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Abstract
This dissertation is divided into two parts. In the first part we consider the problem

of feedback stabilization of nonlinear systems described by state-space models. This ap-

proach is inherited from the methodology of sector bounded or passive nonlinearities, and

influenced by the concept of absolute and quadratic stability. It aims not only to regionally

stabilize the nonlinear dynamics asymptotically but also to maximize the estimated region

of quadratic attraction and to ensure nominal performance at each equilibrium. In close

connection to gain scheduling and switching control, a path of equilibria is programmed

based on the assumption of centered-ε-cover which leads to a sequence of linear controllers

that regionally stabilize the desired equilibrium asymptotically.

In the second part we tackle the problem of control for fluid flows described by the

incompressible Navier-Stokes equation. We are particularly interested in film cooling for gas

turbine engines which we model with the jet in cross-flow problem setup. In order to obtain

a model amenable to the controller design presented in the first part, the well-known Proper

Orthogonal Decomposition (POD)/Galerkin projection is employed to obtain a nonlinear

state-space system called the reduced order model (ROM). We are able to stabilize the

ROM to an equilibrium point via our design method and we also present direct numerical

simulation (DNS) results for the system under state feedback control.

ix



Chapter 1
Introduction

1.1 Motivation and Historical Perspective

Modern science and engineering are model-based. Many of these models are mathe-

matically described by nonlinear differential equations. The majority of engineering appli-

cations depend on these models which is especially true for control system. Consequently

there has been much focus on developing mathematical models and control strategies for

nonlinear systems. While modeling is important, this dissertation assumes the existence

of system models that are derived from either physical principles or experimental data.

We focus on the control aspect of nonlinear systems. The first part of this dissertation

describes the development of a linearization-based control system for nonlinear systems

using state-space models (Chapters 2 and 3). The second part deals with a flow control

application, the controlled “jet in cross-flow” (Chapter 4).

Nonlinear control theory has had a rich and successful history that includes Lie alge-

bra and differential geometry [Isi89], singular perturbation [KK99], backstepping [KKK95],

and more recently constructive methods [SJK97], among many others. Despite the success

of nonlinear control theory, the linearization method is still widely used due to its sim-

plicity and the availability of many design tools. It is a fact that linear methods perform

well and most of the engineering applications are based on linear methods, including gain

scheduling and adaptive control [rW95, RS00], which are widely used in practice. The

main drawback of the linearization method lies in the difficulty in estimating the region

where the local linear approximation is valid. An early and influential approach to this

problem consisted in decomposing the nonlinear system into a linear and nonlinear part

in a feedback interconnection. This approach, developed in the 1960s and 70s, became

known as “absolute stability theory” [AG64, NT73, Pop62] and still attracts considerable

attention. See for example [HHL04], [DHTZ09], [WIOv98], and references therein. The

1



seminal papers of Zames [Zam66a], [Zam66b] considered sector bounded nonlinearities and

introduced the small gain theorem to stability analysis and feedback stabilization for a

class of nonlinear systems under input/output or operator descriptions. The notion of

passivity [Wil72a, Wil72b, HM76] contributed further to stability analysis of nonlinear sys-

tems along this thread of research by stating similar results in terms of state space models.

Later developments in nonlinear control focused more on state-space systems, including

feedback linearization [Isi89], nonlinear observers [AK99, Raj98, XG89], and optimal and

robust control [IA92, IK95, vdS92], in addition to the aforementioned references. It is worth

mentioning that the notion of input to state stability (ISS) surveyed in [Son07] provided

a way to merge the state-space description with the operator approach in study of nonlin-

ear system stability, and led to the small gain theorem for nonlinear state-space systems

[MH92, JTP94]. It is important to note that all nonlinear control methods, to this date,

are only applicable to certain classes of nonlinear systems. There is no universal method

that can be applied to all nonlinear systems. This is in stark contrast to the linear methods

that are applicable to all linear systems.

A linearization-based method that has been very effective in engineering applications

is gain scheduling. Gain scheduling consists in designing several linear controllers (one for

each operating point of interest) that cover the system’s operating regions and implementing

them by interpolating the controller gains over this range [rW95, RS00]. Although stability

of the system can be established for states near the operating condition, stability of the

gain scheduled nonlinear feedback system is usually derived by repeated simulations. Some

approaches that do not rely on simulations may be found in [SA90] and [LHC01], where

the latter presents an alternative to gain scheduling and points to a view of gain scheduling

as a special type of a switched system. The main limitation of the gain scheduled design

is hinged to the limitations of the linear method where the domain of operation of the

nonlinear state-space is approximated by a set of linear regions.

2



The jet in cross-flow is an important fluid flow problem setup that is used as a model

for various engineering applications. We are interested in this problem setup since it can

be used to model film cooling of gas turbine blades although it is also used, among many

others, as a model for fuel injection systems, smokestacks in the atmosphere, and dilution

jets in combustors. Film cooling refers to the process of injecting cool air on the surface of

gas turbine blades through small holes. If it is done right, a thin protective layer of cool

air will form on the surface of the blades reducing heat transfer from the environment into

the surface of the blade, allowing the turbine to operate at a high temperature without

damaging the blades.

The jet in cross-flow is described by the 3D incompressible Navier-Stokes (N-S) equa-

tion, a non-linear, partial differential equation (PDE) that describes the conservation of

momentum of a fluid. Although it is not yet known if this equation has a unique, con-

tinuously differentiable solution, it is routinely approximately solved by direct numerical

simulation (DNS). A DNS is basically a set of coupled discrete-time ordinary differential

equations (ODEs) obtained by temporally and spatially discretizing the N-S equation. Due

to the fine spatial discretizations required to obtain meaningful DNS solutions, the number

of ODEs is typically in the order of millions. This poses a challenge for control system

design, as well as understanding the dynamics of the jet. We focus on control design and in

particular, model based control design, which in the context of flow control includes: Ad-

joint based iterative optimization and estimation (or model predictive control) and Riccati

equation based feedback control and estimation. The survey paper [KB07] and the book

[Gun03] provide a good overview of these two approaches.

