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ABSTRACT 

This dissertation research describes the feasibility study and investigation of 

Electrophoretic Deposition (EPD) of carbon nanotubes (CNTs) for applications in semiconductor 

research. In recent years, the EPD technique has been considered as an economical, room 

temperature, solution based wet coating technique for thin and thick CNT films on arbitrary 

substrates. In this study, fabrication of uniform coatings of acid-treated CNTs has been pursued 

on bare silicon substrates by EPD from aqueous and organic suspensions. Research endeavors 

are extended to examine EPD of CNTs on silicon substrates with various surface coatings such 

as metal (aluminum), insulator layers (silicon dioxide and silicon nitride) and self-assembled 

polar organosilane (APTES) molecules. Microstructural imaging, spectroscopic analysis and 

characterization of the morphology of the CNT films have also been reviewed in relation to the 

deposition parameters such as inter-electrode electric field, deposition duration and APTES 

concentration.  

For research and development involving advanced spectroscopic analysis, Surface 

Enhanced Raman Spectroscopy (SERS) studies have been conducted on horizontally aligned 

EPD fabricated porous CNT networks coated with silver nanoparticles (AgNPs). The acquired 

Raman spectra of AgNP-CNT hybrid nanostructures display significant enhancement in the 

Raman intensity values of Rhodamine6G (R6G) analyte by several orders of magnitude with 

respect to the reference sample. Improvement in the Raman signals has pushed the detection 

limit to as low as 1 × 10-12 M. The experimental results, reported in this dissertation, thus 

establish the novelty of EPD in the fabrication of the AgNP coated porous CNT substrate for 

routine SERS analysis of different target analytes. 
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CHAPTER 1: BRIEF DESCRIPTION OF CHAPTER CONTENT 

This chapter presents a brief description of chapters 2 through 7 in this dissertation. 

Chapter 2 (“Introduction, Literature review and Problem Statement”) introduces basic 

background on the general definition and properties of carbon nanotubes (CNTs) and their direct 

growth techniques such as electric arc discharge, laser ablation and chemical vapor deposition. 

Also discussed are the limitations of these techniques which have led to the solution based, room 

temperature coating approach compatible with a variety of substrates and low temperature 

technologies. A comprehensive literature review has been presented to reveal the following: 

i. Fundamental concepts of colloidal stability, DLVO theory and different non-covalent and 

non-covalent functionalization techniques pursued for CNT dispersion 

ii. Detailed account of the state-of-the-art solution based CNT coating methods (such as 

Langmuir Blodgett coating, spray deposition, ink jet printing) and limitations in regard to 

control of deposition parameters, packing density and homogeneity of film quality 

iii. Fundamental concepts and proposed mechanisms of electrophoretic deposition (EPD) 

technique pursued in this dissertation 

iv. Review of the reported EPD of CNTs to-date on predominantly metal or metal coated 

substrates and the limitations of these methods which define the underlying motivation of 

our research endeavor outlined in the subsequent chapters 

Based on the present state-of-the-art and innovations needed to address the existing status 

of electrophoretic deposition (EPD) of carbon nanotubes, Chapter 3 (“Motivation and Research 

Goals”) outlines the motivation and enlists the research objectives pursued in the research for 

this dissertation. These research goals are listed under three major topics, namely (1) 

electrophoretic deposition of carbon nanotubes on silicon substrates; (2) electrophoretic 

deposition of carbon nanotubes on surface functionalized silicon substrates; and (3) surface 
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enhanced Raman spectroscopy (SERS) studies on silver nanoparticle coated carbon nanotube 

networks fabricated by electrophoretic deposition as a potential application 

Chapter 4 (“Electrophoretic Deposition of carbon nanotubes on silicon substrates”) 

presents a comprehensive account of the electrophoretic deposition experiments of acid refluxed 

CNTs on silicon substrates with various insulator (silicon dioxide-SiO2 and silicon nitride-Si3N4) 

and metal coatings (aluminum, copper). Deposition results with regard to preferential CNT 

coating and adhesion on bare, piranha treated/ acid etched and metal patterned silicon samples 

have been reported in detail as well. The effects of electric field, deposition time, and underlying 

films on the thickness and surface roughness of the CNT film are studied. An interesting 

observation pertaining to the degradation of the CNT solution following unsuccessful EPD 

attempts on bare silicon substrates and a probable explanation to that end has also been conveyed 

in the chapter.  

Chapter 5 (“Electrophoretic Deposition of carbon nanotubes on silicon substrates with 

surface functionalization”) introduces the concept of surface functionalization by self-assembling 

organosilane molecule (3-amino-propyl-triethoxysilane or APTES) on piranha treated 

hydroxylated silicon surfaces. Different comparative studies between aqueous (CNT-water) and 

non-aqueous (CNT dispersed in isopropyl alcohol or IPA referred to as CNT-IPA) suspension in 

regard to fabricated film quality and the benefits of EPD as a fast, reliable and reproducible 

coating technique over the dip coating method have also been reported extensively throughout 

the chapter. The effect of varying APTES concentration (5%-100%) on the Raman spectroscopy 

and thickness of the deposited CNT film has been revealed in detail as well.  

Chapter 6 (“Surface enhanced Raman spectroscopy studies on silver nanoparticle coated 

carbon nanotube networks fabricated by Electrophoretic Deposition”) of this dissertation 



3 
 

introduces the concept of Raman Spectroscopy and Surface Enhanced Raman Spectroscopy 

(SERS) as a versatile analytical tool for the spectroscopic analysis of various compounds in 

different scientific applications. In this study, the ingenuity of electrophoretic deposition 

technique as a fast, reproducible and single-step coating process in conjunction with the self-

assembling organosilane surface treatment has been communicated in the fabrication of 

horizontally aligned CNT based porous SERS substrates. The subsequent sections of this chapter 

also reveal pertinent details involving the synthesis of silver nanoparticles (AgNPs), with 

average diameter ranging from 30 nm-80 nm, the stabilization effect mediated by the surfactant 

(e.g. poly-vinyl-pyrrolidone or, PVP) molecules in the prevention of AgNP aggregation and 

solution degradation, and immersion coating of the AgNPs on the silanized CNT networks. The 

Rhodamine6G (R6G) molecule has been selected as the target analyte. The surface enhanced 

Raman spectra of R6G molecules with varying concentrations (from 1 milli-molar- (mM) - i.e. 1 

× 10-3 M to 1 pico-molar-(pM) - i.e. 1 × 10-12 M) on the Ag-CNT-Si SERS substrates has been 

disclosed in conjunction with comparative SERS results on AgNP coated planar Si substrates 

(Ag-Si). The concluding section of this chapter has been composed in the discussion on superior 

detection limits in our SERS study and estimation on enhancement factor (E.F.) from the 

acquired Raman spectra. 

Chapter 7 (“Summary and Recommendation for future work”) outlines a comprehensive 

summary of the results of the present research. It lists the conclusions drawn from different 

aspects of this dissertation and offers recommendation for further research in potential 

application paradigm.  
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CHAPTER 2: INTRODUCTION, LITERATURE REVIEW AND PROBLEM 
STATEMENT 

2.1: Introduction 

Since the discovery of carbon nanotubes (CNTs) by Iijima1,2, substantial research has 

been pursued in analyzing their physical and chemical properties. A single strand of carbon 

nanotube can be envisioned as sheets of graphene rolled into a hollow cylindrical shape. 

Depending on the number of graphene sheets wrapped into the cylinder, the carbon nanotubes 

can be classified as: (a) single walled carbon nanotubes (SWCNTs), (b) double walled nanotubes 

(DWCNTs), and (c) multi-walled carbon nanotubes (MWCNTs). The typical diameter and 

length of these nanotubes range from 5 nm to 50 nm and 10 µm to 100 µm, respectively.  

Single-walled nanotubes (SWNTs) consist of a single rolled up sheet of graphene 

whereas multi-walled nanotubes (MWNTs) are composed of a collection of multiple concentric 

sheets bound by Van der Waals forces. The fundamental structure of the tubes is defined by the 

diameter, length, number of concentric shells and chirality of the tubes. The electronic nature 

exhibits metallic or semiconducting properties depending on the helicity of the tubes. The 

nanotube helicity can be explained by the variation by which the graphene sheets can be rolled 

up to form a cylinder. The helicity and diameter of the nanotubes can be obtained from a pair of 

integers (n, m) which is expressed in the form of a vector, known as the “chiral vector”, Ch = 

na1+ma2 where a1 and a2 are the unit vectors. Depending on the arrangement of carbon atoms 

around the nanotube diameter, the nanotubes can be classified as the armchair (n = m), zigzag (n 

= 0 or m = 0), or chiral (any arbitrary values of n and m) variety. All armchair SWNTs show 

metallic behavior; those with n – m =3k, where k is a nonzero integer, are semiconductors with a 

small band gap; and the rest display semiconducting with a band gap that inversely depends on 

the nanotube diameter. 
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Over the last decade of nanoscience research, significant attention has been paid in the 

optimization of nanotube synthesis by direct growth techniques such as arc discharge, laser 

ablation, and chemical vapor deposition (CVD). The nanotube growth conditions and controlling 

parameters such as temperature, time, feedstock hydrocarbon precursors, and nano-metallic 

growth catalysts have been studied extensively. The purification methods such as post-synthesis 

treatment and characterization of the synthesized nanotubes have been investigated 

comprehensively as well. The relevant sections of this chapter outline the details of the direct 

growth techniques, the drawbacks of these methods and a comprehensive review of the solution-

phase wet deposition techniques for CNT thin film research. 

2.2: General growth process of carbon nanotubes 

The exact growth mechanism of carbon nanotubes is still a subject of intense study and 

research. It has been proposed that depending on the precise growth parameters such as the 

temperature, the nature of the nucleation catalysts and carbon-catalyst interaction, more than one 

mechanism might be operative during the formation of CNTs. Most of these growth models, put 

forth to understand the exact mechanism, can be explained under the purview of the vapor-

liquid-solid (VLS) mechanism3,4 as illustrated in Figure 2-1. In the VLS process, metal clusters, 

acting as growth precursors, are heated above their metal-carbon eutectic temperature in the 

presence of a hydrocarbon vapor source (shown as i in the figure). The carbon atoms adsorb on 

the catalyst particles, forming a liquid metal-carbide (indicated as ii in the figure) and eventually 

consume the whole catalyst particle through bulk and surface diffusion. Finally, super-saturation 

is reached as carbon starts to precipitate into a crystalline tubular form (shown as iii). The figure 

also outlines the role of the metal catalyst in offering enough nucleation sites to initiate and 

orient the nanotube growth and controlling the diameter of the tubes. 
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Figure 2-1: Schematic diagram of Vapor Liquid Solid (VLS) growth model [Reprinted with 
permission from Wiley and Sons4]. 

 

Two models are generally accepted pertaining to the VLS growth method of the carbon 

nanotubes: (a) tip-growth,  and (b) root growth5–7. When the catalyst-substrate interaction is 

weak, hydrocarbon from the feedstock source decomposes on the top surface of the metal, the 

carbon diffuses down through the metal, and CNT precipitates out across the metal bottom, 

pushing the whole metal particle off the substrate. Once the metal is fully covered with excess 

carbon, its catalytic activity ceases and the CNT growth is stopped. This is known as the “tip-

growth” model. 

“Root or base growth” can be observed when the catalyst-substrate interaction is strong 

and the CNT precipitation fails to push the metal particle up from the growth surface; so the 

eventual precipitation emerges out from the metal’s apex (farthest from the substrate, having 

minimum interaction with the substrate). As shown in Figure 2-2, the metal nanoparticle 

remains adhered to the substrate as the nanotubes continue to grow in the upward direction. 

The “tip-growth” has been observed to be dominant with MWCNTs while the “root or 

base growth” has been mostly associated with SWCNTs. As can be understood, the direction of 

the growth strongly depends on the stiction of the catalyst particle to the substrate. 
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Figure 2-2: Root growth and Tip growth mechanism of carbon nanotubes [Reprinted with 
permission from Elsevier7]. 

 

Depending on the size of the catalyst particle, Dai et al.5,8 proposed a mechanism wherein 

carbon forms a hemispherical graphene cap (known as Yarmulke growth ) on the catalyst particle 

as shown in Figure 2-3. When the particle size is too small, insufficient carbon adsorption fails 

to form the desired cap and if the particle size exceeds a certain threshold, an excess quantity of 

carbon forms a hemispherical cage that would eventually encapsulate the particle, preventing the 

growth process. Once the hemispherical cap forms with the right volume of the catalyst particle, 

the surface energy is reduced which benefits the growth process. Further addition of carbon 

around the circumference of the catalyst particle in a cylindrical fashion constitutes the 

emergence of a tubular structure referred to as carbon nanotube (CNT).  

The growth process slows down due to the gradual accumulation of amorphous carbon or 

soot on the exposed surface of the catalyst particles. This process has been referred to as 

“catalyst poisoning” which eventually stops the growth of the nanotubes. 
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Figure 2-3: Schematic diagram of Yarmulke growth mechanism [Reprinted with permission 
from Taylor and Francis5,8]. 

 

2.3: Direct growth techniques 

In this section, different direct growth techniques for the carbon nanotube synthesis are 

briefly reviewed. Carbon nanotubes are generally synthesized by three main techniques9–12: (a) 

arc discharge, (b) laser ablation, and (c) chemical vapor deposition (CVD). 

 Arc discharge method 2.3.1:

This is the simplest and most common method for the synthesis of carbon nanotubes. The 

nanotubes are synthesized through arc-vaporization of two carbon electrodes (doped with or 

without metal catalyst) separated by approximately 1mm in an inert gas filled chamber. A direct 

current of 50 to 100 Amperes creates a high temperature plasma discharge between the two 

electrodes. The intense arc-discharge results into vaporization of the carbon anode and carbon 

nanotube deposits are subsequently obtained at the cathode. The deposit contains a mixture of 
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reaction byproducts in the form of nanotubes, graphite and fullerenes and therefore, needs further 

purification steps. This technique can be pursued to produce both SWCNTs and MWCNTs. 

Numerous studies on the growth mechanism in this synthesis technique reveal that the quality 

and the quantity of the nanotube yield are extremely sensitive to the type and concentration of 

the catalyst metals, inert gas pressure, plasma control, current and the temperature of the arc-

discharge. Figure 2-4 shows the experimental set up for the synthesis of carbon nanotubes by the 

arc-discharge method. 

 

 

Figure 2-4: Schematic diagram of Arc discharge method of synthesis of carbon nanotubes. 
 

 Laser ablation method 2.3.2:

 In this method, pioneered by Smalley et al.13, (as shown in Figure 2-5) a high power 

laser beam is focused on a graphite target in an inert gas filled enclosure. Both continuous and 

pulsed laser beams of adequate power can be used for the purpose. The carbon at the graphite 

vaporizes and condenses at a water cooled collector as carbon nanotube deposits. MWCNTs are 

synthesized if a pure graphite target is used whereas a graphite electrode doped with catalyst 
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metals produces SWCNTs. It has been reported that laser vaporization produces a higher yield of 

CNTs with improved purity and narrower size distribution than the ones produced by arc 

discharge.  

 

 

Figure 2-5: Schematic diagram of Laser ablation method of synthesis of carbon nanotubes. 

 

 Chemical vapor deposition (CVD) method 2.3.3:

 Chemical vapor deposition techniques14–16 involve decomposition of carbon feedstock 

gas or hydrocarbons in presence of a catalyst. The synthesis method consists of a two- step 

process:  

i. Deposition of catalyst metal onto a substrate, followed by chemical etching or thermal 

annealing. 

ii. Nanotube growth at the catalyst sites thorough VLS growth mechanism. 

Chemical etching or thermal annealing is performed to pattern the metal catalyst on the 

target substrate. Recently, e-beam lithography and evaporation, and physical vapor deposition 

processes e.g. sputtering, thermal evaporation have been widely utilized to pattern and deposit 

catalyst nanoparticles for the purpose. 



11 
 

Resistively heated coils, filaments or plasma are mostly used to decompose the carbon 

feedstock source and the metal coated substrates during this technique. The heating process 

decomposes the carbon molecules into reactive atomic carbon species and induces catalyst 

nucleation on the substrates. These reactive carbon species then diffuse towards the heated 

substrate and start to grow as hollow tubes at the nucleation sites as described by the VLS 

growth model. Figure 2-6 exhibits a schematic diagram of the thermal CVD for the synthesis of 

the CNTs. 

 

 

Figure 2-6: Schematic diagram of Chemical vapor deposition (thermal) of carbon nanotubes. 
 

Given the aforementioned principle, different techniques for the synthesis of carbon 

nanotubes, based on the CVD method, have been developed over the last decade, such as plasma 

enhanced CVD, thermal chemical CVD, alcohol catalytic CVD, vapor phase growth, laser 

assisted CVD, CoMoCat process and the high pressure CO disproportionation process. A 

detailed explanation of these techniques can be obtained from the reports of Szabo et al.11 and 

Daener et al.14.  



12 
 

 Summary of problems with direct growth techniques 2.3.4:

The direct growth techniques for CNTs have achieved significant success in optimizing 

growth parameters such as the effect of temperature, pressure and the type of feedstock gas, and 

the nature of the metallic catalysts. Nevertheless, these synthesis techniques suffer from 

incompatibility issues which are addressed below: 

i. The high growth temperature (typically around ~900oC) show incompatibility in the 

direct integration of the CNTs in a wide range of low temperature application such as 

organic/plastic and flexible electronics, MEMS based thin film sensors and actuators.  

ii. The complex thermodynamics and temperature of the synthesis process also impose 

limitation on the choice of compatible substrates e.g. polyethylene terephthalate (PET) 

polymer and polycarbonate (PC) based flexible/bendable substrates 

iii. All currently known synthesis techniques for CNTs result in major concentrations of 

unwanted impurities in the form of metallic growth catalysts and soot like carbonaceous 

skeins. The presence of these unwanted byproducts in the synthesis yield leads to 

unpredictable behavior of the CNTs in device performance. 

iv. An indispensable need of state-of-the-art sophisticated vacuum systems in almost all 

these techniques contributes to high processing time and cost of instrumentation and 

maintenance. 

2.4: Solution based room temperature deposition of carbon nanotubes 

To mitigate the challenges imposed by direct growth techniques, various room 

temperature, solution based wet coating methods have been actively pursued in both academic 

and industrial research. When compared to the direct growth methods, a solution based process 

offers numerous benefits, e.g. an economical fabrication strategy, simple and cost-effective 

experimental set up, conventional silicon and plastic/polymer substrate compatibility and faster 
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deposition rate with the prospects of mass production pertaining to roll-to-roll deposition 

techniques. 

The solution based deposition techniques are greatly influenced by several factors such as 

degree of CNT dispersion, solution stability, surface activation of the substrate, application and 

removal of dispersion aids (surfactants) during and after coating and use of additional binder 

materials to improve adhesion of the deposit to the substrate. The following section focuses on 

the general attributes of colloidal stability, dispersion of the CNT solution/suspension, discussion 

of the mentioned factors and various deposition methods. 

 Fundamental concepts of colloidal stability 2.4.1:

Preparation of a stable dispersion of the particles to be deposited on a target surface from 

suitable solvent is an essential prerequisite for successful EPD. In colloid chemistry, the stability 

of a solution is adjudicated by an important parameter known as the “Zeta potential”.  

The development of a net charge at the particle surface in a solution affects the 

distribution of ions in the surrounding solid-liquid inter-facial region. The charged particle in the 

suspension remains surrounded by ions with an opposite charge (known as counter ions) in a 

concentration higher than the bulk concentration of these ions. An Electrical Double-layer17,18 (in 

Figure 2-7)  is thus created and can be distinguished into two regions:  

i. an inner region (Stern layer) where the counter ions are strongly bound to the particle, 

and  

ii. an outer (diffuse layer) region where these are less firmly attached and co-exist   

with the co-ions (ions of similar charge as the particle)  

Under the application of a suitable electric field, the counter ions and the particle are 

expected move in opposite directions. However, the counter ions are also attracted by the 
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particle, and as a result, a fraction of the counter ions surrounding the particle will not migrate 

towards the opposite electrode but move along with the particle. The boundary, thus created, at 

the diffuse layer is called the surface of hydrodynamic shear or slipping plane. The potential that 

exists at this boundary is known as zeta potential (ξ) or electro-kinetic potential.  

