
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2013

Exploiting heterogeneity in Chip-Multiprocessor
Design
Ying Zhang
Louisiana State University and Agricultural and Mechanical College, yzhan29@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Zhang, Ying, "Exploiting heterogeneity in Chip-Multiprocessor Design" (2013). LSU Doctoral Dissertations. 3918.
https://digitalcommons.lsu.edu/gradschool_dissertations/3918

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/3918?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3918&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

EXPLOITING HETEROGENEITY IN CHIP-MULTIPROCESSOR DESIGN

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

The Division of Electrical and Computer Engineering

School of Electrical Engineering and Computer Science

by

Ying Zhang

B.E., Huazhong University of Science and Technology, Wuhan, China 2006

M.E., Huazhong University of Science and Technology, Wuhan, China 2008

December 2013

ii

ACKNOWLEDGEMENTS

 I would like to dedicate this dissertation to my parents, my wife, and my parents-in-law, for

their continuous support and encouragement throughout my entire life.

 This dissertation could not have been completed without the help and support from a lot of

people that I am grateful to. First of all, I would like to thank my advisor, Dr. Lu Peng, for his guid-

ance and suggestions during my Ph.D. study. All of the works presented in this dissertation came

from constant support and discussions with Dr. Peng. I would also like to thank Dr. Bin Li from

Department of Experimental Statistics for all the collaboration we had and Dr. Xin Fu from Univer-

sity of Kansas for her invaluable comments on this research. Furthermore, I want to thank Dr. Jerry

Trahan, Dr. Ramachandran Vaidyanathan, and Dr. Ronald F. Malone (the professors in my commit-

tee) for spending time supervising my dissertation and attending my defense.

 I am thankful to the Department of Electrical and Computer Engineering for providing assis-

tantship throughout my Ph.D. study.

 Finally, I would like thank all the friends I met at LSU for making my life here wonderful and

memorable.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

ABSTRACT……. ... ix

CHAPTER 1. INTRODUCTION .. 1

1.1 Why Heterogeneity is Important .. 1

1.2 Dissertation Organization ... 3

CHAPTER 2. OPTIMAL CONFIGURATION SELECTION FOR HETEROGENEOUS CMPs 7

2.1 Overview .. 7

2.2 Methodology .. 10

2.2.1 Heterogeneous Architecture ... 10

2.2.2 Evaluation Metrics ... 10

2.2.3 Simulation Environment and Workloads ... 12

2.3 Device Heterogeneity ... 14

2.3.1 New Device and Architectural Implication .. 14

2.3.2 Result Analysis ... 16

2.4 Architectural Heterogeneity ... 21

2.4.1 Performance and Energy Efficiency... 21

2.4.2 Thermal Feature and Cost Efficiency ... 24

2.5 Two-fold Heterogeneity ... 25

2.5.1 Performance and Energy Efficiency... 25

2.5.2 Thermal Feature and Cost Efficiency ... 28

2.6 Extension to Varying Last-level Cache .. 29

2.7 Related Work .. 31

2.8 Conclusion .. 32

CHAPTER 3. RULE-SET GUIDED ENERGY EFFICIENT SCHEDULING ON SINGLE-ISA

HETEROGENEOUS CMPS... 34

3.1 Motivation and Overview ... 34

3.2 Statistical Tools .. 36

3.2.1 Patient Rule Induction Method (PRIM) ... 37

3.2.2 Classification and Regression Tree (CART) .. 38

3.3 Rule-set Guided Scheduling ... 39

3.3.1 Scheduling in Presence of Idle Cores ... 40

3.3.2 Scheduling without Idle Cores ... 43

3.3.3 Algorithm Scalability ... 46

3.4 Experimental Setup .. 50

3.4.1 Simulation Environment .. 50

3.4.2 Scheduling Algorithms for Comparison .. 52

3.5 Result Analysis ... 54

iv

3.5.1 Results in Presence of Idle Cores ... 54

3.5.2 Results without Idle Cores ... 59

3.6 Related Work .. 68

3.7 Conclusion .. 70

CHAPTER 4. MITIGATING NBTI DEGRADATION ON GPUS THROUGH EXPLOITING

DEVICE HETEROGENEITY .. 71

4.1 Motivation and Overview ... 71

4.2 Background .. 73

4.2.1 NBTI Degradation Mechanism .. 73

4.2.2 Target GPU Architecture ... 76

4.3 Mitigating the NBTI Degradation on GPU .. 77

4.3.1 Hybrid-device Warp Scheduler .. 77

4.3.2 Hybrid-device Sequential-access L2 Cache ... 82

4.4 Experimental Setup .. 84

4.5 Result Analysis ... 85

4.5.1 Warp Scheduler .. 86

4.5.2 L2 Cache .. 92

4.6 Related Work .. 97

4.7 Conclusion .. 99

CHAPTER 5. SUMMARY AND FUTURE WORK... 100

5.1 Summary .. 100

5.2 Future Work ... 102

REFERENCES……………………………………………………………………………………. 105

APPENDIX A. PERMISSIONS TO USE COPYRIGHTED MATERIALS 114

APPENDIX B. AUTHOR’S PUBLICATIONS .. 119

VITA……………………………………………………………………………….……………… 121

v

LIST OF TABLES

Table 2-1. Parameter values for die cost calculation ... 12

Table 2-2. Architectural parameters for system components ... 13

Table 2-3. Estimated area and power for system components ... 13

Table 2-4. Selected applications for simulation ... 14

Table 2-5. Features of materials considered in this work .. 16

Table 3-1. Power and performance ratio of bzip2 and vpr ... 35

Table 3-2. Architectural parameters of system components .. 51

Table 3-3. Number of context switches.. 58

Table 3-4. PRIM rule set for each data segment .. 64

Table 4-1. Architectural parameters for the GPU in study .. 85

Table 4-2. Benchmarks used in this work .. 86

Table 4-3. Parameter values for computing NBTI ... 86

Table 4-4. Filter rate on the first stage of warp scheduler .. 89

vi

LIST OF FIGURES

Figure 2-1. Increasing dark area with technology scaling.. 8

Figure 2-2. Architectural overview of the heterogeneous architecture .. 10

Figure 2-3. Average execution time and energy-efficiency of parallel applications running on CMPs

with different materials .. 18

Figure 2-4. Execution information of a selected benchmark: MPGEnc .. 19

Figure 2-5. Average peak temperature and cost efficiency of multi-threaded benchmarks running on

mixed-device CMPs ... 21

Figure 2-6. Performance and ED of benchmarks running on architectural heterogeneous CMPs with

High-K devices .. 23

Figure 2-7. Peak temperature and cost-efficiency of benchmarks running on architectural

heterogeneous CMPs with High-K devices ... 25

Figure 2-8. Performance and ED of computation-intensive benchmarks running on different mixed-

device CMPs .. 27

Figure 2-9. Peak temperature and cost-efficiency of computation-intensive workloads running on

mixed-device heterogeneous CMPs ... 29

Figure 2-10. Performance and ED of computation-intensive workloads running on two-fold

heterogeneous CMPs with varying LLC size .. 30

Figure 2-11. Peak temperature and cost-efficiency of computation-intensive workloads running on

two-fold heterogeneous CMPs with varying LLC size ... 30

Figure 3-1. Energy and ED for bzip2+vpr with different mappings .. 36

Figure 3-2. PRIM training procedure with peeling and pasting ... 37

Figure 3-3. PRIM rules guided scheduling for dual-program execution ... 45

Figure 3-4. Pair-wise comparison illustration for 2n-program scheduling on an nB+nS platform ... 47

Figure 3-5. Scheduling procedure on a heterogeneous CMP with m big cores and n small cores (m >

n). Big cores are denoted as Pbi (i=0,1, …m-1) and Small cores are denoted as Psj

(j=0,1,…n-1) .. 49

Figure 3-6. Normalized energy consumption for single-programs executing on a dual-core CMP

with different schedulers .. 57

vii

Figure 3-7. Normalized execution time for single-programs executing on a dual-core CMP with

different schedulers .. 59

Figure 3-8. Data segmentation result from CART ... 63

Figure 3-9. Evaluation results of four-program workloads running on a 2B+2S platform 65

Figure 3-10. Average improvement in energy, performance and ED of all four-program workloads

running on a 2B+2S platform .. 66

Figure 3-11. Evaluation results of four-program workloads running on a 3B+1S platform 67

Figure 3-12. Average improvement in energy, performance and ED of all four-program workloads

running on a 3B+1S platform .. 67

Figure 3-13. Average improvement for performance, energy and ED for two-program workloads

running on a 1B+1S platform .. 68

Figure 4-1. NBTI degradation containing stress and recovery phases ... 75

Figure 4-2. FinFET transistor structure .. 75

Figure 4-3. An illustration of typical GPGPU architecture .. 77

Figure 4-4. The architecture of the warp scheduler.. 79

Figure 4-5. A snapshot of the scheduler activity while running WP .. 80

Figure 4-6. The architecture of the hybrid-device 2-stage scheduler ... 81

Figure 4-7. Workflow of the hybrid-device sequential-access L2 cache ... 84

Figure 4-8. The NBTI degradation on the warp scheduler .. 87

Figure 4-9. The steady temperature on the warp scheduler ... 88

Figure 4-10. The power consumed by the warp scheduler .. 89

Figure 4-11. Normalized IPC on the GPU with 2-stage scheduler .. 90

Figure 4-12. NBTI degradation on the L2 data array ... 93

Figure 4-13. Steady temperature on the L2 data array ... 93

Figure 4-14. L2 miss rate of all evaluated benchmarks ... 94

Figure 4-15. Power consumption of the L2 data array of all evaluated benchmarks 94

viii

Figure 4-16. NBTI degradation on the L2 tag array .. 95

Figure 4-17. Normalized IPC with the sequential-access L2 cache ... 96

Figure 4-18. L2 hits/cycle of all evaluated benchmarks .. 96

ix

ABSTRACT

In the past decade, semiconductor manufacturers are persistent in building faster and smaller

transistors in order to boost the processor performance as projected by Moore’s Law. Recently, as

we enter the deep submicron regime, continuing the same processor development pace becomes an

increasingly difficult issue due to constraints on power, temperature, and the scalability of transis-

tors. To overcome these challenges, researchers propose several innovations at both architecture and

device levels that are able to partially solve the problems. These diversities in processor architecture

and manufacturing materials provide solutions to continuing Moore’s Law by effectively exploiting

the heterogeneity, however, they also introduce a set of unprecedented challenges that have been

rarely addressed in prior works.

In this dissertation, we present a series of in-depth studies to comprehensively investigate the

design and optimization of future multi-core and many-core platforms through exploiting heteroge-

neities. First, we explore a large design space of heterogeneous chip multi-processors by exploiting

the architectural- and device-level heterogeneities, aiming to identify the optimal design patterns

leading to attractive energy- and cost-efficiencies in the pre-silicon stage. After this high-level study,

we pay specific attention to the architectural asymmetry, aiming at developing a heterogeneity-

aware task scheduler to optimize the energy-efficiency on a given single-ISA heterogeneous multi-

processor. An advanced statistical tool is employed to facilitate the algorithm development. In the

third study, we shift our concentration to the device-level heterogeneity and propose to effectively

leverage the advantages provided by different materials to solve the increasingly important reliabil-

ity issue for future processors.

1

CHAPTER 1. INTRODUCTION

Moore’s Law, which describes that the number of transistors integrated on chip will be dou-

bled every generation, has been the workhorse to drive the processor development in the past

decades. Nonetheless, due to the ever-widening gap between the improvement in the capability

of heat spreading and the soaring transistor count, further continuance of Moore’s Law for the

upcoming technology nodes becomes an increasingly challenging issue. Moreover, as we enter

the sub-32nm era in recent years, the approaching scaling limit of traditional transistors emerges

as another threat to processor upswing, largely exacerbating the conundrum. In order to maintain

the pace of processor development as expected in the next decade, material physicists and com-

puter architects have made substantial efforts to break through the main constraints encountered

during processor manufacturing. Heterogeneity is among the most attractive and successful solu-

tions. In this work, we present a series of research studies related to the exploitation of heteroge-

neity, aiming to provide general principles for the design and optimization of future processors.

1.1 Why Heterogeneity is Important

In the past decades, processor manufacturers were persistent on enhancing the performance

of their products by increasing the core frequency. Due to the near-cubic relation between pro-

cessor frequency and power consumption, however, building faster processor easily translates to

dramatic increase in the processor power and chip temperature, because all consumed electrical

power is eventually radiated as heat. As a consequence, the clock frequency of a single processor

cannot rise to arbitrarily high values, in order to avoid unreasonably high power consumption.

This so-called “power-wall” issue, which stands as one of the most critical constraints in proces-

sor development, has led to a shift into the multi-core (e.g., chip multi-processors, or CMPs) and

many-core (e.g., graphics processing units, or GPUs) design paradigm where each individual

2

core is designed with reasonable complexity running at a suitable frequency to encapsulate the

total power consumption within a pre-set budget without violating the thermal constraint.

To date, most multi-core and many-core processors are designed in a homogeneous manner,

where identical cores are integrated on the same processor die. Driven by the un-ceasing demand

for higher performance, each individual core is evolving towards more sophisticated and faster

operation, resulting in constant increases in the chip-level power consumption. To extend the de-

velopment of the multi-core and many-core paradigm and more efficiently utilize the power re-

source, computer architects have recently proposed the concept of “heterogeneous architecture”

as a substitute for the traditional homogeneous design pattern. Initial studies from both academia

and industry demonstrate that heterogeneous architecture is effective in overcoming intrinsic

drawbacks of homogeneous multi-processors and improving the execution energy efficiency.

Heterogeneous architecture can be implemented in various manners and several designs have

been introduced into the processor products delivered by leading chip manufacturers. For in-

stance, the accelerated processing unit (APU) [1] from AMD combines CPU and graphics pro-

cessing units (GPU) together, aiming to enhance the media processing capability with higher ef-

ficiency. The ARM big.LITTLE multiprocessor [2] implements another important design philos-

ophy by including a cluster of powerful Cortex A15s and a set of smaller yet low-power Cortex

A7s on the same chip, in order to deliver impressive energy efficiency via smart task scheduling.

Examples also include the Nvidia Tegra 3 [13] processor that consists of four faster cores and a

slower companion core.

The heterogeneity in processor manufacturing is not confined to architectural asymmetry.

As traditional transistors are approaching their scaling limit in the deep submicron regime, new

materials are introduced to replace the conventional devices for processor manufacturing, in or-

3

der to extend the curve extrapolated by Moore’s Law in the next decade. However, while offer-

ing promising advantages such as lower leakage power or better scalability, these emerging ma-

terials manifest different drawbacks, implying that processors built with the new devices exclu-

sively tend to pay an overhead on performance, reliability or other important design goals. In this

situation, mixing diverse materials with distinctive characteristics – device heterogeneity – ap-

pears as an attractive work-around.

While the diversities in processor architectures and manufacturing devices provide the op-

portunities for heterogeneity exploitation, how to effectively leverage those divergences in the

different stages of processor manufacturing and operation still needs in-depth investigation. For

example, given a fixed system budget in terms of die area and thermal design power (TDP),

identifying the architectural configurations that lead to the optimal balance among performance,

power, and other important metrics remains an open question. On the other aspect, implementing

a heterogeneity-aware scheduler assigning programs to the most appropriate processor core for

better energy-efficiency is among the key factors to fully exploit a given heterogeneous platform.

Further, in the presence of device-level heterogeneity, appropriately blending different devices in

order to leverage their respective advantages during processor manufacturing are of great signifi-

cance. In this work, we elaborate a series of studies to address these challenging problems in de-

tail.

1.2 Dissertation Organization

The presented works take both architectural and device heterogeneity into consideration,

demonstrating useful observations and techniques that are instructive to operations in the pre-

and post-silicon stages of processors’ lifespan. We first conduct a careful examination of possi-

ble architectural configurations for a heterogeneous CMP. Design space exploration is widely

4

considered as an indispensable step in the pre-silicon stage of processor manufacturing as it as-

sists to elect the design options leading to good tradeoffs among multiple design goals. For the

heterogeneous CMP in study, we explore its design space by varying the number of processor

cores that show distinctive performance and power characteristics, in order to identify the most

energy- and cost-efficient configurations. Furthermore, considering that the fundamental cause of

the “power wall” is the substantial heat that cannot be dissipated in time, we also evaluate pro-

cessors built with emerging low-power materials and observe that how recent breakthroughs in

semiconductor technology can benefit the processor fabrication.

After investigating the pre-silicon stage, we shift our concentration to the heterogeneity-

aware scheduling. Namely, given a heterogeneous CMP running multiple programs with differ-

ent execution behaviors, how shall we assign those jobs to individual cores to achieve the opti-

mal energy-efficiency? Designing such a scheduler requires us to bridge the gap between pro-

gram execution behaviors and system energy consumption; therefore, we employ an advanced

statistical tool, Patient Rule Induction Method (PRIM) [41], to facilitate our analysis and develop

an energy-efficient scheduling algorithm for heterogeneous CMPs.

Compared to the second study which focuses on the architectural heterogeneity, our third

work pays particular attention to the device heterogeneity. Specifically, we concentrate on a re-

cently implemented transistor architecture, Fin Field-Effect-Transistor (FinFET) [7], and aim at

enhancing the endurance of FinFET-made processors by utilizing the device-level heterogeneity.

To summarize, the main contributions of this research are as follows.

 We find that applying any single device material exclusively in the chip fabrication fails

to produce efficient processors with regards to multiple perspectives including perfor-

5

mance, energy, and thermal effects. On the contrary, appropriately mixing diverse mate-

rials can fully leverage their advantages in performance and energy aspects and yield the

most efficient chip.

 We explore processor designs with two-fold heterogeneity in terms of both manufactur-

ing devices and core types, and exhibit that they are able to deliver extra benefit. Specif-

ically, building big and small cores with different materials appears as the optimal de-

sign option.

 We develop a rule-set based scheduling algorithm for energy-efficient execution on het-

erogeneous CMPs. The scheduling condition is interpreted as a set of “IF-ELSE” condi-

tions with regard to common performance metrics on involved cores. The scheduler dy-

namically makes decisions for program assignment by comparing the runtime execution

behaviors with the selected rules at each scheduling interval. When the conditions on

both cores are satisfied, the scheduler predicts that a job swap will be more energy-

saving than the current mapping, thus switching the programs on the big and small cores

accordingly.

 We demonstrate a hybrid-device design for future graphics processing units manufac-

tured with FinFET. With replacing a few small hardware components with function-

equivalents built with traditional transistors, the proposed design is capable of largely

enhancing the device’s reliability with slight performance degradation.

The remainder of the dissertation is organized as follows. We present our exploration on the

design space of heterogeneous CMPs in section 2. Section 3 elaborates the energy-efficient

scheduling work by introducing the employed statistical tools and algorithm development. In

6

section 4, we demonstrate the hybrid-device GPU design in detail. We finally summarize the

studies and present potential works in section 5.

7

CHAPTER 2. OPTIMAL CONFIGURATION SELECTION FOR

HETEROGENEOUS CMPs

2.1 Overview

Processor manufacturers have complied with Moore’s Law to double the transistor count

and performance on each new generation product in past decades. However, as we embrace the

deep submicron era, Dennard scaling which describes the continuous decrease on the supply and

threshold voltage of a transistor at each new technology node has stalled [38][83], leading to an

ever increasing power density on modern processors. On the other hand, the maximum processor

power consumption should be always enclosed within a reasonable envelope despite the manu-

facturing technology, due to physical constraints including heat dissipation and power delivery.

Under this limitation, a large portion of integrated transistors on a future processor must be sig-

nificantly underclocked or even completely turned off in order to satisfy the power constraint and

maintain a safe working temperature. This phenomenon, which is termed “dark silicon”, is rec-

ognized to be one of the most critical constraints that prevent us from obtaining commensurate

performance benefit from the increased number of transistors.

Dark silicon might be exacerbated as Moore’s Law continues to dominate the processor de-

velopment. Figure 2-1 illustrates the scaling trend of the amount of “dark” transistors according

to the ITRS roadmap [8]. As can be seen, the percentage of the dark area on a chip is exponen-

tially expanding at each generation. This results in a chip with up to 93% of all transistors inac-

tive in a few years from now [105]. Therefore, seeking new design dimensions to efficiently uti-

lize the chip-level resource including power and area is important for us to obtain sustainable

performance improvement in the future. Prior works have proposed a few solutions to address

the dark silicon problem from certain aspects [38][48][83][103][107][108]. However, most of

these works mainly concentrate on a specific solution, lacking general justifications of multiple

8

design options. Considering that an initial guidance to the design of future processors in the pres-

ence of dark silicon is highly desired, we conduct a comprehensive assessment of new design

dimensions with special concentration on heterogeneity in the early stage of processor manufac-

turing.

Year

Technology

#Transistors

doubles per gen.

2008 2009 2010 2011 2012 2013 2014 2015 2016

65nm

40nm

32nm

22nm

15nm

Technology scaling

Larger dark area on

die per new gen.

Slight improvement on per

transistor power each gen.

Chip-level thermal

&& TDP constraint

Figure 2-1. Increasing dark area with technology scaling

Our target processor is a chip multiprocessor (CMP) with fixed power and area budget. The

first dimension that will be evaluated is device heterogeneity. Since dark silicon is essentially

caused by the slow improvement in a CMOS device’s switching power, emerging low-power

materials might be used to build processors in order to illuminate the dark area. However, many

power-saving devices manufactured with nano-technology manifest a series of drawbacks such

as long switch delay [54]. Due to this limitation, it is inappropriate to use such devices to com-

pletely replace the traditional CMOS in processor manufacturing. To effectively alleviate the

power constraint without suffering from significant performance degradation, integrating cores

made of different materials on the same die emerges as an attractive design option. A few works

have justified the feasibility of hybrid-device CMP at circuit level [62][92][93][102] while some

of them further demonstrate the advantage of the resultant processors in performance improve-

9

ment [62]. Nevertheless, these works are mainly conducted on a fixed platform and thus the op-

timal design configuration which provides desirable balance among disparate evaluation metrics

remains an open question. On the other hand, architectural heterogeneity (e.g., including both big

and small cores on a processor) has been proved an effective solution to energy efficiency im-

provement. Therefore, jointly applying the device heterogeneity and architectural heterogeneity

becomes a promising option to further exploit their advantages over conventional designs, hence

the second design dimension “two-fold heterogeneity”. In general, by evaluating the described

new design dimensions in detail, we make the following key observations in this chapter:

 We demonstrate that using diverse materials in the chip fabrication is effective in reliev-

ing the dark silicon problem. By integrating more cores made of slower and power-saving

devices and relatively few cores built with faster yet power-consuming devices, more

processor cores can be enabled. Therefore, the advantages of both materials are leveraged,

assisting us to produce processors that deliver impressive energy- and cost-efficiency.

 We observe that architectural heterogeneity is capable of offering higher cost-efficiency

in addition to the well-known energy-efficiency over conventional designs, because in-

cluding small low-power cores is able to reduce the peak chip temperature and thus de-

creasing the cooling expense. This further confirms the importance of building CMPs

with different types of cores in the presence of dark silicon.

 We explore processor designs with two-fold heterogeneity with regards to both manufac-

turing devices and core architectures. We show that building complex out-of-order cores

with power-saving devices while manufacturing small in-order cores with relatively pow-

er-consuming material is able to deliver extra benefit on energy- and cost-efficiency, thus

appearing as the optimal design option.

10

2.2 Methodology

2.2.1 Heterogeneous Architecture

The heterogeneous platform considered in this chapter is a single-ISA CMP containing m

big and n small cores. Note that both m and n are no less than zero. Figure 2-2 illustrates its ar-

chitectural overview. As can be seen, each core is equipped with a private L1 cache, connecting

to the shared L2 cache via an interconnection. The main memory stands as the lowest level in the

memory hierarchy and communicates with the shared cache through a memory controller. Note

that although our study is conducted on CMPs with shared last-level caches (LLC), the rule-set

guided scheduling approach can also be adapted to systems without shared LLC and effectively

increase the energy efficiency.