We follow the path of Riccati equation based feedback control and estimation via re-

duced order modeling. It is possible to project the ODEs to a lower dimensional subspace

by expressing the solution obtained by DNS as a series expansion of a small number of

basis functions, typically less than 100. The POD/Galerkin method achieves this reduc-

tion and the resulting low dimensional model is termed a reduced order model (ROM).
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Feedback control design is then carried out based on this ROM and finally the controller

is implemented in the full order DNS.

1.2 Overview of Contributions

This dissertation focuses on the design of sequences of linear controllers that semi-

globally stabilize sector-bounded nonlinear systems. We propose a linear controller design

method (state and output feedback) for the regional control of sector-bounded nonlinear

systems. Under an ε-cover assumption on the location of the operating points in the state

space, we complement the linear design with a switching strategy to stabilize the system

semi-globally [AGA13]. We also present a controller design method (state feedback) for

quadratic nonlinear systems [AG12]. Preliminary results were applied to a driven cavity

problem [AGA11].

For the jet in crossflow problem, we investigate the construction of a ROM for control

system design. To our knowledge, this is the first investigation of the jet in cross-flow where

the POD expansion is augmented with a control mode. The purpose of our controller is

to reduce the perturbation energy of the flow which in turn should reduce mixing of the

cold and hot fluids. In this sense, our controller stabilizes some unstable operating point

that has desirable cooling characteristics. We are able to stabilize the ROM flow to a

steady state, and when implemented in the DNS simulation, it achieves stabilization for

a period of time before diverging to a limit cycle. This highlights the difficulties that are

encountered when designing controllers based on ROMs and implementing them in full

dimensional models.

1.3 Organization of the Dissertation

In Chapter 2 we survey the systems theory background material that will be used

throughout this dissertation. They include stability, signal and system norms, linear matrix

inequalities, and switched systems. In Chapter 3 we develop the linear feedback stabiliza-

tion methods that form the main part of the first part of this dissertation. Two methods

are presented, one based on generalized sector-bounds and the other on the polytopic de-
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scription of a quadratic nonlinear system. In addition, the switching strategy is described

and simulation results for a simplified fluid convection model are presented. In Chapter

4 we employ the well-known POD/Galerkin model reduction method to obtain a ROM of

the jet in cross-flow problem amenable to feedback control design. The controller designed

in Chapter 3 is implemented and the results are discussed. Finally, Chapter 5 contains the

conclusion of the work as well as a recommended agenda for future research.
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Chapter 2

Background Material

2.1 Systems

This chapter covers standard material and many parts have been quoted from [Kha02].

In this work our main concern is to analyze and control physical phenomena that can be

described by a finite number of first order ordinary differential equations (ODEs)

ẋ1 =f1(t, x1, . . . , xn, u1, . . . , um)

...

ẋn =fn(t, x1, . . . , xn, u1, . . . , um). (2.1)

Often there is another set of algebraic equations related to (2.1)

y1 =h1(t, x1, . . . , xn, u1, . . . , um)

...

yp =hp(t, x1, . . . , xn, u1, . . . , um) (2.2)

that consist of variables that are of particular interest for analysis or control. By defining

vectors

x :=


x1(t)

...

xn(t)

 , u :=


u1(t)

...

um(t)

 , y :=


y1(t)

...

yp(t)

 , f :=


f1(t, x, u)

...

fn(t, x, u)

 , h :=


h1(t, x, u)

...

hp(t, x, u)


where x(t) is called the state, u(t) is called the input, and y(t) is called the output, we may

write (2.1) and (2.2) in a more compact notation.
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Definition 1 (Nonlinear state-space system). A nonlinear state-space system is a set of

differential equations consisting of a dynamics equation with an initial condition and an

output equation

ẋ = f(t, x, u), x(0) = x0 (2.3)

y = h(t, x, u) (2.4)

We use the notation φ(t, x0) to denote the solution to (2.3) at time t with initial

condition x0. For details on existence and uniqueness of solutions of ordinary differential

equation see [Kha02] and [MM07], among others. In this dissertation we will mostly work

with the following special cases of the nonlinear state-space system:

1. Autonomous nonlinear system: When f(·) and h(·) are not explicit functions of time,

i.e., time only enters through the state.

ẋ = f(x, u), x(0) = x0

y = h(x, u) (2.5)

2. Linear time varying system (LTV): When f(·) and h(·) are linear functions.

ẋ = A(t)x+B(t)u

y = C(t)x+D(t)u (2.6)

3. Linear time invariant system (LTI): When f(·) and h(·) are linear functions and do

not explicitly depend on time.

ẋ = Ax+Bu

y = Cx+Du (2.7)

7



An alternative representation of an LTI system may be obtained through the Laplace

transform. The Laplace transform of a single variable function f(t) is defined as

F (s) =

∫ ∞
0

f(t)e−stdt.

If ḟ(t) has a well defined Laplace transform, it is given by

sF (s)− f(0).

Therefore, the Laplace transform of (2.7) is

sX(s)− x0 = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

In the special case of x0 = 0, we have the input/output description of (2.7)

Y (s) = G(s)U(s)

where G(s) = C(sI − A)−1B +D is called the transfer function of (2.7).

2.2 Lyapunov Stability

The method developed by the Russian mathematician Lyapunov (1857-1918) for study-

ing stability of differential equations is fundamental for much of modern stability analysis.

It is not only used for analysis, but also for control system design. The simplest notion of

stability is the one related to stability of equilibrium points.

Definition 2 (Equilibrium point). A point x(t) = xe in the state space is said to be an

equilibrium point of the autonomous system

ẋ = f(x)
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if and only if it has the property that whenever the state of the system starts at xe, it

remains at xe for all future time.

According to the definition, the equilibrium points of (2.5) are the real roots of the

equation f(xe) = 0. This is made clear by noting that if

ẋe = f(xe) = 0

then it follows that xe is constant and, by definition, an equilibrium point. Without loss

of generality, we assume that 0 is an equilibrium point of the system. If the equilibrium

point under study, xe, is not at zero we may define a new (shifted) coordinate system

xs(t) = x(t)− xe and note that

ẋs(t) = ẋ(t) = f(x(t)) = f(xs(t) + xe) =: fs(xs(t)), xs(0) = x0 − xe

The claim follows by noting that fs(0) = f(xe) = 0. In summary, the study of the zero

equilibrium point of ẋs(t) = fs(xs(t)) is equivalent to the study of the nonzero equilibrium

point xe of ẋ = f(x(t)). We now define what is meant by stability of an equilibrium point

of an autonomous system.