The potential (ψ) at a distance x from the Stern plane is represented by the following form 

of the Poisson–Boltzmann expression18: 

exp( )x    ………………………………………………………………………………..(1) 

where κ is the Debye–Huckle parameter, 1/κ is the distance at which the potential ψ drops to 1/e 

of its value at the Stern plane, ψδ, and this distance is called the double layer thickness or Debye 

length. The thickness is controlled by the concentration and valence nature of the ions in 

solution. A high concentration of ions (high ionic strength) in the medium generally results in a 

decrease of the double layer thickness and consequent decrease in the potential. The thickness is 

commonly represented in the following form18: 
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where e is the electronic charge, ni is the concentration of ions with charge zi, ε is the dielectric 

constant of the liquid, and ε0 is the permittivity of a vacuum. For aqueous solutions at 25 °C, the 

value of κ (m−1) is given by7: 
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where ni is the molar concentration and zi is the valence nature of ion i. 

The ξ potential determines the velocity (ν) with which the particles move under the 

influence of an applied electric field (E) and the electrophoretic mobility (μ) which is defined 

by18: 
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The mobility of the particle depends linearly on the dielectric constant (or permittivity) of 

the fluid, the potential gradient, and the zeta potential and is inversely proportional to the fluid 

viscosity. This mobility given by the following Henry equation18: 
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where ε0 is the permittivity of vacuum, εr is the relative permittivity of the solvent, η is the 

solvent viscosity, f(κr) is the Henry coefficient, which depends on the relation between the 

thickness of the double layer (1/κ) and the core radius (r) of the particle. For a point charge 

(κr ≪ 1, Huekel–Onsager case) or a flat surface (κr ≫ 1, Helmholtz –Smoluchowski case), this 

coefficient is 3/2 and 1, respectively. 

In simple terms, the zeta potential can be defined as the potential difference between the 

dispersion medium of interest and the stationary or static layer of fluid attached to the dispersed 

particle in the medium. The magnitude of the zeta potential offers an estimate of the potential 

stability of the colloidal system. If all of the particles in the colloidal suspension possess a large 

zeta potential (negative or positive), sufficient electrostatic repulsion exists between the particles. 

The mutual repulsive forces prevent agglomeration or flocculation of the particles resulting in a 

stable dispersed suspension. Particles with low zeta potential values tend to “clog” and form 

aggregates with each other, therefore resulting in the precipitation and eventual degradation of 

the suspension medium.  
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Figure 2-7: Schematic diagram explaining the concepts of Stern layer, Diffuse Region and Zeta 
potential [Reprinted with permission from Elsevier18]. 

 

One of the most significant factors in the interpretation of the efficiency of solution based 

particle coating techniques e.g. electrophoresis is the state of dispersion and colloidal stability of 

the suspension throughout the process. Particle aggregation occurs when the attractive van der 

Waals force exceeds the repulsive electrostatic ones. A quantitative estimate of the relationship 

between stability of suspension in terms of interparticle forces and energies of interactions that 

exist between colloidal particles in a liquid has been described by the classical DLVO theory17,19–

21 pioneered by Derjaguin and Landau, and Verwey and Overbeek. The DLVO theory explains 

the variation in energy profile between two approaching particles by mathematically estimating 

the energies of attraction (London Van der Waals attraction, VA ) or repulsion (VR) versus the 

interparticle distance. These forces are added together to yield the total interaction energy, VT 

which gives us the following equation7: 

VT = VA+VR ……………………………………………………………………………………..(6) 

Figure 2-8 shows the variation of potential energy as a function of inter-particle distance. 

As can be seen from the graph, VR decreases exponentially while VA decreases inversely with 
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separation distance. The maximum value in the energy profile (primary maximum) represents a 

potential energy barrier which prevents close approach of the two particles. The significant 

points in the graph are: (i) the height of the energy barrier, and (ii) the depth of the potential well 

(primary minimum) at very small distances. When the maximum potential energy barrier is quite 

large enough compared to the thermal energy (kBT) of the particles, the system reaches 

“stability” as the particles fail to surmount the barrier. Under such circumstances, a substantial 

repulsive potential energy barrier will inhibit the close approach of the particles thereby 

stabilizing them against aggregation. Once the potential barrier has been surmounted, the 

particles are held in a deep primary minimum from where particles could not escape. 

 

 

Figure 2-8: Schematic diagram showing the concept of DLVO theory17. 
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Theoretically Van der Waals forces of attraction are infinitely strong in the primary 

minimum. This results in severe aggregation of the particles in the solution.  

Depending on the ionic strengths18, the total potential energy of interaction versus 

interparticle distance shows four classes of shapes with large variations in stability ( as shown in 

Figure 2-9). At very low ionic strengths, the potential energy curve (Curve A) represents only 

strong and long range repulsive forces producing a totally dispersed system. At a slightly higher 

but still low enough ionic strength, a primary minimum and a maximum can be seen in the total 

interaction energy profile (curve B). But the energy is still repulsive in nature. The graph 

explains that even if it is energetically favorable for the interacting particles to come into close 

contact, these particles need to possess sufficient energy to overcome the energy barrier for the 

formation of an aggregate. However, in the intermediate ionic strength, the graph indicates the 

presence of a primary minimum, a primary maximum and a secondary minimum (curves C and 

D). The secondary minimum in the potential energy curves is a characteristic feature at relatively 

large interparticle distance in a reasonably more concentrated electrolyte solution. When the 

minimum is moderately deep, compared with the thermal energy (kBT), reversible flocculation 

may occur. The flocculation is sufficiently stable not to be disrupted by Brownian motion but 

may dissociate under an externally applied force such as vigorous agitation. The colloid particles 

experience no repulsive force in a medium of high ionic strength and fall directly into the deep 

primary minimum (curve E). Under such circumstances, fast coagulation occurs and the system 

is completely unstable. 

Stabilization of colloidal dispersions may be influenced by steric stabilization and 

structural forces. These mechanisms become substantial due to the physical presence of 

hydrophilic surfactant macromolecules adsorbed on the particle surface. The surfactant-mediated 
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stabilization is achieved due to the mutual force of repulsion between the adsorbed 

macromolecules. Presence of these forces can also change the shape of the energy barrier or 

primary minimum that controls the particle–substrate interaction. Caution must be exercised in 

using a controlled amount of sterically stabilized suspension for the wet coating methods since 

the surface properties of the deposited particles may be altered due to the presence of residual 

surfactant molecules in the final deposit. 

 

 

Figure 2-9: Schematic diagram showing the energy profiles for different ionic strengths from 
DLVO concept [Reprinted with permission from Elsevier18]. 

 

 Methods for stabilizing colloidal solutions 2.4.2:

Due to the presence of dominant and prevailing Van der Waals attractive forces between 

similar colloidal particles, it is necessary to introduce repulsive forces of comparable magnitude 
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between the particles to prevent aggregation and impart dispersion stability. Stability can be 

obtained by wrapping the colloidal particles with an electrical double layer (electrostatic or 

charge stabilization) or adsorbed polymeric molecules (steric and depletion stabilization) or the 

combination of both. The combination of both electrostatic and steric stabilization results into 

electro-steric stabilization. A brief account of the fundamental concepts of stabilization is 

discussed below: 

i. Electrostatic stabilization 

Electrostatic stabilization20 can be achieved by imparting Coulombic force of repulsion to 

the particles in polar liquids. In liquid dispersion media, ionic groups can adsorb on the surface 

of a colloidal particle through different mechanisms to form a charged layer. The interaction 

between this charged particle and the surrounding counter-ions in the solution leads to the 

formation of electrical double layers. The intended charge stabilization can be obtained due to 

the mutual repulsion between these double layers surrounding the particles. 

The thickness of the double layer depends on the ionic strength of the dispersion medium.  

The ionic strength can be expressed as: 
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where ci is a molar concentration of ith ion present in the solution and zi is its charge. 

It has been reported that the degree of electrostatic stabilization in colloidal chemistry is 

extremely sensitive to the ionic strength of the dispersion medium. At low ionic strengths the 

thickness of the double layer is about 5-10 nm, which is of the same order of the range of Van 

der Waals attraction. This explains the reason behind obtaining charge stabilization due to 

mutual repulsion of same magnitude in dispersed suspension of low ionic strength. The thickness 

of the double layer is reduced significantly with increasing the ionic strength. At high ionic 
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strengths, the thickness of the double layer is less than 1 nm. Under this circumstance, the range 

of double layer electrostatic repulsion is usually insufficient to counterbalance the Van der Waals 

attraction. Coagulation of the most charge-stabilized dispersion medium has been frequently 

observed with the increasing ionic strength. 

ii.  Polymeric stabilization 

With regard to DLVO theory, the role of the surfactant molecules, introduced in a 

dispersion medium, is to lower the potential energy barrier to promote coagulation, or to impart 

some form of electrostatic or physical hindrance against the inter-particle interaction, thereby 

promoting mutual repulsion to establish colloidal stability in the suspension. The stabilization 

achieved due to the grafting of the polymeric surfactant molecules between the interacting 

particles is referred to as “polymeric stabilization”. 

There are two different mechanisms accepted for polymeric stabilization of colloidal 

dispersion22: (a) Steric stabilization, and (b) Depletion stabilization. 

a) Steric stabilization 

Steric stabilization of colloidal particles is achieved by physical adsorption or grafting of 

macromolecules on the surfaces of the particles as depicted in the Figure 2-10. The mutual 

repulsion between the grafted polymers leads to stabilization. 

b) Depletion stabilization 

Depletion stabilization of colloidal particles is imparted by macromolecules that are 

freely moving in the solution and acting as physical barriers against particle coagulation.  

Electrostatic and steric stabilization can be combined together as electro-steric 

stabilization. The electrostatic component may result due to a net charge on the particle surface 

and/or charges associated with the polymer attached to the surface (i.e. through an attached 
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polyelectrolyte) as shown in Figure 2-11. Combinations of depletion stabilization with both 

steric and/or electrostatic stabilization are also observed. The combination of depletion and steric 

stabilization is very common when high concentrations of free polymer molecules exist in the 

dispersion medium. 

 

 

Figure 2-10: Concepts of Steric stabilization (left) and Depletion stabilization (right).  
 

 

Figure 2-11: Different combinations of electro-steric stabilization. 
 

 Different techniques for carbon nanotube dispersion 2.4.3:

The carbon nanotube yields produced by direct growth techniques are generally 

agglomerated in nature and exhibit strong hydrophobic properties. This results in frequent CNT 

precipitation in the suspension medium during the dispersion and deposition steps. Therefore, 
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one of the major challenges in fabricating carbon nanotube thin films on arbitrary substrates is to 

disentangle and separate the bundled skeins into individual nanotubes to obtain stable dispersion 

for the coating process. Various surface modification techniques have been developed to 

improve stability and prevent deterioration of the suspension medium. This process, known as 

the surface functionalization of the carbon nanotubes, involves introduction of charged chemical 

moieties on the nanotube surfaces using various covalent and non-covalent processes23–25. The 

interacting forces between these chemical moieties restrict significant agglomeration and 

entanglement of the dispersed nanotubes, leading to remarkable stability, re-usability and 

extended lifetime of the suspension medium. Different surface functionalization methods have 

been pursued to-date and the choice of these methods, by virtue of their benefits and limitations, 

is dictated by the nature of application involving these functionalized nanotubes. The following 

paragraphs highlight some of the non-covalent and covalent functionalization methods pursued 

in this direction. 

The non-covalent route of surface modification26 is one of the most common methods in 

this direction. In this technique, polymer chains or various surfactant molecules are made to 

physically adsorb on the surface of nanotubes without any chemical bonding. This type of 

nanotube functionalization has received a lot of academic interest owing to the non-invasive and 

non-destructive mode of interaction with minimum defects which preserves the original 

properties of the nanotubes. 

 The non-covalent functionalization process can be broadly divided into the following 

categories: 

i. Surfactant and polymer assisted dispersion 

ii. Direct dispersion of the pristine or functionalized nanotubes in organic solvents 
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iii. Use of protein, DNA and starch as dispersion aids. 

The functionalization processes are described briefly below: 

i. Surfactant and polymer assisted dispersion: 

Surfactant and polymer assisted dispersion27 is the most widely followed route for stable 

dispersion of the CNT solution. Surfactants are usually classified as: (a) anionic (negatively 

charged in water), (b) cationic (positively charged in water) and (c) non-ionic (neutrally charged 

in water). A wide variety of surfactants have been investigated to obtain stable dispersion of 

carbon nanotubes, e.g. sodium dodecyl benzene sulfonate (SDBS)28, dodecyltrimethylammonium 

bromide (DTAB)29, hexadecyltrimethylammonium bromide (CTAB)30, octyl phenol ethoxylate 

(Triton X-100)31 and sodium dodecyl sulfate (SDS)32. Surfactants aid in the dispersion of carbon 

nanotubes in aqueous solutions mainly through hydrophobic/hydrophilic interactions.  It has 

been proposed that the hydrophobic tail of the surfactant molecule adsorbs on the surface of 

nanotubes while the hydrophilic head associates with water for dispersion25. The following 

Figure 2-12 illustrates the orientation of the surfactant molecules in this technique. 

 

 

Figure 2-12: Surfactant assisted dispersion of carbon nanotubes [Reprinted with permission from 
Elsevier25].  
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Polymer wrapping33,34 of the pristine or functionalized nanotubes is a common method 

for dispersion especially for CNT-polymer composite film deposition. Polyaniline, polypyrrole35, 

polythiophene, polyethylene glycol (PEG) and block co-polymers (BCPs) have been frequently 

investigated towards this direction. Non-covalent functionalization using different aromatic 

moieties such as organic dyes has also been successfully pursued36,37. However for CNT thin 

film applications, polymer assisted dispersion is generally not recommended. This is because of 

the bulky nature of the long polymer chains and challenges to remove the embedded polymer 

from the deposits after thin film fabrication. 

ii. Direct dispersion of the pristine or functionalized nanotubes in organic solvents: 

CNT dispersions can also be achieved by direct introduction of the nanotubes in different 

organic solvents38 as the suspension medium. The advantage of dispersing the nanotubes without 

using surfactants is to avoid undesired surfactant or polymer residue in the fabricated film. 

Several types of solvents have been examined to prepare CNT suspensions for different coating 

methods including distilled water39, mixtures of acetone and ethanol40, and pure organic solvents 

such as ethanol41, isopropyl alcohol (IPA)42,43, n-pentanol44, toluene, chloroform, tetrahydrofuran 

(THF)45 and dimethlyformamide (DMF)46. A prior functionalization step of the pristine 

nanotubes, e.g. covalent functionalization often aids the dispersion process in organic solvents. 

For example, acid refluxed CNTs with -COOH groups can be dispersed in butanol/toluene and 

xylene/ethanol mixtures, which are otherwise known to be poor solvents for pristine CNTs. In a 

separate study by Tour et al.34, the best solvents reported for dispersing CNTs were 1,2-

dichorobenzene (95 mg/L), chloroform (31 mg/L), and N-methylpyrrolidinone (10 mg/L)47. 
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iii. Use of protein, DNA and starch as dispersion aids 

Both non-covalent (physio-absorption) and covalent (chemical bond formation) methods 

have been explored to engineer the interfacial interaction between the as-grown CNTs and 

biological molecules. Biological macromolecules such as proteins (e.g. Streptavin)48, 

oligosaccharides and DNA assisted non-covalent functionalization49,50 render an environmental 

friendly and biocompatible method for biological applications. Wei et al.51 demonstrated the 

self- assembly of protein-protected gold nanoparticles (AuNPs) on functionalized MWCNTs by 

the use of hydrophobic PANHS protein through controlled non-covalent treatment. The 

schematic diagram of the work is shown below (Figure 2-13). Sidewall non-covalent 

functionalization of CNTs has also been carried out by the adsorption of pyrene moieties of 

bifunctional molecules such as 1-pyrenebutanoic acid, succinimidyl ester for the immobilization 

or grafting of ferritin, streptavidin52 and monoclonal IgG C60 specific monoclonal antibody on 

the SWCNTs53.  

 

 

Figure 2-13: Schematic view of the self-assembly of the protein-protected AuNPs on PANHS 
functionalized CNTs [Reprinted with permission from Elsevier51]. 
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In the covalent route of CNT surface modification, polymer chains or reactive species can 

be chemically attached to the surface of the nanotubes54. The process is generally accomplished 

by aggressive chemical reactions with different chemical agents, strong acids55,56 being the most 

common ones.  

Acid refluxing of the pristine carbon nanotubes, using a mixture of strong oxidizing acids 

such as concentrated nitric acid and sulphuric acid, under ambient or elevated temperature is the 

most common method of covalent modification (Figure 2-14). The acid treatment of the carbon 

nanotubes offers the following benefits: 

i. It helps in the purification of the pristine nanotubes by dissolving the unwanted metal 

catalyst impurities and residual reaction byproducts from the growth process. 

ii. Shortening of the tube lengths is achieved since the acid solution attacks various 

defective sites of the synthesized nanotubes. 

iii. The acid-heat treatment on the pristine carbon nanotubes attaches negative carboxylic 

groups (-COOH) on the surface of the tubes, thereby imparting negative surface charges. 

The resultant electrostatic repulsion prevents inter-tubular agglomeration and ensures 

appreciable stability of the CNT suspension during the dispersion process. 

 

 

Figure 2-14: Covalent functionalization of carbon nanotubes by acid refluxing method. 
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Velasco-Santos et al..57 reported the advantages of chemical functionalization of 

nanotubes in improving the composite properties. In the study, in situ polymerization of methyl 

methacrylate (MMA) was achieved both in the presence of un-functionalized and acid - 

functionalized nanotubes. It was concluded that the covalent functionalization provides an 

efficient and attractive route for producing synergetic composite materials with carbon nanotubes 

since the generated reactive groups in the surface modification step assisted in binding polymer 

chains to the nanotubes during the course of polymerization.  

Synthesis of nano-hybrid materials from CNTs and nanoparticles is also reported in 

which the nanoparticles are covalently immobilized on the nanotubes surface58. To achieve the 

required functionalization, the nanotubes were treated with nitric acid followed by thionyl 

chloride (SOCl2) to generate COCl groups on the surface. Magnetite colloid solution was reacted 

with COCl- treated nanotubes at room temperature using ultrasonication as explained in Figure 

2-15. The process demonstrated the effectiveness of the chemical pretreatment of nanotubes in 

generating active sites for the magnetite particles to anchor on the carbon nanotube surfaces. The 

resulting nano-hybrids were also easily dispersible in aqueous solvents and exhibited appreciable 

stability over a considerable time period. 

Covalent attachment of proteins with the CNTs through direct covalent methods or with 

linking molecules has been demonstrated as well. Huang et al.59 and Jiang et al.60 have shown 

successful immobilization of protein molecules (e.g. Bovin Serum Albumin or BSA) on the 

carbon nanotube surfaces by diimide activated amidation covalent reaction. 
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Figure 2-15: Schematic diagram of immobilization of nanoparticles on covalently functionalized 
carbon nanotube surface [Reprinted with permission from Elsevier58]. 

 

 Literature review of different coating methods 2.4.4:

The basic principle of room temperature deposition method is to coat an arbitrary 

substrate from a dispersed solution of the intended material followed by controlled drying 

without introducing agglomeration in the deposit. In surfactant or polymer assisted deposition, an 

additional step of washing and removing the dispersion aid from the deposit is necessary. 

Following the stable dispersion of the carbon nanotubes in aqueous medium or organic 

solvents, numerous innovative solution-based CNT coating techniques have been developed for 

the purpose. Some of the prominent methods include ‘’logs-on-a-river” approach, also known as 

Langmuir-Blodgett (LB) method, self-assembly of functionalized CNTs on chemically modified 

substrates, linker-free directed assembly of CNTS by using SAM molecules, local surface 
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charging, dip coating, drop casting, spray coating, spin coating, inkjet printing and Mayer Rod 

coating. 

In the “logs-on-a-river” concept61, known as the “Langmuir- Blodgett (LB)” method62,63, 

a monolayer thick layer (known as Langmuir monolayer) spread at the air/water interface is 

transferred onto a solid substrate by repeated subsequent dipping and lifting the substrate from 

the solution. Precise control of the surface spreading of CNTs on water is necessary for the 

process. The multilayer deposition can be achieved through layer-by-layer coating method by 

repeated horizontal or vertical dipping, and lifting method. The LB method offers a simple and 

convenient approach for fabricating monolayer or sub-monolayer films but is generally very 

slow with unreliable results in fabricating CNT multilayer films.  