Big Core
Small

Core

Big Core
Small

Core

L1 cache L1 cache L1 cache L1 cache

…. ….

Interconnection

L2 cache

Memory Controller

DRAM

Figure 2-2. Architectural overview of the heterogeneous architecture

2.2.2 Evaluation Metrics

In this subsection, we describe the metrics for the evaluation of different configurations.

Note that we characterize multiple aspects including performance, energy efficiency, thermal

features and cost-efficiency for each design dimension, in order to make a comprehensive inves-

tigation.

11

We choose total execution time to evaluate the performance. Our study consists of investiga-

tions on both homogeneous and heterogeneous architectures, thus execution time is a preferable

metric for the performance measurement. This is especially important when we run parallel ap-

plications on CMPs with varied number of cores, where the total instruction count might fluctu-

ate due to different parallelization overhead. In this situation, other common adopted metrics

such as IPC or global throughput are inappropriate for the evaluation.

For the energy-efficiency and thermal feature, we use energy-delay product (ED) and peak

temperature for assessment. Besides these three extensively discussed metrics, we also include

cost-efficiency as the fourth factor for investigation. In this work, we define the cost efficiency

as MIPS/dollar. The considered cost is composed of the die expense and cooling cost, where the

former part can be calculated with the following equations [81]:

𝐷𝑖𝑒 𝑐𝑜𝑠𝑡 =
𝑤𝑎𝑓𝑒𝑟 𝑐𝑜𝑠𝑡

𝐷𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟×𝐷𝑖𝑒 𝑦𝑖𝑒𝑙𝑑
 ………………………………………………..………..... 2.1

𝐷𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 =
𝜋 × (

𝑤𝑎𝑓𝑒𝑟_𝑑𝑖𝑎𝑚

2
)

2

𝐷𝑖𝑒 𝑎𝑟𝑒𝑎
−

𝜋×𝑤𝑎𝑓𝑒𝑟_𝑑𝑖𝑎𝑚

√2×𝐷𝑖𝑒 𝑎𝑟𝑒𝑎
− 𝑇𝑒𝑠𝑡 𝑑𝑖𝑒𝑠 ………………..………… 2.2

𝐷𝑖𝑒 𝑦𝑖𝑒𝑙𝑑 = 𝑤𝑎𝑓𝑒𝑟 𝑦𝑖𝑒𝑙𝑑 × {1 +
𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎×𝐷𝑖𝑒 𝑎𝑟𝑒𝑎

𝛼
}

−𝛼

 ………………..……….. 2.3

Table 2-1 lists the values of referred parameters derived from recently released data in in-

dustry. The cooling cost is computed based on a model that is introduced in a prior work [115].

𝐶𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐾𝑐𝑡 + 𝑐 …………………………………………………………………………….. 2.4

In general, this cost is decided by the peak temperature achieved during the execution. Char-

acterizing the cost-efficiency is necessary for computer architects to identify the optimal design

configurations, thus deserving careful consideration.

12

Table 2-1. Parameter values for die cost calculation

Parameter Value

Wafer cost $4900

Wafer diameter 300mm

Wafer yield 0.9

Defects per unit area 0.4/cm2

Alpha 3

2.2.3 Simulation Environment and Workloads

We use a modified SESC [86], a widely used cycle-accurate simulator for architectural

study, to conduct our investigation. We choose McPat 1.0 [69] for power and area estimation and

Hotspot 5.0 [16] for temperature calculation. Note that we assume a 22nm technology in this

work, thus we set the system budget based on an Intel Ivy Bridge processor [3]. In specific, the

area of the target chip should not exceed 100mm2 and the maximal power consumption is 60W.

Recall that our design space includes configurations which integrate both big and small

cores on the same chip. For this purpose, we assume a complex out-of-order core and a simple

in-order core whose parameters are listed in Table 2-2. The L2 cache is set to 4MB in the base-

line configuration, but may vary in later subsections (i.e., tradeoff study between cache and core).

Table 2-3 lists the estimated area and peak power for each component on the chip. Given these

conditions, the number of cores and LLC size that can be accommodated is determined by the

following expressions:

𝐴𝑟𝑒𝑎 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝑁𝑏 × 𝐴𝑏 + 𝑁𝑠 × 𝐴𝑠 + 𝑆𝐿2 × 𝐴𝐿2 + 𝐴𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 ≤ 100

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝑁𝑏 × 𝑃𝑏 + 𝑁𝑠 × 𝑃𝑠 + 𝑆𝐿2 × 𝑃𝐿2 + 𝑃𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 ≤ 60

The variables Nb, Ns and SL2 denote the number of big cores, number of small cores and L2

size (in MB), respectively. Constants Ab and Pb indicate the area and peak power for a big core as

listed in Table 2-3. Similar interpretations apply to other symbols such as As and Ps.

13

Table 2-2. Architectural parameters for system components

Component Parameter Value

Big core

Pipeline type out-of-order

Processor width 4

ALU/FPU 4/4

ROB/RF 160/160

L1I cache size 32KB

L1D cache size 32KB

L1 associativity 4

Small core

Pipeline type in-order

Processor width 1

ALU/FPU 1/1

L1I cache size 8KB

L1D cache size 8KB

L1 associativity 2

Other parameters

L2 cache size 4MB (varied in later sections)

L2 associativity 8

Cache block size 32B

Technology 22nm

Frequency 3G

Chip area 100mm2

TDP 60W

Table 2-3. Estimated area and power for system components

Component Peak power Area

Big core
5.6W (High-K)

7.6mm2
4.8W (NEMS-CMOS)

Small core
1.1W(High-K)

1.9mm2
0.8W (NEMS-CMOS)

L2 cache 0.8W/MB 3mm2/ MB

Interconnect 5W 4mm2

Other components 11W 23mm2

The workloads used for our exploration are based on the specific architecture in study. Mul-

ti-threaded programs are generally used for CMPs on which all cores have identical architecture

(i.e., homogeneous); on the other hand, when both big and small cores are integrated, we consid-

er that “heterogeneous” workloads are more appropriate for the investigation and thus use com-

binations of programs from SPEC CPU2006 [14] as a substitute. For those parallel applications,

14

the number of threads for execution always equals to the core count of the underlying CMP and

all programs are executed till completion, in order to guarantee that the identical task is per-

formed. We choose a total of 10 programs from SPLASH-2 [9], PARSEC [26] and ALPBench

[74] for the simulation. The reason for not including other workloads is that their intrinsic char-

acteristics (e.g., requiring 2n threads) prohibit the execution on many configurations. As for the

SPEC programs, each of them is simulated 100 million instructions after an appropriate fast-

forwarding. This also ensures that identical tasks are performed across different configurations.

Table 2-4 lists all selected benchmarks used in this study.

Table 2-4. Selected applications for simulation

Category Benchmark Suite Applications (Kernels)

Homogeneous

SPLASH-2

Barnes, FMM, Radix,

Raytrace, Water-spatial,

waterNS

PARSEC Blackscholes, Swaptions

ALPBench MPGDec, MPGEnc

Heterogeneous

Computation-

intensive

h264, dealII, namd,

spcrand, sjeng, omnetpp,

gobmk, hmmer, bzip2

Memory-intensive

mcf, libquantum, milc,

leslie3d, perlbench, lbm,

soplex, astar

2.3 Device Heterogeneity

2.3.1 New Device and Architectural Implication

The slight improvement in transistor power density is fundamentally caused by the physical

characteristics of MOSFET [105]. Due to this limitation, it is intuitive to recognize that break-

throughs in semiconductor technology are the antidote to dark silicon in essence. Recently, sub-

stantial effort has been made on the semiconductor manufacturing process in order to further ex-

15

tend Moore’s Law. In this work, we consider two representative solutions in this dimension,

namely High-K dielectrical [5] and Nano-electro-mechanical switch (NEMS) [35][54].

High-K dielectrical refers to a device that replaces the silicon dioxide in semiconductor

manufacture. The letter K stands for dielectrical constant, indicating how much charge the mate-

rial can hold. High-K is capable of significantly decreasing the leakage current (i.e., < 1% of

SiO2) and has already been adopted by leading processor manufacturers [5]. Although High-K

material has made impressive achievements in reducing leakage energy, it is not sufficiently

scalable because this device still suffers from the MOSFET-imposed constraints. Nevertheless,

as an important substitute of conventional devices in current industry, it deserves a careful evalu-

ation.

The NEMS material, on the other hand, is a candidate for future processor development be-

cause it is built on physical switch and thus not limited by the drawbacks of MOSFET. NEMS is

able to reduce the leakage current by orders of magnitude, however, it demonstrates a signifi-

cantly longer switch delay compared to conventional devices, implying large performance deg-

radation of the resultant processor. Taking this into consideration, researchers propose a hybrid

device that combines NEMS and CMOS together. Dadgour et al. [35] elaborate the features of

NEMS-CMOS circuits in detail and demonstrate the potential of this hybrid device in future pro-

cessor manufacturing. Therefore, we consider NEMS-CMOS as an alternative material in this

work. We carefully calibrate the parameters based on recent documents [5][35][54] for High-K

and NEMS-CMOS and list the important features in Table 2-5.

Although the purpose of this section is not to make comparison among emerging devices, a

glance at their characteristics can enlighten us on architectural innovation for the next generation

16

CMP. Specific to High-K and NEMS-CMOS, the latter material switches at a lower rate than the

former one but offering extra saving for both dynamic and leakage energy. This implies that in-

tegrating High-K cores and NEMS-CMOS cores on the same chip would deliver a processor that

works more efficiently than a CMP manufactured with an exclusive device. Keeping this in mind,

we evaluate a set of design configurations, with which a portion of integrated cores are built with

High-K while the remaining ones with NEMS-CMOS. We compare such mixed-device configu-

rations with exclusive-device CMPs (i.e., all High-K cores or NEMS-CMOS cores) and aim at

identifying the optimal design choice.

Table 2-5. Features of materials considered in this work

Material Features

High-K
Reduce leakage energy to 25%

of dynamic energy

NEMS-CMOS

OR gate: 30% higher delay,

reducing 60% switching power

SRAM cell: 25% higher delay,

saving 85% leakage energy

2.3.2 Result Analysis

We consider two categories of CMPs to characterize the impact of device selection. The first

group of chip-multiprocessors is composed of big out-of-order cores while the ratio of High-K

cores over NEMS-CMOS cores is varying. Recall that the L2 cache is fixed to 4MB in this sec-

tion. As a result, the total number of big cores that can be accommodated on die is either 7 or 8.

The reason of the varying core count is as follows. When all cores are manufactured with High-

K, the power constraint restricts the maximal number of cores to be 7 although there is enough

space for an extra core; as more NEMS-CMOS cores which consume relatively lower power are

integrated to replace High-K cores, the area constraint becomes the determinative factor and con-

17

fines the core count to be 8. On the other aspect, when all cores are small in-order ones, the core

count is always limited by the area constraint and should not go beyond 30.

We run parallel applications with these configurations for evaluation. Figure 2-3 plots the

average performance and energy-efficiency of these applications. All results are normalized to

that corresponding to the 7H_0N configuration in the “big” category, where the chip contains 7

out-of-order cores made of High-K. Note that in later sections of this chapter, we also show re-

sults in this normalized fashion. The notation xH_yN means a total of x High-K cores and y

NEMS-CMOS cores are installed. Also recall that the performance is measured in execution time,

thus smaller values indicate better performance. As can be observed, in the “big” category, the

execution time gradually increases at first and demonstrates a significant reduction from 4H_3N

to 3H_5N, after which the curve rises again. The reason of the performance degradation (e.g.,

from 7H_0N to 4H_3N) is that NEMS-CMOS cores execute at a lower rate than the High-K

counterparts; therefore, increasing the number of NEMS-CMOS cores inclines to prolong the

overall execution time. The performance improvement at 3H_5N comes from the extra core in

this configuration, with which the applications are executed with one more thread. A case study

will be given shortly to further analyze this issue. As for the “small” category, the execution time

gradually increases since the core count is fixed to 30 irrespective of the manufacturing device.

The energy-efficiency demonstrates a different variation from the performance change. In

general, the energy-delay product is decreasing as more NEMS-CMOS cores are equipped. This

is because the energy saving from NEMS-CMOS cores outweighs the corresponding perfor-

mance degradation while running these parallel applications, thus using more such cores is bene-

ficial to improving the energy-efficiency. The only exception is observed at the switch from

1H_7N to 0H_8N in the “big” category (or 2H_28N to 0H_30N in “small”), where the energy-

18

delay demonstrates a slight increase. This is due to the fact that the performance degradation

contributes more to the variation of ED for programs with long serial phase. With the 0H_8N

configuration, the sequential stages are executed on the NEMS-CMOS cores, thus resulting in

significant performance loss and higher ED.

Figure 2-3. Average execution time and energy-efficiency of parallel applications running on

CMPs with different materials

In summary, for a CMP which only consists of big cores, including both High-K and

NEMS-CMOS cores is a preferable configuration than building the chip with a single type of

cores. From the performance perspective, the 3H_5N configuration is able to shorten the execu-

tion time by an average of 8.9% while reducing the ED by 14.2% compared to the 7H_0N design.

The ED-optimal configuration (i.e., 1H_7N) can save the ED by up to 20.8% with ignorable per-

formance loss in comparison with 7H_0N. As for the small-core-oriented architecture, the best

energy-efficiency is also delivered by a mixed-device CMP (2H_28N), although the optimal per-

formance is obtained on the all High-K chip. Nevertheless, it is still reasonable to conclude that

mix-device CMPs generally outperform those exclusive-device chips.

To further understand the reason of the performance scaling trend shown in Figure 2-3, we

choose a representative application (MPGEnc) from the program set for analysis and demon-

0.5

0.7

0.9

1.1

1.3

1.5

7
H

_0
N

6
H

_1
N

5
H

_2
N

4
H

_3
N

3
H

_5
N

2
H

_6
N

1
H

_7
N

0
H

_8
N

3
0

H
_0

N

2
8

H
_2

N

2
6

H
_4

N

2
4

H
_6

N

2
2

H
_8

N

2
0

H
_1

0
N

1
8

H
_1

2
N

1
6

H
_1

4
N

1
4

H
_1

6
N

1
2

H
_1

8
N

1
0

H
_2

0
N

8
H

_2
2

N

6
H

_2
4

N

4
H

_2
6

N

2
H

_2
8

N

0
H

_3
0

N

big small

N
o

rm
al

iz
e

d
 V

al
u

e

Time ED

19

strate the results in Figure 2-4. Note that we only show the results on CMPs with big cores. The

MPGEnc benchmark implements a parallel version of MPEG-2 encoder. In this application, the

threads are respectively forked and joined at the beginning and end of each frame. Each thread is

responsible for encoding a set of macroblocks of a frame while thread 0 always operates on its

dedicated buffer. The task assigned to each thread is not identical, thus the time spent by each

thread also varies.

(a) Performance and ED (b) Per-core active cycles

Figure 2-4. Execution information of a selected benchmark: MPGEnc

Plot (a) demonstrates the performance and ED scaling while Plot (b) shows the active cycles

of each core during the execution of this program with four configurations. The total execution

time is determined by the main thread running on the first processor (P0), and the performance of

the parallel stage can be generally estimated from the active cycles of P1. As can be observed,

since the number of threads is increased from 7 to 8, the 3H_5N configuration takes much short-

er time than 4H_3N to finish the encoding due to the acceleration in parallel stage, hence the re-

markable performance improvement at 3H_5N. For the latter three configurations where the core

counts are identical, the performance degradation is caused by the decreasing of faster cores

(High-K). Specificically, the 1H_7N organization includes only one High-K core (P0) while

three such cores are equipped in 3H_5N; as a consequence, the parallel stage needs longer time

0.6

0.8

1

1.2

N
o

rm
al

iz
e

d
 v

al
u

e

Time ED

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

4H_3N 3H_5N 1H_7N 0H_8N

#A
ct

iv
e

 c
yc

le
s

P0 P1 P2 P3 P4 P5 P6 P7

20

to complete on the CMP configured as 1H_7N, thus lowering the overall performance. On the

other hand, the performance degradation from 1H_7N to 0H_8N essentially stems from the slow

execution of the sequential stage. This is especially critical for programs with long initialization

and finalization.

Peak temperature and cost-efficiency are another two important metrics for comprehensive

evaluation of a design configuration. We demonstrate the results of these two features for the

proposed configurations in Figure 2-5. As shown in the figure, the temperature drops significant-

ly as we employ more NEMS-CMOS big cores. The reason is that the power density on a

NEMS-CMOS core is remarkably smaller than that of a High-K counterpart, thus a NEMS-

CMOS core is relatively “cooler” compared to a High-K one. As more cool components are inte-

grated on die, thermal coupling tends to be alleviated and the peak steady temperature is gradual-

ly decreased. Therefore, the coolest chip is the one where all cores are manufactured with

NEMS-CMOS. On the other aspect, lower temperature results in lower cooling cost. This means

that we are essentially trading off “performance” for “low cost” when we replace a NEMS-

CMOS core for a High-K core. In this scenario, the cost-efficiency reaches the peak value at

1H_7N where the performance and cost can be optimally balanced. Note that the increment of

cost-efficiency from 4H_3N to 3H_5N is resulted from the performance boost. The curve corre-

sponds to the “small” category is relatively smooth. The reason is that the in-order cores con-

sume much smaller power than big cores and thus generate less heat. Since the temperature re-

mains relatively low, replacing the High-K small cores with NEMS-CMOS cores cannot signifi-

cantly cool the chip as it does in the “big” category. As a consequence, the maximal cost-

efficiency is achieved when all cores are made of High-K (30H_0N).

21

Figure 2-5. Average peak temperature and cost efficiency of multi-threaded benchmarks running

on mixed-device CMPs

2.4 Architectural Heterogeneity

While processor heterogeneity can be interpreted in various manners, integrating processor

cores with distinctive complexities and performance/power on a single chip appears as the most

easily-implemented approach. Several products with such an organization have been introduced

in recent years. For example, AMD Fusion [1] and Intel Ivy Bridge [3] integrate traditional CPU

cores and graphics processing units on the same die. The big.Little [2] platform developed by

ARM includes both big complex processors and small power-saving cores on the same chip.

These heterogeneous architectures are expected to improve the energy-efficiency of next genera-

tion CMPs in the presence of dark silicon. In this work, we mainly focus on the second type

where all cores are conventional CPUs but deviating in performance and power consumption.

2.4.1 Performance and Energy Efficiency

We run “heterogeneous” workloads which consist of multiple programs from SPEC 2006 to

investigate the architectural-heterogeneous architecture. Considering that program features such

as memory intensity determine the computation efficiency on heterogeneous CMPs [48], we

briefly classify the programs from SPEC CPU 2006 into two categories based on their L2 miss

0.9

1

1.1

1.2

1.3

60
65
70
75
80
85
90
95

100

7
H

_0
N

6
H

_1
N

5
H

_2
N

4
H

_3
N

3
H

_5
N

2
H

_6
N

1
H

_7
N

0
H

_8
N

3
0

H
_0

N

2
8

H
_2

N

2
6

H
_4

N

2
4

H
_6

N

2
2

H
_8

N

2
0

H
_1

0
N

1
8

H
_1

2
N

1
6

H
_1

4
N

1
4

H
_1

6
N

1
2

H
_1

8
N

1
0

H
_2

0
N

8
H

_2
2

N

6
H

_2
4

N

4
H

_2
6

N

2
H

_2
8

N

0
H

_3
0

N

big small

C
o

st
 e

ff
ic

ie
n

cy

P
e

ak
 t

e
m

p
e

ra
tu

re
(°

C
)

peak temperature cost efficiency

22

ratios. Programs falling to the computation-intensive group show relatively lower cache miss rate

and obtain significant performance improvement on big cores; the memory-intensive workloads,

on the contrary, suffer from frequent LLC misses and get fairly limited benefit in terms of per-

formance while executing on big cores. Since the goal of this work is to characterize and make

comparison among different configurations, we consider that running these two groups of appli-

cations separately leads to a more convincing conclusion. Note that our CMP can accommodate

30 cores at most, so we always run 30 programs across all configurations while each core is exe-

cuting one program at a time. In addition, we assume that all cores on chip are manufactured

with an exclusive device in this section.

Figure 2-6 (a) and (b) respectively show the normalized performance and ED for computa-

tion-intensive and memory-intensive workloads running on a High-K CMP with varied configu-

rations. The notation xByS indicates that x big cores and y small cores are integrated on the chip.

Again, the core counts are determined by both area and power constraint as described in section

2.2. From Plot (a) we observe that the total execution time of the computation-intensive work-

loads keeps increasing as the number of big cores is reduced. This is due to the fact that the exe-

cution speed of such programs on big cores is remarkably faster than that on small in-order cores.

For example, the relative performance (i.e., time on small core/time on big core) of dealII is

around 6.02, implying that running 6 such programs on a big core sequentially takes even shorter

time than running them on 6 small cores in parallel. As a result, 7B0S is the optimal configura-

tion from the standpoint of performance. The energy-delay product reaches the minimal value

when building 6 big and 5 small cores on the chip. With this configuration, the energy-efficiency

is increased by 9.1% with sacrificing 3.7% performance. As more small cores are introduced on

23

die after that, the ED is gradually increasing because of the significantly prolonged execution

time.

(a) Computation-intensive workloads (b) Memory-intensive workloads

Figure 2-6. Performance and ED of benchmarks running on architectural heterogeneous CMPs

with High-K devices

Memory-intensive programs demonstrate a completely distinctive preference for perfor-

mance and energy-efficiency optimization. As can be observed from Plot (b), the global execu-

tion time is generally getting shorter if the total number of cores is increasing. This is because

running memory-intensive workloads on big cores obtains quite limited performance benefit;

therefore, using multiple small cores to replace a big core enables faster execution for the entire

job. However, the performance curve almost flattens after the configuration 3B20S. This results

from the intensive contention on the L2 cache. Since each program generates a large amount of

L2 accesses, introducing more concurrent threads will significantly exacerbate the cache perfor-

mance of individual programs. In this condition, the benefit from extra cores tends to be largely

mitigated by the per-core performance degradation when the core count exceeds a certain thresh-

old. To illustrate this, we demonstrate the variation of L2 cache miss ratios in Figure 2-6 (b). As

can be seen, the miss ratio gradually increases from 16.2% at 7B0S to 45.6% at 0B30S, thus we

do not see impressive performance boost after the core count goes beyond 23 (3B20S). In gen-

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
al

iz
e

d
 v

al
u

e

time ED

10%

20%

30%

40%

50%

0

0.5

1

1.5

7
B

0
S

6
B

5
S

5
B

1
0

S

4
B

1
5

S

3
B

2
0

S

2
B

2
4

S

1
B

2
8

S

0
B

3
0

S

L2
 m

is
s

ra
ti

o

N
o

rm
al

iz
e

d
 V

al
u

e

time ED L2 miss rate

24

eral, the optimal configuration with respect to performance is 2B24S which only takes 63.2% of

the time in 7B0S while reducing the ED by 49.2%. We also evaluate CMPs made of NEMS-

CMOS and observe fairly similar trend as demonstrated in Figure 2-6; therefore, the same analy-

sis also applies.

2.4.2 Thermal Feature and Cost Efficiency

We now shift our concentration to the thermal behavior and cost efficiency. Figure 2-7 (a)

and (b) respectively plots the variations of these two metrics for computation-intensive and

memory-intensive workloads running on High-K CMPs. For the former category, the tempera-

ture drastically drops as we gradually remove big cores to accommodate more small cores. This

is straightforward to understand since small cores are much simpler and consume less power than

big cores. The common hotspots in an out-of-order processor such as the instruction issue queue

have been eliminated from small cores, thus replacing big cores with small cores is effective to

decrease the chip temperature and save the cooling cost. However, computation-intensive work-

loads favor big cores for better performance, implying that the performance will be degraded as

we reduce the number of big cores. In this situation, the interplay between performance and tem-

perature results in a non-monotonic variation of the cost efficiency that it first increases to the

peak value at 4B15S and then drops as the big core count is further decreased. Specifically, the

4B15S configuration is able to cool the chip by 7.5°C while improving the cost-efficiency by

23.9% compared to the 7B0S organization. As for the memory-intensive workloads, since both

performance and temperature prefer integrating more small cores in general, the cost-efficiency

reaches its peak value at the 0B30S configuration, which decreases the chip temperature by

21.2°C and delivers 1.99X higher cost-efficiency in comparison with 7B0S. Similar conclusion

can be drawn based on the investigation of NEMS-CMOS designs.

