
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2013

Study on the Performance of TCP over 10Gbps
High Speed Networks
Cheng Cui
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Cui, Cheng, "Study on the Performance of TCP over 10Gbps High Speed Networks" (2013). LSU Doctoral Dissertations. 2102.
https://digitalcommons.lsu.edu/gradschool_dissertations/2102

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2102?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

STUDY ON THE PERFORMANCE OF TCP OVER 10GBPS HIGH SPEED NETWORKS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

School of Electrical Engineering and Computer Science

by
Cheng Cui

B.S., Xidian University, 2006
December 2013

Acknowledgments

The fulfilment of this dissertation would not have been possible without the support
of many people. First, I want to thank my wife, Shaojie Qin, for her love and her
continuous encouragement required to complete this dissertation. I am grateful as well
to my mother Zhimin Zhao for her support. I would also like to thank the Community
of South Baton Rouge Church of Christ. They give me a big support and always help
me better understanding how wonderful it is to live with the Christian faith.

I would also like to thank Dr. Jay (Seung-Jong) Park, my advisor, who has guided
me throughout this dissertation. Through his enthusiasm and unlimited support, he
helped me to complete this dissertation. He gave me most of the major directions of
this work and ensured that I actually turned implementation work into research. I
appreciated very much Jay’s pragmatic approach to networking for he is also an inex-
haustible source of networking references. If I acknowledge all Jay’s ideas, discussions,
assistance, and guidance, his name will be all over this dissertation.

I would also like to thank my PhD advisory committee members Dr. Jian Zhang,
Dr. Konstantin Busch from Devision of Computer Science, for the insightful discus-
sions and guidance. Also, thanks to Dr. Peter Kelle from Department of Information
Systems and Decision Sciences, for discussion and kindly offering to read my disserta-
tion. Also my acknowledgement is extended to Dr. Jimmie Lawson from Department
of Mathematics for assistance, motivation, and support.

I am grateful to all my coauthors and team members: Lin Xue, Chui-hui Chiu,
Praveenkumar Kondikoppa, Suman Kumar and Georgi Stoyanov. I have had long
and interesting discussions with them, and some of their writing appears in this
document.

Finally, I would like to thank all the persons who supported me and helped me to
have some good time here at Louisiana State University and during my dissertation
in general, as well as my friends who had to face strange reactions from me when I
was too involved in my work and started to be less friendly.

ii

Table of Contents

Acknowledgments . ii

List of Tables . v

List of Figures . vii

Abstract . viii

Chapter 1 Introduction . 1
1.1 Research Dissertation Outline . 5

Chapter 2 TCP and TCP Congestion Control . 7
2.1 Background . 7
2.2 Congestion . 9
2.3 Congestion Control Requirements and Design Space 11

2.3.1 Fundamental Requirements 11
2.3.2 Fairness . 13
2.3.3 Classification of End-to-End Congestion Control Algorithms . 14
2.3.4 Classification of Network-Supported Congestion Control Algo-

rithms . 15
2.3.5 Interaction with Network Middleboxes 17

2.4 State-of-the-Art of TCP Congestion Algorithms 18
2.4.1 TCP Reno . 18
2.4.2 Survey of New Algorithms . 21
2.4.3 Selected Loss Based Algorithm: CUBIC 24

2.5 Impact of Network stack Implementations 25
2.6 Conclusion . 27

Chapter 3 Development of 10Gbps High Speed Network Emulation Testbed:
CRON . 28
3.1 Background . 28
3.2 Related Work . 30
3.3 Infrastructure . 32

3.3.1 Hardware Component . 33
3.3.2 Software Component . 35

3.4 Experiment and Evaluation . 38
3.4.1 Research at Network Layer 3 and Layer 4: Evaluation of high-

speed TCP Variants and Active Queue Management 38
3.5 Federation CRON Testbed with Other GENI Sites 41

3.5.1 Federating CRON with ProtoGENI at BBN GPO Lab 42
3.5.2 Federating CRON with PlanetLab at MAX 42

3.6 Conclusion . 44

iii

Chapter 4 TCP Loss Synchronization in High Speed Network 45
4.1 Background . 45
4.2 Emulation Method . 47
4.3 New Loss Synchronization Expressions 50
4.4 Testbed Design . 51
4.5 Experiment Results . 53

4.5.1 Homogeneous TCP Experiment 53
4.5.2 Heterogeneous Experiment . 59

4.6 Conclusion . 61

Chapter 5 Desynchronized Multi-Channel TCP for High Speed Networks with
Tiny Buffers . 62
5.1 Background . 62
5.2 The Multipath TCP . 64
5.3 Multipath TCP implementation in Linux 68
5.4 Motivation: Problems of high-speed Networks with Tiny Buffers . . . 70

5.4.1 The TCP Loss Synchronization Analysis 70
5.4.2 The Burstiness Analysis . 72

5.5 The DMCTCP Congestion Control 73
5.5.1 Detailed design of DMCTCP 73
5.5.2 Implementation . 74
5.5.3 Illustrative Example of DMCTCP 75
5.5.4 Determine a good number of channels 76

5.6 Testbed Design . 78
5.7 Performance Evaluation . 81

5.7.1 Link Utilization . 81
5.7.2 Intra-protocol Fairness . 82
5.7.3 RTT Fairness . 85

5.8 Conclusion . 86

Chapter 6 Conclusion . 88
6.1 Contributions . 88
6.2 Future Research . 90

References . 91

Vita . 100

iv

List of Tables

2.1 Classification and comparison of important TCP variants 23

2.2 Known characteristics of popular TCP stacks 26

3.1 Hardware features of high-end workstations in CRON 34

3.2 TCP Fairness: Homogeneous versus Heterogeneous 41

4.1 Probability distribution of synchronization 53

4.2 Numerical examples of link utilization for RENO flows 56

4.3 Distribution of synchronization for CUBIC 58

4.4 Selected CUBIC, HSTCP, RENO rates 60

5.1 Numerical examples of ideal link utilization by DMCTCP 78

v

List of Figures

1.1 Congestion windows in loss synchronization events 2

1.2 Link utilization of TCP variants in a tiny buffered high-speed network 3

2.1 Structure of a TCP segment encapsulated in an IP packet 9

2.2 Congestion in a network caused by competing connections 10

2.3 TCP’s AIMD properties . 16

2.4 Trace of CUBIC . 25

3.1 CRON system architecture . 33

3.2 CRON system hardware component 33

3.3 CRON web portal . 38

3.4 Topology of networking experiment 39

3.5 Link utilization for heterogeneous TCP flows 40

3.6 Fairness for 1 TCP-SACK, 1 CUBIC, and 1 HSTCP flow 40

3.7 Federation CRON with ProtoGENI at BBN GPO Lab 42

3.8 CRON resources in ProtoGENI portal 43

3.9 Federation CRON with PlanetLab at MAX 43

4.1 Extreme cases of complete synchronization and desynchronization . . 46

4.2 TCP-LS cases of 3 competing RENO flows 49

4.3 Real world TCP-LS cases over 3 flows (each x is a loss event) 51

4.4 Experiment topology . 52

4.5 Distribution of synchronization for 12, 24 and 48 RENO flows 54

4.6 RENO’s global TCP-LS rates and link utilization rates 54

4.7 Congestion window behaviors of three RENO flows 55

4.8 Distribution of synchronization for 12, 24 and 48 HSTCP flows 56

4.9 HSTCP’s global TCP-LS rates and link utilization rates 57

vi

4.10 Congestion window behaviors of three HSTCP flows 57

4.11 Distribution of synchronization for 12, 24, and 48 CUBIC flows . . . 58

4.12 CUBIC’s global TCP-LS rates and link utilization rates 59

4.13 Congestion window behaviors of three CUBIC flows 59

4.14 Global TCP-LS rates and link utilization rates of heterogeneous traffic 60

4.15 Congestion window behaviors of heterogeneous traffic 61

5.1 Traditional Internet Architecture . 65

5.2 Internet Reality . 65

5.3 Comparison of Standard TCP and MPTCP Protocol Stacks 66

5.4 MPTCP architecture . 68

5.5 Two extreme scenarios of the complete loss synchronization 71

5.6 The completely desynchronized TCP flows 72

5.7 Steady state behavior of a DMCTCP connection, m=2 76

5.8 Convergence time of two connections 77

5.9 The idealized aggregated window of various channels per-connection . 77

5.10 10Gbps access network testbed . 79

5.11 Link utilization compared with number of channels 82

5.12 Link utilization compared with other TCP variants 83

5.13 Intra-Protocol Fairness . 84

5.14 RTT Fairness . 86

vii

Abstract

Internet traffic is expected to grow phenomenally over the next five to ten years. To

cope with such large traffic volumes, high-speed networks are expected to scale to

capacities of terabits-per-second and beyond. Increasing the role of optics for packet

forwarding and transmission inside the high-speed networks seems to be the most

promising way to accomplish this capacity scaling. Unfortunately, unlike electronic

memory, it remains a formidable challenge to build even a few dozen packets of

integrated all-optical buffers. On the other hand, many high-speed networks depend

on the TCP/IP protocol for reliability which is typically implemented in software and

is sensitive to buffer size. For example, TCP requires a buffer size of bandwidth delay

product in switches/routers to maintain nearly 100% link utilization. Otherwise, the

performance will be much downgraded. But such large buffer will challenge hardware

design and power consumption, and will generate queuing delay and jitter which again

cause problems. Therefore, improve TCP performance over tiny buffered high-speed

networks is a top priority.

This dissertation studies the TCP performance in 10Gbps high-speed networks.

First, a 10Gbps reconfigurable optical networking testbed is developed as a research

environment. Second, a 10Gbps traffic sniffing tool is developed for measuring and

analyzing TCP performance. New expressions for evaluating TCP loss synchroniza-

tion are presented by carefully examining the congestion events of TCP. Based on

observation, two basic reasons that cause performance problems are studied. We find

that minimize TCP loss synchronization and reduce flow burstiness impact are criti-

cal keys to improve TCP performance in tiny buffered networks. Finally, we present a

new TCP protocol called Multi-Channel TCP and a new congestion control algorithm

called Desynchronized Multi-Channel TCP (DMCTCP). Our algorithm implementa-

viii

tion takes advantage of a potential parallelism from the Multi-Path TCP in Linux.

Over an emulated 10Gbps network ruled by routers with only a few dozen packets of

buffers, our experimental results confirm that bottleneck link utilization can be much

better improved by DMCTCP than by many other TCP variants. Our study is a new

step towards the deployment of optical packet switching/routing networks.

ix

Chapter 1
Introduction

Nowadays, it is well known that the classical congestion control algorithms used by

Transmission Control Protocol [1] (TCP) protocol are not adapted to very high-

speed links or, more generally, to networks buffering a large bandwidth-delay product

(BDP). This is mainly due to the Additive-Increase, Multiplicative-Decrease (AIMD)

behavior of TCP’s congestion control. First, a TCP sender reacts to packet loss by

cutting the congestion window cwnd by half, so the instantaneous sending rate is

roughly divided by two; that is, cwnd ← b × cwnd, with decrease factor b = 0.5.

Second, the increase of cwnd in the congestion avoidance phase, given by: cwnd ←

cwnd + a/cwnd, with increase parameter a = 1, results in a growth rate of approx-

imately one segment per round-trip time (RTT). Indeed, if the BDP is large, cwnd

may attain very large values before packets are lost; hence, after a loss takes place it

may take the sender many RTT cycles before cwnd reaches again such large values.

In TCP/IP networks with bandwidth of 10Gbps or higher, one big issue is how

to use link bandwidth efficiently. For a bottleneck shared by concurrent long-lived

TCP flows, congestion can happen and packets can be simultaneously dropped. As

a response, the TCP congestion control algorithm reduces sending rate in each flow.

When many sending rates are reduced within a short time, it is recognized as a TCP

loss synchronization (TCP-LS) event. As shown in Figure 1.1, at a synchronization

event, these two flows are losing their shares of bandwidth at the same time so that

the aggregated congestion window follows a large sawtooth pattern. Therefore, if all

congestions are synchronization events, the bottleneck will be greatly underutilized.

1

FIGURE 1.1: Demonstration of congestion windows in loss synchronization events
where two TCP flows are competing a bottleneck link

TCP-LS is closely related to network parameters, such as router buffer sizes and

TCP flow numbers. A recent study [2] summarizes that the buffer sizing problem is

critical to link utilization over high-speed networks. Also, study [3] shows synchro-

nization might has different behaviors with their own buffer sizes. Related works have

proposed the small-buffer model [4] and the tiny-buffer models [5, 6, 7] for near 100%

and 75% link utilization. However, these works rely on the traffic conditions that tens

of thousands of TCP flows are neither bursty nor synchronous. These conditions only

exists in high-speed core networks, where tens of thousands of TCP flows are statis-

tically multiplexed from branch links. As shown in Figure 1.2, where the 66 packets

size buffer 10Gbps bandwidth bottleneck is mixed with 60 ms, 120 ms, 180 ms and

240 ms delay TCP flows, the link utilization is greatly underutilized with a moder-

ate number of flows using versions of TCP congestion control. Even with the most

popular version, e.g. CUBIC, the link utilization is as low as around 60%.

Because large buffer size increases latency, complexity and cost, reducing router

buffer size is the final goal. In all-optical packet switches/routers, traditional elec-

2

FIGURE 1.2: Link utilization of TCP variants in a 66 packets buffer high-speed net-
work

tronic buffers are replaced with optical buffers, which are usually implemented using

the optical-delay-line technique [8], and whose buffer sizes are limited to a dozen of

packets [9, 10, 11]. It is shown [12] that the bursty nature of TCP makes flows expe-

rience packet drop more frequently when buffer sizes are small, and as a result, the

utilization of the shared link is limited to a fairly low level.

We find it is more challenging for TCP performance in access networks with very

small buffers because conditions are different in the following aspects: (i) the access

links have congestion, and (ii) the network traffic is bursty, and (iii) the number

of flows is too small to reach an expected level of asynchronism. We believe most

of the problems come from TCP congestion control, as it is an integral module of

TCP that directly determines the performance of the protocol. Therefore, to improve

link utilization and to increase satisfactory bandwidth allocation for end users, how

to reduce the synchronous behavior with a convenient number of flows becomes an

urgent and critical issue in high-speed networks.

In a small buffer regime, study of active-queue-management (AQM) [13] points out

that, random-early-detection (RED) mostly behaves like a drop-tail buffer because

3

when the buffer is too small, it cannot absorb the large bursts due to the faster

window growth inherent in TCP protocols. In another study of small buffers [14],

a simple drop-tail buffer serves to enhance stability and appears preferable to the

RED scheme. Therefore, counterintuitively, the effect of RED on the synchronization

is negligible when the buffer is too small.

Until recently, an emerging TCP protocol called Multipath TCP has drawn great

attention by its unique design of transparently transmitting packets through several

mediums in the same connection. Of course, using several paths simultaneously can

improve end-to-end throughput, but also it shows a good capability to manage peer-

flows either through several paths or through the same path. As Multipath TCP

supports standard TCP congestion control and many TCP congestion control vari-

ants for high-speed networks in Linux operating system, its modular programming

interface can be easily adopted for new path management techniques like reducing

peer-flows synchronization that may become available.

The goal of this dissertation is that we explore if and how we could achieve an ac-

ceptable link utilization in high-speed access networks with very small router buffers.

First, it could facilitate the deploy of all-optical routers because they have huge link

capacity and lower power requirement but are limited by buffer size [9]. Second, it

could reduce the requirement of router complexity, making routers easier to build and

easier to scale. Third, it could minimize queuing delay and jitter that were closely

related to buffer size in electronic routers.

Some research assumptions are: (i) high-speed edge networks where the number of

flows is small and far from tens of thousands; and (ii) very low network components

(router, etc.) buffer or bufferless; and (iii) (iv) End user bandwidth requirement is

high, e.g. 10 to 100 users share a 10Gbps bandwidth bottleneck as an access link,

where each one takes a stake of 1000Mbps to 100Mbps bandwidth.

4

The adverse impact of TCP loss synchronization and traffic burstiness are: (i) it

decreases link utilization. (ii) it decreases TCP fairness. (iii) it decreases bandwidth

smoothing for each flow.

The small router buffer and extremely low router buffer are the final destiny for

high-speed network, where active-queue-management (AQM) in such router category

cannot perform as expected.

Some related solutions have problems: (i) UDP-based data transfer (UDT) [15]

protocol is not TCP friendly. (ii) TCP pacing at end point [16] or at intermediate

node [17, 18] has bad performance or costs too much.

In order to discover issues in high-speed networks, especially in the category of

10Gbps bandwidth, a high-speed network environment is required for the research.

Because most high-speed networks are production networks and these resources are

very expensive to share for researchers, my first research objective is to develop a

10Gbps high-speed network emulation testbed, from which I can study and explore

the properties of high-speed networks. Second, because my focus is studying the per-

formance of TCP over 10Gbps high-speed networks, I develop an evaluation method

on TCP loss synchronization to discover how TCP loss synchronization and flow

burstiness decreases the performance of TCP. Third, based on the evaluation method,

I focus on the design of a new TCP congestion control algorithm called Desynchro-

nized Multi-Channel TCP (DMCTCP), which pursues goals of minimizing TCP loss

synchronization and reducing the impact of traffic burstiness.

1.1 Research Dissertation Outline

The remainder of this dissertation is outlined as follows. Chapter 2 describes TCP

congestion control mechanism, design issues, challenges, and the most widely adopted

TCP congestion control variants for high-speed networks. Chapter 3 describes the

development of CRON, a 10Gbps network emulation testbed for high-speed network

5

research. Chapter 4 describes the experimental study of TCP-LS and flow burstiness

over TCP congestion control variants in 10Gbps high-speed optical networks. Chap-

ter 5 describes the new TCP congestion control algorithm called Desynchronized

Multi-Channel TCP (DMCTCP). Chapter 6 concludes the dissertation and shows

selected directions for future research.

6

Chapter 2
TCP and TCP Congestion Control

Transmission Control Protocol (TCP) is the dominant protocol in modern communi-

cation networks, in which the issues of reliability, flow, and congestion control must

be handled efficiently. This chapter describes about TCP, TCP congestion control,

design issues and challenges in high-speed packet switching networks.

2.1 Background

Modern communication technologies use the principle of packet switching. In packet-

switched networks, packets are multiplexed in network elements and processed by

store and forward mechanisms. A network consists of nodes, links, and paths. Nodes

can be defined as network components where the input and output links can have

different characteristics. A link is a connection between two of these network nodes.

A path is defined as a series of links connecting a sequence of nodes.

Protocols define the behavior required by any entity participating in the exchange of

information. Communication in packet switched networks can be connection oriented

or connectionless. A connection can be defined as a logical relationship between two or

more endpoints that exchange data, and it is also known as virtual channel connection.

A connection can be either uni-directional or bi-directional, and either point-to-point

or point-to-multipoint. A flow denotes a unidirectional sequence of packets, and a

session is an abstract temporary association between entities. In general, a session

can include several connections, and each bi-directional connection results in at least

two flows.

Traditionally, there have been two transport layer protocols in the Internet: The

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). UDP

7

offers connectionless, unreliable transport of datagrams and is basically a multiplexing

layer on top of IP.

The Internet can never be fast enough. Responsiveness continues to be one of the

most important properties of Internet applications. Most Internet applications use

the Transmission Control Protocol (TCP) for reliable, best effort transport. TCP is

a pure end-to-end transport protocol and uses TCP congestion control (TCP-CC) in

order to adapt the sending rate to the characteristics of a path.