 

 

 

Figure 2-16: Langmuir Blodgett method of carbon nanotube coating. 
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Dip coating64 method is a variation of the LB method and has been frequently used also 

to fabricate transparent and conductive films on various substrates. One major disadvantage of 

these kinds of coating methods is that both sides of the substrates are coated during the 

deposition step which may not be desired for certain applications. 

Self-assembly (SA)65–67 is a relatively fast and cheap method to fabricate thin films on a 

surface. SA relies on the interfacial surface interaction and attractive forces between the 

interacting CNTs and the functionalized surface. In the surface functionalization step, either 

polar chemical groups (such as amino (-NH2) or carboxyl (-COOH)), octadecyltricholosilane 

(OTS), octadecathiol (ODT) or nonpolar groups (such as methyl (-CH3)) can be grafted to 

activate the surface. Functionalization of the CNTs may also be required as a pre-processing step 

prior to self-assembly. As the substrate is immersed in the dispersed solution, CNTs are attracted 

toward the polar groups and self-assemble to form multilayer films. Another SA approach is to 

locally charge the target substrate68 and allow Coulombic forces to guide the assembly of the 

CNTs on it. The self-assembly coating method can be made compatible with the existing, high 

throughput patterning processes e.g. photolithography, stamping and dip-pen nanolithography 

and therefore has attracted enough research attention recently.  

Substantial research attempts have been pursued to utilize spray coating technique69,70 for 

depositing CNT thin films for different applications such as CNT-based transistors, transparent 

electrodes and field emission devices. In this method, a controlled amount of CNT solution or 

ink is sprayed onto a target substrate. The substrate is heated to facilitate drying the liquid. The 

temperature for the substrate is adjusted by the choice and rate of evaporation of the solvent or 

CNT ink to avoid any significant agglomeration. 
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Some of the other competing coating methods include spin coating71 and drop casting. A 

small amount of dispersed CNT solution is dropped onto a substrate followed by high-speed 

spinning of the substrate (spin coating) or simply air drying (drop casting). Spin coating is useful 

for generating monolayer or sub-monolayer films although multiple attempts are required for 

thick films. Drop casting is the most popular method in coating a substrate in academic research. 

This technique, however, results into agglomerated or, stacked nature of the CNTs on the 

depositing surfaces. 

 

 

Figure 2-17: Spray coating method of carbon nanotubes. 
 

Inkjet printing of the CNT solution72–74 has also been reviewed comprehensively. The 

high repeatability, scalability and the ability to print fine patterns and noncontact injection with 

high deposition rate makes the process highly promising for a commercial coating technique in 

future. 

The most widespread deposition method in industry involves coating CNT ink solution 

on a substrate by Mayer Rod followed by controlled drying75. A controlled amount of dispersed 

CNT ink is coated on a substrate by a stainless steel rod wound tightly with stainless steel wire 

(Mayer rod). A heating bar is used to control the post deposition drying process. Owing to its 
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simplicity, this coating method can be scaled up to “roll-to-roll” techniques for CNT thin film 

deposition on extremely large area substrates. 

 

 

Figure 2-18: Mayer Rod coating method of carbon nanotubes [Reprinted with permission from 
ACS publications75]. 

 
 Summary of problems with the coating techniques 2.4.5:

Although the coating techniques discussed in the previous section, offer an economical 

and versatile deposition approach in the fabrication of CNT thin films, these methods show 

limitations with regard to the processing logistics. The limitations are outlined below:  

i. Most of these coating methods e.g. Langmuir- Blodgett (LB) are efficient in fabricating 

monolayer or sub-monolayer CNT films but remain incompetent for fabricating 

multilayer films. Multiple attempts are required to fabricate thick films, which inevitably 

leads to longer processing time and unpredictable behavior in the reproducibility of the 

deposition process. 

ii.  Reliability of these methods e.g. drop casting, dip coating pertaining to film quality, 

packing density and the homogeneity of the deposits over large surface area still remain 

as unresolved fabrication challenge.  

iii. The frequent occurrence of discontinuity in the film structure or sparse deposits 

complicates the deposition model. 
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iv. Deposited films show inconsistency in film thickness, morphology or precise control over 

thickness and lack of reproducibility in the deposition results add to the bottlenecks of 

these existing methods. 

v. Although these coating methods are known for their economical and simple deposition 

approach, advanced controlling units such as flow rate controllers (e.g. spray coating, 

ink-jet printing), inefficient material usage due to loss of EPD suspension (e.g. in spin 

coating) and re-usability issues contribute to the operational cost. 

2.5: Electrophoretic deposition (EPD): Fundamentals and concepts 

With the prevailing interest in the search and implementation of a simpler deposition 

model, one promising technique that has been investigated for room temperature deposition of 

carbon nanotubes in recent days is electrophoretic deposition (EPD)76,77. EPD has been 

traditionally employed in the processing of ceramics, coatings and composite materials. 

Presently, EPD has been employed for the processing of fiber reinforced composite ceramics, 

textile structures, infiltration of porous substrates and deposition of nanoparticles, biomaterials 

and thin films78. It has been developed as an extremely efficient and fast process for production 

of multilayer films or coatings from colloidal suspensions in a single processing step. EPD offers 

several benefits including an economical approach towards thin film fabrication due to its cost-

effectiveness, the need for a relatively simple apparatus, long range consistency in deposit 

thickness and morphology, high deposition rate, appreciable packing density leading to 

continuity of the film, high material usage efficiency, re-usability of the solution, a wide range of 

substrate compatibility for versatile applications and, the ability to be scaled up to large product 

volumes and sizes. The potentials to apply thin and thick deposits with precise control on the 

deposition parameters in a single processing step even on substrates with complex chemistry 

make the process attractive in MEMS, printable electronic devices and nano-electronics 
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applications. Conventionally, one of the requisites for EPD is that the substrate should be 

electrically conductive. However the possibility of forming deposits on semi-conducting and 

non-conducting substrates by EPD has presented enormous potentials of integration of this 

deposition technique in a wider spectrum of materials research and technology. The next section 

illustrates a comprehensive account of the fundamental concepts of EPD, the proposed 

mechanisms and review of the state-of-the-art EPD of carbon nanotubes on conducting 

substrates. 

 Fundamental concepts of electrophoresis 2.5.1:

EPD can be described by two essential processes17,18. In the first step, charged particles, 

dispersed in a solvent or an aqueous medium, migrate towards the desired electrode by the 

application of a suitable electric field to the suspension. This step is known as “electrophoresis”. 

In the second step, the particles collect and adhere to the electrode surface to form a coherent 

deposit (deposition). Figure 2-19 depicts the fundamental ideas governing the deposition 

process. 

Depending on the polarity of the electrodes on which deposition is accomplished, EPD 

can be classified into: (a) cathodic EPD, and (b) anodic EPD. When the particles in the 

suspension acquire positive charges, the deposition occurs on the cathode and the process is 

called cathodic electrophoretic deposition. The deposition of negatively charged particles on 

positive electrode (anode) is termed as anodic electrophoretic deposition. Therefore, by suitable 

modification of the surface charge on the particles, any of the two modes of deposition is 

possible. 
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Figure 2-19: Schematic diagram of Electrophoretic Deposition method. 
 

 Proposed mechanisms of electrophoresis 2.5.2:

Substantial research efforts have been extended to explain the kinetics and mechanism of 

deposition during EPD. Several theoretical and mathematical modeling studies are being carried 

out to clarify the influence of the electrochemical parameters on the complex interactions 

between solvent, particles and the applied electric field. Electrophoretic deposition is reported to 

be distinct from electrochemical deposition since binding of the obtained deposit on the target 

electrode is not necessarily due to electron transfer, and the particles being deposited are larger 

than ions - i.e. micro and nanoparticles. However, a general agreement pertaining to particle 

aggregation/destabilization near the electrode (the deposition step) has not been reached yet. 

Tassel and Randall79 recognizes some electrochemical changes near the electrode which would 

disrupt the equilibrium in the EPD suspension, so that particles that are dispersed in the bulk due 



37 
 

to electrostatic/steric stabilization can be forced to flocculate at the electrode. The authors have 

also summarized the mechanisms on the basis of densification, direct electrostatic force, electro-

sedimentation ion depletion enhanced electrophoretic interaction, salting out, charge 

reduction/neutralization, squeezing out, bridging flocculation and desorption of neutral/charge 

polymer and polyelectrolyte neutralization. Zhitomirsky80 has divided the EPD mechanisms into 

three categories: (1) charge neutralization or electrocoagulation, (2) zeta potential lowering and 

(3) particle accumulation. Particle coagulation on the depositing electrode is a complex 

phenomenon since each charged particle in suspension has an associated EDL and it is thus 

possible that the first layer of deposited particles might repel and prevent deposition of incoming 

particles. The conundrum that remains unresolved pertains to the mechanism by which the 

mutual repulsion existing between the deposited particle and the incoming particle in the EPD 

solution is overcome which eventually leads to particle coagulation at the electrode during 

EPD81. The migration step depends on the bulk properties of the colloidal dispersion (bath 

conductivity, viscosity, particle concentration, size distribution and surface charge density)18. It 

has been suggested that the primary function of the applied electric field is to provide 

acceleration of the particles towards the opposite electrode with the electrostatic Coulombic 

force as the driving force. Several theories explaining the deposition mechanism have been 

proposed in this regard without any universal consensus18,79,81–83. Those are: (1) decrease in inter-

particle repulsion of the particles close to the electrodes due to the pressure of the incoming 

particles (flocculation by particle accumulation), (2)  neutralization of the particle upon contact 

with the deposition electrode or deposit (particle charge neutralization mechanism), (3) decrease 

in the interparticle repulsion and collapse of the particles to form a deposit due to increase in 



38 
 

electrolyte concentration (electrochemical particle coagulation), and (4) thinning of the double 

layer phenomenon (electrical double layer (EDL) distortion and thinning mechanism). 

The following pointers highlight some of the competing mechanisms proposed to 

describe the deposit formation process. 

i. Flocculation by particle accumulation 

The first attempt to explain the phenomenon of EPD was made by Hamaker and 

Verwey84,85. They suggested that the formation of deposit by electrophoresis is akin to the 

formation of sediment due to gravitation. The primary function of the applied electric field in 

EPD process is to force the particles towards the target electrode and to accumulate near it. The 

pressure exerted by the incoming particles enables particles next to the deposit to overcome the 

inter-particle repulsion and form deposits. 

ii. Particle charge neutralization mechanism 

Grillon et al..86 suggested that particles undergo charge neutralization upon contact with 

the deposition electrode or the deposit and then become static. It explains deposition of powders, 

that are charged due to salt addition to the suspension. This mechanism explains the deposition 

process for monolayer deposits but is invalid under the following conditions: (a) EPD for longer 

times (thick deposits), (b) when particle–electrode processes are prevented, e.g. semi-permeable 

non-conducting membrane induces deposition between the electrodes, and (c) pH altering 

electrochemical reactions near or  at the electrode  

iii. Electrochemical particle coagulation mechanism 
 

This mechanism implies reduction of the repulsive forces between particles which 

eventually leads to coagulation. The proposed reduction in repulsion and eventual coagulation 

occurs due to increase of electrolyte concentration as discussed by Koelmans81. The proposed 
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increase in ionic strength near an electrode was found of the same order as required to flocculate 

a suspension. Koelmans proposed the increase in electrolyte concentration near the depositing 

electrode lowers the zeta potential and induces flocculation. This mechanism is plausible when 

electrode reactions generate OH−, e.g., suspensions containing water. This mechanism is 

however invalid when there is no increase of electrolyte concentration near the electrode. 

iv.  Electrical double layer (EDL) distortion and thinning mechanism 

The explanation for particle deposition mechanism when there is no increase of 

electrolyte concentration near the electrode was offered by Sarkar and Nicholson82. By 

considering the movement of a positively charged oxide particle towards the cathode in an EPD 

cell, they have proposed the following model as shown in Figure 2-20.  

The proposed mechanism can be described in three main steps: 

a. When a charged particle, along with the counter ion populated diffuse double layer is 

subjected to an electric field, the double layer envelope undergoes a distortion in a way 

such that it tends to become thinner ahead and wider behind the particle (i.e. at the tail) 

b.  During the migration of the charged particle towards the intended electrode, ions of 

similar charge will move in same direction as the particle and react with the counter ions 

accompanying the charged particle. The reaction induces a “thinning” process of the 

double layer of the particle. 

c. As this neutralization reaction continues, the double layer around the ‘tail’ of the particle 

starts to grow even “thinner” so that the next incoming particle (which has a thin leading 

double layer at the head) approaches close enough for London Van der Waals attractive 

force to dominate and induce coagulation/deposition to form the deposit.  
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Figure 2-20: Schematic diagram of electrical double layer (EDL) distortion and thinning 
mechanism [Reprinted with permission from Wiley and Sons82]. 

 

The thinning of the double layer leading to coagulation is acceptable considering the high 

concentration of particles near the electrode which leads to high collision efficiency. Also, this 

mechanism works for incoming particles with thin double layer heads, coagulating with particles 

already in the deposit and leading to thick deposits. Until recently, the electrical double layer 

distortion and thinning mechanism is the most widely accepted theory for electrophoretic 

deposition on conducting substrates. 
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 Literature review of electrophoretic deposition of carbon nanotubes 2.5.3:

Electrophoretic deposition (EPD) has been gaining increasing interest as an economical 

and versatile wet processing technique for the production of novel thin coatings of CNTs, mostly 

on conductive substrates. The deposition technique has been pursued for a wide range of 

applications such as CNT reinforced composite films and structures, field emission devices, fuel 

cells and supercapacitors. The following paragraphs present a detailed literature review with 

regard to preparation of suspension medium and EPD of CNTs pursued till date. 

As reported by Van der Biest and Vandeperre17, the desired approach in preparing ideal 

suspension for electrophoretic deposition is to essentially create high zeta potential on the 

particles, while maintaining low ionic conductivity of the suspension. As produced carbon 

nanotubes are chemically inert and often are procured in agglomerated and entangled masses 

with various metallic and carbon impurities. A post synthesis treatment is therefore necessary to 

purify and disperse the CNTs in a suitable solvent. The common strategies involve thermal 

oxidation, acid reflux in strong acid solution e.g. concentrated nitric acid (HNO3) and sulphuric 

acid (H2SO4) at ambient or elevated temperature and annealing to purify the raw product. As has 

been pointed out, the acid-heat treatment renders purification of the pristine nanotubes and 

shortening of the tube length in a single processing step. The treatment also introduces enough 

carboxylic groups (-COOH) on the surface of the nanotubes which imparts negative surface 

charges. This establishes sufficient inter-tubular repulsion, thereby ensuring remarkable stability 

of the CNT suspension all through the EPD experiments. The following diagram (Figure 2-21) 

depicts the functionalization process of the CNTs after acid refluxing. 
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Figure 2-21: Acid refluxing of carbon nanotubes [Reprinted with permission from Elsevier87]. 
 

Polymer based surfactants are frequently used to impart steric stabilization in the 

dispersion of CNTs in suitable solvents. Both unpurified and acid refluxed/surfactant treated 

nanotubes have been dispersed to obtain stable EPD suspension in a variety of solvents such as 

distilled water39 and pure organic solvents such as ethanol41, acetone/ethanol mixtures40, 

isopropyl alcohol (IPA)42,43, n-pentanol44, tetrahydrofuran (THF)45, dimethlyformamide 

(DMF)46.  However, surfactant assisted dispersion is generally not desirable in EPD due to the 

decomposition of the polymers in aqueous media under the applied electric field and the 

presence of residual surfactants in the final deposit which may be detrimental to the performance 

of the thin CNT film in device applications. 

The earliest reference of EPD of CNT appears in the work performed by Du et al.40 who 

explored the possibility of using EPD to deposit multi-walled CNTs from ethanol/acetone 

suspension. They observed deposition of a porous CNT film due to evolution of hydrogen gas at 

the cathode when acetone was used as the solvent and the effect of composition of the solvent 

mixture (ratio of acetone-to-ethanol) in the microstructure of the films. Thomas et al..88 

successfully deposited and characterized homogeneous MWCNT films onto stainless steel 

substrates using EPD from aqueous suspensions of acid-oxidized nanotubes, without employing 

additional surfactant, polymer, or stabilizing agents. The work reviews the CNT deposition 

kinetics and the influence of applied electric field and deposition time with the deposition yield 
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and thickness. A mathematical model for the kinetic of EPD of CNTs based on Hamaker’s law 

was also reported which indicates good agreement with experimental results. Jung et al.89 

deposited a thin film of horizontally aligned SWCNTs from an aqueous mixture of CNT and 

detergent for field emission device applications. EPD of uniformly CNT coatings on glass plates 

with silver or ITO film layer was also studied by Wang et al.90 to study the emission properties 

of CNT films for display applications. Roth et al.91 fabricated thin, conductive, carbon nanotube 

networks on borosilicate glass and poly-ethylene terephthalate or PET substrate with 10 nm layer 

of evaporated aluminum or titanium. During the deposition process, the metal coating was 

oxidized to their respective oxides which turned the deposition surface transparent. Wei Li et 

al.92 reported fabrication of CNT-polyvinyl alcohol composite hydrogel on copper substrates for 

bio-sensing applications. There has also been recent development in the fabrication by 

electrophoretically coated CNT reinforced hydroxyapatite (HA)93 and Bioglass based 3D 

scaffold coatings94 for biomedical applications. Moreover, composites consisting of ceramic 

nanoparticles and MWCNT have also been produced recently by sequential EPD and by 

electrophoretic co-deposition95,96. A comprehensive study on electrophoretic deposition of 

carbon nanotubes on different substrates is reported by Boccaccini et al.77. The following table 

outlines a brief summary of the substrate/electrode properties, CNT suspension and the intended 

applications of the EPD of CNTs performed till date. 
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Table 2-1: Overview of EPD of CNTs. 

 

References Substrate or electrode 
properties 

CNT suspension Target application 

Cho et al.88,  
Thomas et al.76 

Stainless steel 
Acid refluxed CNTs in 
aqueous solution 

Porous electrodes, heat extraction devices, active 
coating for tissue engineering scaffolds 

Pan et al.97 Aluminum 
CNT with EPI REZ resin 
and curing agent in ethanol 

Fabrication of CNT based composite sheets 

Wang et al.90 
Glass plates with silver 
or ITO coating 

Different volume ratio of 
acetone and ethanol 

Cold cathode fabrication for field emission 
devices 

Wei Li et al.92 Copper 
Hydrogen peroxide and 
acid refluxed CNTs in 
water 

CNT-Polyvinyl alcohol (PVA) hydrogel 
composites for biological applications, 
biosensors 

Pei et al.98 Stainless steel  
SDS treated CNTs in 
aqueous suspension 

Optoelectronic applications 

Bae et al.42 Titanium (Ti)  
Acid refluxed CNTs in 
isopropyl alcohol (IPA) 

Investigation of field emission properties 

Du et al.40 Metal electrodes 
Acetone and ethanol with 
different volume ration 

Electrochemical studies, electrodes for 
rechargeable battery and actuators 

Du and Pan99 Nickel foils Acid refluxed in ethanol Fabrication of CNT based supercapacitors 

Oh et al.41 
Indium Tin Oxide (ITO) 
and Chromium (Cr) 
coated glass 

Acid refluxed CNTs in 
ethanol 

Fabrication of field emission cathodes 

Roth et al.91 

Borosilicate glass and 
PET substrates with 
aluminum(Al) and 
titanium (Ti) coating 

Acid refluxed and sodium 
dodecyl sulphate (SDS) 
treated CNTs 

Photovoltaic applications, electronic device 
application on rigid and flexible substrates 
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CHAPTER 3: MOTIVATION AND RESEARCH GOALS 

3.1: Motivation 

In recent years, electrophoretic deposition (EPD) has been pursued as room-temperature, 

solution-based deposition approach of nanomaterials and has been enjoying extensive research 

investigations due to its versatility, cost-effectiveness and precise control of deposit thickness in 

a single processing step. Considered to be a well-established ceramic processing technique only 

until the early 1990’s, the applications of EPD have been expanded to explore a broad range of 

advanced materials including novel ceramics, composite metals and polymers in the last 20 years 

of materials science. Contrary to the general assumption that electrophoretic deposition is only 

limited to conductive substrates, there are recent literature reports where attempts have been 

pursued to perform electrophoretic deposition on non-conducting substrates19,100,101. One of the 

crucial applications fields of the EPD technique would be in the fabrication of homogenous and 

continuous thin and thick films of CNTs for semiconductor research and development - e.g. in 

nano-electronics for thin film transistors (CNT-TFT), nanoporous electrodes and device 

integration in MEMS based sensor platform, supercapacitors and emissive display (CNT-FED) 

technologies. Fabrication of CNT reinforced metallic nanocomposites and new synergetic 

structural materials for MEMS micro-actuators and micro-resonators through sequential or co-

deposition EPD on silicon based substrates from a multicomponent suspension would be an 

attractive subject worth investigating. Interestingly, as has been reported by Table 2-1 in the 

previous chapter, the research trend of EPD of carbon nanotubes has been, so far, concentrated 

mostly on metal substrates such as stainless steel, aluminum, nickel, titanium, and glass plates 

with conductive coating. Research endeavors exploring the feasibility study of EPD of CNTs on 

semiconducting surfaces such as silicon and allied dielectric substrates such as silicon dioxide 

(SiO2) and silicon nitride (Si3N4) are relatively scarce. Therefore, a significant research focus 
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should be directed in the explorative studies of the deposition kinetics and results of EPD of 

CNT thin and thick films on bare, metal coated and organosilane treated silicon and silicon based 

dielectric substrates.  

