = i+ 4 + 2 log log n+ log c3, that contains the γk-neighborhood of

y ∈ X . That is, sparentp(u)(y) is some ancestor node of y at level k in the spiral path p(u).

Each node knows its parent and special-parent node in the hierarchy, except the root node,

whose parent and special-parent are both ⊥ (null). A node might have (i) a link towards one of

its children (otherwise it is ⊥); the link at the root is not ⊥, and (ii) a slink towards special-child

node y from its special-parent node sparentp(u)(y) (otherwise it is ⊥). Note that, as a leader node

114

Algorithm 8: Move request handling
// y = `i,j(v) is the level (i, j) leader node, parentp(v)(y) is its parent,

and sparentp(v)(y) is its special-parent, all in the spiral path p(v)
of the leaf node v. Moreover, x(= `prev(i,j)(v)) is y’s child in the
lookup up phase and x(= `next(i,j)(v)) is y’s parent in the lookup down

phase.
1 When y receives m = 〈v, phase, move〉 from x:
2 begin
3 if m = 〈v, up, move〉 then // move up phase
4 oldlink ← y.link; // remember link
5 y.link = x; // set downward pointer
6 sparentp(v)(y).slink.add(y); // Add pointer to y in slink of y’s

special parent
7 if oldlink = ⊥ then
8 sendm to parentp(v)(y); // continue up phase

9 else send 〈v, down, move〉 to oldlink;

10 if m = 〈v, down, move〉 then // move down phase
11 if sparentp(v)(y).slink.has(y) = True then // y is in the slink list
12 sparentp(v)(y).slink.remove(y); // erase pointer of special parent

13 if y is not a leaf node then // is owner not found yet?
14 oldlink ← y.link;
15 y.link ← ⊥;
16 sendm to oldlink; // continue down phase

17 else send the writable copy of ξ to v;
18 invalidate(ξ) from the owner node and the read-only copies from other nodes ;

wk of a particular level k cluster might participate as a special-parent node for several level (i, j)

cluster leader nodes, we maintain a list of special-children for slink at each leader node wk.

Publish request handling. A shared object created at a leaf node u is published by setting each

y.link = x, a single directory path from the root node r to u (Algorithm 6), by visiting each level

clusters in the hierarchy along the spiral path p(u). This operation is served in the up phase only.

For example, Fig. 5.1a shows the object published by v using a publish operation such that there is

a directory path from the root u3 to the leaf node v along p(v).

Lookup request handling. A lookup request can be started by a leaf node v by creating a mes-

sage m of type lookup (Lines 4,11 of Algorithm 7). It is served in two phases (Lines 4−12 of

115

Algorithm 7). In the first phase (Lines 4−8), called up phase, the parent nodes (i.e., y) at increas-

ing levels are probed until a non-null directory path is found along the spiral path of the requesting

node v (Lines 4−6). At each level (i, j), x initiates a probe to its parent node y. If the probe finds

no directory path in parent node (i.e., link of y is null and slink list is empty) at that level (i, j), it

repeats the process at the next higher level immediately above level (i, j). If the probe discovers

a directory path, then the second phase, called down phase, starts (Lines 11−12); directory path

pointers are followed to reach the leaf node that either holds the object or will hold the object soon

(Line 12). Note that if the directory path is discovered in y’s slink list, then the path formed by the

first non-null link node is followed (Line 7). As soon as ξ becomes available, a read-only copy of

ξ is sent directly to v and v is included in the owner node’s list of nodes which has the read-only

copy of ξ (Line 13).

Move request handling. Similar to lookup, a move request can be started by the leaf node u

by creating a message m of type move (Lines 16,22 of Algorithm 8) The move operation also

operates on two phases (Lines 16−18 of Algorithm 8). In the up phase (Lines 16−9), the request

probes the parent nodes at increasing levels on the spiral path p(v) until non-null directory path is

found (Lines 7−9). While probing upward, the pointer from the leader node at level (i, j) is set

to point the leader node at level immediately lower than level (i, j) (Lines 4,5). This information

is also forwarded to special-parent node sparentp(v)(y) for the use of it in lookup operation (Line

6). For the down phase (Lines 22−18), when the request finds a downward path at level (i, j),

it first erases the information stored at sparentp(v)(y), redirects its link to the leader node x, and

descends to the child pointed by the new link (Lines 12−13). The request then follows the chain

of downward pointers, setting each one to null, until it arrives at owner node (Line 17). This owner

node either has the object ξ, or is waiting for it. When the object ξ is available, it is sent directly

to the requested node v (Line 17), invalidating the local copy at the owner node and the read-only

copies from other nodes (Line 18). Figs. 5.1b−5.1h show one complete move operation issued by

node v for the object that is currently owned by node v.

116

Note that at any time a request locks at most one node along the spiral path or a downward

path. The special parent node doesn’t need to be locked because only one specific slink needs

to be updated without the need to lock the whole list of special links. We observe that it may

be the case that the node y is participating as a cluster leader on many sub-level clusters. That

is, sometimes y may be the leader node of level (i, j) and level next(i, j) clusters in p(v). In

such cases, to provide consistent data structures for different level operations, we add a duplicate

node of y for each level it is participating as a cluster leader and create a virtual link between the

duplicate and y itself in subsequent clusters.

5.5 Analysis of Spiral Protocol

We continue with the correctness proof of Spiral (Section 5.5.1) and give the performance analysis

of publish and lookup requests (Section 5.5.2). We then focus on the performance analysis of move

requests in sequential executions (Section 5.5.3). We then give the performance analysis of move

requests in concurrent executions (Section 5.5.4).

5.5.1 Correctness

We first show that our protocol guarantees that every request will be served within finite time (no

starvation) and the queue of successor requests for the shared object form a list (with no cycle).

We then focus on proving the existence of a directory path from the root to a leaf node at any

configuration. We extend the correctness results of Ballistic and Combine from [10, 77] and use

them to prove the correctness of Spiral.

In the Spiral protocol, a request from a node v will be served as soon as v receives a copy of the

object, which is read-only copy in case of a lookup request. A DTM protocol should be responsive

so that every request issued by any node at any time is eventually served [77]. Overtaking can

happen in Spiral when satisfying concurrent moves: a node v may issue a move operation at a

later time than a node w, yet v’s move request may be ordered before w’s move request if v is

117

closer to the object than w. Nevertheless, we show that such overtaking can occur only during a

bounded window of time, implying that every move request eventually completes.

As we assume FIFO communication between nodes, no multiple move requests can arrive at

the owner node simultaneously because a move follows a path of pointers that it immediately

removes. This holds when no new move request is issued from a node that is waiting for the object

or that owns the object. In this setting, we can also observe that: (i) a move request can not be

passed by another move request; and (ii) a move request generated by some node v does not visit

the same node twice.

Lets denote by TF the time for a move request to go upward from a leaf node v (requesting

node) to the lowest common ancestor of v and a owner node u in the hierarchy Z following v’s

spiral path, and then down to u (or vice versa). Similarly, lets denote by TM the time needed for an

object to reach its requesting node from the owner node. These parameters are network-specific but

finite, because requests are never blocked to reach from the requesting node to the owner node and

vice versa. We assume that TM also includes the time needed to invalidate existing read-only copy

before moving a writable copy and the delay imposed by the contention manager in responding to

the conflicting successor transaction request. In this setting, Herlihy and Sun [77] proved that, in

their protocol Ballistic, every move request is satisfied within time n · TF + n · TM from when it is

generated (no starvation) [77, Theorem 1]. As a corollary, they prove that if a request r is generated

at time t, then all requests generated after time t + n · TF will be ordered after r; all requests

generated prior to time t − n · TF will be ordered before r (bounded overtaking) [77, Corollary

1]. Moreover, they prove that there exists no set of finite number of requests R = {r1, r2, · · · , rf}

whose successor links form a cycle (no cycle) [77, Lemma 1].

As our protocol also satisfies these aforementioned properties, we can obtain the following

symmetric result for Spiral:

Lemma 5.5.1 (responsiveness) Spiral is (i) starvation-free; (ii) overtaking of requests can occur

only during a bounded window of time; and (iii) there exists no set of finite number of requests

R = {r1, r2, · · · , rf} whose successor links form a cycle.

118

We now proceed with establishing the existence of a directory path from the root node to a

leaf node at any configuration of the system. Let C0 be the state after some owner node u finished

publish operation (Algorithm 6) but before any node issues a move or a lookup request. The

following result is straightforward:

Lemma 5.5.2 At initial configuration, there is a directory path from the root to a leaf node.

Thus, the root node has a downward link which is not null at initial configuration. As the initial

directory path is changed only by move requests, we proceed with the analysis considering that

move requests are the only requests in the system. The root will always have a downward link

even if subsequent move requests change it. The proof of Attiya et al. [10, Theorem 1] states that

if there is a downward link at some node v, then there is a downward path from v to a leaf node.

As Spiral also maintains the downward links in similar way, the result below follows immediately

from Lemma 5.5.2, since there is always a downward link at the root.

Lemma 5.5.3 (directory path) At any configuration, there is a directory path from the root node

to a leaf node.

Recall that partial downward paths may temporarily coexist with the directory path during the

up and down phase of move requests but these paths are temporary and last up to the end of the

phase. Thus, we can make the following observation.

Observation 1 At quiescent configuration, all partial downward paths disappear except a direc-

tory path from the root to a leaf node.

5.5.2 Performance of publish and lookup Requests

Theorem 5.5.4 (publish cost) The publish operation has communication cost O(D · log2 n).

Proof. Note that the publish operation adds links on the publishing leaf node’s spiral path towards

the root. The theorem immediately follows from Lemma 5.3.3, by noticing that the number of

levels in the hierarchy h = dlogDe+ 1, and that a spiral path is trivially a canonical path. ut

119

We now focus on the stretch for the lookup operation. Lets assume that, af-

ter a node v finished publish operation, some node w issues a lookup request r

for the shared object ξ at v and there is no other lookup request in the system.

Figure 5.3: Special-parent.

If there is no move request in the system, it is trivial to

see that a lookup request r from w finds the directory

path to the owner node v, at level dlog(dist(w, v))e+1

(Lemma 5.3.2), following the spiral path p(w), where

dist(w, v) is the distance of the owner node v from the

requesting node w. When there are move requests in

the system, they change the ownership of the shared

object according to their arrival at the owner node.

When searching for the object, directory path to the

node that issued move request is formed from the frag-

ments of spiral paths of the nodes that previously owned the object. In this scenario, the lookup

request r from w may not find the directory path to the shared object at level dlog(dist(w, v))e+ 1

because the directory path to v might be deformed significantly such that the 2(dlog(dist(w,v))e+1)-

neighborhood of w has no information about the owner node v. Nevertheless, we guarantee that

every lookup request finds the directory path not much higher than level dlog(dist(w, v))e + 1.

Particularly, we prove that every lookup request issued by some node w for the shared object ξ at

some owner node v at distance dist(w, v) ≤ 2i will find the slink towards the directory path to v

at some level k in the spiral path p(w), where k = i+ 4 + 2 log log n+ log c3.

Lemma 5.5.5 If a node w issues a lookup request r for the shared object ξ currently owned by a

node v which is at distance dist(w, v) ≤ 2i far from w, the spiral path p(w) is guaranteed to either

intersect with the directory path to v or find a slink to the directory path for the object at level at

most k, where k = i+ 4 + 2 log log n+ log c3.

Proof. As shown in Figure 5.3, lets assume that vi is the level i leader node in the canonical

directory path q towards the owner node v and qi is q’s fragment up to level i. Assume also that

120

x = `(X) is the leader of the cluster X at level k = i+ 4 + 2 log log n+ log c3, which has a slink

information to vi (set by some move request following Algorithm 8), as in Definition 12. For a

lookup request r issued by w to find the slink to vi, X must include w, since the spiral path p(w)

of w visits the leaders of all clusters that contain it.

It suffices to show that the locality γk = 2k−1 of X is at least the distance dist(vi, w) between

vi and w to guarantee that X contains w. As length(qi) ≤ c32
i+2 log2 n (Lemma 5.3.3) and

dist(w, v) ≤ 2i, dist(vi, w) is bounded by:

dist(vi, w) ≤ length(qi) + dist(w, v) ≤ c32
i+2 log2 n+ 2i

≤ c32
i+3 · log2 n ≤ 2log c3 · 2i+3 · 2log log2 n

≤ 2i+3+log log2 n+log c3 ≤ 2i+3+2 log logn+log c3

≤ 2k−1 = γk,

as needed. ut

Next, we will bound the stretch of Spiral for lookup, stretchSpiral,lookup = C(r)/C∗(r), where

C(r) is the total communication cost of serving a lookup request r using the Spiral protocol and

C∗(r) is the optimal cost of serving r using the optimal algorithm.

Theorem 5.5.6 (lookup stretch) The stretch of Spiral for a lookup operation is

stretchSpiral,lookup = O(log4 n).

Proof. From Lemma 5.5.5, as a lookup request r from w for the shared object at owner node v

is guaranteed to find a slink to the directory path q towards v at level at most k, the length of the

spiral path pk(w) up to level k is bounded by length(pk(w)) ≤ c32
k+2 log2 n (Lemma 5.3.3), as

a spiral path is trivially a canonical path. Similarly, length(qi) ≤ c32
i+2 log2 n, where qi is the

canonical path of v up to vi, the level i leader in q. From the locality property of X(∈ Zk(w))

(Lemma 5.5.5), dist(x, vi) ≤ σγk ≤ c2k−1 log n, since σ = O(log n) and γk = 2k−1 as of Lemma

121

5.3.1. Therefore, the total cost of Spiral, C(r), for the lookup request r (after substituting k by

i+ 4 + 2 log log n+ log c3) is bounded by:

C(r) = length(pk(w)) + dist(x, vi) + length(qi)

≤ c32
k+2 log2 n+ c2k−1 log n+ c32

i+2 log2 n

≤ c32
k+3 log2 n ≤ c32

(i+4+2 log logn+log c3)+3 · log2 n

≤ 128 · (c3)2 · 2i · 22 log logn · log2 n

≤ 128 · (c3)2 · 2i · 2log log2 n · log2 n

≤ 128 · (c3)2 · 2i · log2 n · log2 n

≤ 128 · (c3)2 · 2i · log4 n.

As w and v are dist(w, v) ≤ 2i apart, the optimal communication cost for the optimal protocol is

at least bounded by C∗(r) ≥ 2i−1 for the lookup request r to get the shared object at v following

the shortest path between w and v in G. Hence, the lookup stretch for Spiral is,

stretchSpiral,lookup =
C(r)

C∗(r)
≤ 128 · (c3)2 · 2i · log4 n

2i−1
= O(log4 n),

as needed. ut

5.5.3 Performance of move Requests in Sequential Executions

We give the performance analysis of Spiral in sequential executions. As move requests do not

overlap with each other in sequential executions, the system attains quiescent configuration after

a request is served and until a next request is issued for the shared object, i.e. a next request will

be issued only after the current request finishes. We perform the following execution setup: Lets

define a sequential execution of a set E of l + 1 requests E = {r0, r1, · · · , rl}, where r0 is the

initial publish request and the rest are the subsequent move requests (we do not include lookup

122

Figure 5.4: Illustration of a sequential execution.

operations in E since they do not add or remove links in the directory, and hence do not impact the

performance of other move or lookup operations).

We define a two-dimensional array of size h+ 1× l+ 1 to help prove the stretch, where h+ 1

and l + 1 are the number rows and columns, respectively. Moreover, we denote the h + 1 rows as

{row 0, row 1, · · · , rowh} , and the l + 1 columns as {col0, col1, · · · , col l}. All the locations of the

array are initially empty (⊥) and [0, 0] is assumed to be the lower left corner element and [h, l] be

the upper right corner element.

Each col i, 0 ≤ i ≤ l keeps track of the levels visited by each request ri in the hierarchy Z

while searching for the object. The peak level for a request ri is the maximum level reached by

ri in Z . As E starts with r0, the publish request, the peak level reached by r0 is h, the maximum

level in Z , and r0 is registered at all the locations of col0 starting from col0[0] to col0[h]. For each

non-initial request (i.e., the move request) ri ∈ E , i > 0, issued by some node v, we keep track of

it by registering at all the locations from 0 to k of col i till the request sees the directory path at the

leader node of some cluster at its peak level k in the spiral path p(v). We have that k ≤ h.

123

An example for one such execution of requests in E is given in Fig. 5.4, where x, u, · · · , w in

the horizontal axis are l + 1 requests in E and 0, 1, · · · , h in the vertical axis are the levels. The

entries in the first column are from the publish request r0 ∈ E issued by a leaf node x that reached

to level h (following Algorithm 6). The entries in the rest of the columns are from move requests

r1 to rl when registering them in all the locations of the respective columns according to the peak

level they reached while searching for the object in the up phase (following Algorithm 8).

LetC∗(E) denote the total communication cost of serving all the requests in E using the optimal

algorithm. Let C(E) denote the total communication cost of serving all the requests in E using

the Spiral protocol. We will bound the stretch stretchSpiral,sequential = maxE C(E)/C∗(E). For

simplicity, in the stretch analysis, we consider only the cost incurred by the up phase of each move

request. When we consider also the cost incurred by the down phase of each request, the stretch

increases by a factor of 2 only.

We proceed with the necessary definitions that we use in the performance analysis (particularly,

in the proofs of Lemmas 5.5.7 and 5.5.8) given below. For any c, d, 0 ≤ c < d ≤ l, we define

a valid pair W j
(c,d) of two non-empty entries in row j, 0 ≤ j ≤ h, as W j

(c,d) = (row j[c], row j[d]),

such that row j[c] 6= ⊥ and row j[d] 6= ⊥, and ∀e, c < e < d, row j[e] = ⊥. In other words, W j
(c,d) is

a pair of two subsequent non-empty entries in a row. For example, as shown in Fig. 5.4, W k
(0,1) is

not a valid pair, but W k
(0,2) is a valid pair because the entry between location 0 and 2 is ⊥ in rowk.

Moreover, we denote by Sj the total count of the number of entries row j[i], 0 ≤ i ≤ l, such

that row j[i] 6= ⊥, and by Wj the total number of pairs W j
(c,d) in it. We have that Wj = Sj − 1. For

example, if we consider only the five requests listed in Fig. 5.4 at rowk, Sk = 3 and Wk = 2. Note

also that there are at most Sj = l entries and Wj = l − 1 pairs in each row j, 0 ≤ j ≤ h, for E .

Lemma 5.5.7 For the sequential execution E , C∗(E) ≥ max1≤k≤h(Sk − 1)2k−1, where h =

dlogDe+ 1.

Proof. Denote by C∗k(E) the optimal communication cost of the optimal protocol for all the

requests in E that reach level k in the hierarchy Z , while probing for the shared object in their up

124

phase. According to the execution setup, Sk are the number of requests in E that reach level k,

and Wk are the total number of valid pairs at that level. It is known from Lemma 5.3.2 that, if the

spiral paths p(u) and p(v) of any two requests ri and ri+1 issued by the leaf nodes u and v intersect

at level k, dist(u, v) ≥ 2k−1, since otherwise their spiral paths would intersect at level k − 1 or

lower. Therefore, the optimal communication cost C∗k(E) is bounded by at least the total distance

between the Wk valid pairs of requests at level k, i.e., C∗k(E) ≥ Wk · 2k−1 ≥ (Sk − 1) · 2k−1, as

Wk = Sk−1. Considering all the levels from 1 to h, it is safe to say that the optimal communication

cost, C∗(E), is bounded by at least the maximum over C∗k(E), 1 ≤ k ≤ h. Therefore, C∗(E) ≥

max1≤k≤hC
∗
k(E) ≥ max1≤k≤h(Sk − 1) · 2k−1. We do not consider cost for level 0 in optimal cost

because there is no communication that reaches that level. ut

Lemma 5.5.8 For the sequential execution E , C(E) ≤
∑h

k=1 c3(Sk − 1)2k+2 log2 n, where h =

dlogDe+ 1.

Proof. Similar to Lemma 5.5.7, denote by Ck(E) the total communication cost of Spiral for all

the requests in E that reach level k in the hierarchy Z , while probing the shared object in their up

phase. According to the execution setup, Ck(E) is at most the total communication cost for serving

Sk requests in E that reach level k using Spiral. It is known from Lemma 7.2.2 that the total

communication cost for each request that reaches level k in the hierarchy Z is bounded by at most

c32
k+2 log2 n. Since, in rowk, there are Sk − 1 non-initial requests that reach level k, we have that

Ck(E) ≤ (Sk − 1)c32
k+2 log2 n. By combining the costs for each levels, the total communication

cost of Spiral is bounded by C(E) =
∑h

k=1Ck(E) ≤
∑h

k=1 c3 · (Sk − 1) · 2k+2 · log2 n, in the

worst-case. We do not consider communication cost for level 0 in total cost because there is no

communication that reaches that level. ut

We now give the central result of the sequential analysis:

Theorem 5.5.9 (move stretch in sequential executions) The stretch of the Spiral protocol is

stretchSpiral,sequential = O(log2 n · logD) for sequential executions.

125

Proof. Since the execution E is arbitrary, we obtain, from Lemmas 5.5.7 and 5.5.8, the stretch of

the Spiral protocol bounded by

stretchSpiral,sequential ≤
C(E)

C∗(E)

≤
∑h

k=1 c3(Sk − 1)2k+2 · log2 n

max1≤k≤h(Sk − 1) · 2k−1

≤ 8c3 log2 n
∑h

k=1(Sk − 1) · 2k−1

max1≤k≤h(Sk − 1) · 2k−1

≤ 8c3 log2 n · h ·max1≤k≤h(Sk − 1)

max1≤k≤h(Sk − 1)

≤ 8c3 log2 n · h

≤ 8c3 log2 n · (dlogDe+ 1)

= O(log2 n · logD),

as h = dlogDe+ 1. ut

5.5.4 Performance of move Requests in Concurrent Executions

The performance analysis of Spiral given in Section 5.5.3 is valid only for sequential executions

and does not apply to concurrent executions because the adversary is not allowed to gain by order-

ing concurrent requests in a smarter way. A sequential execution assumes that the Spiral protocol

and the optimal algorithm would queue requests in the same order. However, a concurrent execu-

tion can change the order and hence affect the performance. In this section, we study the following

one-shot instance of the concurrent execution: At time t, as soon as a node finished publishing a

shared object ξ using a publish operation started at time 0, R ⊆ V of nodes issue a move request

each concurrently and no further requests occur. We calculate the total communication cost of all

the requests including the publish operation (similar as of Section 5.5.3) to provide the stretch in

one-shot situation.

126

For the performance analysis we assume that the network model is synchronous (the protocol

does not require synchrony for correctness) along with the assumptions of Section 5.2. We assume

that a time unit is of duration required for a message send by a node to reach a destination node that

is a unit distance far from it. We define for level i period of time duration Φ(i) = 4c32
i log2 n, 0 ≤

i ≤ h (Lemma 5.3.3), i.e., the longest distance traversed in level i (including sub-levels) following

the canonical (or spiral) path. Moreover, the Φ(·) are aligned in such a way that Φ(i) and Φ(i− 1)

starts at the same time, i.e., two periods of duration Φ(i − 1) can be perfectly accommodated at

a level i period Φ(i). We assume also that all requests proceed in rounds. A round is of duration

Φ(h), where h = dlogDe + 1, and it has h overlapping aligned periods. In a round, there is 1

period for level h, 2 periods for level h − 1, 4 periods for level h − 2, and so on, so that there are

2h−k periods for level k. In a period, each leader node in the canonical path (or spiral path) can

exchange a message with each of its neighbors (parents or children). A leader node wi,χ of the

highest sub-level cluster at level i in a spiral path p(w) forwards the request to a leader node wi+1,0

of the lowest sub-level cluster at level i+ 1 at the end of its phase Φ(i). Similarly, any request that

arrives to a leader wi,j of a sub-level j cluster at level i is processed during Φ(i) and sent to higher

sub-level cluster towards wi,χ.

We proceed with a short description of the execution of concurrent requests: At time zero, a

node issues a publish operation r0 to publish the object. As soon as the publish operation r0 finishes

at time t, l nodes issue one move request each concurrently, namely R = {r0, r1, r2, · · · , rl} (we

include r0 ∈ R for convenience). All the l non-initial requests are forwarded to their parent nodes

at level 1 at the end of period Φ(0), following their spiral paths. When level 1 cluster leaders in

the respective spiral paths of the requesting nodes receive one request each, they simply forward it

to the parent node at level 2 at the end of period Φ(1); if two requests are received at level 1, one

will be forwarded to the parent node at level 2 following the spiral path of the forwarded request,

while the other request will be “deflected” down to level 0 along the directory path formed by the

previous request that was forwarded to level 2. For more than 2 requests, the above scenario occurs

repetitively.

127

Similar to Section 5.5.3, lets denote by C∗(R) the total communication cost of the opti-

mal algorithm to serve all the requests in R, and by C(R) the total communication cost of the

Spiral protocol to serve those requests, in concurrent executions. We will bound the stretch

stretchSpiral,concurrent = maxRC(R)/C∗(R). For simplicity, we consider only the cost incurred

by the up phase of each request; if we consider also the cost incurred by the down phase, the stretch

increases by a factor of 2 only.

Moreover, similar to Section 5.5.3, lets say Qk, 0 ≤ k ≤ h, where h = dlogDe + 1, are the

total number of requests in R (including the publish operation r0) that reach level k, following

their spiral paths, while searching for the directory path towards the shared object.

Lemma 5.5.10 In concurrent execution R, for the Qk requests that reach level k in the hierarchy

Z , C∗(R) ≥ max1≤k≤h |Qk − 1| · 2k−1, where h = dlogDe+ 1.

Proof. We can observe that the optimal ordering of the concurrent requests is related to the

Steiner tree problem [110], i.e., the Steiner tree of the source nodes of Qk whose requests reach

level k is a lower bound for C∗k(R). As any pair in Qk has source nodes u and v with distance

at least dist(u, v) ≥ 2k−1 (Lemma 5.3.2), the cost of the Steiner tree to cover all Qk requests

is at least |Qk − 1| · 2k−1. Therefore, C∗k(R) ≥ |Qk − 1| · 2k−1. Considering all the levels

from 1 to h, it is safe to say that the optimal communication cost of the optimal algorithm is

at least bounded by the maximum cost of the Steiner tree over C∗k(R), 1 ≤ k ≤ h. That is,

C∗(R) ≥ max1≤k≤hC
∗
k(R) ≥ max1≤k≤h |Qk − 1| · 2k−1, where h = dlogDe+ 1, as needed. ut

As we know from Lemma 5.3.3 that total communication cost for each request that reaches

level k in Z is bounded by c32k+2 log2 n (i.e., the canonical path length up to level k), we have

that, for Qk requests that reach level k, Ck(R) ≤ |Qk−1| · c32k+2 log2 n, the cost of Spiral for that

level, as there are |Qk − 1| non-initial requests. For all the levels from 1 to h, from the arguments

similar as of Lemma 5.5.8, we can immediately have the following lemma for C(R):

Lemma 5.5.11 In concurrent execution R, for the Qk requests that reach level k in the hierarchy

Z , C(R) ≤
∑h

k=1 c3 · |Qk − 1| · 2k+2 log2 n, where h = dlogDe+ 1.

128

Now we give the central result of the concurrent analysis. It follows immediately from a proof

similar to Theorem 5.5.9.

Theorem 5.5.12 (move stretch in concurrent executions) The move stretch of the Spiral proto-

col is stretchSpiral,concurrent = O(log2 n · logD) for concurrent executions.

5.6 Experiments

Motivated from the nice theoretical performance guarantees of Spiral in serving move and lookup

operations, we now aim to investigate how these properties translate in real world through a thor-

ough experimental evaluation. For the experimental evaluation, we adapt the Erdős-Rényi model

[47] and generate random graphs of different sizes, ranging from 10 nodes to 2,000 nodes. Partic-

ularly, we use the G(n, ρ) variant of the Erdős-Rényi model [47] where a graph G is constructed

connecting nodes randomly such the each edge is included in G with probability 0 < ρ < 1

independent from every other edge. The graphs we use in the experiments are generated setting

p = 0.5. The weight of each edge is also chosen independently from the weight of every other edge

at random from 1 to 10. The results are presented and analyzed for move and lookup operations

on a single shared object. We defer the multiple objects experimentation for future work; however,

if we assume that a node can issue a request for another object only after its current request for an

object finishes, the results for a single object extend also to multiple objects. The object operations

(move and lookup) are generated uniformly at random in the sense that a bottom-level node which

issues a request is selected randomly among the available nodes of the graph every time a request is

issued. We implement Spiral in sequential, one-shot, and dynamic executions of move and lookup

operations ranging from 10 to 10,000 operations. Since Arrow uses a pre-selected spanning tree

and Spiral uses a hierarchical directory Z constructed in Section 5.3, we also implement Arrow

[43] for the performance comparison of Spiral. We first initialize Z for the object by creating a

downward path from the root to a bottom-level node through a publish operation.

The performance of the protocols Spiral and Arrow is measured with respect to the commu-

nication cost. We measure the total communication cost through the sum of the weights of the

129

 0

 2

 4

 6

 8

 10

 12

 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral
Spiral(50)
Spiral(20)

Figure 5.5: Performance of Spiral for sequential and dynamic move operations in a random net-
work of 128 nodes. Lower is better.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral
Spiral(50)
Spiral(20)

Figure 5.6: Performance of Spiral for sequential and dynamic move operations in a random net-
work of 512 nodes. Lower is better.

edges the requests traverse following the protocols to reach their predecessor nodes. The optimal

communication cost is measured with respect to the sum of the weights of the edges the requests

must traverse if they would have asked to follow shortest paths in G to reach predecessor nodes.

We then compare the total communication cost with the optimal communication cost and present

the results in terms of competitive ratio. The results presented in this section are the average of 10

experiments. For the experiments, we assume that the execution proceeds in steps such that every

node can receive, process, and send a message in each step. In the figures, we denote by Spiral a

sequential execution, and by Spiral(t) a dynamic execution in which a new move request is gener-

130

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral(0)

Figure 5.7: Performance of Spiral for one-shot concurrent move operations in a random network
of 512 nodes. Lower is better.

 0

 2

 4

 6

 8

 10

 12

 14

 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral
Arrow

Figure 5.8: Performance comparison of Spiral and Arrow for sequential move operations in a
random network of 128 nodes. Lower is better.

ated in every t steps from a randomly chosen node in the graph. Therefore, Spiral(0) denotes an

one-shot execution.

We start with the performance of Spiral for a set move operations in sequential and dynamic

executions. Figs. 5.5 and 5.6 show the performance of Spiral in executing 10 to 10,000 move oper-

ations in random networks of 128 nodes and 512 nodes, respectively. The results show that Spiral

performs slightly better in terms of communication cost when there are large number of active

move requests at each step of the execution. Fig. 5.7 shows the performance of Spiral in executing

10 to 500 move operations in a random network of 512 nodes when all of them are issued at the

131

 0

 5

 10

 15

 20

 25

 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Spiral
Arrow

Figure 5.9: Performance comparison of Spiral and Arrow for sequential move operations in a
random network of 512 nodes. Lower is better.