In 1986, the Internet encountered a major crisis, the so-called “congestion collapse”

[RFC 896] [19]. Congested links resulted in long delays that caused timeouts and re-

transmissions, which made the problem worse. By that time, TCP had flow control

mechanisms only. In 1988, Jacobson proposed a congestion control scheme to be in-

serted into TCP [20]. His solution was easily deployable because it required changes in

the TCP implementation only. As discussed in Section 2.4, the principles of Jacobsons

congestion control are still in use today.

The Transmission Control Protocol (TCP) is a connection-oriented, bidirectional,

point-to-point transport protocol with reliable, in-order data delivery. TCP trans-

ports a serial byte stream (a “byte-pipe”) between applications and manages the

recovery from erroneous, lost, or duplicate segments. In the source, the byte stream is

fragmented into appropriately sized segments with a Maximum Segment Size (MSS)

according to the Maximum Transmission Unit (MTU) of the path. The resulting

packets are passed to the IP layer and reassembled at the destination. Figure 2.1

sketches the resulting structure of an application byte stream that is transported in

a TCP segment and encapsulated in an IP packet. The TCP header, as well as the

IP header, can be extended by header options. TCP options are frequently used, in

particular during the initial state synchronization by the three-way handshake. TCP

8

is a window based protocol that realizes both flow control and congestion control.

These functions are detailed in Section 2.4.

FIGURE 2.1: Structure of a TCP segment encapsulated in an IP packet, including
length indications. The shaded fields are optional.

2.2 Congestion

There have been various efforts to precisely define the term “congestion”. A common

statement is that “congestion occurs in a computer network when resource demands

exceed the capacity” [21]. It is also common to consider a network congested if, due

to overload, excessive queueing delays and/or packet losses occur. This definition is

also used in this dissertation. Strictly speaking, resources can be bit-congestible or

packet-congestible [RFC 6077] [22].

Due to the temporal multiplexing, short term load imbalances are unavoidable in

packet networks and have to be corrected by buffering. If a resource gets congested,

queueing delays increase, and packets must be dropped if the buffer size is exceeded.

Without appropriate countermeasures, a congestion collapse can occur, i. e., resources

are either wasted by unnecessary retransmissions or by packets that are dropped

before reaching their destination as defined in RFC 2914 [23].

Congestion has to be avoided because it increases delays and wastes resources.

The objective of congestion control is to minimize the intensity, spread and duration

of congestion. This requires two different functions: First, congestion control should

prevent a source from sending data that will get dropped on the path; this aspect is

9

also called congestion avoidance [24]. Second, it must ensure that a network remains

operational when congestion occurs and react accordingly. As the name implies, con-

gestion control is a control mechanism. Since the entity that governs the resource

usage is not necessarily identical to the resource that gets congested, congestion con-

trol is an inherently distributed problem that requires some form of feedback and

a closed control loop. Therefore, congestion control can precisely be defined as “the

feedback-based adjustment of the rate at which data is sent into the network” [25]. In

order to avoid and handle overload situations, congestion control mechanisms must

be able to decide on the usage of resources at least to some extent. Thus, congestion

control can also be understood as an “algorithm to share network resources among

competing traffic sources” [RFC 2914] [23].

FIGURE 2.2: Congestion in a network caused by competing connections

As shown in Figure 2.2, congestion and its resolution may affect different entities.

This inherently results in fairness issues, which are discussed in the next sections. It

must also be emphasized that resource management in packet networks is performed

by several control loops on different time scales. The reaction time of congestion

10

control depends on RTT of the path and is of the order of milliseconds. This is

the main difference compared to other traffic management and traffic engineering

mechanisms, such as routing policies or capacity dimensioning, which operate on

longer time scales and often also depend on human interaction. Further control loops

may also exist inside applications, e. g., by application adaptation functions or by

manual user reactions. Such mechanisms typically work on time-scales longer than

the path RTT, too.

2.3 Congestion Control Requirements and Design Space

2.3.1 Fundamental Requirements

In general, congestion control algorithms have to satisfy the following major require-

ments:

- Efficiency: The utilization of the available network resources should be high.

- Responsiveness: The algorithm should respond promptly to changes in the con-

gestion conditions and transient events such as route changes or mobility events.

The convergence time to reach the operating point should be small.

- Avoidance of heavy congestion and synchronization: Dropping many packets

during congestion events should be avoided. Congestion events may last longer

than one RTT.

- Network independence: The protocol should work well regardless of network

characteristics, such as router buffer sizes, queue management strategies, or

the path MTU. Packet networks encompass a large variety of heterogeneous

networks that are realized by a multitude of technologies, which result in a

tremendous variety of link and path characteristics: The link capacity can be

either scarce in very slow speed radio links (several kbps), or there may be

an abundant supply in high-speed optical links (several gigabit per second).

11

Concerning latency, scenarios range from local interconnects (much less than a

millisecond) to certain wireless and satellite links with very large latencies (up

to a second). As a consequence, both the available bandwidth and the end-to-

end delay may vary over many orders of magnitude, and they can be subject to

substantial changes within short time frames. Congestion control mechanisms

must also be able to deal with asymmetric routing, i. e., situations in which the

forward path and the reverse path are different and potentially both congested.

- Application independence: Congestion control has to deal with quite diverse

application sending behaviors. The amount of data that an application may

send varies over many orders of magnitude, and the arrival pattern may be

arbitrary.

- Robustness and stability: The mechanisms should be robust against noise in

the congestion signals. Oscillations should be avoided. Congestion control can

be viewed as a classic negative-feedback control problem with delayed feedback

signals. Congestion control aims at asymptotic stability, i. e., it should converge

to a certain state irrespective of the initial state of the network.

- Scalability: The mechanism must work in a global network that interconnects

potentially billions of endsystems. This requires decentralization. With the cur-

rently available technology it is impossible to realize a centralized, per-flow

resource management on global scale, even if the corresponding business and

legal aspects would be solved.

- Simplicity: The implementation complexity and the amount of state in endsys-

tems should be moderate. Per-flow state in core network components should

be avoided, since it can hardly be realized with existing technology. Simple

solutions are also more likely to become a widely accepted standard.

12

- Ability to deal with uncooperative entities: Any solution in a multi-domain

environment must consider potentially untrusted or malicious sources, sinks,

and network entities on the path, as well as outside attackers.

2.3.2 Fairness

A further requirement for resource sharing is fairness. A definition of fairness is non-

trivial, since it affects both technical and economic aspects. Numerous fairness con-

cepts have been proposed [26]. The most well-known metric to quantify fairness is

Jains fairness index [24]:

FI =
(
∑n

i=1 xi)
2

(n
∑n

i=1 x
2
i)
∈ (0, 1] (2.1)

An allocation with equal values is characterized by FI = 1, whereas a totally

unequal allocation has a fairness index of FI = 1/n.

Due to the design of the standard TCP algorithms, TCP compatibility inherently

implies RTT unfairness, i. e., connections with a shorter RTT will in average obtain

a higher share of bottleneck bandwidth. Also, there can be unfairness with respect to

packet sizes [22].

The TCP compatibility is subject to ongoing debates in research and standardiza-

tion communities. It is accepted that in high-speed networks new congestion control

algorithms may be moderately more aggressive than standard TCP. But there is no

consensus whether RTT fairness is a desirable design goal. There is also disagreement

about the right granularity of fairness. The common goal of widely deployed mecha-

nisms is equal bandwidth allocation among flows. However, this flow rate fairness is

biased towards users that use many parallel flows. Briscoe [27] argues in favor of cost

fairness, which takes into account the amount of congestion caused by a user. Floyd

et al. [RFC 5290] [28] disagree and state that some form of rough flow rate fairness

is an appropriate goal for simple best-effort traffic.

13

Fairness is also an economic issue. Most congestion control schemes require the

involved parties to behave in a cooperative way. However, for an individual user it

is not necessarily the optimal strategy to reduce the sending rate upon detection of

congestion. If users act in a selfish manner and try to improve their own position by

using more resources, this will result in a tragedy of common problem. In economics,

there are three fundamental approaches to deal with congestion externalities: Social

norms, rationing, and pricing. The first two reflect the current situation in the In-

ternet, where most endsystems use congestion control and there are some network

fairness enforcement mechanisms such as fair queueing and scheduling. The latter ap-

proach would require congestion-based charging, which could theoretically be a basis

for congestion control. However, due to the unpredictability of such mechanisms there

are serious reservations both by customers and by network operators [29].

2.3.3 Classification of End-to-End Congestion Control Algorithms

Without network support, endsystems can detect congestion only by two signals:

Packet loss and/or delay. Loss-based congestion control interprets lost packets as a

signal for congestion and reacts by reducing the sending rate. This corresponds to a

binary feedback model. A fundamental drawback is that packet losses should be rare

events and therefore provide a coarse information only. Loss-based congestion control

saturates network buffers unless active queue management schemes are used, which

are introduced in Section 2.3.5. An alternative mechanism are delay-based congestion

control algorithms that use the delay as primary congestion signal. They determine

the minimum RTT and interpret increasing delays as a congestion signal. Delay can be

measured more frequently and with a finer granularity than loss. Delay-based schemes

can detect incipient congestion before buffers overflow. But they have to cope with

two problems: The noise in packet delays has to be filtered out, and it is inherently

difficult to distinguish between full and empty queues. As a consequence, realistic

14

delay-based algorithms require a loss-based component, too. The most widely used

class of congestion control mechanism is sender-oriented, end-to-end, and loss-based.

This class controls the sending rate by modification of a Congestion Window (cwnd).

A control law increases the Congestion Window if there is no sign of congestion, and it

decreases it when packet loss is detected. Chiu and Jain [30] developed a fundamental

set of algorithms that manipulate a cwnd (W) as a reaction to the binary feedback:

Increase per packet in absence of congestion: W ← W + αincrW
i (2.2)

Decrease on detection of congestion: W ← W − βdecrW j (2.3)

The most important class of algorithm uses i = 1 and j = 1, which corresponds to

Additive-Increase Multiplicative-Decrease (AIMD). The term additive is used since

the cwnd is increased by the additive term αincr after one RTT. The resulting evo-

lution of the cwnd over time is depicted in Figure 2.3(a). A fundamental property

of AIMD is that it converges to the optimum point of equal sharing if several com-

peting flows share a bottleneck [30]. This characteristic can be proved by regarding

the system transitions as a trajectory through a vector space, which is illustrated in

Figure 2.3(b) for the case of two flows. Obviously, there are also several alternatives

to the AIMD control law [30], such as Multiplicative-Increase Multiplicative-Decrease

with i = 0 and j = 1. These other decision-making functions may not converge to

equal sharing in drop-tail networks [30].

2.3.4 Classification of Network-Supported Congestion Control
Algorithms

Network components can be involved in congestion control in two ways: First, they

can implicitly optimize their functions in order to support the operation of an end-

to-end congestion control, e. g., by queue management and scheduling strategies, as

introduced later in Section 2.3.5. Second, network components can participate in con-

gestion control via explicit signaling mechanisms. A wide variety of terms are used to

15

(a) Simplified Congestion Window evolution

of an AIMD algorithm

(b) AIMDs convergence to fairness

FIGURE 2.3: TCP’s AIMD properties

describe congestion control with explicit feedback from network components, includ-

ing terms such as “router-assisted”, “router-supported”, “router-aided”, “explicit”

congestion control, etc. They are not consistently used, and the term “router” is mis-

leading since some schemes do actually require support in all queues along a path,

which may also exist in link layer devices. We need to precisely distinguish between

the following three terms:

- Network-supported congestion control: Network-supported congestion control

schemes use explicit feedback from network components to the source of a flow.

The feedback signals state of congestion.

- Network-assisted congestion control: This class of network-supported congestion

control mechanism leaves the decision on sending rates to the sources. It can

operate even if the sources use another congestion control mechanism.

- Network-controlled congestion control: In this class of network-supported con-

gestion control, the network components control the sending rate of flows with

a fine granularity. Sources are merely responsible for executing the control de-

cisions.

16

These definitions use the term “network component” instead of “router”. All network-

supported congestion control schemes require a communication between network com-

ponents and endsystems. Since interconnection in the Internet is realized at the IP

layer, signals can only be transported within the IP layer or in higher protocol layers.

Only network components that process IP packets can trigger such notifications. The

following sections distinguish clearly between the terms “network component” and

“router”; the term “router” is used whenever the processing of IP packets is explic-

itly required. One fundamental challenge of network-supported congestion control is

that typically not all network components along a path are routers [22]. The focus of

network-supported congestion control is the improvement of the resource sharing in

networks that offer mainly a best effort service. Unlike network QoS mechanisms, net-

work supported congestion control mechanisms are lightweight. They do not provide

guarantees, but they also do not require per-flow state in network components.

2.3.5 Interaction with Network Middleboxes

TCPs AIMD strategy is designed to fill the buffer in front of the bottleneck. Therefore,

the buffer size in network components is a crucial factor. Buffer sizing is a multi-

criteria optimization problem with at least three objectives: First, buffers are required

in packet networks in order to absorb short-term traffic bursts. Such transient bursts

are an inherent characteristic of window-based protocols. Second, buffers must be

large enough to ensure that the link utilization is high, in particular for flows using

an AIMD congestion control. But, third, buffers must not be too large, since they can

result in persistent queueing delays and implementation costs. The dimensioning of

router or switch buffers has long been considered a “black art”. Historically, the size

is determined by the bandwidth-delay product as rule-of-thumb [31]. This guideline

states that the buffer size B (here, in bit) should be equal to the capacity r of the

outgoing link multiplied by the RTT τ of a connection that may be bottlenecked at

17

that link. The rule prevents throughput underflow if one TCP connection with βdecr

= 1/2 traverses this link.

Newer research results suggest that the buffers of network interfaces can be made

much smaller if the number of flows is sufficiently large. Appenzeller et al. [4] argue

that a buffer size r · τ/
√
n is sufficient to saturate a link when n independent, long

lived and not synchronized TCP connections share a bottleneck. According to this

model, metro and core routers with a large number of flows n need interface buffers

much smaller than the worst-case BDP. BDP-sized buffers are only useful if the num-

ber of flows n � 100. Newer research results argue in favor of further reducing buffer

sizes and recommend buffers between 20 and 50 packets for core routers[2]. Refer-

ence [2] also comprehensively surveys other recently proposed buffer sizing strategies.

Still, there is no universal design guideline for buffer sizing so far. In general, larger

buffers tend to trade off a potential increase of throughput against larger delays and

jitter. An optimal buffer size can, if at all, only be derived for a specific network

topology, congestion control algorithm, and application workload, and it will not be

optimal in other scenarios.

2.4 State-of-the-Art of TCP Congestion Algorithms

2.4.1 TCP Reno

Jacobson’s ground-breaking control algorithms [20] increase the send rate until con-

gestion is detected by packet loss, and then reduce the rate. The objective is to achieve

an isarithmic equilibrium [32] in which the number of packets in the path is approx-

imately constant. This conservation of packets principle can easily be realized by a

sliding window.

The original TCP standard only specified flow control mechanisms. [RFC 793] [33]

mandates the sender to use a sliding window mechanism with a maximum size given

by the Receive Window (rwnd), i. e., the most recently advertised receive window.

18

Jacobson introduced a second Congestion Window (cwnd), which is an estimation of

how much data can be outstanding in the network without packets being lost. A TCP

sender can transmit up to the minimum of the cwnd and rwnd. The control algorithm

published in [20] distinguished between two different phases: Slow-Start (SS) and

Congestion Avoidance (CA). Later, Jacobson proposed an improved algorithm that

became known as TCP Reno and that is standardized in [RFC 2581] [1]. Reno is

still based on Additive-Increase Multiplicative-Decrease (AIMD). It distinguishes the

following four different phases that are partly illustrated in previous Figure 2.3:

- Slow-Start: At the beginning of a transmission into a network with unknown

conditions, the Slow-Start algorithm is used to probe the network and to deter-

mine the available bandwidth. After the connection setup, the size of Congestion

Window W is set to the initial window w. In Slow-Start, the sender may incre-

ment W by at most MSS bytes for each received ACK that acknowledges new

data. The Slow-Start ends when W reaches or exceeds the Slow-Start Threshold

(SST), or when congestion is observed.

- Congestion Avoidance: When W is equal or larger than the SST, W is incre-

mented by one full-sized segment per RTT. This phase continues until conges-

tion is detected.

- Fast Retransmit and Fast Recovery: The sender can guess that a packet has

been lost when there are duplicate acknowledgments. By default, the arrival

of three duplicate ACKs triggers a Fast Retransmit. Then, the SST is set to

approximately half of the flightsize, i. e., the amount of outstanding data. W

is set to the same value plus three MSS. After the Fast Retransmit follows the

Fast Recovery phase until the loss recovery ends.

19

- Retransmission Timeout (RTO): If the RTO expires, the SST is also set to

approximately half of the flightsize. W is set to one segment, and the sender

continues in Slow-Start.

These algorithms continuously probe the available bandwidth and correspond to an

AIMD congestion control with αincr = 1 and βdecr = 1/2. According to Jacobson, the

design rationale of βdecr = 1/2 is that the sender falls back to a window that worked

previously [20].

The Slow-Start heuristic is of particular importance for this dissertation. The

original idea can be attributed to Jain [34], who suggested a linear window in-

crease. Jacobson chose an exponential increase, since this function opens the window

“quickly enough to have a negligible effect on performance, even on links with a large

bandwidth-delay product” [20]. The Slow-Start has two important roles: On the one

hand, it has to find an appropriate sending rate for a network path that is unknown,

for instance, when the connection is set up. The algorithm probes the available band-

width of the path, and it guarantees that the source sends data at a rate that is at

most twice as large as the maximum possible rate on the path. On the other hand, it

must also start the self-clocking mechanism. In a window-based protocol, the trans-

mission of new packets is controlled by the stream of received ACKs. When there

are no packets in the network, this process needs bootstrapping in order to limit the

burstiness of the sent traffic.

If a sender has been idle for a relatively long period of time, new segments cannot

be clocked out by arriving ACKs. If the Congestion Window remained unchanged,

a source could potentially send a burst of the size of the cwnd with full line rate.

In order to prevent such bursts, [RFC 2581] [1] recommends to reset the Congestion

Window to the restart window if TCP has not sent data in an interval exceeding the

retransmission timeout, i. e., it starts the transmission again in the Slow-Start mode.

20

The restart window is equal to the initial window. An experimental extension [RFC

2861] [35] describes an alternative Congestion Window Validation and suggests to

decay cwnd roughly by factor two once per duration of the RTO, while using the SST

to save information about the previous value of cwnd. [RFC 2861] [35] also provides

recommendations for application-limited periods, i. e., when an application sends less

data than the cwnd allows. Originally, the initial window was one MSS. Today, [RFC

6928] [36] permits an initial window of

min(10L;max(2L; 14600B)) (2.4)

This new value comes from results of several large-scale experiments showing that the

higher initial window improves the overall performance of many web services without

resulting in a congestion collapse. It depends on the MSS L and corresponds to wmax

= 10 segments for MTU = 1500 Bytes, which is the default MTU value in Ethernet

and supported by most Internet paths.

This section can only give a brief overview of the TCP Reno algorithms, and it

does not cover all subtle aspects. Even the specification [RFC 2581] [1] leaves open

several details. For instance, it does not specify an initial value for SST, which may

be arbitrarily high. Congestion control issues are also discussed in many other IETF

documents.