3.2: Research goals 

Considering the research endeavors pertaining to the state-of-the-art EPD of CNTs only 

on conductive substrates, the present dissertation describes explorative studies, for the first time, 

in the deposition attempts of CNTs on semiconductor substrates by specifically addressing the 

following aspects: 

i. EPD of CNTs on Si substrates without surface treatment 

a. Feasibility study and investigation of EPD of CNT films on bare silicon substrates 

without any pre-deposition functionalization of the substrate surface. 

b. Investigation of EPD of CNTs on patterned silicon dioxide, silicon nitride and thin 

metal films (such as aluminum) patterned on silicon surfaces using aqueous 

suspension and low voltage deposition (< 30-40V). 

c. Characterization of the deposited CNT film thickness in relation to the deposition 

parameters such as duration of deposition and inter-electrode electric field.  

d. Examination of the stability and re-usability of the EPD suspension in the post-

deposition period. 

ii. EPD of CNTs on Si substrates with organosilane surface treatment 

a. Surface functionalization of silicon substrates with organosilane based compounds 

with polar and non-polar functional groups e.g. hexamethyldisilazane (HMDS) and 

3-amino-propyl-triethoxysilane (APTES) respectively. 
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b. Investigation of EPD of CNTs on surface treated Si substrates with regard to CNT 

film adhesion and coating, and deposition parameters (duration of deposition and 

inter-electrode electric field). 

c. Comparative studies between organic solvent based EPD suspension (such as 

isopropyl alcohol or IPA) and aqueous suspension. 

d. Comparative studies to establish the benefits of EPD over dip or immersion coating 

for the deposition of CNT thin films with respect to control of thickness, uniformity 

and packing density of the deposit. 

e. The effect of surface treatment with varying concentration of organosilane on the 

thickness and spectroscopic behavior of the deposited films. 

iii. Fabrication of surface enhanced Raman spectroscopy (SERS) substrate as an application 

based on EPD-fabricated porous CNT networks 

a. The applicability of EPD as a fast and single-step processing technique for the 

fabrication of horizontally aligned porous CNT networks. 

b. Synthesis of surfactant stabilized silver nanoparticles (AgNPs) with controlled 

diameter and fabrication of SERS substrates by immersion coating of the 

nanoparticles on silanized CNT networks (Ag-CNT-Si substrates). 

c. Examination of the detection limit by analyzing the Raman spectra of Rhodamine6G 

(R6G) analyte with varying concentration and estimation of the enhancement factor 

(E.F.) of the SERS study. 

d. Comparative studies demonstrating the efficiency of AgNP coated porous CNT 

networks fabricated by EPD over AgNP coated planar Si substrates as active SERS 

substrates. 
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With the prevailing interest in the inclusion of EPD technique in the semiconductor 

industry, it is essential to design a reliable and feasible deposition model that must address the 

limitations of the present state-of-the-art. To this extent, the research objectives, outlined in this 

section, should contribute to the development of the EPD technology for next generation 

electronic applications. 
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CHAPTER 4: ELECTROPHORETIC DEPOSITION OF CARBON NANOTUBES ON 
SILICON SUBSTRATES 

4.1: Introduction 

 The importance in extending the present state-of-the-art EPD of CNTs on 

semiconducting substrates to broaden its application scope in semiconductor research and 

development-e.g. fabrication of thin film transistors (TFTs) with CNTs as the active materials, 

nanoporous electrodes, supercapacitors with device integration in MEMS based sensor platform, 

and field emissive display (CNT-FED) technologies has been outlined in the previous chapters. 

In this chapter, EPD experiments of acid refluxed CNTs on bare, piranha treated/acid etched and 

metal patterned silicon substrates has been examined in detail. The experiments primarily reveal 

the nature of CNT deposition and adhesion on the Si samples without a polar or non-polar 

organosilane functionalization treatment. The subsequent sections of this chapter reveal pertinent 

details in regard to preparation of a CNT suspension for the intended EPD process, the 

deposition process, spectroscopic and microstructural imaging and characterization of the CNT 

films in relation to the deposition parameters such as interelectrode electric field and duration of 

deposition. 

4.2: Experimental procedure 

The experimental procedure is divided into three sections: (i) preparation of stable CNT 

solution for EPD, (ii) substrate preparation and (iii) EPD process. 

i. Preparation of CNT solution 

100 mg of as-obtained multi-walled CNTs (purity: >95%, average wall thickness: 3-19 

graphene layers, dimension: 7-15 nm (O.D.) × 0.5-200 µm (length), CVD, Sigma Aldrich, USA) 

were refluxed in 40 ml concentrated sulfuric (H2SO4) and nitric (HNO3) acid (3:1 volume ratio). 

The solution was heated at 120°C for 45 minutes on a hot plate. The acid-heat treatment of the 
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CNT solution resulted into a black slurry that was subsequently cooled for 1 hour. The acid-

refluxed tubes were then mixed with deionized (DI) water, and the solution was washed and 

filtered in medium retentive filter papers (pore size: ~11 µm) repeatedly until the resulting 

solution indicated pH 7 (neutral). The solution was then placed inside a bath ultrasonicator for 2 

hours to obtain a stable CNT solution. The concentration of the carbon nanotubes in the final 

solution was slightly less than 1 mg/ml. The dispersed CNT solution as shown in Figure 4-1 was 

kept inside the chemical hood undisturbed for 72 hours to examine the stability of the solution. 

The CNT suspension did not indicate any visual signs of agglomeration and thus, indicated 

stability for further processing.  

 

 

Figure 4-1: Dispersed CNT solution obtained after bath sonication of the acid-refluxed CNTs 
used for EPD experiments. 

 

ii. Substrate preparation 

Silicon wafers (resistivity: 0-100 Ω-cm) were used in all EPD experiments. Three 

different types of test samples were fabricated as described in Table 4-1 using the standard 

silicon processing techniques. For the samples B and C, 280-nm-thick silicon dioxide was grown 
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by thermal oxidation at 900oC, patterned by UV photolithographic process/shadow masking and 

wet etched by 48% HF solution to expose the silicon layer underneath. For sample C, silicon 

nitride of film thickness 150 nm was deposited by low pressure chemical vapor deposition 

(LPCVD, Nano Fabrication Center, University of Minnesota, USA), patterned by the 

photolithographic process/shadow masking and etched by CF4 plasma reactive ion etch (RIE) to 

expose the silicon dioxide layer underneath. A thin film of aluminum (300 nm) was finally 

deposited on all of the samples by thermal evaporation and patterned by the lift-off technique. 

 
Table 4-1: Layer Structure of different substrates used in the EPD experiments. 

 

iii. Electrophoretic deposition process  

The electrophoretic deposition of CNTs was carried out in a custom built set-up, as 

illustrated in Figure 4-2, using a silicon sample as the anode and stainless steel (1.5 × 1 × 0.2 

cm3) as the cathode which was degreased with acetone before use. The distance between the 

electrodes was fixed at 2 cm.  An electrical connection was provided to the exposed silicon 

surface in all of the anode samples during the deposition process. To investigate the effect of 

electric field and deposition time on the film thickness and quality, two sets of EPD conditions 

were tried: (i) varying voltage from 5 V to 30 V (or electric field from 2.5 V/cm to 15 V/cm) for 

constant deposition time of 3 minutes and (ii) varying deposition time ranging from 0.5 minutes 

to 3 minutes for a constant voltage of 30 V (or electric field of 15 V/cm). Before each set of 

Sample Layer Structure 

A Al(300 nm)/Si 

B Al(300 nm)/SiO2(280nm)/Si 

C Al(300 nm)/Si3N4(150 nm)/SiO2(280nm)/Si 
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experiments, the CNT solution was bath sonicated for about 25 minutes to minimize bundled 

CNTs in the deposition process. After the deposition process, the samples were air dried for 24 

hours. 

 

 

Figure 4-2: Schematic diagram of electrophoretic deposition set-up [Reprinted with permission 
from Springer102]. 

 

4.3: Results and discussion 

 Dispersion of the CNT solution 4.3.1:

The acid-heat treatment on the as-purchased carbon nanotubes attaches negative 

carboxylic groups (-COOH) on the surface of the tubes, thereby imparting negative surface 

charges. The resultant electrostatic repulsion prevents inter-tubular agglomeration and ensures 

appreciable stability of the CNT suspension during the dispersion process. Additionally, such 

aggressive treatment on the nanotubes aids in dismantling the CNT agglomerates, and dissolves 
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the residual metal catalysts leading to simultaneous purification and shortening of the tube 

lengths in one processing step. 

Transmission Electron Microscopy (TEM) imaging has been performed to ascertain the 

effects of oxidative acid treatment on the carbon nanotubes. Figure 4-3 exhibits the 

agglomerated nature of the as-purchased pristine nanotubes before the acid treatment. As can be 

seen, the nanotubes remain in an entangled mass in the form of dense agglomerated skeins. Also 

the presence of metal catalysts (black dots) from the growth process can be noted. Figure 4-4 

reveals the dispersed nature of the CNTs with less agglomeration after acid treatment. The 

images also reflect the dissolution of unwanted residual metal catalysts in the nanotube solution 

and shortening of the tubes after the acid-heat treatment. 

 

 

Figure 4-3: TEM image of the as-purchased carbon nanotubes. 
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Figure 4-4: TEM image of the acid-treated carbon nanotubes. 
 

The acid treatment of the pristine CNTs contributes enough negative charges on the 

surface of the nanotubes, resulting in sufficient negative zeta potential in neutral pH solution. 

The repetitive filtering and washing of the -COOH− functionalized CNTs in DI water results in 

reduction of the ionic conductivity of the solution. These two processing steps assist in the 

preparation of a stable CNT dispersed solution for the EPD experiments after several hours of 

ultrasonic agitation.  

 Characterization of the deposited CNT film 4.3.2:

The acquired negative zeta potential of the acid-refluxed carbon nanotubes56 was 

substantiated by the deposition of CNT film at the anode surface of the EPD cell. One of the 

interesting results in all the EPD experiments was the selective deposition and strong adhesion of 
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CNT film only on the aluminum surfaces irrespective of the substrate or insulator films (i.e. SiO2 

and Si3N4) underneath the aluminum layer.  

Figure 4-5 (a-c) exhibits EPD results (deposition time: 3 minutes, electric field of 10 

V/cm) on the samples A, B and C, respectively. The corresponding schematic cross-sectional 

diagrams of the samples are shown in Figure 4-5 (d-f). As demonstrated by the figure, no 

deposition was observed on the exposed silicon, silicon dioxide and silicon nitride surfaces 

whereas profuse deposition was noticed on the aluminum surfaces in all of the samples. Another 

noteworthy observation was the deposition of CNT film on the aluminum surface even though 

the metal surface was not directly connected to the DC source in all of the EPD tests. The 

electrical connection was imparted only on the exposed silicon surface for all samples. It can be, 

thus, concluded that the silicon substrate acted as an efficient anode for all of the EPD 

experiments to convey sufficient electrophoretic mobility to the acid-treated CNTs in the EPD 

suspension. However, it does not behave as a suitable coagulation and deposition surface for the 

CNTs to adhere and assemble into films. As has been mentioned in the previous sections, in 

order to obtain continuous deposition, constant flux of CNTs towards the intended electrode is 

necessary in the migration process; this is only possible when the metal surface, in this case, 

acquires sufficient positive potential in reference to the cathode. It is interesting to note down 

that under the mentioned electrical connection scheme in our experiments, the metallic surfaces 

maintain a substantial positive potential as the silicon substrate which is proved by the migration 

towards and continuous deposition of CNTs on the metal surfaces. The deposition process 

exhibits identical results irrespective of the presence of insulator films underneath the metallic 

surfaces since CNTs were found to adhere only on the metallic surfaces for Sample A also. 

Similar deposition results of CNT films were also observed when the DC source was directly 
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connected to the aluminum layer; profuse CNT coating on it and no coating on the silicon and 

the insulator surfaces. To our best knowledge, this unique conundrum where silicon substrates, 

without any surface modification or application of binder or adhesion promoter, fail to qualify as 

suitable deposition sites in EPD of carbon nanotubes has not been reported earlier. The 

deposition results on different substrates under different experimental conditions are summarized 

in Table 4-2 below. 

Table 4-2: Electrophoretic deposition results on silicon substrates with different surface coatings 
under different experimental conditions. 

 

Substrate Electrophoretic deposition results 

Silicon (resistivity: 0-100 Ω-cm) 

No deposition of CNTs on the silicon surfaces after 
multiple attempts with a range of different deposition 
time and electric field; only specks of carbonaceous 
residue observed even after long deposition time (for 30 
minutes at an electric field of 15V/cm). 

Silicon (resistivity: 0.01-0.02 Ω-cm) 

Extremely poor deposition on the surfaces after multiple 
EPD attempts with a range of different deposition time 
and electric field; no noticeable changes were observed 
after long periods of deposition (for 30 minutes at an 
electric field of 15V/cm). 

Silicon (Piranha treated for 30 minutes) Same observation as above 

Silicon (HF treated for native oxide etch) Same observation as above 

Sample A 
Profuse CNT coating only at the aluminum surfaces; the 
exposed silicon showed no deposition results as shown 
in Figure 4-5. 

Sample B 

Dense CNT film formation was observed only at the 
aluminum surfaces; the silicon dioxide and silicon 
underneath displayed no CNT adhesion as shown in 
Figure 4-5. 

Sample C 
Deposition of CNT films was exhibited at the aluminum 
surfaces; the silicon nitride, silicon dioxide and silicon 
showed no CNT coating as shown in Figure 4-5. 
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As has been mentioned in the introduction section of this chapter, no surface 

functionalization by addition of binder or adhesion promoter or application of SAM molecules 

was performed on the bare silicon surfaces. Furthermore, for each type of sample (A, B or C) 

investigated, the EPD experiments were performed under the following EPD conditions: 

a. Constant deposition time  (3 minutes) with increasing electric field (2.5-15V/cm) 

b. Constant electric field (15V/cm) with increasing deposition time (0.5-3 minutes) 

For the bare silicon substrates, experiments with long hours of deposition time (e.g. 30 

minutes at an electric field of 15V/cm) were also performed to observe CNT film coating.  

Figure 4-5 below depicts the deposition results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Optical images (top view) of deposited CNT film on patterned aluminium on bare 
silicon or insulators (SiO2 or Si3N4) with electric field of 10 V/cm for 3 minutes: (a) Sample A, 
(b) sample B and (c) samle C. (d-f) Schematic cross sectional diagram of (d) sample A, (e) 
sample B and (f) sample C [Reprinted with permission from Springer102]. 
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Literature reporting the effect of substrates in the deposition step of the EPD process is 

extremely scarce. Although electrophoretic deposition on different substrates has been performed 

extensively, the exact mechanism of deposition has not been universally agreed upon. In this 

direction, the distortion of electrical double layer (EDL) and thinning mechanism (pioneered by 

Sarkar and Nicholson18,82,103) is the most widely accepted theory which discards the concepts of 

particle-electrode reaction and particle neutralization at the depositing surface. The theory 

mainly relies on particle-particle interaction that leads to coagulation and eventual deposition on 

the target surfaces due to reduction of repulsive forces by the EDL thinning process. Therefore, 

the preferential adhesion of CNTs on the metallic surfaces over the bare silicon substrates in our 

experiments is rather intriguing. We have proposed the carbon nanotube-metallic surfaces 

interactions in the present case based on a theoretical postulate. We believe that the preferential 

adhesion of the CNT films on the metal surfaces can be explained partly by the hydrophilic 

interaction between the CNTs (rendered hydrophilic during the acid oxidation step) and the 

aluminum surface. It is assumed that the hydrophilic nature of both the interacting species in the 

process favors the adhesion and hence deposition of the CNTs on the metallic surfaces. Similar 

explanation was provided by Oh et al.41 who performed liquid-phase fabrication of carbon 

nanotube cathodes for field emission devices. The preferential adhesion of acid treated carbon 

nanotubes on hydrophilic glass slides is also reported by Shimoda et al.104 in the explanation of 

the self-assembly process of the nanotubes.  

In our experiments, the effect of hydrophilic interaction was further demonstrated by 

insufficient coating and extremely poor adhesion of the CNTs on bare silicon substrates after 

numerous EPD attempts with a range of different durations and electric fields. The results were 

identical even after long deposition time (e.g. 30 minutes at 15V/cm) and silicon substrates with 
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different resistivity values followed by irreversible agglomeration of the EPD solution as will be 

discussed in the next section. After the samples were dried, only specks of scattered CNT 

aggregates were observed on the silicon surfaces. There exists another theory that is well-

accepted, explaining the mechanism of electrophoretic deposition, - i.e. the formation of metal 

hydroxides on the target surface that binds the CNTs with the substrate. However, this theory is 

based on the role of charger salts which were not used in our experiments and therefore cannot 

be applied to elucidate our results.  

The role of metal (Al) as a preferred deposition surface over the silicon surface was 

further investigated with EPD experiments on bare silicon substrates which were treated 

extensively with piranha solution (H2SO4:H2O2 = 1:1) as well as on native-oxide-etched silicon 

substrates. Piranha treatment significantly oxidizes the silicon surface, making it hydrophilic. 

EPD experiments with various conditions of electric field and deposition time resulted in very 

poor deposition of CNTs on the piranha-treated silicon surfaces. Multiple EPD attempts on the 

native-oxide-etched substrates resulted in very poor CNT deposition as well. 

In order to verify the role of the inter-electrode electric field in the EPD process, a silicon 

sample coated with aluminum was simply immersed in the CNT suspension for 3 minutes. After 

the immersion, only a loose, flimsy CNT layer was observed to adhere to the aluminum surface 

on the sample. The sample, after drying, left minute amounts of carbonaceous residues on the 

surface. Thus, it can be inferred from this experiment that hydrophilic interaction alone is not 

sufficient to enable CNT film deposition. The electric field in the EPD process needs to impart 

sufficient electrophoretic mobility to the nanotubes to overcome the inter-tubular repulsion, to 

migrate and to adhere on the conducting surfaces.  
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Therefore, the formation of CNT deposit on the aluminum surfaces can be attributed to 

both electrophoretic mobility of the charged CNTs in the suspension and adequate hydrophilic 

interaction on the target surface. 

 

Figure 4-6: (a) Deposition results on silicon substrates without any metal layer (b) Immersion 
coating results on aluminum surface. 

 

In a separate set of experiments, an appreciable deposition of CNT films was also 

observed on copper surfaces atop silicon substrates under similar EPD conditions and electrical 

connections. This result also substantiates the above explanation in regard to efficient CNT film 

deposition.  

i. Microscopic imaging and Raman spectroscopy 

Microstructural imaging of the deposited films was performed using an FEI Quanta 3D 

FEG dual beam SEM (scanning electron microscope) / FIB (focused ion beam) with an 

acceleration voltage of 20-30 kV. The samples were imaged as produced. Figure 4-7 shows the 

scanning electron microscopic images of the CNT film deposited on the aluminum-coated silicon 

substrates. The images indicate the random nature of the CNT deposition with appreciable 

homogeneity and excellent packing density without any microscopic voids in the film 

morphology.  