25

(a) Computation-intensive workloads (b) Memory-intensive workloads

Figure 2-7. Peak temperature and cost-efficiency of benchmarks running on architectural hetero-

geneous CMPs with High-K devices

2.5 Two-fold Heterogeneity

The results demonstrated in the previous two sections justify the importance of heterogenei-

ty, respectively from the standpoint of manufacturing device and core type. Based on this obser-

vation, it is intuitive to consider blending two design dimensions to seek further improvements.

In this section, we evaluate a set of configurations where both the material and complexities are

different among integrated cores. We assess two kinds of organizations: big High-K cores along

with small NEMS-CMOS cores and vice versa. We run both computation- and memory-

intensive workloads for the evaluation. As we will demonstrate in later sections, two-fold heter-

ogeneity designs can benefit both types of workloads.

2.5.1 Performance and Energy Efficiency

Figure 2-8 (a) plots the performance scaling of computation-intensive programs with these

two design patterns. Note that all results are normalized to that in the 7HB_0NS case. The upper

labels on the horizontal axis correspond to the first architecture where big cores are made of

High-K and small cores are manufactured with NEMS-CMOS (mix0 or xHB_yNS); accordingly,

the lower labels correspond to the opposite architecture which includes big NEMS-CMOS and

0.6

0.8

1

1.2

1.4

60

70

80

90

100

7
B

0
S

6
B

5
S

5
B

1
0

S

4
B

1
5

S

3
B

2
0

S

2
B

2
4

S

1
B

2
8

S

0
B

3
0

S

C
o

st
 e

ff
ic

ie
n

cy

P
e

ak
 t

e
m

p
e

ra
tu

re
(°

C
)

peak temperature cost efficiency

0

0.5

1

1.5

2

2.5

50

60

70

80

90

7
B

0
S

6
B

5
S

5
B

1
0

S

4
B

1
5

S

3
B

2
0

S

2
B

2
4

S

1
B

2
8

S

0
B

3
0

S

C
o

st
 e

ff
ic

ie
n

cy

P
e

ak
 t

e
m

p
e

ra
tu

re
(°

C
)

peak temperature cost efficiency

26

small High-K processors (mix1 or xNB_yHS). As can be observed, configurations with the sec-

ond pattern, namely xNB_yHS, always outperform the counterparts from the first category. This

can be explained in two aspects. First, since NEMS-CMOS cores are relatively power-saving, the

second design pattern accommodates more processors when the core count is power-limited. Due

to this reason, the total number of cores is larger in the xNB_yHS designs, thus these configura-

tions take shorter time to finish executing the program combination. This corresponds to the sce-

narios where the number of big cores is no smaller than 6. Second, as the constraint factor shifts

to chip area, the core counts in both design patterns become identical (from 5B_12S). In this sit-

uation, the global execution time basically depends on the performance of small cores because of

their larger amounts. For instance, in the 2B_24S configuration, how fast the programs run on

small cores determines the overall performance in essence, because the number of small cores is

11 times larger than that of big cores. Since those in-order processors are made of High-K, the

chips designed with the second pattern still offer better performance.

Figure 2-8 (b) demonstrates the variation of the energy-efficiency for the same program set

running with considered configurations. Note that the interplay between the performance/energy

of different cores makes the variation of ED non-monotonic. For both blending patterns, we note

that the energy-delay product gradually decreases at first until the minimal value is reached at

4B_16S, after which the efficiency is getting worse. More specifically, the xNB_yHS delivers

better energy-efficiency than the xHB_yNS when the configuration is varied from 8 big cores to

3 big cores. This is due to the shorter execution time and less energy consumption on big NEMS-

CMOS cores. As small cores begin dominating the chip in 2B_24S and beyond, their relatively

large energy consumptions mitigate the performance benefit and make the ED rise again.

27

(a) Performance

(b) Energy-delay product (c) Comparison between patterns

Figure 2-8. Performance and ED of computation-intensive benchmarks running on different

mixed-device CMPs

To more clearly illustrate the benefit of such two-fold heterogeneity, we identify the most

energy-efficient configurations for four different design patterns, namely High-K for all cores,

xHB_yNS (mix0), xNB_yHS (mix1) and NEMS-CMOS for all cores, and make comparison be-

tween these material-dependent optima. Based on the discussion in section 2.4.1, we choose

6B_5S and 6B_8S for High-K and NEMS-CMOS, respectively. We then select 4B_16S for

HB_NS and NB_HS based on Figure 2-8 (b). We normalize the execution time and ED to those

corresponding to the 6B_5S High-K processor and demonstrate the results in Figure 2-8 (c). As

can be observed, the CMP with 4 NEMS-CMOS big cores and 16 High-K small cores

0.8

1

1.2

1.4

7HB_0NS 6HB_6NS 5HB_12NS 4HB_16NS 3HB_20NS 2HB_24NS 1HB_28NS 0HB_30NS

8NB_0HS 7NB_4HS 6NB_8HS 5NB_12HS 4NB_16HS 3NB_20HS 2NB_24HS 1NB_28HS 0NB_30HS

N
o

rm
al

iz
e

d
 v

al
u

e
time_mix0 time_mix1

0.4

0.6

0.8

1

1.2

7HB_0NS 6HB_6NS 5HB_12NS 4HB_16NS 3HB_20NS 2HB_24NS 1HB_28NS 0HB_30NS

8NB_0HS 7NB_4HS 6NB_8HS 5NB_12HS 4NB_16HS 3NB_20HS 2NB_24HS 1NB_28HS 0NB_30HS

N
o

rm
al

iz
e

d
 v

al
u

e

ED_mix0 ED_mix1

0.1

0.4

0.7

1

1.3

Time ED

N
o

rm
al

iz
e

d
 v

al
u

e

HIGH-K mix0

mix1 NEMS-CMOS

28

(4NB_16HS) is the global optimal configuration. It improves the energy-efficiency by 27% with

only 4.3% performance degradation compared to the optimal High-K CMP.

The results of memory-intensive workloads are slightly different. We observe that the opti-

mal configurations for mix0, mix1, and NEMS-CMOS lead to fairly close execution behaviors.

This is because programs with intensive memory accesses are less sensitive to core speed com-

pared to computation-intensive applications. In general, the optimal configurations from the

aforementioned three categories all deliver 18% reduction in ED with less than 4% performance

loss. As a consequence, the xNB_yHS design pattern (i.e., mix1) is the most energy-efficient for

a general-purpose CMP since it is amiable to both computation-intensive and memory-intensive

workloads.

2.5.2 Thermal Feature and Cost Efficiency

Figure 2-9 plots the peak temperature and cost-efficiency of these two-fold heterogeneous

CMPs running computation-intensive programs. As we have observed previously, NEMS-

CMOS cores result in lower temperature than High-K cores and small cores are much cooler

than big ones. Consequently, the second design pattern (i.e., xNB_yHS) inclines to be cooler than

its alternative (xHB_yNS), because the hotspot on die which is usually located in the out-of-order

processor has lower temperature. Recall that the xNB_yHS also delivers better performance.

Therefore, its cost-efficiency is significantly higher than that offered by xHB_yNS configurations.

As can be seen, for computation-intensive workloads, the cost-efficiency reaches the peak value

at 7NB_4HS configuration, which improves the efficiency by 20.9% compared to the 7HB_0NS

case. For memory-intensive workloads, the optimal cost-efficiency is delivered by 0NB_30HS,

which outperforms the baseline case by up to 66.7%. In general, we can conclude that the

xNB_yHS design pattern is the optimal among all evaluated configurations.

29

Figure 2-9. Peak temperature and cost-efficiency of computation-intensive workloads running on

mixed-device heterogeneous CMPs

2.6 Extension to Varying Last-level Cache

The breakdown of area and power resources between processor cores and shared last-level

cache (LLC) is also widely evaluated in energy-efficient processor design. In this subsection, we

evaluate a set of configurations that integrate both big and small cores while varying the LLC

size. By conducting this study, we aim at identifying the globally optimal configurations which

deliver the best performance and efficiency. Note that similar to the previous section, we assume

the chip is manufactured with an exclusive device and only the High-K results are demonstrated.

We generally change the core configurations with three different cache sizes, namely 4MB,

6MB and 8MB. Under this setting, we are able to configure the CMP with more core combina-

tions. Figure 2-10 shows the performance and energy-delay product for computation-intensive

workloads running on evaluated CMPs. We observe that the optimal configuration in the 4MB

category also appears as the best design option across all evaluated configurations. Specifically,

for computation-intensive programs, 7B0S yields the optimal performance while 6B5S deliver-

ing the highest energy-efficiency. Similarly, 2B24S and 0B30S within the 4MB category are

globally optimal for the performance and ED of memory-intensive applications. This is con-

0.9

1

1.1

1.2

1.3

1.4

50

60

70

80

90

100

7HB_0NS 6HB_6NS 5HB_12NS 4HB_16NS 3HB_20NS 2HB_24NS 1HB_28NS 0HB_30NS

8NB_0HS 7NB_4HS 6NB_8HS 5NB_12HS 4NB_16HS 3NB_20HS 2NB_24HS 1NB_28HS 0NB_30HS

C
o

st
 e

ff
ic

ie
n

cy

P
e

ak
 t

e
m

p
e

ra
tu

re
(°

C
)

peak temp mix0 peak temp mix1

cost efficiency mix0 cost efficiency mix1

30

sistent with the conclusion made in the previous section that processor cores pose more impact

on the overall performance and energy-efficiency than caches.

Figure 2-11 plots the variation of peak temperature and cost-efficiency with the same set of

configurations. Again, the optimal design option corresponding to 4MB L2 outperforms all other

candidates with respect to cost-efficiency. From the standpoint of thermal behavior, the configu-

rations within the 4MB category lead to higher temperature than those with the 6MB and 8MB

LLC, which is due to the smaller area for heat dissipation.

Figure 2-10. Performance and ED of computation-intensive workloads running on two-fold het-

erogeneous CMPs with varying LLC size

Figure 2-11. Peak temperature and cost-efficiency of computation-intensive workloads running

on two-fold heterogeneous CMPs with varying LLC size

0

1

2

3

4

5

0

0.5

1

1.5

2

2.5

7
B

0
S

6
B

5
S

5
B

1
0

S

4
B

1
5

S

3
B

2
0

S

2
B

2
4

S

1
B

2
8

S

0
B

3
0

S

6
B

4
S

5
B

8
S

4
B

1
2

S

3
B

1
6

S

2
B

2
0

S

1
B

2
4

S

0
B

2
8

S

6
B

1
S

5
B

5
S

4
B

9
S

3
B

1
3

S

2
B

1
7

S

1
B

2
1

S

0
B

2
5

S

4M 6M 8M

N
o

rm
al

iz
e

d
 E

D

N
o

rm
al

iz
e

d
 T

im
e

time ED

0

0.5

1

1.5

60

70

80

90

100

110

120

7
B

0
S

6
B

5
S

5
B

1
0

S

4
B

1
5

S

3
B

2
0

S

2
B

2
4

S

1
B

2
8

S

0
B

3
0

S

6
B

4
S

5
B

8
S

4
B

1
2

S

3
B

1
6

S

2
B

2
0

S

1
B

2
4

S

0
B

2
8

S

6
B

1
S

5
B

5
S

4
B

9
S

3
B

1
3

S

2
B

1
7

S

1
B

2
1

S

0
B

2
5

S

4M 6M 8M

C
o

st
 e

ff
ic

ie
n

cy

P
e

ak
 t

e
m

p
e

ra
tu

re
(°

C
) peak temperature cost efficiency

31

We also investigate the two-fold heterogeneity with varying LLC size, namely device heter-

ogeneity × architectural heterogeneity × varying cache. Our experiment shows that the optimal

configuration with the 4MB category still works as the most efficient globally.

2.7 Related Work

Dark silicon emerges as an increasingly important issue that menaces the scaling of Moore’s

Law in the deep submicron era and beyond. Due to this reason, researchers recently started to

investigate this problem and proposed several solutions to alleviate the conundrum. A group

from UCSD has made significant progress on using dark silicon for processor improvement.

They develop conservation cores [107] and Quasi-specific cores [108] for increasing the compu-

tation energy-efficiency in different scenarios. They also introduce a platform named

GreenDroid [103] to steer the design of mobile processors in the presence of dark silicon. Moore

and Bailey [78] propose a similar design and implement a chip with hundreds of small nodes.

Specialized architectures that aim at reducing energy consumption are also widely considered to

address dark silicon. Examples include the dark silicon accelerators 0 presented by Kocberber et

al. The authors design a novel architecture named indexing widget to serve domains that mainly

run pointer-intensive database applications. The proposed architecture is able to reduce the ener-

gy per quest by up to 65% and effectively relieve the dark silicon. In [48], Gupta et al. demon-

strate the potential of heterogeneous CMP for energy-efficiency improvement. Systems built

with near-threshold voltage processors (NTV) [37][110] are also effective approaches.

Another set of solutions, on the other hand, make unique use of the existing processors in-

stead of bringing in architectural innovations to mitigate dark silicon. For instance, Raghavan et

al. [83] propose the concept of “computational sprinting”, with which a chip can temporarily go

beyond its thermal power budget for a short period and then return to normal status. This is ef-

32

fective to improve the instantaneous throughput of an application and is thereby an attractive de-

sign option for mobile systems where sustainable high performance is unnecessary. Esmaeilza-

deh et al. [38] address the dark silicon challenges with approximate computing. They demon-

strate that perfect precision is not always indispensable in many applications; therefore, by ap-

proximating the execution in a reasonable fashion, the energy consumption is significantly re-

duced while fairly high accuracy can be maintained.

While most of these studies focus on a single solution individually, few works make attempt

to address the dark silicon problem from a broader perspective. Esmaeilzadeh et al. [39] use an

analytical model to predict the processor scaling for the next few generations. They demonstrate

that dark silicon will be heavily exacerbated as manufacture technology keeps shrinking. Based

on this observation, they compare conservative scaling and ITRS scaling and show the perfor-

mance potential for future processors. Taylor [105] reviews the current status of dark silicon and

briefly describes four solutions from the high level. Hardavellas et al. [50] pay specific attention

to the server processors and perform an exploration of design configurations.

On the other hand, studies that concentrate on early stage design with fixed system budget

can be found in literature [53][73][77][116]. For example, Kumar et al. [64] investigate the de-

sign of quad-core heterogeneous chip multiprocessors and identify the optimal configurations

under different power and area constraints.

2.8 Conclusion

As dark silicon has begun to hazard the scaling of Moore’s Law and prohibits us benefiting

from the increasing transistors as expected, new design technologies are in high demand to ad-

dress this problem, in order to efficiently utilize the system resource. This is especially important

33

in the early stage of processor manufacturing where issues such as architectural organization and

device selections need to be carefully considered. For this purpose, our work evaluates four prac-

tical design dimensions by making thorough assessments from the perspective of performance,

energy-efficiency, peak temperature and cost-efficiency. We demonstrate that device- and archi-

tecture-heterogeneity are effective in using the dark area, thus yielding the optimal processors.

We believe that our observations provide insightful guidance to the design of future processors.

34

CHAPTER 3. RULE-SET GUIDED ENERGY EFFICIENT

SCHEDULING ON SINGLE-ISA HETEROGENEOUS CMPS

3.1 Motivation and Overview

In a single-ISA heterogeneous CMP, big cores are usually equipped with complex out-of-

order issue logic and more function units, thus delivering superior performance compared to

small cores, where executions are driven by simple in-order pipelines. Put another way, big cores

accelerate the executions by consuming more power while the small cores enables power-saving

at the expense of performance degradation. To more effectively utilize the core heterogeneity

and leverage their respective advantages, an appropriate job scheduler that is responsible for pro-

gram-to-core mapping is in high demand. In prior works addressing this problem, the program

relative performance between big and small cores is widely adopted as the heuristic to guide the

runtime scheduling [24][33][63][100]. Specifically, programs that gain more benefit from the

execution on faster cores are selected to run on big cores; on the contrary, programs demonstrat-

ing moderate performance improvement on big cores are chosen to execute on small cores. The

effectiveness of such schemes is generally dependent on the characteristics of workloads. For

instance, for a two-program workload, if one shows remarkable performance boost on the big

core while the other obtains quite limited benefit, a good scheduler is able to significantly im-

prove the overall performance, thus such a workload is considered as scheduling-sensitive [33].

In contrast, if two programs exhibit similar relative performance, the workload inclines to be

scheduling-insensitive.

While those proposed scheduling strategies are capable of improving performance, they do

not necessarily lead to the most energy-efficient execution all the time. We use the co-execution

of programs bzip2 and vpr on a dual-core heterogeneous CMP as an example to justify this ar-

35

gument. As listed in Table 3-1, these two programs demonstrate fairly similar performance ratio

between big and small cores. Therefore, by employing an existing heterogeneity-aware scheduler

based on relative performance, it is likely that 1) they are randomly mapped to different cores

since the scheduler recognizes this workload as scheduling-insensitive, or 2) bzip2 is assigned to

the big core as it demonstrates slightly higher performance gain than its co-runner. In Figure 3-1

we illustrate the energy consumption and energy-delay product (ED) for two possible scheduling,

namely bzip2_B+vpr_S and vpr_B+bzip2_S, where the former one indicates that bzip2 is running

on the big core and vpr is on the small core. Similarly, the latter notation corresponds to the op-

posite scheduling decision. As can be observed, the second scheduling (i.e., vpr_B+bzip2_S)

turns out to be more energy-efficient than its alternative due to the significant power reduction

on the big core. Two implications can be noticed from this example. First, scheduling aiming to

minimize the energy consumption and ED does not always reach consensus with the perfor-

mance-oriented scheduling in a heterogeneous system. Second, for scheduling-insensitive work-

loads where programs have fairly close speedup on the big core, there is still plenty of room for

energy efficiency optimization.

Table 3-1. Power and performance ratio of bzip2 and vpr

Program Big core power(W) Small core power (W) Performance ratio

bzip2 24.64 9.18 2.51

vpr 18.97 10.32 2.48

In this situation, seeking a new scheduling algorithm which can best exploit the energy effi-

ciency appears more attractive in the era of heterogeneous computing. Therefore in this work, we

propose a rule-set guided scheduling strategy to minimize the energy consumption for workloads

running on a heterogeneous CMP. Meanwhile, our scheduler is able to deliver comparable per-

formance to the optimal existing heterogeneous scheduler, thus achieving higher energy efficien-

36

cy than previous schemes. We employ an advanced statistical tool to facilitate the development

of our algorithm. The tool is able to generate a set of “IF-ELSE” conditions with regard to

common performance metrics on involved cores. Each condition is expressed as an inequality

such as “Xi ≤ (or ≥) N”, where Xi is an easily measured performance metric and N is a certain

value. The scheduler then dynamically makes decisions for program assignment by comparing

the runtime execution behaviors with the selected rules at each scheduling interval. When the

conditions on both cores are satisfied, the scheduler predicts that a job swap will be more energy-

saving than the current mapping, thus switching the programs on the big and small cores accord-

ingly.

Figure 3-1. Energy and ED for bzip2+vpr with different mappings

3.2 Statistical Tools

As described in section 3.1, the proposed scheduling scheme is built on the measurements of

common performance metrics. This introduces two challenging problems to our study. First, we

should identify the important factors which impose relatively large impact on the overall energy

consumption. Second, we need to quantitatively formulate the scheduling condition with regard

to the selective performance metrics. Taking these into consideration, we employ an advanced

statistical tool to facilitate the rule extractions and introduce the technique in this section.

0.6

0.7

0.8

0.9

1

1.1

Energy ED

N
o

rm
al

iz
e

d
 V

al
u

e

bzip2_B+vpr_S

vpr_B+bzip2_S

37

3.2.1 Patient Rule Induction Method (PRIM)

In this study, we employ the Patient Rule Induction Method (PRIM) [41] to bridge the gap

between program execution behaviors and the scheduling condition. PRIM is naturally suitable

to facilitate this study since its objective is to find a region in the input space that gives relatively

high values for the output response. The selected region (or “box”) is described in an interpreta-

ble form involving a set of “rules” depicted as = ⋂ (𝑥𝑗 ∈ 𝑠𝑗)𝑝
𝑗=1 , where xj represents the jth in-

put variable and sj is a subset of all possible values of the jth variable.

As shown by Figure 3-2, the construction of the selected region is composed of two phases:

(1) patient successive top-down peeling process; (2) bottom-up recursive pasting process. The

top-down peeling starts from the entire space (box B) that covers all the data. At each iteration, a

small subbox b within the current box B is removed, which yields the largest output mean value

in the result box B-b. We perform this operation iteratively and stop when the support of the cur-

rent box B is below a chosen threshold β, which is actually the proportion of the intervals suita-

ble for job swaps.

Figure 3-2. PRIM training procedure with peeling and pasting

38

The pasting algorithm works inversely from the peeling results and the final box can some-

times be improved by readjusting its boundaries. Starting with the peeling solution, the current

box B is iteratively enlarged by pasting onto it a small subbox that maximizes the output mean in

the new (larger) box. The bottom-up pasting is iteratively applied, successively enlarging the

current box, until the addition of the next subbox causes the output mean to begin to decrease.

An advantage of PRIM over greedy methods such as tree-based methods is its patience. For

example, a binary tree rapidly fragments the data because of the binary splits in that tree, while

the PRIM model only peels off a small proportion of data every time. As a consequence, the so-

lution of PRIM (hyper-boxes) is usually much more stable than those obtained from tree models.

3.2.2 Classification and Regression Tree (CART)

Although the described statistical technique PRIM is able to build a rigorous correlation be-

tween multiple input variables and a response, the accuracy of the model depends on features of

the applications in the training set. Let us assume that the execution behaviors of a few intervals

significantly deviate from those of other training instances while their response values are identi-

cal. In this scenario, a single universal PRIM model may not be capable of capturing all those

runtime variations. This is because that the PRIM algorithm is prone to build a model that fits the

majority situations in the training instances. As a result, the established model might ignore those

samples appearing less frequently. Considering the diversity of program characteristics, this limi-

tation might significantly decrease the prediction accuracy when the model is applied to different

program phases or applications that demonstrate completely distinct execution behaviors to train-

ing samples.

39

In order to figure out this problem, we propose to partition the entire data set into several

categories, each of which contains instances demonstrating similar characteristics. If we train a

PRIM model for each data subset and generate a group of rule sets correspondingly, the obtained

rules are supposed to be more robust and be effective to handle different execution scenarios. To

achieve this goal, we employ another statistical tool named Classification and Regression Tree

(CART) [27] for the data segmentation. CART has been in use for about 25 years and remains a

popular data analysis tool. It provides an alternative to linear and additive models for regression

problems. The CART models are fitted by a recursive partitioning whereby a dataset is succes-

sively split into increasingly homogenous subsets until the information gained by additional

splits is not outweighed by the additional complexity due to the tree’s growth. Trees are adept at

capturing non-additive behavior, e.g. interactions among input variables are routinely and auto-

matically handled. Further, regression tree analysis can easily handle a mix of numeric and cate-

gorical input variables.

3.3 Rule-set Guided Scheduling

While most modern operating systems support concurrent execution of multiple programs

running on different cores, it is not necessary to keep all processor cores active during the entire

execution. That is, a portion of cores might be idle (or in power-saving mode) while others are

running in order to reduce the total energy consumption. This implies two scheduling circum-

stances that need to be carefully considered on a heterogeneous CMP platform; namely, (1)

choosing appropriate cores to execute the programs while making other cores idle and (2) identi-

fying a suitable task-to-core mapping when all cores need to be utilized. In this section, we will

present how the rule-set guided scheduling strategy would be applied in these two scenarios in

detail. Moreover, the scheduling policy should be sufficiently scalable as heterogeneous CMPs

40

might be configured in different manners. Therefore, we also discuss the effectiveness of the

proposed strategy on heterogeneous platforms with different configurations.