2.4.2 Survey of New Algorithms

The standard TCP Reno algorithms do not scale well to networks that have a very

high path capacity r � 10 Mbit/s and/or an RTT τ � 50 ms. In order to fully utilize

such paths, the cwnd must exceed the BDP r · τ , which may require window sizes

of the order of thousands of segments, or even larger. In order to sustain high steady

state throughputs, TCP Reno requires very low packet loss rates p � 10−6, which is

an unrealistically low value in IP networks [RFC 3649] [37]. The reason is that the

additive increase algorithm in Renos congestion avoidance is rather slow when the

21

BDP is large. Furthermore, a flow may not be able to ramp up fast after a transient

increase of the available bandwidth. In both cases, the path may not be fully utilized.

Many alternatives to the Reno TCP congestion control have been proposed. The

high-speed TCP variants modify the algorithms that calculate the cwnd, in particular

when it is large. The algorithms only require sender-side modifications and are thus

incrementally deployable. In the following, the most important variants (“flavors”)

are briefly introduced. The discussion is limited to algorithms that are generally

applicable and that have a known and validated implementation in a widely used

network stack. Other comprehensive surveys can be found in literature [38]. Further

domain-specific TCP enhancements have been proposed for wireless networks [39].

The majority of proposals belongs to the class of loss-based congestion control

algorithms like Reno, but they use a window growth function other than AIMD.

Most flavors only affect the Congestion Avoidance; the Slow-start remains unaltered.

In general, window growth functions can be divided into three classes according to

their shapes when being plotted over time: (a) concave, (b) convex, and (c) concave-

convex. The list of algorithms in Table 2.1 contains representatives of all three cases.

In literature there is disagreement concerning the optimal shape. In principle, a convex

growth function is needed to ramp up the congestion window to very large values.

But a convex function results in a very large window increment around the point of

saturation and can cause a large burst of packet losses. As a remedy, the CUBIC

congestion control [40] uses a concave-convex scheme.

Many high-speed congestion control algorithms behave like TCP Reno when being

used in lowspeed and/or short-distance networks. Several proposals listed in Table 2.1

also use a window growth functions that depends on the elapsed time t since the last

loss event. This common design pattern significantly reduces the RTT unfairness [42].

Furthermore, almost all proposals set βdecr to a value smaller than 1/2, either depen-

22

TABLE 2.1: Classification and comparison of important TCP congestion control
variants

Algorithm Detect. Probing/backoff Parameters

Reno [RFC 2581] Loss AI/MD αincr = 1, βdecr = 1/2

HS-TCP [RFC 3649] Loss Convex AI/MD αincr = f(W), βdecr = f(W)

Scalable TCP [41] Loss Multiplicative incr./MD βdecr = 1/8

H-TCP [42] Loss Convex AI/MD αincr = f(t; τ), βdecr = f(G; dmax; t)

CUBIC [40] Loss Concave-convex AI/MD αincr = f(t), βdecr = 0.2

Westwood+ [43] Loss AI/bandwidth estimation αincr = 1

Vegas [44] Delay Function of RTT Update law: Incr./decr. by 1 MSS per RTT

FAST [45] Delay Function of RTT Update law: W ← f(d; τ ; W)

Hybla [46] Hybrid AI/MD αincr = f(d), βdecr = 1/2, Slow-Start modif.

Compound [47] Hybrid AI+delay component/ MD Reno emulation with αincr = 1, βdecr = 1/2

Illinois [48] Hybrid Concave AI/MD αincr = f(d; τ), βdecr = f(d; τ)

Legend: AI: Additive Increase MD: Multiplicative Decrease

dent on the Congestion Window size W, the throughput G, the minimum RTT t, or

the maximum delay dmax.

Another class of high-speed TCP approaches uses delay-based congestion control.

They permanently measure performance metrics such as the instantaneous RTT d,

which includes potential queueing delays, and they try to anticipate congestion before

buffer overflows occurs. The control algorithm increases the cwnd size if the delay d

is not much larger than the minimum RTT τ (base RTT), and they decrease the

window if the delay increases. The advantage of delay-based algorithms is that delay

can be measured much more frequently than packet loss, which provides a rather

coarse information if the BDP is large. Furthermore, delay-based algorithms do not

completely fill bottleneck buffers. These advantages motivated the development of

delay-based high-speed congestion control algorithms [45]. However, delay-based al-

gorithms suffer from some inherent weaknesses. Delay is not a reliable congestion

signal, in particular if there is delay jitter due to other effects such as Media Access

Control (MAC) or reverse path congestion. Delay-based schemes also do not interop-

erate well with TCP Reno: Since delay-based algorithms back off much earlier, they

only get a small share of the bottleneck capacity when competing with other flows

23

using Reno. Recently, several hybrid congestion control schemes have been developed,

e.g., Compound TCP [47]. These hybrid schemes combine delay-based and loss-based

mechanisms (Reno emulation).

Another class of TCP congestion control algorithms, which is out of the scope of this

work, addresses low-priority background transport. The purpose of such a less-than

best effort congestion control is to realize the Low-Priority Data class [RFC 4594] [49]

or “scavenger service” without any network support. If an application uses such a low

extra-delay background transport, it should be able to utilize excess bandwidth on a

path without significantly perturbing other TCP connections. Most known solutions

use delay-based congestion control and back off much more aggressively than Reno

when detecting packet loss [50, 51]. A further option is to use inline measurements of

the available bandwidth [52].

2.4.3 Selected Loss Based Algorithm: CUBIC

From a practical point of view, the most important high-speed congestion control

variant is CUBIC [40], since its is enabled by default in the network stacks of Linux

and is the most widely used variant in the Internet [53]. The CUBIC congestion control

has been developed by Rhee et al. [40]. It is the default congestion control in Linux

since kernel version 2.6.18 and has been further developed since then. CUBIC increases

the cwnd using a third-order polynomial function of the elapsed time from the last

congestion event. This results in a concave window curve until a reference point is

reached, which is the old maximum window size. If the reference point is exceeded,

it continues with a convex window curve. This cubic function can be observed in the

upper part of Figure 2.4, which shows the cwnd evolution of a single TCP connection

in a emulated scenario with a single bottleneck (cf. Section 4.4). After a window

reduction by βdecr = 0.2 due to packet loss, CUBIC stores the maximum window. In

the following Congestion Avoidance phase, the cubic function is then set to have its

24

plateau at this maximum window. The motivation for this concave-convex style of

window adjustment is that the sender sends for some time approximately with the

previously available bandwidth and is not very aggressive at this operational point,

i. e., it achieves a high link utilization without risking burst packet losses.

FIGURE 2.4: Trace of CUBIC (emulation, r = 10Gbps, τ = 60 ms, buffer = 1875 pkt)

CUBIC can efficiently utilize high-speed WAN paths with RTTs of 200 ms and

more. Since the window growth function is independent of the RTT, CUBIC has

good RTT fairness characteristics, and it behaves similar like Reno if the BDP or

RTT is small. However, there are concerns about its fairness, since it has been ob-

served that the convergence speed can be slow [54]. This is a side effect of the small

multiplicative window decrease factor βdecr = 0.2. Other measurement results suggest

that the convergence speed of CUBIC is reasonable in environments with sufficient

statistical multiplexing.

2.5 Impact of Network stack Implementations

Each operating system implements the TCP/IP stack in a different way, and the

stacks are evolving over time [55]. As the specifications leave open many details, the

TCP implementations of different operating systems differ significantly, and may also

25

change from version to version. In general, the stacks in modern operating systems

support more features and are better tuned.

There is a set of TCP enhancements that is supported by most endsystems in the

current Internet. Measurements [55] show that most stacks use an error recovery with

Selective Acknowledgments (SACKs). Also, the sizes of advertised receive windows

have significantly increased: While a few years ago maximum windows of 16 KB or

64 KB were common, modern stacks support receive window scaling [56, 57]. Other

proposed enhancements such as ECN get deployed only very slowly. Table 2.2 lists

important TCP extensions that are supported by state-of-the-art stacks. It also illus-

trates some cases of different design choices. This list is not comprehensive and may

change concerning newer releases of the operating systems.

TABLE 2.2: Known characteristics of popular TCP stacks

TCP mechanism Linux kernel Microsoft Windows

(versions 2.6.18 or newer) (Windows Vista or newer)

Default congestion control CUBIC Reno (Windows Vista)

Reno (in some distributions) Compound (Windows 2008 Server)

Window scaling (RFC 1323) Enabled, up to 4 MB Enabled, up to 16 MB

Default scaling factor 7 (depends on memory) 8 (but only 2 for HTTP)

Automatic buffer tuning Enabled Enabled

Delayed ACKs (RFC 2581) Not during Slow-Start Enabled

Initial SST value 2,147,483,647 65,535

Limited Slow-Start (RFC 3742) Supported, disabled Undocumented

Appr. byte counting (RFC 3465) Supported, disabled Enabled

Cong. Window Valid. (RFC 2861) Enabled Undocumented

Conn. state caching (RFC 2140) Enabled Undocumented

SACK (RFCs 2018, 2883, 3517) Enabled Enabled

Timestamps (RFC 1323) Enabled Supported, disabled

RTO calculation (RFC 2988) Not compliant (min. 200 ms) Compliant

ECN (RFC 3168) Supported, disabled Supported, disabled

My work in this dissertation uses the Linux networking stack, which is a powerful

and highly optimized stack. Due to the availability of the source code, the Linux stack

is widely used in networking research. A comprehensive, yet partly out-dated survey

26

of the specifics of the Linux TCP implementation has been compiled by Sarolahti et

al. [56]. A general introduction can also be found in the book of Wehrle et al. [58].

The Linux kernel uses the concept of congestion control modules with a common

interface [59]. Since it is simple to design new congestion control modules, more than

ten different congestion control algorithms are implemented in newer Linux kernels.

The system configuration determines which module is used, and an application can

overwrite this choice by a socket option. CUBIC is the default algorithm unless the

configuration is changed. Another feature of the Linux stack is a sophisticated SACK

processing engine that may even recover if retransmitted segments get lost. As shown

in Table 2.2, there are also several Linux-specific mechanisms. Such an example are

“QuickAcks”: A Linux receiver acknowledges every segment if it assumes that the

sender is in the Slow-Start phase. This disabling of the delayed acknowledgments,

which does not violate [RFC 2581] [1], can speed up the data transport in Slow-Start.

A heuristic decides when to start to delay acknowledgments. The maximum number of

QuickAcks is half of the advertised receive window counted in segments with an upper

bound of 16. Linux also implements Congestion Window Validation [RFC 2861] [35].

2.6 Conclusion

In this chapter, we have set the foundations for this dissertation. We have investi-

gated TCP congestion control mechanism, design issues, challenges, and the most

widely adopted TCP congestion control variants for high-speed networks. It guides

our adventure to discover new problems of TCP and to find a solution for TCP in

high-speed networks.

27

Chapter 3
Development of 10Gbps High Speed
Network Emulation Testbed: CRON

CRON is a cyberinfrastructure of reconfigurable 10Gbps optical networking environ-

ment that provides multiple virtual networking topologies consisting of routers, delay

links, and high-end workstations. To the best of our knowledge, CRON is the first

networking testbed that emulates characteristics of high-speed networks and high

performance computing in a realistic 10Gbps environment. Resources in CRON are

reconfigurable according to user’s requests. CRON allocates resources for multiple ex-

periments to run concurrently and continuously in their own slice of the testbed. Both

application developers and networking researchers can use those virtual high-speed

networking and computing environments without technical knowledge of underlaying

hardware and software. This chapter describes the design of CRON and the key fea-

tures which make CRON running at a bandwidth of 10Gbps. To assist CRON users,

diverse research studies at different layers of computing and networking have been

demonstrated.

3.1 Background

The success of scientific applications and collaborations relies increasingly on high-

speed optical networks because of geographical dispersion of supercomputing facilities

and storage resources across the globe. The development and deployment of national

and international optical networks (such as NLR [60], Internet2 [61], and LONI [62],

etc.) make it possible for many scientists, research and educational institutes to con-

nect and collaborate at previously unachievable levels.

Over those high-speed optical networks, research has been done to combine high

performance computing and high-speed networking together, and bring the integrated

28

environment to multi-disciplinary laboratories located at major research institutes for

large scale scientific research. However, there is a critical gap between research projects

and deployed production networks, caused by the following problems.

- Scarce physical resources: the expensive resources in high-speed optical net-

works have limitations on the number of simultaneous users who have dedicated

paths. At the same time, many research and educational institutes cannot access

high-speed optical networks due to the last mile problem. These shortages in

networking resources constrain the development of multi-institutional or multi-

disciplinary projects.

- Unmodifiable environment: because the currently deployed networks are used

for production as well as research, individual users cannot modify the network

environment parameters, such as network protocol stacks, operating systems,

middleware, and applications.

- Limited environment: applications or protocols developed for one specific high-

speed network should work correctly over all kinds of different networks, irre-

spective of different network features. Each deployed physical network, however,

has one physical characteristic, such as bandwidth and delay. Therefore, it is

difficult for developers to evaluate the performance of their application over

diverse networking environment.

CRON [63] is a reconfigurable 10Gbps optical networking environment that pro-

vides multiple virtual networking topologies consisting of routers, delay links, and

high-end workstations. The goal of CRON project is to bridge the gap between phys-

ical networks, simulation, and high-speed networking environment by developing a

10Gbps networking and computing cyberinfrastructure, which provides integrated

and automated access to diverse networking components.

29

CRON resolves the critical issues by achieving four key objectives.

- Scalable virtual networking resources: CRON enables researchers to explore new

network technologies and rapidly assess their impact on applications irrespective

of physical limitation and allow educators to introduce a state-of-art networking

environment to students who cannot access these physical networks.

- Reconfigurability: CRON provides separate virtual environments. Different users

and researchers can launch their own experiments independently, and they can

alter characteristics of the environments without interfering each other.

- Versatile environment: CRON provides a large variety of emulated networks,

ranging from regional networks to global transoceanic 10Gbps networks, with

impairments like bandwidth throttling, delay, jitter, bit corruption, and loss.

- High end resources: CRON provides high-end resources that can be used for high

performance computing. For example, widely used Hadoop [64] is provided for

distributed computing.

The rest of the chapter is structured as follows. Section 3.2 gives an overview of

related experimental facilities. Section 3.3 describes the design of CRON. Section 3.4

illustrates the various studies using CRON by identifying specific experiment types

and outlining the support for these experiments. Section 3.5 shows extending work

of CRON as part of federation national wide. Section 3.6 concludes our work and

mentions future work.

3.2 Related Work

CRON is based on Emulab [65] testbed, from which CRON inherits its advantages

such as ease of use, control, and realism. Emulab is a testbed where users can reserve a

certain number of machines and get exclusive access to bare hardware. Because of the

30

bandwidth limitation of data plane inside Emulab and capacity limitation of the Dum-

mynet [66] software link shaper, Emulab only provides virtual networking topologies

consisting of emulated links with 10/100Mbps network bandwidth and software-based

routers less than 1Gbps processing speed. Since most nodes and switches only support

100Mbps bandwidth, Emulab is not adequate for networking researchers to develop

future high-speed network architectures or evaluate performance of high-speed net-

work protocols. On the other hand, CRON has extended Emulab to bandwidth of

10Gbps with various hardware and software for high-speed optical networks.

PlanetLab [67] mainly focuses on system and service research over Internet. Al-

though it provides flexible virtual machines, networks connecting virtual machines are

not reconfigurable nor reproducible for networking experiments. Furthermore, most

federated PlanetLab clusters are connected over regular Internet where bandwidth is

varying and limited.

PRObE [68] has the idea of reusing retiring high performance clusters. Reused

computing resources are shared by system researchers at high-end computing system

community, storage systems community, and data-intensive computing community at

large scale. Because of shortage in high-speed routers and emulators as networking

components, however, PRObE targets only system and service research.

FutureGrid [69] and Open Cirrus [70] support either system or service research

based on federation among different clusters and data centers connected through

Internet or dedicated high-speed production networks. Although they can provide

flexible virtual computing environments, their networks are limited or restricted from

the perspective of bandwidth and network topology.

RENCI’s optical BEN [71] is a Triangle Universities (UNC-CH, Duke and NCSU)

owned testbed. Equipments are interconnected through fiber at metro scale. The

testbed provides automatic switching at optical speed. However, the dedicated testbed

31

resource is time shared and used only by those three organizations. Not all the links are

able to be changed. What is more, user management is constrained inside universities

and resource governance is restricted by security concerns.

3.3 Infrastructure

Compared with related architectures, CRON has the following unique features from

computing and networking perspectives.

- Networking Layer provides reconfigurable 10Gbps high-speed networking en-

vironment consisting of 10Gbps Ethernet switch, 10Gbps emulated links im-

paired by modified Dummynet [66] software emulator or Anue hardware emu-

lator [72], 10Gbps Linux software routers.

- Cloud Management Layer supports Eucalyptus [73] as cloud infrastructure

management software. After allocating and isolating physical resources with

multiple virtual LAN (VLAN) blocks, distributed virtual clouds are automati-

cally emulated.

- Distributed Data-intensive Computing and Application Layer gives

high level services, such as Hadoop over distributed virtual clouds. A set of

benchmark applications are provided for the purpose of performance evaluation.

Figure 3.1 shows the general architecture of CRON, which consists of two main

components: (i) hardware component, including 10Gbps core switch, optical fibers,

network emulators, and workstations that are required to compose 10Gbps paths

or function at the ends of these paths; and (ii) software component, including an

automatic configuration server as to integrate all the hardware through a second

1Gbps control plane to create virtual network environments.

To allow data movement from outside networks such as NLR, LONI and Inter-

net2 [61], the 10Gbps core switch has two external 10 Gbps connections. These two

32

FIGURE 3.1: CRON system architecture

external connections extend and integrate CRON with other cooperative projects, as

shown in Figure 3.1 on the right.

3.3.1 Hardware Component

This subsection describes these integrated contemporary commodity hardware such as

high-end workstations and hardware network emulators. Figure 3.2 shows the physical

hardware component and their connections. All hardware components have 10Gbps

capacity, such as 10Gbps hardware emulators, 10Gbps data center switch, 10Gbps

network interface cards, etc.

FIGURE 3.2: CRON system hardware component

With the introduction of 10-GigE, network I/O re-entered the “fast network, slow

host” scenario that occurred with both the transitions to Fast Ethernet and Gigabit

Ethernet. Specifically, three major system bottlenecks limit the efficiency of high

performance network adapters [74]: the PCI bus efficiency, the CPU efficiency and

33

the memory efficiency. In the last years, a rapid development of technology addressed

these challenges. The PCI-X bus, which has a peak bandwidth of 8.5Gbps operating

at 133 MHz, has been replaced by the PCI-Express (PCIe) bus, which has a peak

bandwidth of 20Gbps using 8 lanes. CPUs have entered the multi-core era and the

memory data rate has increased from 3.2GBps (single channel DDR-400 memory)

to 10.7GBps (dual channel DDR2-667 memory). Superior memory management and

bus contention handling mechanism from AMD platform substantially reduce the

round-trip data processing latency. By comparing symmetric-multiprocessing (SMP)

architectures between Intel and AMD, we chose AMD SMP platform as the hardware

for our low-cost 10Gbps network nodes. Table 3.1 shows hardware features of CRON

high-end workstations.