No metal 
coating

No EPD 
(Immersion 

coating) 
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Figure 4-7: Scanning electron microscopic images of deposited CNT film on the sample A. (a) 
(Top view) CNT film showing appreciable packing density without voids, (b) (top view) 
magnified image of the CNT film [Reprinted with permission from Springer102]. 
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Figure 4-8: Scanning electron microscopic images of deposited CNT film on the sample A. (c) 
(cross-section) CNT film deposited on Al/Si and (d) (cross-section) magnified image of the CNT 
film [Reprinted with permission from Springer102]. 
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The vibrational attributes of the deposited CNT film was further characterized with 

Raman spectroscopy105. Figure 4-9 shows the acquired Raman spectra of the CNT film 

deposited on the sample A for 2 minutes at an applied electric field of 10 V/cm. The peak for the 

disorder-induced D-band was seen to occur at ~1330 cm-1 and those for the tangential G-bands 

occurred at ~1580 cm-1 and ~2700 cm-1 for the samples A, B, and C. The absence of prominent 

radial breathing modes in the Raman spectra was noted for all scans. The Raman spectroscopy 

results, thus, conclusively prove the presence of multi-walled nanotubes (MWCNTs) in the 

deposited CNT films.  

 

 

Figure 4-9: Raman spectrum of the carbon nanotube film deposited on sample A for 2 minutes of 
EPD at an applied electric field: 10 V/cm [Reprinted with permission from Springer102]. 
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ii. Thickness and surface roughness 

The overall yield and homogeneity of the CNT films are influenced by the 

electrophoretic deposition control parameters such as inter-electrode electric field and deposition 

time. For detailed quantitative analysis, film thickness and average surface roughness 

measurements were performed using a KLA-Tencor P-II surface profiler. For surface roughness 

measurements, surface profile scanning was performed for 10 times for each sample and the 

average value was calculated. 

It was observed that for the constant deposition time of 3 minutes, the thickness of the 

CNT film deposited on aluminum-coated samples increased with increasing inter-electrode 

electric field strength as shown in Figure 4-10. For the highest electric fields of 15 V/cm, film 

thicknesses as high as ~15 µm on samples A and C and ~11 µm on sample B were measured. 

The results are consistent with conventional EPD characteristics which generally show an 

increasing trend in deposition yield or thickness in relation to increasing inter-electrode E-field 

strength. It has also been observed that at low electric field (< 5 V/cm), there is a “no-coating” 

zone where the deposition is almost negligible or results in non-uniform sparse coating without 

appreciable adhesion to the substrates.  

The thickness of the CNT film deposited on aluminum-coated samples also displays an 

increasing nature with increasing deposition time (Figure 4-11) under constant electric field of 

15 V/cm. The mentioned “no-coating” zone is also observed at fairly low deposition time (< 1 

minute). The deposited film thickness of the sample B is seen to be somewhat lower than those 

of the samples A and C over the entire range.  
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Figure 4-10: Thickness of CNT films on different samples as a function of applied electric field 
at constant deposition time of 3 minutes. 

 

 

Figure 4-11: Thickness of CNT films on different samples as a function of deposition time at a 
constant applied electric field of 15 V/cm. 
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The overall EPD results, thus establish that longer deposition time and higher electric 

field result in the deposition of a thicker CNT layer. This observation is in accordance with the 

deposition characteristics reported by Thomas et al.76,106 who performed CNT film deposition by 

EPD on stainless steel substrates. 

Surface roughness measurements of the CNT film coating also indicate the effect of 

deposition duration and electric field strength in the film quality. Figure 4-12 shows the surface 

roughness measurements of the CNT films with varying electric field strength. The surface 

roughness values are excessively high (~300-350 nm) for low electric field deposition (5 V/cm). 

This can be attributed to the non-uniform, sparse deposits with poor surface coverage around the 

“no-coating” zone. Surface roughness values also increase at high electric field (>= 10 V/cm). 

This might be due to the aggregation of CNTs under high electric field as also reported by 

Thomas et al. Figure 4-13 exhibits the surface roughness measurement results of the CNT films 

for varying deposition time. The roughness profile exhibits high values similar to Figure 4-12 in 

regard to short and pro-longed deposition time under a constant electric field. As can be seen 

from the figures, the surface roughness values can be optimized to ~100-150 nm at an electric 

field of 8-12 V/cm and deposition time of 1.5-2.5 minutes under the reported experimental 

conditions. Further optimization of the values is necessary for the circuit or device-level 

performance of the deposited nanotubes, for example, in CNT based thin film transistors (CNT-

TFTs) or nanoporous electrodes for surface reaction and detection of different analytes. This can 

be achieved by precisely controlling the concentration of the EPD solution or by the use of non-

aqueous dispersion medium e.g. isopropyl alcohol (IPA) as discussed in the next chapter. 
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Figure 4-12: Average surface roughness of the CNT films deposited on different samples as a 
function of applied electric field at constant deposition time of 3 minutes. 

 

 

Figure 4-13: Average surface roughness of CNT films deposited on different samples as a 
function of deposition time at a constant applied electric field of 15 V/cm. 
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 Post-EPD agglomeration of the CNT solution 4.3.3:

One of the interesting phenomenon observed throughout the EPD experiments was the 

agglomeration and subsequent sedimentation of the CNTs resulting into inhomogeneous 

suspension after the failed EPD attempts. Entangled clusters of CNT flakes were observed to be 

floating in the solution during the experiments which eventually precipitated as CNT aggregates 

at the bottom. Figure 4-14 (b) shows the degraded CNT solution after a failed EPD attempt on a 

bare silicon sample, which was repetitively observed in the case of bare silicon samples 

regardless of the EPD conditions. This phenomenon can be explained by the possible attractive 

interaction between the accumulating CNTs near the anode which failed to adhere to the bare 

silicon surfaces and the incoming surge of –COOH- functionalized nanotubes in the solution 

migrating towards the anode under the applied electric field. The interaction may lead to mutual 

adhesion of CNTs to form unwanted clusters or aggregated skeins during the electrophoresis 

process which eventually result into the deterioration of the dispersed solution during and in the 

post-EPD period. In contrast to this solution behavior with bare silicon substrates, the CNT 

solution after successful EPD experiments on metal-patterned silicon substrates showed 

remarkable stability and re-usability for substantial deposition attempts (as shown in Figure 4-14 

(a)).  

The post-EPD agglomeration of the dispersion medium after unsuccessful EPD attempts 

has been a significant observation in this dissertation research. This phenomenon has been 

consistent for both aqueous and non-aqueous (e.g. IPA) medium which serves as a deciding 

factor in adjudicating the stability of the EPD suspension during and after the deposition process. 
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Figure 4-14: Degraded CNT solution with precipitated carbon nanotubes after a failed EPD 
attempt with bare silicon substrates [Reprinted with permission from Springer102].  

 

4.4: Conclusion 

Electrophoretic deposition (EPD) of CNTs has been successfully investigated from acid-

refluxed, -COOH− functionalized CNT-dispersed suspension on metal-patterned silicon 

substrates with or without insulating layers (SiO2 and Si3N4) in between. No surface 

functionalization was performed on the silicon substrates used in the experiments. The 

experimental results revealed selective deposition and excellent adhesion of the CNTS only on 

aluminum surfaces irrespective of the insulator layers underneath and electrical connection to the 

anode surface. Poor deposition and adhesion results of CNT films on bare and piranha 

treated/acid etched silicon substrates was also noted in all our EPD experiments. The preferential 

CNT coating has been attributed to the strong hydrophilic interaction between the metallic 

surfaces and the oxidized CNTs during the deposition step. The thickness and the surface 

roughness of the EPD fabricated films have been reported in relation to the EPD process 

parameters - i.e. the applied inter-electrode electric field and deposition duration. CNT film as 

thick as ~15 µm was deposited on the silicon substrates at an applied electric field of 15 V/cm 
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for 3 minutes. Microscopic imaging and Raman spectroscopy confirmed the presence of multi-

walled nanotubes (MWCNTs) in the EPD deposits. The morphology of the deposited CNT films 

exhibited appreciable homogeneity and excellent packing density with continuous surface 

coverage. Interesting results on the degradation of the CNT solution after failed EPD attempts on 

bare silicon substrates also reveals the challenge of reusability and preserving desired dispersion 

during the deposition duration.  
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CHAPTER 5: ELECTROPHORETIC DEPOSITION OF CARBON NANOTUBES ON 
SILICON SUBSTRATES WITH SURFACE FUNCTIONALIZATION 

5.1: Introduction 

The experimental results reported in chapter 4 reflect the challenges in EPD of acid 

refluxed carbon nanotubes on bare silicon substrates without any surface functionalization. The 

preferential adhesion of CNTs only on the patterned metal films atop silicon substrates and 

insulating layers such as silicon dioxide and silicon nitride has been attributed to the hydrophilic 

surface reaction between the acid-treated CNTs and the interacting metal surfaces. The study was 

accomplished by the combination of the physical vapor deposition process of metal evaporation 

on the semiconductor substrates followed by the solution based EPD experiments. This chapter 

reveals significant progress in the EPD of CNT thin films on Si substrates which were 

functionalized by polar 3-aminopropyl-triethoxysilane (APTES) self-assembling monolayer prior 

to the deposition step. The organosilane assisted deposition strategy, set forth in our study, has 

eliminated the need of physical vapor deposition of metal films on the silicon substrates 

deposition model and has exemplified an entirely solution based, reproducible and relatively 

quick route of EPD of CNTs on surface functionalized Si substrates. The relevant sections of this 

report communicate extensive details pertaining to the preparation of aqueous and non-aqueous 

CNT suspension for the intended EPD process, APTES self-assembly by hydroxylation and 

silanization technique and different comparative studies on the influence of EPD solution on the 

deposited film quality and the ingenuity of EPD over dip/immersion coating methods with 

varying concentration of APTES. 
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5.2: Experimental procedure  

The experimental procedure is divided into 4 sections: (a) preparation of stable CNT 

suspensions in IPA (CNT-IPA) and water (CNT-water) for the deposition process, (b) 

preparation of APTES solution with varying concentrations, (c) substrate preparation and (d) 

EPD process. 

 Preparation of CNT solution in IPA and water 5.2.1:

Multi-walled CNTs (purity: >98%, average wall thickness: 7-13 graphene layers, 

dimension: 6-13 nm (O.D.) × 2.5-20 µm (length), synthesized by CVD) were purchased from 

Sigma Aldrich, USA. Approximately 100 mg of the as-purchased CNTs were mixed in 40 ml 

concentrated sulfuric (H2SO4) and nitric (HNO3) acid (volume ratio = 3:1 respectively). The 

solution was vigorously stirred for about 15 min with a magnetic spinner and then heated at 

120°C for 30 min on a hot plate. The acid-refluxing treatment of the solution produced a black 

slurry which was cooled for 1 hour (h) in the fume hood. The acid-refluxed solution was then 

repetitively washed with deionized (D.I.) water (18.2 MΩ-cm) and filtered in medium retentive 

filter papers (pore size: ~11 µm) until the resulting solution indicated pH 7 (neutral). The final 

black filtration residue was collected with a laboratory spatula and divided into approximately 2 

equal parts. One part of it was mixed with 50 ml of isopropyl alcohol (IPA) and the other one 

with 50 ml of D.I. water.  A second round of repetitive washing and filtering was performed 

subsequently with IPA and water respectively. Both the solutions were then placed inside an 

ultrasonicator bath for 2 h to obtain stable CNT suspensions in IPA (referred as CNT-IPA) and 

water (referred as CNT-Water). The dispersed CNT solutions were then kept inside a chemical 

hood for 48 hours to examine the solution stability. No visual signs of agglomeration were 

noticed in both the solutions and therefore were deemed suitable for the subsequent EPD 

process. Figure 5-1 shows the CNT dispersed solutions in IPA and water respectively. 
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Figure 5-1: Dispersed CNT solution used for EPD experiments (a) stable suspension in isopropyl 
alcohol (CNT-IPA) and (b) stable suspension in water (CNT-Water). 

 

 Preparation of APTES solution with varying concentration 5.2.2:

Different APTES solutions with varying concentration - i.e. 5%, 10%, 20% and 50% 

were prepared by appropriate dilution recipes 95% ethanol and D.I. water. For example, 2 mL of 

APTES were mixed with 2 mL of DI water and 6 mL of ethanol solution for preparing 20% 

APTES solution. Similarly 5%, 10% and 50% APTES solution were prepared with proper 

dilution ratios in water and ethanol. Figure 5-2 depicts the molecular structure of 3-aminopropyl-

triethoxysilane (APTES) used in the experiments. 

 



74 
 

 

Figure 5-2: Schematic diagram of 3-Aminopropyl-triethoxysilane (APTES). 
 

 Substrate preparation 5.2.3:

Silicon wafers (resistivity: 0-100 Ω-cm) were used for all of the EPD experiments. The 

wafers were cleaved into ~1 × 0.5 × 0.055 cm3 samples and were oxidized in warm piranha 

solution (H2SO4:H2O2 = 1:1) for 25 min. The samples were then immersed into approximately 10 

ml of different APTES solutions with varying concentrations - i.e. as 5%, 10%, 20% and 50% for 

15 minutes. For 100% APTES treatment, the samples were directly immersed into as–purchased 

10 mL APTES solution without any dilution for 2 min. After the immersion process, all the 

samples were rinsed in D.I. water to remove the excess APTES. The rinsed samples were dried 

in a gentle stream of nitrogen and kept in the oven at 80o C for 1 h. 

 EPD process 5.2.4:

A custom built set-up (as shown in Figure 5-3) was used for all the EPD experiments for 

this study. The organosilane treated silicon samples and a copper plate (dimension: 1.5 × 1 × 0.2 

cm3) were selected as anode (deposition surface) and cathode respectively. The inter-electrode 
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distance was fixed at 2 cm for all the experiments. Before each set of deposition experiment, 

both the CNT solutions were subjected to bath sonication for 15 min to minimize the amount of 

agglomerated CNT in the suspension. Following the deposition process, the samples were 

carefully taken out of the solution and dried overnight at room temperature. To investigate the 

effect of APTES concentration on the deposition results, a series of EPD experiments were 

performed systematically with varying APTES concentration (5%, 10%, 20%, 50% and 100%) 

with varying deposition voltage of 10-30 V (or varying electric field (E-field) of 5-15 V/cm) for 

constant deposition time for 3 min. 

 

 

Figure 5-3: Schematic diagram of the electrophoretic deposition set-up. 
 

5.3: Results and discussion 

The acid refluxing of the CNTs introduces carboxylic groups (-COOH-) on the sidewalls 

of the tubes which impart sufficient negative surface charges. The resultant inter-tubular 
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repulsion between the surface charges ensures appreciable dispersion of the nanotubes in the 

solution which remains stable all through the deposition experiments. Additionally, dissolution 

of unwanted residual metal catalysts and entangled carbonaceous skeins in the as-purchased 

nanotube powder, shortening of the nanotubes and purification are also accomplished by this 

covalent functionalization of the nanotubes. 

The surface functionalization process is achieved by the spontaneous self-assembly of the 

APTES monolayer on the silicon surfaces. It is triggered by the oxidative piranha treatment 

which introduces abundant surface hydroxyl groups (-OH) on the silicon samples. This process is 

known as the “hydroxylation” process. The silanization step proceeds with the hydrolysis of 

ethoxy (C2H5) groups from the APTES molecules which results into the formation of APTES 

silanols (Si-O-H). The APTES silanols then start to condense with surface silanols on the silicon 

surfaces, thereby, self-assembling into a monolayer of APTES by a lateral siloxane (Si-O-Si) 

network as shown in Figure 5-4.  The self-assembled silioxane networks are oriented in such a 

way that the positively charged amine groups (-NH2
+) are aligned away from the underlying 

silicon substrate. 

 

 

Figure 5-4: Schematic diagram displaying the process of hydroxylation after piranha treatment 
and silanization by APTES treatment on silicon surface prior to the electrophoretic deposition 
(EPD) step. 
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EPD results on the organosilane treated silicon surfaces from CNT-IPA solution with 

different APTES concentrations (10%, 20%, 50% and 100%) are illustrated in Figure 5-5.  As 

can be observed from the figure, the EPD fabricated CNT thin film in conjunction with self-

assembled –NH2
+ terminated silane monolayer exhibits remarkable visual homogeneity and 

packing density in the film quality. Optical microscope observation (100 × magnifications) also 

revealed continuous surface coverage without any microscopic void or post-drying cracks in the 

film structure.  

The applied electric field (15 V/cm) imparts sufficient electrophoretic mobility to the 

dispersed CNTs to migrate and arrive near the APTES treated anode surface. The Coulombic 

force of attraction acting between the positively charged -NH2
+ groups from APTES siloxane 

structure and the negatively charged -COOH− functionalized CNTs assist in the gradual 

coagulation of the nanotubes into a coherent deposit on the anode surface. This is the most 

significant difference with respect to our findings in the previous chapter102 where the thermally 

evaporated metal layer assisted in adhesion of the nanotubes with the underlying silicon surface. 

It is assumed that the metal layer acts a glue layer by the formation of metallic hydroxides which 

binds the carbon nanotubes with the silicon surface. In the present case, Coulombic interaction 

between the self-assembled –NH2
+

 moieties on the silicon surfaces and –COOH− groups on the 

nanotube surface ensures uniform film formation, thus eliminating the need for physical vapor 

deposition (e.g. thermal evaporation, sputtering) of a metal layer from the deposition model. 

Additionally, the piranha and APTES treatment turns the silicon surfaces sufficiently 

hydrophilic. The pristine CNTs are also rendered hydrophilic in the acid refluxing step. The 

remarkable homogeneity and surface coverage by the CNT deposit in all our EPD experiments 
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can also be attributed to the strong hydrophilic-hydrophilic interaction between the organosilane 

treated depositing surface and the CNTs arriving near it during the deposition step. 

 

 

Figure 5-5: Optical images of CNT film deposited on silicon samples by EPD with different 
APTES concentration at an applied E-field of 15 V/cm for 3 min (a) 10% APTES, (b) 20% 
APTES, (c) 50% APTES  and (d) 100% APTES. All the samples exhibit remarkable film quality. 

 

Additionally, the piranha and APTES treatment turns the silicon surfaces sufficiently 

hydrophilic. The pristine CNTs are also rendered hydrophilic in the acid refluxing step. The 

remarkable homogeneity and surface coverage by the CNT deposit in all our EPD experiments 
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can also be attributed to the strong hydrophilic-hydrophilic interaction between the organosilane 

treated depositing surface and the CNTs arriving near it during the deposition step. 

The beneficial effect of hydrophilic APTES self-assembly process in fabricated film 

quality is further adjudicated by comparing the coating attributes with methyl (-CH3) terminated 

hexamethyldisilazane (HMDS) functionalization process. The presence of the non-polar methyl 

group in the hexamethyldisiloxane (-O[Si(CH3)3]2) structure after the HMDS priming treatment 

renders a surface hydrophobic. The silicon samples were subjected to HMDS vapor coating 

process at 90o C for 30 min. EPD process was then performed on the HMDS coated samples at 

an electric field of 15V/cm for 3 min. Figure 5-6 illustrates the difference in the coating quality 

between the APTES treated (left) and HMDS treated silicon (right) samples. In contrast to 

excellent deposition results on the APTES treated sample in (a), the HMDS coated sample in (b) 

showed discontinuous, inhomogeneous CNT coating with agglomerated and sparse deposits. The 

results thus conclusively establish the beneficial effect of organosilane surface functionalization 

with polar –NH2 groups on the silicon samples in the deposition method in the comparison to the 

non-polar methyl surface treatment which hinders appreciable adhesion and film formation due 

to its inherent hydrophobicity. 