3.3.1 Scheduling in Presence of Idle Cores

It is fairly common that a portion of integrated cores on a CMP are idled at runtime for the

sake of power saving. For instance, assume a single-thread program is to be executed on a heter-

ogeneous chip multi-processor similar to the big.Little platform from ARM which consists of a

powerful big core and a slow small core [2]. In this situation, it makes no sense to enable both

cores since one core is sufficient to run the program at any instant during the execution. Consid-

ering the representativeness of this scenario in practice, we demonstrate the single-program

scheduling on a dual-core system to exemplify the implementation of the rule-set guided strategy

in presence of idle cores.

For a scheduling interval, we must identify whether to run the program on the big core or the

small core. Clearly, an oracle scheduler will examine these two cases during runtime (at each

scheduling point) and choose the most suitable core for execution to achieve the optimal energy

efficiency. However, dynamically determining the optimal schedule for a program at runtime is a

challenging problem. To overcome this conundrum, we employ Patient Rule Induction Method

(PRIM) to generate some selective rules on a number of performance measurements. In a sched-

uling interval, if the measured performance counters conform to these rules, the scheduler will

map the program to the appropriate core accordingly.

More specifically, the PRIM model training is composed of the following steps. First, we se-

lect a number of typical programs for extracting the rules. For each of them, we respectively af-

finitize it to the big core and the small core for execution and collect a set of easily measured

41

performance metrics along with the energy consumption for every interval, whose length is set to

a reasonable value for the study. By doing so, we can obtain the following information from the

two types of cores:

Information from big core: < 𝑋𝑏
1, 𝑋𝑏

2, 𝑋𝑏
3, …….., 𝑋𝑏

𝑚, 𝐸𝑏>

Information from small core: < 𝑋𝑠
1, 𝑋𝑠

2, 𝑋𝑠
3, …….., 𝑋𝑠

𝑛, 𝐸𝑠>

In the tuple listed above, the X variables denote the measured performance counters such as

the number of cache misses and the number of branch mispredictions. The subscript of each var-

iable indicates the corresponding platform (i.e., b = big core, s = small core). The variable E rep-

resents the energy consumption of this interval. In this example, we measure m performance

counters on the big core and n counters on the small core. Second, we compare the energy con-

sumption for each interval under these two assignments and set a Boolean flag based on the

comparison result. The flag is then used as the output of a training instance. Finally, we feed the

training samples measured from all selected programs to establish PRIM models and extract the

rules.

It should be noted that separate models should be established for big and small cores. This is

because the program is running on either the big core or the small core at any interval, requiring

two groups of conditions to respectively guide the big-to-small and small-to-big migration. Let

us first focus on the big-core model that is used to manage the big-to-small migration. We as-

sume that E_s is smaller than E_b for a specific interval. With this assumption, the training sam-

ple corresponding to this interval is < 𝑋𝑏
1, 𝑋𝑏

2, 𝑋𝑏
3, …….., 𝑋𝑏

𝑚, flag> where the flag is set to 1,

indicating that the program should be assigned to the small core for energy saving. In contrast, if

E_s is greater than E_b, a flag of 0 will be set. This means that running the program on the big

42

core is preferable (i.e., it is unnecessary to transfer the job to the small core). We train a model

for the small core to govern the small-to-big migration in a similar fashion. Specifically, training

instances in a form of < 𝑋𝑠
1, 𝑋𝑠

2, 𝑋𝑠
3, …….., 𝑋𝑠

𝑛, flag > are fed into the PRIM tool. Note that there

are two approaches to measure the runtime energy consumption in practice.

(1) If the processor provides a hardware counter to report the power usage, we just need to

compare the energy consumption between the aforementioned two cases. Then we set the flag

based on the comparison result. Some recently released processors such as Intel Sandy Bridge

architectures and later products support dynamic power measurement by using a model-specific

register (MSR) [6].

(2) In case that there is no dynamic energy reporting function on the chip, we can have an

accurate estimation of runtime energy via multiplying the average power and the execution time.

The dynamic power of the chip can be estimated from performance counters through another

predictive model [57]. Specifically, the chip power can be added up from each component’s

power derived from their accessing rates, a scaling factor, and the maximal component power,

plus idle power. The access rate of a component can be read and calculated from performance

counters; the maximal power of each component and the scaling factors are generated and tuned

by running a set of stress benchmarks.

Recall that PRIM rules identify the input space subregion that has the highest response val-

ues. Therefore, the generated rules quantify the situations that a program migration from the big

core to the small core (or the other way around) is needed to achieve better energy efficiency.

The selective PRIM rules are then engaged by the operating system to guide the scheduling of

the program between two cores. Assume the program is randomly mapped to a core (either the

43

big one or the small one) initially. At a scheduling point, the performance measurements are

compared with the extracted PRIM rules corresponding to the current used core. If conditions are

satisfied, the model predicts that transferring the job to the other core will lead to better energy

efficiency; otherwise the present scheduling is preserved. The scheduler then makes the assign-

ment based on the prediction result and continues the execution to the next scheduling point.

Note that the rule-set guided scheduling is sufficiently flexible to manage the program execution

for optimizing different metrics. For instance, by changing the objective during the model con-

struction, this approach can be easily applied to guide the scheduling in a system where perfor-

mance maximization is the prime concern. Nevertheless, our concentration in this chapter is en-

ergy minimization.

3.3.2 Scheduling without Idle Cores

When the number of concurrent programs is increasing, all integrated cores on a CMP might

be utilized to maximally exploit the processor computation capability. In this situation, the

scheduling problem is essentially to identify the task-to-core mapping which results in the mini-

mal energy consumption. Without loss of generality, we consider a scenario where two programs

(A and B) run on a dual-core CMP consisting of one big core and one small core. For a schedul-

ing interval, we need to compare the total energy consumption of the following two cases: (1) A

on the big core and B on the small core; and (2) B on the big core and A on the small core. Be-

tween these two schedules, we should choose the one with the lower energy consumption. Simi-

larly, we adopt the PRIM tool to generate a set of rules to guide the scheduling.

The training procedure is fairly close to that described in the previous subsection. The most

significant difference lies in that a unified model regarding the performance metrics from both

the big and small cores is built, meaning that conditions on big and small cores are checked sim-

44

ultaneously at a scheduling point. This is because that both the big and small cores are utilized to

run programs, thus the execution behaviors from both sides should be monitored in order to

evaluate whether a job swap leads to less energy consumption. The specific training process is as

follows. First, we randomly select a certain number of program pairs. For each program pair (A,

B), we assume that A runs on the big core and B runs on the small core. For each interval, we

can obtain the following information by executing A and B on the big and small cores, respec-

tively.

Program A: < 𝑋𝑏
1, 𝑋𝑏

2, 𝑋𝑏
3, …….., 𝑋𝑏

𝑚>

Program B: < 𝑋𝑠
1, 𝑋𝑠

2, 𝑋𝑠
3, …….., 𝑋𝑠

𝑛>

Similarly, the variables X denote the measured performance counters. Second, we compare

the energy consumption of this schedule with its counterpart (re-running B on the big core and A

on the small core), setting a Boolean variable (flag) to one if swapping these two programs will

generate lower energy. Consequently, we can form a PRIM training sample by combining the

above information:

< 𝑋𝑏
1, 𝑋𝑏

2, 𝑋𝑏
3, …….., 𝑋𝑏

𝑚, 𝑋𝑠
1, 𝑋𝑠

2, 𝑋𝑠
3, …….., 𝑋𝑠

𝑛, flag >

For each training instance, the inputs are the m+n performance counters from both cores

while the output is a flag indicating if these two programs need to be switched in the next inter-

val. We then feed all instances into PRIM to generate the conditions.

Figure 3-3 illustrates how the rule set interacts with the OS and makes decision for program

assignment at runtime. The two programs are first executed on two cores (one big and one small)

for an interval, respectively. At a scheduling point, the performance measurements of the current

45

interval are compared with the extracted PRIM rules. If conditions on both cores are satisfied,

the model predicts that swapping the two programs will lead to better energy efficiency; other-

wise the present scheduling is preserved. The scheduler then makes the assignment based on the

prediction result and continues the execution to the next scheduling point.

Scheduler

Swapping jobs on two cores
 will result in better energy

consumption? i.e. is flag on?

 Job A is executed
for an interval

 Job B is executed
for an interval

Compare with
PRIM rules

Execution behavior

of app A

Execution behavior

of app A
Exe

cu
tio

n b
ehav

io
r

of a
pp B

Exe
cu

tio
n b

ehav
io

r

of a
pp B

YesYes

Swap the jobs on
two cores

Keep current
scheduling

NoNo

Figure 3-3. PRIM rules guided scheduling for dual-program execution

As described in section 3.2, the effectiveness of the rule guided scheduling is largely deter-

mined by the features of the programs in the training set. In cases where the programs for valida-

tion demonstrate significantly different execution behaviors from the training programs, the de-

rived rules may not be effective in identifying the swapping cases. In this situation, the model

accuracy can be further improved by preprocessing the training data. Instead of training a single

PRIM model, we can build a number of different PRIM models according to the similarity of

different training samples. Specifically, we use the CART mechanism to partition the input space

into a few subregions. The points belonging to each individual subregion are similar in terms of

energy efficiency. After that, we build a separate PRIM model for each of these subregions. Con-

sequently, we will have a group of rule sets. When making predictions during runtime, we first

46

identify in which subregion the current input sample is located, then use the corresponding rule

set to determine if a program switch is needed. In practice, the number of subregions doesn’t

need to be large. Our experiments show that partitioning the input space into 4 subregions (and

also training 4 PRIM models accordingly) can result in prediction accuracy within only 5% dif-

ference from the oracle scheduler. This approach is termed Hierarchical PRIM (or H-PRIM).

3.3.3 Algorithm Scalability

Our approach is sufficiently scalable to be adopted by a system with more than 2 cores. In

this subsection, we consider two generalized heterogeneous platforms and show that how the

rule-set based schedulers lead to energy-efficient execution on these architectures.

We first assume a CMP with an equivalent number of big and small cores while the core

count of each processor type is n. In this scenario, the optimal energy efficiency can be achieved

by performing n iterations of parallel pair comparison. The scheduling process is illustrated in

Figure 3-4. As shown in the figure, in the first iteration, a big core with the index i (i ϵ [0, n-1]) is

compared with the small core whose index is (n + i%n). All n pairs of comparisons are per-

formed in parallel. In the second iteration, the big core i will form a group with the small core

(n+(1+i)%n) and make comparison correspondingly. Similarly, the comparison will be conduct-

ed between the big core i and the small core (n+(n-1+i)%n) in the nth iteration. Note that the

mod operations are involved to emulate the rotational comparisons. We prove that this method

will lead to the optimal scheduling as follows.

Since we have n big cores and n small cores, as well as 2n jobs running on them, the optimal

schedule is a situation that n jobs suitable running on the big cores for low energy consumption

(we label the jobs as “1”s) will be assigned to n big cores and the remaining n jobs, denoted as

47

“0”s, will be allocated on n small cores. We claim that all “1” programs will be assigned to big

cores and all “0” jobs will be allocated on small cores after n iterations, even though we are un-

aware of the program classification at the beginning, i.e., whether a program belongs to “1” cate-

gory or “0” category. During each of the n iterations, we have n parallel comparisons between

big and small cores. For each comparison, we seek better energy efficiency for two programs

running on a big-small core pair. Therefore, we have four possible situations before the compari-

son:

(1) a “1” job running on a big core compared with a “0” job running on a small core;

(2) a “0” job running on a big core compared with a “1” job running on a small core;

(3) a “1” job running on a big core compared with another “1” job running on a small core;

(4) a “0” job running on a big core compared with another “0” job running on a small core.

0 1 2 n-1

n …..

…..big cores

iter1: P0/Pn, P1/Pn+1, P2/Pn+2…. Pn-1/P2n-1

iter2: P0/Pn+1, P1/Pn+2, P2/Pn+3…. Pn-1/Pn

iter3: P0/Pn+2, P1/Pn+3, P2/Pn+4…. Pn-1/Pn+1
.
.
.
itern: P0/P2n-1, P1/n, P3/Pn+1, ….. Pn/P2n-2

n+1 n+2 2n-1

(1) (1)
(1)

(1)(2)

(2)

(2)

(2)

small cores

Figure 3-4. Pair-wise comparison illustration for 2n-program scheduling on an nB+nS platform

For the first two cases, it will generate an ideal situation that a “1” job will be assigned on a

big core. For the third case, a “1” job will also be allocated on a big core, no matter which “1”

job is selected. Similarly, a “0” job will be set on a big core for the fourth case. However, there

48

must be a “1” job running on a small core at this point, considering that the number of “1” jobs is

equal to the total number of big cores. This implies an opportunity for this “1” job running on a

small core to be compared with a “0” job executed on a big core in a future iteration, since we

have n iterations of parallel comparisons. Thus, any case (4) comparison will fall into case (2)

comparison eventually. Based on this analysis, we conclude that all “1” jobs will finally go to big

cores, meaning that the optimal schedule is achieved after n iterations.

Our algorithm can be further generalized to guide the scheduling on a heterogeneous CMP

with non-equivalent number of big and small cores. Let us assume there are m big cores and n

small cores. Therefore, there should be a total of m jobs with label “1” and n jobs with label “0”.

Without loss of generality, we assume that m is greater than n. In this situation, the PRIM-based

approach is capable of reaching the desired scheduling status by performing ⌈m/n⌉ rounds of

parallel comparisons described in above as shown in Figure 3-4. In case that m is less than n, the

algorithm is similar but requires ⌈n/m⌉ rounds of parallel comparisons.

Figure 3-5 illustrates the scheduling procedure on such a heterogeneous CMP. As can be

noted, the parallel comparisons are conducted within a window whose size is equal to n (i.e., the

smaller of m and n). By doing so, we are able to perform n iterations of parallel comparisons be-

tween n big and n small cores. Note that the total number of “0” jobs is n and total number “1”

jobs is m. According to the analysis described earlier (where m is equal to n), after each round of

parallel pair comparisons between n big cores and n small cores, all of the n big cores will have

“1” jobs running on them. Therefore, after rounds of parallel comparisons, all big cores will have

“1” jobs. Meanwhile, all “0” jobs are scheduled running on the small cores.

49

0 1 n-1

0

…..
iter1: Pb0/Ps0, Pb1/Ps1, Pb2/Ps2…. Pb(n-1)/Ps(n-1)

iter2: Pb0/Ps1, Pb1/Ps2, Pb2/Ps3…. Pb(n-1)/Ps0
.
.
.

1 n-1

….. m-1

…..

0 1 n-1 …..….. n 2n-1

0 n-1…..

….. ….. m-1

…
..

round 1

round 2

0 m-n+1 …..

0 n-1

….. m-1

…..

last round …..

iter1: Pbn/Ps0, Pb(n+1)/Ps1, Pb(n+2)/Ps2…. Pb(2n-1)/Ps(n-1)

iter2: Pbn/Ps1, Pb(n+1)/Ps2, Pb(n+2)/Ps3…. Pb(2n-1)/Ps0
.
.
.

iter1: Pb(m-n+1)/Ps0, Pb(m-n+2)/Ps1…. Pb(m-1)/Ps(n-1)

iter2: Pb(m-n+1)/Ps1, Pb(m-n+2)/Ps2…. Pb(m-1)-1/Ps0
.
.
.

Figure 3-5. Scheduling procedure on a heterogeneous CMP with m big cores and n small cores

(m > n). Big cores are denoted as Pbi (i=0,1, …m-1) and Small cores are denoted as Psj

(j=0,1,…n-1)

It is important to notice that this approach introduces fairly light overhead to the program

execution. First, the model training is conducted offline and therefore has no impact on the dy-

namic execution. Second and more importantly, the pair-wise comparisons which are performed

at each scheduling interval can be completed in reasonable time due to the parallel operation in

each round. Specifically, although the total number of comparisons to reach the desired schedul-

ing is approximately O(mn), all comparisons can actually be finished in O(m) time, where m is

the larger core count (i.e., m ≥ n on a CMP with m big cores and n small cores, or the other way

around). Note that traditional heterogeneity-aware scheduling policies based on relative perfor-

mance estimation involve a sorting process in order to identify the programs suitable to run on

big cores (or small cores). Assume a quicksort algorithm is employed for the operation. This in-

troduces O(nlogn) comparisons where n is the total number of programs. Therefore, our rule-set

based scheduling policy raises no additional overhead compared to state-of-the-art strategies.

50

Also, the algorithms discussed in this work are built on an assumption that two types of

cores are integrated on the die. This is reasonable considering that most commercial heterogene-

ous chip multi-processors including ARM big.Little [2] and Nvidia Tegra 3 [13] are composed of

two families of cores for good tradeoff between the design complexity and energy-efficiency.

3.4 Experimental Setup

3.4.1 Simulation Environment

We use a modified SESC simulator [86] to conduct the experiments in this work. The simu-

lator is configured to contain a number of big and small cores, whose architectural parameters

are listed in Table 3-2. McPAT v0.8 [69] is used for dynamic and leakage power estimation. We

select 26 programs from SPEC 2000 and SPEC 2006 with the ref input size for the study. In the

multi-program simulation, we form 220 workloads composed of individual programs. Note that

we do not use other programs from the suites for two reasons: (1) our current cross compiler is

only capable of compiling programs implemented with C/C++. Many remaining programs are

written in Fortran, thus it is difficult to co-compile them with C/C++ applications; (2) we pay

much attention to scheduling-insensitive programs, which are usually not carefully examined in

performance-oriented scheduling studies, to demonstrate and exploit the opportunity of energy

optimization.

Each program is simulated for 1 billion instructions after fast-forwarding the initial 2 billion.

For the single-program study, we use 19 programs for training and use the remaining 7 programs

for validation. For the multi-program study, we choose 180 out of the 220 program combinations

for PRIM model training and use the remaining ones to evaluate the effectiveness. Recall that the

training procedure is conducted offline. This takes about 3 seconds on a Dell Precision T7500

workstation equipped with an Intel E5530 CPU. In addition, for the scheduling in absence of idle

51

cores, we always launch as many programs as cores. We stop the simulation when the slowest

application in the workload completes 1 billion instructions. The faster applications are not re-

peating. By doing so, we guarantee that the same amount of work is always performed when dif-

ferent scheduling policies are engaged, i.e., each application in the workload executes 1 billion

instructions after the initial 2 billion. This makes the comparison of total energy consumption

from run to run rational. Note that once faster programs complete, the scheduling problem depre-

cates to the situation with idle cores.

Table 3-2. Architectural parameters of system components

Component Parameter Value

Big core

Pipeline type out-of-order

Processor width 4

ALU/FPU 4/2

ROB/RF 120/160

L1I cache size 32KB

L1D cache size 32KB

L1 associativity 4

BTB entries 2048

Small core

Pipeline type in-order

Processor width 2

ALU/FPU 2/1

L1I cache size 16KB

L1D cache size 16KB

L1 associativity 2

BTB entries 1024

Other parameters

L2 cache size 4MB

L2 associativity 8

Cache block size 32B

Branch Predictor Hybrid

Frequency 3G

The scheduling interval is set to 2.5ms in this study. As shown in prior works [33], this

granularity is small enough to capture the variations in program execution behaviors and assist

the scheduler to make energy-efficient assignments more precisely. We do account for the migra-

52

tion overhead due to architectural state retrieving and set it to 150µs [72]. The additional energy

dissipation due to the migration is also appropriately modeled. For instance, the energy con-

sumed by cache re-warming can be calculated from the corresponding cache access times. The

time overhead of the scheduler is ignorable because making a scheduling decision only requires

reading the performance counters from the big and small cores and comparing them with the cor-

responding rules. We compare performance, energy consumption, and ED product resulting from

different schedulers to assess the effectiveness. Note that since each workload executes the same

amount of instructions under different scheduling policies, comparing the total energy consump-

tion is equivalent to comparing the energy-per-instruction (EPI). We thus use EPI as the metric

for interpretation in later sections. Also note that in scenarios of single-threaded executions,

scheduling based on EPI is an approximation of the optimal assignments.

3.4.2 Scheduling Algorithms for Comparison

In this subsection, we introduce the scheduling strategies implemented for comparison.

Static scheduling: This is the baseline scheduler implemented for the comparison. The pro-

grams are pinned to processor cores and execute till completion. For the single-program investi-

gation, this means two specific approaches: static-big where the program is mapped to the big

core; and static-small where the program goes to the small core. For the multi-program evalua-

tion, we run all possible task-to-core mappings and choose the most energy-saving one as the

baseline for comparison.

Round-robin (R-R): With this policy, the programs running on the big and small cores are

swapped every 5 intervals. The scheduler does not take into account the program difference and

runtime execution behaviors, but blindly swaps the jobs at a preset frequency.

53

Sample-Optimize-Symbios (SOS): The SOS scheduler is originally proposed for the simul-

taneous multi-threading execution [98]. Many heterogeneous scheduling algorithms presented in

prior works also fall into this category [24][63]. With this scheduling policy, the execution pro-

ceeds in a pattern consisting of three steps. First, at a scheduling point, the programs are execut-

ed on each type of core for an interval. This is called the “sampling phase” since the energy con-

sumption of each assignment is available after this process. Second, the most energy-efficient

scheduling is identified, thus this step is termed the “optimization phase”. Finally, the execution

will experience the “symbios phase” during which all programs are running N intervals with the

optimal mapping. In this study, N is set to 10. Note that this strategy is also called “sampling” in

a few prior works.

MLP-ratio: This scheme is introduced in a recent work [33] aiming to improve the system

throughput on heterogeneous CMPs. Although it does not focus on energy saving, it stands as

one of the best heterogeneity-aware schedulers to date, thus deserving a comparison with our

strategy. Note that the optimal scheduler proposed in [33] takes both the instruction-level paral-

lelism (ILP) and the memory-level parallelism (MLP) into consideration. Nevertheless, the au-

thors demonstrate that the algorithm based on only MLP-ratio delivers fairly close performance

to their optimal scheduler. Considering the complexity to calculate the ILP on the fly, we imple-

ment a scheduling scheme based on only MLP estimation for the comparison due to its simplici-

ty. In the MLP-ratio scheduler, the memory-level parallelism (MLP) ratios of all programs be-

tween the big and small cores are evaluated. Programs with higher MLP ratios are placed on the

big cores while those with lower ratios are assigned to small cores.

PRIM: At a scheduling point, the performance metrics collected from a pair of big and

small cores are compared with the selective PRIM rules. If the conditions for both big and small

54

cores are satisfied, the jobs on two cores are swapped; otherwise the current assignment is main-

tained. In case where the number of cores (programs) is greater than or equal to four, the optimal

scheduling is achieved through a few steps of suboptimal assignments as described in section 3.3.

Hierarchical PRIM (H-PRIM): Instead of training a single PRIM model, we use CART to

partition the training data into 4 categories according to the performance measurements and train

a PRIM model for each subset. At a scheduling point, we first identify to which subset a pair of

program executions belongs. We then compare the corresponding PRIM rules with the execution

behaviors of these two programs and schedule accordingly.

Oracle: In this scheduling policy, we assume that the scheduler knows the energy consump-

tion of each program mapping in advance and performs the optimal scheduling based on that in-

formation. To implement this algorithm, we measure the total energy of each program assign-

ment for each scheduling interval. We then choose the most energy-efficient schedule for the

next interval.

3.5 Result Analysis

In this section, we perform a detailed evaluation of the rule-set guided scheduling algorithm

by comparing it with a set of existing schemes. We first demonstrate the extracted rule sets used

for scheduling and then compare the effectiveness of different schedulers from both energy sav-

ing and performance improvement perspective.

3.5.1 Results in Presence of Idle Cores

We start the result demonstration by analyzing the extracted rules. By training PRIM models,

we generate two sets of rules respectively for the big core and small core.