Definition 3 (Stability of equilibrium point). The equilibrium point x = 0 of (2.5) is

• Stable, if for every ε > 0 there exists a δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0.

• Unstable if it is not stable.

• Asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.
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The following result is a particular version of Lyapunov’s stability theorem. It char-

acterizes the stability of an equilibrium point in terms of a scalar ‘energy function’ that

decreases along every trajectory of the system. To state the definition we first assume that

in (2.5), D is an open and connected subset of Rn and f : D → Rn is a locally Lipshchitz

map.

Theorem 2.2.1 (Lyapunov asymptotic stability theorem). Let x = 0 be an equilibrium

point of ẋ = f(x), f : D → Rn, and let V : D → R be a continuously differentiable function

such that

1. V (0) = 0

2. V (x) > 0 in D \ {0}

3. V̇ (x) < 0 in D \ {0}

then x = 0 is asymptotically stable.

Since Lyapunov’s stability theorem presents only sufficient conditions, the main dif-

ficulty in applying the theorem boils down to finding Lyapunov functions and there is

no general systematic procedure for constructing Lyapunov functions. For linear systems,

quadratic Lyapunov functions are necessary and sufficient to prove stability.However there

are no such results for nonlinear systems. Backstepping [KKK95] and feedback passiva-

tion [SJK97], among others, are systematic design methods for certain classes of nonlinear

systems.

Often it is not enough to determine if an equilibrium point is stable. Having an idea of

the set of initial conditions that converge to the equilibrium is also important. The region

of attraction (RoA) makes this idea explicit.
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Definition 4 (Region of attraction). Let the origin x = 0 be an asymptotically stable

equilibrium point for (2.5). The region of attraction (RoA) of the origin of (2.5) is defined

by the set

RoA = {x0 ∈ D : φ(t, x0) is defined ∀t ≥ 0 and x(t)→ 0 as t→∞}

The RoA is an invariant set that is typically difficult to represent and much effort has

been devoted to methods for estimating the RoA [Bla99, GTV85, CT89].

In addition to an equilibrium point, a periodic solution is an important structural

property of a system that characterizes oscillatory behavior.

Definition 5 (Periodic solution). The solution x(t) is a nontrivial periodic solution if it

satisfies

x(t+ T ) = x(t), ∀ t ≥ 0

The ‘nontrivial’ quantifier is included in the definition to exclude constant solutions

corresponding to an equilibrium point.

2.2.1 Quadratic Stability

The notion of quadratic stability was introduced in [Bar85] and has been thoroughly

studied in the literature since then. It has found substantial applications in H∞ control

problems and in determining stability margins for a variety of linear systems (uncertain,

uncertain LTV, and interval systems). For a good overview see [Cor94] and its bibliography.

We are motivated to introduce the quadratic stability idea and use it to study uncertain

LTV systems described by state equations of the form

ẋ = (A+B1∆tC1)x+Bu,

∆T
t ∆t ≤ δ2I, δ > 0 (2.8)
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where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control and ∆t ∈ Rq1×q2 is a matrix of

uncertain time-varying parameters. The notation ∆t ∈∆(δ) is also regularly used. In this

case,

∆(δ) := {∆t : σ(∆t) ≤ δ} , δ > 0 (2.9)

is the set of admissible ∆t.

Definition 6 (Quadratic stability). The uncertain linear time-varying system (2.8) (with

u(t) = 0) is said to be quadratically stable if and only if there exists a P > 0 and a

constant α > 0 such that for any admissible uncertainty ∆t, the Lyapunov derivative for

the Lyapunov function V (x) = xTPx satisfies

V̇ = 2xTP (A+B1∆tC1)x ≤ −α ‖x(t)‖2

for all state variables x(t) ∈ Rn and t ∈ R. The system is said to be quadratically stabilizable

if there exists a state feedback control u(t) = Fx(t) such that the closed loop system is

quadratically stable.

Remark 1. The concept of quadratic stability requires the existence of a fixed quadratic

Lyapunov function for all possible choices of the uncertain parameters.

Since it is very difficult to compute the RoA, we introduce a tractable estimate for it

which we call region of quadratic attraction.

Definition 7 (RoQA). The system (2.8) is said to admit a RoQA of Q-weighted size εm > 0

at the equilibrium point xe = 0, if there exist square matrices P > 0 and Q > 0 such that

the Lyapunov derivative of the Lyapunov function V [x(t)] = ‖x(t)‖2
P = x(t)TPx(t) satisfies

V̇ (t) < 0 for all t ≥ 0 and x0 ∈ BQ(εm), x0 6= 0.

Regarding feedback stabilization, the following notions are important since they quan-

tify the stability properties of a closed loop system [Kha02]. If a nonlinear system is
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stabilized via linearization, then the RoA may be infinitely small. In this case, feedback

control achieves local stabilization. If the feedback control guarantees that a certain set is

included in the region of attraction or if an estimate of the region of attraction is given, the

feedback control achieves regional stabilization. If the origin of the closed-loop system is

globally asymptotically stable, the control achieves global stabilization. If feedback control

does not achieve global stabilization, but can be designed such that any given compact

set (no matter how large) can be included in the region of attraction, the feedback control

achieves semi-global stabilization.

2.3 Norms for Signals and Systems

The norm function, ‖s‖, is used to measure the size of a signal. It satisfies the following

three properties:

1. ‖s‖ ≥ 0 and ‖s‖ = 0 if and only if s = 0.

2. ‖s1 + s2‖ ≤ ‖s1‖+ ‖s2‖ for all s1 and s2.

3. ‖αs‖ = |α| ‖s‖ for all α ∈ C.

For the space of piecewise continuous square integrable functions, L2, the norm is defined

by

‖s‖2 =

√∫ ∞
0

‖s(t)‖2 dt.