The benefits of APTES assisted EPD of CNTS in comparison with the APTES assisted 

dip coating of the CNTS were explored in the next set of experiments. The silicon samples were 

treated with APTES with varying concentration and dipped in CNT-IPA and CNT-water 

suspension for 3 min.  It was observed that EPD fabricated CNT films from the same CNT-IPA 

suspension in all our experiments show superior film quality in comparison to all the dip coated 

samples. The samples dip coated in both the CNT-IPA and CNT-water suspension for 3 min with 

20% APTES functionalization exhibit poor surface coverage with discontinuous and sparse CNT 
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deposits. The deposition results on CNT-water dip coated samples for 3 min with 20% APTES 

treatment show even inferior film quality than the CNT-IPA dip coated samples for the same 

duration. 

 

 

Figure 5-6: Optical images of CNT films deposited by electrophoretic deposition at an applied E-
field of 15V/cm for 3 min on (a) 20% APTES treated silicon sample showing superior coating 
quality in contrast to (b) HMDS treated silicon surfaces. 

 

With a view to improving the deposition results on the dip coated samples, the dip 

coating duration was increased from 3 min to 6 min for both types of the samples and the APTES 

treatment of the sample for CNT-water dip coating was increased from 20% to 50%. Figure 5-7 

depicts the experimental results of this comparative study. The results matched with our previous 

observation in which the CNT-IPA dip coated samples exhibited relatively better film quality in 

contrast to CNT-water dip coated samples. Figure 5-7-c shows extremely inferior coating 

characteristics on 50% APTES functionalized CNT-water dip coated samples. However the 

CNT-IPA dipped sample with 20% APTES functionalization still shows inhomogeneous and 

agglomerated coating features when compared to EPD coated samples (performed at an electric 
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field of 15V/cm for 3 min with 20% APTES treatment). The results presented above clearly 

represent APTES assisted EPD technique as a better and reliable deposition technique for CNT 

thin film compared to the dip coating method, even with longer incubation duration (6 min of dip 

coating with 20% APTES functionalization vs. 3 min of EPD at 15V/cm from CNT-IPA 

suspension with 20% APTES functionalization) and surface treatment with increased APTES 

concentration (6 min of dip coating with 50% APTES from CNT-water vs. 20% APTES assisted 

EPD from CNT-IPA). 

 

 

Figure 5-7: Deposition results comparing electrophoretic deposition (EPD) and dip coating on 
surface functionalized silicon substrates (a) CNT film deposited by EPD at an applied E-field of 
15V/cm for 3 min with 20% APTES treatment (b) Dip coated silicon samples in CNT-IPA 
solution for 6 min with 20% APTES treatment showing agglomerated deposit and (c) Dip coated 
silicon samples results in CNT-water solution for 6 min with 50% APTES treatment showing 
poor CNT surface coverage. 

 

Comparative studies on the CNT film quality deposited from CNT-IPA and CNT-water 

suspension by the proposed electrophoresis method were also conducted in this work.  As 

depicted by Figure 5-8, the deposition results from the CNT-IPA suspension for 3 min at 15 
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V/cm with 20% APTES characterization show superior deposit quality than the CNT-water 

suspension under identical experimental conditions. The deposit obtained from CNT- water 

suspension exhibited severe aggregation in the CNT film structure after 2 hours of drying 

following the deposition step. The results did not improve even though the deposition duration in 

the CNT-water suspension was increased from 3 min to 6 min at an electric field of 15V/cm. The 

reason can be primarily attributed to the generation of bubbles in the EPD solution by the 

electrolysis of water due to the strong electric field across the solution. The evolution of 

hydrogen and oxygen gases due to the electrolysis process disrupts the flow of the CNT influx 

and creates voids and discontinuities in the final deposit at the anode. Similar observation was 

also reported by Du et al.40  and Boccaccini et al.76  in their attempts to study the morphology of 

the carbon nanotube films by electrophoretic deposition.  

The deposition quality also did not improve much when the deposition voltage was 

reduced to 5 V for longer duration of deposition (30 min) since the resultant electric field (2.5 

V/cm) was too weak to offer sufficient electrophoretic mobility to the CNTs to migrate and 

adhere to the anode surface. Additionally, it was also observed that the EPD attempts with longer 

deposition duration in CNT-water suspension sometimes resulted in the total degradation of the 

EPD solution leading to formation of agglomerated CNT flakes and subsequent precipitation of 

the nanotubes in the solution. This observation is consistent with our findings, as reported in the 

previous chapter, which reveals sedimentation and eventual agglomeration of the CNTs in the 

aqueous suspension after failed EPD attempts on bare silicon substrates. On the contrary, similar 

deposition attempts with CNT-IPA solution rarely showed degradation of the solution although 

the surface roughness of the final deposit increased due to prolonged deposition on the 

depositing surface. 
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Figure 5-8: Optical images comparing the electrophoretic deposition results at an applied E-field 
of 15V/cm on 20% APTES treated silicon substrates (a) from CNT-IPA suspension for 3 min, 
(b) from CNT-water suspension for 3 min and (c) from CNT-water suspension for 6 min.  
 

i. Microscopic imaging and Raman spectroscopy 

Microstructural imaging of the deposited films was conducted using a JEOL (Japan 

Electron Optics Laboratory) JSM 6610 scanning electron microscopy (SEM) with an 

acceleration voltage of 20-30 kV. The samples were sputter coated with ~10 nm of platinum 

before the imaging process. The imaging was performed at various points on the substrate 

surface with different magnification values to investigate the surface coverage of the deposited 

film. The SEM images of the CNT film deposited on 20% APTES coated silicon substrate are 

shown in Figure 5-9. The acquired high resolution images (Figure 5-9 (a) at × 10k magnification 

and (b) at × 20k magnification) testify random, horizontal orientation of the carbon nanotubes 

with excellent homogeneity and packing density without any microscopic cracks or discontinuity 

in the film structure. 
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Figure 5-9: Scanning electron microscopic images of CNT film on 20% APTES treated silicon 
sample deposited at an applied electric field of 15V/cm for 3 min showing appreciable surface 
coverage and packing density without voids (a) at ×10k magnification and (b) at ×20k 
magnification. 

 

The spectroscopic behavior of the deposited CNT films was analyzed by Raman 

spectroscopy. The spectroscopic measurements were performed using a Jobin Yvon Horiba 

Labram Raman spectrometer. A HeNe laser with wavelength 638 nm and incident power of 17 

mW was used for all the spectroscopic analysis. The confocal hole aperture of 200 µm and 

grating of 1800 lines per mm were selected during the measurement.  Extended scans were 

performed between 500 cm-1 and 3000 cm-1 for best results. Figure 5-10 shows the Raman 

spectra of the carbon nanotube films deposited on the silicon sample with varying APTES 

concentration (5%, 10%, 20%, 50% and 100%). The peak for the disorder-induced D-band was 

seen to occur at ~1333 cm-1 and those for the tangential G-bands occurred at ~1579 cm-1 and 

~2645 cm-1 for all the samples. The peaks closely matched with the spectroscopic results of dry 

carbon nanotube powder used in this work. The absence of radial breathing modes (RBM) was 

also noted for all the samples when scanning was performed from 0 to 400 cm-1 (not shown in 
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the graph). The following conclusions can be drawn from the spectroscopic results: (a) the 

absence of the prominent radial breathing modes (RBM) for all the acquired Raman spectra 

between 0 cm-1 to 400 cm-1 proves the presence of multi-walled nanotubes (MWCNTs) in the 

EPD deposits and (b) the vibrational attributes of the MWCNTs are not affected by the varying 

concentration of APTES in the surface functionalization procedure prior to the deposition step. 

 

 

Figure 5-10: Raman spectra of CNT films deposited on silicon samples with varying APTES 
concentration (5%, 10%, 20%, 50% and 100%). Inset shows Raman spectrum of raw CNT 
powder used in the work. 

 

ii. Thickness of the deposited films 

To explore the effect of varying APTES concentration (5%, 10%, 20%, 50% and 100%) 

on the thickness of the deposited films, quantitative surface analysis was performed using a 
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KLA-Tencor D-100 Alpha Step surface profiler. For the thickness profiling, surface scanning 

was performed for 10 times for each sample and the average value was calculated. 

 

 

Figure 5-11: Thickness of CNT films deposited on silicon samples with varying APTES 
concentration at different applied electric field (E-field: 5V/cm, 10V/cm and 15V/cm) for 
constant deposition duration of 3 min. 

 

It was observed that for constant deposition time and voltage, the thickness of the CNT 

film deposited on the silicon samples followed an increasing trend with increasing APTES 

concentration.  As shown in Figure 5-11, the film thickness of the films increases from 1.4 

(±0.2) µm with 5% APTES concentration to 3.3 (±0.2) µm with 100% APTES concentration for 

highest E-field: 15V/ cm and 3 min of deposition duration. The figure also depicts a distinct 

increase in the film thickness as the APTES concentration increases from 5% to about 20%. The 

values tend to reach saturation as the concentration ranges from 50% to 100%.  This is prominent 

for the results obtained with 15V/cm and 10V/cm for 3 min of deposition duration e.g. in Figure 
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5-11 for E-field: 10V/cm and 3 min of deposition duration, the thickness increases by ~2.5 times 

(from 0.8 µm to 2 µm) when APTES concentration varies from 5% to 20% whereas it barely 

increases from 2.3 µm with 50% APTES concentration to 2.4 µm with 100% APTES 

concentration. The saturated values can be attributed to the reduction of inter-electrode electric 

field strength as the amount of low conducting organosilane increases on the silicon surfaces 

with 50% to 100% APTES concentration. The reduction in inter-electrode electric field affects 

the electrophoretic mobility of the CNTs which eventually decreases the influx of the migrating 

nanotubes towards the deposition surface and thus, slackens down the overall deposition process. 

Also, for a specific APTES concentration used in the EPD experiments, it can also be noticed 

that the film thickness increases with the increasing voltage (or electric field) with constant 

deposition time of 3 min. Figure 5-11, thus, conclusively establishes the versatility of the 

electrophoretic deposition process where the thickness of the deposit on the target surfaces can 

be precisely controlled in relation to the deposition parameters e.g. inter-electrode electric field, 

degree of surface functionalization, duration of deposition. 

5.4: Conclusion and future work 

Electrophoretic deposition (EPD) of –COOH- functionalized carbon nanotubes dispersed 

in CNT-IPA and CNT-water suspension has been successfully performed on silicon substrates 

with self -assembled organosilane (APTES) surface functionalization. The deposited film quality 

and surface properties were reviewed to be dependent on the dispersion medium of CNTs, with 

the best EPD results obtained from IPA-CNT suspension. EPD results obtained by –NH2
+

 

terminated APTES surface functionalization display significant difference in terms of improved 

homogeneity and film quality in contrast to the non-polar –CH3 functionalization by HMDS 

treatment. The benefits of the EPD technique as a fast, reliable and reproducible room 

temperature coating process over the dip/immersion coating have also been established in the 
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chapter. Scanning electron microscopy and Raman spectroscopic results confirmed the presence 

of MWCNTs in the deposited film. The present work eliminates the need of physical vapor 

deposition of metal films in the deposition model and ensures deposition of CNTs directly on the 

semiconducting substrates based on a relatively quick and inexpensive hydrophilic surface 

functionalization assisted EPD technique. Through a series of systemic studies, we have 

established a reliable processing recipe of EPD of CNTs on silicon substrates at an applied 

electric field of 10-15 V/cm for 3 minutes of duration with 20% surface functionalization for 

excellent and reproducible results. 

With regard to potential future work in this direction, we have obtained preliminary 

results in extending the surface functionalization technique in an attempt to deposit CNTs on 

glass, insulator substrates (e.g. silicon dioxide and silicon nitrides) by EPD without major 

variations in the deposition setup. Research endeavors, as revealed in the next chapter, are also 

directed in the detailed investigation of the surface roughness of the EPD fabricated CNT films 

and their application as viable substrates for Surface Enhanced Raman Spectroscopy (SERS) of 

different analytes. Our results in this chapter confirm that the solution based, low cost, 

electrophoretic deposition technique of carbon nanotubes on semiconductor substrates with -NH2 

terminated surface treatment has the immense application potential in CNT based nano-

electronics, device integration with existing CMOS technology on different semiconductor 

substrates and next generation hybrid electronics assisted by organic self-assembly. 

(All the figures in the chapter are reprinted with permission from the following publication.) 

Publication:  

1. Sarkar, A; Daniels-Race, T. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-
Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. Nanomaterials 
2013, 3, 272-288 
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CHAPTER 6: SURFACE ENHANCED RAMAN SPECTROSCOPY STUDIES ON 
SILVER NANOPARTICLE COATED CARBON NANOTUBE NETWORKS 

FABRICATED BY ELECTROPHORETIC DEPOSITION 

6.1: Introduction 

The previous chapter of this dissertation exemplifies the versatility of EPD as a fast, 

reproducible and single-step room temperature coating process of horizontally aligned CNT 

deposits on APTES treated Si surfaces from organic solvents (e.g. isopropyl alcohol or IPA). The 

deposition strategy has been further extended in the fabrication of noble metal coated CNT based 

porous, active substrates for surface enhanced Raman spectroscopic (SERS) applications in this 

chapter.  

Raman spectroscopy, which is based on the inelastic scattering of monochromatic light, 

has emerged as an extremely versatile spectroscopic tool for the identification and quantitative 

examination of various compounds in pharmaceuticals, analytical chemistry, bio-medical and 

polymers science, forensic investigation and art and architecture107–110. Although routinely used 

to analyze the rotational and vibrational levels of target analytes, Raman scattering is limited in 

its detection sensitivity and weak signature signals. To mitigate this challenge, recently surface-

enhanced Raman spectroscopy (SERS) has been rapidly developing into an advanced and 

powerful analytical tool for ultra-sensitive and selective detection of common and unique 

molecules adsorbed on noble metal nanostructures111–113. The detection limits have been 

significantly pushed down to the single molecule114 due to the chemical and electromagnetic 

enhancement contributions from SERS-active surfaces. It has been reported that SERS relies on 

surface plasmons, which are induced by the incident electromagnetic (EM) field on highly 

profiled metallic nanostructures to increase the Raman signal intensity substantially115. As an 

alternative explanation, it has also been proposed that signal enhancement is achieved due to the 

charge transfer between the chemisorbed species and the metallic surface116. Significant 
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developments in nanofabrication over the past decade have paved the way in understanding the 

fundamentals and applications of SERS. Innovations in the preparation of SERS active substrates 

with regard to facile and cost-effective fabrication have been the subject of intensive 

investigation and study117,118. The state-of-art techniques to prepare highly ordered SERS active 

substrates involve electrochemical roughening of metal surfaces, electro-deposition, self-

assembly and Langmuir-Blodgett coating of nanoparticles, nanosphere lithography, nanoimprint, 

nanolithography and substrate etching119–123 . 

Recently, there has been considerable interest to utilize porous surfaces as viable SERS 

substrates in tandem with well-researched, nano-structured planar surfaces124–129. The motivation 

for using porous networks is based on the understanding that the large surface area of the porous 

structure would increase the number of effective “hot spots” (- i.e. sites with enhanced EM field), 

thereby contributing to surface enhancement of the Raman signals. Due to their large surface 

area and chemical inertness, recently carbon nanotubes decorated with noble metal nanoparticles 

(e.g. gold (Au), silver (Ag), platinum (Pt)) offer an interesting option in exploring nanoparticle-

nanotube hybrid materials as conducive substrates for routine SERS experiments. He et al.130 

have demonstrated the enhancement attributes of Au-coated, horizontally aligned carbon 

nanotubes (Au-HA-CNTs) as effective SERS substrates for detection of low levels of biological 

specimens. Maximum enhancement was observed with HA-CNTs when the polarization 

direction (E-field) of the incident laser beam was parallel to the aligned direction of the HA-

CNTs. In their method, horizontally aligned carbon nanotubes (HA-CNTs) were prepared by 

mechanical pressing technique on the CVD synthesized vertically aligned carbon nanotubes 

(VA-CNTs). Recent research proceedings in the preparation of CNT based SERS substrates can 

be found in publications to date101,131–133 . 
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In this chapter, the silver nanoparticle (AgNP) coated active substrate, prepared by EPD 

of horizontally aligned porous CNT networks on amino-silane treated Si surfaces, has been 

referred to as Ag-CNT-Si SERS substrate. The rhodamine6G (R6G) molecule has been probed 

as the target analyte. The surface enhanced Raman spectra of the R6G molecule with varying 

concentrations (from 1 milli-molar-mM - i.e. 1 × 10-3 M to 1 pico-molar-pM - i.e. 1 × 10-12 M) 

on the Ag-CNT-Si substrates were extensively studied and compared with the results of SERS 

investigation on Ag coated planar Si substrates (Ag-Si). The subsequent sections of this report 

reveal pertinent details with regard to electrophoretic deposition of carbon nanotubes on APTES 

modified Si substrates, synthesis and coating of silver nanoparticles for the fabrication of our 

final SERS substrate, discussion on detection limits and estimation of enhancement factor from 

the acquired Raman spectra. 

6.2: Experimental procedure 

The experimental procedure includes: (a) preparation of stable CNT suspensions in IPA 

(CNT-IPA) for the EPD process, (b) synthesis of silver nanoparticles (AgNPs), (c) preparation of 

20% APTES solution, (d) substrate functionalization by APTES grafting, (e) EPD process, (f) 

silanization of the electrophoretically deposited CNT samples, and (g) preparation of Ag-CNT-Si 

SERS substrates 

 Preparation of CNT solution in IPA (CNT-IPA) 6.2.1:

Approximately 100 mg of as-purchased multi-walled CNTs (purity: >98%, average wall 

thickness: 7-13 graphene layers, dimension: 6-13 nm (O.D.) × 2.5-20 µm (length), CVD, Sigma 

Aldrich, USA) were acid refluxed in 40 ml concentrated sulfuric (H2SO4) and nitric (HNO3) acid 

(volume ratio= 3:1 respectively) at 120°C for 30 minutes on a hot plate. The acid-heat treatment 

of the solution resulted in a black slurry which was cooled for 1 hour in the fume hood. The 

refluxed solution was then repetitively washed with deionized (D.I.) water (18.2 MΩ-cm) and 
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filtered in medium retentive filter papers (pore size: ~11 µm) repeatedly until the resulting 

solution indicated pH 7 (neutral). The black filtration residue was collected with a laboratory 

spatula and mixed with 50 ml of isopropyl alcohol (IPA). The solution was then placed inside an 

ultrasonicator bath for 2 hours to obtain stable CNT suspensions in IPA (referred as CNT-IPA). 

The dispersed CNT solution was then incubated inside a chemical hood for 48 hours for 

examining the solution stability. No visual sign of agglomeration was noticed in the solution and 

therefore, was deemed suitable for the subsequent EPD process.  

 Synthesis of AgNPs 6.2.2:

The silver nanoparticles in aqueous medium were synthesized by the chemical reduction 

of metallic precursors e.g. silver nitrate (AgNO3) using tri-sodium citrate (Na3C6H507). All the 

solutions of the reacting chemicals were prepared in D.I. water. To investigate the effect of the 

stabilizing agent in controlling the nanoparticle aggregation, 3 types of silver nanoparticle (Ag-

NP) solutions (A, B and C) were prepared using the following recipe. Solution A was prepared 

without the addition of any stabilizing agent; for the preparation of samples B and C, poly-vinyl-

pyrrolidone powder (PVP, average Mol. weight ~29,000) was added in different proportions as 

stabilizing agent. For sample A, 0.5 mM of silver nitrate (AgNO3, Mol. weight: 169.87) was 

prepared by dissolving 21.25 mg in 250 mL of D.I. water. The solution was boiled at 120ºC with 

constant stirring. In the boiling solution, about 10 mL of 1% Na3C6H507 solution was added drop 

wise. Heating was continued until color change was evident (~20-25 minutes). The same recipe 

was followed for the preparation of solution B and C with the addition of ~1 mg and ~9 mg of 

PVP respectively as stabilizing agent to the boiling AgNO3 solution. 

 Preparation of 20% APTES solution 6.2.3:

A 20% APTES concentration was deemed suitable for the surface functionalization of 

silicon substrates prior to the deposition process. A homogenous solution was prepared by 
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mixing 2 mL of APTES (˃ 98% as purchased from Sigma Aldrich) with 2 mL of D.I. water and 

6 mL of ethanol solution (20% APTES). The prepared solution was incubated in the chemical 

hood until further application. 