TABLE 3.1: Hardware features of high-end workstations in CRON

Technology Description

AMD64 support 32/64-bit application multitasking

DirectConnect reduce latency between Memory, I/O and cores

HyperTransport high throughput between cores

IntegratedMemoryController on-chip controller for low-latency memory

The 10Gbps Anue Ethernet multi-profile hardware network emulator [72] is a pre-

cision instrument for emulation testing. It efficiently generates network impairments

like link delay, frame drop, jitter, and bit errors as well as it controls link bandwidth

ranging from 1Kbps to 10Gbps. It supports 4 network profiles. Each profile is a set

of parameters that can be applied to 1 or more streams of network traffic. The hard-

ware emulator can be configured to support either uni-directional or bi-directional

transmission. Impairments can be introduced to OSI layers 1 through 7 and it also

supports proprietary protocols.

Creating virtual topology to use hardware emulator is similar to creating an exper-

iment, except that a user specifies a delay value starting with an special ‘H’ character.

34

The CRON resource allocator interprets the character as a parameter to assign the

hardware emulator. In Tcl programming format, the piece of script to request a hard-

ware emulator is given below.

set link [$ns duplex -link $n1 $n2 10000Mb H50ms DropTail]

Upon receiving a user’s request, CRON assigns available hardware emulators to

the user’s experiment. The user can configure link impairments either by the web

based management portal or by a Tcl script. CRON maintains a hardware emulator

database to track the usage of each hardware emulator.

3.3.2 Software Component

This subsection describes those software enhancements to achieve 10Gbps perfor-

mance with contemporary commodity hardware.

Our nodes use both Linux and FreeBSD open source operating systems. We ap-

plied a handful of techniques to improve the performance of operating systems [75],

[3]. Those tunings include driver optimization for 10Gbps network adapter, TCP/IP

network buffer tuning, kernel clock tuning in FreeBSD and kernel efficiency tuning in

Linux.

At data link layer, IEEE 802.3x Ethernet-flow-control temporarily stops the trans-

mission of data on Ethernet ports when flows are over link capacity. However, it causes

a blocking effect known as “head of line blocking” [76] which shortly pauses trans-

mission at each network adapter. Therefore, flow control is disabled in the 10Gbps

core switch. On the other hand, no packet drops are detected in the 10Gbps core

switch when network links are emulated. This indicates the 10Gbps core switch is

transparent to those emulated network links and guarantees each emulated network

link with physical 10Gbps speed.

At layers of TCP/IP, large-receive-offload (LRO) [77] is widely used to improve

packet processing efficiency. However, because LRO combines multiple packets into a

35

big block to reduce computing overhead, it causes additional latency for IP forwarding.

Instead, LRO is enabled in end nodes, and is disabled in nodes as software routers.

We also set the default MTU size to 9000 Bytes as jumbo frame. For software routers,

we implemented and patched various Linux queuing discipline controllers for traffic

control. In addition, we set up network adapter to use standard skbuf to hold packets

for IP forwarding. Inside Linux kernel, we enlarged the TCP buffer size to reach

10Gbps bandwidth under various high-speed TCP congestion control algorithms.

At application layer, we also implemented the zerocopy Iperf network traffic gen-

erator to avoid the overhead of data copy from user-space to kernel space.

The core switch inside CRON is a Cisco N5020 data center switch. Cisco N5020

runs Cisco Nexus operating system, and supports line-rate, low-latency, lossless 10

Gigabit Ethernet and Fibre Channel over Ethernet (FCoE). Originally, the control

software from Emulab uses simple-network-management-protocol (SNMP) API to

do automatic VLAN operations, for example add-and-delete VLAN, add-and-delete

ports from VLAN. SNMP depends on management-information-base (MIB) API to

manage the switch configurations. Emulab uses cisco vtp MIB. However, cisco vtp

MIB are not supported by Cisco N5020. Also, the Cisco N5020 switch only supports

read function in SNMP rather than read write which means SNMP is only used for

monitoring. Therefore, we need to develope new control software for VLAN manage-

ment of Cisco N5020 switch.

The Nexus operating system offers several management interfaces. One of the inter-

faces is command-line-interface (CLI), which supports both show and configuration.

Because the core switch requires reconfiguration automatically inside CRON system,

CLI is not an idea choice. The second interface is SNMP, but it is only used for mon-

itoring. The third one is extensible-markup-language (XML) interface. The Cisco

N5020 switch supports XML by using NETCONF [78] protocol, which is a man-

36

agement protocol developed by the IETF working committee. NETCONF is loosely

structured in which XML wraps CLI commands.

We use a PERL programming module called Expect for the XML wrapping. We

rewrite functions like createVlan, removeVlan, setPortVlan, removePortsFromVlan,

listVlans, listPorts. And create a do expect function as an XML interface for Expect

module.

Dummynet [66] in FreeBSD is a user-configurable software network emulator. In

Dummynet, users can apply network shaping such as limit link bandwidth, add de-

lay, increase packet loss rate, and change queue size. Because the hardware network

emulator is very expensive, we use Dummynet as an alternative to fulfill the network

dynamics in CRON.

In order to control link bandwidth, users need to specify the bandwidth value

every time they use Dummynet. However, all the variables of bandwidth in Dum-

mynet source code are defined as 32bit int, which ranges from -2,147,483,648 to

2,147,483,647. Therefore, the 32bit integer width is not enough for a 10G value. This

explains why the original Dummynet can only provide around 2Gbps of bandwidth.

Therefore, we changed the type of all the bandwidth variables to int64 t, both in user

space and kernel space, so that the bandwidth variables support 10Gbps of band-

width. Tuning Dummynet performance over a 10Gbps link is another challenge. We

have customized Dummynet source code to support 10Gbps link bandwidth; how-

ever, its performance jitters frequently. The reason is a memory zone fragmentation

problem [79]: the Mbuf memory for holding packets always runs in short in FreeBSD

at 10Gbps network speed. To solve this issue, we have to optimize memory allocation

by creating a continuous memory zone to avoid memory fragmentation. This changes

both OS kernel and network adapter driver. Also, some operating system parameters

are tuned for Dummynet, such as net.inet.ip.dummynet.pipe byte limit is changed to

37

1,000,000,000 for an enlarged queue size, and hw.intr storm threshold is increased to

10,000 for a large interrupt storm threshold. Then, the tuned Dummynet is able to

shape network traffic at line speed.

3.4 Experiment and Evaluation

In this section, we evaluate CRON by conducting various experimental studies over

10Gbps high-speed networks.

After launching the web portal service, CRON is accessible from the Internet. As

shown in Figure 3.3(a), every user can request an account at the CRON website. A

list of performed experiments are shown in Figure 3.3(b).

(a) CRON testbed website (b) Some experiments in CRON

FIGURE 3.3: CRON web portal

3.4.1 Research at Network Layer 3 and Layer 4: Evaluation of
high-speed TCP Variants and Active Queue Management

In CRON, studies [75, 3] have been done on the evaluation of high-speed TCP variants

and active queue management schemes over 10Gbps high-speed networks. We create

a Dumbbell topology as shown in Figure 3.4. Three senders run a modified version of

Linux 2.6.34 kernel. Those senders are used to initiate TCP flows. The two routers

run a modified version of Linux-2.6.39 kernel, which supports various Linux queuing

disciplines. The delay node runs a modified version of FreeBSD 8.1, which supports

10Gbps version of Dummynet as a software network emulator. The bottleneck link is

38

the link between Router1 and Router2. So the bottleneck queue is Router1’s output

queue.

Sender1

Sender3

Delay Node

RTT=120ms

Router1
Receiver1

Router

Queue
Receiver3

Router2

Sender2 Receiver2

FIGURE 3.4: Topology of networking experiment

In our experiments, three senders send three different TCP congestion control vari-

ants, namely, TCP-SACK, CUBIC, and HSTCP. At output queue of Router1, we

evaluate three kinds of Linux queuing disciplines, namely, Drop-tail, RED, CHOKe

and AFD. For parameters of RED and CHOKe, we set minimum threshold to 20% of

buffer size, maximum threshold to 90% of buffer size, and drop probability to 0.02.

We vary the queue size at Router1’s output queue from 1% to 100% bandwidth-

delay-product (BDP). On delay node, default RTT is set as 120ms to emulate the

long delay in high-speed networks. Long-lived TCP flows are generated by zero-copy

Iperf. In case of experiments with short-lived TCP flows, we add a pair of sender

and receiver, and generate short-lived TCP flows using Harpoon traffic generator.

The interconnection times are generated from exponential distribution with a mean

of 1 second. File sizes are generated from Pareto distribution with alpha=1.2 and

shape=1500. The chosen distributions and parameters are based on Internet traffic

characteristics. Fairness is calculated among heterogeneous TCP flows in terms of the

long term throughput received by each flow as Jains fairness index. All the presented

results are averaged over five experiments and duration of each run is 20 minutes.

We have 3 different kinds of heterogeneous TCP flows in the bottleneck link. Fig-

ure 3.5(a) shows the bottleneck link utilization for a single long-lived TCP flow sce-

39

60

65

70

75

80

85

90

95

100

1% 5% 10% 20% 40% 60% 100%

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

AFD

(a) 3 Flows

75

80

85

90

95

100

1% 5% 10% 20% 40% 60% 100%

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail RED

CHOKe AFD

(b) 30 Flows

75

80

85

90

95

100

1% 5% 10% 20% 40% 60% 100%

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

AFD

(c) 30 Flows with Short-lived Flows

FIGURE 3.5: Link utilization for heterogeneous TCP flows (120ms RTT)

nario. Link utilization is improved when buffer size is increased. AFD performs the

worst in terms of link utilization because AFD does a lot packet drops to ensure

fairness. Drop-tail performs the best in link utilization among all queue management

schemes. Figure 3.5(b) shows link utilization for many long-lived TCP flows case.

In 1% BDP, the link utilization is almost up to 85%. And Drop-tail still gets more

throughput than other AQM schemes. Figure 3.5(c) is for the case of many long-

lived TCP flows with short-lived TCP flows, link utilization gets further improved as

compare to the case without short-lived flow except for AFD. And Drop-tail still al-

most always gets the highest link utilization. There is an inevitable trade-off between

fairness and link utilization for queue management schemes. AQM schemes get more

fairness, while Drop-tail performs the best in link utilization.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1% 5% 10% 20% 40% 60% 100%

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED CHOKE

FIGURE 3.6: Fairness for 1 TCP-SACK, 1 CUBIC, and 1 HSTCP flow (120ms RTT)

Next, we simultaneously send one TCP-SACK flow from Sender1 to Receiver1,

one HSTCP flow from Sender2 to Receiver2, and one CUBIC flow from Sender3

40

to Receiver3. Figure 3.6 shows fairness index as a function of router buffer size for

three different types of routers. The network behaves unfairly as compared to previous

studies focused on homogeneous TCP flows. To show the degree of decrease of fairness

while transitioning from homogeneous network to heterogeneous one, fairness index

is presented in Table 3.2 for these two cases.

TABLE 3.2: TCP Fairness: Homogeneous versus Heterogeneous (20% BDP buffer,
120ms RTT)

Drop-tail RED CHOKe

CUBIC 0.988 0.994 0.991

HSTCP 0.978 0.987 0.990

TCP-SACK 0.936 0.977 0.970

Heterogeneous TCP 0.681 0.732 0.747

When we use RED and CHOKe on the Router1 with 1% and 5% BDP queue sizes,

all three routers have almost the same fairness as shown in Figure 3.6. When the

queue size increases to 10-20% BDP, RED and CHOKe start to show improvement

in fairness. RED provides 0.05 more fairness index than Drop-tail. We also observe

fairness index improvement by 0.03-0.08 in the case of CHOKe as compared to RED.

3.5 Federation CRON Testbed with Other GENI Sites

The Global Environment for Network Innovations (GENI) [80] is a project providing

collaborative and exploratory environments for academia, industry and the public

to catalyze groundbreaking discoveries and innovation in emerging global networks.

There are branches of prototype implementation and deployment of GENI. For ex-

ample, ProtoGENI [81] and PlanetLab [67]. This section demonstrates the federation

of CRON with ProtoGENI sites and Planetlab sites through GENI framework.

Federation between CRON and BBN GPOLab within ProtoGENI has been demon-

strated at 9th GENI engineering conference (GEC 9). Federation between CRON and

PlanetLab MAX has been demonstrated at GEC12.

41

3.5.1 Federating CRON with ProtoGENI at BBN GPO Lab

FIGURE 3.7: Federation CRON with ProtoGENI at BBN GPO Lab

Federating CRON with ProtoGENI is to connect one server at CRON testbed

and one server from GPOLab at BBN as shown in Figure 3.7. Using the ProtoGENI

package from Emulab, we are able to reserve external resources from other ProtoGENI

sites. The data interfaces at both sides are connected into Internet2 through ION

layer 2 service. A GENI slice holds a collection of computing and communication

resources capable of running an experiment or a wide area service. RSpec [82] is used

for advertising, requesting, and describing the resources. At first, CRON component

manager receives user credentials. Then the user registers a slice at the clearinghouse

at Emulab, which will do resource reservation between component managers of CRON

and GPOLab. After that, experiment can be created, and RSpecs are exchanged

between two sides. Internet2 ION service creates a VLAN, and sets up the connection

between CRON and GPOLab.

After federating CRON into ProtoGENI, CRON resources can be shown in the

ProtoGENI portal as in Figure 3.8.

3.5.2 Federating CRON with PlanetLab at MAX

At first, the clearinghouse at PlanetLab authenticates users and issues their creden-

tials to obtain GENI resources for experimentation. Then both CRON and MAX

provide resources to users with GENI credentials. The GENI aggregate-manager API

42

FIGURE 3.8: CRON resources in ProtoGENI portal

provides a common interface to other aggregate-managers, including PlanetLab, Pro-

toGENI, and OpenFlow. We use the GENI aggregate-manager API, which includes

Flack and Omni tools.

FIGURE 3.9: Federation CRON with PlanetLab at MAX

The Internet2 ION aggregate-manager does VLAN stitching to connect CRON and

MAX as a coherent network. Our experiment topology and procedure are shown in

Figure 3.9. GENI network stitching operation is to construct a topology of substrates

43

as represented by their aggregate-managers. Each aggregate-manager has a unique

Rspec which defines its substrate resources.

3.6 Conclusion

CRON provides integrated resources for emulating a wide range of high-speed net-

working and high performance computing experiments. CRON gives users access and

control over high-end nodes and up to 10Gbps high speed links over their own slice of

the testbed. Users can focus on their research without technical knowledge of back-

ground environment. For example, users can leverage experiments based on their spe-

cific demands among layers from networking to application. Because of reconfigurable

and reproducible features, many types of experiments, including cloud computing and

distributed computing, can be emulated.

44

Chapter 4
TCP Loss Synchronization in High Speed
Network

TCP loss synchronization (TCP-LS) is a phenomenon in which many long-lived TCP

flows drop their sending rates simultaneously in response to a common congested

bottleneck. This is a byproduct of flows competing aggressively for more bandwidth.

The TCP congestion control (TCP-CC) algorithm inside each flow determines the

degree of competition. In high-speed networks, newly designed TCP-CC algorithms

are more aggressive in achieving available bandwidth than a traditional additive-

increase multiplicative-decrease (AIMD) mechanism. As a result, they are replacing

AIMD worldwide.

In this chapter we study the effectiveness of three TCP-CC algorithms in link

utilization. We carefully emulate TCP-LS cases using Linux systems in a 10Gbps

network testbed. We propose new expressions to evaluate degrees of TCP-LS in order

to evaluate the effectiveness of different TCP-CC algorithms for link utilization. From

popular variants of TCP-CC in a small buffer environment, we find high-speed TCP

(HSTCP) to be most effective for link utilization, though it is only the second most

widely used TCP-CC in the Internet.

4.1 Background

In TCP/IP networks with bandwidth of 10Gbps or higher, one big issue is how to

use link bandwidth efficiently. For a bottleneck shared by concurrent long-lived flows,

congestion can happen and packets can be simultaneously dropped. The congestion

is caused by overflow at the bottleneck buffer. As a response, the TCP-CC algorithm

reduces sending rate in each flow. When many sending rates are reduced within a

short time, it is recognized as a TCP-LS event. As shown in Figure 4.1 on the left,

45

at a TCP-LS event, all flows are losing their shares of bandwidth. Therefore, if all

congestions are TCP-LS events, the bottleneck will cause great underutilization. In

our analysis, the worst case of unused bandwidth is a loss of 2.5Gbps for a 10Gbps

network.

lin
k

lo
ad

time

flow3
flow2
flow1

max load
aggregated load

lin
k

lo
ad

time

flow3
flow2
flow1

max load
aggregated load

FIGURE 4.1: Synthetic demonstration of complete TCP-LS (left) and complete loss
desynchronization (right).

TCP-LS has widely been studied as existing studies propose different expressions [83,

84, 85] to evaluate degrees of TCP-LS. One way to estimate TCP-LS rate of a flow is

to divide the number of congestions in a flow by the total number of congestions in

the bottleneck. However, this has limits because a congestion may not be a TCP-LS

event. When we explore long-lived flow patterns controlled by AIMD and high speed

TCP variants, we find common cases where not all flows are reducing sending rates or

an extreme case where only one flow is reducing sending rate. We define the common

cases as partial TCP-LS and the extreme case as complete loss desynchronization.

As exemplified in Figure 4.1 on the right, link utilization is higher in the case of

complete loss desynchronization. To the best of our knowledge, these cases have not

been considered or evaluated.

46

A recent study [2] summarizes that enhancing link utilization is a critical challenge

between buffer sizing problems and TCP-CC in high-speed networks. Because large

buffer size increases latency, complexity and cost, reducing buffer size is the final

goal. A small-buffer model [4] and tiny-buffer models [5, 6, 7] are proposed for near

100% and 80% to 90% link utilization. However, these works rely on the asynchronous

behavior of tens of thousands of TCP flows. Further, accurate buffer size control is

not easily available in commercial routers. Therefore, little experimental study has

been done with a few dozens of synchronous flows.

By controlling buffer size precisely in a Linux router, this chapter presents an ex-

perimental study of TCP-LS among long-lived flows over 10Gbps high-speed optical

networks. Popular TCP variants are studied such as RENO [86] TCP, high-speed TCP

(HSTCP) [87], and CUBIC [40] TCP. Major contributions are: (i) we demonstrate

various TCP-LS cases among long-lived TCP flows with a method to capture the con-

gestion event precisely at 10Gbps; and (ii) we propose two new TCP-LS expressions,

which verify TCP-LS cases and have been tested and proven in our testbed; and (iii)

we explore degrees of loss synchronization on popular TCP variants. We find that

HSTCP is most effective for link utilization in a small buffer environment, though it

is only the second most widely used TCP-CC in the Internet [88].

The remainder of this chapter is organized as follows. Section 4.2 gives a congestion

event capturing method implemented in the Linux kernel. Section 4.3 shows two new

expressions to evaluate TCP-LS rate. Section 4.4 and section 4.5 show our testbed

design and experimental results in homogeneous network traffic (intra-TCPs) and in

heterogeneous network traffic (inter-TCPs).

4.2 Emulation Method

We avoid TCP-LS measurement from the Internet [84], because of non-deterministic

background traffic, for example short-lived web flows and bursty UDP streams. Those

47

cause non-reproducibility and obscure behaviors among long-lived flows. We also avoid

TCP-LS measurement from software simulation [85], because event driven simulation

suffers from timing ambiguity and inadequate computing scalability. We use a “bare

metal” testbed to emulate state of the art.