A fundamental question that arises in the study of systems described by ODEs or transfer

functions is the following: If we know that the input signal has some property, what can

we say about the output signal? For example, if the input u(t) ∈ L2, is y(t) ∈ L2 also?
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In this dissertation we will only make use of the H∞ norm. If we let T be the Lyapunov

stable linear system (i.e., all the eigenvalues of A have strictly negative real parts)

ẋ = Ax+Bu

y = Cx+Du

or its corresponding transfer function T (s) = C(sI −A)−1B +D, then the H∞-norm of T

is defined as

‖T‖H∞ := sup
Re{s}>0

σ[T (s)]

where σ(·) is the maximum singular value or equivalently as

‖T‖H∞ := sup
0<‖u‖2<∞

‖y‖2

‖u‖2

(2.10)

As such, the H∞ norm measures how much a system amplifies the L2 norm of an input

signal. In addition, it is a fundamental tool in small-gain stability arguments. Essentially,

these arguments prove stability of a feedback loop if the product of the H∞ norm of the

components in the feedforward and feedback paths is less than unity.

The following is a version of the Kalman-Yakubovich-Popov (KYP) lemma which can

be found in [DP00], among others. This version is known as the strictly bounded real

lemma and it characterizes the H∞ norm of a system in terms of an algebraic Riccati

inequality.

Lemma 2.3.1 (Strictly bounded real lemma). Suppose that T (s) = C(sI − A)−1B + D,

then ‖T‖H∞ < δ−1, if and only if there exists a matrix P > 0 such that

ATP + PA+ δ2CTC PB + δ2CTD

BTP + δ2DTC δ2DTD − I

 < 0. (2.11)
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2.4 Linear Matrix Inequalities and Schur Complement

A Linear Matrix Inequality (LMI) has the form

F (x) = F0 +
m∑
i=1

xiFi > 0,

where x =

[
x1 . . . xm

]T
∈ Rm is the vector variable and Fi = F T

i ∈ Rn×n, i = 0, . . . ,m

are given symmetric matrices. LMIs appear in many control problems, from Lyapunov sta-

bility constraints to controller synthesis to interpolation and system realization problems.

The book [BGFB94] is a good reference and contains a wide variety of control problems

that can be posed as LMIs.

Nonlinear (convex) inequalities arising in control problems can be converted to an LMI

using the Schur factorization. First, let M be a 2× 2 block matrix,

M =

A B

C D

 .
If D is square and nonsingular, then it is straightforward to verify that

A B

C D

 =

I BD−1

0 I


A−BD−1C 0

0 D


 I 0

D−1C I

 .
The matrix A−BD−1C is called the Schur complement of D in M , and this decomposition

motivates the strict Schur complement formula stated next.

Theorem 2.4.1. Given any symmetric matrix

M =

 A B

BT D


The following are equivalent
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(a) M > 0

(b) A−BD−1BT > 0 and D > 0

Now it is clear that the LMI Q(x) S(x)

S(x)T R(x)

 > 0

is equivalent to the set of nonlinear inequalities

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0.

We will make use of this result whenever we deal with the algebraic Riccati inequalities

that arise in the system analysis and controller synthesis problems.

2.5 Switched Systems

Systems described by continuous and discrete dynamics are called hybrid systems.

While the study of continuous and discrete dynamics separately is well documented, hybrid

systems have attracted attention until relatively recently. Most of the material in this

subsection can be found in [vdSS99], [Lib03], and their bibliographies.

The continuous dynamics may be represented by a nonlinear state-space system or any

of its special cases. The discrete dynamics may be represented by a state-space model too,

but instead of the state being in Rn, it lies in a finite or countable set {q1, q2, . . .}.

Switched systems are a subset of hybrid systems (switched systems differ from hybrid

control in the level of analysis of the discrete dynamics), and consist of continuous-time

systems with isolated discrete switching events. They have received renewed attention

recently and become a very active area of research as illustrated by [BL99] and [DBPL00],

both of which appear in special issues on hybrid systems,[LA09], [HaPH10], [SWM+07], the

textbook [Lib03], and references therein. Concretely, they consist of two main ingredients:
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• A family of indexed dynamical systems:

ẋ = fp(x), p ∈ P (2.12)

• A switching signal (piecewise constant function of t):

σ : [0,∞)→ P (2.13)

These two ingredients are combined into the ODE

ẋ = fσ(x). (2.14)

to obtain a switched system. In addition, the initial condition of each indexed dynamical

system is given by the reset map. The reset map may generate discontinuous system

trajectories in the state-space, and if it does, these jumps are called impulse effects. In

case that the reset map is the identity, the initial condition of the pth system is equal to

the value of x of the system which was previously active. Figure 2.1 illustrates a scalar

system with an impulse effect at t = t1 and without at t = t2. In this investigation we only

consider the identity reset map. Finally, the switching signal is typically characterized as:

• Autonomous: The location of switching surfaces in the state-space of x or rules on

the switching signal are predetermined.

• Controlled: Chosen by the designer to achieve a desired system behavior.

More details on the switching signal that we consider in this investigation will be presented

in the next chapter. The previous concepts are shown schematically in Figure 2.1 to

illustrate the main features of a switched system.

To provide some context to our method, we now present a few results on stability of

switched systems. Although there are several approaches to prove stability of switched
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t

x(t)

t1 t2

impulse effect

ẋ = f1(x) ẋ = f2(x) ẋ = f3(x)

Figure 2.1: A scalar switched system

systems which include commutation relations [DLM99] and dwell time concepts [Mor93],

the results we present in this dissertation are based on Lyapunov arguments.

For studying uniform stability (with respect to σ(t)) of the switched system, Theorem

2.2.1 may be extended to take the following form.

Theorem 2.5.1 (Stability theorem for switched systems). If there exists a positive definite

function W : Rn → R and a positive definite function, V : Rn → R, whose derivative along

solutions of all systems in the family (2.12) satisfies

V̇ =
∂V

∂x
fp(x) ≤ −W (x) ∀x, ∀p ∈ P (2.15)

then the switched system (2.14) is globally uniformly asymptotically stable.

If a common Lyapunov function cannot be found, it is still possible to prove stability

of the switched system using several Lyapunov functions. However, stability properties of

the switched system generally depend on the switching signal σ. There are many results

in this direction but we leave them out as they are outside the scope of this dissertation.
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Chapter 3
Linear Feedback Stabilization for
Classes of Nonlinear Systems

In this chapter we propose an approach for the design of feedback controllers for two

classes of nonlinear systems: Autonomous sector-bounded nonlinear systems and quadratic

nonlinear systems. We refer to the design methods by:

1. Generalized sector-bound

2. Polytope

Both design methods are intended for feedback stabilization to an equilibrium point. In the

first method, our approach consists in modeling the sector-bounded nonlinearities as time-

varying uncertainties. The second method exploits the form of the Lyapunov inequality

obtained when the Lyapunov function is quadratic, and the system involves quadratic non-

linearities. While both methods rely on quadratic forms for Lyapunov function candidates,

we will see through a simulation result that the conservativeness of the results differs.