 Substrate preparation by APTES grafting 6.2.4:

Silicon wafers (resistivity: 0-100 Ω-cm) were used for all the experiments. The wafers 

were cleaved into ~1 × 0.5 × 0.055 cm3 samples and were treated in warm piranha solution 

(H2SO4:H2O2 = 1:1) for 25 minutes. The samples were then rinsed in D.I. water, dried and 

immersed into 10 ml of as-prepared 20% APTES solution for 30 minutes. After the incubation 

period, all the samples were rinsed in copious amount of ethanol and water to remove the excess 

APTES. The rinsed samples were dried in nitrogen and kept in the oven at 80o C for 1 hour. 

 EPD process 6.2.5:

The electrophoretic deposition experiment from CNT-IPA was performed in a custom 

built set-up (as shown in Figure 6-1) with 20% APTES treated silicon sample as the anode and a 

copper plate (dimension: 1.5 × 1 × 0.2 cm3) as the cathode. The deposition voltage was set at 30 

V (or electric field (E-field) of 15 V/cm) with the constant deposition time for 3 minutes. The 

inter-electrode distance was fixed at 2 cm for all the EPD experiments. The selected 

experimental parameters were selected and optimized from our process recipes as reported in 

chapters 4 and 5. After the deposition process, the samples were dried overnight at room 

temperature under ambient condition. No significant agglomeration of the nanotubes or 

discontinuity in the deposited film structure was observed after the drying period. The samples 

were then prepared for a second round of APTES grafting for CNT sidewall silanization. 
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Figure 6-1: Schematic diagram of electrophoretic deposition set-up102. 
 

 Silanization of electrophoretically deposited carbon nanotubes  6.2.6:

Silanization of the EPD-fabricated carbon nanotube films was performed by immersing 

the EPD samples in 20% APTES solution for 1 hour. After the incubation period, the samples 

were rinsed in D.I. water and carefully dried by blowing a gentle stream of nitrogen to drive 

away the excess APTES. The samples were then placed inside the oven at 80	  for 1 hour. 

 Fabrication of SERS substrate 6.2.7:

The final SERS substrates with the silanized carbon nanotubes on the silicon samples 

were fabricated by immersion coating. The substrates were immersed in 10 mL of a suitable 

AgNP solution for 24 hours. After the deposition process, the substrates were dried in ambient 

air for 6 hours and finally incubated in different concentrations of R6G solution for at least 

another 24 hours. Following the incubation period, the samples were dried and prepared for 

Raman spectroscopy. 
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 Raman Spectroscopy 6.2.8:

Raman spectroscopy measurements were conducted using a Jobin Yvon Horiba Labram 

Raman spectrometer. A HeNe laser with wavelength 638.4 nm and incident power of 17 mW 

was used for the spectroscopic analysis. The confocal hole aperture of 200 µm and grating of 

1800 lines per mm were set during the measurement.  Extended scans were performed between 

600 cm-1 and 1800 cm-1 for best results. The exposure time during an extended scanning for each 

spectral window (acquisition time) was set to be 5 seconds with the accumulation number of 5. A 

100X objective from Olympus was used for focusing and during scanning. Each of the acquired 

Raman spectra was corrected by an 8-order polynomial fitting curve of fluorescence 

backgrounds using the interfacing LabSpec software. 

6.3: Results and discussion 

 Characterization of synthesized Ag nanoparticles 6.3.1:

The silver nanoparticles were synthesized according to the following chemical 

reaction134,135: 

4Ag+ + Na3C6H507 + 2H2O = 4Ag0+ C6H507H3 + 3Na++ H+ + O2 

The reduction process outlined in the synthesis procedure, produces negatively charged 

citrate ion capped AgNPs. Figure 6-2 shows the optical images of the 3 types of solutions (A, B 

and C) prepared for the study. As can be noted, from left to right, the color of the solution 

changes from dark grey (solution A) to reddish grey (solution B) and bright yellow (solution C). 

In the absence of the stabilizing agent (PVP) in the synthesis step, the AgNPs in solution A 

started to exhibit signs of agglomeration towards the end of the heating process. The 

agglomeration became clearly evident when the solution turned dark grey as it was incubated in 

the chemical hood for 30 minutes.  
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The addition of PVP in the synthesis process is expected to establish steric stabilization 

within the nanoparticles, which is rendered by the physical adsorption or grafting of PVP 

macromolecules on the surfaces of the particles. The stabilizing action of PVP on the synthesized 

AgNPs was evident from the color of solution B and C. Both the solutions exhibited superior 

colloidal stability when compared to solution A. The amount of PVP used in the synthesis 

process also determines the degree of stability in the solutions. For instance, solution B, with the 

addition of ~0.5 mg of PVP during the synthesis process, showed stable suspension for about 3 

weeks before it started to deteriorate while solution C, with ~9 mg of added PVP, exhibited 

remarkable colloidal stability for months. 

The stabilization effect mediated by PVP in the prevention of AgNP clustering and 

solution degradation was also corroborated by transmission electron microscopy (TEM, JEOL 

100CX) images of the solutions (Figure 6-3, Figure 6-4, Figure 6-5). The nanoparticles in 

solution A exhibited severe agglomeration as shown in Figure 6-3. This illustrates the inherent 

tendency of the nanoparticles to exhibit agglomeration in the absence of sufficient amounts of 

stabilizing agents. Figure 6-5 exhibits the presence of unclogged AgNPs in solution C with 

average diameter of 30-40 nm. In comparison to solution C, the AgNPs in solution B remain 

more closely packed with the average diameter of 70-80 nm (Figure 6-4). The results prove that 

increasing the amount of stabilizing agent ensures smaller size and improved colloidal stability 

by minimizing particle aggregation. Solution C, with minimum agglomeration, was selected for 

the deposition of AgNPs on the CNT-Si samples. 
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Figure 6-2: Optical images of the synthesized silver nanoparticle solution designated as Solution 
A, B and C from left to right. 

 
 

 

Figure 6-3: TEM image of silver nanoparticles in solution A showing severe aggregation. 
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Figure 6-4: TEM image of silver nanoparticles in solution B (Average particle diameter: 70-80 
nm). 

 

 

Figure 6-5: TEM image of silver nanoparticles in solution C showing minimum aggregation 
(Average particle diameter: 30-40 nm). 
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The acid refluxing of the as-purchased carbon nanotubes prior to the deposition step aids 

in the dissolution of unwanted residual metal catalysts in the as-purchased nanotube powder, 

purification and shortening of the nanotubes56,136,137. The acid-heat treatment also attaches 

covalently carboxylic groups (-COOH) on the surface of the nanotubes which impart negative 

surface charges. This leads to sufficient inter-tubular repulsion, thereby ensuring remarkable 

stability of the CNT suspension all through the EPD experiments.  

The surface functionalization process on the piranha treated Si substrates is accomplished 

by the self-assembly of APTES monolayer. The piranha treatment induces surface hydroxyl (-

OH) on the silicon surface by hydroxylation process. The functional groups generated on the 

silicon surfaces after this oxidation reaction are referred to as surface silanols (Si-OHs). The next 

step involves hydrolysis of the ethoxy groups (-C2H5) from its molecular structure to form 

APTES silanols. The subsequent condensation reaction between the surface and APTES silanols 

leads to further dehydration of water molecules and formation of lateral siloxane (Si-O-Si) 

networks on the silicon surfaces. The siloxane networks are oriented in a way such that the 

positively charged amine groups (-NH2) are aligned away from the underlying silicon surface. 

Figure 6-6 depicts the functionalization process of the hydroxylated Si surface to amine 

terminated, hydrophilic surface by the organosilane grafting treatment. The gradual film 

formation by coagulation and deposition of nanotubes from the EPD suspension is ensured by 

the Coulombic force of attraction acting between the positively charged -NH2 groups from 

APTES siloxane structure and the negatively charged nanotubes migrating towards the Si surface 

under the application of the electric field.  
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Figure 6-6: Schematic diagram of the surface functionalization of silicon surface by APTES 
treatment.  

 

Microstructural imaging of the deposited films on 20% APTES treated silicon substrates 

was performed using a JEOL JSM 6610 scanning electron microscopy (SEM) with an 

acceleration voltage of 20-30 kV. As revealed in Figure 6-7, the deposited CNTs exhibit 

random, horizontal alignment on the silicon surface with remarkable homogeneity, surface 

coverage and packing density in the film quality. The deposition results, thus, establish 

electrophoretic deposition method as a fast, reproducible, room temperature based single-step 

processing technique in the deposition of horizontally oriented and porous carbon nanotube film 

on the target surfaces. The proposed deposition model, therefore, eliminates the need of 

mechanical pressing techniques in the fabrication of SERS substrates with horizontally aligned 

carbon nanotube coating.  
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Figure 6-7: Scanning electron microscopic images of CNT film on 20% APTES treated silicon 
sample deposited at an applied electric field of 15V/cm for 3 mins showing appreciable surface 
coverage and packing density without voids (a) at ×10k magnification and (b) at ×20k 
magnification. 
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 Silanization of the deposited CNT films 6.3.2:

Different deposition methods e.g. spontaneous deposition, electrochemical deposition, 

substrate enhanced electrochemical deposition have been explored till date to immobilize metal 

nanoparticles on the carbon nanotube sidewalls138–140. The CNT sidewall silanization technique, 

based on the reaction of different organosilanes e.g. APTES with the CNT structure has been a 

popular method in this direction to improve interfacial adhesion between carbon nanotube 

sidewalls and nanoparticles. A schematic diagram of the CNT silanization process has been 

depicted in Figure 6-8. The acid-purification process introduces abundant hydroxyl groups (-

OH) on the carbon nanotube surfaces. The hydrolysis of the ethoxy groups (-C2H5) in presence 

of water molecules results in the formation of APTES silanols (Si-OHs). The silanization process 

is eventually achieved by the dehydration reaction between the CNT hydroxyl groups and 

APTES silanols leading to the formation of ~NH2 terminated linker molecules on the CNT 

sidewalls57,141. As mentioned previously, the synthesized silver nanoparticles are capped by 

negatively charged citrate ions. Therefore, a Coulombic force of attraction exists between the 

positively charged amine (~NH2) groups on the silanized CNT surfaces and negatively charged 

citrate ions which ensure appreciable immobilization of the silver nanoparticles on the CNT 

networks. 
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Figure 6-8: Schematic diagram of the surface functionalization of carbon nanotubes by APTES 
treatment. 

 

 Characterization of Ag-CNT-Si SERS substrate 6.3.3:

The surface morphology of Ag-CNT nanostructures on the SERS substrates was 

examined by SEM with an acceleration voltage of 15 kV (Figure 6-9). The overall deposition 

attributes of AgNPs on the horizontally aligned carbon nanotube surfaces indicate discontinuity 

in surface coverage and stacked nature which are typical characteristic features of immersion 

coating technique. As can be noted from the figures, the porous nature of the carbon nanotube 

films serve as a template or “nest” for the attachment of the AgNPs in the form of ensemble of 

particles. The ensemble of particles or clusters should offer abundant sites for the adsorption of 

analyte molecules to be probed. It has been pointed out in publications to-date that the SERS 

effect by the local EM field could be significantly improved when the analyte molecules are 

localized at the junction of nanoparticle clusters with controlled aggregation112,142,143. Therefore, 

a substantial number of these nanoparticle clusters from these ensembles are also expected to 

behave as “hot spots” and contribute to the surface enhanced Raman scattering. The efficiency of 
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Ag-CNT hybrid nanostructures in enhancing the Raman signal of varying concentrations of R6G 

analyte has been assessed in the following section. 

 

 

Figure 6-9: Scanning electron microscopic images of silver nanoparticles coated on silanized 
CNT film deposited on 20% APTES treated silicon sample (a) at ×10k magnification and (b) at 
×20k magnification. 
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 Raman spectroscopic results and estimation of SERS enhancement factor 6.3.4:

Extensive Raman spectroscopic studies have been conducted using different 

concentrations of R6G - from 1 × 10-3 to 1 × 10-12 Moles (M) on 3 types of substrates: (a) Si 

substrates without AgNPs or CNTs (referred as non-SERS substrate) (b) APTES treated Si 

substrates with immersion coated AgNPs (referred as Ag-Si SERS substrates) and (c) immersion 

coated AgNPs on electrophoretically deposited CNTs on APTES treated Si substrates (referred 

as Ag-CNT-Si SERS substrates). The motivation in acquiring the Raman spectra on different 

substrates with varying analyte concentrations was to compare and assess the efficiency of the 

fabricated CNT-based SERS substrate in the enhancement of the signal intensity and to explore 

the detection limit.  

The first set of experiments was conducted on non-SERS Si substrates with the R6G 

concentration of 1 mM. The detection limit was explored by further reducing R6G concentration 

to 100 µM and 1 µM. The spectrum shows strong peaks at ~ 607, 768, 1176, 1307, 1357, 1506, 

1545, 1645 cm-1
 as reported in Table 6-1. The Raman peaks displaying the aromatic carbon-

carbon stretching vibrational mode between 1300 and 1600 cm-1 have been referred to as the 

significant signature peaks of R6G. Therefore, these peaks have been considered predominantly 

for the discussion of SERS results in this section. As expected from conventional Raman 

spectroscopy, the signal intensity values of an analyte should vary with varying analyte 

concentrations and follow a decreasing trend when the concentration of the analyte is gradually 

reduced. As can be seen from the Figure 6-10, the intensity value obtained for 1 mM 

concentration (2534 arb. units) is slightly higher than the one obtained for 100 µM concentration 

(2068 arb. units) at 1357 cm-1 wavenumber. Similarly, intensity values obtained for 1 µM R6G 

concentration were generally less than those acquired with 100 µM concentration.  
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Table 6-1: Assignment of the prominent peaks in Raman spectra of R6G. 
 

Raman Shift 
(cm-1) 

Assignment 
Raman Shift 

(cm-1) 
Assignment 

607 C-C-C ring in-plane bending 1357 Aromatic C-C stretching 

766 C-H out-of-plane bending 1505 Aromatic C-C stretching 

1176 C-H in-plane bending 1564 Aromatic C-C stretching 

1307 Aromatic C-C stretching 1645 Aromatic C-C stretching 

 

 
 
Figure 6-10: Raman spectra of 1 mM, 100 µM and 1 µM R6G concentration on silicon 
substrates.  
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Table 6-2 summarizes the intensity values of the Raman peaks obtained at 1307 cm-1, 

1357 cm-1 and 1506 cm-1 for 1 mM, 100 µM and 1 µM R6G concentrations. The acquired signal 

intensities from 1 mM to 1 µM R6G concentration were generally weak and attain maximum 

value of ~ 2500 arb. units only. As the R6G concentration was further reduced from 1 µM to 

lower concentrations (100 nM and 1 nM), the Raman signals became feeble and inconsistent 

which made it extremely difficult to obtain stable Raman spectra. Therefore, the detection limit 

with reasonable signal intensity on the non-SERS Si substrates was adjudicated to be 1 µM. 

 

Table 6-2: Raman spectroscopy results on 1 mM, 100 µM and 1 µM R6G concentration on non-
SERS Si substrates showing measured intensity values at 1307, 1358 and 1507 cm-1. (Signal 
intensity is measured in arbitrary units). 

 

R6G concentration on 
non-SERS Si substrates 

Intensity at 1307 
cm-1 

Intensity at 1358 
cm-1 

Intensity at 1507 
cm-1 

1 µM 1040 1558 1453 

100 µM 1717 2068 1702 

1 mM 1640 2534 1962 

 

The second set of experiments was performed to explore the surface enhanced Raman 

phenomenon on Ag-Si SERS substrates with the initial R6G concentration of 1 µM. As can be 

noted in Figure 6-11, the acquired Raman spectra displayed augmented Raman signals and 

significant enhancement for all the signature peaks for 1 µM R6G concentration. For example, 

the intensity value of the Raman peak at 1358 cm-1 on Ag-Si SERS substrate has increased by a 

factor of 11.9 compared to the non-SERS Si substrate. The R6G concentration was then 

gradually reduced from 1 µM to lower values - i.e. 100 nM and 1 nM to investigate the detection 
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limit. As can be seen in Figure 6-11, the acquired spectra for both 100 nM and 1 nM R6G 

concentration showed prominent and distinct Raman signals for all the signature peaks. The 

results conclusively indicate the contribution of the AgNPs in augmenting the signal intensity on 

Ag-Si SERS substrates in comparison to the non-SERS Si substrates. Consistent with our 

previous observation, the signal intensity displayed a decreasing trend as the concentration of the 

R6G was reduced. The Raman signals beyond 1 nM were not strong enough to obtain a clear 

spectrum which thus establishes the detection limit to be 1 nM on Ag-Si SERS substrates.  

 

 

Figure 6-11: Surface enhanced Raman spectra of 1 µM, 100 nM and 1 nM R6G concentration on 
Ag-Si substrates  
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Table 6-3 summarizes the intensity values observed at 1305 cm-1, 1358 cm-1 and 1507 

cm-1 in the Raman spectra. 

 

Table 6-3: Surface enhanced Raman spectroscopy (SERS) results on 1 µM, 100 nM and 1 nM 
R6G concentration on Ag-Si substrates showing measured intensity values at 1305, 1358 and 
1505 cm-1. (Signal intensity is measured in arbitrary units). 

 

R6G concentration on  
Ag- Si SERS substrates 

Intensity at 1305 
cm-1 

Intensity at 1358 
cm-1 

Intensity at 1505 
cm-1 

1 nM 8947 13673 9547 

100 nM 10264 16255 17060 

1 µM 11980 18434 12870 

 

The adeptness of Ag-CNT-Si substrate as a potential SERS substrate was initially 

adjudicated by probing R6G concentration of 1 µM. The acquired spectra exhibited all the 

vibrational peaks of R6G with augmented signal intensity. The analyte concentration was then 

gradually reduced to 100 nM and 1 nM. As illustrated in Figure 6-12, the Raman signals 

exhibited prominent SERS effect for all the peaks with the maximum signal intensity reaching 

29587 and 19200 arb. units for 100 nM and 1 nM R6G concentration respectively at 1358 cm-1. 

The intensity values obtained for different R6G concentration at 1307, 1358 and 1507 cm-1 are 

summarized in Table 6-4. The intensity values, when compared with the results on Ag-Si SERS 

substrate, shows appreciable enhancement in the signal intensity. For example, the signal 

intensity measured on Ag-CNT-Si substrate is approximately 1.8 times more than the Ag-Si 

SERS substrates at 1307, 1358 and 1507 cm-1 for 100 nM R6G concentration. Table 6-5 

illustrates the comparison results.  This improved performance is attributed to the enlarged 
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specific area for the absorption of analyte molecules offered by the combination of CNT porous 

network and the ensemble of silver nanoparticles. The limit of detection was studied next by 

reducing the R6G concentration to 1 pM. Figure 6-12 depicts the Raman spectroscopic results 

for 1 pM R6G concentration between 600 and 1800 cm-1. The spectrum shows prominent 

vibrational peaks of R6G at 1307, 1358 and 1507 cm-1. The intensity values in arb. units of 1 pM 

concentration are summarized in Table 6-4. As can be expected, the magnitude of the signal 

intensity at 1 pM concentration was less compared to 1 nM and 100 nM analyte concentration.  

The experimental results, therefore, confirm the effectiveness of AgNPs decorated porous 

carbon nanotube substrate as an improved SERS substrate. As has been pointed out, the 

improvement in analyte detection and analysis can be attributed to enhancement of the Raman 

intensity values of R6G peaks by a factor of 1.8 and superior detection limit of 1 pM analyte 

concentration. The comparative Raman spectra of 1 µM R6G concentration on all three 

substrates (Figure 6-13) and 1 nM R6G concentration on Ag-Si and Ag-CNT-Si SERS 

substrates (Figure 6-14) also confirm the claim.  

The quality of a SERS substrate in spectroscopic examination of an analyte is 

quantitatively adjudicated by a technology parameter known as enhancement factor (E.F.). 

Development of ultra-sensitive and optimized substrates with high E.F (of the order of ~108 - 

1011) remains an active area of SERS research. The following section represents a 

comprehensive discussion of the general definition and calculation of E.F. of the AgNP-CNT 

based SERS substrate presented in this research. 
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Figure 6-12: Surface enhanced Raman spectra of 1 pM, 1 nM, 100 nM and 1 µM R6G 
concentration on Ag-CNT-Si substrates. 
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Table 6-4: Surface enhanced Raman spectroscopy (SERS) results on 1 µM, 100 nM, 1 nM and 1 
pM R6G concentration on Ag-CNT-Si substrates showing measured intensity values at 1307, 
1358 and 1507 cm-1. (Signal intensity is measured in arbitrary units). 
 