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Arrow
Spiral

Figure 5.10: Performance comparison of Spiral and Arrow in the worst-case scenario of the se-
quential execution of move operations in a ring network of 128 nodes. Lower is better.

same time step and no further requests are issued thereafter. The reason behind better performance

in this one-shot execution, comparing to sequential and dynamic scenarios given in Fig. 5.6, is that

downward paths become less deformed when requests are issued concurrently so that requests can

be served visiting only the lower levels of the hierarchy minimizing the communication cost.

We are now interested to see how the performance of Spiral compares with the performance of

Arrow. This comparison is interesting in the sense that Arrow uses a spanning tree that is different

from the overlay structure used by Spiral. The performance comparison of Spiral and Arrow for

10 to 10,000 sequential move operations in a random network of 128 nodes is given in Fig. 5.8.

132

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of move operations

Arrow
Spiral

Figure 5.11: Performance comparison of Spiral and Arrow in the worst-case scenario of the se-
quential execution of move operations in a ring network of 512 nodes. Lower is better.

Similarly, Fig. 5.9 shows the results in a random network of 512 nodes for the same set of move

operations of Fig. 5.8. The results show that Spiral performs 1.12 – 1.65 times better in a 128

nodes network and 1.1 – 1.57 times better in a network of 512 nodes in comparison to Arrow. The

comparable performance of Spiral and Arrow is due to the fact that the model that we used for

generating random network allows for low cost spanning tree.

Figs. 5.8 and 5.9 showed that the performance of Arrow is comparable to Spiral, despite the

use of a spanning tree, in random networks generated using the Erdős-Rényi model [47]. There-

fore, we are now interested to see how Spiral and Arrow perform in ring networks. We generated

two ring networks of size 128 and 512 nodes, respectively, and ran Spiral and Arrow. We assumed

a worst-case scenario in which Arrow needs to serve the sequence of move requests that are is-

sued alternatively by the nodes that are the leaves of the spanning tree of the ring network. The

comparison results from this study are given in Figs. 5.10 and 5.11. As shown in Fig. 5.10, the

competitive ratio of Spiral is approximately 6 times better in comparison with the competitive ratio

of Arrow in the ring network of 128 nodes. Note that the edge weights of the ring networks were

assigned randomly at uniform from 1 to 10 independently of every other edge. Similarly, in the

ring network of 512 nodes, Spiral is approximately 9 times better in comparison to Arrow. This

is because every request needs to go through the root node of the spanning tree most of the times

133

 0

 2

 4

 6

 8

 10

 200 400 600 800 1000

Lo
ok

up
 c

om
pe

tit
iv

e
ra

tio

Number of lookup operations

Spiral
Spiral(20)

Figure 5.12: Performance of Spiral for sequential and concurrent lookup operations in a random
network of 128 nodes. Lower is better.

 0

 2

 4

 6

 8

 10

 12

 14

 200 400 600 800 1000

Lo
ok

up
 c

om
pe

tit
iv

e
ra

tio

Number of lookup operations

Spiral
Spiral(20)

Figure 5.13: Performance of Spiral for sequential and concurrent lookup operations in a random
network of 512 nodes. Lower is better.

to reach the predecessor node using Arrow, however, in Spiral, the predecessor node is found in a

level that is proportional to the shortest distance between the requesting and the predecessor node.

We now study the performance of Spiral in serving lookup operations. We compare the results

for Spiral when lookups are not overlapped with move requests in a sequential execution of move

requests and when looks are overlapped with move requests in a dynamic execution of move re-

quests that are issued in every 20 steps. Fig. 5.12 shows the results of this study in executing 50 to

1,000 lookup operations in a random network of 128 nodes. We executed a lookup operation after

every 10 move operations while running move operations of Figs. 5.5 and 5.6. The results for a

134

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 400 800 1200 1600 2000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Number of nodes

Spiral
Spiral(20)

Figure 5.14: Performance of Spiral for 1,000 sequential and dynamic move operations in random
networks of size ranging from 10 to 2,000 nodes. Lower is better.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 400 800 1200 1600 2000

Lo
ok

up
 c

om
pe

tit
iv

e
ra

tio

Number of nodes

Spiral
Spiral(20)

Spiral(0)

Figure 5.15: Performance of Spiral when a lookup operation is issued with non-overlapping and
overlapping move operations in random networks of size ranging from 10 to 2,000 nodes. Lower
is better.

similar setting in a random network of 512 nodes is given in Fig. 5.13. The performance of Spiral

is slightly worse in the dynamic execution in comparison to its performance in the sequential exe-

cution. The slight increase in cost is due to the forwarding of the lookup requests to special-child

nodes that lose their link pointers due to concurrent move operations while lookups are in transit.

However, the impact in performance is very low.

We are also interested to see how the performance of Spiral changes with the network size

in both sequential and dynamic executions. We give some results in this scenario in Fig. 5.14

135

for 1,000 move operations in the randomly generated networks of size ranging from 10 to 2,000

nodes. The results show that the difference in performance of Spiral increases with the increase in

the network size. The results for a lookup operation in the similar setting as of Fig. 5.14 is given

in Fig. 5.15. The results for Spiral(0) in Fig. 5.15 are for the setting where a lookup operation

is issued by a node concurrently with n/2 one-shot move requests. Fig. 5.15 shows that Spiral

achieves the best performance for a lookup operation in non-overlapping executions. Moreover, in

overlapping scenarios, the increase in competitive ratio depends with the number of active move

requests at any step of execution. In summary, these results show that Spiral achieves scalable

performance in different size networks.

5.7 Summary and Discussions

In this chapter, we considered the problem of implementing transactional memory in large-scale

distributed networked systems, where processors are placed in the nodes of a general network

and communicate through a message passing environment. We presented and analyzed a novel

directory-based DTM protocol, called Spiral, for shared objects, designed for the distributed data-

flow implementation of software transactional memory on large-scale distributed networked sys-

tems. The protocol supports both shared and exclusive access to items, by providing lookup and

move operations, respectively, and also the publish operation to publish the created object. This

protocol is based on efficient hierarchical directory construction based on sparse covers with ap-

propriately defined locality parameters. The total ordering imposed among the clusters at same

level and also the clusters at different levels tolerates race conditions while serving concurrent re-

quests. To the best of our knowledge, Spiral is the first DTM protocol for distributed transactional

memory that achieves poly-logarithmic stretch in general networks.

With this work, we are left with several intriguing directions for future work. First, Spiral can

be extended to accommodate non-FIFO communication and tolerate unreliable communication

links by adapting some of the techniques used in the Combine protocol [10]. Second, we analyzed

Spiral for the batch set of sequential and concurrent requests for a single shared object, a natural

136

extension is to consider multiple shared objects, dynamic processing of incoming requests, and

the respective competitive performance analysis. Third, similar to the previous proposals [10, 43,

77, 143], we assumed full knowledge of the participating nodes, or equivalently, we assumed the

static physical network. When nodes enter or leave the physical network, it may be necessary

to rebuild the hierarchy. One natural direction is to extend Spiral for dynamic networks, where

nodes join and leave over time. Fourth, a self-stabilizing algorithm (similar to [137]) can also be

designed for Spiral as fault-tolerance is an important issue in distributed setting because if the

node that is currently holding a shared object crashes, that object will become unavailable. At last,

our theoretical analysis can be complemented by studying the experimental performance of Spiral

on various networks and also comparing the performance experimentally with prior distributed

consistency protocols, e.g., [10, 43, 77, 143].

137

Chapter 6
Distributed Systems: Dynamic Analysis
Framework

6.1 Introduction

In this chapter1, we present a novel analysis framework for distributed hierarchical directories for

an arbitrary set of dynamic (online) requests. In order to analyze distributed hierarchical directo-

ries, we model the network as a weighted graph, where graph nodes correspond to processors and

graph edges correspond to communication links between processors. The hierarchical directories

are constructed based on some well-known clustering techniques (e.g., sparse covers, maximal in-

dependent sets) where network nodes are organized into h+1 levels. In every level, we select a set

of leader nodes; higher level leaders coarsen the lower level set of leaders. The leader nodes can

be selected arbitrarily at the construction of the hierarchy. At the bottom level (level 0) each node

is a leader, while in the top level (level h) there is a single special leader node called the root.

We consider an execution of an arbitrary set of dynamic (online) requests, e.g. publish, lookup,

and move, which are initiated at arbitrary moments of time by any (bottom level) node. In our

analysis, the goal is to minimize the total communication cost for the request set. Previously,

a dynamic analysis approach is given for spanning tree based implementations Arrow [89] and

Relay [145]. Note that this approach can not be directly extended to analyze distributed direc-

tories that are based on well-known hierarchical clustering techniques, e.g. Ballistic [77], Spiral

[129], STALK [42], and LLS [1]. Recently, Attiya et al. [10] provided an analysis of their overlay

1This chapter accepted for publication in:
Gokarna Sharma and Costas Busch. An Analysis Framework for Distributed Hierarchical Directories. Algorithmica,
Preprint, 2013. http://link.springer.com/article/10.1007/s00453-013-9803-2

138

tree based distributed directory based protocol, Combine, considering online concurrent requests.

However, their analysis is also similar to previous analysis approaches for hierarchical clustering

based distributed directories for sequential and concurrent requests, and hence can not be applied to

analyze them for dynamic requests. To the best of our knowledge, ours is the first formal dynamic

performance analysis of hierarchical clustering based distributed directories which are designed to

implement a large class of fundamental coordination problems in distributed systems.

6.1.1 Contributions

We present a generic algorithm for implementing a distributed hierarchical directory that can sup-

port dynamic requests and prove an upper bound on the competitive ratio of this algorithm by

providing a novel analysis framework. Particularly, we proveO(η ·ϕ · σ5 · h) competitive ratio for

the general algorithm in implementing a large interesting class of distributed hierarchical directo-

ries for any arbitrary set of (online) move requests in dynamic executions, where η is a write size

related parameter, ϕ is a stretch related parameter, and σ is a growth related parameter on the hier-

archy, respectively. A node u in each level k has a write set of leaders which helps to implement

the move requests. The parameter η expresses what is the maximum size of the write set of leaders

of the node u among all the levels in the hierarchy; the parameter ϕ expresses how far the leaders

in the write set of u can appear beyond a minimum radius around u; and the parameter σ expresses

the minimum radius growth ratio.

The competitive ratio bound given above increases linearly with the maximum number of lead-

ers for all the levels in the distributed hierarchical directory. Someone may say that the competitive

ratio can be made sub-linear in η (the write set size parameter) by contacting the leaders in the write

set in parallel, hence shortening the route. However, as noticed in [77, 129], this process may in-

troduce race conditions in the concurrent execution of move operations in some of the applications

of hierarchical directories, e.g. distributed transactional memories. This is due to the fact that

the concurrent move requests that are contacting their overlapping parent sets may miss one an-

other. The hierarchical directory algorithm still functions correctly as the concurrent move requests

139

eventually meet at the root level in the worst-case. Moreover, we measure the communication cost.

Thus, even if an application allows a node to contact the leaders in its write set in parallel, we still

need to contact all the leaders in its write set for updating the downward pointers in the hierarchy

due to a move operation, i.e., the total communication cost is the same in both the sequential and

parallel scenarios. In the analysis we fix the duration of time windows (defined later in Section

6.3.1) in such a way that all the leaders in the write set of a node at any level can be contacted one

after another in a sequential order before the time windows expire. Therefore, our approach makes

the generic algorithm free of possible race conditions even in concurrent executions.

We focused only on move requests since they are the most costly operations. The cost due

to a publish operation is the fixed initial cost which is compensated by the move and lookup op-

erations issued thereafter. The lookup operations have always small cost even when considered

individually and do not impact performance of other move or lookup operations. This is because

lookup operations do not modify (i.e., add or remove) downward pointers in the hierarchy and the

read set of leaders for any node (defined similar to the write set of leaders) used to route lookup

operations at any level is typically no larger than the write set of leaders at that level for that node

used to route move operations. Further, we consider only one shared object as in [89, 145] and

also a single hierarchical structure per object as in previous directory protocols [77, 129].

We apply our framework and the competitive analysis of the generic algorithm to analyze

several variants of distributed hierarchical directory based protocols, Spiral [129], Ballistic [77],

Awerbuch and Peleg’s tracking a mobile user [13, 15] (hereafter AP-algorithm), and other sev-

eral tracking algorithms for sensor and mobile ad hoc networks, namely LLS [1], STALK [42],

GLS [93], and position based multi-zone routing method [5]. We obtain the following results.

• Spiral: we provideO(log2 n · logD) competitive ratio for Spiral in general networks, where

n is the number of nodes and D is the diameter, respectively, of the network. Spiral is

designed for the data-flow distributed implementation of software transactional memory in

large-scale distributed systems, where transactions are immobile (running at some particular

node) and shared objects are moved to those nodes that need them [10, 43, 77, 129, 145].

140

In a previous work [129], we have shown that Spiral is O(log2 n · logD) competitive in

both sequential executions which consist of non-overlapping sequence of requests and one-

shot concurrent executions where all requests appear simultaneously. Here, we provide the

analysis for arbitrary dynamic requests which subsumes these previous bounds. It is worthy

to note here that this dynamic analysis can also be extended to analyze Spiral for the case

where requests execute concurrently. As only one node needs to be locked at a time in the

spiral path, the Spiral protocol does not require some kind of mutual exclusion to support

concurrent requests and hence helps to avoid race conditions that may occur in concurrent

executions without the extra cost that may be incurred due to a mutual exclusion algorithm.

The concurrent execution bound for Spiral using this analysis framework will also be the

same as the dynamic execution bound.

• AP-algorithm: we provide O(log2 n · logD) competitive ratio for AP-algorithm in gen-

eral networks. The AP-algorithm is appropriate for a general mobile user tracking problem

that arises in many applications in the distributed setting, e.g. sensor networks. It has been

proven in [15] that the algorithm is O(log n · logD + log2D/ log n) competitive in sequen-

tial executions and O(log2 n · logD + log2D/ log n) competitive in one-shot concurrent

executions. Our analysis subsumes these results, since it considers the more general case

of arbitrary dynamic executions. Moreover, this analysis framework can be used to analysis

AP-algorithm for the case where requests execute concurrently.

• Ballistic: we provide O(logD) competitive ratio for Ballistic in constant-doubling dimen-

sion networks. This protocol is also for the data-flow distributed implementation of software

transactional memory. It was shown in [77] that Ballistic isO(logD) competitive in sequen-

tial executions. Again, our analysis subsumes this result. Herlihy and Sun [77] noticed that,

during concurrent execution of move operations, Ballistic may need to lock simultaneously

multiple parent nodes in the same level and probe them sequentially. This is because, due

to the use of overlapping parent sets, move requests that concurrently probe them may miss

141

each other. Our analysis framework can be used to analyze Ballistic in concurrent execu-

tions, if the race conditions, as outlined in [77], are avoided. We also get O(logD) compet-

itive ratio for Combine [10] in constant-doubling dimension networks, using the hierarchy

of [77] as the overlay tree to run Combine.

• Other protocols: we provide O(logD) competitive ratio for LLS in unit disk graphs, for

any arbitrary set of online move requests for an object in dynamic executions. This protocol

is for providing location service in ad hoc networks. It was shown in [1] that LLS isO(log d)

competitive for the amortized cost of updating the directory due to a cumulative movement

of distance d by a moving node under some assumptions. The competitive bound we give for

LLS considers the worst-case. Moreover, we provide the same O(logD) competitive ratio

for STALK in geometric networks (similar to the model defined in [21]) for an arbitrary set

of move requests for an object. STALK was shown to be O(logD)-competitive in [41, 42].

Again, our results subsume these bounds. We also consider position based multi-zone

routing method due to Amouris et al. [5] and GLS due to Li et al. [93]. However, no worst-

case competitive bounds are given by the authors for these algorithms and these algorithms

exhibit several limitations. The routing method of [5] requires each node in the network to

maintain information about every other node (i.e., location updates are flooded). GLS makes

little effort to handle updates due to move operations and also the out-of-date information, so

that even the move operations for the object at nearby nodes need to reach to the root of the

directory hierarchy to find that nearby node. If these limitations are removed, our framework

can also be applied to analyze them in dynamic executions.

The logarithmic factors in the competitive ratio are mainly due to the properties of the hierar-

chical clustering techniques used in the protocols. Utilizing improved clustering techniques and/or

considering specific networks may result in better factors in the competitive ratio. The general

network bounds for Spiral and AP-algorithm are within a poly-log factor from optimal, in light

of the Ω(log n/ log log n) lower bound proved by Alon et al. [4] in certain topologies (e.g., the

hypercube, any highly expanding graph, any network with sufficiently large girth, and any highly

142

expanding graph), for Awerbuch and Peleg’s mobile user tracking problem [13, 15]. To the best of

our knowledge, this is the first competitive dynamic analysis for distributed hierarchical directories.

Someone may consider using the spanning tree T of Gupta [61] (constructed by transforming

the randomized tree structure of Fakcharoenphol et al. [49]), which guarantees that the expected

distance in the tree T for every two nodes in the graph is at mostO(log n) times their distance in the

graph, and run the Arrow protocol on T . An expected bound on the stretch can be proved using the

dynamic analysis of Herlihy et al. [72] for the Arrow protocol on the spanning tree T . However,

the (worst-case) stretch for T can be still as large as D. This is because, for example, in ring

networks, the minimum distance is 1 and the maximum distance is n/2 between every two nodes

in the graph. This results in a competitive ratio of (D · logD), which is significantly larger than the

polylogarithmic competitive ratio of our solution. That is, our solution yields good behavior every

time for any arbitrary set of dynamic requests because it bounds the worst-case communication

cost, whereas this solution yields good behavior only in the expected case because the spanning

tree construction is randomized and hence it bounds only the “expected” communication cost.

Our analysis framework captures both the time and the distance restrictions in ordering dy-

namic requests through a notion of time windows. All the nodes proceed in time windows; in a

window, each node might initiate new requests and each node can exchange a message with each of

its neighbors in the hierarchy at the end of the window. For obtaining an upper bound, we consider

a synchronous execution where time is divided into windows of appropriate duration for each level.

For obtaining a lower bound, given an optimal ordering of the requests, we consider the commu-

nication cost provided by a Hamiltonian path that visits each request node exactly once according

to their order. The lower bound holds for any asynchronous execution of the requests (details in

Section 6.3.1). We perform the analysis level by level. The time window notion combined with a

Hamiltonian path allows us to analyze the competitive ratio for the requests that reach some level.

After combining the competitive ratio of all the levels, we obtain the overall competitive ratio.

143

6.1.2 Chapter Organization

The rest of the chapter is organized as follows. We give a generic distributed hierarchical directory

algorithm in Section 6.2. In Section 6.3, we present a novel dynamic analysis framework based

on time windows. We analyze the generic algorithm of Section 6.2 in Section 6.4. Through the

framework, we analyze Spiral, Ballistic, AP-algorithm, and other several directory protocols in

Section 6.5, and conclude the chapter in Section 6.6 with a short discussion.

6.2 An Online Algorithm

6.2.1 Network Model

We model a distributed network as a weighted undirected graph G = (V,E,w) similar to the

model given in Section 5.2 of Chapter 5.

6.2.2 Hierarchy

Algorithm 9 presents a generic distributed hierarchical directory algorithm, denoted by A. It is

based on a hierarchy with h+ 1 levels of leaders Z = {Z0, Z1, . . . , Zh} of a network G = (V,E),

such that Zk+1 ⊆ Zk. In other words, the leaders are partitioned recursively such that, at level 0,

each node v ∈ V is a leader by itself, namely, Z0 = V ; and the highest level Zh contains a single

leader root with leader node r. Communication between leader nodes occurs through shortest

paths.

Each node v ∈ V has, at level k, a write set of leaders, Writek(v) ⊆ Zk, and a read set of lead-

ers Readk(v) ⊆ Zk (Lines 2–6 of Algorithm 9). For convenience, Write0(v) = Read0(v) = v.

The write set of leaders are used to route move requests from requesting nodes to their predecessor

nodes2 in the hierarchy, and the read set of leaders are used to route lookup requests from request-

ing nodes to the current owner node of the object ξ (we provide details on how this is done in

Algorithm 9 and Section 6.2.3).

2As the algorithm forms a distributed queue, the predecessor node of a requesting node is the node that issued the
request that is ordered before the request from the requesting node in the distributed queue; see Section 6.3 for details.

144

We define the following parameters which will be useful later in the analysis.

• φk(v): the maximum radius of the farthest node in Writek(v) from any node v ∈ V , that is,

φk(v) = maxu∈Writek(v) dist(v, u).

• φk: the maximum radius of the farthest node in the write set of any node in the hierarchy at

level k, that is, φk = maxv∈V φk(v).

• φ′k: a minimum radius such that if two nodes are within distance φ′k, then they must have a

common leader in their write sets at level k. In other words, ∀u, v ∈ V, dist(v, u) ≤ φ′k =⇒

Writek(u) ∩Writek(v) 6= ∅.

• ϕ: the stretch of maximum versus minimum radius in the write set, that is, ϕ = max0≤k≤h
φk
φ′k

.

Typically, ϕ ≥ 1, since φk ≥ φ′k.

• σ: is the minimum radius growth ratio, such that φ′k = σk−1, for k > 0. Typically, σ ≥ 2.

• η: the maximum write set size for any node v in any level of the hierarchy, namely, η =

max0≤i≤h,v∈V |Writei(v)|.

6.2.3 Shared Object Operations

Let ξ be a shared object which we want to access through the distributed directory. At any time

there is an owner node, denotedOwner(ξ), which holds the object and is allowed to modify it. The

directory hierarchy Z is a data structure that enables one to find and modify the object whenever

needed.

We now describe how the algorithm A supports publish, lookup, and move in Z . Each leader

node t at some level k has a Pointert(ξ) pointing towards one of the leaders in level k − 1 (oth-

erwise it is ⊥ (null)). A downward chain of pointers will lead to the owner of the object at level

0.

Suppose that some node s issues a publish(ξ) operation. Node s initiates an update of pointer

directions from level 1 up to level h such that any downward chain leads to s. At each vertex t in

145

Algorithm 9: A generic distributed hierarchical directory algorithm for an object ξ
1 Initialization:
2 On input graph G = (V,E) build a hierarchy of leaders Z = {Z0, Z1, · · · , Zh}, such that:
3 Zk+1 ⊆ Zk, 0 ≤ k < h;
4 Every node v ∈ V at Z0 is a leader by itself;
5 Zh consists of a single leader with leader node r (the root of the hierarchy);
6 Each node v ∈ V has a write set of leaders at level k, Writek(v) ⊆ Zk, and a read set

Readk(v) ⊆ Zk (with Write0(v) = Read0(v) = v);

7 Publish object ξ by node s:
8 For all layers 1 ≤ k ≤ h and for all t ∈Writek(s) do:
9 Set downward pointer of t, Pointert(ξ), to point towards any leader in Writek−1(s);

10 Lookup object ξ by node v:
11 k ← 1;
12 Until Pointert(ξ) 6= ⊥ for any t ∈ Readk(v) do
13 k ← k + 1;
14 Go to Owner(ξ) following the chain of downward pointers, and send a copy of ξ to v;

15 Move object ξ to node v:
16 k ← 1;
17 Until Pointert(ξ) 6= ⊥ for any t ∈Writek(v) do
18 Set Pointert(ξ) of all t ∈Writek(v) to point to any leader in Writek−1(v);
19 k ← k + 1;
20 old← Pointert(ξ) (where Pointert(ξ) 6= ⊥ and t ∈Writek(v));
21 Set Pointert(ξ) of all t ∈Writek(v) to point to any leader in Writek−1(v);
22 Go to Owner(ξ) following the chain of downward pointers starting from old, and at the same

time set older downward pointers to ⊥;
23 As soon as Owner(ξ) is reached, move ξ to v (hence, Owner(ξ)← v);

Writek(s) the pointer Pointert(ξ) is set to point toward any leader in Writek−1(s) (Lines 7–9 of

Algorithm 9). Note that after the publish the Pointerr(ξ) at the root will not be ⊥ thereafter.

In order to implement a lookup(ξ) operation, the requesting node v successively queries the

vertices in its read set, Read(v), until hitting a vertex t at level k that has a non-null pointer

Pointert(ξ), which leads to the current owner of ξ (Lines 10–14 of Algorithm 9). Therefore,

following the chain of downward pointers the owner node can be reached, and a copy of the object

can be obtained by v. The execution of a move(ξ) operation, invoked at some requesting node

v, consists of: (i) inserting the pointer Pointerv(ξ) pointing to any leader in Writei−1(v) for all

the leaders t ∈ Writei(v) at each level i < k (effectively setting Owner(ξ) ← v through the

new chain of downward pointers) until hitting a vertex t at level k that has a pointer Pointert(ξ)

146

leading to the current owner s of ξ; and (ii) deleting Pointert(ξ) at all the vertices t in the chain

of downward pointers towards s (Lines 15–23 of Algorithm 9). As soon as the current owner

is reached, ξ is moved to v. The assumption we made here about setting the pointers for all the

leaders t ∈ Writei(v) at each level i < k pointing to any leader inWritei−1(v) is to accommodate

different techniques used in previous directory protocols. Particular implementation may vary,

for example, Spiral orders the O(log n) parents at any level into sub-levels such that only one

downward pointer needs to be set at any leader node. An example of a move operation in Algorithm

9 can be found in Fig. 5.1).

In concurrent execution scenarios the operations in the algorithm require coordination to avoid

deadlocks or blocking. For example, updates to the pointers of the write set of a node should all

occur in an atomic manner. The various instantiations of the generic algorithm that we describe in

Section 6.5 take care of this issue by using different distributed coordination techniques.

6.3 Analysis Framework

We now proceed with describing the framework to analyze the generic online Algorithm A for

a set of arbitrary move requests. We identify a move request r by the tuple r = (u, t), where u

is the leaf node in the cluster hierarchy Z that initiates the move request and t ≥ 0 is the time

when the request is initiated in the system. As soon as the request is initiated it starts searching

for the predecessor node following the write set of leaders upward in the hierarchy. We denote by

R = {r0 = (v0, t0), r1 = (v1, t1), . . .} the arbitrary finite set of dynamic (online) move requests,

where the requests ri ∈ R are indexed according to their initiation time, i.e., i < j =⇒ ti ≤ tj .

We are interested in bounding the competitive ratio of the online algorithm A in ordering the

requests in R compared with the ordering provided by an optimal algorithm that uses the shortest

paths in the original network. Since passing the object from one owner to the next can take some

time, the effect of Algorithm A on the distinct move requests is similar to a distributed queue

which orders the requests in a distributed fashion. When a request tries to join the queue, the

online algorithm delivers a message to that request’s predecessor node in the queue. The ordering

147

is considered complete as soon as the request reached the predecessor node. Suppose that a request

r1 = (v1, t1) is ordered by Algorithm 9 after another request r2 = (v2, t2). The ordering of r1

from a node v1 is considered complete as soon as v2 is informed that r1 is the successor of r2.

As the ordering of r1 after r2 is provided by the algorithm, it should not always be necessary

for r1 to initiate after r2 to be ordered behind r2 in the queue. For example, let us assume that

t1 < t2 for the above requests and there are no other requests in the system. Assume also that

the location of the possible predecessor node, denoted by v3, for both the requests is such that

dist(v1, v3) > c·dist(v2, v3) for some constant c > 1. In this case, even if r1 is initiated before r2, it

may not always find the predecessor node v3 before r2 finds it due to the distance it needs to travel

to reach v3. This phenomenon, called overtaking, may happen for requests depending on their

initiation times and their distance from the possible predecessor nodes. This overtaking is bounded

in the sense that it happens only for a finite time and only for a finite number of dynamic requests.

Therefore, it guarantees that every dynamic move operation eventually completes execution. We

use this bounded overtaking phenomenon in defining (dense/sparse) subsequences in Section 6.4.

Moreover, note that the predecessor node may not necessarily be the owner of the object at the

time the request completed its queuing process. As soon as the predecessor node gets the object

from its predecessor in the queue (and finishes the operations on it, if any), it will send the object

to the requesting node (the successor node of that predecessor node in the queue), invalidating its

own copy if needed. Therefore, each requesting node will eventually receive the object according

to the distributed global order provided by the online algorithm.

To bound the total competitive ratio of Algorithm 9 due to a set of arbitrary move requests,

we proceed with defining time windows and give some basic results in Section 6.3.1 which will

be useful later in the analysis of the algorithm in Section 6.4. The analysis relies on two separate

competitive bounds derived based on the dense windows (Section 6.4.1) and the sparse windows

(Section 6.4.2) for each level; the dense and sparse windows at each level are defined according

to the number of requests that are inside a particular time window at that level. By combining the

bounds of dense and sparse windows for all the levels, we get the desired competitive bound.

148

6.3.1 Windows

Time windows is an essential ingredient of our analysis framework. We divide time into fixed

duration periods which allows us to obtain upper bounds for the communication cost and also

respective lower bounds. Our lower bound is valid also for asynchronous execution of requests. In

a synchronous execution, we assume that the communication link latency (or delay) is predictable

in the sense that the latency is exactly one to send a message by a node to a destination node that

is a unit distance far from it. In an asynchronous execution, communication link latencies are

not predictable in the sense that latencies may not be exactly one for a destination node at a unit

distance, i.e., messages can be arbitrarily fast or slow. We can have a notion of time duration in

asynchronous executions by assuming that each message has a delay of at most one time unit. It

is a commonly used approach, e.g. [72], based on the intuition that messages eventually arrive to

their destinations after a finite amount of time.

We now discuss how our lower bound (in a synchronous execution model) is valid in asyn-

chronous executions. Note that our lower bound is the optimal communication cost which is

computed assuming an optimal queue order of requests provided by an optimal algorithm that

has complete knowledge about all the requests R. In the optimal ordering, the optimal commu-

nication cost is the actual distance in the original network G between the consecutive requesting

nodes in the optimal queue order. Therefore, assuming that an optimal algorithm also has to cope

up with the worst-case communication link latencies in asynchronous executions [72], we can say

that the lower bound is independent of synchrony assumptions and valid for both synchronous and

asynchronous execution of requests.

At each level k a window represents the time that a node needs to reach and modify the pointers

of all the leader nodes in its write set (this is |η · φk|). In other words, this is the duration of a time

window in our analysis given in Section 6.4. This duration is sufficient for any level k node u ∈ V

to contact all the nodes in its write set Writek(u) at that level one after another in a serial order.

Recall that we do not contact the leaders in the write set of a node in parallel because, as noticed

in [77, 129], due to the use of overlapping parent sets, move requests that concurrently probe those

149

leaders may miss each other in some applications of distributed directories. Moreover, we measure

the communication cost. Therefore, even if an application allows a node to contact the leaders in

its write set in parallel, the total communication cost is the same in both the sequential and parallel

scenarios.

We define for level k the time window Wk of time duration |η ·φk|, 1 ≤ k ≤ h, and 1 for k = 0.

Assuming an execution starts at time 0, we can have the sequence of windows for each level k,

0 ≤ k ≤ h, i.e., Wk = {W 0
k ,W

1
k , . . .}, where W 0

k is the first window at level k, W 1
k is the second

window at level k, and so on. These windows have the property that W j+1
k starts immediately after

W j
k expires. When the notations are clear, we simply denote by Wk one of the windows in Wk.