In addition to the regional controller design, we propose a scheduling or switching ap-

proach for regional stabilization. This solution is inspired by the success of gain scheduling

as an effective method for the control of nonlinear systems. However, classical gain schedul-

ing doesn’t satisfactorily address the stability of the closed loop system when the state is far

away from the equilibrium point. To address this shortcoming, we combine the insight from

absolute stability theory with the gain scheduling method. As mentioned in Section 2.5,

both switching and hybrid control are regarded as viable control strategies for a variety of

systems. In our specific design, when the initial state of the nonlinear system is outside the

estimated RoA of the desired equilibrium point, the notion of centered-ε-cover is proposed

and assumed. This notion will be made explicit later, but in general terms the assumption

is that the RoAs of different equilibrium points overlap one another. An equilibria path
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lying in this centered-ε-cover will then be programmed and a sequence of linear controllers

can then be designed to steer each initial state to the desired operating point along the

equilibria path, thereby regionally stabilizing the nonlinear state-space system. Roughly

speaking, in the context of switched systems, the ε-cover condition effectively determines

the switching signal, and the stability of the switched system (which is equivalent to the

nonlinear system in this region) may be established by the theorems in Section 3.1.2.

3.1 Generalized Sector-bound Method

With this method, the error residue resulting from linearization is treated as unmod-

eled nonlinear dynamics, and an H∞ robust controller is synthesized to not only stabilize

the linearized state-space system, but also enlarge the estimated RoA quantified by an

ε-distance. However, caution needs to be taken not to treat the unmodeled nonlinear

dynamics as exogenous uncertainties. In fact, the uncertainty induced by the regionally

bounded modeling error is dependent on the state of the linearized system. A formula to

compute the ε-distance is derived under both state feedback and output feedback control.

3.1.1 Stability Analysis

Consider the autonomous nonlinear system

ẋ = f(x), x(0) = x0, (3.1)

Without loss of generality the equilibrium point is assumed at the origin, i.e., f(0) = 0. To

analyze the asymptotic stability of the equilibrium point xe = 0, we rewrite the nonlinear

system (3.1) as

ẋ(t) =
[
A+B1∆t (I −D11∆t)

−1C1

]
x(t), x(0) = x0, (3.2)

for some admissible ∆t = ∆[x(t)] that is continuous and satisfies ∆(0) = 0 by an abuse of

notation. The set of admissible ∆t will be made precise in the development of this section.
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The dynamics ẋ(t) = Ax(t) with A ∈ Rn×n represents the linearized system at xe = 0. The

dimensions of B1, C1, and D11 are n×m1, p1× n, and p1×m1, respectively. Although ∆t

is a nonlinear map: Rn 7→ Rm1×p1 , it can be treated as a time-varying gain dependent on

the state x(t).

Asymptotic stability for nonlinear systems specified in (3.1) has had a long history for

which Lyapunov theory has provided the foundation. If A is a stability matrix, then the

solution x(t) to (3.1) approaches zero asymptotically provided that x0 is in the RoA of the

origin. However, local asymptotic stability does not allude to the size of the RoA. That

is, local asymptotic stability provides no estimate for the region of the initial condition x0

that ensures asymptotic convergence of the solution x(t) to the equilibrium point xe = 0.

The difficulty may lie in the notion of asymptotic stability which is typically difficult to

quantify. For this reason we consider the notion of quadratic stability stated earlier in

Definition 6.

Definition 8 (Quadratic Stability). The system (3.2) is said to be quadratically stable if

there exists a P > 0 and a constant α > 0 such that for each admissible ∆t, the Lyapunov

derivative of the Lyapunov function V (x) = xTPx satisfies

V̇ = 2xTP
(
A+B1∆t (I −D11∆t)

−1C1

)
x ≤ −α ‖x(t)‖2 (3.3)

for all state variables x(t) ∈ Rn and t ∈ R.

The notion of region of quadratic attraction (RoQA) is also important.

Definition 9 (RoQA). The system (3.2) is said to admit RoQA of Q-weighted size εm > 0

at the equilibrium point xe = 0, if there exist square matrices P > 0 and Q > 0 such that

the Lyapunov derivative of the Lyapunov function V [x(t)] = ‖x(t)‖2
P = x(t)TPx(t) satisfies

V̇ (t) < 0 for all t ≥ 0 and x0 ∈ BQ(εm), x0 6= 0.

The notion of quadratic stability is stronger, and thus more tractable, than that of

asymptotic stability which helps to estimate the size of RoQA. Furthermore, the H∞ norm
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can be used to characterize quadratic stability as it was shown in [KPZ90]. For a given

transfer matrix T (s), recall that its H∞-norm is defined by

‖T‖H∞ := sup
Re{s}>0

σ[T (s)] (3.4)

where σ(·) is the maximum singular value. Denote

∆(δ) := {∆t : σ(∆t) ≤ δ, ∆(0) = 0} , δ > 0 (3.5)

as the set of admissible ∆t. Consider the case when T1(s) is a real rational transfer matrix

given by

T1(s) := D11 + C1(sI − A)−1B1. (3.6)

The next lemma will be useful to streamline the arguments to be developed. It essentially

establishes an H∞-norm equivalence between proper and strictly proper transfer matrices

in terms of an algebraic Riccati inequality (ARI).