In Linux network stack, TCP-CC cuts off congestion window (cwnd) immediately

upon a detected loss, and it updates flow status (tcp ca state) to congestion-recovery.

Consequently at granularity of packet level, a status switch indicates a congestion

event. The following algorithm 4.2.1 is our packet-sniffing method for multiple flows,

where loss flag indicates a loss event. For each TCP flow, we record flow ID, time

stamp, loss flag, congestion window, slow start threshold, smoothed round trip time

(RTT), congestion avoidance state, and total retransmission.

Algorithm 4.2.1 optimized TCP multi-flow probe

while each TCP packet of a specific flow do
if (current cwnd 6= previous cwnd) then

record flow id, timestamp, cwnd, ssthresh, srtt,
total retrans, icsk ca state

if (current tcp ca state == TCP CA Recovery) && (previous tcp ca state ==
TCP CA Open || TCP CA Disorder) then

loss flag ← 1
else

loss flag ← 0
end if

end if
previous cwnd← current cwnd
previous tcp ca state← current tcp ca state

end while

Monitoring blocks of digital messages at 10Gbps usually requires a faster execu-

tion speed than those of modern hardware platforms [89]. Popular packet-sniffing

tools such as TCPdump and Ethereal [90] run in user space and are not able to

overcome listen-and-write overhead. Instead, we implement our packet-sniffing algo-

rithm in tcpprobe, a module that runs in kernel space. In this module, each loss flag

is updated upon a status switch from “TCP CA Open” or “TCP CA Disorder” to

48

“TCP CA Recovery”. Then, the module captures TCP headers and copies them from

kernel space into user space. Meanwhile, the module is optimized to record data only

when cwnd changes. As a result, the size of storage is reduced significantly. The per-

formance of our implementation is guaranteed at 10Gbps, no matter how many flows

are generated at the same sender.

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000 2500 3000 3500

cw
nd

 (
pa

ck
et

s)

time (seconds)

max lossmedium loss

min loss

flow3
flow2
flow1

max load
aggregated

FIGURE 4.2: TCP-LS cases of 3 competing RENO flows: complete synchronization
causes maximum bandwidth loss, partial synchronization causes medium loss, and
complete desynchronization causes minimum loss.

Figure 4.2 shows congestion window growth during 3500 seconds for 3 concurrent

long-lived RENO flows from three 10Gbps senders. Those flows compete a 10Gbps

bottleneck. Packet size of each flow is 2000 bytes, resulting a maximum load of 37500

packets in this 60 milliseconds delay pipe. Reasons for choosing the packet size and

detail of testbed design are described in section 4.4. Here, we see complete TCP-LS

near 1500s, 1900s, and 2600s where the aggregated congestion window drops signif-

icantly. We also see partial TCP-LS of 2 flows near 600s, and 2400s. Other losses

involve complete desynchronization, which causes minimum loss to the aggregated

throughput.

49

4.3 New Loss Synchronization Expressions

A congestion event happens when there are one or more packets dropped simulta-

neously at a bottleneck within a “short” interval ∆t. These dropped packets are

either from a single flow or from multiple flows. In time domain, ∆t is roughly one

round-trip-time (rtt). There are two separated congestion events if their ∆ts are not

overlapped. For a total of n flows through a bottleneck over a “long” measuring pe-

riod τ , we let T denote total number of congestion events, where li,k represents a loss

event at the k-th congestion for flow i such that li,k = 1 when flow i loses, and li,k = 0

otherwise. Therefore, the total number of loss events Ni for flow i is:
∑T

k=1 li,k = Ni

∈ [1, . . . , T].

In real world, not all flows are loss synchronized in a certain congestion event,

nor do all congestion events belong to the same case of synchronization. As shown

in Figure 4.3, there are 9 congestion events and 3 TCP-LS cases, Ni = 4, Nj = 6,

Nk = 4, and T = 9. At the 1st, 6th and 8th congestion event, 2 out of 3 flows

are loss synchronized, causing medium loss. At the 3rd congestion event, 3 flows are

completely loss synchronized, causing maximum loss. The other congestion events

are complete loss desynchronization. Therefore, a corresponding weight to the degree

of a congestion event helps to evaluate TCP-LS. Particularly, if there are 3 long-

lived flows, the weight is one of 1/3, 2/3, and 1, which represent the complete loss

desynchronization (1/3), the partial TCP-LS (2/3), and the complete TCP-LS (1),

respectively. Since TCP-LS degrades link utilization at different level, we propose the

following Expression (4.1) to indicate per-flow’s contribution.

SRi =
Nw
i

T
=

1

T

T∑
k=1

(li,k × weightk) (4.1)

In Expression (4.1), a ratio between weighted number of loss events Nw
i and total

number of congestion events T indicates per-flow TCP-LS rate for flow i. As degree

of loss events differs, the weight verifies each event that involves a certain set of flows.

50

flow i

flow j Time t

flow k
Dt Dt Dt Dt Dt Dt Dt Dt Dt

1 3 2 4 5 6 7 8 9

FIGURE 4.3: Real world TCP-LS cases over 3 flows (each x is a loss event)

One might expect the overall impact of TCP-LS for the bottleneck of n flows. A

global TCP-LS rate is expressed as a harmonic mean of all per-flow TCP-LS rates in

Expression (4.2).

SR =
n

n∑
i=1

1

SRi

(4.2)

4.4 Testbed Design

We create a dumbbell testbed as shown in Figure 4.4 from CRON [63], which is

a cyber-infrastructure of reconfigurable optical networking environment that pro-

vides multiple emulation testbeds operating up to 10Gbps bandwidth. Most nodes are

symmetric-multiprocessing (SMP) servers containing 10Gbps network interfaces. The

delay node in the middle is an Anue XGEM 10Gbps hardware emulator. It provides

bi-directional communication delay fixed at 60ms.

We use Ubuntu Server Linux with a re-compiled 2.6.39 kernel. The kernel runs a 1

kHz timer to record time stamp and srtt at 1 ms resolution. All nodes are kernel clock

synchronized with a local time server (NTP server) at the same resolution. We also

adopt CPU affinity over 10Gbps interfaces [?] to improve processor cache hit rate.

In order to keep router processor load below 85%, we set packet size to 2000 bytes

51

Delay Node
(Anue hardware emulator)

Software
Router1

Router
Queue

Software
Router2

Sender1

Sender2

Sender3

Receiver1

Receiver2

Receiver3

FIGURE 4.4: Experiment topology

instead of standard 1500 bytes. Most system parameters are tuned for performance1.

In summary, all links are tested initially to confirm operation at line speed.

For buffer sizing at Router1’s output port, since arguments for small buffers have

been put forth, we use a fixed size of 5% bandwidth-delay-product (BDP) buffer,

which is a 3.6 megabytes drop-tail sized “appropriately” between small-buffer model [4]

(10.3 megabytes) and tiny-buffer model [6] (51.1 kilobytes). This 5% BDP buffer

comprises 1875 packets, and it has two parts inside Linux kernel: 1024 descriptors

of tx ring mapped by network interface driver and 851 descriptors of qdisc inside IP

stack.

We have done 138 hours of tests. These tests are cases of 2, 3, 6, 12, 24 and 48 flows,

where each sender sends 1, 2, 4, 8, and 16 flows, except only two senders are used in

the first case. In each test, flows are sent by the traffic generator Iperf from Senderi

to Receiveri, respectively. One trial for each test lasts 3500 seconds, and repeats 6

times.

After warm-up of 200 seconds, we calculate TCP-LS rates for 3000 seconds. The

TCP-LS rates are the arithmetic means of these 6 repeats with an observed standard

error, which are relatively small in the range of ±5%. The 5% BDP buffer reduces

1Description about system tuning can be found at CRON wiki at https://wiki.cct.lsu.edu/cronwiki/

52

https://wiki.cct.lsu.edu/cronwiki/

queuing latency and jitter efficiently as srtt read from TCP stack shows delay between

60ms and 63ms.

4.5 Experiment Results

4.5.1 Homogeneous TCP Experiment

Table 4.1 shows average distribution of synchronization phenomena on 2, 3 and 6

flows tests. On the 2 flows test, 40% of all loss events involve only 1 flow, a large part

of complete desynchronization. On the 3 flows test, one third of all loss events are

partially synchronized and more than one third are completely desynchronized. On

the 6 flows test, more than 50% of loss events involve only 2 or 3 flows; at the same

time, 29% of loss events are completely desynchronized.

TABLE 4.1: Probability distribution of synchronization for 2, 3 and 6 AIMD flows

sync1 sync2 sync3 sync4 sync5 sync6

2flows 40% 60% − − − −

3flows 36% 33% 31% − − −

6flows 29% 29% 24% 10% 4% 4%

Figure 4.5 shows 12, 24 and 48 RENO flows. In each distribution, bell curves

resemble Gaussian distribution. Especially for the 48 flows test, 95% of loss events

are approximating a Gaussian distribution with mean of 7 flows and a standard

deviation of 3 flows. This means most loss synchronization events involve a random

subset of flows. Since the probabilities for those subsets are less than 10%, statistical

multiplexing effect plays a significant role. Figure 4.5 also implies the global loss

synchronization will be smaller when more flows are added.

Becase in each test all flows have the same TCP-CC algorithm, per-flow TCP-LS

rates and the corresponding global TCP-LS rates are the same. Figure 4.6 summaries

the global TCP-LS rates and the corresponding link utilization rates for RENO flows.

Obviously, link utilization increases when synchronization rate decreases.

53

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45

di
st

rib
ut

io
n

(%
)

number of flows that are loss synchronized

12 RENO flows
24 RENO flows
48 RENO flows

FIGURE 4.5: Distribution of synchronization for 12, 24 and 48 RENO flows

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2flows 3flows 6flows 12flows 24flows 48flows
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

global TCP-LS rate
link utilization

FIGURE 4.6: RENO’s global TCP-LS rates and link utilization rates

We know that for AIMD TCP-CC mechanism, the cwnd size of a flow at time t is:

cwnd(t) = cwndmax(1− β) + α
t

RTT
(4.3)

where cwndmax is the cwnd size just before the last window reduction, α and β are

the increase parameter and the decrease parameter. Because we use RENO TCP to

represent AIMD mechanism, α = 1 and β = 0.5, by which a TCP flow increases cwnd

roughly by one segment per rtt and cutting it by half at a congestion. As a result,

these two policies form a sawtooth behavior.

54

Figure 4.7 shows cwnd behaviors of three RENO flows. Because of the per-flow

sawtooth behavior, the aggregated load forms sawtooth too. However, the aggregated

load has different degrees of loss based on various TCP-LS cases,.

0

10000

20000

30000

40000

50000

600 800 1000 1200 1400 1600 1800 2000
0%

25%

50%

75%

100%

125%

cw
nd

 (
pa

ck
et

s)

lin
k

lo
ad

 (
%

)

time (seconds)

max loss

medium loss min loss flow3
flow2
flow1

aggregated

FIGURE 4.7: Congestion window behaviors of three RENO flows

Based on observation, bottleneck link utilization has lower and upper bounds.

Mathematically, the link utilization U of n AIMD flows is calculated in Expres-

sion (4.4).

U = 1− 1

2
(
β

n
× i) (4.4)

In Expression (4.4), i is the average number of loss synchronized flows, i ∈ [1, n].

The expression means the lowest and the highest link utilization (L and H) depend

on the highest and the lowest TCP-LS rates, respectively. For L, it comes true when

all the AIMD flows are completely loss synchronized, which means the aggregated

load behaves like a single flow sawtooth. For H, it comes true when all the flows

are completely loss desynchronized. Table 4.2 shows some numerical examples of link

utilization for RENO flows.

In real world, flows’ behaviors are more like chaotic dynamics [91]. The link utiliza-

tion actually falls inside [L, H]. As shown in Figure 4.6, because the global TCP-LS

55

TABLE 4.2: Numerical examples of link utilization for RENO flows

Flows Lowest Utilization (L) Highest Utilization (H)
n = 2 75% 87.5%
n = 3 75% 91.7%
n = 6 75% 95.8%
n = 12 75% 97.9%
n = 24 75% 98.9%

rate is near 70% in the two flows test, the link utilization is 78%. As more flows are

added, TCP-LS rate goes down. For example, the test of 12 RENO flows reaches 90%

link utilization, when its global TCP-LS rate is 10%.

For 2, 3 and 6 flows tests, HSTCP has similar synchronization phenomena to RENO.

For example, partial and complete desynchronization phenomena have large shares.

When number of flows increases, the share of complete synchronization decreases

significantly.

Unlike RENO, HSTCP have smaller sets of loss synchronized flows. As shown in

Figure 4.8 for average distribution of synchronization phenomena of 12, 24 and 48

flows, the curves peak at 2 and decrease significantly. It means HSTCP flows are less

liable to loss synchronization than RENO flows.

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45

di
st

rib
ut

io
n

(%
)

number of flows that are loss synchronized

12 HSTCP flows
24 HSTCP flows
48 HSTCP flows

FIGURE 4.8: Distribution of synchronization for 12, 24 and 48 HSTCP flows

56

Figure 4.9 shows the global TCP-LS rates of HSTCP. All the link utilization rates

are higher than RENO, not only because all the TCP-LS rates are smaller, but also

because the decrease parameter β is smaller and increase parameter α grows faster

(nonlinear). In Figure 4.10, the cwnd behaviors of three HSTCP flows are close to

AIMD. Therefore, when β is around 0.2, Expression (4.4) still roughly works to in-

terpret the lowest link utilization as 90% for three HSTCP flows.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2flows 3flows 6flows 12flows 24flows 48flows
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

global TCP-LS rate
link utilization

FIGURE 4.9: HSTCP’s global TCP-LS rates and link utilization rates

0

10000

20000

30000

40000

50000

1600 1700 1800 1900 2000 2100
0%

25%

50%

75%

100%

125%

cw
nd

 (
pa

ck
et

s)

lin
k

lo
ad

 (
%

)

time (seconds)

max loss
min loss medium loss flow3

flow2
flow1

aggregated

FIGURE 4.10: Congestion window behaviors of three HSTCP flows
57

Unlike RENO and HSTCP, CUBIC have more loss synchronized flows. From Ta-

ble 4.3 and Figure 4.11, shares of complete synchronization and partial synchroniza-

tion are highest among the three TCP variants. As shown in Figure 4.11, peaks of

those bell curves locate on many flows. Therefore, more loss synchronized flows cause

higher synchronization rates and lower link utilization.

TABLE 4.3: Distribution of synchronization for 2, 3 and 6 CUBIC flows

sync1 sync2 sync3 sync4 sync5 sync6

2flows 27% 73% − − − −

3flows 18% 28% 54% − − −

6flows 7% 12% 16% 24% 24% 17%

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35 40 45

di
st

rib
ut

io
n

(%
)

number of flows that are loss synchronized

12 CUBIC flows
24 CUBIC flows
48 CUBIC flows

FIGURE 4.11: Distribution of synchronization for 12, 24, and 48 CUBIC flows

As shown in Figure 4.12, CUBIC has the highest TCP-LS rates of all. Link utiliza-

tion rates are lower than these of HSTCP. When more flows are added, CUBIC shows

worse link utilization than RENO. Despite CUBIC is the most widely used TCP-CC

algorithm, its TCP-LS character shows unexpected performance.

58

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2flows 3flows 6flows 12flows 24flows 48flows
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

global TCP-LS rate
link utilization

FIGURE 4.12: CUBIC’s global TCP-LS rates and link utilization rates

Figure 4.13 shows cwnd behaviors of three CUBIC flows. Because CUBIC does

not adopt linear increase, it is still our future work to interpret the link utilization

boundaries.

0

10000

20000

30000

40000

50000

2100 2150 2200 2250 2300
0%

25%

50%

75%

100%

125%

cw
nd

 (
pa

ck
et

s)

lin
k

lo
ad

 (
%

)

time (seconds)

max loss
min loss

medium lossflow3
flow2
flow1

aggregated

FIGURE 4.13: Congestion window behaviors of three CUBIC flows

4.5.2 Heterogeneous Experiment

As shown in Figure 4.14, global TCP-LS rates are similar to these of RENO and

HSTCP. However, link utilizations are similar to these of CUBIC.

59

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3flows 6flows 12flows 24flows 48flows
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

global TCP-LS rate
link utilization

FIGURE 4.14: Global TCP-LS rates and link utilization rates of heterogeneous traffic

As we analyze the per-flow TCP-LS rates, we find they vary according to their TCP-

CC algorithms. As shown in Table 4.4, CUBIC flows have higher per-flow rates than

RENO flows and HSTCP flows. This means shares of partial TCP-LS or complete

desynchronization are similar to these of RENO or HSTCP, and it explains why

heterogeneous traffic has TCP-LS rates similar to RENO and HSTCP.

TABLE 4.4: Per-flow rates of CUBIC, HSTCP, RENO and the global rates in three
and six flows test

CUBIC HSTCP RENO global rate

3 flows 62% 47% 34% 45%

6 flows 40% 26% 21% 27%

Figure 4.15 shows cwnd behaviors of three heterogeneous flows. Because of the

unfairness caused by CUBIC, the aggregated load behaves like a CUBIC flow. This

explains why heterogeneous traffic has link utilization rates similar to CUBIC, and it

is obvious a big weakness for networks shared by different TCP flows.

60

0

10000

20000

30000

40000

50000

500 550 600 650 700 750 800 850 900
0%

25%

50%

75%

100%

125%

cw
nd

 (
pa

ck
et

s)

lin
k

lo
ad

 (
%

)

time (seconds)

max lossmedium loss

min loss

RENO
HSTCP
CUBIC

aggregated

FIGURE 4.15: Congestion window behaviors of heterogeneous traffic. CUBIC flow has
the highest cwnd and RENO flow has the lowest cwnd.

4.6 Conclusion

In this chapter, we analyzed TCP loss synchronization among long-lived flows and

proposed two new synchronization expressions by carefully examining the loss events.

Through a 10Gbps testbed, we obtained the measurements based on an “appropri-

ate” 5% BDP drop-tail buffer with common rtt, and demonstrated the relationship

between synchronization and link utilization. A small buffer may not be sufficient for

AQMs like RED, but it maintains good link utilization when high-speed TCP vari-

ants are applied. We also showed degrees of synchronization of three popular TCP

variants within homogeneous and heterogeneous traffic. Although fairness issue exists

in heterogeneous traffic, HSTCP is more effective for link utilization than RENO and

CUBIC in homogeneous traffic.

61

Chapter 5
Desynchronized Multi-Channel TCP for
High Speed Networks with Tiny Buffers

Regarding the issues of router buffer sizing, an acceptable link utilization of the tiny-

buffered core routers over backbone networks requires (i) the backbone links are over-

provisioned, and (ii) the network traffic is not bursty, and (iii) tens of thousands of

asynchronous TCP flows. However, in high-speed access networks, traffic is bursty and

the number of TCP connections is below hundreds with less asynchronous granularity.

It is almost impossible to reach an acceptable link utilization for such networks with

tiny buffers.

In this chapter, we focus on bottleneck link utilization with goals to minimize

TCP loss synchronization and to reduce traffic burstiness impact. We present a new

congestion control algorithm called Desynchronized Multi-Channel TCP (DMCTCP).

Our algorithm implementation takes advantage of a potential parallelism from the

Multi-Path TCP in Linux. Over an emulated 10 Gb/s large delay network ruled by

routers with only a few dozen packets of buffers, our experimental results confirm

that bottleneck link utilization can be improved to reach more than 80% with just

100 connections.