55

Rule set:

 Big Core Rules:

 L1D.nMiss > 37510 &&

 L1D.writeHit < 191275 &&

 nStall.SmallReg > 213400

 Small Core Rules:

 L1D.nMiss < 45600 &&

 L2.nAccess > 32200 &&

 BR.misp < 27733

As we mentioned in previous section, a matching between the observed execution behaviors

and the corresponding rule sets implies that transferring the job to a different type of core is more

energy-saving. Specifically, if the program is currently running on a big core and we observe that

its cache access and pipeline stall statistics satisfy the big core conditions listed above, it should

be moved to a small core for the execution in next interval. The two inequalities related to L1

data cache (L1D.nAccess and L1D.writeHit) indicates that the execution in the past interval is-

sues considerable memory requests that go to the L1D, however, many accesses are missed in

this level of cache. The third condition shows that the pipeline is frequently stalled due to the

shortage of free physical registers (nStall.SmallReg). Jointly, these three conditions indicate that

the program may not be able to effectively utilize the computation resource on the big core and

would be more suitable to run on a small core for better energy efficiency. Note that all the coun-

56

ter values are normalized to those in one million instructions (e.g., L1D.nMiss is actually

L1D.nMiss/MInst). On the other hand, the rules corresponding to the small core imply that the

program can achieve high speedup on the big core and result in better energy efficiency after mi-

gration. For instance, the relatively low miss rate in the L1 data cache and infrequent branch

mispredictions means that the program is able to fully exploit the computing resource on the big

core and more efficiently utilize the energy (i.e., executing with a lower EPI).

We now compare the effectiveness of different scheduling policies on reducing the energy

consumption. Figure 3-6 demonstrates the comparison of energy for all selected programs run-

ning on a dual-core heterogeneous CMP when different strategies are engaged. Note that the re-

sults under all schemes are normalized to that corresponding to the big core execution. As can be

observed, the selected programs manifest distinctive variation on the energy consumption. For

the static schemes, applications including equake, lbm, mcf, and milc are more appropriate to run

on the small core while benchmarks such as wupwise, dealII and h264 are suitable candidates to

be placed on the big core. This corroborates the conclusions drawn by few prior works that pro-

gram features such as memory-intensity, computation-level and memory-level parallelism impact

their relatively energy consumption on different types of cores [24][63][100], which further justi-

fies the opportunities for intelligent scheduling on heterogeneous systems.

The round-robin scheme does not involve true scheduling intelligence either, since it just

blindly transfers the program to a different core at a preset frequency. As a consequence, it coin-

cidently results in lower energy consumption than the static scheme for some benchmarks while

performing even worse for programs including crafty and eon. The SOS scheme is able to identi-

fy the correct task-to-core mapping via online sampling, thus leading to lower energy consump-

tion than both static and R-R for many benchmarks. However, it suffers from two intrinsic draw-

57

backs. First, frequent sampling introduces noticeable overhead which may prolong the execution

time and consume extra energy that mitigates the benefit. Second, this scheduler assumes a con-

tinuum of program characteristics in the symbios stage (i.e., the following N intervals after sam-

pling), which might not be true as the execution behaviors usually vary across different phases.

This may cause inefficient executions in many intervals and thus raise the energy consumption.

The PRIM rule set guided policy works the most closely to the oracle scheduler because it elimi-

nates the unnecessary sampling overhead and transfers the job to the energy-saving core when

necessary. In general, the round-robin, SOS, PRIM and oracle schedulers are able to reduce the

energy consumption respectively by 3.4%, 12.8%, 20.1% and 22.7% compared to the execution

on big core.

Figure 3-6. Normalized energy consumption for single-programs executing on a dual-core CMP

with different schedulers

The unnecessary context switch is an important cause of inefficient execution on heteroge-

neous CMPs when non-ideal schedulers are employed. Those context switches introduce sub-

stantial overhead due to architectural state retrieving and cache re-warming to the execution; fur-

thermore, they transfer programs to inappropriate cores for execution, which may adversely in-

crease the energy consumption. Taking this into consideration, we collect the number of context

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

small

RR

SOS

PRIM

oracle

Training set Test set

58

switches during the execution for each application when different schedulers are used. Table 3-3

lists the recorded statistics. The round-robin scheme causes many more switches than all other

policies since it continually moves a job every 5 intervals (recall the experimental set up de-

scribed in section 3.4). The SOS scheme makes a job migration decision based on the sampling

result and thus usually moves jobs at a much lower frequency, which in turn significantly reduc-

es the switch times.

Table 3-3. Number of context switches

Benchmark RR SOS PRIM Oracle

Training

ammp 1084 201 194 189

applu 486 110 127 140

art 466 107 89 83

crafty 384 98 93 101

equake 874 162 177 182

gzip 658 149 106 96

mesa 336 58 69 71

parser 516 193 102 123

vpr 464 122 97 103

wupwise 298 44 58 72

dealII 354 102 118 105

gobmk 464 121 102 99

lbm 734 101 121 115

mcf 1268 406 387 367

milc 1208 104 97 89

namd 358 76 64 58

omnetpp 382 152 125 104

sjeng 496 101 95 98

Test

eon 360 89 103 99

mgrid 959 120 98 88

swim 980 103 105 95

bzip2 1072 82 105 102

h264 304 98 75 72

libquantum 322 60 73 70

soplex 496 93 120 114

The PRIM and the oracle scheduler generally lead to comparable context switches as SOS

does; however, they capture the migration opportunities more precisely and make scheduling de-

59

cisions at finer-granularity, thus appearing to be more energy-saving compared to SOS. Also,

since the PRIM scheduler does not require sampling, it offers better performance than the SOS

scheme. Figure 3-7 shows the average performance of each program normalized to the big core’s

execution. Not surprisingly, the PRIM scheduler results in only 20% longer execution time than

the static-big policy, delivering better performance than both RR and SOS which respectively

prolong the running time by 69% and 29%.

Figure 3-7. Normalized execution time for single-programs executing on a dual-core CMP with

different schedulers

3.5.2 Results without Idle Cores

In this subsection, we demonstrate the evaluation results for the second circumstance, where

each workload contains as many programs as cores. Again, we analyze the extracted PRIM rules

at first. By training a PRIM model, we can generate the following rule sets to guide the schedul-

ing for two programs running on a pair of big and small cores.

Rule set:

 Big Core Rules:

 L1D.nMiss < 13430 &&

0
0.5

1
1.5

2
2.5

3
3.5

4

N
o

rm
al

iz
e

d
 E

xe
. T

im
e

small

RR

SOS

PRIM

oracle

Training set Test set

60

 nStall.SmallIQ > 256949

 Small Core Rules:

 BP.nMiss > 9674 &&

 iLoad.count > 198169 &&

 iALU.count < 400026 &&

 L1D.nMiss < 17701

Note that at a scheduling point, the scheduler compares the performance metrics collected

from a pair of big and small cores. If the measurements on both sides are satisfied with these

rules, the scheduler predicts that swapping the two programs will decrease the total energy con-

sumption. This is different from the operation described in the previous subsection, where the

execution behaviors from either the big core or the small core are compared against the corre-

sponding rules. Since our prediction is made at each scheduling interval, the goal essentially

translates to lowering down the total power of that period. Also, the big cores always consume

much larger power than the small ones, thus dominating the total power consumption all the time.

We present these two statements to assist the interpretation of the PRIM rules. Note that we will

analyze the correlation between execution behaviors and power consumption including both dy-

namic power and leakage power.

Let us focus on the big core rules at first. As can be seen, the big core rules suggest that a

program with a low L1 cache miss rate (L1D.nMiss) and substantial internal stalls (e.g., stalls

due to small instruction issue queue, or nStall.smallIQ) should be exchanged to the small core for

execution. It is straightforward to understand the metrics related to L1 cache and instruction

61

fetch. A Low L1 cache miss rate indicates that the current program on the big core is executed at

relatively high speed without suffering from frequent cache misses. However, from the power

perspective, this implies large dynamic power on many function units due to high activities. As

for the second condition, a large nStall.smallIQ value indicates that the program spends substan-

tial time on waiting for free IQ entries, meaning that the IQ is always full during this interval.

This eventually leads to high utilization in the IQ and increased dynamic power consumption on

this component because of frequent operations such as checking the operands’ status. On the

other hand, components including IQ and integer ALU tend to become the hotspot on die. As a

consequence, the leakage power on these units is rapidly increasing since it is proportional to the

temperature. In one word, the big core rules outline the features of intervals which tend to con-

sume both high dynamic and leakage power. For the purpose of energy saving, these intervals

should be migrated to the small core for execution.

The small cores rules work in tandem with the conditions on big cores. Recall that the total

power consumption is dominated by the big core. Therefore, the rules for the small core essen-

tially characterize the execution phases that are not probable to result in extreme high power on a

big core. Specifically, the first and the third conditions respectively set constraints for the occur-

rences of branch mispredictions (BP.nMiss) and number of integer ALU instructions

(iALU.count). A branch misprediction will lead to a pipeline flush and lower down the execution

speed. Fewer number of ALU instructions can alleviate the utilization on ALUs, reducing the

dynamic power and cooling down the component accordingly. These two conditions jointly re-

duce the power consumed by the core running this program. On the other hand, the rule sets re-

quire that the amount of load instructions (iLoad.count) should be no smaller than a certain value

while the misses in L1 data cache (L1D.nMiss) cannot go beyond a threshold. These two condi-

62

tions imply that this program potentially issues a large amount of memory requests, but most of

them can be served by the L1 cache. Nevertheless, the stress on L1 cache will not significantly

increase the total power consumption since the L1 cache consumes relatively small power com-

pared to other components. In general, the intervals filtered by the small core rule set tend to re-

sult in moderate power if executed on the big core, thus reducing the chip-level power consump-

tion.

As described in section 3.2.2, CART is able to partition the entire data set into several sub-

sets, each of which contains similar samples. Therefore, if we train an individual PRIM model

for each subset, the effectiveness of our strategy is expected to be increased due to the similarity

of instances within the same subset. Taking this into account, we use CART to perform a data

segmentation operation prior to the PRIM model training. Figure 3-8 demonstrates the segmenta-

tion result for all training instances. As can be seen, the entire data set are partitioned into 4 cate-

gories, as represented by the 4 leaf nodes on the generated tree. Each branch represents a condi-

tion on the performance metrics on a big or small core and is expressed in a form of “Xi ≥ (or

≤) M”, where Xi denotes a performance metric and M denotes a value to segment the data set.

Specifically in the tree shown in Figure 3-8, X126 indicates the number of branch mispredictions

on the big core (BP.nMiss) and X232 corresponds to the iALU.count metric which records the

number of integer ALU instructions on the small core. X244 tracks the number of fetched in-

struction on the small core (nFetch). The value at each leaf node is the average of CART re-

sponse for that partition.

We train a PRIM model for each data segment and list their respective rule sets in Table 3-4.

Note that for the fourth subset (i.e., the rightmost leaf node in Figure 3-8), more than 95% of the

63

included samples maintain a flag “1”, meaning that the majority of this partition are candidates

for job swap. Consequently, we do not train an extra PRIM model for this subset and directly use

its branch conditions to guide the scheduling. During the execution, this tree is accessed at each

scheduling point in order to classify a program pair into an appropriate subset. The access starts

from the root node of the tree. If the condition is satisfied after the variable comparison (X126, or

BP.nMiss), the access will proceed to the left child; otherwise it goes to the right child. This pro-

cess is performed again on the child node and the program pair will be classified to a specific

subset thereafter. The corresponding PRIM rules are then compared with the execution behaviors

and make job assignments accordingly. In particular, if a program pair falls into the rightmost

subset, the scheduler will immediately swap the two jobs for execution in the next interval.

Figure 3-8. Data segmentation result from CART

We now compare the effectiveness of different scheduling policies on reducing the energy

consumption and improving energy efficiency. To demonstrate the scalability of our proposed

algorithm, we run four-program workloads on two types of heterogeneous architectures: a plat-

form with an identical number of big and small cores (2B+2S) and a system with non-equivalent

numbers of big and small cores (3B+1S).

64

Table 3-4. PRIM rule set for each data segment

Segment Big Core Rules Small Core Rules Performance metrics description

Subset 1

LDSTUnit.util < 0.27

&&

nStall.noCachePort <

10785

L1I.nMiss > 3791

LDSTUnit.util: the utilization of load/store

unit

nStall.noCachePort: cumulative stall cycles

due to cache port contention

L1I.nMiss: number of misses in L1I cache

Subset 2
IQ.avgFree < 3 &&

L1I.nHit > 817392

avgBranchPenalty > 73

&&

iComplex.count < 3921

IQ.avgFree: the average number of free en-

tries in IQ, indicating the IQ utilization

L1I.nHit: number of hits in L1I cache

avgBranchPenalty: average penalty (in cy-

cles) of branch misprediction

iComplex.count: number of integer complex

instructions, such as division

Subset 3

nStall.noCachePort <

44750

&&

nStall.smallREG >

851493

L1I.avgMissLat < 513

nStall.smallREG: cumulative stall cycles due

to available registers

L1I.avgMissLat: average penalty (in cycles)

of a miss in L1I cache

Subset 4 N/A

Figure 3-9 (a) illustrates the energy reduction for these workloads on the first platform

(2B+2S) when distinct schedulers are engaged. Note that all results are compared with those cor-

responding to the static scheduling case. The workloads are sorted in ascending order according

to the degree of energy saving. As can be observed, our PRIM and H-PRIM strategies always

outperform other scheduling algorithms with respect to energy consumption. This is because the

rule-set guided scheduler is capable of effectively identifying the most appropriate program as-

signment at runtime to minimize the energy consumption. Furthermore, the total energy con-

sumed by H-PRIM is fairly close to the oracle case (i.e., the minimum), since the data segmenta-

tion increases the accuracy of identifying the candidate intervals. Other schedulers suffer from

distinctive drawbacks which adversely impact their effectiveness. The previous subsection ex-

plains the disadvantage of the R-R and SOS scheduler. The MLP-ratio algorithm, on the other

hand, aims to improve the system performance. As we demonstrated in section 3.1, this sched-

uler can increase the total energy consumption for some intervals, thus trailing our strategies in

saving the total energy.

65

Figure 3-9 (b) shows the performance improvement when the workloads are respectively

running with these schedulers. Note that the workloads are sorted according to the performance

gain in this figure. Also recall that the oracle scheduler is the optimal with respect to the energy

consumption instead of performance. As can be seen, the MLP-ratio strategy always leads to bet-

ter performance (i.e., positive value) compared to the baseline. This does not go beyond our ex-

pectation because the goal of this scheduler is to enhance the overall performance, thus the pro-

grams are assigned in a manner to maximize the execution speed. On the other hand, both per-

formance improvement and degradation (i.e., negative value) are observed in other scheduling

policies. The performance loss mainly stems from two sources, namely migration overhead and

slower execution in certain intervals. Our scheduler eliminates unnecessary job swaps during the

execution compared to round-robin and SOS, thus delivering better performance.

(a) Energy saving (b) Performance improvement

Figure 3-9. Evaluation results of four-program workloads running on a 2B+2S platform

Figure 3-10 demonstrates the average performance gain, energy saving and ED reduction for

all workloads. From the performance respective, MLP-ratio stands as the optimal by accelerating

the execution by 5.7% while PRIM and H-PRIM respectively enhance the performance by 3.9%

-20%

-10%

0%

10%

20%

30%

En
e

rg
y

sa
vi

n
g

Sorted four-Program combinations

R-R SOS MLP-ratio

PRIM H-PRIM Oracle

-15%

-10%

-5%

0%

5%

10%

15%

P
e

rf
o

rm
an

ce
 im

p
ro

ve
m

e
n

t

Sorted four-program combiantions

R-R SOS MLP-ratio

PRIM H-PRIM Oracle

66

and 4.1%. Note that the MLP-ratio scheduler is more effective for scheduling-sensitive work-

loads [33]. However, the performance gains for applications demonstrating less sensitivity to

program assignment are fairly modest. Therefore in general, our schedulers lead to comparable

performance to MLP-ratio on average. For energy saving, the PRIM and H-PRIM algorithms are

able to reduce the energy consumption by 11.8% and 14.8% compared to 16.3% delivered by the

oracle scheduler. Finally, for the ED metric, the PRIM and H-PRIM algorithms respectively re-

duce its value by 15.3% and 17.9% while the oracle scheduler can decrease the product by

19.1%. The SOS and MLP-ratio policies lead to less impressive savings. In other words, our best

scheduler H-PRIM outperforms the MLP-ratio policy, which is one of the optimal state-of-the-

art heterogeneous schedulers by 7.8% and 5.7%, respectively, on energy and ED. We also collect

the number of context switches with different scheduling policies and observe a similar trend as

shown in Table 3-3.

Figure 3-10. Average improvement in energy, performance and ED of all four-program work-

loads running on a 2B+2S platform

Figure 3-11 and Figure 3-12 demonstrate the results for quad-program work-loads running

on a CMP consisting of three big cores and a small core (3B+1S). As can be seen, the general

trends of the curves are similar to those shown in the 2B+2S case. On average, the PRIM and H-

-10%

-5%

0%

5%

10%

15%

20%

25%

A
ve

ra
ge

 Im
p

ro
ve

m
e

n
t

Performance Energy ED

R-R SOS MLP-ratio

PRIM H-PRIM Oracle

67

PRIM scheduler is capable of saving energy by 11.5% and 13.9%. For the energy-delay product,

these two schemes decrease the value by 14.9% and 17.3%. This implies that compared to MLP-

ratio, the H-PRIM policy reduces the total energy and ED by 8.1% and 5.5%, respectively.

(a) Energy saving (b) Performance improvement

Figure 3-11. Evaluation results of four-program workloads running on a 3B+1S platform

Figure 3-12. Average improvement in energy, performance and ED of all four-program work-

loads running on a 3B+1S platform

We also evaluate the effectiveness of our strategy with other configurations. Figure 3-13

shows the average improvement when two-program workloads are running on a CMP with a big

and a small core. Not-surprisingly, H-PRIM surpasses other policies by improving the energy-

-20%

-10%

0%

10%

20%

30%

En
e

rg
y

sa
vi

n
g

Sorted four-Program combinations

R-R SOS MLP-ratio

PRIM H-PRIM Oracle

-15%

-10%

-5%

0%

5%

10%

15%

P
e

rf
o

rm
an

ce
 im

p
ro

ve
m

e
n

t

sorted four-program combiantions

R-R SOS MLP-ratio

PRIM H-PRIM Oracle

-10%

-5%

0%

5%

10%

15%

20%

25%

A
ve

ra
ge

 Im
p

ro
ve

m
e

n
t

Performance Energy ED

R-R SOS MLP-ratio PRIM H-PRIM Oracle

68

efficiency most closely to the oracle scheduler. Nevertheless, our evaluation results demonstrate

that the proposed rule-set guided scheduling policy is more effective in optimizing the energy-

efficiency of single-ISA heterogeneous platforms compared to existing schedulers.

Figure 3-13. Average improvement for performance, energy and ED for two-program workloads

running on a 1B+1S platform

3.6 Related Work

Within past years, several researchers have authored outstanding studies in the heterogene-

ous architecture field. Kumar et al. [63] propose one of the earliest single-ISA heterogeneous

multiprocessors and discuss its potential for power reduction. The sampling-based scheduling

algorithm that can be applied to a realistic multiprocessor for energy-efficient execution is also

proposed. In [65], the performance for multithreaded workload executing on a single-ISA heter-

ogeneous processor is analyzed in detail. By adopting a similar sampling-based assignment poli-

cy, the system can capture the intra-thread diversity and schedule the jobs for the maximal

throughput. Becchi and Crowley evaluate a set of static and dynamic scheduling policies de-

signed for heterogeneous platform in [24]. The authors show that dynamic job scheduling largely

outperforms the static assignment by delivering higher throughput. Hao et al. [49] describe a

scheduling policy using hardware counters and evaluate it on a real multiprocessor system run-

-10%

-5%

0%

5%

10%

15%

20%
A

ve
ra

ge
 Im

p
ro

ve
m

e
n

t

Performance Energy ED

R-R SOS MLP-ratio PRIM H-PRIM Oracle

69

ning Linux. They argue that the last level cache access latency is a good metric to guide the

scheduling on heterogeneous platform. In [61], Koufaty et al. introduce the bios scheduling

which is similar to the policies based on memory intensity. Balakrishnan et al. quantitatively ana-

lyze the impact of performance asymmetry between cores on the application scalability and pre-

dictability [22].

Saez et al. present a series of works that target the performance enhancement on asymmetric

CMP platforms [88][89][90]. They propose an algorithm named HASS [90] to guide the job as-

signment on single-ISA heterogeneous systems for the maximum performance. They also de-

velop the CAMP scheduler to explore both efficiency and TLP [88][89]. Radojkovic et al. [24]

consider a scenario with massive multithreaded processors where an exhaustive search for the

optimal task assignment is unfeasible due to the substantial possibilities. Therefore, they intro-

duce a statistical approach to seek the best work distribution. Li et al. [70] implement a scheduler

composed of fast-core-first assignment and migration on a performance-asymmetric CMP archi-

tecture. More recently, Craeynest et al. present a heterogeneous scheduler via performance im-

pact estimation (PIE) [33]. Their evaluation results demonstrate that the PIE scheduling policy

outperforms prior schemes based on program memory intensity. The authors also show that

memory-level parallelism ratios of programs provide good estimation for relative performance

and can be employed to guide the runtime scheduling. A similar strategy through the prediction

of CPI across core types is proposed by Srinivasan et al. [100].

Studies addressing energy minimization on heterogeneous platform can also be found in lit-

erature. Saad et al. [87] and Goraczko et al. [43] respectively propose the software partitioning

approach to reduce the energy consumption on heterogeneous embedded systems. In [30], Chen

and John present a scheduler based on weighted Euclidean distances to improve the energy effi-

70

ciency on heterogeneous CMPs. Sharifi et al. [94] takes temperature into account and introduce a

joint solution for thermal and energy management. Grant et al. [45] introduce a scheduling

mechanism to save energy on asymmetric multiprocessors for scientific applications. In their

proposed algorithm, one core is reserved for running the operating system at adjustable frequen-

cies while other processors are executing the user threads at full speed. In [51], Heath et al. de-

sign a heterogeneous server cluster which demonstrates remarkable energy efficiency improve-

ment over traditional homogeneous clusters. Singh et al. [96] propose a prediction based ap-

proach for power estimation and scheduling on traditional homogeneous CMPs, in order to im-

prove the energy efficiency.

3.7 Conclusion

In this chapter, we propose a scheduling strategy for energy-efficient execution on single-

ISA heterogeneous chip-multiprocessors. We demonstrate that performance-oriented scheduling

may lead to executions that are not sufficiently energy-efficient. Due to this limitation, we con-

centrate on energy saving and introduce a rule-set guided scheduling to exploit the optimal ener-

gy efficiency on heterogeneous CMPs. We employ advanced statistical tools including PRIM

and CART to facilitate the development of our algorithm. The evaluation results show that our

proposed algorithm impressively outperforms existing scheduling schemes by minimizing the

energy consumption, thus delivering better energy efficiency.

71

CHAPTER 4. MITIGATING NBTI DEGRADATION ON GPUS

THROUGH EXPLOITING DEVICE HETEROGENEITY

4.1 Motivation and Overview

As we shift into the deep submicron era, innovative materials and device architectures are

becoming ever demanding to continue the trend toward smaller and faster transistors. Among all

candidates in investigation, the Fin field-effect-transistor (FinFET) stands as one of the most

promising substitutes for traditional devices at the ensuing technology nodes, since it presents

several key advantages over its planar counterpart [7][21][55][59]. By wrapping the conducting

channel with a thin vertical “fin” which forms the body of the device, the gate is coupled tighter

with the channel, increasing the surface area of the gate-channel interface and allowing much

stronger control over the conducting channel [7]. This effectively relieves the so-called short

channel effects (SCE) that are observed on planar transistors manufactured with sub-32nm tech-

nology, which in turn implies that FinFET devices can provide superior scalability in the deep

submicron regime [7].