Lemma 3.1.1. Consider the transfer matrix T1(s) in (3.6) where A is a stability matrix

and define δm := ‖T1‖−1
H∞. For each positive δ < δm, δσ(D11) < 1 holds and

Ã = A+ δ2B1D
T
11(I − δ2D11D

T
11)−1C1, B̃1 = B1(I − δ2DT

11D11)−1/2,

C̃1 = (I − δ2D11D
T
11)−1/2C1,

are well-defined. Denote T̃1(s) = C̃1(sI − Ã)−1B̃1. Then ‖T1‖H∞ < δ−1 if and only if

‖T̃1‖H∞ < δ−1, which is equivalent to the existence of a solution Pδ > 0 to the ARI

ÃTPδ + PδÃ+ PδB̃1B̃
T
1 Pδ + δ2C̃T

1 C̃1 < 0. (3.7)

Proof. We prove by invoking Lemma 2.3.1 which establishes that ‖T1‖H∞ < δ−1, if and
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only if there exists a matrix Pδ > 0 such that

ATPδ + PδA+ δ2CT
1 C1 PδB1 + δ2CT

1 D11

BT
1 Pδ + δ2DT

11C1 δ2DT
11D11 − I

 < 0. (3.8)

By Schur complement the above is equivalent to the ARI

ATPδ + PδA+ δ2CT
1 C1 + (PδB1 + δ2CT

1 D11)(I − δ2DT
11D11)−1(BT

1 Pδ + δ2DT
11C1) < 0.

Let R = I − δ2D11D
T
11. Then R−1 is well-defined by δσ(D11) < 1. We now rewrite the

above ARI as

Pδ(A+ δ2B1D
T
11R

−1C1) + (A+ δ2B1D
T
11R

−1C1)TPδ + PδB1(I − δ2DT
11D11)−1BT

1 Pδ

+ δ2CT
1 (I + δ2D11(I − δ2DT

11D11)−1DT
11)C1 < 0

By noting I + δ2D11(I − δ2DT
11D11)−1DT

11 = (I − δ2D11D
T
11)−1, there holds

PδÃ+ ÃTPδ + PδB̃1B̃
T
1 Pδ + δ2C̃T

1 C̃1 < 0

which is equivalent to ‖T̃1‖H∞ < δ−1 by Lemma 2.3.1.

We now connect the notions of quadratic stability and RoQA of the time varying system

(3.2), with the nonlinear system (3.1).

Theorem 3.1.2. Consider the nonlinear system (3.1) which admits a representation in

(3.2) for some ∆t = ∆[x(t)] ∈ ∆(δ) and some stability matrix A. Let T1(s) be given in

(3.6), T̃1(s) = C̃1(sI − Ã)−1B̃1 be the same as in Lemma 3.1.1, and Pδ > 0 be the solution

to the ARI in (3.7) where δm = ‖T1‖H∞ = ‖T̃1‖H∞ and δ ∈ (0, δm) is a parameter. Define

ϕ(ε) := max
{
σ[∆(x)] : xTPδx ≤ ε2

}
. (3.9)
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Then ϕ(ε) is a continuous and monotonically increasing function of ε. If there exists a

solution ε > 0 to δ = ϕ(ε) and a unique solution εm > ε to δm = ϕ(εm), then xe = 0

is regionally asymptotically stable with RoQA of P -weighted size εm for some P > 0. If

ϕ(ε) < δm for all ε > 0, then the nonlinear system in (3.1) is globally asymptotically stable.

Proof. The continuity of ϕ(ε) follows from the continuity of ∆(·) while the monotonicity

of ϕ(ε) follows from the definition in (3.9). For convenience, denote

w(t) = ∆t (I −D11∆t)
−1C1x(t),

z(t) = C1x(t) +D11w(t). (3.10)

Then ẋ(t) = Ax(t) +B1w(t) by (3.2). Substituting the expression of w(t) into that of z(t)

yields

z(t) =
(
I +D11∆t (I −D11∆t)

−1)C1x

=
(
(I −D11∆t) (I −D11∆t)

−1 +D11∆t (I −D11∆t)
−1)C1x = (I −D11∆t)

−1C1x.

As a result, there holds

w(t) = ∆tz(t). (3.11)

The relationships derived above can be expresses as the feedback system in block diagram

(a) of Figure 3.1. In light of Lemma 3.1.1, stability of A and the hypothesis on ARI (3.7)

imply stability of Ã and δ−1
m = ‖T1‖H∞ < δ−1 which are equivalent to I − δ2D11D

T
11 > 0

and ‖T̃1‖H∞ < δ−1. More importantly there holds the following set equality [Che97]:

S :=
{
A+B1∆t (I −D11∆t)

−1C1 : σ(∆t) ≤ δ
}

=
{
Ã+ B̃1∆̃tC̃1 : σ(∆̃t) ≤ δ

}
=: S̃. (3.12)
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∆t

T1(s)

z(t) w(t)

(a)

∆̃t

T̃1(s)

z̃(t) w̃(t)

(b)

Figure 3.1: Equivalent feedback systems for stability analysis

The nonlinear system in (3.1) can thus be equivalently transformed to

ẋ(t) =
[
Ã+ B̃1∆̃tC̃1

]
x(t), ∆̃t = ∆̃[x(t)], ∆̃(0) = 0. (3.13)

Let w̃(t) = ∆̃tz̃(t) and z̃(t) = C̃1x(t). Then ẋ(t) = Ãx(t) + B̃1w̃(t) that results in an

equivalent feedback system in block diagram (b) on right of Fig. 1. Consequently, the local

asymptotic stability of the nonlinear system in (3.1) with RoQA of P -weighted size ε is

in turn equivalent to that of the nonlinear system in (b) of Figure 3.1 with RoQA of the

same P -weighted size ε. Now set δ ∈ (0, δm) as a parameter with δ−1
m = ‖T̃‖∞. Assume

that there exists a solution ε > 0 to δ = ϕ(ε), i.e., σ(∆̃t) ≤ δ ∀ x(t) ∈ BPδ(ε) and that

there exists a unique solution εm > ε to δm = ϕ(εm), i.e., σ(∆̃t) < δm ∀ x(t) ∈ BPδ(εm).