5.1 Background

Deciding an appropriate buffer size at a high-speed router of Internet has been de-

bated for years among network researchers. The traditional guidance on maintaining

a fully utilized link while TCP ramps up its congestion window (cwnd) suggests a

Bandwidth-Delay-Product (BDP). This rule-of-thumb decides the amount of buffer-

ing by B = RTT × C [31], where C is the capacity of a bottleneck link and RTT is

the round-trip-time of a TCP connection. For a large RTT of 250 ms, a router with a

62

C = 40 Gb/s link capacity requires 10 Gb of buffering, which is costly and challenging

to design and deploy over high-speed networks [4].

Recently, several arguments on buffer sizing at Internet core routers have been put

forth. Based on queuing analysis, studies from [92, 93] proposed a tiny-buffer model to

significantly reduce buffer to a size of O(logW), where W is congestion window size.

They recommended that a few dozen packets of buffering can suffice an acceptable

link load for TCP traffic, e.g. 75% utilization of a 40 Gb/s link. This model has

been examined with promising results from several 1 Gb/s network experiments [94].

However, it relies on the traffic conditions that tens of thousands of TCP flows are

neither bursty nor synchronous. These conditions only exists in Internet backbone,

where tens of thousands of TCP flows are spread out through over-provisioned core

links.

Therefore, we explore if and how we could achieve an acceptable link utilization in

high-speed access networks with very small router buffer. First, it could facilitate the

deploy of all-optical routers because they have huge link capacity and lower power

requirement but are limited by buffer size [9]. Second, it could reduce the requirement

of router complexity, making routers easier to build and easier to scale. Third, it could

minimize queuing delay and jitter that were closely related to buffer size in electronic

routers.

However, we found it is more challenging for performance in access networks with

very small buffers because conditions are different in the following aspects: (i) the

access links have congestion, and (ii) the network traffic is bursty, and (iii) the number

of flows is too small to reach an expected level of asynchronism. We believe most of the

problems come from TCP congestion control, as it is an integral module of TCP that

directly determines the performance of the protocol. Therefore, we focus on the design

of a new TCP congestion control algorithm called Desynchronized Multi-Channel

63

TCP (DMCTCP), which pursues goals of minimizing TCP loss synchronization and

reducing the impact of traffic burstiness.

The key ideas behind DMCTCP are to prevent simultaneous transmission rate cuts

among multiple channels of a TCP connection and to prevent transmission rate cuts

from burstiness congestion. The algorithm was inspired by parallel TCP and Multi-

Path TCP [95] (MPTCP), but with the important distinctions that various congestion

events are detected and distinguished with different corresponding actions, and that

no modifications to other network layers (such as the application layer) of the end-

to-end system need to be made.

5.2 The Multipath TCP

Today, most smartphones support at least 3G and 802.11, and so do tablet PCs like

Apples iPad. This has increased interest in using several access mediums in the same

connection, so that it becomes possible to transparently change from one medium to

another in case of failure. Further, using several paths simultaneously can improve

end-to-end throughput with load balance.

The transport layer is the best place to implement multipath functionality because

of the high amount of information it collects about each of the paths (delay/band-

width estimation), and its knowledge of the application byte stream. The network

may know path properties, but simply scattering packets of a single transport con-

nection over multiple physical paths will typically reorder many packets, confusing the

transport protocol and leading to very poor throughput. The application could im-

plement multipath, but such changes are not easy to get right. If just simply switched

from TCP to multipath TCP while maintaining the reliable byte stream semantics,

unmodified application could benefit immediately.

Multipath TCP, as proposed by the IETF working group [95], allows a single data

stream to be split across multiple paths. This has obvious benefits for reliability

64

that the connection can persist when a path fails. It can also have benefits for load

balancing at multi-homed servers and data centers, and for mobility, as shown below.

In the traditional Internet architecture, network devices operate at the network

layer and lower layers, with the layers above the network layer instantiated only at

the end hosts. As shown in Figure 5.1, while this architecture was initially largely

adhered to, this layering architecture no longer reflects the “ground truth” in the

Internet with the proliferation of middleboxes [RFC 3234] [96]. Middleboxes routinely

interpose on the transport layer; sometimes even completely terminating transport

connections, thus leaving the application layer as the first real end-to-end layer, as

shown in Figure 5.2.

FIGURE 5.1: Traditional Internet Architecture

FIGURE 5.2: Internet Reality

Middleboxes that interpose on the transport layer result in loss of “fate-sharing”

[RFC 2018] [97], that is, they often hold “hard” state that, when packets are lost or

corrupted, the end-to-end transport connection will be lost or corrupted.

65

The network compatibility goal requires that the multipath extension to TCP re-

tain compatibility with the Internet as it exists today, including making reasonable

efforts to be able to traverse predominant middleboxes such as firewalls, NATs, and

performance-enhancing proxies [RFC 3234] [96]. This requirement comes from rec-

ognizing middleboxes as a significant deployment bottleneck for any transport that

is not TCP or UDP, and constrains Multipath TCP to appear as TCP does on the

wire and to use established TCP extensions where necessary. To ensure compatibility

of the transport layer, Multipath TCP preserves fate-sharing without making any

assumptions about middlebox behavior.

The modifications to support multiple paths remain at the transport layer, although

some knowledge of the underlying network layer is required. Multipath TCP also

works with IPv4 and IPv6 interchangeably, i.e., one connection may operate over

both IPv4 and IPv6 networks.

MPTCP makes use of standard TCP sessions, termed “subflows”, to provide the

underlying transport per path. MPTCP-specific information is carried in a TCP-

compatible manner, although this mechanism is separate from the actual information

being transferred so could evolve in future revisions. Figure 5.3 illustrates the layered

architecture of MPTCP.

FIGURE 5.3: Comparison of Standard TCP and MPTCP Protocol Stacks

In situation below the application layer, the MPTCP extension in turn manages

multiple TCP subflows below it. In order to do this, it implements the following

functions:

66

- Path Management: This is the function to detect and use multiple paths be-

tween two hosts. MPTCP uses the presence of multiple IP addresses at one

or both of the hosts as an indicator of this. The path management features

of the MPTCP protocol are the mechanisms to signal alternative addresses to

hosts, and mechanisms to set up new subflows joined to an existing MPTCP

connection.

- Packet Scheduling: This function breaks the byte stream received from the ap-

plication into segments to be transmitted on one of the available subflows. The

MPTCP design makes use of a data sequence mapping, associating segments

sent on different subflows to a connection-level sequence numbering, thus allow-

ing segments sent on different subflows to be correctly re-ordered at the receiver.

The packet scheduler is dependent upon information about the availability of

paths exposed by the path management component, and then makes use of

the subflows to transmit queued segments. This function is also responsible

for connection-level re-ordering on receipt of packets from the TCP subflows,

according to the attached data sequence mappings.

- Subflow (single-path TCP) Interface: A subflow component takes segments from

the packet-scheduling component and transmits them over the specified path,

ensuring detectable delivery to the host. MPTCP uses TCP underneath for

network compatibility. Because TCP ensures in-order, reliable delivery, each

TCP flow adds its own sequence numbers to the segments; these are used to

detect and retransmit lost packets at the subflow layer. For MPTCP, it uses a

dual sequence number space, where each subflow has its own sequence space that

identifies bytes within a subflow as if it were running alone. There is also a data

67

(or connection level) sequence space, which allows reordering at the aggregate

connection level. Each segment carries both subflow and data sequence numbers.

- Congestion Control: This function coordinates congestion control across the

subflows. As specified, the congestion control algorithm ensures that an MPTCP

connection does not unfairly take more bandwidth than a single path TCP flow

would take at a shared bottleneck.

5.3 Multipath TCP implementation in Linux

The architecture of MPTCP implementation is depicted in figure 5.4. All legacy TCP

applications directly benefit from the added multipath capability. When a new TCP

flow is started, multipath TCP adds the multipath capable option to the SYN packet.

If the end-point replies with a SYN/ACK containing the multipath capable option,

the connection is then multipath enabled.

FIGURE 5.4: MPTCP architecture

Connection-specific information is held in a new structure at the connection-level,

called meta-socket. This structure keeps multipath identifiers for the connection, the

68

list of subflows associated to this connection, and connection-level reordering queues.

Initially there is a single TCP socket opened (the master socket), corresponding to

the first subflow in the connection. When additional subflows are opened, new socket

structures are created and associated to the meta-socket. The master socket is a

special socket as it is the only connection to the application. Application writes to

this socket are redirected to the meta-socket which segments the byte stream and

decides which subflow should send each segment. Application reads from this socket

are serviced from the meta-socket’s receive buffer.

Data arriving on the subflows is serviced by the master and slave sockets (checking

for in-order, in window sequence numbers, etc.), and passed to the meta-socket once

it is in order at subflow level. Here the data is reordered according to the connection

sequence number, which is carried in each TCP segment as an option. Retransmissions

are driven only by the subflow sequence number. Therefore, MPTCP avoids problems

due to connection level reordering of packets.

Additional subflows are only opened after the initial handshake succeeds. The stack

checks to see if it has multiple addresses that have routes to the destination; if so it

will try to open subflows using currently unused addresses (in the picture this could

be address A2). To get around NATs, addresses are also signalled explicitly to the

remote end using TCP options.

Subflows are created with the usual three way handshake with SYN packets carrying

a “Join” option and a connection identifier. SYN de-multiplexing is done using this

connection identifier, and not the destination port as in regular TCP.

The implementation allows opening subflows between different address pairs, or

between the same address pairs but different ports. The latter can be used to lever-

age existing in-network multipath solutions such as Equal Cost Multipath (ECMP),

allowing them to load balance at subflow granularity. Finally, this implementation is

69

modular and it is easy to add support for new path management techniques that may

become available.

In summary, MPTCP is a proposed TCP extension to use multiple linked paths

for a single TCP connection. It manages data streams called subflows of a single

connection among multiple paths. In Linux kernel, it currently has two implemented

congestion control algorithms named MPTCP-Coupled [98] and MPTCP-OLIA [99],

which ensure that an MPTCP connection does not unfairly take more bandwidth than

a single path TCP flow would take at a shared bottleneck. MPTCP is likely to work

correctly in the Internet through different middleboxes [100]. Study in [101] shows

robust performance of MPTCP with a few subflows per-connection in a multiple

Fat-Tree-like data center environment. But the related buffer sizing issues are not

discussed.

5.4 Motivation: Problems of high-speed Networks with Tiny Buffers

5.4.1 The TCP Loss Synchronization Analysis

Based on the standard Additive-Increase/Multiplicative-Decrease (AIMD) TCP con-

gestion control mechanism, a highly simplified macroscopic model for the steady-state

behavior [102] is expressed as follows:

average throughput of a connection =
0.75 ·W
RTT

(5.1)

Consider a particular RTT and segment size, the average throughput of a flow will be

roughly 75% of its largest congestion window W . If we do not include buffer effect,

W will be cut in half when the transmission rate reaches the bottleneck link capacity

C and then increases by one segment every RTT until it again reaches W . Therefore,

the average throughput of a flow in a bufferless bottleneck link is simplified as:

average throughput of a connection = 0.75 · C (5.2)

Interestingly, our experimental study of TCP loss synchronization shows similar

pattern when many flows are through a bottleneck link with small buffer. We define a

70

complete TCP loss synchronization event happens when all the flows are experiencing

packet drops in a congestion event. As a result, all the flows cut their rates in half at

the same time and the bottleneck link is underutilized. This congestion event includes

at least n packet drops where n is the number of flows. When n is small, it is highly

probable to have many complete loss synchronization events. Figure 5.5 geometrically

shows two generalized scenarios of complete loss synchronization. As can be seen from

the figure, when buffer effect is not included, the aggregated congestion window of

three flows is cut in half on each complete loss synchronization event and follows the

same sawtooth pattern as a single flow in (5.1), no matter what RTT each flow has.

Therefore, the bottleneck link utilization becomes 75%.

C
on

ge
st

io
n

w
in

do
w

Time

W of flow3
W of flow2
W of flow1

max load
aggregated W

C
on

ge
st

io
n

w
in

do
w

Time

W of flow3
W of flow2
W of flow1

max load
aggregated W

FIGURE 5.5: Two extreme scenarios of the complete loss synchronization: flows with
similar RTTs (left) and flows with different RTTs (right)

The analysis above triggers our goal to completely desynchronize TCP flows. In

order to desynchronize, ideally a congestion event should include at most one packet

drop such that only one flow experiences rate cut once upon a time. By enumeration,

Figure 5.6 shows an idealized TCP desynchronization that improves bottleneck link

utilization. However, it is almost impossible to only drop a single packet when the

buffer is full, especially for tiny buffers that can only hold a few dozen packets.

This means Active Queue Management (AQM) mechanisms such as random early

detection (RED) will not work as expected. They will mostly behave like a drop-tail

71

buffer because when the buffer is too small, they cannot absorb the large bursts due to

the faster window growth inherent in TCP protocols [13]. Therefore, TCP congestion

control becomes the target to find a desynchronization oriented solution.

C
on

ge
st

io
n

w
in

do
w

Time

W of flow3
W of flow2
W of flow1

max load
aggregated W

FIGURE 5.6: The completely desynchronized TCP flows

Also as shown in Figure 5.6, it is clear that drop the biggest flow which has the

largest congestion window will balance fairness among multiple flows. However, this

requires coordination that flows must communicate with each other that smaller flows

should not cut transmission rate in the congestion even when packet losses are de-

tected. Because of the network socket legacy, this communication requirement leaves

a big challenge on TCP variants that manage single-flow per-connection.

5.4.2 The Burstiness Analysis

In high-speed networks with tiny buffers, the link utilization could be worse. Not only

because of TCP loss synchronization, but also because of the inherent burstiness of

TCP flows. However, by applying CPU overhead saving techniques such as Interrupt

Coalescing and TCP Segmentation Offloading, traffic burstiness is exaggerated. As

a result, the normal TCP ACK-clocking is disrupted and packets are burst out of

the NIC at line rate. Because these techniques have become standards for high-speed

72

networks beyond 10 Gb/s, burstiness is not avoidable and it induces complex and

expensive workarounds [94, 103].

We define two types of congestion that causes packet losses: (a) bandwidth conges-

tion that is caused by the high utilization of bottleneck link among competing flows

and (b) burstiness congestion from random burst contention that occurs even when

bandwidth utilization is low. Clearly the second congestion type should be avoided

if such congestion can be detected and distinguished. This brings another challenge

because most loss-based TCP variants use packet losses (duplicated ACKs) as a signal

of bandwidth congestion and verify burstiness congestion is a hard work [104].

5.5 The DMCTCP Congestion Control

Inspired by parallel TCP and Multi-Path TCP [95], DMCTCP pursues a goal of

minimizing TCP loss synchronism in a high-speed tiny-buffered network environment

where bandwidth congestion and burstiness congestion coexist. A DMCTCP connec-

tion has multiple channels. These channels carry split data through a single path

of a connection from the application layer at a sender and reassemble the data at

the corresponding receiver. Each channel has its own congestion window so that a

basic communication among channels can be used to detect and distinguish the two

congestion events. Therefore, DMCTCP establishes a channeled parallelism in a path

where TCP loss synchronism and impact of burstiness can be minimized.

5.5.1 Detailed design of DMCTCP

Let m (m ≥ 2) be the number of channels of a TCP connection through a single path.

Obviously, at least two channels are required to communicate with each other when

congestion happens. We denote by wi the congestion window of channel i (i ∈ m), by

wmax, wmin and wtotal the largest, the smallest and the aggregated congestion window

at time t in m respectively, and by the time stamp timei of a detected loss in channel

i and by the time stamp timec of the last rate cuts. We also assume all channels

73

have the same round-trip-time rtt because they are through the same path with a

negligible queuing variance. Our algorithm is as follows:

• For each loss on channel i ∈ m, decrease wi by:

– wi/2, if wi = wmax and (timei − timec) > rtt, then timec ← timei,

– 0, otherwise.

• For each ACK on channel i ∈ m, increase wi by:

– 1/wi, if wi = wmin,

– 1/(wtotal − wmin), otherwise.

The decrease rule decides only the largest channel can be cut in half in a congestion

event and this rule de-synchronizes consecutive cuts by guaranteeing these cuts are

not within the same congestion event (one RTT). The increase rule simulates a parallel

TCP with roughly α = 2 so that the aggregated window wtotal of the connection is

capped at 2/wi. The difference is that the smallest channel can grow a little faster so

that the aggregated window will have a higher leveraged sawtooth pattern.

5.5.2 Implementation

We implemented DMCTCP by taking advantage of a potential parallelism in the

MPTCP release supported in the Linux kernel 3.5.0 [105]. Each subflow of a connec-

tion in MPTCP is a channel in DMCTCP, with a distinction that multiple channels

are through a single path. The fast retransmit and fast recovery algorithms, as well as

the Selective Acknowledgment (SACK) option are the same as in TCP. To compute

a smoothed estimate of rtt, we use the term srtti as implemented for each MPTCP

subsocket. Because a master subflow is always initiated before slave subflows can

be created in MPTCP, so is the master channel goes ahead of slave channels. How-

ever, it may create a large burst when all channels begin their slow-start phase in an

74

overlapped time period. Therefore, we we set all slave channels to share the initial

slow-start threshold after the master channel gets cut at the first time.

The time complexity of our implementation depends on the linearly searching for

wmax, wmin and wtotal. This can be done easily in a one level loop. Because the

maximum subflows that can be created in current MPTCP release is 32, hence our

number of channels is restricted to 32. As a result, the time complexity is almost

constant.

5.5.3 Illustrative Example of DMCTCP

There is a traffic sniffing tool called TCP-Probe [106], which is a kernel module to

record the state of a TCP connection in response to incoming ACKs. We extended

TCP-Probe to record multiple channels of DMCTCP connections. We also mark

the timestamp as loss point when each channel detects congestion and start to fast

retransmit. Figure 5.7 shows each channel’s congestion window (m=2) as a function

of time for a DMCTCP connection. As can be seen from the figure, these loss points

show when a congestion happens and how the congestion control reacts to a congestion

type: (a) the smaller channel detects burstiness congestion and just fast retransmit

the lost packets without cuts its sending rate, and (b) the largest channel detects

bandwidth congestion, reduces its sending rate to half, and de-synchronizes multiple

channels’ cuts within the same RTT.

Our algorithm is still AIMD and loss-oriented. Therefore, it should have the same

property of intra-protocol fairness and RTT fairness as in TCP-SACK. However, be-

cause TCP loss synchronization is minimized, the convergence time of two competing

connections is also reduced. Figure 5.8 illustrates this feature by showing the conver-

gence times between two consecutively started (30 seconds interval) connections using

the same congestion control algorithm through a 100 Mb/s bandwidth 100 ms delay

bottleneck link with 128 pakcets of buffer. The convergence time is defined to be the

75

0

10

20

30

40

50

60

70

80

217 218 219 220 221 222 223

C
on

ge
st

io
n

w
in

do
w

 (
pa

ck
et

s)

Time (seconds)

(a)
(a)

(b)

channel1
channel2

loss point

FIGURE 5.7: Steady state behavior of a DMCTCP connection, m=2

elapsed time when the congection window of the second flow reaches roughly 80% of

the first flow. As shown in Figure 5.8(a), the convergence time for two TCP-SACK

connections is almost 330 seconds. As shown in Figure 5.8(b), 5.8(c) and 5.8(d), the

convergence time as compared with aggregated congestion windows for two DMCTCP

connections is greatly reduced when the channel number increases.