Another cornerstone motivating the realization of FinFET is the potential performance gain.

FinFET transistors can be designed with lower threshold voltage (Vt) and operate with higher

drive current, leading to faster switching speed compared to conventional planar devices [1]. Re-

leased documents from industry demonstrate that the FinFET transistor persistently demonstrates

shorter delay than the planar one while the support voltage is varying, enabling the design and

manufacturing of faster processors. Public documents from leading manufacturers also show that

the FinFET structure is capable of largely decreasing leakage when the transistor is off [7]. Re-

cently, the Ivy Bridge [3] and Haswell central processing units [4] released by Intel have com-

72

mercialized this structure (i.e., referred to as “Tri-gate transistor” by Intel), which is also ex-

pected to be adopted by other semiconductor manufacturers on their upcoming products [15].

Nonetheless, FinFET is not an impeccable replacement of traditional devices as it raises

many challenges to the current industry. One of the most daunting conundrums is the increasing

aging rate caused by negative bias temperature instability (NBTI). Recent experimental studies

demonstrate that FinFET transistors are more vulnerable to NBTI, leading to a shorter lifetime

than a planar device [46][112]. The NBTI aging rate is evaluated by the increase of delay on the

critical path after a certain amount of service time. A chip is considered as failed when the delay

increment exceeds a pre-defined value after which the timing logic of the processor cannot func-

tion correctly. Based on well-established models, we observe that under the same operation con-

dition, the FinFET device degrades much faster than the planar counterpart, implying a signifi-

cantly reduced service lifespan of the target processor. This clearly spurs the development of

new techniques to circumvent this problem and prolong the lifetime of FinFET-made processors.

Fortunately, the brief comparison between planar and FinFET transistors sheds some light

on alleviating the NBTI effect on future processors. By effectively exploiting the device hetero-

geneity and leveraging the higher NBTI immunity of planar transistors, the aging of the FinFET

structures can be largely suppressed. In this chapter, we propose a set of techniques built on top

of this principle to improve the durability of FinFET processors. In general, our techniques are

implemented by replacing an existing structure with a planar-device equivalent. Along with mi-

nor modifications at the architectural level, our proposed techniques are essentially transferring

the “aging stress” from the vulnerable FinFET components to the more NBTI-tolerable planar

structures, which in turn reduce the accesses to the hardware in study, lower down its activity

and temperature, and thus considerably mitigate the NBTI degradation. Note that these strategies

73

are practically feasible because of the good compatibility between the FinFET and planar process

technology [20][32][36].

Considering that the general-purpose graphics processing unit is becoming an increasingly

important block in a wide spectrum of computing platforms, we choose a modern GPU as the

target architecture to evaluate the effectiveness of our proposed strategies. In this chapter, we

mainly concentrate on optimizing the reliability of memory-like structures in the GPU. However,

the techniques described in this work can be simply applied to CPU for NBTI mitigation as well.

In general, the main contributions of this work are as follows.

 To the best of our knowledge, this work is the first attempt to address the NBTI allevia-

tion at the architectural level for future GPUs manufactured with FinFET.

 We propose a hybrid-device warp scheduler for reliable operation. By decoupling the

warp scheduling into two steps of operations and conducting the prerequisites evaluation

in a planar-device structure, we eliminate a large amount of read accesses to the FinFET

scheduler hardware and considerably alleviate the NBTI effect.

 We develop a hybrid-device sequential-access cache architecture. All memory requests

to this cache are handled in a serialized fashion such that the tag-array made of planar

transistors is probed first and the matching block in the FinFET data array is accessed on

a cache hit. This reduces the activity on the cache data array and improves its reliability.

4.2 Background

4.2.1 NBTI Degradation Mechanism

 Negative Bias Temperature Instability is becoming one of the dominant reliability concerns

for nanoscale P-MOSFETs. As explained by the classical Reaction-Diffusion model [75], NBTI

74

is caused by the interaction of silicon-hydrogen (Si-H) and the inversion charge at the Si/oxide

interface [18]. When a negative voltage is applied at the gate of PMOS transistors, the Si-H

bonds are progressively dissociated and H atoms diffuse into the gate oxide. This process even-

tually breaks the interface between the gate oxide and the conducting channel, leaving positive

traps behind. As a consequence, the threshold voltage of the PMOS transistor is increased, which

in turn elongates the switching delay of the device through the alpha power law [91]:

𝑇𝑠 ∝
𝑉𝑑𝑑𝐿𝑒𝑓𝑓

𝜇(𝑉𝑑𝑑−𝑉𝑡)𝛼
………………………………………………………………….…………....... 4.1

where µ is the mobility of carriers, α is the velocity saturation index and approximates to 1.3. Leff

denotes the channel length. The process described above is termed the “stress” phase where the

threshold voltage is increasing with the service time, modeled by the following equation [111].

∆𝑉𝑡𝑠𝑡𝑟𝑒𝑠𝑠 = (
𝑞𝑇𝑜𝑥

𝐸𝑜𝑥
)1.5. 𝐾. √𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡). 𝑒

−𝐸𝑎
4𝑘𝑇

+
2(𝑉𝑔𝑠−𝑉𝑡)

𝑇𝑜𝑥𝐸01 . 𝑇0
−0.25. 𝑇𝑠𝑡𝑟𝑒𝑠𝑠 ………………………. 4.2

However, when the stress voltage is removed from the gate, H atoms in the traps can diffuse

back to the interface and repair the broken bond. This results in a decrease in the threshold volt-

age, thus termed the “recovery” stage. As illustrated in Figure 4-1, the iterative stress-recovery

processes lead to a saw-tooth variation of the threshold voltage throughout the device’s lifespan.

The final Vt increase taking both stress and recovery into account can be computed as:

∆𝑉𝑡 = ∆𝑉𝑡𝑠𝑡𝑟𝑒𝑠𝑠. (1 −
2𝜉1𝑇𝑜𝑥+√𝜉2𝑒

−𝐸𝑎
𝑘𝑇 𝑇0𝑇𝑠𝑡𝑟𝑒𝑠𝑠

(1+𝛿)𝑇𝑜𝑥+√𝑒
−𝐸𝑎
𝑘𝑇 (𝑇𝑠𝑡𝑟𝑒𝑠𝑠+𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦)

)... 4.3

Note that in equations 4.2 and 4.3, 𝑇𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 respectively denote the time under stress

and recovery. Other parameters are either constants or material-dependent variables and are

listed in Section 4.4.

75

Figure 4-1. NBTI degradation containing stress and recovery phases

That FinFET devices are more vulnerable to NBTI is generally attributed to their unique

non-planar architecture, which is visualized by Figure 4-2. As can be seen, compared to a tradi-

tional planar transistor, the FinFET structure is designed with additional fin sidewall surface with

higher availability of Si-H bonds [46][112], implying larger chances of forming interface traps

and consequently expediting the device degradation.

Si-Substrate

F
I
N Oxide

Gate

Fin
Body

Gate Stack

Fin Sidewall

Fin topwall

HFin

WFin

(a) Overview (b) Side view

Figure 4-2. FinFET transistor structure

The NBTI aging rate depends on multiple factors including both circuit parameters and

workload execution patterns. In general, it is acknowledged that voltage, temperature, and the

stress/recovery time have strong impact on the aging rate [18][106]. In this work, our proposed

In
cr

e
as

e
 in

 V
th

Time

Stress Recovery Stress

76

techniques significantly reduce the accesses to the target structures, thus lowering the localized

activity and temperature, which is beneficial in enhancing the structure durability.

4.2.2 Target GPU Architecture

The prevalence of unified programming languages (e.g., CUDA, OpenCL) has made the

general-purpose graphics processing unit a core component in a large variety of systems ranging

from personal computers to high-performance computing clusters. Therefore, it is highly im-

portant to alleviate the NBTI degradation on this ever increasingly important platform.

Figure 4-3 visualizes the architectural organization of a representative GPU. Note that we

follow the Nvidia terminology to depict the processor architecture. As can be seen, the major

component of a modern GPU is an array of Streaming Multiprocessors (SMs), each of which

contains a number of CUDA cores (SPs), load/store units and special function units (SFUs). A

CUDA core is responsible for performing integer ALU and floating point operations while the

SFUs are devoted to conducting transcendental operations such as sine, cosine, and square root.

Each stream multiprocessor also contains a register file, a shared memory and a level 1 cache

(usually including instruction/data/constant/texture caches) that are shared among all threads as-

signed to the SM. All stream multiprocessors connect to an interconnection network, which

transfers the memory requests/services between the SMs and the shared L2 cache.

An application developed in CUDA (or OpenCL) contains at least one kernel running on the

GPU. A typical kernel includes several blocks composed of substantial threads. During a kernel

execution, multiple blocks are assigned to an SM according to the resource requirement. A group

of threads from the same block form a warp treated as the smallest scheduling unit to be run on

the hardware function units in an SIMT fashion.

77

Figure 4-3. An illustration of typical GPGPU architecture

4.3 Mitigating the NBTI Degradation on GPU

As an emerging platform that targets for massively parallel computing domains, a modern

GPU is designed with several unique characteristics different from a regular CPU. In this section,

we concentrate on the warp scheduler equipped by each SM and the shared L2 cache, in order to

investigate the opportunities to slow down the aging on a GPU. By observing representative exe-

cution behaviors of a large collection of GPU applications, we propose a set of techniques em-

ploying the device heterogeneity to alleviate the NBTI degradation. As we will demonstrate

shortly, the proposed techniques do not introduce any additional component to the existing GPU

architecture, thus minimizing the hardware cost for the implementation.

4.3.1 Hybrid-device Warp Scheduler

To improve the thread-level parallelism (TLP) and maximize the execution throughput, a

modern GPU usually allows multiple warps to reside on the same streaming multi-processor and

Stream Multiprocessor 1 Stream Multiprocessor N…...

SP

…...

LD/ST
SFU

LD/ST

Register File

Shared Mem L1 Cache

Interconnection Network

L2 Cache

GDDR (global memory)

SP

SPSP

78

hides the execution latencies by switching among those resident warps. At any instant, a warp is

considered as ready for execution only when several constraints are simultaneously satisfied.

A first-order prerequisite is the functional correctness, which is secured by ensuring data de-

pendencies between warp instructions. When a warp cannot be dispatched because of unsatisfied

data dependency, it should wait until all of its operands are ready. A scoreboard hardware struc-

ture is responsible for keeping track of data dependencies in a modern GPU. In addition, warps

on a streaming multi-processor contend for limited functional units. When the dispatch port of

the functional unit a warp needs to use is not vacant, the warp cannot be issued even when its

data dependencies have been satisfied.

The warp scheduler is an SRAM hardware structure in charge of selecting candidates from

all resident warps to dispatch. For the purpose of high performance, a warp scheduler is capable

of dispatching one warp per clock cycle, requiring that scanning through all the scoreboard en-

tries and querying the dispatch ports of all functional units should be performed at each cycle

[52][58]. Figure 4-4 illustrates the high-level organization of a warp scheduler equipped in an

SM to elaborate the scheduling process. As shown in the figure, all entries, each of which stores

complete information of a warp instruction, are going through the conditions checking in parallel

in order to identify the candidates ready for execution. Note that to minimize the delay, the

scheduler must read the detailed information of a warp (warp ID, opcode, etc) while evaluating

the constraints so that it can dispatch warps as soon as they are ready. Selected warps are sent to

the appropriate function units according to the instruction opcode afterwards.

This particular design naturally inspires a technique to mitigate the NBTI degradation on the

scheduler. If the readiness of all warp instructions are known ahead via a certain “predicate”,

79

then only the entries with all constraints met are accessed, which in turn decreases the localized

activity and temperature, and improves the structure durability.

Load
Store
unit

Load
Store
unit

Load
Store
unit

Load
Store
unit

Load
Store
unit

…...

Lane 0 Lane 1 Lane N-1

Address coalescing unit Write back

Memory
Hierarchy

Conditions check && issue ready warps

Figure 4-4. The architecture of the warp scheduler

To justify the potential effectiveness of this strategy, we run a wide spectrum of GPU appli-

cations, aiming to observe typical behaviors on the warp scheduler. Figure 4-5 plots a snapshot

of the warp scheduler’s behavior when WP is running on a GPU in order to exemplify the activi-

ty on the scheduler. The horizontal axis corresponds to the elapsed time and the vertical axis rep-

resents the accumulative number of ready warps at each time interval. The number is collected

every 50 cycles. With this setting, the maximum number of ready warps cannot exceed 100 on

each sampling point considering that two warp instructions can be issued at each cycle. As can

be seen from the figure, there are a large amount of execution periods with number of ready

warps far less than the theoretical peak, implying a significant reduction in accesses to the

scheduler entries in potential. We generally observe that, at any given instant, less than 35% of

80

all the warps have the two prerequisites satisfied for all the tested benchmarks. This observation

confirms that there is large headroom for us to optimize the reliability on the warp scheduler.

Figure 4-5. A snapshot of the scheduler activity while running WP

Our proposed technique to enhance the durability of the warp scheduler stems from the

aforementioned fact at the first place. In order to identify the ready warps, the baseline scheduler

is decoupled into two components as visualized in Figure 4-6. By doing so, the prerequisites

checking is extracted from the original parallel accesses and is performed prior to obtaining the

detailed information of warp instructions. This checking operation outputs the ID of all available

candidates resided on the SM, triggering the consequent accesses to the hardware structure which

stores all necessary information to dispatch ready warps based on the specific scheduling policy.

If a large amount of resident warps are eliminated from the candidate list due to the violation of

scheduling constraints, substantial accesses to the scheduler hardware (i.e., the structure at the

right side in Figure 4-6) can be avoided.

Periods with low scheduler activity

81

Operand Ready?

Yes

No

Yes

Yes

…
...

Reconvergence
Stack

FU free?
Other warp
information

Function Units

Ready warps

Warp Scheduler

Planar

FinFET

No

No

00110100010….

00110111010…

…
...

00110111010…

WID:1 op: cvt

WID:2 op: ld

WID:5 op: sine

Yes

Figure 4-6. The architecture of the hybrid-device 2-stage scheduler

A non-trivial issue requiring careful consideration in this particular scheduler design is what

information should be checked in the first stage. Theoretically, evaluating more scheduling pre-

requisites would filter a larger number of accesses since only the common set of candidates that

satisfy each individual constraint are allowed to continue to the second stage. However, for cer-

tain conditions, checking them in the first stage would lead to undesirable execution behavior

because their evaluation results might be changed in the following cycle. The checking on func-

tion units’ (FU) availability falls into this category. This is because the FU status is updated eve-

ry cycle and a function unit that appears to be free in the current cycle is not necessarily available

in the following cycle, if it is assigned to another warp instruction. Therefore in this work, we

only check the data dependency in the first stage. As we will demonstrate in section 4.5, this still

results in sufficiently high filter rate for most benchmarks and largely alleviates the NBTI degra-

dation.

On the other hand, considering that the failure of any structure located on the critical path

will prevent the entire chip from working correctly, the component where the condition evalua-

82

tions are conducted tends to become the bottleneck from the perspective of reliability, since all of

its entries still need to be scanned every cycle. To overcome this problem, we propose to manu-

facture this component with the more NBTI-tolerable planar devices. This hybrid-device design

effectively leverages the benefits of both devices, aiming to enhance the processor durability.

Note that the planar-transistor-made component recording the data dependency and function unit

availability is unlikely to suffer from early failure because it only requires a bit for each entry

and thus consume negligible power. Also recall that this design is technically feasible due to the

good compatibility between FinFET and planar processes as demonstrated in patents [20][36].

Another naturally arising concern with this design is the performance degradation resulting

from the sequential scheduler access. Nevertheless, as we will demonstrate in section 4.5, the

performance overhead for most applications is fairly small because only actual accesses to the

FinFET part of the scheduler introduce an extra cycle delay. In scenarios where none of the resi-

dent warps pass the constraint checking, the execution latency is not impacted.

4.3.2 Hybrid-device Sequential-access L2 Cache

It is widely acknowledged by the high performance computation (HPC) community that

memory bandwidth is the main bottleneck in a large number of GPU applications. Due to this

reason, the shared L2 cache is becoming an increasingly important component on a modern GPU

to reduce the contention on the global memory bandwidth [10], implying that improving the reli-

ability of the L2 cache is of great significance to ensure endurable operation of the GPU.

Typically, the L2 cache installed on a contemporary GPU is designed as a set-associative

cache with a reasonable size, serving memory requests sent from the stream multiprocessors. To

shorten the execution delay, all ways in the tag array and data array of the selected cache set are

83

searched in parallel and if a stored tag equals to the tag in request, the matching cache block

from the data array is returned. However, this access procedure is intrinsically unfriendly to reli-

able operation since it may introduce substantial unnecessary cache accesses in case the request-

ed data block is not present. For example, the application Blackscholes demonstrates a close-to-

100% miss rate on the L2 cache, meaning that approximately all the memory requests that are

missed in the L1 cache need to be transferred to the global memory eventually. In other words,

accesses to the L2 cache are completely unnecessary.

Based on this observation, it is straightforward to realize that filtering out the accesses re-

sulting in cache misses is a simple yet effective approach to slow down the NBTI aging on the

L2 cache. Since the data array is orders of magnitude larger than the tag array in both area and

power consumption, we first concentrate on the optimization of the data array, which is achieved

by applying a technique similar to that developed for the warp scheduler. Specifically, we serial-

ize the parallel tag/data access into a sequential procedure [31] in which the tag array in the se-

lected cache set is probed first and only in case a matching tag is found, is the corresponding

block in the data array accessed. This particular design, as visualized by Figure 4-7, reduces the

accesses to the data array in two-manners, (1) memory requests that result in cache misses (i.e.,

no matching tag is found) do not generate consequent accesses to the data array, and (2) only the

cache block corresponding to the matching tag, instead of all ways in the set, is read to respond

the memory request. With this technique, we expect that the accesses to the data array should be

considerably reduced, thus the NBTI aging is largely suppressed due to the decreasing activity

and temperature.

On the other hand, to prevent the tag array from becoming the reliability bottleneck, we ex-

ploit the device heterogeneity and propose to build the tag array with planar transistors. As we

84

will show in later sections, this can effectively leverage the planar device’s advantage in NBTI-

tolerance and guarantee reliable operations on the L2 tag array throughout the expected lifespan.

Also note that in the remainder of this chapter, we may interchangeably use the terms planar-tag

L2, hybrid-device L2, and sequential-access L2 to refer to this design.

L2$s Tag

(Planar)

Access data array

(FinFET)

hit miss

forward mem. req.

to DRAM

Interconnect_L2_queue

memory request popped

Figure 4-7. Workflow of the hybrid-device sequential-access L2 cache

4.4 Experimental Setup

We validate the proposed techniques using a modified GPGPU-Sim 3.1 [23]. GPUWattch

[68] and HotSpot 5.0 [16] are integrated in the simulator for power and temperature calculation,

respectively. The chip floorplan required by HotSpot is calibrated against the one used in a re-

cent paper focusing on GPU thermal management [79]. The target architecture is configured

based on a Fermi GTX 480 [12] that is widely used in many high-performance computers. Table

4-1 lists the detailed architectural parameters for our simulation.

To evaluate the effectiveness of our techniques in practice, we choose a set of programs

from several benchmark suites [10][23][29], representing typical HPC applications derived from

different domains. A full list of applications used in this work is given in Table 4-2. For each

85

program, we run them till completion and use the execution statistics to mimic distinct workload

patterns. Specifically, to model the NBTI degradation after a 7-year lifespan, we extrapolate the

collected activity to represent the load in 7 years under steady temperature. We report the final

increase in the critical path delay as a measurement of the NBTI aging on the hardware.

Table 4-1. Architectural parameters for the GPU in study

Parameter Values

#SM 15

#SP 32/SM

LDST units 16/SM

Shared memory 32KB/SM

L1 data cache 16KB/SM

Scheduler Greedy than oldest (GTO)

Core frequency 1400MHz

Interconnection 1 crossbar/direction

L2 cache
768KB: 128 cache line size, 16-way

associativity. Access latency 5 cycles

L2 frequency 700MHz

Memory
FR-FCFS scheduling, 64 max. re-

quests/MC

SIMD lane width 16

Threads/warp 32

Technology 22nm

Equations 4.2 and 4.3 described in section 4.2.1 are used to compute the variation in the

threshold voltage, which in turn translates to the delay increase via equation 4.1. We set the pa-

rameters referred by the equations according to recent studies on device features [17][28][97].

Table 4-3 lists the specific parameter values used in this chapter.

4.5 Result Analysis

In this section, we demonstrate the experimental results corresponding to each technique and

analyze them in detail. We first demonstrate the improvement in mitigating NBTI degradation

when our techniques are adopted and then present the performance overhead afterwards.

86

Table 4-2. Benchmarks used in this work

Application Domains

1 B+tree Search

2 Backprop Pattern Recognition

3 Barneshut N-body Simulation

4 BFS Graph Algorithms

5 Blackscholes Financial Engineering

6 Gaussian Linear Algebra

7 Heartwall Medical Imaging

8 Hotspot Physics simulation

9 LavaMD Molecular Dynamics

10 LPS 3D Laplace Solver

11 Myocyte Biological Simulation

12 NN Neural Network

13 NQU N-Queen Solver

14 NW Bioinformatics

15 WP Weather Prediction

Table 4-3. Parameter values for computing NBTI

Parameters FinFET value Planar value Description

Tox 1.2nm 1nm Effective oxide thickness

Vt 0.179v 0.3v Threshold voltage

Eo 0.335v/nm 0.12v/nm Electrical field

Fixed parameters

q 1.602×10-19 Electron charge

Vdd 0.9v Operating voltage

Ɛox 1.26×10-19F/m Permittivity of gate oxide

ξ1 0.9

Other constants

ξ2 0.5

k 8.6174 × 10-5 ev/K

δ 0.5

T0 10-8 s/nm2

4.5.1 Warp Scheduler

Figure 4-8 demonstrates the NBTI degradation in terms of the increase in scheduler delay on

both the baseline GPU and the one with hybrid-device 2-stage warp scheduler. Note that in the

figure, the bars marked by “2-stage” refer to the proposed design. A higher delay increase indi-

cates more severe NBTI degradation. As can be seen from the diagram, the aging due to NBTI

87

on the scheduler hardware is largely suppressed for all benchmarks under investigation when the

proposed technique is applied. On average, the hybrid-device 2-stage scheduler presents merely

2.4% longer delay after the designed service life, reduced from 7.5% on the baseline GPU.

While the general improvement on the durability is significant, however, it is notable that

the benefits corresponding to different workloads are obviously distinct. For example, the load

represented by NN causes the scheduler delay to be prolonged by around 8.4% after 7 years ser-

vices on the baseline GPU. With the adoption of the proposed technique, this degradation can be

reduced to 1.96%. On the other hand, an execution pattern similar to Backprop prevents the

scheduler obtaining the same amount of benefit from the technique. Specifically, the scheduler

still suffers from 2.9% longer delay after employing the hybrid-device design, while the baseline

platform shows 8.6% longer delay that is similar to the degradation corresponding to NN.

Figure 4-8. The NBTI degradation on the warp scheduler

Considering the exponential relationship between temperature and NBTI degradation, we

collect the localized temperature on the scheduler hardware and demonstrate it in Figure 4-9 for

further analysis. Not surprisingly, although the proposed technique can significantly cool down

the scheduler in most cases, we note that the temperature reductions are apparently different

among the evaluated programs, which is similar to the observation made from Figure 4-8. When

0

2

4

6

8

10

D
el

ay
 in

cr
ea

se
 (

%
)

baseline 2-stage

88

executing NN, the temperature on the scheduler is reduced by up to 15°C, whereas the tempera-

ture reduction for Backprop is less than 12°C. To gain more insights into the reason behind this

phenomenon, let us recall the rationale of the 2-stage scheduler that is described in section 4.3.2.