Hereafter, assume for simplicity the worst value for φk, namely ϕ · σk−1 = φk (this doesn’t

affect the results of the analysis). We also consider σ ≥ 2, which is the case for the algorithms in

Section 6.5. The windows are aligned in such a way that Wk and one of Wk−1 start at the same

time. For one window at level h, there are σ windows at level h − 1, σ2 windows at level h − 2,

and so on, so that there are σh−k windows at level k. When we consider the windows of all the

levels, there are h overlapping aligned windows for one window at the root level. Fig. 6.1 depicts

the window alignment for σ = 2. As shown in the figure, the windows at every level k + 1 are

twice longer than the windows at level k; this is a consequence of having a minimum radius growth

ratio σ that doubles between every consecutive levels. In general cases of hierarchical directories,

the time windows at level k + 1 are σ times longer than the time windows at level k due to the

minimum radius growth ratio σ.

We assume that the execution starts at time 0; at that time the root node (the first predecessor

node) which has the object is known. The time windows defined above impose restrictions to the

algorithm in the sense that they control when to forward requests to higher and lower levels from

the current level. Therefore, time windows may add some additional delay in the upper bound

cost, i.e., the upper bound gets worse. However, time windows do not affect the lower bound cost

because the lower bound analysis can be done without assuming synchronous execution and hence

it is valid for any asynchronous execution of requests.

150

We assume that the message exchange (forwarding of requests to parent and child levels from

the current level) happens at the end of the window. (The assumption is for the analysis; the

algorithm executes correctly without this assumption.) We would like to note here that as windows

and their durations are fixed already for all the levels (Fig. 6.1), some kind of particular message

exchange is not required to start new windows at higher and lower levels from any current level.

Recall also that the forwarding of requests to higher and lower levels is done at the end of the

window to make sure that they can reach and modify the pointers of all the leader nodes in their

write sets at the current level. The requests that are initiated to the system at level 0 are forwarded

to level 1 at the end of the window W0 for level 0. Level 1 leaders forward requests to level 2 at

the end of the window W1. This proceeds at higher levels and in a similar way to the downward

direction. Therefore, at the end of a window, each level k leader node can exchange a message

with its leader neighbors at level k + 1 or level k − 1. A leader node yk at level k forwards the

request to a leader node yk+1 at level k + 1 at the end of its window Wk (see paths of ri and rj in

Fig. 6.1) in the up phase of the request. Similarly, a leader node yk may forward the request to a

leader node yk−1 at level k−1 at the end of its window Wk in the down phase of the request. There

may be the case that the current window Wk+1 at level k + 1 is not yet expired when the window

Wk is ready to send the requests at its end. In this situation, we impose one more restriction on

message exchange such that the messages will be delayed until the current window at k + 1 (or

k − 1) expires. Hence, the requests that need to be sent to level k + 1 (to level k − 1) from level

k are sent as soon as a new Wk+1 window (a new Wk−1 window) starts (see path of rj in Fig.

6.1). Depending on the minimum radius growth ratio σ, the requests from at most σ consecutive

windows at level k − 1 are sent to a level k window at a time in the worst-case.

We proceed by proving some basic results on windows. Assume that when in the same window

requests update the same pointers then higher priority is given to older requests. In many occasions

we will use request ri to refer to the respective node vi.

We now prove the first basic result which bounds the initiation time difference of any two

requests that reach level k inside some windows. We say that a request from some node reaches

151

Figure 6.1: Illustration of time windows for σ = 2

level k if the request probes the leaders of the node in its write set at level k while searching for

the predecessor node. We define by respective window for a request for level k the window in

which the request reaches that level. Lemma 6.3.1 below shows that the initiation time difference

of any two requests at any level k is determined by the number of windows between the respective

windows of the requests and the window size at that level. Particularly,

Lemma 6.3.1 Let ri = (vi, ti) ∈ R and rj = (vj, tj) ∈ R be two requests that reach level k inside

respective windows W p
k and W q

k , and q − p− 1 = m for some integer m > 1. Then the difference

in their initiation time is at least tj − ti ≥ (m− 1) · η · φk.

Proof. Recall that any request ri, as soon as it is initiated, starts searching for the predecessor

node following its parent nodes in its higher levels in the hierarchy Z . To reach level k, ri needs to

traverse the hierarchy Z at least the total time of duration η · φk−1 up to level k− 1. The request ri

then reaches level k at the starting of the window. Due to the properties of time windows and the

restriction we impose in when to forward the requests to the higher levels, the total time will be at

most η · φk in the worst-case. This is due to the case when the current window Wl in the path of ri

at level l < k has not been expired yet at the time when ri is ready to jump to the next level l + 1,

so that ri must wait for the next window at level l to begin for it to be able to jump to that level.

Therefore, if a request ri reaches level k at time t, ri must be initiated in time between ti ∈

[t− η · φk, t− η · φk−1], where t is the current time; otherwise, it must have reached level k in the

different window. Therefore, we look at the worst path distance for one request and the best path

distance for another request, that is, ri reached level k traversing only φk−1 distance and rj reached

level k traversing φk distance. When there are m windows between the windows W p
k and W q

k in

152

which ri and rj reached level k, for some integer constant m > 1, the initiation time difference is

tj− ti ≥ (t−η ·φk−1)− (t−m ·η ·φk) ≥ m ·η ·φk−η ·φk−1 ≥ m ·η ·φk− η·φk
σ
≥ (m−1) ·η ·φk.

The inequality tj − ti ≥ (t− η · φk−1)− (t−m · η · φk) is true because of the number of windows

between the windows in which requests ri and rj reach level k. The lemma follows. ut

We now prove the second basic result (Lemma 6.3.2) which bounds the minimum shortest

path distance between any two nodes in the original network when requests originating from those

nodes reach level k − 1 inside the same window W i
k−1 and level k inside the same window W j

k .

We define a notion of meet for two requests r1 and r2, respectively, from nodes v1 and v2, which

will be useful in the proof of Lemma 6.3.2 below. Loosely speaking, we can say that two requests

meet at some level if the downward paths (set by them through downward pointers) intersect at

that level at some leader node. According to our definition, two requests do not need to be at the

same leader node x at some level k at the same time to intersect their downward paths. Formally, if

we examine move operations in Algorithm 9, when a downward pointer is added at a leader node

x in the write set of any node at any level k, it points to any leader in the write set of that node at

level k − 1. Therefore, if the request r2 from node v2 discovers a non-null downward pointer at

leader node x at level k and the request r1 from node v1 is the move (or publish) request that was

last to visit x and hence added the non-null downward pointer seen by r2, we say that r1 is met by

r2 at that level k at the leader x. After r2 sees the non-null downward pointer set by r1, it starts its

down phase following the non-null downward pointer at x.

Lemma 6.3.2 Suppose ri = (vi, ti) ∈ R and rj = (vj, tj) ∈ R, j > i, are two requests that reach

level k. If they both fall inside the same window W i
k−1 at level k − 1 and also inside the same

window W j
k at level k, then dist(vi, vj) ≥ σk−2.

Proof. Recall that hierarchical directories use write sets and downward pointers associated with

them to coordinate the move requests that are trying to join the distributed queue. Moreover, we

use two other constraints that are imposed in the way the hierarchy can be built. The first is the

minimum distance within which two nodes must have a common leader as a given level grows

153

exponentially with the levels. The second one is the leaders at level k are a subset of leaders at

level k−1. We now proceed as follows. As both requests fall inside the same window at level k−1

and then continue to the same window at level k, they must not have met each other at level k− 1.

In other words, one request did not see the downward pointers previously set by another request,

i.e., the write sets at level k − 1 of the nodes of these two requests do not overlap, otherwise one

request would have been diverted behind the another one following downward pointers. Moreover,

according to our construction, two requests can not follow each other after they see the downward

pointers previously set. Therefore, these two requests must have been initiated from the nodes that

are at distance at least σk−2 from each other so that they do not have a common leader at level

k − 1, i.e., dist(vi, vj) ≥ σk−2. ut

We now prove the third basic result (Lemma 6.3.3). This lemma shows that if two requests

reach level k but the shortest distance between the nodes that initiated those requests in the graph

is less than σk−1, then there must exist a third request, that was initiated from some other node,

that changed the downward paths so that those requests could not meet at the level that is lower

than k. Particularly, we prove the following result.

Lemma 6.3.3 Suppose ri = (vi, ti) ∈ R and rj = (vj, tj) ∈ R, j > i, are two requests that

reach level k. If dist(vi, vj) < σk−1 then there must exist a third request rl = (vl, tl) ∈ R whose

initiation time happens between the time ri is initiated and the time rj is initiated, such that either

dist(vi, vl) ≥ σk−4 or dist(vl, vj) ≥ σk−4.

Proof. If dist(vi, vj) < σk−1 we have that the write sets of the respective nodes intersect at level

k − 1. Let A be the intersection of the write sets. If ri and rj both reach level k, then rj must

have missed the downward pointers toward ri in all the levels up to k− 1. Thus, there must exist a

third request rl = (vl, tl), which was initiated between the time ri was initiated and the time rj was

initiated, which has deleted the downward pointers in A set by ri. Suppose now that all requests

with initiation time between the time ri was initiated and the time rj was initiated are at distance

less than σk−4 from ri. Therefore, all these intermediate requests are within distance less than

154

2σk−4 ≤ σk−3 from each other. Therefore, the write sets of these nodes at level k − 2 all intersect

with each other. Which implies that no request will reach level k − 1. Therefore, rl would not

exist, a contradiction. Similarly, it cannot be that all the intermediate requests are within distance

less than σk−4 from rj . Therefore, the claim follows. ut

6.4 Analysis of the Online Algorithm

We proceed with necessary definitions that we use in the performance analysis of the online algo-

rithm A. We denote by Sjk the total count of the number of requests that reach level k inside some

window W j
k . We call the level k windows that have Sjk ≥ σ + 1 the dense windows and the rest of

the level k windows (which have Sjk < σ+ 1) the sparse windows, where σ is the minimum radius

growth ratio. In some well-known hierarchical directories, e.g. Ballistic [77], AP-algorithm [15],

and Spiral [129], where σ = 2, we have that Sjk ≥ 3 for dense windows and Sjk < 3 for sparse

windows. The reason behind considering the windows with Sjk ≥ σ+ 1 and Sjk < σ+ 1 separately

is that we need always at least dSjk/σe ≥ 2 requests inside any window that are at least σk−2 far

from each other in the graph G (as implied by Lemma 6.3.2). This will help to establish a non-

trivial lower bound in the communication cost for ordering all the requests in R that reach level

k. For Sjk < σ + 1 windows (i.e. sparse windows), the goal is to transform them into the case of

dense windows and apply a similar analysis. In Section 6.4.2, we describe how to transform sparse

windows into dense windows case such that there are exactly two requests in each window.

We are interested in obtaining bounds for the communication cost measured as the sum

of the distances traversed by all messages. We will bound the competitive ratio CRA =

maxRC(R)/C∗(R), where C(R) and C∗(R) are the total communication cost and the optimal

cost, respectively, of serving all the requests in R using the online algorithm A and the optimal

algorithm. For convenience, we analyze the competitive ratio of A for the dense windows and the

sparse windows separately. Hence, CRA ≤ CRA(R) + CRB(R), where CRA(R) is the compet-

itive ratio of A for serving all the requests inside dense windows and CRB(R) is the competitive

ratio of A for serving all the requests inside sparse windows.

155

6.4.1 Dense Windows

In this section, we analyze the total communication cost CA(R) and the optimal cost C∗A(R) for

dense windows, and bound the competitive ratio CRA(R) = CA(R)/C∗A(R). We will first focus

on a single dense windowW j
k (i.e., a window with Sjk ≥ σ+1). We give bounds for the total and the

optimal communication cost for W j
k which will be useful when we later analyze the performance

for all the dense windows in Wk.

We denote by CA(W j
k (R)) the total communication cost of serving requests that reach level k

inside a dense window W j
k by the online algorithm A, and by C∗A(W j

k (R)) the respective optimal

communication cost. Note that, for simplicity, we consider only the cost incurred by the up phase

of each move request. When we consider the down phase of each request the cost increases by a

factor of 2 only.

We prove following two lemmas (using Lemma 6.3.2). The first lemma bounds the total com-

munication cost CA(W j
k (R)) for serving requests that reach level k inside a dense window W j

k

by the online algorithm A. The second lemma bounds the optimal cost C∗A(W j
k (R)) for the re-

quests that reach level k inside a dense window W j
k . Denote by {r1, r2, · · · , rl} a sequence of

requests inside a level k window W j
k . We define a notion of request pair that is useful in the

proof of Lemma 6.4.2 and also in Section 6.4.2. A request pair is defined as a set of two con-

secutive requests in {r1, r2, · · · , rl} such that the sequence can be seen as a collection of request

pairs {(r1, r2), (r2, r3), · · · , (rl−1, rl)}. According to our definition, if we denote total number of

requests inside W j
k by Sjk, then there will be exactly Sjk − 1 number of request pairs.

Lemma 6.4.1 CA(W j
k (R)) ≤ 2 · Sjk · η · φk.

Proof. The communication cost due to a node request at any level is bounded by η ·φk. Therefore,

for a request to reach level k, the total cost it incurs is at most 2 · η · φk, since σ ≥ 2, and

φk/φk−1 ≤ σ. Since there are Sjk requests in W j
k , CA(W j

k (R)) ≤ 2 · Sjk · η · φk. ut

Lemma 6.4.2 C∗A(W j
k (R)) ≥ d(Sjk − 1)/σe · σk−2.

156

Proof. We use Lemma 6.3.2 and the restriction imposed by the time windows in forwarding the

requests from the current level to its immediate higher (and lower) level. In the best situation, the

requests that are forwarded to level k are the requests that fall inside a single window at level k−1

(that ends just before the level k window starts). However, in the worst case, the requests that are

forwarded to level k are the requests that fall inside σ consecutive windows at level k − 1. This is

due to the fact that the current window at level k might not yet expire when the window at level

k − 1 is ready to forward the requests that fall inside it to level k, as pointed out in Section 6.3.1.

Moreover, according to the time windows construction where there are σ windows at level k−1 for

one window at level k, requests from at most σ consecutive windows at level k − 1 are forwarded

to a level k window at any time. Therefore, if there are Sjk ≥ σ+ 1 requests inside the window W j
k

at level k, due to the pigeonhole principle, at least dSjk/σe ≥ 2 requests must come from the same

window W i
k−1 at level k − 1. Moreover, it is known from Lemma 6.3.2 that, if two requests from

any two bottom level nodes u and v reach level k and they both fall inside some window W i
k−1

at level k − 1 and some window W j
k at level k, then dist(u, v) ≥ σk−2. Therefore, the optimal

communication cost C∗A(W j
k (R)) is bounded by at least the distance between the d(Sjk − 1)/σe

request pairs in W j
k , i.e., C∗A(W j

k (R)) ≥ d(Sjk − 1)/σe · σk−2. ut

Among all the dense windows Wk for level k, we define a subsequence of dense windows

Wα
k = {Wα

k ,W
α+λd
k ,Wα+2λd

k , · · · } ⊂Wk such that α ∈ {0, 1, 2} for λd = 3. Thus, there will be

λd dense subsequences in Wk. The intuition behind including every third dense window in a dense

subsequence is to guarantee that all the requests in window Wα+iλd
k are initiated in the system at

least η ·φk time before any request in windowW
α+(i+1)λd
k , i ≥ 0, is initiated in the system (Lemma

6.3.1). This guarantees that all the requests inside window Wα+iλd
k are ordered before any request

inside window W
α+(i+1)λd
k , i ≥ 0, by the online algorithm. Therefore, overtaking can happen

between the requests inside a single window of Wα
k only, i.e., the overtaking is bounded in both

time and the number of requests. We prove the following lemma.

157

Lemma 6.4.3 For any two requests ra = (va, ta) ∈ Wα+jλd
k , rb = (vb, tb) ∈ Wα+(j+1)λd

k , j ≥ 0,

in the dense subsequence Wα
k , tb − ta ≥ η · φk.

Proof. As m = 2 for λd = 3 in the dense subsequence Wα
k , from Lemma 6.3.1, we have that

tb − ta ≥ (2− 1) · η · φk ≥ η · φk. ut

We proceed with giving an upper bound in the total communication cost CA(Wα
k (R)) for all

the requests in the dense subsequence Wα
k . We fix Sα

k =
∑|Wα

k |
i=1 Sik, the total number of requests

inside all the windows of the dense subsequence Wα
k , where |Wα

k | is the total number of windows

in Wα
k . The following result follows from Lemma 6.4.1 by summing up the communication cost

due to Sα
k requests in the dense subsequence Wα

k .

Lemma 6.4.4 For the requests in a dense subsequence Wα
k , CA(Wα

k (R)) ≤ 2 ·Sα
k · η · φk.

We now bound the optimal cost C∗A(Wα
k (R)) for all the requests in the dense subsequence

Wα
k . The main idea here is to show that C∗A(Wα

k (R)) is at least the cost due to a minimum cost

Hamiltonian path that visits each vertex of Wα
k (R) exactly once. On our way, we use a notion of

directed dependency graph. Note that the lower bound is for any asynchronous execution for the

involved requests.

We start with necessary definitions. Let R = {r1, r2, · · · } ⊂ R denote a subset of requests

in R. The directed dependency graph H(R) = (V ′, E ′,w′) has requests as vertices V ′, where

|V ′| = |R|, a directed edge from any vertex ri ∈ V ′ to any other vertex rj ∈ V ′ such that

(vi, vj) ∈ E ′ and (vj, vi) ∈ E ′, and edge weight function w′ : E ′ → R+. Note that H(R) is

a directed complete graph − there are two directed edges between every pair of vertices. The

directed edge weights in H(R) are assigned as given below:

∀i, j,w′(vi, vj) = max {dist(vi, vj), ti − tj} .

158

Note that w′(vi, vj) may be different than w′(vj, vi). We argue that the time in w′(vi, vj) trans-

lates to the communication cost as there is always a request that is searching for the predecessor

node as soon as it is initiated in the system until it is ordered behind the predecessor.

Each possible ordering for any algorithm for the requests in R is given by a directed Hamilto-

nian path, that visits each vertex exactly once, on the graph H(R). Out of the possible orderings,

the order which minimizes the ordering cost will be the lowest cost directed Hamiltonian path.

Since the graph H(R) is a directed complete graph, there is always a Hamiltonian path. An ex-

ample of a Hamiltonian path is given in Fig. 6.2 for Wα
k with |Wα

k | = 4, where Ns is the starting

node and Nt is the ending node of the path.

Observation 2 The optimal communication cost C∗(R) for the requests R is at least the lowest

cost directed Hamiltonian path in the graph H(R).

We now consider the directed dependency graph H(Wα
k (R)) for all the requests in the dense

subsequence Wα
k . We divide vertices in H(Wα

k (R)) into |Wα
k | groups, denoted as Hi, 1 ≤ i ≤

|Wα
k |, such thatHi corresponds to a windowW i

k ∈Wα
k , where |Wα

k | is the total number of windows

in the dense subsequence Wα
k . In other words, a group constitutes a dense window in Wα

k . We

order the groups Hi from left to right. If we look at a particular group Hi, there are some directed

edges between vertices inside Hi, some directed edges going out to the groups on both sides (left

and right of Hi), and some directed edges coming into Hi from the groups on both sides (see

Fig. 6.2). We focus on a subgraph Hsub(Wα
k (R)) of the graph H(Wα

k (R)) such that, for any two

vertices u, v ∈ Hi, dist(u, v) ≥ σk−2. As argued in Lemma 6.4.2, there will be at least dSik/σe

vertices in each group Hi after removing such vertices. Denote by P some directed Hamiltonian

path on Hsub(Wα
k (R)) (see Fig. 6.2) and by P ∗ the lowest cost directed Hamiltonian path among

all P .

We can make the following observations for the requests in the graph Hsub(Wα
k (R)). As

Hsub(Wα
k (R)) only includes vertices of each Hi ∈ H(Wα

k (R)) such that dist(u, v) ≥ σk−2 holds

for any two vertices u, v ∈ Hi, we have the following observation.

159

Figure 6.2: Illustration of a Hamiltonian path P starting from the node Ns ∈ H1 and ending in
the node Nt ∈ H3 for the dense subsequence Wα

k with |Wα
k | = 4. The left boundary edges of a

group H3 are |Eb,left

3 | = 2 and the right boundary edges of H3 are |Eb,right

3 | = 2. Moreover, the
left external edges of H3 are |Eext,left

3 | = 1 and the right external edges of H3 are |Eext,right
3 | = 1.

Observation 3 For any two requests ra = (va, ta) ∈ Hi and rb = (vb, tb) ∈ Hi, w′(va, vb) =

w′(vb, va) ≥ dist(va, vb) ≥ σk−2.

Arguing along the lines of Lemma 6.3.1 for the vertices inside two groups Hi, Hj, j > i, we

can have the following observation on the edge weights. This is because of the fact that for any

request rb ∈ Hj, j > i, to be ordered behind any request ra ∈ Hi in level k, rj needs time at least

(j − i) · η · φk which translates to the equivalent weight of the directed edge from Hj to Hi.

Observation 4 For any two requests ra = (va, ta) ∈ Hi and rb = (vb, tb) ∈ Hj , j > i,

w′(va, vb) ≥ 0 and w′(vb, va) ≥ (j − i) · η · φk.

In each group Hi, there are two types of edges, internal and external. The internal edges Eint
i

are all the edges (u′, v′) from any vertex u′ ∈ Hi to any other vertex v′ ∈ Hi. The external edges

Eext
i are all the edges (u′, v′) from any vertex u′ ∈ Hi to any other vertex v′ ∈ Hj, j 6= i.Moreover,

the external edges Eext
i of Hi are of two types, that go to the groups on the left (H<i), which we

denote by Eext,left
i (the left external edges), and that go to the groups on the right (H>i), which we

denote by Eext,right
i (the right external edges). We have that Eext

i = Eext,left
i ∪ Eext,right

i .

We define the boundary of Hi as a dotted vertical line on its right (see Fig. 6.2) which shows

the interaction between H>i and H≤i. Consider a Hamiltonian path P on Hsub(Wα
k (R)). We

define the boundary edges as follows (see Fig. 6.2). For Hi, let E
b,right

i (the right boundary edges)

160

be the set of edges (u′, v′) in P which satisfy the condition that u′ ∈ H≤i and v′ ∈ H>i. All the

right boundary edges E
b,right

i will cross the boundary of Hi and point to right groups. Similarly,

let E
b,left

i (the left boundary edges) be the set of edges (u′, v′) in P which satisfy the condition

that u′ ∈ H>i and v′ ∈ H≤i. All the left boundary edges E
b,left

i will cross the boundary of Hi and

point to it or the groups on the left of it. We can prove the following relation between E
b,left

i and

Eext,left
i for any group Hi.

Lemma 6.4.5 |Eb,left

i | ≥ |Eext,right
i | − 1 for each group Hi.

Proof. If path P visits all the vertices in H≤i before visiting any vertex of H>i, we are done.

Otherwise, if path P visits only some of the vertices in H≤i before crossing the boundary of Hi to

the right, the path P must visit the rest of the vertices via the left boundary edges E
b,left

i . Thus,

there must be at least |Eext,right
i | − 1 left boundary edges E

b,left

i . ut

The following observation is straightforward. According to the way we defined E
b,left

i and

Eext,left
i , if all the left boundary edges E

b,left

i from each group Hi point to the immediate previous

groupHi−1, we have that
∑|Wα

k |
i=1 |E

b,left

i | =
∑|Wα

k |
i=1 |E

ext,left
i |. In the case when left boundary edges

from a group Hi point to any group Hk, these left boundary edges are counted in E
b,left

i of all the

groups that are between group Hk and Hi.

Observation 5
∑|Wα

k |
i=1 |E

b,left

i | ≥
∑|Wα

k |
i=1 |E

ext,left
i |.

In a directed Hamiltonian path P due to the optimal algorithm, some edges (u, v) are between

the vertices of a particular group Hi, 1 ≤ i ≤ |Wi
k| (denoted Pint), and some are between the

vertices of groups Hi and Hj, j 6= i (denoted Pext). Thus, the Hamiltonian path P = Pint ∪ Pext

(union of the edges from both groups). Denote by

C(P) = C(Pint) + C(Pext)

= C(Pint) + C(Pext,left) + C(Pext,right)

161

the total cost of any Hamiltonian path P , where Pext,left is the set of left external edges

Eext,left
i , 1 ≤ i ≤ |Wα

k |, in P and Pext,right is the set of right external edgesEext,left
i , 1 ≤ i ≤ |Wα

k |,

in P . In other words, as depicted in Fig. 6.2, any Hamiltonian path P contains edges that are either

internal to a group in the sense that they point from one node to another node inside that group

(green edges in Fig. 6.2) or external to a group in the sense that they point to nodes in different

groups. In the external case, they either point from a node in any of the right groups to a node in

any of the left groups (red edges in Fig. 6.2) or from a node in any of the left groups to a node

in any of the right groups (purple edges in Fig. 6.2). We now bound the minimum cost of any

Hamiltonian path P .

The following observation is straightforward from the way we defined Hsub(Wα
k (R)). This is

because Hsub(Wα
k (R)) only includes those vertices of each Hi ∈ H(Wα

k (R)) where dist(u, v) ≥

σk−2 holds between every two vertices u, v ∈ Hi.

Observation 6 C(Pint) ≥
∑|Wα

k |
i=1 |Eint

i | · σk−2.

Lemma 6.4.6 C(Pext,left) ≥
∑|Wα

k |
i=1 |E

b,left

i | · η · φk.

Proof. According to Observation 4, the total cost due to a left boundary edge e that starts from

some group Hl and ends at some other group Hj, j ≤ i < l, is at least (l− j) · η ·φk. As each edge

e can be seen as the sum of its l − j number of fragments connecting all the groups starting from

Hl to Hj , the lemma follows. ut ut

We are now ready to prove the lower bound C∗A(Wα
k (R)) for the requests in the dense subse-

quence Wα
k .

Lemma 6.4.7 For the requests in a dense subsequence Wα
k , C

∗
A(Wα

k (R)) ≥ 1
4
·Sα

k · σk−3.

Proof. We have that C∗A(Wα
k (R)) ≥ C(P ∗), where P ∗ is on Hsub(Wα

k (R)). Therefore, we bound

the optimal cost C(P ∗) of P ∗, which is at least

C(P ∗) ≥ C(P ∗int) + C(P ∗ext,left) + C(P ∗ext,right).

162

From Observation 4, C(P ∗ext,right) ≥ 0. Therefore, from Observation 6 and Lemma 6.4.6,

C(P ∗) ≥ C(P ∗int) + C(P ∗ext,left) ≥
|Wα

k |∑
i=1

|Eint
i | · σk−2 +

|Wα
k |∑

i=1

|Eb,left

i | · η · φk.

As
∑|Wα

k |
i=1 |E

b,left

i | ≥
∑|Wα

k |
i=1 |E

ext,left
i | (Observation 5) and |Eb,left

i | ≥ |Eext,right
i | − 1 (Lemma

6.4.5), the above equation reduces to

C(P ∗) ≥
|Wα

k |∑
i=1

|Eint
i | · σk−2 +

1

2

|Wα
k |∑

i=1

|Eb,left

i | · η · φk +
1

2

|Wα
k |∑

i=1

|Eb,left

i | · η · φk

≥
|Wα

k |∑
i=1

|Eint
i | · σk−2 +

1

2

|Wα
k |∑

i=1

|Eext,left
i | · η · φk +

1

2

|Wα
k |∑

i=1

(
|Eext,right

i | − 1
)
η · φk.

When |Eext,right
i | < 2 for each group Hi, 1 ≤ i ≤ |Wα

k |, then |Eb,left

i | ≥ 0 (Lemma

6.4.5). Therefore, for each group Hi, there must be the case that the Hamiltonian path P ∗ vis-

ited all the vertices in H≤i before visiting any vertex of H>i. Thus, the above equation reduces to

C(P ∗) ≥
∑|Wα

k |
i=1 |Eint

i | · σk−2. As there are at least dSik/σe vertices in each group Hi, we have that∑|Wα
k |

i=1 |Eint
i | ≥

Sαk
2·σ . Hence, C(P ∗) ≥ Sαk

2·σ · σ
k−2 ≥ 1

4
·Sα

k · σk−3.

|Eext,right
i | ≥ 2 =⇒ |Eext,right

i | − 1 ≥ |E
ext,right
i |

2

=⇒ 1

2

|Wα
k |∑

i=1

(
|Eext,right

i | − 1
)
η · φk ≥

1

2

|Wα
k |∑

i=1

(
|Eext,right

i |
2

)
η · φk

=⇒ 1

2

|Wα
k |∑

i=1

(
|Eext,right

i | − 1
)
η · φk ≥

1

4

|Wα
k |∑

i=1

|Eext,right
i | · η · φk.

163

Therefore, since φk = ϕσk−1 ≥ σk−2,

C(P ∗) ≥
|Wα

k |∑
i=1

|Eint
i | · σk−2 +

1

2

|Wα
k |∑

i=1

|Eext,left
i | · η · φk +

1

4

|Wα
k |∑

i=1

|Eext,right
i | · η · φk

≥ 1

4
(

|Wα
k |∑

i=1

|Eint
i |+

|Wα
k |∑

i=1

|Eext,left
i |+

|Wα
k |∑

i=1

|Eext,right
i |)σk−2.

As there are at least dSik/σe vertices in each group Hi and each vertex is attached to at least

one edge with a source vertex, we have that

|Wα
k |∑

i=1

|Eint
i |+

|Wα
k |∑

i=1

|Eext,left
i |+

|Wα
k |∑

i=1

|Eext,right
i | ≥ Sα

k

σ
.

Therefore,

C(P ∗) ≥ 1

4
· S

α
k

σ
· σk−2 ≥ 1

4
·Sα

k · σk−3.

The lemma follows as C∗A(Wα
k (R)) ≥ C(P ∗). ut

We now bound the total communication cost CA(R) of the online algorithmA and the optimal

communication cost C∗A(R) for serving all the requests in R that are inside dense windows. For

the total communication cost, we first sum the total communication cost of serving all the requests

inside all the dense subsequences in a level and later combine the cost for all the levels. For

the optimal communication cost, we first find the optimal communication cost of serving all the

requests inside all the dense subsequences in a level and later take the maximum among the optimal

cost for all the levels.

Lemma 6.4.8 For the executionR, the total communication cost of the online algorithmA for all

the requests inside the dense windows (of all the levels) is CA(R) ≤ 2 ·
∑h

k=1

∑λd−1
α=0 (Sα

k · η · φk).

Proof. From Lemma 6.4.4, we have that for one dense subsequence Wα
k of dense windows at

level k, the total communication cost of the online algorithm A is CA(Wα
k (R)) ≤ 2 ·Sα

k · η · φk.

164

Moreover, there are total λd dense subsequences. Therefore, the total communication cost for the

dense windows in Wk is bounded by CA(Wk) ≤
∑λd−1

α=0 CA(Wα
k (R)) ≤ 2 ·

∑λd−1
α=0 (Sα

k · η · φk).

By combining the costs of the dense windows for each level, the total communication cost of A is

bounded by

CA(R) ≤
h∑
k=1

CA(Wk) ≤
h∑
k=1

(
2 ·

λd−1∑
α=0

(Sα
k · η · φk)

)
≤ 2 ·

h∑
k=1

λd−1∑
α=0

(Sα
k · η · φk) ,

where h is the number of cluster levels. (We do not consider communication costs for level 0 in

total cost because there is no communication that reaches that level.) ut

Lemma 6.4.9 For the execution R, the optimal communication cost for all the requests inside

dense windows (of all the levels) is C∗A(R) ≥ 1
4
·max1≤k≤h ·maxα

(
Sα
k · σk−3

)
.