5.5.4 Determine a good number of channels

However, it is still unknown that how much of synchronization can be canceled and

how much of performance can be improved. On the other hand, a large number of

channels render additional overhead such as computing states of channels and re-

assembling data among channels. To leverage performance and overhead, it is desir-

able to determine how many channels is good enough.

Ideally, the aggregated window of a DMCTCP TCP connection with completely

desynchronization is expected to have regular variation between peaks and valleys.

76

0

200

400

600

800

0 100 200 300 400 500

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

330 seconds

connection1
connection2

(a) TCP-SACK

0

200

400

600

800

1000

0 100 200 300 400

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

100 seconds
connection1
connection2

(b) DMCTCP, m=2

0

200

400

600

800

1000

1200

1400

0 100 200 300 400

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

60 seconds
connection1
connection2

(c) DMCTCP, m=4

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

30 seconds

connection1
connection2

(d) DMCTCP, m=6

FIGURE 5.8: Convergence time of two connections in a 100 Mb/s bandwidth, 100 ms
delay bottleneck link

0

w/2

3w/4
5w/6

w

A
gg

re
ga

te
d

C
on

ge
st

io
n

W
in

do
w

Time

m=1
m=2
m=3

FIGURE 5.9: The idealized aggregated window of various channels per-connection

77

This is geometrically illustrated in Figure 5.9, which shows the idealized aggregated

window of two and three channels per-connection, except that it falls back to normal

TCP when channel number equals one. Based on the geometric analysis of regular

distributed sawtooth window, we found a simplified macroscopic model for steady-

state behavior of a Multi-Channel TCP connection:

average throughput = (1− β

2 ·m
) · W

RTT
(5.3)

where β is the decrease parameter in each cut. Applied in a bottleneck link with

β = 1/2, we can get the average link utilization in Table 5.1 when m increases.

TABLE 5.1: Numerical examples of ideal link utilization by DMCTCP

Number of Channels Link Utilization
m = 1 75%
m = 2 87.5%
m = 3 91.7%
m = 4 93.8%
m = 5 95%
m = 6 95.8%
m = 7 96.4%
m = 8 96.9%

. . .
m = 25 99%

Clearly, five channels are good enough to significantly achieve 95% of link utiliza-

tion. Beyond five channels, the increment will be smaller and smaller since (5.3) is a

rational function with a horizontal asymptote line at 1 when m ≥ 2. Because the over-

head of data reassembling and reordering grows up as the channel number increases,

we decided the channel number to be 5.

5.6 Testbed Design

To evaluate the performance of DMCTCP, we created a 10 Gb/s dumbbell testbed

shown in Figure 5.10 as an example of access network from CRON [63] platform.

78

In this testbed, we evaluate the performance of DMCTCP with a small number of

long-lived TCP flows and some background traffic.

FIGURE 5.10: 10Gbps access network testbed

Sender and receiver nodes are HP DL160G6 servers with two six-core 2.7 GHz

processors and 16 GB RAM. Router nodes are identical SUN Fire x4240 servers

with two quad-core 2.7 GHz processors and 8 GB RAM. All nodes have Myricom

10 Gb/s NICs so that the bottleneck link rate confirms to be 10 Gb/s. Delay node

in the middle is an Anue XGEM optical hardware emulator, which is a precision

test instrument for 10 GE emulation. We use this hardware emulator for providing

bi-directional communication delay at 60 ms, 120 ms, 180 ms and 240 ms between

Senderi and Receiveri respectively.

All the nodes use Ubuntu Server 12.04. Each end-host has a MPTCP enabled

Linux 3.5.0 kernel to test TCP-SACK, CUBIC, MPTCP-Coupled, MPTCP-OLIA and

with our implementation to test DMCTCP. These TCP end-hosts enabled Interrupt

Coalescing and TCP Segmentation Offload as a default setting to save CPU overhead,

and are configured to have a very large buffer so that the transmission rates of high-

speed flows are only limited by the congestion control algorithm. The routers use a

normal Linux 3.5.0 kernel with the latest NIC driver. We enabled packet forwarding

and set up the FIFO drop-tail queuing policy in each router.

79

Because we have used an emulation-based network testbed, it is important to make

our testbed environment similar to the real network environment which has tiny

buffers. We empirically found out that more system tunings at data link layer and

network layer are necessary. To implement a tiny buffer environment, we need to re-

duce both the tx ring\rx ring at layer 2 in NIC and netdev backlog\qdisc at layer 3

in kernel. Unfortunately, the size of tx ring and rx ring are 1024 and 512 descriptors.

They are inside an appropriate firmware of Myricom NIC and can’t be changed. In-

stead, we hacked the NIC driver to only use a portion of the tx ring. As a result, we can

reduce the tx ring to 128 descriptors. Then, we set packet size (MTU) to 8000 bytes

because each descriptor in tx ring\rx ring holds up to 4096 bytes (page size) of data.

This means 2 descriptors can buffer a packet. We also set netdev backlog\qdisc at 2.

Because the bottleneck buffer is Router2’s output port, our configuration reaches the

real network environment with 66 packets of tiny buffers.

We use Iperf traffic generator to generate long-lived TCP connections in even num-

bers from Senderi to Receiveri. These connections start within [0,10] seconds. One

trial for each test lasts 900 seconds, and repeats 3 to 6 times to get arithmetic means

of the throughput. Most standard deviations fall in the range of ±3% such that they

can be omitted in our results.

We also evaluate our experiments performed in the context of bursty background

traffic. We consider two types of flows as the background traffic: short-lived TCP flows

and real-time (UDP) flows from Router1 to Router4 with a fixed delay of 120 ms.

We used Harpoon traffic generator to infinitely transmit short-lived TCP flows. The

inter-arrival times between two successive connections are generated from exponential

distribution with mean 1 second. The file sizes are generated from Pareto distribution

with the shape parameter alpha = 1.5 (long-tail). The average file size is 1 MB from

total 200,000 randomly sorted files. These values are realistic, based on comparisons

80

with actual packet traces [94]. The aggregated throughput of short-lived TCP traffic

is averaged at 165 Mb/s. We also added an additional 300 Mb/s UDP flow as an

aggregate of many individual real-time streams. As a result, the average background

traffic is nearly 4.6% of the bottleneck link capacity.

5.7 Performance Evaluation

5.7.1 Link Utilization

We first verify the performance improvement by increasing the number of chan-

nels. Figure 5.11 shows the average link utilization without background traffic from

the aggregated throughput of all connections in each test. It shows that utilization

gets higher when the number of channels increases. With five or six channels per-

connection, it is the first time to reach more than 80% of link utilization with just

100 connections. It also shows that the increment of utilization becomes smaller as

the channel number increases. Therefore, the performance result matches our analysis

in previous section. And it confirms again that five channels per-connection is good

enough.

Secondly, we compare the performance of DMCTCP (m = 5) with other TCP

variants without background traffic. As shown in Figure 5.12(a), link utilization is

much higher in DMCTCP than any other TCP variants. Compared with TCP-SACK

on different amount of connections, the utilization is 60% to 200% higher. Compared

with the most popular high-speed variant TCP-CUBIC, the utilization is 30% to 80%

higher. We also observed that the two MPTCP congestion control algorithms do not

have much performance improvement. MPTCP-Coupled has nearly 5% higher and

MPTCP-OLIA has nearly 5% lower performance than TCP-SACK, although we set

five subflows for each connection. This verifies TCP-SACK, MPTCP-Coupled and

MPTCP-OLIA are still conservative under high-speed and long delay networks with

tiny buffers.

81

20%

30%

40%

50%

60%

70%

80%

90%

100%

12 20 40 60 80 100 120

Li
nk

 U
til

iz
at

io
n

(%
)

Number of Flows

DMCTCP, m=2
DMCTCP, m=3
DMCTCP, m=4

DMCTCP, m=5
DMCTCP, m=6
DMCTCP, m=7

DMCTCP, m=8
DMCTCP, m=9

DMCTCP, m=10

FIGURE 5.11: Link utilization without background traffic, compared with number of
channels

Thirdly, we evaluate the link utilization under bursty background traffic. As shown

in Figure 5.12(b), adding the 4.6% background traffic, the link utilizations are 3% to

8% higher on all TCP variants than these without background traffic. This is expected

because the background traffic introduces some dynamics which can help improve

asynchronism in packet losses. However, we can see the dynamics of background

traffic caused very small improvement. Meanwhile, we found that MPTCP-Coupled

has almost the same performance as TCP-SACK, which shows MPTCP-Coupled

is closely compatible to TCP-SACK under background traffic. Again, we observed

DMCTCP (m = 5) has much better performance than the other TCP variants.

5.7.2 Intra-protocol Fairness

We measure the intra-protocol fairness by performing experiments with two connec-

tions of a TCP variant with the same RTT. These two connections’s throughput is

82

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12 20 40 60 80 100 120

Li
nk

 U
til

iz
at

io
n

(%
)

Number of Flows

CUBIC
TCP-SACK

Coupled, subflows=5
OLIA, subflows=5

DMCTCP, m=5

(a) Without background traffic

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12 20 40 60 80 100 120

Li
nk

 U
til

iz
at

io
n

(%
)

Number of Flows

CUBIC
TCP-SACK

Coupled, subflows=5
OLIA, subflows=5

DMCTCP, m=5

(b) With background traffic

FIGURE 5.12: Link utilization compared with other TCP variants

used as input to compute Jain’s fairness index [24]. These tests are conducted when

RTTs are varied from 20 ms to 200 ms. Figure 5.13(a) and 5.13(b) show intra-protocol

fairness of TCP variants without and with background traffic respectively.

Without background traffic, DMCTCP, TCP-CUBIC and TCP-SACK show very

good fairness. All of these variants achieve more than 90% fairness index in all tests.

83

40%

60%

80%

100%

20 40 80 120 160 200

F
ai

rn
es

s
In

de
x

(%
)

RTT (ms)

CUBIC
TCP-SACK

Coupled, subflows=5
OLIA, subflows=5

DMCTCP, m=5

(a) Without background traffic

80%

90%

100%

20 40 80 120 160 200

F
ai

rn
es

s
In

de
x

(%
)

RTT (ms)

CUBIC
TCP-SACK

Coupled, subflows=5
OLIA, subflows=5

DMCTCP, m=5

(b) With background traffic

FIGURE 5.13: Intra-Protocol Fairness

In comparison, MPTCP-Coupled and MPTCP-OLIA show lower fairness when RTT

increases. Meanwhile, we find that the throughput of these two MPTCP-Coupled and

MPTCP-OLIA connections become more unstable as RTT increases. Even repeated

for 9 times in each test of these two variants, the standard deviations are still very large

(more than 5%) beyond 80 ms. We have to display the related standard deviations of

these two in Figure 5.13(a). However, as we add background traffic, we find all the

TCP variants achieve greatly improved fairness (more than 90%) and much smaller

84

standard deviations (less than 4%). Again, we find DMCTCP shows very high fairness

and very small fairness variance as RTT increases.

5.7.3 RTT Fairness

We measure the fairness in sharing the bottleneck bandwidth between two competing

connections that have different RTTs. One connection’s RTT is fixed to 120 ms, and

the other’s varies from 20 ms to 240 ms. Again, these two connections’s throughput

is used to compute Jain’s fairness index. As mentioned in [107], RTT fairness can

be divided into two categories. One category is to reach the equal sharing of the

bottleneck bandwidth even when the two competing connections have different RTTs.

The other category is to achieve bandwidth shares inversely proportional to the RTT

ratios. Although there are no commonly accepted principles to decide which category

is better than the other, the later category may be more desirable because long RTT

connections used to take more network resources than short RTT connections as

they travel through more intermediary devices over a longer path. Any TCP variant

belonging to a category should be stable without crossing over the boundaries.

Figure 5.14(a) and 5.14(b) shows the RTT fairness of TCP variants without and

with background traffic. TCP-CUBIC has the best fairness index between the two con-

nections regardless of their RTTs. DMCTCP and TCP-SACK have very close fairness

index to each other and both of them fall in the second inverse bandwidth share cat-

egory because these two increase their fairness index when the second connection’s

RTT is close to 120 ms and decrease their fairness index when the second connec-

tion’s RTT is far away from 120 ms. This is expected because DMCTCP uses the

same ACK-clock mechanism as TCP-SACK does. However, without background traf-

fic, the RTT fairness of both MPTCP-Coupled and MPTCP-OLIA fluctuates because

these two have unstable performance that is mentioned in the tests of intra-protocol

fairness. With background traffic, MPTCP-Coupled behaves similarly to DMCTCP

85

40%

50%

60%

70%

80%

90%

100%

20 40 80 120 160 200 240

F
ai

rn
es

s
In

de
x

(%
)

RTT (ms)

CUBIC
TCP-SACK

Coupled, subflows=5
OLIA, subflows=5

DMCTCP, m=5

(a) Without background traffic

40%

50%

60%

70%

80%

90%

100%

20 40 80 120 160 200 240

F
ai

rn
es

s
In

de
x

(%
)

RTT (ms)

CUBIC
TCP-SACK

Coupled, subflows=5
OLIA, subflows=5

DMCTCP, m=5

(b) With background traffic

FIGURE 5.14: RTT Fairness

and TCP-SACK, but MPTCP-OLIA does not decrease the fairness index after its

second connection has higher RTT than 120 ms.

5.8 Conclusion

In this chapter, we have shown that most current TCP variants including MPTCP

have performance problems in high-speed networks with tiny buffers. Based on the

problem analysis, we have demonstrated a working DMCTCP congestion control al-

gorithm which is designed for such networks. Our experimental results confirm that

86

DMCTCP can achieve much higher performance and have very good properties in

terms of convergence, intra-protocol fairness and RTT fairness.

DMCTCP brings immediate practical benefits as it matches the condition require-

ments to deploy all-optical routers in access networks. Because queuing delay is gone,

it also significantly reduces the memory required for maintaining the congestion win-

dows in end-hosts and is beneficial to latency sensitive applications.

87

Chapter 6
Conclusion

In this dissertation, we investigated TCP congestion control mechanism, design issues,

challenges, and the most widely adopted TCP congestion control variants for high-

speed networks. In order to study the performance of TCP over 10Gbps high-speed

networks, we developed CRON, a 10Gbps network emulation testbed for various net-

work research. Using the testbed, we can study the performance issues in TCP and

in most TCP congestion control variants. Especially, we explored the performance

issues of TCP under various interaction with network components such as routers’

queuing management strategies and buffer sizing categories. We analyzed two im-

portant performance issues of TCP in extremely small buffered high-speed networks.

One is TCP loss synchronization and the other one is flow burstiness. Based on the

analysis, we defined two types of congestion as bandwidth congestion and burstiness

congestion. Both of these types can cause bottleneck link bandwidth to be underuti-

lized. We demonstrated that most TCP variants suffer from both congestion types

because TCP’s false-congestion-detection problem exists in high-speed networks with

tiny buffers.

6.1 Contributions

The development of CRON system bridges the gap between physical networks, simula-

tion, and high-speed networking environment by providing integrated and automated

access to a wide range of high speed networking configurations, such as NLR (Na-

tional Lambda Rail), Internet2, LONI (Louisiana Optical Network Initiative), etc.,

and purely user-defined networks. CRON enables researchers to explore new network

technologies and rapidly assess their impact on applications irrespective of resource

88

limitation. It also allows educators to introduce a state-of-art networking environment

to students who cannot access high-speed production networks.

Using CRON’s 10Gbps capability, the performance of TCP and its variants were

carefully studied. We proposed two new synchronization expressions by carefully ex-

amining the congestion events. And we obtained the measurements based on cate-

gories of small sized and tiny sized router buffers. We illustrated the different rela-

tionships among TCP loss synchronization, flow burstiness and link utilization. And

discovered new problems and challenges of TCP in high-speed networks with tiny

buffers.

In regard to the new challenges of TCP, we designed a new TCP congestion con-

trol algorithm called Desynchronized Multi-Channel TCP (DMCTCP), which pur-

sues goals of minimizing TCP loss synchronization and reducing the impact of flow

burstiness. We implemented this algorithm based on the framework of MPTCP and

showed outstanding performance and good properties of DMCTCP compared with

other TCP variants. The important features of DMCTCP are that various conges-

tion events are detected and distinguished with different corresponding actions, and

that no modifications to other network layers (such as the application layer) of the

end-to-end system need to be made.

Therefore, we could achieve an acceptable link utilization in high-speed access net-

works with very small router buffer. (a) It could facilitate the deploy of all-optical

routers because they have huge link capacity and lower power requirement but are

limited by buffer size. (b) It could reduce the requirement of router complexity, mak-

ing routers easier to build and easier to scale. (c) It could minimize queuing delay and

jitter that were closely related to buffer size in electronic routers. (d) Its socket API

is compatible with common applications without change or modification to existing

applications. (e) It is transparent to layers below it that it is likely to work correctly

89

in the Internet through different middleboxes. (f) It significantly reduces the memory

required for maintaining the congestion windows in end-hosts because queuing delay

is gone. (g) It is beneficial to latency sensitive applications.

6.2 Future Research

Multiple directions could be explored as future work. A first one would be to extend

DMCTCP over mutipath links for both ultra-low latency and high performance in

data center networks. Another direction would be to explore the performance of DM-

CTCP over wireless high-speed networks based on investigation of congestion types

in such networks.

90

References

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC 2581 (Proposed Standard), Internet Engineering Task Force, Apr.
1999, obsoleted by RFC 5681, updated by RFC 3390. [Online]. Available:
http://www.ietf.org/rfc/rfc2581.txt

[2] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router buffer
sizing: recent results and open problems,” ACM SIGCOMM Computer Com-
munication Review, vol. 39, no. 2, pp. 34–39, 2009.

[3] L. Xue, S. Kumar, C. Cui, and S.-J. Park, “An evaluation of fairness among
heterogeneous TCP variants over 10gbps high-speed networks,” in 37th An-
nual IEEE Conference on Local Computer Networks (LCN 2012), Clearwater,
Florida, USA, 2012, pp. 348–351.

[4] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in ACM
SIGCOMM Computer Communication Review, vol. 34, no. 4. ACM, 2004, pp.
281–292.

[5] D. Wischik and N. McKeown, “Part i: Buffer sizes for core routers,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 3, pp. 75–78, 2005.

[6] G. Raina, D. Towsley, and D. Wischik, “Part ii: Control theory for buffer sizing,”
ACM SIGCOMM Computer Communication Review, vol. 35, no. 3, p. 82, 2005.

[7] N. Beheshti, Y. Ganjali, R. Rajaduray, D. Blumenthal, and N. McKeown,
“Buffer sizing in all-optical packet switches,” in Optical Fiber Communication
Conference. Optical Society of America, 2006.

[8] R. Tucker, “The role of optics and electronics in high-capacity routers,” Journal
of Lightwave Technology, vol. 24, no. 12, pp. 4655–4673, 2006.

[9] H. Park, E. Burmeister, S. Bjorlin, and J. Bowers, “40-gb/s optical buffer design
and simulations,” Numerical Simulation of Optoelectronic Devices (NUSOD),
2004.

[10] V. Lal, J. Summers, M. Masanovic, L. Coldren, and D. Blumenthal, “Novel
compact inp-based monolithic widely tunable differential mach-zehnder inter-
ferometer wavelength converter for 40 gbps operation,” in Indium Phosphide
and Related Materials, 2005. International Conference on. IEEE, 2005, pp.
25–27.