R6G concentration on 
Ag-CNT- Si SERS 
substrates 

Intensity at 1307 
cm-1 

Intensity at 1358 
cm-1 

Intensity at 1507 
cm-1 

1 pM 4645 7069 6715 

1 nM 14200 19200 18033 

100 nM 19086 29587 29195 

1 µM 26058 38309 38333 

 

 

Table 6-5: Comparison of surface enhanced Raman spectroscopy (SERS) results on Ag-Si and 
Ag-CNT-Si substrates with 1 µM, 100 nM and 1 nM R6G concentration at 1307, 1358 and 1507 
cm-1. (Signal intensity is measured in arbitrary units and E.F. = Enhancement  factor). 

 

 

 
Intensity at  
1307 cm-1 

Intensity at  
1358 cm-1 

Intensity at  
1507 cm-1 

R6G 
conc. 

Ag-Si Ag- 
CNT-Si 

E.F. Ag-Si Ag-
CNT-Si 

E.F. Ag-Si Ag- 
CNT-Si 

E.F.

1 µM 11980 26058 2.17 18400 38309 2.08 12870 38333 2.97

100 nM 10264 19086 1.85 16255 29587 1.82 17060 29195 1.71

1 nM 8947 14200 1.58 13673 19200 1.45 9547 18033 1.88
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Figure 6-13: Comparison of Raman spectra for 1 µM R6G concentration on silicon, Ag-Si SERS 
and Ag-CNT-Si SERS substrates. 
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Figure 6-14: Comparison of Raman spectra for 1 nM R6G concentration on Ag-Si SERS and 
Ag-CNT-Si SERS substrates. 
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 Estimation of the overall enhancement factor (E.F.) 6.3.5:

Determination of the overall enhancement factor (E.F.) in SERS applications has been an 

issue of disagreement in SERS research; various definitions of E.F. and theoretical assumptions 

have been proposed in calculations which reflect differences in concept and experimental 

procedure. While the concept of enhancement factor is generally defined as the SERS intensity 

divided by the intensity from a non-SERS reference sample, additional factors such as 

concentration of the analyte, probe volume, penetration depth, the diameter of the laser spot are 

often included in the calculation. 

As a result of its debatable definition, the EF value in our research has been estimated 

using two different approaches144. 

The 1st approach is shown below:   

. . ……………..………………………….....  (1) 

where VSERS and VReference are the probe volumes in µm3 for the SERS and reference (or, 

traditional Raman) measurements respectively, CSERS and CReference are the R6G concentrations in 

moles which contribute to SERS intensity (ISERS) and traditional Raman intensity (IReference) 

values. The ratio of the probe volume has been calculated considering probe depth of 

approximately 1 µm for the reference sample in conventional Raman spectroscopy and 

generation of the SERS signal from within 10 nm from the SERS surface. The analyte 

concentration has also been assumed to remain constant within the detection volume which 

accounts for a fixed number of molecules - i.e. Avogadro’s number of molecules (6.023 × 1023) 

× the analyte concentration. The diameter of the laser spot has been kept at approximately 20 µm 

for all the experiments. The Raman spectra of 1 mM R6G concentration on non-SERS Si 

substrates and 1 pM R6G concentration on Ag-CNT-Si substrate scanned between 600 and 1800 
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cm-1 have been considered as the reference and the SERS sample respectively for our E.F 

calculation. Figure 6-15 represents the Raman spectra used for the E.F. calculations. The E.F. at 

1358 cm-1 has been calculated as follows: 

. .
7069
2534

. 10μ . 1μ
. 10μ . 10

10 M
10 M

6.023 10
6.023 10

 

                                  = 2.78	 	1011	

The first term above (7069/2534) consists of the ratio of the measured intensity (in 

arbitrary units) of the Raman peak at 1358 cm-1 on the SERS sample (ISERS ) for 1 pM R6G as 

reported in Table 6-4 versus traditional Raman intensity (IReference) for 1 mM R6G as shown as in 

Table 6-2.  The second term calculates the ratio of probe volumes - i.e.  π × area of the laser spot 

(radius: 10 µm) × probe depth, while the third term (10-3/10-12) represents the ratio of 

concentrations of R6G studied on the reference (1 mM) and SERS sample ( 1 pM), respectively.  

Finally, both numerator and denominator terms are multiplied by Avogadro’s number as shown 

to account for the assumed fixed number of molecules in the molar concentrations of the analyte 

as previously discussed.   

The 2nd approach is showed below: 

E. F. ……………………............................................................. (2) 

which assumes linear dependence of intensity values on the concentration and does not 

consider the complicated assumptions involved with the probe depths. 

Using the same parameters defined as above, the E.F has been calculated as follows: 

. .
7069
2534

10 M
10 M

 

            	2.78	 	109	
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The assumptions based on the probe depths of 1 µm for the reference signal and 10 nm 

for the SERS signal, along with the fixed analyte concentration values at these depths (as 

indicated in equation (1)) present uncertainties in the calculated value of the E.F.. For instance, 

the adsorption of the R6G molecules on the Ag-decorated CNT network can display a 

concentration gradient in the detection volume, as a function of distance within the vertical 

profile of the SERS surface, which would affect the E.F. value in equation (1).  

In our experiment, the immersion coated AgNPs within the EPD-fabricated CNT network 

show discontinuity in surface coverage which reduces the number of R6G molecules 

contributing to the SERS process. The molecules which remain adhered to the CNT network 

directly without AgNPs do not exhibit the SERS effect while the ones attached to the AgNP-

CNT network demonstrate enhanced Raman signals. It is also worth mentioning that the 

effective Raman signals are expected to generate from specific “hot spots” which are located at 

the interstitial sites between the nanoparticles145,146. Therefore, the value of 6.023×1023×10-12 = 

6.023×1011 as the maximum number of R6G molecules participating in the SERS process within 

the probe depth in equation (1) is most likely an overestimate which leads to an underestimated 

value of E.F. calculated in the present case. 

The simplest definition of E.F. can be perceived based on its relevance in studying the 

limit of detection of a given analyte on a SERS substrate. Therefore, a more practical definition 

of E.F. can be represented as the ratio of ISERS and IReference with a linear dependence of intensity 

on the concentration as in equation (2). It has been reported that such an interpretation of E.F. is 

more practically feasible in routine SERS experiments even though it results in a smaller value 

of E.F.50. 
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The efficiency of Ag-CNT-Si substrate as viable SERS substrates in comparison to Ag-Si 

SERS substrates has also been presented with reference to 1 mM R6G concentration on non-

SERS Si substrates using equation (2). As has been pointed out, the detection limit for Ag-Si 

SERS substrate was measured to be 1 nM with reasonable signal intensity. The E.F factor at 

1358 cm-1 can be now calculated as: 

. .
13673
2534

10 M
10 M

 

                                       	5.3	 	106	

The first term in the equation above (13673/2534) represents the ratio of the measured 

intensity (in arbitrary units) of the Raman peak at 1358 cm-1 on the Ag-Si SERS sample (ISERS ) 

for 1 nM R6G as can be noted in Table 6-3 versus traditional Raman intensity (IReference) for 1 

mM R6G as shown as in Table 6-2. The second term (10-3/10-12) calculates the ratio of 

concentrations of R6G studied on the reference (1 mM) and Ag-Si SERS sample (1 nM), 

respectively.   

The overall E.F. as offered by Ag-CNT-Si substrate is about 3 orders of magnitude more 

as compared to Ag-Si substrates with superior limit of detection - i.e. 1 pM as compared to 1 nM. 

Considering the debatable parameters concerning E.F., direct comparison of E.F. value with 

other SERS substrates reported in the literature to-date becomes a complicated issue. The 

fundamental intent behind this work was to increase the number of effective metal nanoparticle 

“hot spots” nested in the porous networks of the deposited CNTs in contributing to the surface 

enhanced phenomenon. The augmented signal intensity of the acquired Raman spectra in 

presence of the Ag-CNT architecture with respect to the reference sample justifies our research 

endeavors. 
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Figure 6-15: Surface enhanced Raman spectra of 1 × 10-12 M R6G concentration on Ag-CNT-Si 
substrate  and 1 × 10-9 M R6G concentration on Ag-Si substrate  with respect to reference Raman 
spectra of 1 × 10-3 M R6G concentration on non-SERS Si substrates. The calculated E.F at 1358 
cm-1 is 2.78 × 109 and 5.6 × 106 respectively. 
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6.4:  Conclusion 

In this chapter, fabrication of efficient silver nanoparticles (AgNPs) decorated multi-

walled carbon nanotube (MWCNT) based SERS substrates (Ag-CNT-Si) has been reported. The 

deposition of carbon nanotubes on organosilane (APTES) has been accomplished by the 

technique of electrophoretic deposition (EPD). EPD presents a facile, cost effective, 

reproducible, and single-step coating strategy to obtain uniform deposits of horizontally aligned 

CNT networks on organosilane (APTES) functionalized silicon surfaces. Deposition of AgNPs 

(average diameter: 30-40 nm) in the form of nano-clusters or ensemble of particles on the silane 

treated CNT networks has been achieved by immersion coating. The presence of Ag-MWCNT 

hybrid nanostructures showed enhancement in the Raman intensity of R6G analyte by 9 orders of 

magnitude with respect to the reference sample (E.F = ~109) and stretched the detection limit to 

as low as 1× 10-12 M (or, 1 pM). The Raman spectra of R6G on the Ag-MWCNT nanostructures 

have been compared with the results obtained on AgNP- planar silicon substrates to corroborate 

the efficiency of the AgNP decorated porous CNT film in increasing the effective “hot spots” for 

the enhancement of the Raman signals.  

Some of the pressing challenges in this kind of SERS research involve uniform 

deposition of nanoparticles on the target surfaces, uncertainty in the nature of adsorption of 

analyte molecules, and the assumptions and practical complications in estimating the 

enhancement factor (E.F.). There is definitely room for improvement in the deposition attributes 

of AgNPs on CNT coatings. Electrophoretic deposition of AgNPs can be regarded as a viable 

option which might be more effective in impregnating the CNT networks. The uncertain nature 

of adsorption of R6G leads to measurement complications since results would vary depending on 

their interactions with the metal nano-clusters, individual nanoparticles or the underlying 

substrate material. A universal consensus in defining and understanding E.F. of the study of 
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SERS would lead to innovations in the fabrication and performance comparisons of different 

SERS substrates in future. Our fabrication strategy and analysis bode well with state-of-the-art 

research in SERS and unveils the potential of this spectroscopic technique in numerous sensor 

and detection applications. 
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CHAPTER 7: SUMMARY AND RECOMMENDATION FOR FUTURE WORK 

7.1: Summary of results in the pursued research 

The growing research interest in the incorporation of carbon nanotubes (CNTs) in present 

state-of-the-art electronics such as thin film transistors (TFT) technology, field emission devices 

and nanoporous electrodes for energy applications has triggered widespread CNT thin film 

research. In recent years, electrophoretic deposition (EPD) has been pursued as an economical 

and versatile room temperature solution based coating technique for the production of thin and 

thick films of CNTs on predominantly conductive substrates. The EPD process involves 

migration of charged particles dispersed in a fluid medium towards an intended electrode (or, the 

deposition surface) under the application of a direct current (DC) electric field and eventual 

coagulation as a uniform coating on the electrode. With the prevailing interest in the application 

of CNTs in IC technology and nanoelectronics, it is extremely interesting to investigate EPD of 

CNTs on different semiconductor substrates like silicon (Si). To this extent, this dissertation 

research is predominantly focused on the feasibility and investigation of EPD of CNTs on silicon 

substrates with and without adequate surface functionalization. The experimental results 

obtained in this research with regard to the deposition model, conditions and the controlling 

parameters are summarized below: 

i. EPD of CNTs on Si substrates without surface treatment 

a. EPD has been successfully performed from stable, acid-refluxed CNT-dispersed 

aqueous suspension on metal-patterned (aluminum) silicon substrates with and 

without insulator layers (SiO2 and Si3N4) in between.  

b. No surface functionalization or treatment was performed on the silicon substrates 

used in the deposition experiments. 
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c. The nanotubes exhibited preferential deposition and adhesion exclusively on the 

metallic surfaces irrespective of the insulator layers underneath, electrical connection 

to the anode surface and low resistivity of the Si substrates for applied electric field of 

2.5-15 V/cm for 0.5-3 minutes.  

d. Insufficient deposition and poor adhesion results of the CNT films on bare and 

piranha treated/acid etched silicon substrates were observed throughout the EPD 

experiments.  

e. Hydrophilic interaction between the metallic surfaces and the oxidized, acid treated 

nanotubes is assumed to play a crucial factor in the adhesion and eventual formation 

of CNT thin films. 

f. The effects of varying electric field and deposition time on the thickness and surface 

roughness of the CNT films were studied.  

g. Interesting results on the degradation of the CNT solution after the unsuccessful EPD 

attempts on bare silicon substrates indicate the challenge of reusability and preserving 

the dispersion desired during the duration of deposition. 

ii. Electrophoretic deposition of carbon nanotubes on silicon substrates with organosilane 

surface treatment 

a. Deposition of uniform thin coatings of CNTs carbon nanotubes by EPD has been 

demonstrated on silicon substrates with 3-aminopropyl-triethoxysilane (APTES) 

surface functionalization. 

b.  The gradual coagulation and eventual CNT film formation is profoundly assisted by 

the Coulombic force of attraction existing between the positively charged -NH2 
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surface groups of the organosilane molecules and the acid treated, negatively charged 

nanotubes migrating towards the deposition surfaces.  

c. The benefits of EPD technique as a fast, reliable and reproducible room temperature 

coating process over dip coating have also been demonstrated extensively throughout 

this study.  

d. The effect of varying APTES concentration (5%-100%) on the Raman spectroscopy 

and thickness of the deposited CNT film has been discussed in details as well.  

e. The organosilane assisted EPD approach has eliminated the need of physical vapor 

deposition of metals on bare silicon substrates and therefore, ensures an economical, 

fast and entirely solution based room temperature fabrication strategy of CNT thin 

films for a wide range of next generation electronic applications. 

iii. Fabrication of surface enhanced Raman spectroscopy (SERS) substrate based on EPD-

fabricated porous CNT networks 

a. In this study, fabrication of silver nanoparticles (AgNPs) coated carbon nanotube 

based porous SERS substrates (referred to as Ag-CNT-Si) has been pursued.  

b. Deposition of CNTs on organosilane (APTES) functionalized silicon surfaces at an 

applied E-field of 15 V/cm for 3 minutes has been accomplished by EPD, as has been 

discussed in the previous chapter.  

c. EPD establishes a facile, cost effective, reproducible and single-step coating strategy 

to obtain uniform deposits of horizontally aligned porous CNT networks.  

d. Deposition of surfactant stabilized AgNPs (average diameter: 30-40 nm) in the form of 

nano-clusters or ensemble of particles on the silane treated CNT networks has been 

achieved by immersion coating.  



125 
 

e. The fabrication of Ag-MWCNT hybrid nanostructures displayed enhancement in the 

Raman intensity of Rhodamine6G (R6G) analyte by ~9 orders of magnitude with 

respect to the reference sample (E.F = ~109) and pushed the detection limit to as low 

as 1× 10-12 M or 1 pM.  

f. The Raman spectra on the fabricated SERS substrate have been compared with the 

results obtained on AgNP planar silicon substrates to corroborate the efficiency of the 

AgNP decorated, horizontally aligned porous CNT films in increasing the effective 

“hot spots” which contribute to the surface enhancement of the Raman signals.  

g. The need for a universal consensus in defining and understanding the concept of 

Enhancement Factor (E.F.) in SERS research for performance comparison of various 

innovative SERS substrates has been discussed also.  

7.2: Recommendation for future work 

 Dispersion and electrophoretic deposition of CNTs from ionic liquids 7.2.1:

Owing to their chemical inertness, the pristine, as-grown CNTs exhibit a hydrophobic 

nature and remain as agglomerated skeins which limit their dispersibility in different suspension 

media. Over the past decade, a variety of non-covalent and covalent surface functionalization 

strategies have been pursued to improve the degree of dispersion in different solvents. Some of 

the methods include use of polymer based surfactants to prevent aggregation of the 

nanomaterials, acid refluxing in strong acid solution or use of volatile, polar solvents as the 

dispersion media. In recent years, room temperature based ionic liquids (RTILs) have emerged 

as “green” and better alternatives for the dispersion of CNTs by virtue of their low flammability 

and volatility, high thermal stability and ionic conductivity, and a broad window of 

electrochemical stability. Both experimental and simulated results have revealed that ILs interact 

with the CNTs through strong Van der Waals interaction to form novel CNT-IL hybrid 
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nanostructures147,148. The prospect of dispersion of CNTs in IL-based solvents, the stability 

performance under moderate to strong electric field and the eventual EPD of IL stabilized carbon 

nanotube on different substrates can offer an entirely new perspective in thin film coating 

technique and therefore, should be explored in greater detail. 

 EPD from aqueous suspension under modulated electric field 7.2.2:

The advantages of EPD from aqueous suspension can be realized given its environmental 

compatibility when compared with the cost, volatility, toxicity and flammability of organic 

solvent based EPD. As has been pointed out in the previous chapters, the pressing issue in 

aqueous suspension based EPD is the electrolysis of water at low electric field. The evolution of 

gas bubbles due to the reduction and oxidation of water frequently leads to coatings of inferior 

quality. In recent years, there has been active research in the use of modulated electric field, - i.e.  

pulsed direct current (PDC) and alternating current (AC) in the electrophoretic deposition of 

nanomaterials149. PDC has been shown to produce smooth and uniform coatings by reducing the 

coalescence between the gas bubbles and minimizing aggregation between the nanoparticles by 

eliminating the effect of electrosomotic flow in the electrophoretic process. A similar deposition 

strategy under modulating electric field can be pursued in the EPD of CNTs from aqueous 

suspension by judicious selection of the on-off cycles of the electric pulses during the deposition 

duration.  

 EPD of CNTs on insulator surfaces for plastic electronics 7.2.3:

Semiconducting CNT networks deposited through various room temperature based facile 

coating techniques have been extensively explored as an alternative active layer for thin film 

transistors (TFTs) on plastic substrates. Towards this research direction, the next primary aim 

should be to deposit uniform CNT coatings on different insulator substrates such as poly-

ethylene terephthalate (PET) polyimide and gate dielectrics - i.e. silicon oxide, hafnium oxide, 
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aluminum oxide by EPD. Contrary to the common assumption that EPD is only limited to 

conductive substrates, there have been recent research findings outlining the deposition of novel 

nanomaterials on porous non-conducting alumina and NiO-YSZ substrates19,101. Therefore, the 

research initiatives to study the feasibility of deposition of CNT networks by EPD on different 

insulator substrates and detailed investigation of the deposition kinetics should be given pertinent 

attention. 

 EPD of silver nanoparticles for better surface coverage and uniform coating 7.2.4:

The surface coverage of the immersion coated silver nanoparticles (AgNPs) on the EPD 

fabricated CNT networks (as depicted in Fig. 9 of Chapter 4) should be improved substantially 

with respect to the study of SERS. One of the viable options that should be explored in this 

direction is electrophoretic deposition of AgNPs (or, noble nanoparticles e.g. Au, Pt in general 

contributing to SERS effect) from suitable suspensions. The deposition strategy should result in 

uniform and homogenous deposits of nanoparticles on the target surface, which in turn is 

expected to ensure better penetration of the nanoparticles within the porous CNT network. The 

number of effective “hot spots” within the porous substrate contributing to the enhanced Raman 

signals could be thus increased significantly which, would eventually render improved detection 

sensitivity of different analytes. 

 SERS study on liquid analyte for bio-medical application  7.2.5:

Chapter 4 of this dissertation has focused on the SERS analysis of drop-casted or 

immersion coated and air-dried R6G analyte with different concentration (from 1 mM to 1 pM). 

The fabricated SERS substrate should be applied to perform routine SERS experiments on 

different analytes dissolved or dispersed in a fluid medium as well. A potential application in this 

context is the implementation of endoscopic SERS for in-situ molecular imaging of human tissue 

for medical diagnosis and treatment. 
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