The essential reason for the reduced scheduler accesses is that a large amount of prerequisite

evaluations turn out to be false, thus the unnecessary operations on the “unready warps” are

avoided. In other words, how much benefit can be obtained from the proposed technique largely

depends on the amount of accesses that can be filtered. Table 4-4 lists the percentage of accesses

saved by the constraint checking stage. As can be seen, the data dependency checking stage can

generally filter out more than 92% of accesses to the scheduler, thus considerably enhancing the

durability of the hardware. In particular, we note that 76.9% of scheduler accesses when execut-

ing Backprop are dispensable, while for NN this ratio rises up to 97.4%, implying higher possi-

bilities to lower the power and temperature on the scheduler.

Figure 4-9. The steady temperature on the warp scheduler

We also plot the power consumption of the scheduler in Figure 4-10 in order to visualize the

changes on the scheduler activity. Clearly, the hybrid-device 2-stage scheduler significantly re-

duces the scheduler power for all evaluated benchmarks, which in turn lowers the localized tem-

perature and improves the hardware durability.

315

320

325

330

335

Te
m

p
e

ra
tu

re
 (

K
)

baseline 2_stage

89

Table 4-4. Filter rate on the first stage of warp scheduler

Application Filter Rate

B+tree 75.82%

Backprop 76.93%

Barneshut 91.55%

BFS 98.17%

Blackscholes 88.74%

Gaussian 98.82%

Heartwall 88.46%

Hotspot 86.5%

LavaMD 99.21%

LPS 90.59%

Myocyte 99.85%

NN 97.41%

NQU 98.2%

NW 97.70%

WP 99.49%

Geo-mean 92.15%

Figure 4-10. The power consumed by the warp scheduler

The extra cycle introduced by the 2-stage scheduler is likely to result in undesirable perfor-

mance overhead for the program execution. Figure 4-11 shows the performance in terms of nor-

malized IPC (normalized to the baseline GPU) of all benchmarks running on a GPU with the 2-

stage scheduler. It is straightforward to note that the performance degradation is distinct among

the program collection. In this subsection, we briefly analyze the possible impact on the perfor-

mance due to the extra cycle and explain the different performance degradation.

0

2

4

6

8

P
o

w
e

r
(W

)

baseline 2_stage

90

Figure 4-11. Normalized IPC on the GPU with 2-stage scheduler

The GPU’s massive parallelism may be able to hide part of the extra latency during the exe-

cution depending on the features of applications. We use the terms “longest warp” and “longest-

warp chain” to help explain the latency manifested in the results. We define “longest warp” as

the warp with the longest running time during a kernel launch and “longest-warp-chain” as the

set of longest warps in each of the sequence of kernel launches in the lifetime of an application.

In a typical GPU application, the running time of a longest-warp chain is the sum of execution

latencies of all warps in the chain because a) when a kernel is launched, all its warps are started

simultaneously and b) a kernel is not launched until all warps of the previous kernel launch com-

plete. In other words, latency on the longest warp could not be hidden as easily as that on other

warps. Longest warps also do not overlap temporally. For each longest warp we can compute its

average latency as:

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑ 𝐶𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

 ………………………………………………………………….……. 4.4

where N is the number of kernel launches and Cn and In are respectively the number of cycles

and warp instructions of the longest warp in each kernel launch.

0.8

0.84

0.88

0.92

0.96

1

1.04

N
o

rm
al

iz
e

d
 IP

C

normalized IPC indicator

91

The In instructions in a kernel launch are the instructions issued to and executed by a warp.

The extra cycle introduced to the scheduler will be added before each of the instructions is exe-

cuted. Since the instructions are executed in-order, this is equivalent to adding ∑ 𝐼𝑛
𝑁
𝑛=1 extra cy-

cles to the entire longest-warp chain. The average latency of the warp after adding the extra cy-

cles should become:

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑒𝑙𝑎𝑦𝑒𝑑 =
∑ 𝐶𝑛

𝑁
𝑛=1 +∑ 𝐼𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

…………………………………………………..…. 4.5

The overhead indicators can be deducted from the two latencies shown above:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝐼𝑛𝑑 =
∆𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑒𝑙𝑎𝑦𝑒𝑑−𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

∑ 𝐶𝑛
𝑁
𝑛=1 +∑ 𝐼𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

−
∑ 𝐶𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

∑ 𝐶𝑛
𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

=

∑ 𝐶𝑛
𝑁
𝑖=1 +∑ 𝐼𝑛−∑ 𝐶𝑛

𝑁
𝑖=1

𝑁
𝑖=1

∑ 𝐶𝑛
𝑁
𝑖=1

=
∑ 𝐼𝑛

𝑁
𝑖=1

∑ 𝐶𝑛
𝑁
𝑖=1

=
1

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
…………………………………………..……….. 4.6

The normalized IPC and the one derived from the overhead indicator are both plotted in

Figure 4-11. As the figure shows, they are closely correlated. The average latencies and the

overheads are determined by the behaviors of the longest warps which are in turn closely related

to the characteristics of individual applications. For example, B+tree involves a kernel launch

with 48 warps on each SM and initiates many global memory transactions (159.26 per cycle). Its

longest warp has an average delay of more than 100 cycles. NQU, on the other hand, has a much

smaller average delay (smaller than 10), because it generates much fewer global memory trans-

actions (only 0.018 per cycle) and each SM executes only 8 warps. With such few memory

transactions and fewer warps, each of the warps, including the longest warp, does not have to

wait for long-delay memory operations while sharing more computational resources. These dif-

ferent memory request intensities result in average latencies of the longest warp chains as 41.7

92

and 6.76 cycles for B+tree and NQU, respectively. Consequently, we observe apparently differ-

ent performance losses for these two benchmarks.

As shown in Figure 4-11, on average, the overhead is less than 4% across the benchmark

collection. Therefore, based on the evaluation results, it is safe for us to conclude that the hybrid

2-stage scheduler is effective in significantly enhancing the device’s durability with mild per-

formance overhead. Obviously, this corroborates the benefit of exploiting device heterogeneity

in future processors made of emerging transistor devices.

4.5.2 L2 Cache

We now shift our concentration to the L2 cache. For this structure, we first focus on its data

array. Figure 4-12 shows the NBTI degradation on the L2 cache data array on both the baseline

GPU and the GPU with a planar-tag sequential-access L2. Note that the latter one is labeled as

“with_Ptag” in the figure, where the capital letter P stands for planar device. As shown in the

figure, the general trend is similar to what is observed in previous section that the proposed tech-

nique is capable of largely slowing down the aging due to NBTI on the target component

throughout the service life. On average, the hybrid-device design reduces the delay increase from

6.1% in the baseline situation to 2.1%.

We also note that the improvement on the durability is different among the programs in

study. For example, the applications Barneshut and LPS cause approximately the same level of

NBTI aging on the baseline platform. However, with the hybrid-device L2 cache, running LPS

apparently leads to less significant NBTI degradation (2.1%) compared to the execution of

Barneshut (2.8%). This is resulted from the distinct temperature variations on the L2 while run-

ning these programs. Figure 4-13 shows the steady L2 temperature for both the baseline and our

93

proposed design. From the figure, we note that on the GPU with the hybrid-device design, run-

ning LPS makes the L2 cache much cooler compared to the execution of Barneshut. The reason

is as follows. Similar to accessing the 2-stage warp scheduler, memory requests sent to the L2

cache are served in a sequential tag-data access pattern, while the tag probing can eliminate the

unnecessary accesses to the data array (i.e., cache misses). In other words, the different amount

of cache accesses that are avoided are the essential reason for the distinct temperature and relia-

bility changes.

Figure 4-12. NBTI degradation on the L2 data array

Figure 4-13. Steady temperature on the L2 data array

Figure 4-14 and Figure 4-15 respectively plot the L2 cache miss rates and comparison of L2

power for different applications. As can be seen, LPS demonstrates an L2 miss rate of 36%, thus

0
1
2
3
4
5
6
7
8

D
el

ay
 in

cr
ea

se
 (

%
)

baseline with_Ptag

310

315

320

325

330

335

Te
m

p
e

ra
tu

re
 (

K
)

baseline with_Ptag

94

resulting in impressive reduction in L2 power/temperature and great reliability enhancement as a

consequence. For Barneshut, most of the accesses to the data array cannot be avoided because of

the low L2 miss rate (4.7%). This eventually leads to the relatively smaller improvement on the

NBTI degradation. Other benchmarks with high L2 miss rates including Blackscholes also pre-

sent relatively larger improvement on device durability compared to those with low L2 miss rates

such as NN. On the other hand, it is important to keep in mind that even for a cache hit, only the

matching block is accessed afterwards. For caches with high associativity, which is the typical

design in many modern processors, this provides another fold of reduction in the localized power

and temperature. Due to this reason, the power consumption of L2 for all benchmarks is consid-

erably reduced while running with sequential-access cache as shown in Figure 4-15.

Figure 4-14. L2 miss rate of all evaluated benchmarks

Figure 4-15. Power consumption of the L2 data array of all evaluated benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

L2
 m

is
s

ra
te

0

2

4

6

8

10

12

14

P
o

w
e

r
(W

) baseline with_Ptag

95

The reliability of the tag array is becoming a major concern in the proposed cache design

since the accesses to this structure have not been reduced. Fortunately, due to higher NBTI-

immunity manifested by planar transistors and the small power consumed by the tag array, the

L2 tag is not likely to suffer from significant NBTI degradation. Figure 4-16 compares the NBTI

degradation in the tag array with both designs, which is essentially determined by the different

NBTI tolerance of FinFET and planar transistors. As can be seen, the tag array made of planar

device leads to much less degradation compared to the baseline platform, implying more endura-

ble operation in the service life.

Figure 4-16. NBTI degradation on the L2 tag array

Another concern that deserves evaluation is the possible performance loss resulting from the

extra delay spent on the cache tag probing. We demonstrate the normalized IPC of all programs

with the sequential-access L2 cache in Figure 4-17 and find that the performance degradation for

all benchmarks in investigation is within 1.5%. This does not go beyond our expectation due to

the following reasons. First, only a cache hit introduces an extra cycle delay since misses will be

promptly forwarded to the lower memory hierarchy after the tag probing, thus not wasting any

cycles. Second, even an L2 cache hit takes multiple cycles to complete. This includes the 5 cy-

cles to access the data array and the time spent on the interconnection network. Therefore, the

0

2

4

6

8

10

12

D
el

ay
 in

cr
as

e
(%

)

baseline with_Ptag

96

extra one cycle does not weigh heavily and will not evidently impair the overall performance.

Figure 4-18 plots the average L2 hits per cycle (i.e., actual accesses to the data array) for the

program collection in order to briefly explain the different impacts on the performance caused by

the extra cycle. As can be observed, applications such as Blackscholes, Myocyte, NQU and NW

have extremely low L2 hits intensity, so their performance is not notably degraded (close to zero

loss) with the sequential-access L2 cache. On the contrary, Barneshut and Gaussian result in

more frequent L2 hits, thus their execution speed is lowered by a relatively higher percentage

(1.5%). Nonetheless, based on the evaluations made on the L2 cache, it is still reasonable for us

to conclude that the proposed hybrid-device sequential-access design can significantly slow

down the NBTI aging on the L2 cache with slight performance overhead.

Figure 4-17. Normalized IPC with the sequential-access L2 cache

Figure 4-18. L2 hits/cycle of all evaluated benchmarks

0.9

0.92

0.94

0.96

0.98

1

1.02

N
o

rm
al

iz
e

d
 IP

C

with_Ptag

0

0.4

0.8

1.2

1.6

2

L2
 h

it
s/

cc
le

97

4.6 Related Work

On the first aspect, NBTI has been recognized as a major reliability concern as the semicon-

ductor industry shifts into the deep submicron era. To mitigate the NBTI degradation and en-

hance the device’s durability, researchers have conducted substantial works in the past years.

Abella et al. [18] develop a set of techniques to relieve the NBTI aging for typical structures in a

modern CPU. For combinational logic, they insert desired vectors as inputs to the structures for

recovery. To alleviate the aging for memory-like components, they propose a strategy to avoid

the bias on different bits. Ramakrishnan et al. [85] introduce a similar approach to reduce the

NBTI wearout in FPGAs by loading the reversing bit patterns in idle periods. Gunadi et al. [47]

introduce a scheme called Colt to balance the utilization of devices in a processor for reliability

improvement. Specifically focusing on the storage components, Shin et al. [95] propose to proac-

tively set the PMOS transistors to recovery mode and move data around free cache arrays during

operation.

Converse to these works which attempt to manipulate the time under stress and recovery,

Tiwari et al. [106] propose a framework named facelift to combat NBTI degradation by adjusting

higher level parameters including operating voltage, threshold voltage and the application sched-

uling policy. Fu et al. [42] concentrate on the NBTI mitigation in presence of process variation.

They effectively utilize the interplay between NBTI aging and process variation to prevent early

failure of specific structures. To enhance the reliability of storage cells, Abella [19] proposes to

use NAND gates instead of inverters to reduce the average degradation on each PMOS.

There are few works aiming to alleviate the NBTI aging on GPUs in the literature. Rahimi et

al. [84] focus on the GPUs designed in VLIW fashion and present a technique to slow down the

NBTI aging for this particular architecture. By exploring the unbalanced usage among function

98

units within a VLIW slot, their proposed strategy can uniformly assign the stress among all com-

putation units and achieve an even aging rate.

On the second aspect, as FinFET is widely considered as an attractive replacement of planar

transistors for the next few technology nodes, studies focusing on the reliability of this new

structure are becoming fairly important. Lee et al. [67] investigate the NBTI characteristics of

SOI and body-tied FinFETs and observe that a narrow fin width leads to more severe degrada-

tion than a wider fin width. Crupi et al. [34] compare the reliability of triple-gate and planar

FETs. The author show that the behavior of time-dependent dielectric breakdown (TDDB) is not

changed on the triple-gate architecture under different gate voltages and temperatures. This is

also corroborated in the work conducted by Groeseneken et al. [46], which further demonstrates

that FinFET devices tend to suffer from more severe NBTI degradation. In [109], Wang et al.

analyze the soft-error resilience of FinFET devices and conclude that a FinFET circuit is more

reliable than a bulk CMOS circuit in terms of soft-error immunity.

Finally, on the third aspect, exploiting device-level heterogeneity has been widely used for

performance and energy efficiency optimization in computer architecture study. Saripalli et al.

[92][93] discuss the feasibility of technology-heterogeneous cores and demonstrate the design of

mixed-device memory. Wu et al. [113] present the advantage of hybrid-device cache. Kultursay

[62] and Swaminathan [102] respectively introduce a few runtime schemes to improve perfor-

mance and energy efficiency on CMOS-TFET hybrid CMPs. For the optimization on GPUs,

Goswami et al. [44] propose to integrate resistive memory into the compute core for reducing the

power consumption on GPU register file.

99

Our work deviates from the aforementioned studies in that we aim to alleviate the NBTI

degradation of GPUs made of FinFET from the architectural level. To the best of our knowledge,

this work is the first attempt to address this increasingly important problem.

4.7 Conclusion

FinFET technology is recognized as a promising substitute of conventional planar devices

for building processors in the next decade due to its better scalability. However, recent experi-

mental studies demonstrate that FinFET tends to suffer from more severe NBTI degradation

compared to the planar counterpart. In this work, we focus on the NBTI reliability issue of a

modern GPU made of FinFET and propose to address this problem by exploiting the device het-

erogeneity. We introduce a set of techniques that merely involve minor modifications to the ex-

isting GPU architectures. The proposed techniques leverage planar devices’ higher immunity to

NBTI and are effective in slowing down the aging rate of the device. Our evaluation results

demonstrate that the minor changes to the warp scheduler and the L2 cache can considerably al-

leviate the degradation due to NBTI with slight performance overhead.

100

CHAPTER 5. SUMMARY AND FUTURE WORK

5.1 Summary

The persistent pursuit of building faster processors with smaller and power-saving transis-

tors has driven the development of integrated circuit in the past decades. However, the increas-

ingly important power-wall issue, along with the physical limitation of conventional devices, has

posed a significant challenge to the semiconductor industry which aims at continuing the fast

processor evolution in the ensuing decade. To overcome this daunting conundrum, researchers

have proposed several solutions that can alleviate the negative impacts due to those difficulties.

Among all the solutions, exploiting heterogeneity in different stages of processor manufacturing

and operation is widely acknowledged as a promising one. While the diversities in processor ar-

chitecture and manufacturing materials provide opportunities for exploiting the heterogeneity,

they also introduce a set of unprecedented challenges that requires effective solution. This re-

search presents a series of studies addressing these problems.

First, we explore a vast design space in order to select the most promising configurations for

future chip multi-processors when both architectural- and device-heterogeneity are taken into

account. By comprehensively investigating the impact of varying configurations on important

design goals including performance, energy-efficiency and cost-efficiency, we corroborate the

advantage of architectural asymmetry and mixed-device processors over their homogeneous

counterpart. Moreover, we propose the concept of two-fold heterogeneity with which processor

cores of different architectures are made of distinct materials. The evaluation results demonstrate

that such a design paradigm appears to be the most attractive one for future CMPs as it effective-

ly leverage the benefits of both heterogeneities.

101

Second, we focus on single-ISA heterogeneous CMP platforms and aim at addressing the

scheduling issue on such hardware. Implementing a heterogeneity-aware task scheduler is one of

the key problems in studies related to heterogeneity because the effectiveness of the scheduler

essentially determines how much benefit can be obtained from the underlying asymmetric hard-

ware. While there are already some works concentrating on this issue in the literature, we ad-

dress it from a different perspective. In particular, we observe that scheduling decisions which

maximize the throughput do not necessarily lead to the most energy-saving execution. Based on

this fact, we propose to employ an advanced statistical tool to extract a set of simple “IF-ELSE”

conditions to guide the dynamic task scheduling. The proposed technique demonstrates good

scalability and is fairly easy to implement. Our evaluation results prove that the rule-set guided

scheduler can effectively decrease the total energy consumption while delivering similar perfor-

mance to the existing performance-aimed schedulers.

The third study presented in this research pays attention to the device heterogeneity. While

FinFET has been considered as an attractive substitute for conventional planar transistors for

building processors in the sub-32nm era, recent experimental studies show that FinFET tends to

suffer from more serious NBTI degradation compared to its planar predecessor. Taking this into

consideration, we propose to mitigate the NBTI degradation on many-core (GPU) processors

made with FinFET through exploiting the device heterogeneity. Specifically, we demonstrate

that the activity of some important components on representative GPUs can be largely degraded

by small filter-like structure. In this situation, using small filters made with NBTI-tolerable pla-

nar transistors to reduce the accesses to FinFET main components is a straightforward solution to

slowing down the NBTI aging on the FinFET structures. We present hybrid-device designs of

two important components (i.e., warp schedulers and L2 cache) on top of this principle and

102

demonstrate that this technique is effective in alleviating the NBTI degradation with slight per-

formance overhead for FinFET-made GPUs.

5.2 Future Work

While the research presented in this dissertation focuses on both CPU and GPU, the fused

CPU-GPU platform (e.g., the APU released by AMD), which also serves as another important

heterogeneous architecture, is not discussed here. In the near future, I will make a concentrated

shift to this platform and conduct further investigations. With the prevalence of cross-platform

programming languages such as OpenCL, it becomes possible for programmers to implement

general-purpose applications on the GPU where the execution can benefit from massive thread-

level parallelism (TLP). Therefore for these programs, appropriate GPU implementations

demonstrate dramatic performance improvement compared to the corresponding CPU version.

As a consequence, GPUs are now widely equipped in high-performance computers to boost the

computation capability. On a CPU-GPU heterogeneous platform, nevertheless, this implies that

the integrated graphics processing unit can be used concurrently with the CPU for program exe-

cution and improve the performance.

On the other aspect, similar to existing chip multi-processors, the CPU-GPU architecture re-

quires appropriate management for the shared resource in order to deliver the optimal perfor-

mance or energy-efficiency. Resources that are shared between the two components depend on

specific processor architectures. For example, on an AMD APU, the CPU and GPU have their

dedicated cache hierarchies and only the memory controller is shared; in contrast, an Intel Ivy

Bridge processor includes a shared last-level cache (LLC) in addition to the memory controller

between two components. Nevertheless, care should be taken when both the CPU and GPU are

running programs since contention on the shared cache or memory bandwidth may significantly

103

impair the performance of a single program. Therefore, shared resource management and alloca-

tion is of great importance for the performance optimization on CPU-GPU architectures.

Based on the above analysis, we will conduct the following potential research work on the

CPU-GPU platform.

The first study is on the workload partitioning. As the GPU is integrated on the same die

where the CPU is installed, the overhead due to communications between the two components

has been minimized and thus the CPU and GPU can cooperate with each other more tightly. Tak-

ing this into consideration, it is reasonable to divide a task and assign appropriate shares of work

amounts to the two computing units for execution. Obviously, such a strategy yields more effec-

tive usage of the system computation resources and accordingly delivers better performance. To

achieve this goal, a mechanism which determines the optimal workload distribution between the

CPU and GPU is in high demand. Overestimating the computing capability of one side may lead

to an unbalanced task assignment and the relatively slow device becomes the bottleneck as a

consequence. The statistical tools introduced in section 3.2 can be employed to address this prob-

lem. Namely, we train a model to bridge the gap between the execution behaviors from both

sides and the total run time. After doing this, when a new program (or a new iteration of an exist-

ing program) is ready for scheduling, the model predicts the most appropriate amount of work

given to the CPU and GPU, thus delivering the optimal performance.

The second investigation will focus on the shared resource. The management of shared last-

level cache and memory bandwidth has been extensively discussed in the context of convention-

al chip multiprocessors. On the emerging CPU-GPU platform, this becomes even more important

because of the distinctive execution behaviors of programs running on the GPU. As described

104

earlier, applications running on the graphics processing unit generally spawn a large number of

concurrent threads, implying substantial memory requests to the shared LLC and DRAM. Never-

theless, this does not necessarily mean that more cache space and memory bandwidth should be

reserved for the GPU. The reason is that general-purpose programs running on a GPU are able to

hide the memory latency via thread-level parallelism; in this situation, blindly increasing the

share of cache space or DRAM bandwidth to the GPU may significantly degrade the perfor-

mance of programs running on the CPU, while delivering slight performance benefit to the GPU

application. As a consequence, we need to investigate the impact of resource contention on the

performance of the CPU and GPU, respectively, after which we are capable of developing a

mechanism that appropriately manages the shared resource for optimal performance and desira-

ble quality of service.

105

REFERENCES

[1] AMD Corporation. AMD Accelerated Processing Units.

 http://www.amd.com/us/products/technologies/fusion/Pages/fusion.aspx.

[2] ARM Corporation. Big.Little Processing.

 http://www.arm.com/products/processors/technologies/bigLITTLEprocessing.php.

[3] Intel Corporation. 3rd Generation of Intel Core i7 Processor.

http://ark.intel.com/products/family/65505.

[4] Intel Corporation. 4th Generation of Intel Core i7 Processor.

http://ark.intel.com/products/family/75023.

[5] Intel Corporation. High-K and Metal Gate Transistor Research.

 http://www.intel.com/pressroom/kits/advancedtech/doodle/ref_HiK-MG/high-k.htm.

[6] Intel 64 and IA-32 architectures software developers manual volume 3: system program-

ming guide. Oct. 2011.

[7] Intel Corporation. Intel's revolutionary 22nm transistor technology. May 2011.

[8] International Technology Roadmap for Semiconductors. http://www.itrs.net/.

[9] Modified SPLASH-2 benchmarks. http://www.capsl.udel.edu/splash/.

[10] Nvidia Corporation. CUDA C Programming Guide.

[11] Nvidia Corporation. CUDA Computing SDK 4.2.

[12] Nvidia Corporation. GTX 480 Specifications.

 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications.

[13] Nvidia Corporation. Tegra 3 super chip processors.

 http://www.nvidia.com/object/tegra-3-processor.html.

[14] Standard Performance Evaluation Corporation. SPEC CPU 2006.

[15] http://www.eetimes.com/document.asp?doc_id=1264668.