Proof. As there are total λd dense subsequences and C∗A(Wα
k (R)) ≥ 1

4
·Sα

k · σk−3 (Lemma 6.4.7)

for one dense subsequence Wα
k , the optimal communication cost for the dense windows in Wk is

at least C∗A(Wk) ≥ maxαC
∗
A(Wα

k (R)) ≥ 1
4
·maxα(Sα

k ·σk−3). Considering all the dense windows

from level 1 to level h, the optimal communication cost C∗A(R) is bounded by at least the maxi-

mum over C∗A(Wk), 1 ≤ k ≤ h, where h is the number of cluster levels. Therefore, C∗A(R) ≥

max1≤k≤hC
∗
A(Wk) ≥ max1≤k≤h

(
1
4
·maxα(Sα

k · σk−3)
)
≥ 1

4
· max1≤k≤h ·maxα

(
Sα
k · σk−3

)
.

(We do not consider costs for level 0 in optimal communication cost since there is no commu-

nication that reaches that level.) ut

We are now ready to bound the competitive ratio CRA(R) for the dense windows.

Theorem 6.4.10 CRA(R) = O(η · ϕ · σ2 · h).

Proof. We obtain from Lemmas 6.4.8 and 6.4.9 the competitive ratio of the online algorithm A

for the dense windows bounded by

165

CRA(R) =
CA(R)

C∗A(R)

≤ 2 ·
∑h

k=1

∑λd−1
α=0 (Sα

k · η · φk)
1
4
·max1≤k≤h ·maxα (Sα

k · σk−3)

≤ 8hλd ·max1≤k≤h ·maxα (Sα
k · η · φk)

max1≤k≤h ·maxα (Sα
k · σk−3)

≤ 8hλd ·max1≤k≤h ·maxα (Sα
k · η · ϕ · σ2)

max1≤k≤h ·maxαSα
k

≤ 8hλdηϕσ
2 · max1≤k≤h ·maxαS

α
k

max1≤k≤h ·maxαSα
k

≤ 8 · h · λd · η · ϕ · σ2

= O(η · ϕ · σ2 · h),

since λd = 3 and φk/σk−3 ≤ ϕ · σ2. ut

6.4.2 Sparse Windows

In this section, we analyze the total communication cost CB(R) and the optimal communica-

tion cost C∗B(R) for serving requests inside sparse windows, and bound the competitive ratio

CRB(R) = CB(R)/C∗B(R). Recall that a level k window W j
k is sparse if Sjk ≤ σ. We consider a

subsequence of sparse windows of Wk (the set of all windows at level k) for the competitive ratio.

Due to Sjk requests inside each sparse window, it may not always be the case that these (at

most) σ requests satisfy the requirements for the lower bound derivation. Therefore, our goal in

the analysis that follows is to transform each sparse window scenario into a dense window case

such that there are exactly two requests in each sparse window that are at least σk−4 far in the graph

G. Note that in dense windows the distance lower bound was σk−2; here however it becomes σk−4

because of Lemma 6.3.3.

Similar to the subsequences of dense windows, we consider the subsequence of sparse windows

Qβk = {W β
k ,W

β+λs
k ,W β+2λs

k , · · · } ⊂Wk such that β ∈ {0, 1, 2} for λs = 3. Thus, there will be λs

sparse subsequences in Wk. Similar to Lemma 6.4.3, for any two requests ra = (va, ta) ∈ W β+jλd
k

166

and rb = (vb, tb) ∈ W β+(j+1)λd
k , j ≥ 0, of Qβk , tb − ta ≥ η · φk. This provides bounded overtaking

such that all the requests inside window W β+jλd
k of Qβk will be ordered before any request inside

window W
β+(j+1)λd
k , j ≥ 0, by the online algorithm.

Next, we will focus on a sparse subsequence Qβk . We give bounds on the total and the optimal

communication cost for all the requests in the sparse subsequence Qβk and these results extend to

all sparse windows in Wk.

Denote by Pβk = {r1, r2, r3, · · · } a sequence of requests in the sparse subsequence Qβk such

that each window W i
k ∈ Q

β
k has one request ri (chosen arbitrarily among the σ it contains). In

other words, |Pβk | = |Q
β
k |. As Sjk ≤ σ, for each window W j

k ∈ Q
β
k , the total cost computed via Pβk

for Qβk will increase by a factor of σ only.

Using the request pair definition given in Section 6.4.1, Pβk can be seen as a collection of

request pairs Pβk = {(r1, r2), (r2, r3), (r3, r4), · · · }. Each request pair (ra, ra+1) ∈ Pβk has the

property that ta+1 − ta ≥ η · φk, however there may be the case that dist(ra, ra+1) < σk−1. We

define another sequence of request pairs P̃βk = {(r′1, r′′1), (r′2, r
′′
2), (r′3, r

′′
3), · · · } for the sequence of

requests in Pβk using a transformation given below.

i. If dist(ra, ra+1) ≥ σk−1 in the graph G for any two subsequent requests ra ∈ Pβk and

ra+1 ∈ Pβk , we fix r′a = ra and r′′a = ra+1.

ii. if dist(ra, ra+1) < σk−1 in the graph G for any two subsequent requests ra ∈ Pβk and ra+1 ∈

Pβk , then according to Lemma 6.3.3, there exists an ordering request rc (it can be from the

same level k or the lower) after ra and before ra+1 in time such that either dist(ra, rc) ≥ σk−4

or dist(rc, ra+1) ≥ σk−4. We fix r′a and r′′a following the criteria given below:

a. If there is the case that dist(ra, rc) ≥ σk−4, then we fix r′a = ra and r′′a = rc.

b. If there is the case that dist(rc, ra+1) ≥ σk−4, then we fix r′a = rc and r′′a = ra+1.

The transformation from Pβk to P̃βk guarantees that dist(r′a, r
′′
a) ≥ σk−4 for any request pair

(r′a, r
′′
a) ∈ P̃

β
k . However, the timing requirement of at least η · φk for any two requests r1 and r2

167

in the subsequent request pairs of P̃βk may be violated. We satisfy the timing requirement through

special sparse subsequences on P̃βk .

We define a special sparse subsequence P̂γk = {(r′′1 , r′′′1), (r′′2 , r
′′′
2), (r′′3 , r

′′′
3), · · · } ⊂ P̃βk for the

pair of requests in P̃βk by including every third request pair of P̃βk , where γ ∈ {0, 1, · · · , λ′s − 1}

for λ′s = 3. Therefore, there will be λ′s special sparse subsequences in P̃βk . Moreover, the requests

in P̂γk satisfy the following lemma for the timing requirement (due to Lemmas 6.3.1 and 6.4.3).

Lemma 6.4.11 For any two consecutive request pairs (r′′a, r
′′′
a) and (r′′a+1, r

′′′
a+1) in P̂γk , t′′a+1−t′′′a ≥

η · φk.

The special sparse subsequence P̂γk has exactly two requests in each window it contains and the

requests in subsequent windows satisfy the timing property. Therefore, each request pair in P̂γk can

be treated as a group Hi in the dense window analysis. From this point on, the analysis proceeds

similar to the case of dense windows, where now each pair corresponds to a “dense window”

(note that a pair may not actually reside in the same window, but we will assume it does, without

affecting correctness, in order to perform the lower bound analysis). Similar to Theorem 6.4.10,

we can obtain the following theorem for the competitive ratio CRB(R) for the sparse windows

(the term σ5 comes from using the σk−4 distance in the pairs).

Denote by CB(Qβk(R)) the total communication cost and by C∗B(Qβk(R)) the optimal commu-

nication cost for all the requests in the sparse subsequence Qβk . The lemmas given below for Qβk

follow similarly to Lemmas 6.4.4 and 6.4.7. We fix Sγ
k = |P̂γk | the total number of request pairs in

P̂γk .

Lemma 6.4.12 For the requests in a sparse subsequence Qβk , CB(Qβk(R)) ≤ 2 · σ ·
∑λ′s−1

γ=0 (Sγ
k ·

η · φk).

Lemma 6.4.13 For the requests in a sparse subsequenceQβk , C∗B(Qβk(R)) ≥ 1
4
·maxγ(S

γ
k ·σk−5).

The following lemmas bound CB(R) and C∗B(R).

168

Lemma 6.4.14 For the execution R, the total communication cost of the online algorithm

A for all the requests inside the sparse windows (of all the levels) is CB(R) ≤ 2 · σ ·∑h
k=1

∑λs−1
β=0

∑λ′s−1
γ=0 (Sγ

k · η · φk).

Lemma 6.4.15 For the execution R, the optimal communication cost for all the requests inside

sparse windows (of all the levels) is C∗B(R) ≥ 1
4
·max1≤k≤h ·maxβ ·maxγ

(
Sγ
k · σk−5

)
.

Theorem 6.4.16 CRB(R) = O(η · ϕ · σ5 · h).

Proof. We obtain from Lemmas 6.4.14 and 6.4.15 the competitive ratio of the online algorithm A

for the sparse windows bounded by

CRB(R) =
CB(R)

C∗B(R)

≤
2 · σ ·

∑h
k=1

∑λs−1
β=0

∑λ′s−1
γ=0 (Sγ

k · η · φk)
1
4
·max1≤k≤h ·maxβ ·maxγ (Sγ

k · σk−5)

≤ 8λsλ
′
shσ ·max1≤k≤h ·maxβ ·maxγ (Sγ

k · η · φk)
max1≤k≤h ·maxβ ·maxγ (Sγ

k · σk−5)

≤ 8λsλ
′
shσ ·max1≤k≤h ·maxβ ·maxγ (Sγ

k · η · ϕ · σ4)

max1≤k≤h ·maxβ ·maxγ S
γ
k

≤ 8λsλ
′
shηϕσ

5 · max1≤k≤h ·maxβ ·maxγ S
γ
k

max1≤k≤h ·maxβ ·maxγ S
γ
k

≤ 8 · λs · λ′s · h · η · ϕ · σ5 = O(η · ϕ · σ5 · h),

since λs = λ′s = 3 and φk/σk−5 ≤ ϕ · σ4. ut

6.4.3 Complexity of the Online Algorithm

We now prove the main theorem of the analysis. Since the execution R is arbitrary, we obtain

from Theorem 6.4.10 of the dense window analysis (Section 6.4.1) and Theorem 6.4.16 of the

sparse window analysis (Section 6.4.2), the competitive ratio of the online algorithm A bounded

by CRA ≤ CRA(R) + CRB(R).

Theorem 6.4.17 The competitive ratio of the online algorithm A is CRA = O(η · ϕ · σ5 · h) for

any arbitrary set of (online) move requests in dynamic executions.

169

6.5 Analysis of Existing Directories

In this section, we analyze several existing distributed hierarchical directory based protocols, par-

ticularly Spiral [129], Ballistic [77], AP-algorithm [13, 15], and also some hierarchical directory

based tracking algorithms for sensor and mobile ad hoc networks, namely STALK [41, 42] and

LLS [1]. Recall that Spiral and Ballistic were for the data-flow distributed implementation of soft-

ware transactional memory, whereas AP-algorithm, STALK, and LLS, were for the mobile user

tracking problem in sensor and mobile ad hoc networks. Moreover, Spiral and AP-algorithm are

suitable for arbitrary network topologies, Ballistic is suitable for constant-doubling metric topolo-

gies, STALK is suitable for geometric network topologies as defined in [21], and LLS is suitable

for unit disk graph topologies.

The Spiral Protocol: it uses a hierarchical sparse cover, more specifically (O(log n),O(log n))-

labeled cover hierarchy (details in [129]), developed based on well-known ideas for clustering

the graph to approximate graph distance metrics by distributions over tree metrics [19, 49], on

a general metric network. It has h + 1 = O(logD) levels. It was shown in [129] that the

(O(log n),O(log n))-labeled sparse cover hierarchy can be constructed in deterministic polyno-

mial time. The sparse cover hierarchy of Spiral can be converted to the hierarchy of leaders Z

by considering only the leader nodes of all the clusters in the hierarchy. At level 0 each node in

V is a leader as each cluster consists of only one node. At the root level (level h), there is only

one cluster that contains all nodes V , so the leader of that cluster is considered for Z . In any

level i of Z , 1 ≤ i ≤ h − 1, each node u ∈ V belongs to exactly O(log n) clusters, where each

cluster is treated as different and the leaders of these clusters are considered for Z . Based on Z , a

spiral path, denoted as p(u), is built by visiting designated leader nodes (leader nodes are chosen

arbitrarily among the nodes in the cluster) in all the clusters that u belongs to starting from level

0 up to h. The downward paths are obtained from the fragments of spiral paths that are created

after the updates in the hierarchy by move operations. Moreover, the requests are served using

the spiral paths in their up phase and downward paths in their down phase. The Spiral hierarchy

170

has the property that η = O(log n), φk = O(2k log n), and φ′k = 2k−1 for any level 0 ≤ k ≤ h,

since σ = 2. Therefore, ϕ = φk/φ
′
k = O(2k log n)/2k−1 = O(log n). We note that distributed

coordination is achieved by performing the η pointer accesses per level separately at sub-levels

according to a labelling of the clusters. Hence, from Theorem 6.4.17, we obtain:

Theorem 6.5.1 CRSpiral = O(log2 n · logD) in dynamic executions.

The Ballistic Protocol: it uses a sequence of connectivity graphs as a directory hierarchy (details

in [77]), obtained using a distributed maximal independent set algorithm (e.g. [95]), on a constant-

doubling metric network. It has h+ 1 = O(logD) levels. Due to the use of maximal independent

set of leaders, the Ballistic hierarchy directly translates to the hierarchy of leaders Z . Let Z =

{Z0, Z1, . . . , Zh} be the Ballistic hierarchy. It guarantees that: (i) at level 0 each node in V belongs

to the connectivity graph Z0. The level 0 leaders are a maximal independent set of this graph

and two nodes x and y are connected if and only if dist(x, y) < 21; (ii) in any level i of Z ,

1 ≤ i ≤ h − 1, only leader nodes in level i − 1 join the connectivity graph Zi. Nodes x and y

are connected in Zi if and only if dist(x, y) < 2i+1. Moreover, the level i leaders are a maximal

independent set of the Zi graph; and (iii) the highest level Zh contains exactly one node which is

called the root node. The neighboring level nodes are connected by edges to form the tree overlay.

For the analysis of Ballistic for an arbitrary set of dynamic requests, similar to Spiral hierarchy,

we assign different labels for the η = O(1) number of move parent nodes of each leader node x

at every level i, which are subset of parents within distance 4 · 2i+1 of x. Moreover, we have that

σ ≤ 2. Similarly, according to the hierarchy construction, φk = O(2k), and φ′k = 2k−1 for any

level 0 ≤ k ≤ h. Hence, ϕ = O(1). Therefore, from Theorem 6.4.17 substituting η by O(1),

ϕ by O(1), and h by O(logD), we obtain the following theorem. This theorem holds also for

Combine [10] using the Ballistic hierarchy described above as an overlay tree to run Combine in

constant-doubling metric networks.

Theorem 6.5.2 CRBallistic = O(logD) in dynamic executions.

171

The AP-algorithm: it uses a hierarchical directory composed of a hierarchy of h = dlogDe+ 1

regional directories RDi, 1 ≤ i ≤ h (details in [15]). The regional directories on higher levels

of the hierarchy based on coarser decompositions of the network (i.e., decomposition into larger

regions). The purpose of the regional directory RDi at level i of the hierarchy is to enable a

potential searcher to track any user residing within distance 2i from it. The regional directory con-

struction is based on the concept of regional matching. This matching concept relies on a read set

Read(v) ⊆ V and a write setWrite(v) ⊆ V , defined for every vertex v, similar to the one given in

Section 6.2. That is, a vertex v writes the information about every user it currently has to all the ver-

tices in Writei(v); the searcher for the user from the node w queries all the vertices in Readi(w).

Consider the collectionRW of all pairs of sets, namelyRW = {Read(v),Write(v)|v ∈ V }. The

collection RW is a 2i-regional matching (for some integer m ≥ 1) if Write(v)
⋂
Read(u) 6= ∅

for all v, u ∈ V such that dist(u, v) ≤ 2i. It was shown in [15] that it is possible to construct an m-

regional matchingRWm,k,m, k ≥ 1, to support move operations, withDegwrite(RWm,k) = 1 and

Radwrite(RWm,k) = 2k− 1, where Degwrite(RW) = maxv∈V |Write(v)| and Radwrite(RW) =

1
m

maxu,v∈V {dist(u, v)|u ∈ Write(v)}. Therefore, we have that η = O(log n) and ϕ = O(log n)

in AP-algorithm in dynamic executions, and σ = 2. Hence, from Theorem 6.4.17, we obtain:

Theorem 6.5.3 CRAP−algorithm = O(log2 n · logD) in dynamic executions.

The LLS Algorithm: it uses a virtual hierarchical cover of the M × M plane consisting of

exponentially decreasing squares (details in [1]). This partitioning is similar to [15]. It has h+1 =

O(logD) levels. Moreover, a level k square has size 2 times the size of the level k − 1 square.

Therefore, ϕ = O(1) and also σ = 2. According to the construction, each process in the move

request tracking path has at most 16 nodes to examine, i.e., the number of move parent nodes

for each process η = O(1). Hence, through Theorem 6.4.17 we obtain that LLS has competitive

ratio O(η · ϕ · σ5 · h) = O(logD). It was shown in [1] that LLS is O(log d) competitive for the

amortized cost of updating the directory due to a cumulative movement of distance d by a moving

node. This was by assuming some restricted locality aware version of the unit disk graph network

172

in the analysis and also some assumptions on the cost metric. However, we note that our analysis

of LLS is from the worst-case perspective without such assumptions. We summarize the result in

the theorem below.

Theorem 6.5.4 CRLLS = O(logD) in dynamic executions.

The STALK Algorithm: it assumes a hierarchical partitioning of processors over locations in

geometric networks (details in [41]). The hierarchical structure it maintains is similar to [15].

It has h + 1 = O(logσD) levels, where σ ≥ 3 such that the radius of a level k cluster is at

least φ′k = σk. Moreover, they have the radius of a level k cluster at most φ′k = mσk, where

m ≥ 2/
√

3. Therefore, ϕ = O(1). According to the construction, each process in the tracking

path has at most one child, i.e., the number of move parent nodes for each process η = O(1).

Hence, as σ and m are constants, through Theorem 6.4.17 we obtain that STALK has competitive

ratio O(η · ϕ · σ5 · h) = O(m · 35 · log3D) = O(logD). We summarize the result in the theorem

below.

Theorem 6.5.5 CRSTALK = O(logD) in dynamic executions.

6.6 Summary and Discussions

We presented and analyzed a framework for distributed hierarchical directories for an arbitrary

set of dynamic online requests. We also analyzed several existing distributed directory protocols

through the framework. This is the first such analysis of distributed directories that do not use pre-

selected spanning trees as an underlying hierarchy. This technique is appealing in the sense that

it gives a methodology to analyze a large interesting class of hierarchical directories for any arbi-

trary set of requests and it subsumes previous techniques for sequential and concurrent execution

analysis. For future work, it will be interesting to see whether the linear dependency of the compet-

itive ratio on η can be removed (or at least made sub-linear), without introducing race conditions,

for distributed hierarchial directories in some specific topologies. Moreover, we considered FIFO

173

links on the hierarchical directory which may not be very realistic given that a single logical link

may map various physical links. It will be interesting to explore the cost of implementing FIFO

logical links when needed.

174

Chapter 7
NUMA Systems: Load Balanced Model

7.1 Introduction

In the context of DDPs, previous approaches: Arrow [43], Relay [143], Combine [10], Ballistic

[77], and Spiral [129], focused only on stretch bounds for various network topologies (see Table

2.2 in Chapter 2 for their properties) and they do not control the congestion. Moreover, DDPs used

in [3, 32, 33] have not been analyzed even for the stretch bounds. The network congestion can also

affect the overall performance of the algorithm and sometimes it is a major bottleneck. Network

congestion is a significant issue for the NUMA systems where multicore chips are connected with

each other through high speed interconnect communication links and they are suitable for high

performance distributed and parallel computing. We measure the network congestion as the worst

node or edge utilization (the maximum number of times the object requests use any edge or node

in the network while accessing the shared object).

In this chapter1, we present MultiBend, a consistency algorithm for shared objects, that is suit-

able for d-dimensional mesh networks and is load balanced in the sense that it has low congestion

(maximum edge utilization), and at the same time maintains low stretch. Mesh networks are ap-

pealing due to their use in parallel and distributed computing [2, 34, 96, 120]. Mesh networks are

cost-effective and provide great performance solution for diverse applications, simple expansion

for future growth, and scalable connection properties. Mesh topologies are used as an underlying

1Portions of this chapter published in:
Gokarna Sharma and Costas Busch. Towards Load Balanced Distributed Transactional Memory. Proceedings of
the 18th International European Conference on Parallel Computing (Euro-Par), LNCS 7484, pp. 403–414, 2012.
http://link.springer.com/chapter/10.1007/978-3-642-32820-6_41

175

backbone network in many distributed clusters and supercomputers. For example, 65,000 nodes of

IBM Blue Gene/L are interconnected as a 64× 32× 32 3-dimensional mesh or torus [2]. Recently,

IBM Blue Gene/Q integrated 5-dimensional torus [34], where a torus is a variation of the mesh

topology.

MultiBend combines in a novel way a consistency algorithm protocol with a routing algorithm

to achieve low stretch and load balancing. The low stretch is achieved through a hierarchical

directory which we first introduced in [129] for general networks and we adapted here for the mesh

network. The load balancing is achieved through an oblivious routing approach (e.g., [16, 28, 96])

tailored to the d-dimensional mesh; in particular, we use the oblivious routing algorithm in Busch

et al. [28]. A routing algorithm is oblivious if every path that is selected for each request to route

to its destination is chosen independently of every other path. Oblivious routing is preferred as

it does not make any assumptions on the network traffic. DDPs and oblivious routing algorithms

have been used before separately. Here we combine these algorithms for the first time to achieve

simultaneously low stretch and load balancing. The combination is possible because both DDPs

and oblivious routing algorithms work on some form of hierarchy of clusters. Therefore, the

routing of messages between any two consecutive levels in consistency algorithm hierarchies can

be done obliviously to obtain low congestion on the edges that are used by the nodes of the clusters

of the consecutive levels. Later, combining the congestion bounds for all the levels, we can obtain

a concentration result on congestion. Low stretch is obtained exploiting the properties of cluster

hierarchies.

MultiBend is different from previous DDPs, Arrow [43], Relay [143], Combine [10], Ballistic

[77], and Spiral [129] (see Table 2.2 in Chapter 2). Although previous DDPs use some kind of

hierarchical structures, their constructions are useful only to minimize stretch and they can not

be exploited to control congestion. Moreover, MultiBend is different from distributed hash table

protocols (DHTs), e.g., Chord [134], CAN [108], Pastry [113], and Tapestry [146], that are

developed for peer-to-peer networks. We list some of the differences here. DHTs store key-value

pairs by assigning keys (or objects) to different nodes; a node will store the values for all the keys

176

for which it is responsible. MultiBend handles mobile objects whereas objects (or keys) are not

mobile in DHTs. Congestion in MultiBend is for each node and edge, whereas in DHTs it is only

for some special DHT nodes. Moreover, stretch in MultiBend is related to path graph distances,

whereas in DHTs it is the number of hops in special DHT nodes.

7.1.1 Theoretical Contributions

MultiBend works for any arbitrary execution of the move operations in E . However, in the analysis,

we consider only the sequential and the concurrent (one-shot) execution of the set E of move

operations in MultiBend. In sequential case, we consider an initial publish operation followed by

a non-overlapping sequence of l move operations. For concurrent case, we assume the one-shot

scenario where all the l ≤ n move operations come to the system at the same time after an initial

publish operation and no further requests occur. We discuss later in Section 7.4.2 how MultiBend

can be analyzed for the dynamic execution where requests in E arrive to the system in arbitrary

moments of time.

Note that OPT might order the requests of E differently than a consistency algorithm. Let π∗

be the order of OPT and π be the order of the consistency algorithm.

• Sequential execution: π∗ is same as π in the sequential (or non-overlapping) execution of

requests, therefore, the cost of OPT must be at leastA∗(E) ≥
∑l

i=1 |dist(si, ti)|, the shortest

path distance between each source and destination node pair in the π order.

• Concurrent execution: π∗ may not be same as the order π provided by the consistency algo-

rithm in the concurrent execution of requests. However, A∗(E) of OPT must be at least the

sum of the Steiner tree [110] distances of the locations of the request nodes.

For the move operations in both sequential and concurrent (one-shot) executions, MultiBend

guarantees O(d log n) amortized stretch and O(d2 log n) approximation of the optimal congestion

on any edge in d-dimensional mesh networks, where n is the number of nodes in the mesh (see

Section 7.7 for the approximation bound on node congestion). If we fix the number of nodes n,

177

then d is at most O(log n) for d-dimensional mesh networks with equal d in every dimension.

In this scenario, MultiBend achieves stretch bound of O(log2 n) and congestion approximation

bound of O(log3 n); this stretch bound of MultiBend either outperforms or matches the bounds

of all previous DDPs (refer Table 2.1 for the various properties of previous DDPs, their bounds,

and their comparison with our results). Moreover, MultiBend minimizes congestion, whereas all

previous DDPs do not address this issue. For fixed d, the move stretch of MultiBend is optimal

within a loglog factor comparing to the Ω(log n/ log log n) lower bound due to Alon et al. [4] for

the mobile user tracking problem; the congestion approximation is also optimal within a constant

factor in light of the Ω(C
∗

d
log n) lower bound on the approximation ratio of an oblivious algorithm

due to Maggs et al. [96].

The communication cost of the publish operation is proportional to the diameter of the mesh

network (i.e.,O(d ·n)) and it is a fixed initial cost which is only considered once and compensated

by the costs of the move (or lookup) operations which are issued thereafter. The stretch of a lookup

operation ℘ from node s to the owner node o can be defined similarly as of move stretch, which

is |p|
|dist(s,o)| , where |p| is the number of edges the path p of the request ℘ uses in MultiBend and

|dist(s, o)| is the number of edges in the shortest path between s and o. The stretch of lookup

operations is O(d2) in MultiBend even when they are considered individually while their overall

edge congestion hasO(d2 log n) approximation in the d-dimensional mesh. Moreover, MultiBend

is shown to be correct in the sense that it eventually enqueues every move request in the distributed

queue and each request is enqueued only once. To the best of our knowledge, this is the first

consistency algorithm that achieves low stretch in a load balanced way.

7.1.2 Practical Contributions

We complement the theoretical analysis of MultiBend by the extensive simulations in a 16 × 16

nodes 2-dimensional mesh network. We simulate MultiBend and some of its variants considering

many different sequences of move and lookup operations on a single shared object and multiple

shared objects. The evaluation results show that MultiBend has a very reasonable distance stretch

178

property along with its low congestion benefits compared to prior DDPs in different execution

settings. The simulation is compared to two well-known DDPs, Arrow [43] and Ballistic [77].

Our choice of Arrow and Ballistic for the performance comparison among existing DDPs (Arrow

[43], Relay [143], Combine [10], Ballistic [77], and Spiral [129]) is due to the fact that Relay

works similar to Arrow, the overlay construction of Combine resembles the overlay construction

used in Ballistic, and MultiBend uses some of the algorithmics of Spiral. In particular, our results

show that MultiBend is better by at least a factor of 6.85 in balancing the load, in the worst-case,

in the 16 × 16 nodes 2-dimensional mesh network; the distance stretch results of MultiBend are

comparable to previous DDPs.

7.1.3 Chapter Organization

The rest of the chapter is organized as follows. We proceed with network model and the construc-

tion of a hierarchy for the 2-dimensional mesh in Section 7.2. We present MultiBend protocol in

Section 7.3 for the 2-dimensional mesh. We then analyze our protocol for both stretch and conges-

tion in Section 7.4. In Section 7.5, we extend MultiBend for the d-dimensional mesh, where d is

not assumed to be fixed. We then present simulation results of the implementation of MultiBend

for a single shared object and multiple shared objects in Section 7.6. We conclude the chapter in

Section 7.7 with a short discussion.

7.2 Preliminaries

7.2.1 Network Model

We begin with some necessary definitions which are adapted from [28, 129]. We represent a

distributed network as a d-dimensional mesh. The d-dimensional mesh M = (V,E) is a d-

dimensional grid of nodes (network machines) V , where |V | = n, with side length mi in each

dimension such that n =
∏d

i=1mi, and edges (interconnection links between machines) E ⊆
(
V
2

)
.

Each computing node u ∈ V is connected with each of its 2d neighbors (except the nodes at the

179

boundaries of the mesh). We denote by |E| the number of edges in M . We consider that the num-

ber of nodes, mi, at each dimension of the mesh network is a power of 2 and mi is equal in every

dimension. However, our results hold also for mesh networks (including d-dimensional) where di-

mensions are within a constant factor of each other. If the dimensions are within a constant factor,

the worst-case stretch and congestion bound increase is also within the same factor. A path p in

M is a sequence of nodes with respective sequence of edges connecting the nodes, such that the

length of the path p, denoted length(p), is the number of edges it uses. A sub-path of p is any path

obtained by a subsequence of consecutive edges in p; we may also refer to a sub-path as a fragment

of p. Let dist(u, v) denote the shortest path length (distance) between nodes u and v.

Consider a routing problem Π defined as a set of pairs of source and destination nodes. A rout-

ing algorithm for Π provides paths from every source to its respective destination. An algorithm is

oblivious if the path choice for each pair of source-destination is independent of the path choices

of any other pair. The edge (node) congestion C is the maximum number of times any edge (node)

is is used by the object requests. Let C∗ denote the optimal congestion attainable by any routing

algorithm. We have symmetric definitions for node congestion. For a sub-mesh M ′ ⊆ M (i.e.,

M ′ is any mesh that contains inside M), let out(M ′) denote the number of edges at the boundary

of M ′, which connect nodes in M ′ with nodes outside M ′. Consider some sub-mesh M ′ of the

network M . Let Π′ denote the messages (pairs of sources and destinations) in Π which have either

their source or destination in M ′, but not both. All the messages in Π′ will cross the boundary of

M ′. The paths of these messages will cause congestion at least |Π′|/out(M ′). Define the boundary

congestion of M ′ to be B(M ′,Π) = |Π′|/out(M ′). For the problem Π, the boundary congestion

B = maxM ′⊆M B(M ′,Π), the maximum over all its sub-meshes. Clearly, C∗ ≥ B.

We assume that M represents a network in which nodes do not crash, it implements FIFO

communication between nodes, and messages are not lost. We also assume that, upon receiving a

message, a node is able to perform a local computation and send a message in a single atomic step.

MultiBend can be extended to accommodate non-FIFO communication and tolerate unreliable

communication links by adapting some of the techniques of Attiya et al. [10].