[11] M. Masanovic, V. Lal, J. Summers, J. Barton, E. Skogen, L. Rau, L. Coldren,
and D. Blumenthal, “Widely tunable monolithically integrated all-optical wave-
length converters in inp,” Lightwave Technology, Journal of, vol. 23, no. 3, pp.
1350–1362, 2005.

91

http://www.ietf.org/rfc/rfc2581.txt

[12] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Routers with very small buffers,” in Proc. IEEE Infocom, vol. 6. Citeseer,
2006.

[13] S. Hassayoun and D. Ros, “Loss synchronization, router buffer sizing and high-
speed tcp versions: Adding red to the mix,” in Local Computer Networks, 2009.
LCN 2009. IEEE 34th Conference on. IEEE, 2009, pp. 569–576.

[14] G. Patil, S. McClean, and G. Raina, “Drop tail and red queue management
with small buffers: stability and hopf bifurcation,” ICTACT Journal on Com-
munication Technology, vol. 2, no. 2, pp. 339–344, 2011.

[15] Y. Gu and R. Grossman, “Udt: Udp-based data transfer for high-speed wide
area networks,” Computer Networks, vol. 51, no. 7, pp. 1777–1799, 2007.

[16] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the performance
of tcp pacing,” in INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3.
IEEE, 2000, pp. 1157–1165.

[17] V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry, “Packet pacing in small
buffer optical packet switched networks,” IEEE/ACM Transactions on Net-
working (TON), vol. 17, no. 4, pp. 1066–1079, 2009.

[18] Y. Cai, B. Jiang, T. Wolf, and W. Gong, “A practical on-line pacing scheme at
edges of small buffer networks,” in INFOCOM, 2010 Proceedings IEEE. IEEE,
2010, pp. 1–9.

[19] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896,
Internet Engineering Task Force, Jan. 1984. [Online]. Available: http:
//www.ietf.org/rfc/rfc896.txt

[20] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM Com-
puter Communication Review, vol. 18, no. 4. ACM, 1988, pp. 314–329.

[21] R. Jain and K. Ramakrishnan, “Congestion avoidance in computer networks
with a connectionless network layer: Concepts, goals and methodology,” in
Computer Networking Symposium, 1988., Proceedings of the. IEEE, 1988,
pp. 134–143.

[22] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe, “Open Research
Issues in Internet Congestion Control,” RFC 6077 (Informational), Internet
Engineering Task Force, Feb. 2011. [Online]. Available: http://www.ietf.org/
rfc/rfc6077.txt

[23] S. Floyd, “Congestion Control Principles,” RFC 2914 (Best Current
Practice), Internet Engineering Task Force, Sep. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2914.txt

92

http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc6077.txt
http://www.ietf.org/rfc/rfc6077.txt
http://www.ietf.org/rfc/rfc2914.txt

[24] R. Jain, D. Chiu, and W. Hawe, A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer system. Eastern Research
Laboratory, Digital Equipment Corp., 1984.

[25] M. Welzl and W. Eddy, “Congestion Control in the RFC Series,” RFC
5783 (Informational), Internet Engineering Task Force, Feb. 2010. [Online].
Available: http://www.ietf.org/rfc/rfc5783.txt

[26] M. Welzl, Network Congestion Control: Managing Internet Traffic (Wiley Series
on Communications Networking & Distributed Systems). John Wiley & Sons,
2005.

[27] B. Briscoe, “Flow rate fairness: Dismantling a religion,” ACM SIGCOMM Com-
puter Communication Review, vol. 37, no. 2, pp. 63–74, 2007.

[28] S. Floyd and M. Allman, “Comments on the Usefulness of Simple Best-Effort
Traffic,” RFC 5290 (Informational), Internet Engineering Task Force, Jul.
2008. [Online]. Available: http://www.ietf.org/rfc/rfc5290.txt

[29] J. Roberts, “Internet traffic, qos, and pricing,” Proceedings of the IEEE, vol. 92,
no. 9, pp. 1389–1399, 2004.

[30] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks,” Computer Networks and ISDN
systems, vol. 17, no. 1, pp. 1–14, 1989.

[31] C. Villamizar and C. Song, “High performance tcp in ansnet,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 45–60, 1994.

[32] D. Davies, “The control of congestion in packet-switching networks,” Commu-
nications, IEEE Transactions on, vol. 20, no. 3, pp. 546–550, 1972.

[33] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard), Internet
Engineering Task Force, Sep. 1981, updated by RFCs 1122, 3168, 6093, 6528.
[Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[34] R. Jain, “A timeout-based congestion control scheme for window flow-controlled
networks,” Selected Areas in Communications, IEEE Journal on, vol. 4, no. 7,
pp. 1162–1167, 1986.

[35] M. Handley, J. Padhye, and S. Floyd, “TCP Congestion Window Validation,”
RFC 2861 (Experimental), Internet Engineering Task Force, Jun. 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2861.txt

[36] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP’s Initial
Window,” RFC 6928 (Experimental), Internet Engineering Task Force, Apr.
2013. [Online]. Available: http://www.ietf.org/rfc/rfc6928.txt

93

http://www.ietf.org/rfc/rfc5783.txt
http://www.ietf.org/rfc/rfc5290.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc2861.txt
http://www.ietf.org/rfc/rfc6928.txt

[37] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649
(Experimental), Internet Engineering Task Force, Dec. 2003. [Online].
Available: http://www.ietf.org/rfc/rfc3649.txt

[38] Y. Li, D. Leith, and R. Shorten, “Experimental evaluation of tcp protocols for
high-speed networks,” Networking, IEEE/ACM Transactions on, vol. 15, no. 5,
pp. 1109–1122, 2007.

[39] K. Leung and V. Li, “Transmission control protocol (tcp) in wireless net-
works: issues, approaches, and challenges,” Communications Surveys & Tutori-
als, IEEE, vol. 8, no. 4, pp. 64–79, 2006.

[40] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008.

[41] T. Kelly, “Scalable tcp: Improving performance in highspeed wide area net-
works,” ACM SIGCOMM Computer Communication Review, vol. 33, no. 2, pp.
83–91, 2003.

[42] D. Leith and R. Shorten, “H-tcp: Tcp for high-speed and long-distance net-
works,” in Proceedings of PFLDnet, vol. 2004, 2004.

[43] L. Grieco and S. Mascolo, “Performance evaluation and comparison of west-
wood+, new reno, and vegas tcp congestion control,” ACM SIGCOMM Com-
puter Communication Review, vol. 34, no. 2, pp. 25–38, 2004.

[44] L. Brakmo and L. Peterson, “Tcp vegas: End to end congestion avoidance on a
global internet,” Selected Areas in Communications, IEEE Journal on, vol. 13,
no. 8, pp. 1465–1480, 1995.

[45] C. Jin, D. Wei, and S. Low, “Fast tcp: motivation, architecture, algorithms,
performance,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, vol. 4. IEEE, 2004, pp.
2490–2501.

[46] C. Caini and R. Firrincieli, “Tcp hybla: a tcp enhancement for heterogeneous
networks,” International Journal of Satellite Communications and Networking,
vol. 22, no. 5, pp. 547–566, 2004.

[47] K. Tan and J. Song, “A compound tcp approach for high-speed and long dis-
tance networks,” in In Proc. IEEE INFOCOM. Citeseer, 2006.

[48] S. Liu, T. Başar, and R. Srikant, “Tcp-illinois: A loss-and delay-based con-
gestion control algorithm for high-speed networks,” Performance Evaluation,
vol. 65, no. 6, pp. 417–440, 2008.

[49] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for
DiffServ Service Classes,” RFC 4594 (Informational), Internet Engineering
Task Force, Aug. 2006, updated by RFC 5865. [Online]. Available:
http://www.ietf.org/rfc/rfc4594.txt

94

http://www.ietf.org/rfc/rfc3649.txt
http://www.ietf.org/rfc/rfc4594.txt

[50] A. Venkataramani, R. Kokku, and M. Dahlin, “Tcp nice: A mechanism for back-
ground transfers,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
329–343, 2002.

[51] A. Kuzmanovic and E. Knightly, “Tcp-lp: low-priority service via end-point
congestion control,” Networking, IEEE/ACM Transactions on, vol. 14, no. 4,
pp. 739–752, 2006.

[52] C. Man, G. Hasegawa, and M. Murata, “Imtcp: Tcp with an inline measurement
mechanism for available bandwidth,” Computer communications, vol. 29, no. 10,
pp. 1614–1626, 2006.

[53] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “Tcp congestion avoidance
algorithm identification,” in Proceedings of the 2011 31st International Confer-
ence on Distributed Computing Systems. IEEE Computer Society, 2011, pp.
310–321.

[54] D. Leith, R. Shorten, and G. McCullagh, “Experimental evaluation of cubic-
tcp,” in Proceedings of PFLDnet, 2008.

[55] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport
protocols in the internet,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 2, pp. 37–52, 2005.

[56] P. Sarolahti and A. Kuznetsov, “Congestion control in linux tcp,” in Proceedings
of the FREENIX Track: 2002 USENIX Annual Technical Conference. USENIX
Association, 2002, pp. 49–62.

[57] D. Thaler and M. Sridhara, “D. bansal,” implementation report on experiences
with various tcp rfcs”, presentation to the ietf transport area,” 2007.

[58] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler, “The linux net-
working architecture,” Design and Implementation of Network Protocols in the
Linux Kernel, 2005.

[59] D. Wei and P. Cao, “Ns-2 tcp-linux: an ns-2 tcp implementation with congestion
control algorithms from linux,” in Proceeding from the 2006 workshop on ns-2:
the IP network simulator. ACM, 2006, p. 9.

[60] NLR, “National Lambda Rail: The Network for Advanced Research and Inno-
vation,” July 2011, http://www.nlr.net/.

[61] Internet2, “The new Internet2 network,” in 6th GLIF meeting, 2006.

[62] LONI, “The Louisiana Optical Network Initiative,” 2011, ”http://www.loni.
org/”.

[63] “Cyberinfrastructure of reconfigurable optical networking environment,” 2011,
”website:http://www.cron.loni.org/”.

95

http://www.nlr.net/
"http://www.loni.org/"
"http://www.loni.org/"
"website: http://www.cron.loni.org/"

[64] A. Bialecki, M. Cafarella, D. Cutting, and O. OMALLEY, “Hadoop: a frame-
work for running applications on large clusters built of commodity hardware,”
Wiki at http://lucene. apache. org/hadoop, vol. 11, 2005.

[65] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar, “An integrated experimental environment for
distributed systems and networks,” in Proc. of the Fifth Symposium on Operat-
ing Systems Design and Implementation. Boston, MA: USENIX Association,
Dec. 2002, pp. 255–270.

[66] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 2, pp. 12–20, 2010.

[67] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman, “Planetlab: an overlay testbed for broad-coverage services,” ACM
SIGCOMM Computer Communication Review, vol. 33, no. 3, pp. 3–12, 2003.

[68] “PRObE: Parallel Reconfigurable Observation Environment,” 2012, ”website:
http://newmexicoconsortium.org/probe”.

[69] G. von Laszewski, G. Fox, F. Wang, A. Younge, A. Kulshrestha, G. Pike,
W. Smith, J. Vockler, R. Figueiredo, J. Fortes et al., “Design of the future-
grid experiment management framework,” in Gateway Computing Environ-
ments Workshop (GCE), 2010. IEEE, 2010, pp. 1–10.

[70] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko, G. Ganger, M. Kozuch,
D. O’Hallaron, M. Kunze, T. Kwan et al., “Open cirrus: A global cloud com-
puting testbed,” Computer, vol. 43, no. 4, pp. 35–43, 2010.

[71] I. Baldine, J. Chase, G. Rouskas, and R. Dutta, “At-scale experimentation with
resource virtualization in a metro optical testbed,” Proceedings of ICVCI, 2008.

[72] “Anue Systems Inc.” 2012, ”http://www.anuesystems.com/”.

[73] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov, “The eucalyptus open-source cloud-computing system,”
in Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM Inter-
national Symposium on. IEEE, 2009, pp. 124–131.

[74] M. Bencivenni, D. Bortolotti, A. Carbone, A. Cavalli, A. Chierici, S. Dal Pra,
D. De Girolamo, M. Donatelli, A. Fella, D. Galli et al., “Performance of 10
Gigabit Ethernet Using Commodity Hardware,” Nuclear Science, IEEE Trans-
actions on, vol. 57, no. 2, pp. 630–641, 2010.

[75] L. Xue, C. Cui, S. Kumar, and S. Park, “Experimental evaluation of the ef-
fect of queue management schemes on the performance of high speed tcps in
10gbps network environment,” in Computing, Networking and Communications
(ICNC), 2012 International Conference on. IEEE, 2012, pp. 315–319.

96

"website: http://newmexicoconsortium.org/probe"
"website: http://newmexicoconsortium.org/probe"
"http://www.anuesystems.com/"

[76] O. Feuser and A. Wenzel, “On the effects of the ieee 802.3 x flow control in full-
duplex ethernet lans,” in Local Computer Networks, 1999. LCN’99. Conference
on. IEEE, 1999, pp. 160–161.

[77] L. Grossman, “Large receive offload implementation in neterion 10gbe ethernet
driver,” in Linux Symposium, 2005, p. 195.

[78] “NETCONF,” http://en.wikipedia.org/wiki/NETCONF, 2011.

[79] B. Milekic, “Network buffer allocation in the freebsd operating system,” Pro-
ceedings of BSDCan, 2004.

[80] “Integrating a CRON (Cyberinfrastructure of Reconfigurable Optical Network)
Testbed into GENI,” 2009, ”website:http://groups.geni.net/geni/wiki/CRON/
”.

[81] “Protogeni framework inside geni project,”
http://www.protogeni.net/trac/protogeni/, 2010.

[82] “Resource Specification for GENI,” 2011, ”http://www.protogeni.net/trac/
protogeni/wiki/RSpec”.

[83] S. Floyd. (2008) Tools for the evaluation of simulation and testbed scenarios.
[Online]. Available: http://tools.ietf.org/html/draft-irtf-tmrg-tools-05

[84] Q. Fu and P. Jay, “A step towards understanding loss synchronisation between
concurrent tcp flows,” in INFOCOM Workshops 2008, IEEE. IEEE, 2008, pp.
1–6.

[85] S. Hassayoun and D. Ros, “Loss synchronization and router buffer sizing with
high-speed versions of tcp,” in INFOCOM Workshops 2008, IEEE. IEEE,
2008, pp. 1–6.

[86] K. Fall and S. Floyd, “Comparisons of tahoe, reno, and sack tcp,” Computer
Communications Review, vol. 26, no. 3, pp. 5–21, 1996.

[87] S. Floyd, “Highspeed tcp for large congestion windows,” RFC 3649, 2003.

[88] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “Tcp congestion avoidance algo-
rithm identification,” IEEE International conference on distributed computing
systems, 2011.

[89] F. Schneider, J. Wallerich, and A. Feldmann, “Packet capture in 10-gigabit
ethernet environments using contemporary commodity hardware,” Passive and
Active Network Measurement, pp. 207–217, 2007.

[90] F. Fuentes and D. Kar, “Ethereal vs. tcpdump: a comparative study on packet
sniffing tools for educational purpose,” Journal of Computing Sciences in Col-
leges, vol. 20, no. 4, pp. 169–176, 2005.

97

"website: http://groups.geni.net/geni/wiki/CRON/"
"website: http://groups.geni.net/geni/wiki/CRON/"
"http://www.protogeni.net/trac/protogeni/wiki/RSpec"
"http://www.protogeni.net/trac/protogeni/wiki/RSpec"
http://tools.ietf.org/html/draft-irtf-tmrg-tools-05

[91] G. Vattay, A. Fekete, J. Stéger, and M. Maródi, “Modeling competition, fairness
and chaos in computer networks,” Network, vol. 1, no. 243, p. 276, 2002.

[92] G. Raina and D. Wischik, “Buffer sizes for large multiplexers: Tcp queueing
theory and instability analysis,” in Next Generation Internet Networks, 2005.
IEEE, 2005, pp. 173–180.

[93] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden, “Part
iii: Routers with very small buffers,” ACM SIGCOMM Computer Communica-
tion Review, vol. 35, no. 3, pp. 83–90, 2005.

[94] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon, “Experi-
mental study of router buffer sizing,” in Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement. ACM, 2008, pp. 197–210.

[95] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural guide-
lines for multipath tcp development,” RFC6182 (March 2011), www. ietf. or-
t/rfc/6182, 2011.

[96] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,” RFC
3234 (Informational), Internet Engineering Task Force, Feb. 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3234.txt

[97] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowl-
edgment Options,” RFC 2018 (Proposed Standard), Internet Engineering Task
Force, Oct. 1996. [Online]. Available: http://www.ietf.org/rfc/rfc2018.txt

[98] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementa-
tion and evaluation of congestion control for multipath tcp,” in Proceedings of
the 8th USENIX conference on Networked systems design and implementation.
USENIX Association, 2011, pp. 8–8.

[99] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec, “Mptcp is
not pareto-optimal: performance issues and a possible solution,” in Proceedings
of the 8th international conference on Emerging networking experiments and
technologies. ACM, 2012, pp. 1–12.

[100] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda,
“Is it still possible to extend tcp?” in Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference. ACM, 2011, pp. 181–194.

[101] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley,
“Improving datacenter performance and robustness with multipath tcp,” in
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 266–277.

98

http://www.ietf.org/rfc/rfc3234.txt
http://www.ietf.org/rfc/rfc2018.txt

[102] J. Mahdavi, “Tcp-friendly unicast rate-based flow con-
trol,” Jan 1997, unpublished note. [Online]. Avail-
able: http://www.psc.edu/index.php/component/remository/Networking/
Networking-Papers/TCP-Friendly-Unicast-Rate-Based-Flow-Control/

[103] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda,
“Less is more: Trading a little bandwidth for ultra-low latency in the data
center,” in Proceedings of USENIX NSDI conference, 2012.

[104] B. Shihada and P.-H. Ho, “Transport control protocol in optical burst switched
networks: Issues, solutions, and challenges,” Communications Surveys & Tuto-
rials, IEEE, vol. 10, no. 2, pp. 70–86, 2008.

[105] http://mptcp.info.ucl.ac.be/.

[106] http://www.linuxfoundation.org/collaborate/workgroups/networking/
tcpprobe/.

[107] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A step toward realistic performance
evaluation of high-speed tcp variants,” in Fourth International Workshop on
Protocols for Fast Long-Distance Networks (PFLDNet06), 2006.

99

http://www.psc.edu/index.php/component/remository/Networking/Networking-Papers/TCP-Friendly-Unicast-Rate-Based-Flow-Control/
http://www.psc.edu/index.php/component/remository/Networking/Networking-Papers/TCP-Friendly-Unicast-Rate-Based-Flow-Control/
http://mptcp.info.ucl.ac.be/
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe/
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe/

Vita

Cheng Cui received his bachelor’s degree in School of Software Engineering from

Xidian University, Xi’an, China in 2006. After graduation, he started his career in

IBM China as an IT specialist from 2006 to 2007. He started doctoral program in

Department of Computer Science at the Louisiana State University in 2008, and joined

the Center for Computation and Technology as a research assistant in the same year.

Cheng Cui is currently a PhD candidate and will be awarded in December, 2013

from the Computer Science and Engineering Division in School of Electrical Engi-

neering and Computer Science, at The Louisiana State University. He is passionate

about building high performance distributed systems, with a particular interest in

high-speed networking systems and cloud computing systems. He also enjoys working

on Linux kernel development and computer system performance tuning.

100