[16] Hotspot 5.0 Temperature Modeling Tool. http://lava.cs.virginia.edu/HotSpot.

[17] Predictive Technology Model. http://ptm.asu.edu.

http://www.arm.com/products/processors/technologies/bigLITTLEprocessing.php
http://www.intel.com/pressroom/kits/advancedtech/doodle/ref_HiK-MG/high-k.htm
http://www.nvidia.com/object/tegra-3-processor.html
http://ptm.asu.edu/

106

[18] J. Abella, X. Vera, and A. Gonzalez. Penelope: The NBTI-aware processor. In Proceed-

ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), Dec. 2007.

[19] J. Abellea, X. Vera, O. Unsal, and A. Gonzalez. NBTI-resilient memory cells with NAND

gates for highly-ported structures. In Workshop on Dependable and Secure Nanocompu-

ting, Jun. 2007.

[20] B. A. Anderson, A. J. Joseph, and E. J. Nowak. Integrated circuit including FinFET RF

switch angled relative to planar MOSFET and related design structure. U.S. Patent

8125007 B2, Feb. 2012.

[21] A. Asenov, C. Alexander, C. Riddet, and E. Towie. Predicting future technology perfor-

mance. In Proceedings of 50th Design Automation Conference (DAC), Jun. 2013.

[22] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of performance asymmetry

in emerging multicore architectures. In ISCA, Jun. 2005.

[23] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing CUDA Workloads

Using a Detailed GPU Simulator. In ISPASS, 2009.

[24] M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous Multiproces-

sor Architectures. In CF, May 2006.

[25] C. Bienia, S. Kumar and K. Li. PARSEV vs. SPLASH-2: a quantitative comparison of two

multithreaded benchmark suites on chip-multiprocessors. In IISWC, 2008.

[26] C. Bienia, S. Kumar, J. P. Singh and K. Li. The PARSEC benchmark suite: characteriza-

tion and architectural implications. In PACT, Oct. 2008.

[27] Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. Classification and Regression

Trees, Wadsworth Press, 1984.

[28] S. Chaudhuri, and N. K. Jha. 3D vs. 2D analysis of FinFET logic gates under process vari-

ations. In ICCD, Oct. 2011.

[29] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia:

A Benchmark Suite for Heterogeneous Computing. In IISWC, Oct. 2009.

[30] J. Chen and L. K. John. Efficient program scheduling for heterogeneous multi-core proces-

sors. In DAC, Jun. 2009.

[31] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for high perfor-

mance energy efficient non-uniform cache architectures. In Proceedings of International

Symposium on Microarchitecture (MICRO), Dec. 2003.

107

[32] J. P. Colinge, "Multiple-gate SOI MOSFETs", Solid-State Electronics, vol. 48, no. 6, June

2004.

[33] K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. Scheduling heterogene-

ous multi-cores through performance impact estimation. In ISCA, Jun. 2012.

[34] F. Crupi, B. Kaczer, R. Degraeve, V. Subramanian, P. Srinivasan, E. Simoen, A. Dixit, M.

Jurczak, and G. Groeseneken. Reliability comparison of triple-gate versus planar SOI

FETs. In IEEE Transactions on electron devices, vol. 53, no. 9, Sept. 2006.

[35] H. F. Dadgour and K. Banerjee. Design and analysis of hybrid NEMS-CMOS circuits for

ultra low-power applications. In DAC, Jun. 2007.

[36] B. B. Doris, D. C. Boyd, M. Leong, T. S. Kanarsky, J. T. Kedzierski, M. Yang. Hybrid

planar and FinFET CMOS devices. U.S. Patent 7250658 B2, Jun. 2007.

[37] R. G. Dreslinski, M. Wieckowski, D. Blaauw,D. Sylvester, and T.Mudge. Near-threshold

computing: reclaiming Moore’s law through energy efficient circuit. In Proceedings of the

IEEE, special issue on ultra-low power circuit technology, Feb. 2010.

[38] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger. Dark silicon and

the end of multicore scaling. In ISCA, Jun. 2011.

[39] H. Esmaeilzadeh et al. Addressing dark silicon challenges with disciplined approximate

computing. In Dark Silicon Workshop in conjunction with ISCA, Jun. 2012.

[40] S. Eyerman and L. Eeckhout. A memory-level parallelism aware fetch policy for SMT

processors. In HPCA, Feb. 2007.

[41] J. Friedman and N. Fisher. Bump hunting in high-dimensional data. In Statistics and Com-

puting, 9, 1999.

[42] X. Fu, T. Li, and J. Fortes. NBTI tolerant microarchitecture design in the presence of pro-

cess variations. In Proceedings of the International Symposium on Microarchitecture (MI-

CRO), Nov. 2008.

[43] M. Goraczko et al. Energy-optimal software partitioning in heterogeneous multiprocessor

embedded systems. In DAC, Jun. 2008.

[44] N. Goswami, B. Cao, and T. Li. Power-performance co-optimization of throughput core

architecture using resistive memory. In HPCA, Feb. 2013.

[45] R. Grant, and A. Afsahi. Power-performance Efficiency of Asymmetric Multiprocessors

for Multi-threaded Scientific Applications. In the 2nd work-shop on High-Performance,

Power-Aware Computing, with IPDPS, Apr. 2006.

108

[46] G. Groeseneken, F. Crupi, A. Shickova, S. Thijs, D. Linten, B. Kaczer, N. Collaert, and M.

Jurczak. Reliability issues in MUGFET nanodevices. In IEEE 46th Annual International

Reliability Physics Symposium (IRPS), April 2008.

[47] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti. Combating aging with the colt duty

cycle equalizer. In Proceedings of 43rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), Dec. 2010.

[48] V. Gupta et al. Using heterogeneous cores to provide a high dynamic power range on over-

provisioned processors. In Dark Silicon Workshop in conjunction with ISCA, Jun. 2012.

[49] S. Hao, Q. Liu, L. Zhang, and J. Wang. Process Scheduling on Heterogeneous Multi-core

Architecture with Hardware Support. In NAS, Jun. 2011.

[50] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki. Toward dark silicon in servers. In

IEEE Computer Society, 2011.

[51] T. Heath, B. Diniz, E. V. Carrera, W. Meria Jr., and R. Bianchini. Energy Conservation in

Heterogeneous Server Clusters. In PPoPP. Jun. 2005.

[52] J. Hennessy, D. A. Patterson. Computer architecture: a quantitative approach. 5th edition.

[53] W. Huang, K. Rajamani, M.R.Stan, and K. Skadron. Scaling with design constraints - pre-

dicting the future of big chips. In IEEE Computer Society, 2011.

[54] R. Jammy. Materials, process and integration options for emerging technologies. SE-

MATECH/ISMI symposium, 2009.

[55] A. B. Kahng. The ITRS design technology and system drivers roadmap: process and status.

In Proceedings of 50th Design Automation Conference (DAC), Jun. 2013.

[56] P. L-Kamran et al. Scale-out processors. In ISCA, Jun. 2012.

[57] S. Kaxiras, and M. Martonosi. Computer Architecture Techniques for Power Efficiency.

Morgan and Claypool Publishers.

[58] H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W. Hu. Performance analysis and tuning

for general purpose graphics processing units (GPGPU).

DOI:10.2200/S00451ED1V01Y201209CAC020.

[59] V. B. Kleeberger, H. Graeb, and U. Schlichtmann. Predicting future product performance:

modeling and evaluation of standard cells in FinFET technologies. In DAC, Jun. 2013.

[60] O. Kocberber, B. Falsafi, K. Lim, P. Ranganathan, and S. Harizopoulos. Dark silicon ac-

celerators for database indexing. In Dark Silicon Workshop in conjunction with ISCA, Jun.

2012.

109

[61] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous multi-core architec-

tures. In EuroSys, Apr. 2010.

[62] E. Kultursay, J, Swaminathan, V. Saripalli, V. Narayanan, M. Kandemir, and S. Datta. Per-

formance enhancement under power constraints using heterogeneous CMOS-TFET multi-

cores. In CODES+ISSS, Oct. 12.

[63] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, D.M. Tullsen. Single-ISA Hetero-

geneous Multi-Core Architectures: The Potential for Processor Power Reduction. In MI-

CRO. Dec. 2003.

[64] R. Kumar, D. M. Tullsen and N. P. Jouppi. Core architecture optimization for heterogene-

ous chip multiprocessors. In PACT, Sep. 2006.

[65] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, K. I. Farkas. Single-ISA Hetero-

geneous Multi-Core Architectures for Multithreaded Workload Performance. In ISCA. Jun.

2004.

[66] N. B. Lakshminarayna, J. Lee, H. Kim. Age based scheduling for asymmetric multiproces-

sors. In SC, Nov. 2009.

[67] H. Lee, C-H. Lee, D. Park, and Y-K. Choi. A study of negative-bias temperature instability

of SOI and body-tied FinFETs. In IEEE Electron Device Letters, vol. 26, no.5, May 2005.

[68] J. Leng, T. Hetherington, A. Eltantawy, S. Gilani, N. S. Kim, T. M. Aamodt, V. J. Reddi.

GPUWattch: enabling energy optimizations in GPGPUs. In Proceedings of International

Symposium on Computer Architecture (ISCA), Jun. 2013.

[69] S. Li et al. McPAT: an integrated power, area, and timing modeling framework for multi-

core and manycore architectures. In MICRO, Dec. 2009.

[70] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient Operating System Scheduling

for Performance-Asymmetric Multi-Core Architectures. In SC. Nov. 2007.

[71] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn. Operating System

Support for Overlapping-ISA Heterogeneous Multi-core Architectures. In HPCA. Jan.

2010.

[72] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch. In ExpCS, Jun. 2007.

[73] Y. Li, B. C. Lee, D. Brooks, Z. Hu and K. Skadron. CMP design space exploration subject

to physical constraints. In HPCA, 2006.

[74] M-L. Li, R. Sasanka, S. V. Adve, Y-K. Chen and E. Debes. The ALPBench benchmark

suite for multimedia applications. UIUC CS Technical Report. Jul. 2005.

110

[75] H. Luo, Y. Wang, K. He, R. Luo, H. Yang and Y. Xie, Modeling of PMOS NBTI Effect of

Considering Temperature Variation, In Proceedings of International Symposium on Quali-

ty Electronics Design (ISQED), 2007.

[76] S. Mahapatra, P. B. Kumar, and M. A. Alam. Investigation and modeling of interface and

bulk trap generation during negative bias temperature instability of p-MOSFETs. In IEEE

Transactions on Electron Devices, vol. 51, no.9, Sept. 2004.

[77] M. Monchiero, P. Canal, and A. Gonzalez. Design space exploration for multicore archi-

tectures: a power/performance/thermal view. In ICS, Jun. 2006.

[78] C. H. Moore and G. Bailey. Illuminating dark silicon with a fabric of simple computers. In

Dark Silicon Workshop in conjunction with ISCA, Jun. 2012.

[79] R. Nath, R. Ayoub, and T. S. Rosing. Temperature aware thread block scheduling in

GPGPUs. In Proceedings of 50th Design Automation Conference (DAC), Jun. 2013.

[80] T. Oh, H. Lee, K. Lee and S. Cho. An analytical model to study optimal area breakdown

between cores and caches in a chip multiprocessor. In 2009 IEEE Computer Society Sym-

posium.

[81] J. M. Rabaey, A. Chandrakasan and B. Nikolic. Digital Integrated Circuits, 2nd edition.

[82] P. Radojkovic et al. Optimal Task Assignment in multithreaded processors: a statistical

approach. In ASPLOS, Mar. 2012.

[83] A. Raghavan et al. Computational Sprinting. In HPCA, Feb. 2012.

[84] A. Rahimi, L. Benini, R. K. Gupta. Aging-aware compiler-directed VLIW assignment for

GPGPU architectures. In Proceedings of 50th Design Automation Conference (DAC), Jun.

2013.

[85] K. Ramakrishnan, S. Suresh, N. Vijaykrishnan, M. J. Irwin, and V. Degalahal. Impact of

NBTI on FPGAs. In International Conference VLSI Design, Jan. 2007.

[86] J. Renau et al. SESC Simulator.

[87] E. Saad, M. Awadalla, M. Shalan, and A. Elewi. Energy-aware task partitioning on hetero-

geneous multiprocessor platforms. In IJCSI, Vol. 9, 2012.

[88] J. C. Saez, A. Fedorova, M. Prieto, and S. Blagodurov. A comprehensive scheduler for

asymmetric multicore systems. In EuroSys, Apr. 2010.

[89] J. C. Saez, A. Fedorova, D. Koufaty, and M. Prieto. Leveraging core specialization via OS

scheduling to improve performance on asymmetric multicore systems. In ACM Transac-

tions on Computer Systems, Apr. 2012.

111

[90] J. C. Saez, D. Shelepov, A. Fedorova, and M. Prieto. Leveraging workload diversity

through OS scheduling to maximize performance on single-ISA heterogeneous multicore

systems. In Journal of parallel and distributed computing, Aug. 2010.

[91] T. Sakurai and R. Newton. Alpha-power law MOSFET model and its applications to

CMOS inverter delay and other formulas. In IEEE Journal of Solid-State Circuits, 1990.

[92] V. Saripalli, G. Sun, A. Mishra, Y. Xie, S. Datta, and V. Narayanan. Exploiting heteroge-

neity for energy efficiency in chip multiprocessors. In IEEE Transactions on Emerging

and Selected topics in Circuits and Systems, Jun. 2011.

[93] V. Saripalli, A. K. Mishra, S. Datta, and V. Narayanan. An energy-efficient heterogeneous

CMP based on hybrid TFET-CMOS cores. In DAC, Jun. 2011.

[94] S. Sharifi, A. K. Coskun, and T. S. Rosing. Hybrid dynamic energy and thermal manage-

ment in heterogeneous embedded multiprocessor SoCs. In ASPDAC, Jan. 2010.

[95] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston. A proactive wearout recovery approach

for exploiting microarchitectural redundancy to extend cache SRAM lifetime. In Interna-

tional Symposium on Computer Architecture (ISCA), Jun. 2008.

[96] K. Singh, M. Bhadauria, and S. A. Mckee. Prediction-based power estimation and schedul-

ing for CMPs. In ICS (extended abstract and poster presentation), Jun. 2009.

[97] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao. Exploring sub-20nm FinFET design

with predictive technology models. In Proceedings of 49th Design Automation Conference

(DAC), Jun. 2012.

[98] A.Snavely, and D. M. Tullsen. Symbiotic Job Scheduling for a Simultaneous Multithread-

ing Processor. In ASPLOS, Nov. 2000.

[99] W. Song, S. Mukhopadhyay, and S. Yalamanchili. Reliability implications of power and

thermal constrained operations in asymmetric multicore processors. In Dark Silicon Work-

shop in conjunction with ISCA, Jun. 2012.

[100] S. Srinivasan, R. Iyer, L. Zhao, and R. Illikkal. HeteroScouts: Hardware Assist for OS

Scheduling in Heterogeneous CMPs. In Poster session of the ACM SIGMETRICS. Jun.

2011.

[101] B. Swahn and S. Hassoun. Gate sizing: FinFETs vs 32nm Bulk MOSFETS. In Proceeding

of 43rd Design Automation Conference (DAC), Jun., San Francisco, CA, Jun. 2006.

[102] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M. Kandemir, and S. Datta.

Improving energy efficiency of multi-threaded applications using heterogeneous CMOS-

TFET multi-cores. In Proceedings of International Symposium on Low Power Electronics

Design (ISLPED), Sept. 2011.

112

[103] S. Swanson and M.B.Taylor. GreenDroid: exploring the next evolution in smartphone ap-

plication processors. In IEEE Communications Magazine, Apr. 2011.

[104] S. Swanson et al. Area-performance trade-offs in tiled dataflow architectures. In ISCA,

2006.

[105] M.B.Taylor. Is dark silicon useful? In the Proceedings of 49th Annual ACM Design Auto-

mation Conference (DAC), Jun. 2012.

[106] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores. In Pro-

ceedings of the 41st IEEE/ACM International Symposium on Microarchitecture (MICRO),

Nov. 2008.

[107] G. Venkatesh, J Sampson, N. Goulding, S. Garcia. Conservation cores: reducing the ener-

gy of mature computations. In ASPLOS, Mar. 2010.

[108] G. Venkatesh et al. QSCores: Trading dark silicon for scalable energy efficiency with qua-

si-specific cores. In MICRO, Dec. 2011.

[109] F. Wang, Y. Xie, K. Bernstein, and Y. Luo. Dependability analysis of nano-scale FinFET

circuits. In Proceedings of the 2006 Emerging VLSI Technologies and Architectures (IS-

VLSI), Mar. 2006.

[110] L. Wang, K. Skadron, and B. H. Calhoun. Dark vs. Dim silicon and near-threshold compu-

ting. In Dark Silicon Workshop in conjunction with ISCA, Jun. 20012.

[111] W. Wang, V. Reddy and A. Krishnan, "Compact Modeling and Simulation of Circuit Reli-

ability for 65-nm CMOS Technology", In IEEE Transactions on Device and Materials and

Reliability, 7(4):509-517, Dec. 2007.

[112] Y. Wang, S.D. Cotofana, and L. Fang. Statistical reliability analysis of NBTI impact on

FinFET SRAMs and mitigation technique using independent-gate devices. In Proceedings

of the IEEE/ACM International Symposium on Nanoscale Architecture (NANOARCH), Jul.

2012.

[113] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid cache architecture

with disparate memory technologies. In ISCA, Jun. 2009.

[114] G. Yan, Y. Li, Y. Han, X. Li, M. Guo and X. Liang. Agile regulator: a hybrid voltage regu-

lator scheme redeeming dark silicon for power efficiency in a multicore architecture. In

HPCA, Feb. 2012.

[115] J. Zhao, X. Dong and Y. Xie. Cost-aware three-dimensional (3D) many-core multiproces-

sor design. In DAC, Jun. 2010.

113

[116] L. Zhao, R. Iyer. S. Makineni, J. Moses, R. Illikkal, and D. Nowell. Performance, area and

bandwidth implications on large-scale CMP cache design. In HPCA, 2007.

114

APPENDIX A. PERMISSIONS TO USE COPYRIGHTED MATERIALS

from permissions@hq.acm.org

reply-to Ying Zhang < yzhan29@tigers.lsu.edu>

date Fri, Oct 18, 2013 at 4:22 PM

subject Re: copyright questions in my dissertation

mailed-by hp.acm.org

Hello,

Thank you for your interest in ACM publications. Please forgive the delayed reply and confirm

whether you received the attached auto-reply message directing you to use the RightsLink(r)

online permission system in the ACM Digital Library to obtain a license for your request. As an

author, the license allows you to include the published version of record, rather than the accepted

version of your paper allowed under ACM Copyright Policy.

www.acm.org/publications/policies/copyright_policy#Retained.

I hope this helps.

Regards,

Deborah Cotton

Copyright & Permissions

ACM Publications

212.626.0652

cotton@hq.acm.org

Dear Sir or Madam,

My name is Ying Zhang, and I am completing my PhD dissertation titled "Ex-

ploiting Heterogeneity in Chip-Multiprocessor Design" at Louisiana State Uni-

versity. Our school requires written permission from the publisher to use a

published material in the thesis/dissertation, so I am writing to obtain your

permission to reprint one of my papers appeared in the proceedings of the

50th Design Automation Conference (DAC'13) as one chapter in my dissertation.

The detailed information about this paper is the following:

115

Y. Zhang, L. Peng, X. Fu, and Y. Hu, "Lighting the dark silicon by exploiting

heterogeneity on future processors”.

Please let me know if you have any questions. Your prompt response would be

very appreciated! Thanks!

Regards,

Ying

ASSOCIATION FOR COMPUTING MACHINERY, INC. LICENSE

TERMS AND CONDITIONS

116

117

118

119

APPENDIX B. AUTHOR’S PUBLICATIONS

 (Under Review) Y. Zhang, L. Zhao, R. Illikkal, R. Iyer, A. Herdrich, and L. Peng, “QoS

management on heterogeneous architecture for multi-programmed, parallel and domain-

specific applications,” Submitted for Review, 2013.

 (Under Review) Y. Zhang, L. Duan, B. Li, L. Peng, and S. Sadagopan, “Energy efficient

job scheduling in single-ISA heterogeneous chip-multiprocessors,” Submitted for review,

2013.

 (Under Review) Y. Zhang, S. Chen, L. Peng, and S. Chen, “Mitigating NBTI degrada-

tion on GPUs through exploiting device heterogeneity,” Submitted for review, 2013.

 Y. Zhang, L. Duan, B. Li, L. Peng, and X. Fu, “Design configuration selection for hard-

error reliable processors via statistical rules,” To appear in Journal on Microprocessors

and Microsystems.

 Y. Zhang, L. Peng, X. Fu, and Y. Hu, “Lighting the Dark Silicon by Exploiting Hetero-

geneity on Future Processors,” In Proceedings of the 50th Design Automation Conference

(DAC), Austin, TX, Jun. 2013.

 Y. Zhang, L. Duan, B. Li, and L. Peng, “Optimal Microarchitectural Design Configura-

tion Selection for Processor Hard-Error Reliability”, In Proceedings of the 13th IEEE In-

ternational Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, Mar.

2012.

 Y. Zhang, L. Peng, B. Li, J. Peir, and J. Chen, “Architecture Comparisons between Nvid-

ia and ATI GPUs: Computation Parallelism and Data Communications”, In Proceedings

of IEEE International Symposium on Workload Characterization (IISWC), Austin, TX,

Nov. 2011.

 Y. Zhang, Y. Hu, B. Li, and L.Peng, “Performance and Power Analysis of ATI GPU: A

Statistical Approach”, In Proceedings of the 6th IEEE International Conference on Net-

working, Architecture, and Storage (NAS), Dalian, China, Jul. 2011.

 J. Chen, B. Li, Y. Zhang, L. Peng, and J.-K. Peir, “Tree Structured Analysis on GPU

Power Study,” In Proceedings of the 29th IEEE International Conference on Computer

Design (ICCD), Amherst, MA, Oct. 2011.

 J. Chen, B, Li, Y. Zhang, L. Peng, and J.-K. Peir, “Statistical GPU Power Analysis Using

Tree-based Methods”, In Workshop of the second IEEE Greencomputing Conference

(IGCC), Orlando, FL, Jul. 2011.

 L. Duan, Y. Zhang, B. Li, and L. Peng, “Universal Rules Guided Design Parameter Se-

lection for Soft Error Resilient Processors,” in ISPASS, 2011.

120

 L. Duan, Y. Zhang, B. Li, and L. Peng, “Comprehensive and Efficient Design Parameter

Selection for Soft Error Resilient Processors via Universal Rules,” To appear in IEEE

Transactions on Computers.

 Y. Zhang, L. Peng, W. Lu, L. Duan, and S. Rai, “Expediating IP Lookups with Reduced

Power via TBM and SST Supernode Caching,” in Computer Communications, vol 33(3),

pp. 390-397, Feb. 2010.

121

VITA

 Ying Zhang was born in 1984, in Huanggang, Hubei, China. He received his Bachelor of

Engineering and Master of Engineering degrees in Electronics and Information Engineering from

Huazhong University of Science and Technology, Wuhan, China, respectively in June 2006 and

June 2008. Since then, he has been enrolled in the Department of Electrical and Computer Engi-

neering at Louisiana State University, Baton Rouge, Louisiana, to pursue his doctorate degree.

During this period, he passed his qualify exam in Fall 2009 and general exam in November 2012,

respectively. He anticipates graduating with his Doctor of Philosophy degree in Fall 2013.

 Ying’s research areas broadly lie in the area of computer architecture with particular inter-

ests in energy/cost-efficient heterogeneous system design, GPU architecture and processor hard-

error reliability. He has published a series of papers on these topics in various computer architec-

ture conferences and journals. He also finished a research internship at Intel Research Labs,

Hillsboro, Oregon, from December 2011 to June 2012, working on OpenCL performance charac-

terization on Intel Sandy Bridge and Ivy Bridge platforms.