180

7.2.2 Hierarchical Directory for the 2-Dimensional Mesh

We describe here the hierarchical directory construction for the 2-dimensional mesh, later we dis-

cuss how to extend it to higher dimensions (d > 2) in Section 7.5. The hierarchical directory

construction for the 2-dimensional mesh is interesting because it is simple to construct but shows

the benefits of our approach in controlling both stretch and congestion. This hierarchical construc-

tion is later used in Section 7.3 to run our MultiBend protocol. In particular, we describe how

to represent the 2-dimensional mesh with equal side lengths m = 2k, k ≥ 0, as a hierarchy of

sub-meshes. We decompose the 2-dimensional mesh M into two types of sub-meshes, type-1 (see

Fig. 7.1) and type-2 (see Fig. 7.2), as described below, adapting some notations from Busch et

al. [28].

• Type-1 sub-meshes. There are k + 1 levels of type-1 sub-meshes, i = 0, 1, · · · , k. The mesh

M itself is the only level k sub-mesh. Every level i sub-mesh can be partitioned into 4 sub-

meshes by dividing each side by 2. Each resulting sub-mesh is a type-1 sub-mesh at level

i − 1. According to this decomposition, at level i, there are 22(k−i) sub-meshes each with

side length mi = 2i. Note that the level 0 sub-meshes are the individual nodes of the mesh.

• Type-2 sub-meshes. There are k − 1 levels of type-2 sub-meshes, i = 1, · · · , k − 1. The

type-2 sub-meshes at level i are obtained by taking the type-1 sub-meshes of that level and

shifting them by−mi/2 simultaneously in both dimensions. Some of the shifted sub-meshes

are entirely within M and the remaining of the shifted sub-meshes are partially overlapped

with M . For the partially overlapped sub-meshes, we keep only their intersection with M .

According to this construction, we have that both sides are of length at least mi−1 = 2i−1 for

all the type-2 sub-meshes at level i.

The decomposition described above satisfies the following properties: (i) The type-1 (and also

type-2) sub-meshes at a given level are disjoint; (ii) Each type-1 or type-2 sub-mesh at level i can

be partitioned into type-1 sub-mesh(es) at level i − 1; and (iii) Each type-1 or type-2 sub-mesh at

level i is completely contained in a sub-mesh at level i+ 1 of type-1, type-2, or both.

181

Figure 7.1: Illustration of the decomposition of the 23 × 23 2-dimensional mesh into type-1 sub-
meshes.

Figure 7.2: Illustration of the decomposition of the 23 × 23 2-dimensional mesh into type-2 sub-
meshes. The decompositions of level 0 and level 3 are omitted from the hierarchy of sub-meshes
as they match type-1 decompositions of those levels.

We now define a hierarchy of sub-meshes. The sub-mesh hierarchy Z = {Z0, Z1, . . . , Zk}, is

a hierarchy of k+ 1 levels of sub-meshes such that: (i) At level k all nodes in M belong to exactly

one sub-mesh, i.e., mesh M itself is the only level k sub-mesh; (ii) At level 0 each node in M is

the one sub-mesh by itself; and (iii) In any level i, 1 ≤ i ≤ k − 1, Zi contains type-1 and type-2

sub-meshes of level i. We have that k + 1 = O(log n) in Z as side lengths of the sub-meshes

increase by a factor of 2 between two consecutive levels.

Since there are exactly two types of sub-meshes at any level 0 < i < k of Z , we assign

sub-level 1 to type-2 sub-mesh and sub-level 2 to type-1 sub-mesh (see Figs. 7.1 and 7.2). This

assignment extends the definition of level to sub-level using (i, j), where i is the level and j ∈

{1, 2} is the sub-level. For level 0 and level k we have only one sub-level as there are only type-

1 sub-meshes. We assign level (0, 2) to level 0 sub-mesh and level (k, 1) to level k sub-mesh.

182

Moreover, using this (i, j) definition, we can denote the sub-mesh at any level (i, j) by Xi,j . In the

following, we sometime write sub-level (i, j) instead of level (i, j).

7.2.3 Multi-bend Paths

We define a path p(u) for each node u ∈ V which we will refer to as the “multi-bend” path of u.

The path p(u) is built by visiting a sequence of predetermined leader nodes in all the sub-meshes

that u belongs to starting from level 0 up to k. In each level, the sub-meshes are visited according

to the lexicographical ordering of their sub-levels.

In every sub-mesh Xi,j at level (i, j) a leader node is chosen arbitrarily at the initialization

of the hierarchy which we denote as `i,j = `(Xi,j). If one node is the leader on many level sub-

meshes, we add a virtual copy node of it and create a virtual link between the virtual copy and

itself in subsequent sub-meshes. Since the top most Zk consists of a single level (k, 1) sub-mesh

Xk,1 (which is the mesh M by itself) it has a unique leader which we denote by `k,1 = `(Xk,1) = r

(the root). Trivially, every node u ∈ V is a leader of its own sub-mesh at level 0, i.e., `0,2 = u for

every node u ∈ V . Note that `(Xi,j) for any level (i, j) sub-mesh Xi,j is changed for every request

by electing a new leader uniformly at random among the nodes of Xi,j . This step is done to control

congestion.

As needed later in the formal definition of the multi-bend path p(u) for each node u ∈ V ,

we denote by `i,j(u) the leader node of the level (i, j) sub-mesh Xi,j in which u belongs to (i.e.,

u ∈ Xi,j). Moreover, we sometime denote the sub-mesh Xi,j itself by Xi,j(u) to signify that

Xi,j contains u. When the context is clear, we write X(u) instead of Xi,j(u). According to the

construction of type-1 and type-2 sub-meshes at each level, there is exactly one sub-mesh at each

level (i, j) in which node u belongs to.

From an abstract point of view, the multi-bend path bends (changes dimensions) multiple times

while it visits sub-mesh leaders of higher levels. The name of the protocol is inspired from this

bending property of multi-bend paths. To be able to bound the congestion, when the multi-bend

path needs to visit the leader node of the subsequent sub-mesh from the leader node of the current

183

(a) One-bend path (b) Two-bend path (c) Multi-bend path

Figure 7.3: Illustration of one-bend, two-bend, and multi-bend paths in the 23 × 23 2-dimensional
mesh

sub-mesh, we ask it to follow only the nodes that are contained in the current and the subsequent

sub-meshes.

A one-bend path consists of two straight lines, one line in each dimension which meet at a

corner where the bend occurs. The one-bend path is sufficient to satisfy our criteria for the multi-

bend path when the subsequent sub-mesh completely contains the current sub-mesh. For example,

consider the scenario in Fig. 7.3a, where sub-meshM2 is completely contained in sub-meshM1. In

this case, it is possible to visit any node ofM2 from any node inM1 using a one-bend path, without

visiting any node that in not contained in M1 or M2. According to the mesh decomposition and

the construction of Z given in Section 7.2.2, this is exactly the case between the leaders of the

sub-meshes at level (i + 1, 1) and at level (i, 2), 0 < i < k, in the multi-bend path because any

type-1 or type-2 sub-mesh at level i is completely contained in a sub-mesh at level i+ 1 of type-1,

type-2, or both.

We sometime need two-bend paths between two subsequent leaders in MultiBend. According

to the mesh decomposition and the construction of Z given in Section 7.2.2, every level i of Z has

actually two sub-levels (i, 1) and (i, 2), where level (i, 1) has all type-2 sub-meshes and level (i, 2)

has all type-1 sub-meshes. Moreover, some type-2 sub-meshes at level (i, 1) are not completely

contained in some type-1 some-meshes at level (i, 2). In this situation, a one-bend path is not

always sufficient to visit the leader of the sub-mesh at level (i, 1) from the leader of the sub-mesh

at level (i, 2) in a multi-bend path, without visiting the nodes outside those sub-meshes, and hence

a two-bend path is needed between them. A two-bend path consists of three straight lines, two lines

184

in one dimension and they meet at the corners of the third line in other dimension where two bends

occur. For example, consider the scenario in Fig. 7.3b, where sub-mesh M2 is not completely

contained in sub-mesh M1. In this case, it is possible to visit any node of M2 from any node in M1

using a two-bend path, without visiting any node that in not contained in M1 or M2.

For any pair of nodes u, v ∈ V , let s(u, v) denote a dimension-by-dimension (i.e., change in

path from one dimension to the other dimension in every bend) shortest path (an at most two-

bend path) from u to v. For any set of nodes u1, u2, . . . , uf ∈ V , let s(u1, u2, . . . , uf) denote the

concatenation of shortest paths s(u1, u2), s(u2, u3), . . . , s(uf−1, uf). The multi-bend path p(u)

is formed by taking the concatenation of the shortest paths that connect the ascending sequence

of leaders of sub-meshes in which u belongs to starting from node u at sub-level (0, 2) in the

bottom level up to node r at sub-level (k, 1) in the root level. The shortest paths that connect the

subsequent leaders are either one-bend or two-bend paths. For example, see Fig. 7.3c, which shows

a multi-bend path from node u to node v in a 23×23 2-dimensional mesh, where u1, u2, u3, v2, and

v1 are the leader nodes of the clusters the multi-bend path p(u) of u visits to reach v. Formally, the

multi-bend path of node u is:

p(u) = s(u, `1,1(u), `1,2(u), . . . , `k−1,1(u), `k−1,2(u), r).

We say that two multi-bend paths intersect if they have a common node. We also say that two

multi-bend paths intersect at level i if they visit the same leader node at level i (they may intersect

outside leaders but we do not consider that). The lemma below follows from the properties of the

sub-mesh hierarchy Z .

Lemma 7.2.1 For any two nodes u, v ∈ V , their multi-bend paths p(u) and p(v) intersect at level

at most dlog(dist(u, v))e+ 1.

Proof. According to the definition of multi-bend paths, p(u) and p(v) of nodes u and v

visit the ascending sequence of leaders of sub-meshes in which they belong to. Suppose ι =

dlog(dist(u, v))e + 1 ≤ k. From the definition of Z , any sub-mesh at level ι has a side length at

185

least 2ι−1 ≥ dist(u, v). Thus, some (type-1 or type-2) sub-mesh X ∈ Zι will contain both u and

v. Therefore, the paths p(u) and p(v) intersect in leader node `(X) of the sub-mesh X . ut

7.2.4 Canonical Paths

In the analysis of MultiBend, we will examine paths obtained from fragments of multi-bend paths;

the fragments are formed while the object moves. These paths start at level 0 and may go up to

the root. We will refer to such paths as canonical. Formally, a canonical path q up to sub-level

(α, β) ≤ (k, 1) is

q = s(x0,2, x1,1, x1,2, x2,1, x2,2, . . . , xα,β),

such that xi,j’s are leader nodes along the path. A canonical path can be either partial when the top

node is below level k (below the root), or full when the top node is the root. A multi-bend path p(u)

is a full canonical path. Any prefix of a multi-bend path is a partial canonical path. We continue

to bound the length of a canonical path when we use the sub-mesh hierarchy Z . Particularly, we

prove the following lemma.

Lemma 7.2.2 (canonical path length) For any canonical path q up to level α (any sub-level

(α, 1) or (α, 2)), length(q) ≤ 2α+4.

Proof. Define the function next(i, j) (resp. prev(i, j)) which returns the sub-level immediately

higher (resp. lower) than the sub-level (i, j). Consider two consecutive nodes xi,j, xnext(i,j) ∈ q,

where (0, 2) < (i, j) < (α, β) (β ∈ {1, 2} in the 2-dimensional mesh decomposition). From the

definition of canonical paths, there is a node y ∈ V with xi,j = `i,j(y) and xnext(i,j) = `next(i,j)(y).

Therefore, dist(xi,j, xnext(i,j)) = dist(`i,j(y), `next(i,j)(y)) ≤ dist(y, `i,j(y)) + dist(y, `next(i,j)(y)).

We explore the following two cases:

i. next(i, j) = (i, j + 1): sub-meshes Xi,j(y) and Xnext(i,j)(y) are at the same level i. We

have that the length of at least one side of the sub-mesh Xi,j(y) is 2i and also for sub-mesh

Xnext(i,j)(y), at least one side is of length 2i. Since the path between them is constructed by

186

the dimension to dimension path (with at most 2 bends) dist(xi,j, xnext(i,j)) ≤ (2i + 2i) ≤

2i+1.

ii. next(i, j) = (i+ 1, 1): sub-meshes Xi,j(y) and Xnext(i,j)(y) are at levels i and i+ 1, respec-

tively. We have that at least one side of the sub-meshXi,j(y) is of length 2i and for sub-mesh

Xnext(i,j)(y) at least one side is of length 2i+1. This gives dist(xi,j, xnext(i,j)) ≤ (2i+2i+1) ≤

2i+2.

By adding the length of the paths we have that, the path length q for each level i, denoted as qi, is

the sum of the path lengths obtained for cases i and ii, i.e., qi ≤ 2i+1 + 2i+2 ≤ 2i+3. The path q is

the concatenation of paths constructed by the dimension to dimension shortest paths in sub-meshes

of (at least one) sides 21, 22, · · · , 2α−1, 2α. Therefore the canonical path length q up to level α is:

length(q) =
∑α

i=1 qi ≤
∑α

i=1 2i+3 ≤ 2α+4. ut

7.3 The MultiBend Protocol

We present the MultiBend protocol (Algorithm 10) which is a consistency algorithm for shared

objects. For simplicity, we describe it here for a 2-dimensional mesh M using the 2-dimensional

mesh decomposition of Section 7.2.2 and for one shared object; the general case for d-dimensional

mesh is given in Section 7.5. Moreover, we consider here only one shared object as it is typical

in the consistency algorithm literature [10, 43, 77, 129, 143]. We perform some experiments for

supporting multiple objects through MultiBend in Section 7.6.

7.3.1 Protocol Overview

Consider some shared object ξ. The protocol guarantees that any moment of time only one node

holds the shared object ξ which is the owner of the object. The owner is the only node who can

modify the object (write the object); the other nodes can only access the object for read.

MultiBend is implemented on the sub-mesh hierarchy Z constructed in Section 7.2.2. Only

the bottom level nodes of Z can issue requests (publish, lookup, and move) for the shared object

187

ξ, while nodes in higher levels of Z are used to propagate the requests in the mesh. The basic

objective of MultiBend is to maintain a directory path in Z which is a directed path from the

root node r to the bottom-level node that is the current owner of ξ. The directory path is updated

whenever ξ moves from one node to another. Initially, the directory path is formed from the multi-

bend path p(v) of the object creator node v. As soon as the object ξ is created, v publishes ξ by

visiting the leaders in its multi-bend path p(v) towards the root r, making each parent leader node

pointing to its child leader (Fig. 5.1a). These leader pointers correspond to path segment between

the two consecutive leaders and the concatenation of these path segments from the root r to v form

the initial directory path. A move request from node u for the object ξ at the owner node v is

served by following leader ancestors in its multi-bend path p(u), setting downward links toward it

until p(u) intersects the directory path to the owner node, and resetting the directory path it follows

while descending towards the owner node v (Figs. 5.1c−5.1f); the directory path now points to the

requesting node u. As soon as the move request reaches the owner node, the object is forwarded

from the owner node (node v in Fig. 5.1a) to the requesting node (node u in Fig. 5.1a) along some

shortest path in the mesh (Fig. 5.1h). This shortest path is the actual path that the object traverses.

Fig. 7.3c depicts a possible path that the move operation of Fig. 5.1 follows in the meshM to reach

the owner node of the object. A lookup operation is served similar to move without modifying the

directory path.

7.3.2 Protocol Description

We now provide the protocol description in detail. We define the notion of parent node before

giving details of lookup and move. We denote parent node y of a node x in the multi-bend path

p(u) as y = parentp(u)(x), i.e., if y is the sub-level (i, j) sub-mesh leader in p(u) then x is the

leader of the immediate lower sub-level sub-mesh leader. Note that the leader of a level 0 sub-

mesh is the node itself.

Moreover, we define the notion of special-parent node, which will be useful in reducing

the lookup cost (see discussion in Section 7.3.3). A special-parent node of y, denoted as

188

Algorithm 10: MultiBend
1 When y receives m = 〈v, up, publish〉 from x: // Publish operation
2 set y.link = x; if y is not a root node then sendm to parentp(v)(y);

3 When y receives m = 〈u, phase, lookup〉 from x: // Lookup operation
4 if m = 〈u, up, lookup〉 then // up phase
5 if y.link = ⊥ then
6 if y.slink list is empty then
7 elect a leader w at sub-mesh containing parentp(u)(y); sendm to w;
8 else elect a leader w at sub-mesh containing first pointer of y.slink list;
9 send 〈u, down, lookup〉 to w;

10 else elect a leader w at sub-mesh containing y.link; send 〈u,down,lookup〉 to w;
11 if m = 〈u, down, lookup〉 then // down phase
12 if y is a leaf node then
13 send the read-only copy of ξ to u and remember u;
14 else elect a leader w at sub-mesh containing y.link; sendm to w;

15 When y receives m = 〈u, phase, move〉 from x: // Move operation
16 if m = 〈u, up, move〉 then // up phase
17 assign oldlink ← y.link and set y.link = x;
18 add y in slink list of y’s special parent;
19 if oldlink = ⊥ then
20 elect a leader w at sub-mesh containing parentp(u)(y); sendm to w;
21 else send 〈u, down, move〉 to oldlink;
22 if m = 〈u, down, move〉 then // down phase
23 if y is in the slink list then erase y from slink;
24 if y is not a leaf node then oldlink ← y.link; y.link ← ⊥; sendm to oldlink;
25 else send the writable copy of ξ to u;
26 invalidate(ξ) from the owner node v and the read-only copies from other nodes;

sparentp(u)(y), at sub-level (i, j) in the multi-bend path p(u) is the leader node of one of the

sub-meshes X(u) ∈ Zη at level η, where η = i + 5, i.e., sparentp(u)(y) is some ancestor leader

node of y at level η in p(u). Every node knows its special parent and has a special downward

pointer, slink, towards a special-child node from its special-parent sparentp(u)(y) (otherwise it is

⊥). We maintain a list of slink pointers if one node is the special parent for the leaders of several

sub-meshes.

We are now ready to provide details of publish, lookup, and move operations. The publish(ξ)

operation issued by the creator node v assigns downward pointers along the edges of p(v) directed

toward v. The pseudo-code for publish is given in Lines 1 and 2 of Algorithm 10. As for example,

Fig. 5.1a shows hierarchy Z after a successful publish operation. The move(ξ) operation issued by

189

Algorithm 11: Leader election procedure
1 select a node w in the sub-mesh containing leader z uniformly at random;
2 copy information at old leader z to new leader w;
3 inform the parent and child of z about the new leader w;
4 construct a sub-path pi from wi−1 to w by picking a dimension by dimension shortest path (where
5 the sub-path is either one-bend or two-bend);

a node u is implemented in two phases: (i) in the up phase, it is sent from u upward in the hierarchy

Z along p(u) towards the root r until it intersects at a node (i.e. node x) with the directory path; (ii)

in the down phase, it follows the directory path from node x to the object owner; then the owner

sends a copy of ξ to u (along some shortest path in M). In the up phase, the move operation sets

the directions of the edges in the fragment of p(u) between u and x to point toward u. In the down

phase, it deletes the downward pointers (or links) in the fragment of the directory path from x to v,

making the new directory path points toward u. Through this process, when the move(ξ) operation

from u reaches v in its down phase, u obtains a writable copy of ξ from v invalidating the old

copy of ξ at v and modifying the directory path (Figs. 5.1c−5.1h). The pseudo-code for move is

given in Lines 14–25 of Algorithm 10. Moreover, this process has resulted to a canonical directory

path that consists of two multi-bend path fragments, a fragment of u’s multi-bend path between r

and x and a fragment of v’s multi-bend path between x and u. Subsequent move operations may

result into further fragmentation of the directory path into multiple (more than two) multi-bend

path fragments.

The lookup(ξ) operation issued by a node u is served similarly as of move(ξ), but downward

pointers are not added and existing downward pointers are not deleted, hence not modifying the

existing directory path. The pseudo-code for lookup is given in Lines 3–13 of Algorithm 10.

Through this process, when the lookup(ξ) operation from u reaches v in its down phase, u obtains

a read-only copy of ξ from v without invalidating ξ from v and without modifying the existing

directory path.

190

7.3.3 Need of Special Parent

A lookup request from any node w for the object ξ at the owner node v may not find the directory

path to v at level logd(dist(w, v))e+ 1 leader node X of Z where their multi-bend paths p(w) and

p(v) intersect. This is because after several move operations the directory path may become highly

fragmented and hence the directory path does not pass through X where p(w) and p(v) intersect.

The notion of a special parent node helps to avoid this situation and guarantees efficient lookups,

such that whenever a downward link is formed at a node z the special parent of z is also informed

about z holding a downward pointer. The special parent has the property that any nearby lookup

close to z will either reach z or its special parent. In the up phase of the lookup request (Lines 4–9

of Algorithm 10), it is forwarded to level next(i, j) from level (i, j) only if both link and slink

pointers are ⊥ for the leader `(X) of the level (i, j) sub-mesh X . The slink pointers are set by

move operations in their up phase and existing slink pointers are deleted by move operations when

they follow the directory path previously set by other move operations in their down phase (Lines

17 and 22 of Algorithm 10). We prove in Section 7.4 that lookup operations are always efficient

using special parents (see Lines 6, 8, 17, and 22 of Algorithm 10).

7.3.4 Load Balancing

MultiBend (Algorithm 10) uses a leader election procedure (Algorithm 11) such that lookup and

move requests can be served in a load balanced way. The procedure works as follows: Let z be a

leader node of the sub-mesh M ′ in Z . We elect a new leader at M ′ by selecting a node w ∈ M ′

uniformly at random. After the leader is elected, the information at old leader z is moved to new

leader w and the parent and child of z are informed about the new leader w. The pointers inside

M ′ are also updated to point to the new leader. After that, sub-path pi from wi−1 (a leader of the

sub-mesh that is sending a message to M ′) to w is formed by picking a dimension by dimension

shortest path; the sub-path pi is one-bend if sub-mesh containing w and the sub-mesh containing

wi−1 are both type-1 sub-meshes, otherwise, pi is of at most two bend path. If the sub-path is the

two-bend path then it is picked by a random ordering of dimensions on a random node. The lookup

191

operation uses this procedure to elect the leader as shown in Lines 7, 8, 9, and 13 of Algorithm 10.

For move, the procedure is invoked at Line 19 of Algorithm 10.

The use of leader election procedure incurs extra cost to the actual cost of the move and lookup

operations. This is because this procedure requires some rounds of message exchanges between

the old leader and the new leader, and also with the parent and child of the old leader to inform

them about the new leader. We note that the pointer update cost is low in comparison to the cost

of serving the requests because only the information in the nearby region needs to be updated due

to the new leader. We argue that this step facilitates congestion control. This is because when a

fixed leader is used, the node congestion on that leader is proportional to the number of requests

that visit that leader. Moreover, in the fixed leader case, edge congestion can also be proportional

to the number of requests as all the requests use fixed edges along the shortest path between two

subsequent leaders. We study the impact of the extra cost due to the use of leader election procedure

in the performance of MultiBend through simulations in Section 7.6.

A multi-bend path selection approach we use plays major role in controlling edge congestion

because it minimizes the overutilization of edges by random ordering of dimensions while con-

necting two randomly selected subsequent sub-mesh leaders in the hierarchy. In other words, our

approach forms multi-bend paths that change dimensions independently for each operation, start-

ing first in the horizontal or vertical direction, and may follow different set of nodes every time we

route requests between two different leaders. We also note that, if the congestion requirement on

edges (or nodes) can be relaxed by the factor of ρ, then leader change is needed only after every ρ

requests in our approach. Our simulation results in Section 7.6 show the trade-off between stretch

and congestion in various leader change frequencies.

Moreover, we observe that at any time a request locks at most three nodes (level prev(i, j),

(i, j), and next(i, j)) along the multi-bend path or a directory path. In concurrent situations this

might be a problem. This is because we need to lock more than one node (at most three nodes) in

the multi-bend path to do the random leader election as described in Algorithm 11, otherwise di-

rectory information necessary for generating a new path may get lost. Therefore, in the concurrent

192

execution of move requests, we need to make sure that the nodes that are affected by the random

leader election should be kept locked until all the steps of Algorithm 11 have been executed. We

can use the notion of conflict graph for each level such that neighbors in the conflict graph can not

perform the random leader election at the same time (that is, they can not be in the critical section

at the same time). But the non-neighbors can be in the critical section at any time. Using this setup,

the performance of MultiBend for move operations in concurrent executions will be the same as

its performance for the sequence of move operations in sequential executions (see Sections 7.4.1

and 7.4.2). Note also that the special parent node does not need to be locked because only one

specific slink pointer value needs to be updated at any time.

7.4 Performance Analysis

We give the stretch and congestion analysis of MultiBend for sequential and concurrent (one-shot)

executions. The correctness proof of MultiBend is omitted as it can be easily proven by extending

the correctness proofs of Ballistic [77], Combine [10], and Spiral [129].

7.4.1 Performance in Sequential Executions

Move Cost: We now give the analysis of MultiBend in sequential executions. As move requests

are non-overlapping in sequential executions, the system attains quiescent configuration after a

request is served and until a next request is issued, i.e., a next request will be issued only after

the current request finishes. Let us define a sequential execution of a set E of l + 1 requests

E = {r0, r1, · · · , rl} for the object ξ, where r0 is the initial publish request and the rest are the

subsequent move requests (we do not include lookup operations in E since they do not add or

remove links in the directory hierarchy Z , and hence do not impact the performance of other move

or lookup operations).

For the sake of analysis, similar as in [129], we define a two-dimensional array B of size

(k + 1) × (l + 1), where k + 1 and l + 1 are the number of rows and columns, respectively. The

k + 1 rows of B can be denoted as {row 0, row 1, · · · , rowk} , and the l + 1 columns of B can be

193

denoted as {col0, col1, · · · , col l}. All the locations of the array B are initially empty (⊥). We fix

that [0, 0] is the lower left corner element and [k, l] be the upper right corner element. The levels

visited by each request ri in the hierarchy Z while searching for the object are registered in each

col i, 0 ≤ i ≤ h. The maximum level reached by a request ri before it finds the downward pointer

(link or slink) in Z is called the peak level for that request. We have that h ≤ k. The peak level

reached by r0 (the publish request) is always k, the maximum level in Z , and r0 is registered at all

the locations of col0 starting from col0[0] and ending in col0[k].

Let A∗(E) denote the optimal cost for serving requests in E through OPT and A(E) denote the

total communication cost for serving requests in E using MultiBend. We will bound the stretch

maxE A(E)/A∗(E). For simplicity, we consider only the cost incurred by the up phase of each

move request. When we consider also the cost incurred by the down phase, the stretch increases

by a factor of 2 only. For any c, d, 0 ≤ c < d ≤ l, a valid pair W j
(c,d) of two non-empty entries in

row j, 0 ≤ j ≤ h is defined asW j
(c,d) = (row j[c], row j[d]), such that row j[c] 6= ⊥ and row j[d] 6= ⊥,

and if d− c > 1, then ∀e, c+ 1 ≤ e ≤ d− 1, row j[e] = ⊥. In other words, W j
(c,d) is a pair of two

subsequent non-empty entries in a row. Moreover, we denote by Sj the total count of the number

of entries row j[i], 0 ≤ i ≤ l, such that row j[i] 6= ⊥, and by Wj the total number of valid pairs

(W j
(c,d)) in it. We have that Wj = Sj − 1.

Theorem 7.4.1 (move stretch) The move stretch of MultiBend is O(log n) for sequential execu-

tions.

Proof. Let A∗h(E) be the optimal communication cost for serving requests in E that reach level h

in the hierarchy Z . According to the execution setup, Sh is the number of requests in E that reach

level h, and Wh is the total number of valid pairs at that level. For any two subsequent requests

that originate from nodes u and v and reach level h, dist(u, v) ≥ 2h−1 (according to Lemma

7.2.1), since otherwise their multi-bend paths would intersect at level h − 1 or lower. Therefore

A∗h(E) ≥ Wh · 2h−1 ≥ (Sh − 1)2h−1, as Wh = Sh − 1. Considering all the levels from 1 to k, we

can say that optimal cost A∗(E) is at least A∗(E) ≥ max1≤h≤k A
∗
h(E) ≥ max1≤h≤k(Sh − 1)2h−1.

194

Similarly, let Ah(E) be the total communication cost of MultiBend for all the requests in E that

reach level h in the hierarchy Z , while probing the shared object in their up phase. According to

the execution setup, Ah(E) is the total communication cost for serving Sh requests that reach level

h using MultiBend. We have that Ah(E) ≤ (Sh − 1)2h+4 (Lemma 7.2.2). By combining the cost

for each level, A(E) =
∑k

h=1Ah(E) ≤
∑k

h=1(Sh − 1)2h+4, in the worst-case. We do not need to

consider level 0 for A∗(E) and A(E) because there is no communication at that level.

Since the execution E is arbitrary and
∑k

h=1(Sh − 1)2h+4 ≤ k ·max1≤h≤k(Sh − 1)2h+4,

max
E

A(E)

A∗(E)
≤ k ·max1≤h≤k(Sh − 1)2h+4

max1≤h≤k(Sh − 1)2h−1

≤ 32 · k ≤ 32 · (dlog ne+ 1) = O(log n),

as k = dlog ne+ 1. ut

Note that the move stretch of Theorem 7.4.1 does not take into account the cost of leader

election procedure (Algorithm 11). As described in Section 7.3.4, the leader election procedure

incurs extra cost. We argue here that the cost of leader election is low as only limited number

of nodes are involved in the leader election process. We analyze the impact of the cost of leader

election procedure in the performance of MultiBend through simulations in Section 7.6, which

shows that the cost due to the leader election procedure is approximately 3 times more than the

cost due to actual move operations. Nevertheless, this increase in cost in turn helps us in obtaining

significantly low congestion approximation (from linear on n to logarithmic on n).

Congestion: We relate the congestion of the paths selected by MultiBend to the optimal con-

gestion C∗. In particular, we prove the following theorem (this bound is valid for both move and

lookup operations, as both operations do random leader change in the same way). We use the

following Chernoff bound.

195

Lemma 7.4.2 (Chernoff bound) Let Y1, Y2, · · · , Yn be independent Poisson trials such that, for

1 ≤ i ≤ n, P [Yi = 1] = pri, and P [Yi = 0] = qri = 1 − pri, where 0 < pri, qri < 1. Then, for

Y =
∑n

i=1 Yi, µ = E[Y] =
∑n

i=1 pri, and any δ ≥ 2e− 1, P [Y > (1 + δ)µ] < 2−µ(1+δ).

Theorem 7.4.3 (congestion) MultiBend achieves O(log n) approximation on congestion with

high probability.

Proof. Recall that every request from its source node to its destination node is routed by Multi-

Bend by selecting some paths. Precisely, these paths are the multi-bend paths. Let e denote an

edge in the mesh graph M and C(e) denote the load on e (the number of times the edge e is used

by the paths of the requests). We bound the probability that some multi-bend path uses edge e.

Consider a fragment of a path p from a sub-mesh M1 to a sub-mesh M2, which we call the sub-

path pi of p, such that M1 ⊆ M2 and e is a member of M2. If M1 is of type-1 then all of its sides

are equal to m`, where ` is the level of M1. Then the sub-path pi uses edge e with probability at

most 2/m`. Moreover, a one-bend sub-path is enough to route the request from M1 to M2. We

deal with the case of type-2 sub-meshes later.