Setting the Lyapunov function as V (t) = ‖x(t)‖2
Pδ

with Pδ > 0 the solution to the ARI in

(3.7) leads to

V̇ (t) = x(t)T
[
ÃTPδ + PδÃ+ Pδ(B̃1∆̃tC̃1) + (B̃1∆̃tC̃1)TPδ

]
x(t). (3.14)

Since for each pair of matrices (Mb,Mc) with compatible dimensions, there holds MbMc +

MT
c M

T
b ≤MbM

T
b +MT

c Mc. Taking Mb = PδB̃1 and Mc = ∆̃tC̃1 yields

V̇ (t) ≤ x(t)T
(
ÃTPδ + PδÃ+ PδB̃1B̃

T
1 Pδ + C̃T

1 ∆̃T
t ∆̃tC̃1

)
x(t). (3.15)

It follows that if 0 6= x0 = x(0) ∈ BPδ(ε), then by the assumption that there exists a
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solution ε > 0 to δ = ϕ(ε) and ARI (3.7), we have

V̇ (0) ≤ xT0

(
ÃTPδ + PδÃ+ PδB̃1B̃

T
1 Pδ + δ2C̃T

1 C̃1

)
x0 < 0. (3.16)

The condition σ(∆̃t) ≤ δ ∀ x(t) ∈ BPδ(ε) implies that ‖f(x(t))‖ is bounded over x(t) ∈

BPδ(ε). Consequently ‖ẋ‖ is bounded for x(t) ∈ BPδ(ε). Since V is continuous and V̇ (0) <

0, ∃ t1 such that

V (x(t)) < V (x0) ≤ ε2 < εm (3.17)

for all t ∈ [0, t1]. and hence x(t1) ∈ BPδ(ε). Now consider the nonlinear system (3.1)

for t ≥ t1 with the initial condition x1 = x(t1) ∈ BPδ(ε). The preceding process can be

applied to conclude x(t) ∈ BPδ(ε) for t ∈ [t1, 2t1] due to the independence of t for f(·).

By induction, x(t) ∈ BPδ(ε) for all t ≥ 0. The local asymptotic stability of the equilibrium

point xe = 0 follows which admits the RoQA of the Pδ-weighted size ε. Since δ ∈ (0, δm)

can be chosen arbitrarily close to δm, the size of the RoQA can be increased to arbitrarily

close to εm. Finally if (3.9) holds for all ε > 0, then σ(∆̃t) < δm ∀x(t) ∈ Rn by the fact

Pδ > 0. Hence ε =∞ can be taken for which the global asymptotic stability holds.

The strictly increasing δ(ε1) in (3.9) is assumed for the simplicity of the proof. Indeed

Theorem 3.1.2 holds even if this assumption is violated in which case εm can be taken as

the minimum among all the solutions {εκ} satisfying δm = δ(εκ).

Remark 2. Theorem 3.1.2 shows that the nonlinearity of the system (3.1) captured by

∆t in (3.2) via linear fractional transformation (LFT) can be regarded as time-varying

uncertainty for stability analysis. However, it is important to note that it cannot be treated

as an exogenous uncertainty due to the dependence of ∆t on the state vector x(t). For

this reason the estimate for the size of the RoQA in Theorem 3.1.2 is the largest possible

in the best of our knowledge and in light of the existing results on quadratic stability for
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time-varying uncertain systems. It is interesting to observe the consistency between the

equivalence of ‖T1‖H∞ < δ−1 and ‖T̃1‖H∞ < δ−1 and the set equivalence (3.12) in the

proof.

Clearly for a given nonlinear system in (3.1), the representation in (3.2) is not unique.

One way to search for such a representation is to set

f(x) =
[
A+ E1(I − E2)−1C1

]
x

where E1 and E2 are both bounded functions of x according to

 E1(t)

E2(t)

[ E1(t)T E2(t)T
]
≤ δ2

m

 B1

D11

[ BT
1 DT

11

]

∀ x(t) ∈ BPδ(εm) and for some given B1, D11, and Pδ > 0. The above can be simplified, if

E1 and E2 are linear, i.e.,

E(t) =

[
Φ1x(t) Φ2x(t) · · ·Φnx(t)

]

for some constant matrices {Φi}. It follows that εm =
√
λmin(Pδ)δm with (3.9) replaced by

δm = max
{
σ[∆(x)] : x ∈ Rn & xTPδx ≤ ε2

m = λmin(Pδ)δ
2
m

}
, (3.18)

because the strictly monotonicity holds.

The RoQA in Theorem 3.1.2 has an elliptical region. If a spherical region is preferred,

then the following result will be useful in estimating the size of RoA.

Corollary 3.1.3. Under the same hypotheses/conditions as in Theorem 3.1.2, the ori-

gin of the nonlinear system (3.1) is asymptotically stable with the spherical RoA of size

εm√
λmax(Pδ)

max{1,
√
λmin(Pδ)}.
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Proof. In light of Theorem 3.1.2, BPδ(εm) is the RoQA. Thus for the solution trajectory

x(t) to (3.1) with x(0) = x0 ∈ BPδ(εm), V (t) = ‖x(t)‖2
Pδ
> 0 and V̇ (t) < 0 for all t > 0

whenever x(t) 6= 0 where Pδ > 0 satisfies the ARI (3.7) with δ arbitrarily close to δm. It

follows that

V (t) = x(t)TPδx(t) < xT0 Px0 ≤ λmax(Pδ)‖x0‖2 < ε2
m

for all t > 0, provided that ‖x0‖ < εm/
√
λmax(Pδ). Consequently the set

B
(
εm/

√
λmax(Pδ)

)
⊆ BPδ(ε) (3.19)

that concludes the asymptotic stability of xe = 0 with the spherical RoA of size εm/
√
λmax(Pδ).

On the other hand, since P > 0, there exists a nonsingular matrix S such that P = STS.

Denote x̃(t) = Sx(t). Direct calculation shows that, by monotonic decreasing of V (t) =

‖x̃(t)‖2 to zero, there holds

‖x(t)‖2 = x(t)Tx(t) = x̃(t)TP−1
δ x̃(t) ≤ λmax(P−1

δ )‖x̃(t)‖2

< ‖x̃(0)‖2/λmin(Pδ)

≤ ‖x0‖2λmin(Pδ)/λmax(Pδ) ≤ ε2
m,

provided that ‖x0‖ < εm
√
λmin(Pδ)/

√
λmax(Pδ). As a result, the set

B
(
εm
√
λmin(Pδ)/

√
λmax(Pδ)

)
⊆ BPδ(ε). (3.20)

Hence the solution trajectory x(t) converges to zero asymptotically, if the initial condition

x0 belongs to either the set in (3.19) or the set in (3.20) by Theorem 3.1.2.