Let P ′ be the set of paths that go from M1 to M2 (or vice-versa). Let C ′(e) denote the conges-

tion that the paths P ′ cause on e. Using the similar argument as given in previous paragraph for an

edge e, the upper bound in C ′(e), denoted as E[C ′(e)], is bounded by E[C ′(e)] ≤ 2|P ′|/m`. This

is because, we can write P ′ = P1 ∪ P2, where P1 is the set of sub-paths from M1 to M2 and P2 is

the set of sub-paths from M2 to M1. Therefore, expected congestion on edge e due to sub-paths in

P1 is 2|P1|/m` and due to sub-paths in P2 is 2|P2|/m`. Summing the congestion due to P1 and P2,

we get the desired bound E[C ′(e)] ≤ 2|P ′|/m`.

Moreover, from the definition of the boundary congestion, B ≥ B(M1,Π) ≥ |P ′|/out(M1).

Thus,C∗ ≥ |P ′|/out(M1). SinceM1 has all sides of lengthm` nodes, out(M1) ≤ 4m`. Therefore,

E[C ′(e)] ≤ 8C∗. We charge this congestion to sub-mesh M2. Between every sub-level (i, 2) sub-

meshes, 1 ≤ i ≤ k − 1, as M1 of sub-level (i, 2) is completely contained in M2 of sub-level

(i+ 1, 2) and there are at most k < dlog ne+ 1 levels, the expected congestion on edge e, denoted

as E[C(e)], is bounded by E[C(e)] ≤ 8C∗(dlog ne+ 1).

196

According to our construction, there is only one type-2 sub-meshM ′
1 between every two type-1

sub-meshes M1 and M2 in the sub-mesh hierarchy Z . As the type-2 sub-mesh M ′
1 may not be the

proper subset of M2, the set of paths from M1 to M ′
1 may go through four possible type-2 sub-

meshes and they may bend at most two times before they reach to the leader node of M2. This will

increase the congestion by at most the factor of 4 between every two type-1 sub-meshes M1 and

M2. Moreover, since only sub-meshes up to level k < dlog ne+ 1 can contribute to the congestion

on edge e and there are at most (dlog ne+ 1) levels, E[C(e)] ≤ 32C∗(dlog ne+ 1).

As every request selects its path independently of every other request (Algorithm 11), we now

derive a concentration result on the congestionC, using a standard Chernoff bound given in Lemma

7.4.2. Let Yi = 1 if a multi-bend path pi uses edge e; otherwise Yi = 0. Then E[C(e)] =

E[
∑

i Yi] ≤ 32C∗(dlog ne + 1) ≤ 32C∗(log n + 2). For |E| > 4, we have that E[C(e)] ≤

32C∗ log(|E|n). As C∗ ≥ 1, using Lemma 7.4.2,

P [C(e) > 32κC∗ log(|E|n)] < 2−32k log(|E|n) < 2log((|E|n)−32κ) < (|E|n)−32κ,

for some constant κ = 2e+ 1. Taking the union over all the edges e ∈ E,

P

[
max
e∈E

C(e) > 32κC∗ log(|E|n)

]
<

1

(|E|n)32κ−1
.

As |E| = O(n2), we achieve C = O(C∗ log n) with high probability. ut

This congestion bound is valid for object operations on a single shared object. Whenever multi-

ple objects support is needed for a consistency algorithm, a directory hierarchy can be constructed

for each shared object. In this scenario, one interesting question is whether the leader election

procedure still required to minimize the congestion. We address this question through extensive

simulations in Section 7.6.

Publish Cost: We prove the following theorem for the communication cost of any publish oper-

ation.

197

Theorem 7.4.4 (publish cost) The publish operation has communication cost O(n).

Proof. A publish operation adds downward links on the publishing leaf node’s multi-bend path

towards the root node r in the sub-mesh hierarchy Z . Moreover, notice that the number of levels

in the hierarchy k < log n + 2 (Lemma 7.2.1) and a multi-bend path is trivially a canonical path.

Therefore, the theorem immediately follows from Lemma 7.2.2. ut

Lookup Cost: For the lookup stretch, assume that some node w issues a lookup request ℘ for the

shared object ξ and there is no other lookup request in the system. We prove the following theorem

for any lookup operation.

Theorem 7.4.5 (lookup stretch) The stretch of MultiBend is O(1) for any lookup operation.

Proof. We explore two different cases of a lookup request execution: one when there is no move

request in the system and the other when there are move requests in the system. If there is no move

request in the system, it is trivial to see that a lookup request ℘ from w finds the directory path

to the owner node v at level dlog(dist(w, v))e + 1 (Lemma 7.2.1), following the multi-bend path

p(w), where dist(w, v) is the distance of the owner node v from the requesting node w.

When there are move requests in the system, the lookup request ℘ from w may not find the

directory path to the shared object at level dlog(dist(w, v))e + 1 because the directory path to v

might have been deformed significantly such that the level 2(dlog(dist(w,v))e+1) parents of w in its

multi-bend path p(w) have no information about the owner node v. Nevertheless, we can prove

that if a node w issues a lookup request ℘ for the shared object ξ currently owned by a node v

which is at distance dist(w, v) = 2i far from w, the multi-bend path p(w) is guaranteed to either

intersect with the directory path to v or find a slink to the directory path for the object at level at

most η, where η = i+ 5.

The intuition behind the proof is as follows. Let us assume that x = `(X) is the leader of the

sub-mesh X at level η = i + 5, which has a slink information to level i leader vi (set by some

previous move request), where vi is the level i leader node in the directory path to the owner node

198

v. For the lookup ℘ to find slink to vi,X must includew (since the multi-bend path p(w) ofw visits

the leaders of all the sub-meshes that contain it). Now, it suffices to show that the side length of X

is at least the distance dist(vi, w) to guarantee that X contains w. As the canonical path up to level

i from v (the owner node), denoted by qi, is of length 2i+4 (Lemma 7.2.2) and dist(w, v) = 2i,

dist(vi, w) ≤ length(qi)+dist(v, w) ≤ 2i+4+2i ≤ 2i+5. That is, some sub-mesh should be of side

length at most 2i+5 to have such information, and thus, such sub-mesh will be at level η = i + 5.

Therefore, X contains w.

We are now ready to bound the stretch A(℘)/A∗(℘) of MultiBend for a lookup operation ℘,

where A(℘) is the total communication cost of serving the lookup request ℘ using the MultiBend

protocol and A∗(℘) is the optimal cost of serving the lookup request ℘ through OPT. The total

cost of MultiBend for ℘ is at most the sum of the distances length(pη(w)) (the length of the spiral

path p(w) up to level η), dist(x, vi) (the path length between level η leader x and the level i leader

vi in the canonical path towards the owner node v), and length(qi) (the canonical path length of v

up to vi, the level i leader in q). Therefore, the total cost of MultiBend for the lookup request ℘

(after substituting η by i+ 5) is bounded by:

A(℘) = length(pη(w)) + dist(x, vi) + length(qi)

≤ 2η+4 + 2η+3 + 2i

≤ 2i+5+4 + 2i+5+3 + 2i ≤ 2i+10.

As w and v are dist(w, v) = 2i apart, the optimal cost is at least A∗(℘) ≥ 2i for the lookup request

℘ to get the shared object ξ at v following the shortest path between w and v in the mesh M .

Hence, the stretch of MultiBend for a lookup operation is A(℘)
A∗(℘)

≤ 2i+10

2i
= O(1), as needed. ut

7.4.2 Performance in Concurrent Executions

The performance analysis of MultiBend given above does not apply to concurrent executions be-

cause the adversary is not allowed to gain by ordering the requests in a smarter way, i.e., the

199

orderings provided by both MultiBend and OPT are the same. Concurrent executions can change

the order of the requests in execution and hence affect the performance of the MultiBend protocol.

In one-shot execution, all requests come concurrently (at the same time) in the system. We study

the following one-shot instance of concurrent execution. At time t as soon as a publish operation

started at time 0 finished execution, R ⊆ V nodes issue a move request concurrently and no fur-

ther requests occur. We divide the time into periods and rounds such that a level i round has i

non-overlapping aligned periods, and we assume that all requests proceed in rounds. Now when

two or more requests reach to level i one is forwarded towards level i+1 and other(s) is “deflected”

down following the directory path set by the previously upward forwarded request in the hierarchy

Z . Defining total and optimal cost for one-shot execution similar to sequential execution, the opti-

mal cost for any level i is given by the Steiner tree [110] of the requests that reach that level. The

total cost analysis is similar as of sequential execution, and also the analysis for approximation on

congestion, and lookup and publish bounds. Therefore, we summarize the bounds in concurrent

executions in the theorem below.

Theorem 7.4.6 The move stretch of MultiBend is O(log n) for concurrent (one-shot) executions.

It achieves O(log n) approximation on congestion with high probability. Moreover, the publish

operation has O(n) cost and the lookup operation has O(1) stretch.

The performance of MultiBend can also be analyzed for requests that are initiated in arbitrary

moments of time (i.e., dynamic executions). This analysis can capture the execution scenarios

where requests are neither completely sequential as considered in Section 7.4.1 nor completely

one-shot as considered in Section 7.4.2. Using the technique proposed recently by Sharma and

Busch [126], we can show that Theorem 7.4.6 holds for MultiBend also in dynamic executions.

7.5 Extensions to the d-Dimensional Mesh

The 2-dimensional sub-mesh hierarchy (Section 7.2.2) can be generalized directly for the sub-mesh

hierarchy construction of the d-dimensional mesh, but the distance stretch becomes O(2d log n)

200

for move operations. Moreover, the approximation on congestion also becomes O(2d log n).

Therefore, we outline an alternative decomposition that has O(d log n) approximation on the dis-

tance stretch and O(d2 log n) approximation on the edge congestion for move operations in d-

dimensional mesh networks. Recall that we do not fix d, i.e. the dimension d is not assumed to be

constant. The decomposition will have type-1 sub-meshes and other shifted sub-meshes. We set

λ = max{1,m`/2
dlog d+1e}, where m` is the side length of the level ` type-1 sub-mesh. The type-1

sub-meshes at level ` are shifted by (j−1)λ nodes in each dimension to get the type-j sub-meshes

for j > 1. If the resulting sub-mesh is not entirely within the mesh M , we only keep the part

of it that is overlapped with M . Therefore, all the type-j sub-meshes are not squares like type-1

sub-meshes. According to this decomposition, there will be at most 2(d+1) different types of sub-

meshes at any level. The hierarchy Z is formed similar to the 2-dimensional mesh but now there

will be 2(d+1) sub-levels at each level (instead of 2 sub-levels in the 2-dimensional mesh case). A

multi-bend path p(u) for a node u is formed by taking the concatenation of the shortest paths that

connect the ascending sequence of leaders of the sub-meshes in which u belongs to starting from

node u (sub-level (0,O(d)) to the root node r (sub-level (k, 1)). The canonical paths can also be

defined similarly to Section 7.2.2. We can prove following results in d-dimensional meshes.

Lemma 7.5.1 (canonical path length in d-dimensional mesh) In d-dimensional mesh networks,

for any canonical path q up to level α (any sub-level (α, β), 1 ≤ β ≤ O(d)), length(q) ≤ O(d2α).

Proof. As defined in Section 7.2.4, a canonical path q is the concatenation of paths constructed

by the dimension to dimension shortest paths in the sub-meshes starting from the lowest level

(0,O(d)) to the level (α, β), 1 ≤ β ≤ O(d). Moreover, O(d) sub-levels in each level are visited

in the ascending order by the canonical path. In the d-dimensional mesh, the canonical path length

increases by a factor ofO(d) in comparison to the canonical path length for the 2-dimensional mesh

given in Lemma 7.2.2 because, given any two nodes s and t in the d-dimensional mesh, there is

some sub-mesh of some type-j that completely contains s and t and has side lengthO(d·dist(s, t))

[28]. Therefore, in the worst-case, the total path length from type-1 sub-mesh at level i to type-1

201

mesh at level i + 1 is O(d2i). Combining the cost for all the O(log n) levels similar to Lemma

7.2.2, we get the desired bound. ut

Theorem 7.5.2 (publish cost for d-dimensional mesh) In d-dimensional mesh networks, any

publish operation by MultiBend has cost O(d · n).

Proof. Similar to theorem 7.4.4, as k < log n + 2 and a multi-bend path is trivially a canonical

path, the theorem follows immediately from Lemma 7.5.1. ut

Theorem 7.5.3 (lookup stretch in d-dimensional mesh) In d-dimensional mesh networks, the

stretch of MultiBend is O(d2) for any lookup operation.

Proof. Similar to Theorem 7.4.5, even if there are move requests in the system, we can prove that

if a node w issues a lookup request ℘ for the shared object ξ currently owned by a node v which is

at distance dist(w, v) = 2i far from w, the multi-bend path p(w) is guaranteed to either intersect

with the directory path to v or find a slink to the directory path for the object at level at most η,

where η = i + 1 + log d + log c1, where c1 is some constant. This is because, similar to Theorem

7.4.5, as length(qi) ≤ c1d2i (Lemma 7.5.1), we have that dist(vi, w) ≤ length(qi) + dist(v, w) ≤

c1d2i+2i ≤ c1d2i+1 ≤ 2i+1+log d+log c1 . Therefore, some sub-mesh should be of side length at most

i+1+log d+log c1 to have such information, thus such sub-mesh will be at level i+1+log d+log c1.

Moreover, similar to Theorem 7.4.5, the total cost A(℘) of MultiBend for the lookup operation

℘ is at most the sum of the distances length(pη(w)) (the length of the spiral path p(w) up to level

η), dist(x, vi) (the path length between level η leader x and the level i leader vi in the canonical

path towards the owner node v), and length(qi) (the canonical path length of v up to vi, the level i

leader in q). Therefore (after substituting n by i+ 1 + log d+ log c1),

A(℘) = length(pη(w)) + dist(x, vi) + length(qi)

≤ c1d2η + c1d2η−1 + 2i

≤ c1d2i+1+log d+log c1 + c1d2i+log d+log c1 + 2i

≤ c1d2i+2+log d+log c1 .

202

The optimal cost is at least A∗(℘) ≥ 2i for the lookup request ℘, as w and v are dist(w, v) = 2i

apart. Hence, the stretch A(℘)
A∗(℘)

≤ c1d2i+2+log d+log c1

2i
= O(d2), as c1 is a constant. ut

Theorem 7.5.4 (move stretch in d-dimensional mesh) In d-dimensional mesh networks, Multi-

Bend has O(d log n) stretch for move operations.

Proof. Let A∗h(E) be the optimal communication cost for serving requests in E that reach level

h in the hierarchy Z . According to the execution setup, Sh is the number of requests in E that

reach level h, and Wh is the total number of valid pairs at that level. Similar to Theorem 7.4.1,

A∗(E) ≥ max1≤h≤k(Sh − 1)2h−1.

Similarly, let Ah(E) be the total communication cost of MultiBend for all the requests in E

that reach level h in the hierarchy Z , while probing the shared object in their up phase. Similar

to Theorem 7.4.1, we have that Ah(E) ≤ (Sh − 1)c1d2h (using Lemma 7.5.1), where c1 is some

constant. Therefore, by combining the cost for each level, A(E) =
∑k

h=1Ah(E) ≤
∑k

h=1(Sh −

1)c1d2h, in the worst-case.

Since the execution E is arbitrary and
∑k

h=1(Sh − 1)c1d2h ≤ k ·max1≤h≤k(Sh − 1)c1d2h, the

move stretch is bounded by

max
E

A(E)

A∗(E)
≤ k ·max1≤h≤k(Sh − 1)c1d2h

max1≤h≤k(Sh − 1)2h−1
≤ c1 · d · k = O(d log n),

as k = dlog ne+ 1 and c1 is a constant. ut

Theorem 7.5.5 (congestion for d-dimensional mesh) In d-dimensional mesh networks, Multi-

Bend achieves O(d2 log n) approximation on congestion with high probability.

Proof. Similar to Theorem 7.4.3, consider the formation of a sub-path pi from a sub-mesh M1 to a

sub-mesh M2, where pi is formed by following the shortest path from a randomly chosen node v1

in M1 to a randomly chosen node v2 in M2. This path is a two-bend dimension-by-dimension path

with random ordering of dimensions. Assume also that M1 is of type-1 and e be an edge of M2. It

has been proven in Busch et al. [28] that the sub-path pi uses edge e with probability at most 2
dad−1 ,

203

where a is a side length of the sub-mesh M1. Let P ′ be the set of paths that go from M1 to M2, or

vice versa. Let C ′(e) be the congestion that the messages P ′ cause on e. Similar to Theorem 7.4.3,

E[C ′(e)] ≤ 2|P ′|
dad−1 .

As B ≥ B(M1,Π) ≥ |P ′|/out(M1), we have that C∗ ≥ |P ′|/out(M1). Since each side of

M1 has a nodes, out(M1) ≤ 2dad−1. Therefore, E[C ′(e)] ≤ 4C∗. We charge this congestion

to sub-mesh M2. As there are at most k < dlog ne + 1 levels and at each level there are O(d)

different types of sub-meshes, the expected congestion on edge e, denoted as E[C(e)], is bounded

by E[C(e)] ≤ O(dC∗(dlog ne+ 1)).

According to our construction, there are O(d) different type sub-meshes M ′
1 between every

two type-1 sub-meshes M1 and M2 in the sub-mesh hierarchy Z . As O(d) different types sub-

meshes M ′
1 may not be the proper subset of M2, the set of paths from M1 to one of the M ′

1 may

go through O(d) different types of sub-meshes. This will increase the congestion by at most an

another factor of O(d) between every two type-1 sub-meshes M1 and M2. Therefore, E[C(e)] ≤

O(d2C∗(dlog ne+ 1)).

As every request selects its path independently of every other request, similar to the two-

dimensional case given in Theorem 7.4.3, we get a concentration result on the congestion C such

that C = O(C∗d2 log n) with high probability, applying the standard Chernoff bound (Lemma

7.4.2), and using the fact that |E| = O(d · n) and d = O(n). ut

7.6 Experimental Results

Motivated from the nice theoretical properties of MultiBend in controlling both distance stretch

and congestion, we now aim to investigate how these properties translate in practice through ex-

tensive simulations. We perform our simulations in a 16 × 16 nodes 2-dimensional mesh net-

work, unless otherwise stated; we defer evaluations under a very general case of d-dimensional

mesh networks for future work. The results are analyzed for a shared object and also for multi-

ple shared objects in the mesh, and the operations (publish, lookup, and move) are performed for

that object/those objects. The object operations are generated uniformly at random, that is, any

204

bottom-level node which issues a request is selected randomly among the nodes of the mesh. We

implement several variants of MultiBend and two prior DDPs Arrow and Ballistic as described in

Section 7.6.1. We assume a non-overlapping execution of various sequences of move and lookup

operations. We initialize the directory hierarchy for each object (before serving any lookup and

move operation through it) by creating a downward path from the root to a bottom-level node,

which serves as an initial directory path for future operations on that object. This initialization

process is the publish operation for that object.

The communication cost of the protocols for a set of operations is measured with respect to

the total number of hops the set of operations traverses in the mesh, following the protocols, to

reach the predecessor nodes that own the objects they requested. The optimal communication cost

for the protocols for a set of operations is measured through the total number of hops that the

operations need to traverse to reach their predecessor nodes following a Manhattan path in the

mesh (assuming that they know their predecessor nodes). We do not consider the cost involved

in sending the object, after it is found, from the predecessor node to the requesting node. If we

consider this cost, the results we give increase at most by a factor of 2 only. For the congestion, we

count the number of times any edge in the mesh is used by the set of operations, which we refer by

load per edge.

For simplicity, we number the nodes of the 16 × 16 mesh by 0 to 255. We assume

that the nodes with number from 0 to 15 are placed in the first row in the increasing or-

der. Similarly, the nodes with number from number 16 to 31 are placed in the second row

in the increasing order, and so on. We represent all 480 edges of the 16 × 16 mesh as

{(e0,1, e1,2, · · · , e14,15), (e0,16, e1,17, · · · , e15,31), (e16,17, e17,18, · · · , e30,31), (e16,32, e17,33, · · · , e31,47)

, · · · , (e240,241, e241,242, · · · , e254,255)} connecting each of their neighbors (at most 4 and at least

2). We order the edges by first considering edges connecting subsequent nodes in the horizontal

direction of the first row (i.e., horizontal edges), then considering edges connecting the nodes in

the first row to the nodes in the second row (i.e., vertical edges), and so on. Moreover, we refer

them by the integer numbers from 1 to 480 according to the order such that 1 denotes the edge

205

e0,1, 2 denotes the edge e1,2, and so on. We extend these notions to other mesh sizes appropriately,

whenever required.

7.6.1 Protocol Variants Used in Experiments

The following variants of MultiBend are used for the simulations involving a single shared object.

• MultiBend: is the same protocol described in Section 7.3 which performs leader change

every time an operation visits a leader. However, it does not take into account the cost due

to the leader election procedure (Algorithm 11).

• MultiBend-Leader: is a variant of MultiBend which considers the extra cost incurred due to

the leader election procedure along with the actual cost due to move and lookup operations.

It also performs leader change at each operation.

• MultiBend-Leader(32): is a variant of MultiBend-Leader in which the leader election

procedure is called after every 32 operations.

• MultiBend-Leader(1024): is a variant of MultiBend-Leader in which the leader election

procedure is called after every 1024 operations.

• MultiBend-Static: is a variant of MultiBend where leaders are assigned to the sub-meshes

of the directory hierarchy uniformly at random at the start of the directory construction and

no further leader change occurs. Thus, this protocol does not incur extra leader election cost.

Moreover, this protocol uses fixed paths to connect subsequent sub-mesh leaders for every

object operation. Note that MultiBend chooses independently the multi-bend paths for each

object operation.

• MultiBend-One: is a variant of MultiBend in which the path construction between every

two sub-meshes is done by using just one-bend shortest paths. Note that MultiBend may

sometime use two-bend shortest paths. It has leader election cost.

206

The following variants of MultiBend are used for the simulations involving multiple objects.

All these protocols do not have leader election cost as the leaders are fixed all the time.

• MultiBend-Static-First: is a variant of MultiBend-Static which we use for supporting mul-

tiple objects. We create a directory for each different object. Each object is assumed to be

identified with a unique integer between 0 to ω − 1, where ω is the total number of objects

in the network. In the directory Zs for an object s, the leader for each sub-mesh Mi ∈ Zs

is assigned, at the start of the directory construction, in such a way that the leader for that

sub-mesh is the node at position s mod ν in the order of the nodes that are insideMi, where

ν is the number of nodes in Mi (the order of the nodes is provided in a fixed row-major order

inside the sub-mesh in our evaluation). Moreover, this protocol uses fixed paths to connect

two subsequent sub-mesh leaders for each object operation.

• MultiBend-Static-Last: is a variant of MultiBend-Static in which, for each sub-mesh Mi,

the leader for that sub-mesh is the node at position ν − (s mod ν) in the node order, where

ν is the number of nodes inside Mi. This protocol also uses fixed paths. The motivation

behind considering this variant for comparison is that it may provide different congestion

trade-off than MultiBend-Static-First as requests sometime need to traverse many edges to

reach the next sub-mesh leader from the leader of the current sub-mesh due to its hierarchy

construction.

• MultiBend-Static-Random: is a variant of MultiBend-Static that we use for supporting

multiple objects. In this variant, the leaders of the directory for each object are assigned

uniformly at random at the time of directory construction. This protocol also uses fixed

paths.

• MultiBend-Static-First-Two: is a variant of MultiBend-Static-First in which the path con-

struction between every two sub-meshes is done independently for each object operation

by picking a dimension-by-dimension shortest path connecting the leaders similar to Multi-

Bend. Note that three aforementioned variants use fixed paths for each object operation.

207

The intuition behind using this variant in experiments is to see how the protocols that work

based on static leaders perform if we use paths used by MultiBend instead of fixed paths.

The performance of aforementioned MultiBend variants is also compared through simulations

with the following two prior DDPs. Note that these protocols do not control congestion.

• Arrow [43]: operates on a fixed spanning tree, where every node holds a pointer to one of

its neighbors in the tree, indicating the direction towards the node that owns the object. The

final node in the path formed by the trail of pointers indicates the location of the owner

node that is either holding the object or going to hold the object soon. (In a non-overlapping

execution, the owner node already holds the object, so the requests do not need to wait for

the object to arrive.) The object requests change the direction of the pointers to point to the

new location so that future object requests will also be served efficiently. In other words, it

maintains a distributed queue through path reversal [102].

• Ballistic [77]: is a location-aware consistency algorithm. Similar to MultiBend, this protocol

is hierarchical: nodes are organized as clusters at different levels, where clusters at every

level are built upon maximal independent sets of leader nodes of the clusters in the previous

level. In this protocol, object requests are synchronized by path reversal similar to Arrow:

when two requests meet at some intermediate node, the second request is diverted behind the

first request. (A similar property holds also for our protocol.) Note that Ballistic uses move-

parent and lookup-parent sets for searching the downward pointers at the parent level from

the current level (details in [77]). Ballistic does not take into account the parent set probing

cost. Thus, we define a variant Ballistic-Probing which takes into account the probing cost.

7.6.2 Single Object Results

We start with the distance stretch results and later present the congestion results. The cost compar-

ison of MultiBend variants (namely MultiBend, MultiBend-Static, and MultiBend-Leader) with

Arrow and Ballistic for up to 100,000 move and lookup operations is given in Fig. 7.4. For the

208

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 20 100 1000 10000 100000

M
ov

e
co

m
pe

tit
iv

e
ra

tio

No. of move operations

Arrow
Ballistic

MultiBend
MultiBend-Static

MultiBend-Leader

(a) 100,000 move operations

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 20 100 1000 10000 100000

Lo
ok

up
 c

om
pe

tit
iv

e
ra

tio

No. of lookup operations

Arrow
Ballistic

MultiBend
MultiBend-Static

MultiBend-Leader

(b) 100,000 lookup operations

Figure 7.4: The stretch comparison of MultiBend variants and prior DDPs
.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100 200 300 400 500 600 700 800 900 1000

M
ov

e
co

st

No. of move operations

Arrow
Ballistic

Ballistic-Probing
MultiBend

(a) 1000 move operations

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 100 200 300 400 500 600 700 800 900 1000

Lo
ok

up
 c

os
t

No. of lookup operations

Arrow
Ballistic

Ballistic-Probing
MultiBend

(b) 1000 lookup operations

Figure 7.5: The cost comparison for up to 1000 move and lookup operations

move operations, as shown in Fig. 7.4a, the performance of MultiBend and MultiBend-Static is

comparable to the performance of Arrow and Ballistic. More specifically, the performance of Ar-

row and Ballistic is slightly better than MultiBend variants in most of the cases. Ballistic is better

as we did not consider the move-parent set probing cost of it. As 11 leaders in the move-parent

set are consulted on average by a leader at each level in our simulations, Ballistic-Probing, which

takes into account this probing cost, performs much worse (see Fig. 7.5a for the comparison of the

costs of Ballistic and Ballistic-Probing). The reason Arrow performs better is due to nice neighbor

growth and connection properties of the network topology we used for evaluation, which facilitates

Arrow to follow comparatively shorter paths than MultiBend. Even after taking into account the

leader election cost in MultiBend-Leader, its move and lookup competitive ratios increase by the

factor of approximately 4 only. The benefit is that MultiBend-Leader significantly minimizes the

load per edge compared to Arrow and Ballistic.

209

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 32 64 128 256

M
ov

e
co

m
pe

tit
iv

e
ra

tio

Leader change frequency

100000 Move Operations

MultiBend
MultiBend-Leader

(a) leader change frequency

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

22x22 23x23 24x24 25x25 26x26 27x27 28x28 29x29

C
om

pe
tit

iv
e

ra
tio

 o
f M

ul
tiB

en
d

Mesh size

100000 Operations

Move operations
Lookup operations

(b) mesh size change

Figure 7.6: The impact of leader change frequency and mesh sizes in the performance competitive
ratio of MultiBend variants for 100,000 operations

For the lookup operations, the performance gap of MultiBend variants in comparison to Arrow

and Ballistic is lower than the performance gap in move operations (Fig. 7.4b). However, Ballistic-

Probing, which takes into account also the probing cost performs significantly worse. We consider

only Ballistic for further comparisons due to its cost and congestion similar to compared protocols;

note that probing cost is essential in Ballistic and this probing cost makes Ballistic less suitable in

practice scenarios. On the average 15 leaders in the lookup-parent sets were consulted in Ballistic

by a leader at each level in our simulations. These results can be seen in Fig. 7.5b.

We saw in Fig. 7.4 that in comparison to prior DDPs, the actual performance competitive ratio

(and also the cost) of MultiBend for move and lookup operations is approximately a factor of 4

times more. This is due to the fact that the leaders are changed every time MultiBend visits them

while serving the move or lookup operations. Therefore, we were interested to study how the

distance competitive ratio changes if we minimize the leader change frequency. Fig. 7.6a shows

the distance stretch results of that study. The results suggest that the impact of the leader election

cost in the performance competitive ratio decreases significantly with the increase in the leader

change frequency. As we can see in the figure, the impact of leader election cost decreases by

more than a factor of 2 when new leaders are elected after every 4 move operations. The impact of

leader election cost becomes negligible if we elect new leaders after every 16 operations or more.

We achieved similar results for the performance competitive ratio of lookup operations.

210

 0

 10000

 20000

 30000

 40000

 50000

 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

100000 Move Operations on a Single Object

Arrow
Ballistic

MultiBend

Figure 7.7: The load comparison of Arrow, Ballistic, and MultiBend for 100,000 move operations
(the worst load per edge: Arrow 50,015 at edge 172, Ballistic 31,997 at edge 434, and MultiBend
7297 at edge 8)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

100000 Move Operations on a Single Object

MultiBend-Static
MultiBend-One

MultiBend

Figure 7.8: The load comparison of MultiBend variants for 100,000 move operations (the worst
load per edge: MultiBend-Static 35,369 at edge 172, MultiBend-One 11,858 at edge 8, and
MultiBend 7297 at edge 8)

Moreover, we study how the performance competitive ratio changes with the change in the

mesh network size for the fixed number of move and lookup operations. Our simulation results

show that the competitive ratio increase is within a logarithmic factor of the increase in the side

length of the mesh. As shown in Fig. 7.6b, the performance competitive ratio for 100,000 move

211

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

100000 Move Operations on a Single Object

MultiBend
MultiBend-Leader(32)

MultiBend-Leader(1024)

Figure 7.9: The comparison of MultiBend variants for the load per edge due to leader change
frequency (the worst load per edge: MultiBend-Leader(32) 7590 at edge 257, MultiBend-
Leader(1024) 12,495 at edge 38, and MultiBend 7297 at edge 8)

operations is 2.05 in a 8 × 8 mesh, whereas the ratio is 4.20 in a 512 × 512 mesh. For lookup

operations, due the efficient use of special-parent nodes in finding the shortcuts to the downward

paths, the performance competitive ratio stabilizes to a constant when mesh size gets larger. The

results in Fig. 7.6b depict that the lookup competitive ratio is within a factor of 3 for the 512× 512

nodes mesh network.

We now provide the congestion results. Fig. 7.7 shows the load per edge comparison of Arrow,

Ballistic, and MultiBend for the 100,000 randomly generated move operations. As Arrow uses a

pre-selected minimum cost spanning tree as a directory hierarchy, only limited number of edges

(out of 480 edges) are used many times while the rest of the edges (more specifically, the edges

that do not constitute to the spanning tree) are not used at all for load distribution. That property

can be confirmed from the results of Fig. 7.7 where some edges are used thousands of times, while

other are not used at all. Similarly, in comparison to Arrow results, Ballistic distributes load to

more edges, however it also suffers from the limitation that some edges are used significantly many

times than the least used edges. MultiBend tries to use all the edges in the mesh network uniformly

thanks to the independently selected controlled dimension-by-dimension paths for each operation

that connect two subsequent sub-mesh leaders. Similar congestion results were achieved for the

212

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

1024 objects; 100 Move Operations per Object

MultiBend
MultiBend-Static-First

Figure 7.10: The load comparison of MultiBend variants for 1024 objects with 100 move opera-
tions per object (the worst load per edge: MultiBend-Static-First 11,258 at edge 8 and MultiBend
6926 at edge 380)

lookup operations; we omit lookup results as they show similar behavior as of move operations in

all our experimental settings.

The load per edge comparison for the MultiBend variants for 100,000 move operations is given

in Fig. 7.8. The results show that MultiBend minimizes the load per edge drastically. Moreover,

despite the similar stretch performance, MultiBend-One performs worse in congestion control

compared to MultiBend. This is due to the use of only one-bend paths in MultiBend-One which

can not control the congestion on edges as efficiently as original paths used by MultiBend. We

now study the effect of leader change frequency in the load at each edge of the mesh in Fig. 7.9 for

100,000 move operations. The load increase per edge in MultiBend-Leader(32) in comparison

to MultiBend is not that significant, while the load increase in MultiBend-Leader(1024) is very

significant. If we increase the leader change frequency, the load per edge converges toward the

load per edge performance of MultiBend-Static given in Fig. 7.8.

7.6.3 Multiple Objects Results

The aforementioned simulation results suggest that MultiBend provides strong congestion control

for a single shared object. We now study the distance stretch properties and the load balancing

213

benefits of MultiBend for supporting multiple objects. The simulations involving the distance

stretch in supporting multiple objects showed similar results as of Fig. 7.4; hence, we only consider

congestion properties here.

We construct a hierarchy directory for each shared object to support multiple objects. We focus

our experiments on evaluating whether MultiBend still benefits from the leader election procedure

when there are a large number of objects, e.g., greater than the number of nodes in a sub-mesh. It

seems in the first sight that when there are large number of objects the leader election procedure

is not needed. This is because in the long term every node will become a leader of a directory

hierarchy which helps in minimizing the congestion without the use of a leader election subroutine,

avoiding the extra cost. Therefore, if we let each directory use a different node when assigning a

leader at the beginning of directory construction, it should alleviate the need of a leader election

procedure.

Our simulation results show that the load is more balanced without the need of leader election

procedure in the multiple objects scenario in comparison to the single object scenario (compare

MultiBend-Static results of Fig. 7.8 with MultiBend-Static-First results of Fig. 7.10). However,

this static assignment of different nodes as leaders in the multiple objects scenario may not always

guarantee low load per edge similar to MultiBend (we will discuss a comparatively bad example

in Fig. 7.13). Therefore, our approach is proven to be useful in controlling congestion at all times

in the case of multiple objects as well.

Recall that the congestion benefit obtained using MultiBend is not only because of the frequent

random leader election but also because of the use of independently selected controlled multi-bend

paths for each object operation to connect two subsequent sub-mesh leaders in the hierarchy. These

controlled paths change dimensions independently for each operation, starting first in the horizon-

tal or vertical direction, and may follow different set of nodes every time we route requests be-

tween two different leaders. Fig. 7.10 compares the congestion obtained while running MultiBend

and MultiBend-Static-First for 1024 objects with 100 move operations per object. The load per

edge performance of MultiBend-Static-First is almost the factor of 2 worse in comparison to the

214

 0

 2000

 4000

 6000

 8000

 10000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

1024 objects; 100 Move Operations per Object

MultiBend
MultiBend-Static-First-Two

Figure 7.11: The load comparison of MultiBend variants for 1024 objects with 100 move op-
erations per object (the worst load per edge: MultiBend-Static-First-Two 9108 at edge 8 and
MultiBend 6926 at edge 380)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

1024 objects; 100 Move Operations per Object

MultiBend
MultiBend-Static-Random

Figure 7.12: The load comparison of MultiBend variants for 1024 objects with 100 move op-
erations per object (the worst load per edge: MultiBend-Static-Random 12,248 at edge 8 and
MultiBend 6926 at edge 380)

performance of MultiBend. The trade-off is that MultiBend-Static-First obtains that load perfor-

mance without the use of the leader election procedure. Moreover, the congestion performance of

MultiBend-Static-First for multiple objects is better by almost a factor of 3 in comparison to the

performance of MultiBend-Static given in Fig. 7.8 for a single shared object.

215

 0

 5000

 10000

 15000

 20000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

1024 objects; 100 Move Operations per Object

MultiBend
MultiBend-Static-Last

Figure 7.13: The load comparison of MultiBend variants for 1024 objects with 100 move opera-
tions per object: a comparatively bad example (the worst load per edge: MultiBend-Static-Last
18,470 at edge 1 and MultiBend 6926 at edge 380)

Note also that MultiBend-Static-First does not use independently selected dimension-by-

dimension shortest paths to connect the subsequent sub-meshes leaders while serving the oper-

ations, but still achieves the performance that is only 2 times worse compared to the performance

of MultiBend. Therefore, we were interested to see how these independently selected controlled

paths impact the congestion performance of MultiBend-Static-First. Fig. 7.11 shows the im-

pact of such paths in congestion. MultiBend-Static-First-Two which uses such independently

selected controlled dimension-by-dimension shortest paths for each object operation shows the

improvement in congestion in comparison to MultiBend-Static-First by a factor of 1.23 (compare

the congestion results of MultiBend-Static-First in Fig. 7.10 and MultiBend-Static-First-Two in

Fig. 7.11). That is, the improvement on the worst load at any edge is 2150 (the different between

the blue peaks in the figures). The performance of MultiBend variant MultiBend-Static-Random

for the same execution setting is given in Fig. 7.12.

We now discuss a comparatively bad example. We used MultiBend-Static-Last in which the

leader assignment in the beginning of the directory construction follows reverse node order in the

sub-mesh. That is, if there are 32 nodes in a sub-mesh, for the object numbered 33 the leader

node in that sub-mesh is 32− (33 mod 32) = 31. For object number 31, the leader will be 1 for

216

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 60 120 180 240 300 360 420 480

Lo
ad

/e
dg

e

Edges

576 objects; 100 Move Operations per Object

MultiBend-Static-Random
MultiBend-One

MultiBend

Figure 7.14: The load comparison of MultiBend variants for 576 objects with 100 operations per
object (the worst load per edge: MultiBend-Static-Random 6983 at edge 8, MultiBend-One
5134 at edge 8, and MultiBend 3950 at edge 225)

that mesh. If we compare the worst congestion at any edge in this static assignment of leaders, as

shown in Fig. 7.13, MultiBend-Static-Last performs worse in comparison to MultiBend-Static-

First-Two by a factor of 2.03, MultiBend-Static-First by a factor of 1.64, and MultiBend-Static-

Random by a factor of 1.51. This is due to the overutilization of some of the edges by MultiBend-

Static-Last while serving object requests.

We also compare the performance of MultiBend variants when there are uneven number of

objects in each node of the mesh. For example, if there are 576 objects, 3/4-th fraction of the total

nodes in the network get 2 objects each and 1/4-th fraction of the network nodes get 3 objects each,

following a uniform distribution starting from the first node of the 16× 16 mesh. In this setting, as

depicted in Fig. 7.14, MultiBend still performs significantly better in controlling congestion thanks

to the combination of random leader election procedure and independently selected dimension-by-

dimension paths. Moreover, MultiBend-One performs slightly worse than MultiBend due to the

use of only one-bend paths, while MultiBend-Static-Random’s performance is within a factor of

2 of MultiBend.

To summarize our findings, the simulation results on multiple objects suggest that the leader

election approach allows us to achieve low congestion compared to static variants. However, con-

217

sidering the extra cost due to leader election in MultiBend, the trade-off between stretch and con-

gestion can be made depending on applications while supporting multiple objects. Nevertheless,

in applications where there are small number of objects, the leader election technique used in

MultiBend is indeed a true facilitator for congestion control.

7.7 Summary and Discussions

In this chapter, we presented and analyzed a novel load balanced directory-based consistency al-

gorithm, called MultiBend, for shared objects, that is suitable for d-dimensional mesh networks.

We also evaluated MultiBend for its distance stretch and congestion benefits considering several

sequences of move and lookup operations on a single shared object and multiple shared objects.

The evaluation results confirm the theoretical and practical benefits of MultiBend.

As there are (at most) 2d neighbors for any node in d-dimensional mesh networks, MultiBend

guarantees O(d3 log n) approximation of the optimal congestion on any node. This is because a

node can be used by any of the 2d edges, therefore increasing the edge congestion by aO(d) factor.

This node congestion approximation is also optimal within a constant factor for fixed d.

For the future work, we plan to explore stretch and congestion bounds of MultiBend for the

case of d-dimensional mesh networks with uneven dimensions. Moreover, we plan to extend Multi-

Bend for dynamic networks where nodes enter and leave at any time and make it fault-tolerant.

218

Chapter 8
Distributed and NUMA Systems: Time and
Communication Trade-offs

8.1 Introduction

In this chapter, we evaluate the performance of the execution schedules in data-flow distributed

implementations of transactional memory in distributed and NUMA systems using the total com-

munication cost for moving objects to transactions, and the execution time for completing all

transactions. We give bounds and trade-offs for the communication cost and execution time. In

other words, we give a scheduling problem instance where execution time and communication cost

cannot be simultaneously optimized. Minimizing execution time implies high communication cost

and vice versa. Therefore, there is no single algorithm that can optimize both parameters simul-

taneously. We also give several hardness results for both the communication cost and execution

time. To the best of our knowledge this is the first comprehensive study of performance bounds for

distributed transactional memory schedules with multiple objects per transactions.

8.1.1 Contributions

We give a comprehensive set of bounds for scheduling problem instances where transactions use

multiple objects. We first give near optimal upper bounds for the communication cost. We then

explore the execution time and non-trivial lower bounds, and also provide upper bounds. Finally,

we explore trade-offs between communication cost and execution time.

219

Communication cost: We first observe that the problem of minimizing the communication cost

is NP-hard with a reduction from the graph TSP problem. A TSP instance is transformed to a

transaction scheduling problem by having each city node represented with a transaction, where all

transactions share a single object. Note that the hardness holds even with a single shared object.

We then continue with upper bounds for communication cost. We use a universal TSP tour

to schedule the transactions. A universal TSP tour [83] defines a traversal order to visit all nodes

in the graph so that any subsequence of nodes is also an approximate TSP tour for the respective

subset of nodes. By executing the transactions in order according to the TSP tour we guarantee

that each object follows approximately a TSP tour. The overall schedule has communication cost

within O(log4 n/ log log n) factor from optimal, where n is the number of nodes of the network.

Execution time: Optimization of execution time is an NP-hard problem (reduction from vertex-

coloring), and also hard to approximate within any factor smaller than the number of nodes. We

give an ∆+1 approximation algorithm for the execution time, where ∆ is the maximum number of

other transactions that a transaction conflicts with. This bound is obtained with a greedy coloring

of a weighted conflict graph where nodes are transactions and a conflict among transactions is

represented with an edge with weight to distance between the transactions.

We then explore lower bounds. During execution each transaction follows a walk that visits all

the objects that request it (the TSP tour length of an object is no more than twice the shortest walk

length). A trivial lower bound on the execution time is the longest of any object shortest walk. A

interesting question is whether there are efficient schedules when the shortest walks are small (and

other parameter are also low, such as conflicts number and objects per transactions). We answer

this question to the negative, namely, where each shortest object walk has length O(n5/6), while

any execution schedule requires time Ω(n). The same instance hasO(log n) objects per transaction

and ∆ = O(n2/3); thus, the Ω(n) execution time does not follow directly from these parameters.

This problem instance demonstrates a significant asymptotic gap between the objects’ walks and

the execution time.

220

Time and communication trade-offs: We give a problem instance where it is impossible to

simultaneously optimize execution time and communication cost. In this problem instance the

execution time is Ω(n2/3) and the communication cost is Ω(n). We give a schedule with optimal

execution time O(n2/3). However, we show that any schedule with optimal execution time must

have suboptimal communication cost Ω(n4/3). We obtain a symmetric impossibility result with

respect to optimal communication cost. That is, we give a schedule with optimal communication

cost O(n). However, we show that any schedule with optimal communication cost must have

suboptimal execution time Ω(n).

These impossibility results imply that we cannot have a single algorithm that minimizes both

execution time and communication cost simultaneously, which justifies the independent study of

these two optimization problems.

8.1.2 Chapter Organization

The rest of the chapter is organized as follows. In Section 8.2 we provide hardness results and an

upper bound for communication cost. In Section 8.3 we examine the execution time for which we

give hardness results, and upper and lower bounds. Execution time and communication trade-offs

are presented in Section 8.4. We conclude in Section 8.5 with a short discussion.

8.2 Communication Cost Bounds

The problem of minimizing the communication cost is NP-hard, by a reduction from the graph

TSP (traveling salesperson problem) which is an NP-complete problem. Any graph TSP instance

can be directly converted to a transactional scheduling problem instance on the same graph such

that each node has a transaction and there is a single object. The transactional memory schedule

has optimal communication cost if and only if the respective TSP tour cost is optimal.

Given a graph G, we can approximate the optimal communication using a universal TSP tour.

Jia et al. [83], prove that there exists a universal TSP tour Q that traverses all the nodes in G so

221

that for any subset of nodes S the induced sub-tour in Q approximates the optimal tour for S (in

the induced subgraph) within a factor of O(log4 n/ log log n).

We can use the universal tour Q to construct a schedule for the objects as follows. We execute

the transactions in sequence according to the order that they appear in Q. Once a transaction

finishes execution, it passes each object to the next transaction that requires the object according to

the order in Q. We refer to this as the universal TSP schedule. We can prove the following result.

Theorem 8.2.1 (Communication Cost Upper Bound) The universal TSP schedule guarantees

communication cost within O(log4 n/ log log n) factor from optimal.

Proof. Let Tri ⊆ T denote the set of transactions that request object ri ∈ R. Let Gri denote

the induced subgraph of G consisting only of the nodes where the transactions in Tri reside. Let

Cri denote the total distance traversed by object ri for visiting the nodes in Gri when following

the universal TSP schedule. Let C∗ri denote the optimal cost for traversing the nodes in Gri . The

universal TSP schedule guarantees that Cri/C
∗
ri
≤ λ, where λ = O(log4 n/ log log n).

The total communication cost is equal to the sum of the individual costs for the objects, C =∑k
i=1Cri . The optimal cost is C∗ =

∑k
i=1C

∗
ri

, since objects do not combine. Therefore,

C =
k∑
i=1

Cri ≤
k∑
i=1

λ · C∗ri = λ
k∑
i=1

C∗ri = λC∗,

which implies that C/C∗ = O(log4 n/ log log n), as needed. ut

8.3 Execution Time Bounds

In this section we focus on finding schedules that minimize the execution time. We first prove that

the problem is NP-hard. We then show that it is impossible to obtain execution time close to the

shortest walk length of any object. We also give approximation algorithms.

222

8.3.1 Hardness for Execution Time

We will reduce the vertex coloring problem to this problem. Consider an arbitrary unweighted

graph H . The coloring problem aims to find the chromatic number χ(H) which is the smallest

number of distinct colors that can be assigned to the nodes of H so that no two adjacent nodes

receive the same color (valid coloring). The vertex coloring problem is NP-hard.

We can transform in polynomial time any vertex coloring problem instance in an arbitrary

graph H to a transaction scheduling problem in a graph G. We construct G to be isomorphic with

H such that each edge in G has weight 1. Each node in G holds a transaction. For each edge

e = (u, v) in H we create an object in G to be used by the respective transactions in the adjacent

nodes in G.

Given a transaction execution schedule inG, we can find a valid vertex coloring inH by simply

converting the time that each transaction executes to a color (color value is equal to time value).

It can be shown that an execution schedule in G has duration χ time steps if and only if H has a

valid coloring with χ colors. Therefore, a schedule for the transactions in G is optimal if and only

if the respective coloring in H is optimal. Consequently, the execution time optimization problem

is NP-hard.

Note that the reduction above is 1-gap-preserving. Since, for all ε > 0, approximating the

chromatic number within a factor n1−ε is NP-hard [147], approximating the optimal time within

a factor n1−ε is NP-hard too. Note that the inaproximate hardness result holds for transactional

memory graphs where all edges have uniformly the same weight (weight 1 in the reduction). If a

graph is not uniformly weighted then the reduction gap may change and it could be less hard to

approximate the optimal value with a smaller factor.

8.3.2 Upper Bound for Execution Time

Here we give an approximation algorithm for the optimal time schedule. Consider a transaction

scheduling problem instance in a graph G. Let Z denote the transaction conflict graph, such

that each node in Z is a transaction and each edge represents a conflict between the adjacent

223

transactions, that is, the transactions share one or more objects. The graph H is weighted so that

the weight on an edge is the distance between the respective transactions in G.

A valid coloring of Z with non negative integer colors guarantees that any two adjacent trans-

actions will receive colors which differ at least at much as the weight of the edge connecting them.

For any transaction Ti in Z let γ(Ti) denote the weighted-degree, which is the sum of the weights

of the edges adjacent to Ti. Let Γ denote the maximum weighted-degree in Z. We can color the

conflict graph with a simple greedy algorithm, node by node, by assigning the first available color

to each node, and we can obtain a coloring with Γ + 1 colors. We refer to the resulting schedule as

the greedy schedule.

Let ∆ denote the maximum (unweighted) node degree in Z, that is, ∆ is the maximum number

of adjacent nodes for any node in Z. The maximum edge weight, denoted wmax, in Z is a lower

bound for the schedule time, since it takes at least so much time to transfer a shared object in G

from one transaction to another that it conflicts. Since Γ ≤ wmax∆, the algorithm above provides

a ∆ + 1 approximation for the optimal execution time.

Theorem 8.3.1 (Execution Time Upper Bound) The greedy schedule provides a ∆ + 1 approxi-

mation to the optimal time schedule.

8.3.3 Lower Bound for Execution Time

The shortest walk of an object in G minimizes the total distance to visit all the transactions that

require the object. Note that a TSP tour length of an object is no more than twice its shortest

walk length. The maximum shortest walk of any object in G is a lower bound for the execution

time. Here we give an instance on a graph G with n nodes, such that the shortest walk of any

object is O(n5/6) (asymptotically smaller than n), and yet, the only possible schedule is almost

sequential with execution time Ω(n), giving a significant gap between the walk lower bound and

the execution time. This problem instance has small number of objects per transaction, O(log n),

and each transaction conflicts with ∆ = O(n2/3) other objects.

224

Consider a graphG that is a s×2s2 grid consisting of s rows and 2s2 columns and the number of

nodes is n = 2s3. Each node is connected to four neighbor nodes (up, down, left, right) by an edge

of weight 1; the nodes at the corner or sides are connected to two or three neighbors, respectively.

Divide the grid into s × s consecutive and node-disjoint sub-grids G1, . . . , G2s. Denote the odd

subsequence of sub-grids as H1, . . . , Hs (where Hz corresponds to G2z−1).

Each node in Hz holds a transaction. There are s internal objects o1, . . . , os, such that object

oz is used by all the transactions in the zth sub-grid Hz. Initially, each oz object resides in the top

left corner node in its respective sub-grid.

There are 2s external objects q1, . . . , q2s. In each sub-grid Hz, each object qz will be used by a

random set of s transactions. Initially, all external objects reside in the top-left corner node of H1.

Lemma 8.3.2 Each internal object has shortest walk length O(s2) = O(n2/3). Each external

object has shortest walk length O(s5/2) = O(n5/6).

Proof. Each internal object has shortest walk of length exactly s2 − 1, since it can visit the nodes

of the respective sub-grid row by row, in a zig-zag way.

Consider an external object qi. The shortest walk of qi within a sub-grid Hz may be of length

O(s ·
√
s), which corresponds to the worst case scenario where the s nodes that request qi are

spaced at distance
√
s from each other in Qz. By adding up all the walk lengths in the s sub-grids,

the total walk length is O(s · s ·
√
s) = O(s5/2). ut

There is a sequential schedule which executes the transactions in sequence one after the other

starting from the transactions in H1, then passing the objects to H2 and executing the transactions

in H2, then passing the objects in H3 and so on. In each Hz the transactions can execute in time

O(s2), and since there are s sub-grids we obtain the following result:

Lemma 8.3.3 The sequential schedule executes all transactions in time O(s3) = O(n).

We will show now that any execution schedule requires time which is asymptotically greater

than s3, and hence, the sequential schedule is optimal. In order to prove the central impossibility

result we use the following lemma.

225

Lemma 8.3.4 With high probability, in any specific sub-grid Hz, 1 ≤ z ≤ s, any set of λ transac-

tions uses at least λ/2 different external objects, where 1 ≤ λ ≤ s.

Theorem 8.3.5 (Lower Bound for Sparse Instance) With high probability, there is a choice of

external object transaction assignments, such that every execution schedule in G has duration

Ω(s3) = Ω(n).

Proof (sketch). Consider an arbitrary time window W of s− 1 time steps. It suffices to prove that

it is impossible to execute more than 4s+ 1 transactions in W .

For the sake of contradiction suppose that 4s + 2 transactions or more execute during W . We

divide the set of transactions which execute in W into sets A1, . . . , As, such that set Az consists of

all transactions which execute in sub-grid Hz. Clearly,
∑s

z=1 |Az| ≥ 4s+ 2.

We have any two pairs Az1 and Az2 , z1 6= z2, cannot share any object, since the minimum

distance in G between any two nodes in the respective sub-grids Hz1 and Hz2 is at least s, and

since the duration of W is s − 1 there is not enough time to transfer any object between the two

sub-grids during time period W .

No more than s− 1 transactions can execute in each Az within period W , since all transactions

in Az share the internal object oz in Hz. Therefore, |Az| ≤ s− 1. From Lemma 8.3.4 each set Az

requires at least |Az|/2 external objects (with high probability). Since the external objects from the

different sets are disjoint, the total number of different external objects that are required is at least∑s
z=1 |Az|/2 ≥ (4s+ 2)/2 ≥ 2s+ 1. This is a contradiction since there are 2s external objects in

total. ut

8.4 Time and Communication Trade-offs

We show that there is a scheduling problem instance on a graphG in which the communication cost

and execution time cannot be minimized simultaneously. In Section 8.4.1 we describe this problem

instance. In Section 8.4.2 we provide a pipelined schedule, with small execution time, while in

Section 8.4.3 we provide a sequential schedule with small communication cost. We generalize this

226

observation by proving that any schedule inG that attempts to optimize time must have suboptimal

communication cost, and vice versa. This implies that there is no single algorithm that can optimize

both execution time and communication cost simultaneously.

8.4.1 Problem Instance Description

For proving this result, we consider an grid graph G = (V,E) with n = a × c nodes, which

consists of a rows and c columns of nodes (Figure 8.1). Each node in G connects with an edge to

four neighbors (up, down, left, right), except for the nodes at corners or borders which have two

or three neighbors, respectively. Each edge has weight 1. Graph G consists of a sequence of k

subgraphs G1, G2, . . . , Gk, each of size of a × (a + 3b), where 1 ≤ b ≤ a and k = c/(a + 3b),

where the number of columns c is a multiple of a + 3b. Each subgraph Gi is further divided into

four grid subgraphsAi, Bi, Ci, Di, such thatAi has size a×a, and each ofBi, Ci, Di has size a×b.

In each Gi there is a transaction in every node of Ai, Bi, and Di, while Ci does not have any

transactions at all. There is a set of global objects o1, . . . , oa which are requested by a subset of

transactions in every Gi, 1 ≤ i ≤ k. Each object oj is requested by all transactions residing in the

jth row of G. For example, Figure 8.1 highlights the set of transactions in the 5th row (from the

top) that use global object o5. Each global object oj initially resides in the leftmost column of A1

and row j.

There are also transactions which are internal to each Gi, requested only by transactions inside

Gi (and specifically in Ai, Bi and Di). In Ai there is an object pi requested by all the transactions

of Ai. Initially, pi resides in the top left corner of Ai. In Bi there is a set of b objects Qi =

{qi,1, . . . , qi,b}, such that object qi,j is requested by all transactions in the jth column ofBi. Initially,

object qi,j resides in the top node of the jth column ofBi. The same objects inQi are also requested

by the transactions in Di, so that object qi,j is requested by all transactions in the jth column of

Di. Therefore, each object qi,j ∈ Qi is requested by the jth column transactions in both Bi and Di.

Figure 8.1 highlights the sets of transactions to use q1,2 and q2,2.

227

a

a

𝐴1

b b b

𝐵1 𝐶1 𝐷1

𝐺1 𝐺2

𝐴2 𝐵2 𝐶2 𝐷2

𝒐𝟓

𝒒𝟐,𝟐 𝒒𝟐,𝟐𝒒𝟏,𝟐

𝒐𝟓 𝒐𝟓

𝒒𝟏,𝟐

Figure 8.1: The graph G for the time-communication impossibility result, with k = 2, a = 16 and
b = 5.

8.4.2 Fast Pipelined Schedule

We present a “pipelined” schedule where the global objects traverse the graph G by visiting

G1, G2, . . . , Gk in a pipelined fashion. This execution has small execution time but high com-

munication cost. Global object o1 first traverses G1 then G2 and so on until it exits from Gk. At the

time that o1 enters G2, object o2 starts traversing G1. Furthermore, when o1 enters G3, object o2

enters G2 and o3 starts traversing G1. This pipelined schedule continues until the last global object

oa exits from Gk. The pipeline has k stages, where stage i, 1 ≤ i ≤ k, consists of the execution of

transactions in Gi.

Lemma 8.4.1 In the pipelined schedule, a global object oj traverses all requested transactions in

Gi in time O(a) with communication cost Ω(a+ b2).

Proof. First we consider the execution time. We calculate the time that it takes for the global

object oj to traverse Gi. We start by showing that it takesO(a) time for global object oj to traverse

Ai. It takes at most a time steps for pi to reach the jth row. Once oj and pi are together in the

leftmost node of the jth row, it takes 2a time steps to traverse all transactions in the row. The

reason is that the two objects oj and pi need to appear simultaneously in each node on the jth row,

so that the respective transaction on that node executes. Since at most one object can traverse an

edge at a time step at any given direction, and there is only one path with length one between two

228

adjacent nodes, it takes at least two time steps for the two objects to move from one node to an

adjacent node in the jth row.

We then continue to show that it takes O(b) time for oj to traverse Bi. While oj was traversing

Ai, all the objects in Qi can move in parallel to the jth row of Bi. Thus, once oj enters Bi on the

jth row, it takes at most b time steps to traverse the row.

We can also show that it takes O(b) time for oj to traverse Ci and Di combined. The objects

in Qi and object oj can move from Bi to Di as a convoy, one object following the other along the

jth row. In this way it takes O(b) time steps until all objects reach the respective transactions in

the jth row of Di, and oj is positioned in the leftmost node of the jth row of Di. It takes additional

O(b) steps for qj to move along the jth row of Di to execute the transactions.

By combining all the above times we get that oj traverses all the requested transactions in Gi

in O(a+ b) = O(a) time, since b ≤ a.

We continue now with the communication cost. We will add all the path lengths that are

followed by the involved objects. The total cost for traversing Ai is Ω(a) since the paths followed

by oj and pi have length Ω(a), since the row has width a. The cost for traversing Bi, Ci and Di

combined is Ω(b2), since each object qi,j ∈ Qi follows a path from Bi to Di of length Ω(b), and

|Qi| = b. Therefore, the total communication cost is Ω(a+ b2). ut

Lemma 8.4.2 The pipelined schedule executes all transactions in time O(a(a+ k)) with commu-

nication cost Ω(ka(a+ b2)).

Proof. From Lemma 8.4.1, it takesO(a) time for a global object to traverse a subgraphGi. Similar

to the proof of Lemma 8.4.1, we can also show that the internal objects of Gi can be repositioned

to their origins in time O(a), which is useful for the traversal of the next global object to traverse

Gi. Thus, we have a pipeline with k stages for a global objects, where each stage takes O(a) time

to complete. Therefore, the total time until the last object finishes traversal is O(a(a+ k)).

From Lemma 8.4.1, Ω(a + b2) communication cost is necessary for a global object to traverse

subgraph Gi. Since any Gi is visited by a global objects, and 1 ≤ i ≤ k, the total communication

cost of the pipelined execution is Ω(ka(a+ b2)). ut

229

8.4.3 Slow Sequential Schedule

We describe a “sequential” execution where all the global objects start in G1, and then after all

finish with G1 they all move to G2, and after all objects finish with G2 they all move to G3, and

so on. Thus all the global objects visit together all subgraphs Gi sequentially. This schedule has

high execution time but low communication cost (compared to the pipelined schedule). There are

in total k rounds in this schedule, where in round i all the global objects appear only in Gi.

Lemma 8.4.3 Each round has time duration Ω(a2) and the communication cost O(a2).

Proof. Consider round i. We first give a execution time bound. Every transaction in Gi will

execute during round i. It takes Ω(a2) time to execute the transactions in Ai because the internal

object pi has to traverse a2 transactions. It takes Ω(a) time to execute the transactions inBi andDi.

This is because the objects in Qi can move in parallel along their respective columns in Bi (which

requires Ω(a) time). However, the objects in Qi have to be skewed along their columns, in order

to allow the global objects to execute in parallel too. The skewing is at most b positions between

qi,1 and qi,b along their respective columns, and any two qi,j and qi,j+1 differ by one position, with

qi,j+1 positioned higher, 1 ≤ j < b. Once the global objects and the objects in Qi finish with Bi

they all move to Di in Ω(b) time, such that the global objects move in parallel followed by the

objects in Oi which move in convoy too. Then in Di the transactions will execute in Ω(a) time as

in Bi. Thus, Ω(a+ b) = Ω(a) time is required to complete the execution in Bi and Di. Combining

the above bounds, we have in total Ω(a2 + a) = Ω(a2) time for round i.

For the communication cost we have to consider the path lengths traversed by all the objects.

Each global object traverses a total distance of a + 3b = O(a), giving cost of O(a2) for the a

global objects. The internal object pi traverses a path of length a2. Each object in Qi traverses a

path of distanceO(a+ b) = O(a), giving a cost ofO(ab) for all objects in Qi. Therefore, the total

communication cost is O(a2 + ab) = O(a2). ut

230

Since there are k rounds, the following result follows immediately from Lemma 8.4.3.

Lemma 8.4.4 The total execution time for the sequential schedule is Ω(ka2) and the communica-

tion cost is O(ka2).

8.5 Summary and Discussions

In this chapter, we gave bounds and trade-offs for the communication cost and execution time for

transaction scheduling in distributed and NUMA systems. We showed that there are scheduling

instances where execution time and communication cost can not be simultaneously minimized;

minimizing execution time implies high communication cost and vice versa. After that, we gave

algorithms that only minimize communication cost or the execution time. For the future work, it

is interesting to provide similar trade-offs for the execution time and congestion. This is a natural

direction in the sense that communication cost and congestion can be minimized simultaneously

in some particular topologies, e.g. d-dimensional meshes.

231

Chapter 9
Conclusions and Future Work

9.1 Overall Dissertation Summary

In this dissertation, we made following contributions for transaction scheduling in three different

TM systems that provide three different communication cost models:

• Tightly-coupled systems: We proposed two models for transaction scheduling in tightly-

coupled systems that extend the original one-shot transaction scheduling model and provide

several trade-offs in the competitive ratio. Our execution window model (Chapter 3) pro-

vided scheduling algorithms with competitive ratio bounds that are within a poly-log fac-

tor of O(s); the scheduling algorithms for the one-shot scheduling model only obtained

tight Θ(s) competitive ratio. Our balanced workload model (Chapter 4) provided schedul-

ing algorithms with competitive ratio bounds that are sub-linear in s, which is a significant

improvement compared to O(s) bound for the one-shot scheduling model, albeit with two

minimalistic assumptions.

• Distributed networked systems: We presented a distributed consistency algorithm (Chapter

5) for the data-flow implementation of transactional memory in distributed networked sys-

tems that are based on general network topologies. We proved that this algorithm achieves

poly-log stretch for shared object operations in sequential and one-shot executions. We then

provided a dynamic analysis framework (Chapter 6) and presented stretch bounds for several

directory algorithms in dynamic execution of shared object operations.

232

• NUMA systems: We presented a distributed consistency algorithm (Chapter 7) for the data-

flow implementation of transactional memory in NUMA systems that are based on mesh

based topologies. We showed that both stretch and congestion can be minimized simultane-

ously.

• Distributed networked and NUMA systems: We provided a trade-off result (Chapter 8) for

transactional memory implementation in distributed networked and NUMA systems in the

sense that the communication cost and the execution time (makespan) can not be minimized

simultaneously. That is, if we try to minimize makespan we can not minimize communica-

tion cost and if we try to control communication cost the makespan increases significantly.

9.2 Future Directions

9.2.1 Tightly-coupled Systems

A natural direction is to investigate the transaction scheduling problem for a combination of

window-based model with the balanced workload model to achieve competitive ratio close to

O(
√
s) for windows of transactions. The significance of this is that the previous bounds in the

literature considered only one-shot problems and do not generalize well in the window-based

model. For example, the bound of O(s) from [9] in the one-shot model becomes O(s · N) in

the window-based model.

Another natural direction is to determine what is the smallest balancing ratio (number of writes

vs total number of reads and writes) that can maintain the same formal bounds in the balanced

workload model. Moreover, it is interesting to investigate special cases of transaction conflict

graphs which can enable makespan competitive ratios asymptotically smaller than O(
√
s). Such

graphs can represent interesting access patterns to shared resources. It is also interesting to consider

scheduling algorithms for mini-transactions – simple atomic operations on a small number of

locations [8].

233

Further, it is interesting to investigate how is the performance affected when we take into ac-

count the latency to access shared variables. Different processors may have different access times

to the shared variables because they may reside in different levels of the memory hierarchy and

in different caches. This affects both the lower and upper bounds of the makespan analysis. To

properly model the access time variance one idea is to consider a weighted conflict graph and de-

rive new lower and upper bounds on the makespan that take into account the edge weights of the

graph. Moreover, it is interesting to design and analyze transaction scheduling algorithm using

different performance metrics such as throughput, average response time, aborts per commit ra-

tio, etc. Experimental evaluations for (combinations of) these metrics appeared in several papers,

e.g. [7, 46, 121]. It is interesting also to experimentally evaluate these newly designed scheduling

algorithms and existing algorithms [7, 45, 59, 142].

9.2.2 Distributed Networked Systems

Ballistic, Relay, and Combine (and also Spiral) have all been analyzed for a single shared object

only. Thus, a natural extension is to handle multiple shared objects ξ1, . . . , ξk. In order to handle

the case of multiple objects, one idea is to follow a universal TSP (traveling salesperson problem)

approach [56, 63, 83]. A universal TSP approach computes a TSP tour Q for all the nodes in the

network by going through all the nodes in some specific order. Now if we need to visit subset S

of nodes inducing a sub-tour, the TSP tour Q approximates the optimal tour for S (in the induced

subgraph) within a factor of O(log4 n/ log log n) [83]. For each shared object ξi, we can then

compute an approximate TSP tour for the object which visits all the nodes that have transactions

that request the object (e.g. for move, namely, write operations, or for lookup). The TSP tour for

the object is obtained by visiting in sequence the involved nodes in the universal TSP tour. For a

transaction to execute in a node v, all the objects of the transaction must appear in v. Once all the

objects appear in v, the transaction executes and then each object moves to the next node according

to the order specified in their respective tours. Eventually, all the transactions will execute. The use

of a universal TSP guarantees that there will be no deadlocks. In addition, the total communication

234

cost of this approach will be close to optimal (poly-log approximation), assuming that the TSP

tours of the objects are good approximations (typically, poly-log approximations). This idea will

also be helpful in analyzing makespan.

For the experimental evaluation, it will be interesting to extend the HyFlow framework [115]

− a Java framework implementation for STM in distributed systems − by including the afore-

mentioned distributed directory algorithms. Moreover, it will be interesting to extend the STAMP

benchmarks that are originally designed for tightly-coupled TM systems to support distributed

implementations of the TM systems.

9.2.3 NUMA Systems

For TM implementation in NUMA architectures, it will be interesting to explore load and distance

competitive ratio bounds of MultiBend for the case of d-dimensional networks with uneven dimen-

sions. Moreover, it will be interesting to extend MultiBend for dynamic networks where nodes join

and leave the network over time and make it fault-tolerant. This extension for dynamic networks

also applies to algorithms designed for distributed networked systems (as existing algorithms can

not handle dynamic networks). Moreover, the problem of incorporating the consistency algorithms

in a full-fledged distributed TM system remains as an important open problem.

235

Bibliography

[1] Ittai Abraham, Danny Dolev, and Dahlia Malkhi. Lls: a locality aware location service
for mobile ad hoc networks. In Proceedings of the 2004 joint workshop on Foundations of
mobile computing (DIALM-POMC), pages 75–84, New York, NY, USA, 2004. ACM.

[2] Narasimha R. Adiga, Matthias A. Blumrich, Dong Chen, Paul Coteus, Alan Gara, Mark
Giampapa, Philip Heidelberger, Sarabjeet Singh, Burkhard D. Steinmacher-Burow, Todd
Takken, Mickey Tsao, and Pavlos Vranas. Blue gene/l torus interconnection network. IBM
J. Res. Dev., 49(2-3):265–276, 2005.

[3] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B. H. Lim,
G. Maa, D. Nussbaum, M. Parkin, and D. Yeung. The mit alewife machine: A large-scale
distributed-memory multiprocessor. Technical report, Cambridge, MA, USA, 1991.

[4] Noga Alon, Gil Kalai, Moty Ricklin, and Larry J. Stockmeyer. Lower bounds on the com-
petitive ratio for mobile user tracking and distributed job scheduling. Theor. Comput. Sci.,
130(1):175–201, 1994.

[5] K.N. Amouris, S. Papavassiliou, and Miao Li. A position-based multi-zone routing pro-
tocol for wide area mobile ad-hoc networks. In Proceedings of the IEEE 49th Vehicular
Technology Conference (VTC), volume 2, pages 1365–1369, 1999.

[6] Mohammad Ansari, Christos Kotselidis, Mikel Lujan, Chris Kirkham, and Ian Watson. On
the performance of contention managers for complex transactional memory benchmarks.
In Proceedings of the 8th International Symposium on Parallel and Distributed Computing
(ISPDC), pages 83–90, Washington, DC, USA, 2009. IEEE Computer Society.

[7] Mohammad Ansari, Mikel Lujn, Christos Kotselidis, Kim Jarvis, Chris Kirkham, and Ian
Watson. Steal-on-abort: Improving transactional memory performance through dynamic
transaction reordering. In Andr Seznec, Joel Emer, Michael O’Boyle, Margaret Martonosi,
and Theo Ungerer, editors, High Performance Embedded Architectures and Compilers, vol-
ume 5409 of Lecture Notes in Computer Science, pages 4–18. Springer Berlin / Heidelberg,
2009.

[8] Hagit Attiya. The inherent complexity of transactional memory and what to do about it.
In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing (PODC), pages 1–5, New York, NY, USA, 2010. ACM.

[9] Hagit Attiya, Leah Epstein, Hadas Shachnai, and Tami Tamir. Transactional contention
management asanon-clairvoyant scheduling problem. Algorithmica, 57(1):44–61, 2010.

236

[10] Hagit Attiya, Vincent Gramoli, and Alessia Milani. A provably starvation-free distributed
directory protocol. In Proceedings of the 12th international conference on Stabilization,
safety, and security of distributed systems (SSS), pages 405–419, 2010.

[11] Hagit Attiya and Alessia Milani. Transactional scheduling for read-dominated workloads.
J. Parallel Distrib. Comput., 72(10):1386–1396, 2012.

[12] Hagit Attiya, Hadas Shachnai, and Tami Tamir. Local labeling and resource allocation using
preprocessing. SIAM J. Comput., 28(4):1397–1414, March 1999.

[13] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st Annual Symposium
on Foundations of Computer Science (FOCS), volume 2, pages 503–513, 1990.

[14] B. Awerbuch and M. Saks. A dining philosophers algorithm with polynomial response time.
In Proceedings of the 31st Annual Symposium on Foundations of Computer Science (FOCS),
volume I, pages 65–74, Washington, DC, USA, 1990. IEEE Computer Society.

[15] Baruch Awerbuch and David Peleg. Concurrent online tracking of mobile users. SIGCOMM
Comput. Commun. Rev., 21(4):221–233, 1991.

[16] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. Optimal oblivious
routing in polynomial time. J. Comput. Syst. Sci., 69(3):383–394, 2004.

[17] Tongxin Bai, Xipeng Shen, Chengliang Zhang, William N. Scherer III, Chen Ding, and
Michael L. Scott. A key-based adaptive transactional memory executor. In Proceedings
of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
1–8, 2007.

[18] Brenda S. Baker and Edward G. Coffman, Jr. Mutual exclusion scheduling. Theor. Comput.
Sci., 162(2):225–243, August 1996.

[19] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS),
pages 184–193, 1996.

[20] Yair Bartal and Adi Rosen. The distributed k-server problem–a competitive distributed
translator for k-server algorithms. Journal of Algorithms, 23(2):241 – 264, 1997.

[21] Yigal Bejerano and Israel Cidon. An efficient mobility management strategy for personal
communication systems. In Proceedings of the 4th annual ACM/IEEE international confer-
ence on Mobile computing and networking (MobiCom), pages 215–222, 1998.

[22] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. A case
for numa-aware contention management on multicore systems. In Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference (USENIXATC), pages 1–1,
2011.

[23] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Proactive transaction scheduling
for contention management. In Proceedings of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 156–167, 2009.

237

[24] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Bloom filter guided transac-
tion scheduling. In Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture (HPCA), pages 75–86, 2011.

[25] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A. Wood.
Tokentm: Efficient execution of large transactions with hardware transactional memory. In
Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA),
pages 127–138, 2008.

[26] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software transactional
memory for large scale clusters. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 247–258, 2008.

[27] Hans L. Bodlaender and Klaus Jansen. Restrictions of graph partition problems. part i.
Theor. Comput. Sci., 148(1):93–109, August 1995.

[28] Costas Busch, Malik Magdon-Ismail, and Jing Xi. Optimal oblivious path selection on the
mesh. IEEE Trans. Comput., 57(5):660–671, May 2008.

[29] João Cachopo and António Rito-Silva. Versioned boxes as the basis for memory transac-
tions. Sci. Comput. Program., 63(2):172–185, 2006.

[30] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir Shavit.
Numa-aware reader-writer locks. In Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming (PPoPP), pages 157–166, 2013.

[31] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stan-
ford transactional applications for multi-processing. In Proceedings of The IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 35–46. IEEE, 2008.

[32] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems in multicache
systems. IEEE Transactions on Computers, 27(12):1112–1118, 1978.

[33] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-based cache
coherence in large-scale multiprocessors. Computer, 23(6):49–58, 1990.

[34] Dong Chen, Noel Eisley, Philip Heidelberger, Sameer Kumar, Amith Mamidala, Fabrizio
Petrini, Robert Senger, Yutaka Sugawara, Robert Walkup, Burkhard Steinmacher-Burow,
Anamitra Choudhury, Yogish Sabharwal, Swati Singhal, and Jeffrey J. Parker. Looking
under the hood of the ibm blue gene/q network. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis (SC), pages
69:1–69:12, 2012.

[35] Intel Corporation. http://software.intel.com/en-us/blogs/2012/02/
07/transactional-synchronization-in-haswell.

[36] Intel Corporation. A first look at the intel quickpath interconnect. http:
//www.intel.com/intelpress/files/A_First_Look_at_the_
Intel(r)_QuickPath_Interconnect.pdf.

238

[37] Intel Corporation. Who moved the goal posts? the rapidly changing world of
cpus. http://software.intel.com/en-us/articles/who-moved-the-
goal-posts-the-rapidly-changing-world-of-cpus/.

[38] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luı́s Rodrigues. D2stm: Dependable
distributed software transactional memory. In Proceedings of the 15th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pages 307–313, Washington,
DC, USA, 2009. IEEE Computer Society.

[39] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining stm by
abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 67–78, 2010.

[40] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Daniel
Nussbaum. Hybrid transactional memory. In Proceedings of the 12th international confer-
ence on Architectural support for programming languages and operating systems (ASPLOS-
XII), pages 336–346, New York, NY, USA, 2006. ACM.

[41] Murat Demirbas, Anish Arora, Tina Nolte, and Nancy Lynch. Brief announcement: Stalk:
a self-stabilizing hierarchical tracking service for sensor networks. In Proceedings of the
twenty-third annual ACM symposium on Principles of distributed computing (PODC), pages
378–378, New York, NY, USA, 2004. ACM.

[42] Murat Demirbas, Anish Arora, Tina Nolte, and Nancy Lynch. A hierarchy-based fault-local
stabilizing algorithm for tracking in sensor networks. In Teruo Higashino, editor, Principles
of Distributed Systems, volume 3544 of Lecture Notes in Computer Science, pages 299–315.
Springer Berlin Heidelberg, 2005.

[43] Michael J. Demmer and Maurice Herlihy. The arrow distributed directory protocol. In
Proceedings of the 12th International Symposium on Distributed Computing (DISC), pages
119–133, 1998.

[44] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Shlomi Dolev, editor,
Distributed Computing, volume 4167 of Lecture Notes in Computer Science, pages 194–
208. Springer Berlin / Heidelberg, 2006.

[45] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-STM: scheduling-based collision
avoidance and resolution for software transactional memory. In Proceedings of the 27th
Annual ACM symposium on Principles of Distributed Computing (PODC), pages 125–134,
New York, NY, USA, 2008. ACM.

[46] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Preventing
versus curing: avoiding conflicts in transactional memories. In Proceedings of the 28th
Annual ACM symposium on Principles of Distributed Computing (PODC), pages 7–16, New
York, NY, USA, 2009. ACM.

[47] Paul Erdős and Alfréd Rényi. On random graphs I. Publ. Math. Debrecen, 6:290–297, 1959.

239

[48] Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling with con-
flicts: online and offline algorithms. J. of Scheduling, 12(2):199–224, April 2009.

[49] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[50] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst.
Sci., 57(2):187–199, 1998.

[51] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based software
transactional memory. IEEE Trans. Parallel Distrib. Syst., 21(12):1793–1807, 2010.

[52] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of word-
based software transactional memory. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming (PPoPP), pages 237–246, New
York, NY, USA, 2008. ACM.

[53] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M. Aamodt. Hardware
transactional memory for gpu architectures. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 296–307, 2011.

[54] M. R. Garey and R. L. Grahams. Bounds for multiprocessor scheduling with resource con-
straints. SIAM J. Comput., 4(2):187–200, 1975.

[55] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[56] Igor Gorodezky, Robert D. Kleinberg, David B. Shmoys, and Gwen Spencer. Improved
lower bounds for the universal and a priori tsp. In Proceedings of the 13th international
conference on Approximation, and the 14th International conference on Randomization,
and combinatorial optimization: algorithms and techniques (APPROX/RANDOM), pages
178–191, 2010.

[57] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Contention Management
in Software Transactional Memory. In Proceedings of the OOPSLA 2005 Workshop on
Synchronization and Concurrency on Object-Oriented Languages (SCOOL), 2005.

[58] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention manage-
ment. In Pierre Fraigniaud, editor, Distributed Computing, volume 3724 of Lecture Notes
in Computer Science, pages 303–323. Springer Berlin / Heidelberg, 2005.

[59] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of transactional
contention managers. In Proceedings of the 24th Annual ACM symposium on Principles of
Distributed Computing (PODC), pages 258–264, New York, NY, USA, 2005. ACM.

[60] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: a benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev., 41(3):315–324, March 2007.

240

[61] Anupam Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 220–227,
2001.

[62] Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Räcke. Oblivious network design.
In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm
(SODA), pages 970–979, 2006.

[63] Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton. Improved lower and upper
bounds for universal tsp in planar metrics. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm (SODA), pages 649–658, 2006.

[64] Magnús M. Halldórsson, Guy Kortsarz, Andrzej Proskurowski, Ravit Salman, Hadas
Shachnai, and Jan Arne Telle. Multicoloring trees. Inf. Comput., 180(2):113–129, January
2003.

[65] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Michael Chen, Christos Kozyrakis, and
Kunle Olukotun. Transactional coherence and consistency: Simplifying parallel hardware
and software. IEEE Micro, 24(6):92–103, November 2004.

[66] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satterfield, Krish-
nan Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blumrich, Robert Wisniewski,
Alan Gara, George Chiu, Peter Boyle, Norman Chist, and Changhoan Kim. The ibm blue
gene/q compute chip. IEEE Micro, 32(2):48–60, 2012.

[67] Tim Harris and Keir Fraser. Language support for lightweight transactions. SIGPLAN Not.,
38(11):388–402, 2003.

[68] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition. Morgan
and Claypool Publishers, 2nd edition, 2010.

[69] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable mem-
ory transactions. Commun. ACM, 51(8):91–100, August 2008.

[70] D. Hasenfratz, J. Schneider, and R. Wattenhofer. Transactional memory: How to perform
load adaption in a simple and distributed manner. In Proceedings of the 2010 Interna-
tional Conference on High Performance Computing and Simulation (HPCS), pages 163–
170, Washington, DC, USA, 2010. IEEE.

[71] Danny Hendler, Alex Naiman, Sebastiano Peluso, Francesco Quaglia, Paolo Romano, and
Adi Suissa. Exploiting locality in lease-based replicated transactional memory via task mi-
gration. In Proceedings of the International Symposium on Distributed Computing (DISC),
pages 121–133, 2013.

[72] Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger Wattenhofer. Dynamic anal-
ysis of the arrow distributed protocol. Theor. Comp. Syst., 39(6):875–901, 2006.

241

[73] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proceedings of the 23th International Conference
on Distributed Computing Systems (ICDCS), pages 522–529, Washington, DC, USA, 2003.
IEEE Computer Society.

[74] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for implement-
ing software transactional memory. SIGPLAN Not., 41(10):253–262, 2006.

[75] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software
transactional memory for dynamic-sized data structures. In Proceedings of the 22th An-
nual ACM symposium on Principles of Distributed Computing (PODC), pages 92–101, New
York, NY, USA, 2003. ACM.

[76] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–300, May 1993.

[77] Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space networks.
Distributed Computing, 20(3):195–208, 2007.

[78] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Competitive concurrent dis-
tributed queuing. In Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 127–133, 2001.

[79] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Competitive concurrent dis-
tributed queuing. In Proceedings of the twentieth annual ACM symposium on Principles of
distributed computing (PODC), pages 127–133, 2001.

[80] Dorit S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Pub-
lishing Co., Boston, MA, USA, 1997.

[81] Cray Inc. Cray xtTM system overview. http://docs.cray.com/books/S-2423-
22/S-2423-22.pdf.

[82] Sandy Irani and Vitus Leung. Scheduling with conflicts, and applications to traffic sig-
nal control. In Proceedings of the seventh annual ACM-SIAM symposium on Discrete al-
gorithms (SODA), pages 85–94, Philadelphia, PA, USA, 1996. Society for Industrial and
Applied Mathematics.

[83] Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Uni-
versal approximations for tsp, steiner tree, and set cover. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing (STOC), pages 386–395, 2005.

[84] S. Khot. Improved inapproximability results for maxclique, chromatic number and ap-
proximate graph coloring. In Proceedings of the 42th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 600–609, Washington, DC, USA, 2001. IEEE Computer
Society.

242

[85] Junwhan Kim and B. Ravindran. Scheduling transactions in replicated distributed software
transactional memory. In Proceedings of the IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGrid), pages 227–234, 2013.

[86] Junwhan Kim and Binoy Ravindran. On transactional scheduling in distributed transactional
memory ystems. In Proceedings of the International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), pages 347–361, 2010.

[87] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian
Watson. Distm: A software transactional memory framework for clusters. In Proceedings of
the 2008 37th International Conference on Parallel Processing (ICPP), pages 51–58, 2008.

[88] Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity
search. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms (SODA), pages 798–807, 2004.

[89] Fabian Kuhn and Roger Wattenhofer. Dynamic analysis of the arrow distributed protocol.
In Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and
architectures (SPAA), pages 294–301, 2004.

[90] Raju Kumar, Riccardo Crepaldi, Hosam Rowaihy, Albert F. Harris III, Guohong Cao,
Michele Zorzi, and Thomas F. La Porta. Mitigating performance degradation in congested
sensor networks. IEEE Trans. Mob. Comput., 7(6):682–697, 2008.

[91] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling in
O(congestion+ dilation) steps. Combinatorica, 14(2):167–186, 1994.

[92] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, 1991.

[93] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris. A
scalable location service for geographic ad hoc routing. In Proceedings of the 6th annual
international conference on Mobile computing and networking (MobiCom), pages 120–130,
New York, NY, USA, 2000. ACM.

[94] Kai Lu, Ruibo Wang, and Xicheng Lu. Brief announcement: Numa-aware transactional
memory. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing (PODC), pages 69–70, 2010.

[95] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, 1986.

[96] B. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Westermann. Exploiting locality
for data management in systems of limited bandwidth. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (FOCS), pages 284–293, 1997.

[97] Walther Maldonado, Patrick Marlier, Pascal Felber, Adi Suissa, Danny Hendler, Alexandra
Fedorova, Julia L. Lawall, and Gilles Muller. Scheduling support for transactional mem-
ory contention management. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 79–90, 2010.

243

[98] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting distributed ver-
sion concurrency in a transactional memory cluster. In Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming (PPoPP), pages
198–208, 2006.

[99] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat,
William N. Scherer III, and Michael L. Scott. Lowering the overhead of software trans-
actional memory. Technical Report TR 893, Computer Science Department, University of
Rochester, 2006.

[100] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan Bronson,
Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective hybrid transactional
memory system with strong isolation guarantees. In Proceedings of the 34th annual inter-
national symposium on Computer architecture (ISCA), pages 69–80, New York, NY, USA,
2007. ACM.

[101] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling. Theor.
Comput. Sci., 130(1):17–47, August 1994.

[102] Mohamed Naimi, Michel Trehel, and André Arnold. A log (n) distributed mutual exclusion
algorithm based on path reversal. J. Parallel Distrib. Comput., 34(1):1–13, 1996.

[103] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. Theory Comput. Syst., 32(3):241–280,
1999.

[104] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

[105] Rajmohan Rajaraman, Andreá W. Richa, Berthold Vöcking, and Gayathri Vuppuluri. A
data tracking scheme for general networks. In Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures (SPAA), pages 247–254, 2001.

[106] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based pro-
grams. In Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems (ASPLOS-X), pages 5–17. ACM, 2002.

[107] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S. Hofmann, Aditya
Bhandari, and Emmett Witchel. Metatm/txlinux: transactional memory for an operating
system. SIGARCH Comput. Archit. News, 35(2):92–103, June 2007.

[108] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scal-
able content-addressable network. SIGCOMM Comput. Commun. Rev., 31(4):161–172,
2001.

[109] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans.
Comput. Syst., 7(1):61–77, 1989.

244

[110] Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation in graphs.
In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 770–779, 2000.

[111] Paolo Romano, Luis Rodrigues, Nuno Carvalho, and Joäo Cachopo. Cloud-tm: harnessing
the cloud with distributed transactional memories. SIGOPS Oper. Syst. Rev., 44(2):1–6,
2010.

[112] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional program-
ming actually easier? In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 47–56, 2010.

[113] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[114] Mohamed M. Saad and Binoy Ravindran. Snake: control flow distributed software transac-
tional memory. In Proceedings of the International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), pages 238–252, 2011.

[115] Mohamed M. Saad and Binoy Ravindran. Supporting stm in distributed systems: Mecha-
nisms and a java framework. In TRANSACT, pages 1–9. 2011.

[116] David Sainz and Hagit Attiya. Relstm: A proactive transactional memory scheduler. In
International Workshop on Transactional Computing (TRANSACT), pages 1–8, 2013.

[117] William N. Scherer, III and Michael L. Scott. Advanced contention management for dy-
namic software transactional memory. In Proceedings of the 24th Annual ACM symposium
on Principles of Distributed Computing (PODC), pages 240–248, New York, NY, USA,
2005. ACM.

[118] William N. Scherer III and Michael L. Scott. Contention management in dynamic software
transactional memory. In Proceedings of the ACM PODC Workshop on Concurrency and
Synchronization in Java Programs (CSJP), St. John’s, NL, Canada, Jul 2004.

[119] Johannes Schneider and Roger Wattenhofer. Bounds on contention management algorithms.
Theor. Comput. Sci., 412(32):4151–4160, 2011.

[120] Steven L. Scott and Et Al. The cray T3E network: Adaptive routing in a high performance
3D torus. In Proceedings of Hot Interconnects IV Symposium, pages 147–156, 1996.

[121] Gokarna Sharma and Costas Busch. A competitive analysis for balanced transactional mem-
ory workloads. In Proceedings of the 14th International Conference on Principles of Dis-
tributed Systems (OPODIS), pages 348–363, 2010.

[122] Gokarna Sharma and Costas Busch. On the performance of window-based contention man-
agers for transactional memory. In Proceedings of the 13th International Workshop on
Advanced in Parallel and Distributed Computational Models (APDCM), pages 559–568,
2011.

245

[123] Gokarna Sharma and Costas Busch. A competitive analysis for balanced transactional mem-
ory workloads. Algorithmica, 63(1-2):296–322, 2012.

[124] Gokarna Sharma and Costas Busch. Towards load balanced distributed transactional mem-
ory. In Proceedings of the International European Conference on Parallel Computing (Euro-
Par), pages 403–414, 2012.

[125] Gokarna Sharma and Costas Busch. Window-based greedy contention management for
transactional memory: Theory and practice. Distrib. Comput., 25(3):225–248, 2012.

[126] Gokarna Sharma and Costas Busch. An analysis framework for distributed hierarchical
directories. Algorithmica, pages 1–32, 2013.

[127] Gokarna Sharma and Costas Busch. An analysis framework for distributed hierarchical
directories. In Proceedings of the 14th International Conference on Distributed Computing
and Networking (ICDCN), pages 378–392, 2013.

[128] Gokarna Sharma and Costas Busch. Transactional memory: Models and algorithms.
SIGACT News, 45(2):74–103, 2014.

[129] Gokarna Sharma, Costas Busch, and Srivathsan Srinivasagopalan. Distributed transactional
memory for general networks. In Proceedings of the 2012 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1045–1056, 2012. To appear in
Distributed Computing.

[130] Gokarna Sharma, Brett Estrade, and Costas Busch. Window-based greedy contention man-
agement for transactional memory. In Nancy Lynch and Alexander Shvartsman, editors,
Distributed Computing, volume 6343 of Lecture Notes in Computer Science, pages 64–78.
Springer Berlin / Heidelberg, 2010.

[131] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

[132] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A compre-
hensive strategy for contention management in software transactional memory. In Proceed-
ings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel program-
ming (PPoPP), pages 141–150, 2009.

[133] Michael F. Spear, Virendra J. Marathe, William N. Scherer, and Michael L. Scott. Conflict
detection and validation strategies for software transactional memory. In Proceedings of the
International Symposium on Distributed Computing (DISC), pages 179–193, 2006.

[134] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. SIGCOMM Com-
put. Commun. Rev., 31(4):149–160, 2001.

[135] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek. Multiple reser-
vations and the oklahoma update. IEEE Parallel Distrib. Technol., 1(4):58–71, November
1993.

246

[136] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing (STOC), pages
281–290, 2004.

[137] Srikanta Tirthapura and Maurice Herlihy. Self-stabilizing distributed queuing. IEEE Trans.
Parallel Distrib. Syst., 17(7):646–655, 2006.

[138] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht, Christopher
Barton, Raul Silvera, and Maged Michael. Evaluation of blue gene/q hardware support for
transactional memories. In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques (PACT), pages 127–136, 2012.

[139] Ruibo Wang, Kai Lu, and Xicheng Lu. Investigating transactional memory performance
on ccnuma machines. In Proceedings of the 18th ACM international symposium on High
performance distributed computing (HPDC), pages 67–68, 2009.

[140] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, and Depei Qian. Software
transactional memory for gpu architectures. In Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages 1:1–1:10, 2014.

[141] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D. Hill,
Michael M. Swift, and David A. Wood. Logtm-se: Decoupling hardware transactional mem-
ory from caches. In Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 261–272. IEEE, 2007.

[142] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional
memory systems. In Proceedings of the 20th Annual Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 169–178, New York, NY, USA, 2008. ACM.

[143] Bo Zhang and Binoy Ravindran. Brief announcement: Relay: A cache-coherence protocol
for distributed transactional memory. In Proceedings of the 13th international conference
on Principles of Distributed Systems (OPODIS), pages 48–53, 2009.

[144] Bo Zhang and Binoy Ravindran. Brief announcement: queuing or priority queuing? on
the design of cache-coherence protocols for distributed transactional memory. In Proceed-
ings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing
(PODC), pages 75–76, New York, NY, USA, 2010. ACM.

[145] Bo Zhang and Binoy Ravindran. Dynamic analysis of the relay cache-coherence protocol for
distributed transactional memory. In Proceedings of the 2010 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1–11, 2010.

[146] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE
Journal on Selected Areas in Communications, 22:41–53, 2004.

[147] David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

247

Appendix: Copyright Forms for Published
Materials

248

249

250

251

252

253

254

255

256

257

258

Vita

Gokarna Sharma received his Bachelors degree in Computer Engineering from Tribhuvan Uni-

versity, Nepal, in 2004, and the Dual Degree European Masters in Computational Logic (EMCL)

from the Vienna University of Technology, Austria, in 2007 and from the University of Bozen-

Bolzano, Italy, in 2008. In summer 2008, he was a summer consultant at the Enabling Computing

Technologies (ECT) research domain of Alcatel-Lucent Bell Laboratories, Murray Hill, New Jer-

sey, USA. He started Doctor of Philosophy study in Computer Science at the School of Electrical

Engineering and Computer Science, Louisiana State University, Baton Rouge, USA, in August

2008. Gokarna Sharma will formally receive his Doctor of Philosophy degree in August 2014. His

current research interests are on parallel and distributed computing: algorithms, systems, and data

structures, distributed sensor networks, and network and graph algorithms.

259