Our results in this section have an intimate relation to the classical nonlinear stability

results [Zam66a, Zam66b] by Zames, i.e., the small gain theorem. Indeed the stability

results of Zames are established for static sector-bounded nonlinearities in the input-ouput
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framework while our results in Theorem 3.1.2 and Corollary 3.1.3 are applicable to dynamic

sector-bounded nonlinearities embedded in the state-space model. Although our results are

more conservative due to the dependence of the sector-bounded nonlinearity on the state

variables, they provide a feasible procedure to cope with more general type of nonlinearities

involved in the state-space model.

3.1.2 Feedback Stabilization

The nonlinear system under consideration is described by the nonlinear state-space

model NS:

ẋ(t) = f [x(t), u(t)], y(t) = h[x(t), u(t)], x(0) = x0, (3.21)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm2 is the control input, and y(t) ∈ Rp2 is the

measured output. Without loss of generality the nonlinear control system in (3.21) assumes

the origin as the equilibrium point, i.e., f(0, 0) = 0. The problem of feedback stabilization

aims at design of a state or output feedback controller such that the equilibrium point is

asymptotically stable.

We start by rewriting the nonlinear state-space model in (3.21) as

 ẋ

y

 =


 A B2

C2 D22

+

 B1

D21

∆t(I −D11∆t)
−1

[
C1 D12

]
 x

u

 , (3.22)

where x(0) = x0 and ∆t = ∆[x(t), u(t)] ∈ ∆ by an abuse of notation. Note that ∆t also

satisfies

∆t|x(t)=0,u(t)=0 = ∆(0, 0) = 0. (3.23)

29



Realization matrices (A,B2, C2, D22) can be obtained via linearization as

A =
∂f(x, u)

∂x

∣∣∣∣
x=0,u=0,

B2 =
∂f(x, u)

∂u

∣∣∣∣
x=0,u=0,

C2 =
∂h(x, u)

∂x

∣∣∣∣
x=0,u=0,

D22 =
∂h(x, u)

∂u

∣∣∣∣
x=0,u=0,

with A ∈ Rn×n, B2 ∈ Rn×m2 , C2 ∈ Rp2×n, and D22 ∈ Rp2×m2 . The dimensions of B1, C1,

and D11 are n×m1, p1×n, and p1×m1, respectively, and those of D12 and D21 can be easily

determined based on (3.22). The nonlinearities of (3.21) are captured by ∆t = ∆[x(t), u(t)]

that is a nonlinear map: Rn × Rm2 7→ Rm1×p1 .

Our approach to nonlinear stabilization is again based on the notion of quadratic

stability and by treating the nonlinear term ∆t = ∆[x(t), u(t)] as bounded time-varying

uncertainty which is now dependent on both the state and control input. For convenience,

denote

G(s) =

 D11 D12

D21 D22

+

 C1

C2

 (sI − A)−1

[
B1 B2

]
. (3.24)

It is assumed that (A,B2) is stabilizable, (C2, A) is detectable, and D22 = 0. Further

assumptions on the plant data will depend on the computational method chosen to solve the

H∞ synthesis problems that follow, and generally there is a trade-off between computational

complexity and restrictions on the plant data.

Our first result is concerned with stabilization of the nonlinear system in (3.21) under

linear state feedback control as illustrated in block diagram (a) of Figure 3.2. We assume

that R = DT
12D12 > 0 and

rank


 A− jωI B2

C1 D12


 = n+m2 ∀ ω ∈ R. (3.25)
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NS

F

u(t) x(t)

(a)

∆t

F`(G,F )

z(t) w(t)

(b)

Figure 3.2: (a) Nonlinear system with linear state feedback; (b) Equivalent loop

Theorem 3.1.4. Consider the nonlinear system in (3.21) that admits the representation

in (3.22) where D22 = 0, D21 = 0 and C2 = I. Let F be the stabilizing state feedback gain

and TF (s) = D11 + (C1 +D12F )(sI − A−B2F )−1B1. Then

δm :=
(

inf
F
‖TF‖H∞

)−1

> 0 (3.26)

exists. Let (Ã, B̃1, C̃1) be the same as in Lemma 3.1.1 and D̃12 = (I − δ2D11D
T
11)−1/2D12

for some parameter δ ∈ (0, δm) arbitrarily close to δm. Then there exists an X > 0 to the

following ARI:

ÃTRX +XÃR −X(B2R
−1BT

2 − δ−2B̃1B̃
T
1 )X + C̃T

RC̃R < 0 (3.27)

where ÃR = Ã−B2R̃
−1D̃T

12C̃1, C̃R = (I − D̃12R̃
−1D̃T

12)C̃1, and R̃ = D̃T
12D̃12. Let

u(t) = Fx(t), F = −R̃−1(D̃T
12C̃1 +BT

2 X), (3.28)

be the state feedback control law. If there exists an εm > 0 such that

σ[∆(x, Fx)] < δm ∀ x ∈ BX(εm), (3.29)

then the nonlinear system in (3.21) under the state feedback control law (3.28) is regionally

asymptotically stable with RoQA of X-weighted size εm. If (3.29) holds for all x ∈ Rn,

then the nonlinear system in (3.21) under the state feedback control law (3.28) is globally
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∆t

G(s)

F

w(t)

u(t)

z(t)

x(t)

Figure 3.3: Equivalent LFT state feedback system

asymptotically stable.

Proof. The representation in (3.22) can be used to aid feedback stabilization. Denote

w(t) = ∆t(I −D11∆t)
−1[C1x(t) +D12u(t)], (3.30)

z(t) = C1x(t) +D11w(t) +D12u(t). (3.31)

Then w(t) is bounded for all x(t) ∈ BX(εm), σ(D11∆t) ≤ σ(D11)δ < 1 in light of (3.29) and

the fact that δ > 0 can be made arbitrarily close to δm. Hence w(t) can be rewritten as

w(t) = ∆t [C1x(t) +D11w(t) +D12u(t)] = ∆tz(t). (3.32)

The dynamic equations in (3.22) can now be described equivalently by

ẋ(t) = Ax(t) +B1w(t) +B2u(t), (3.33)

z(t) = C1x(t) +D11w(t) +D12u(t), (3.34)

where w(t) = ∆tz(t) and y(t) = x(t) is the measured output. This gives rise to the block

diagram in Figure 3.3 where G(s) is the same as in (3.24) except that D21 = 0, D22 = 0,

and C2 = I.

Since u(t) = Fx(t) is the state feedback control law, the block diagram in Figure 3.3 is
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equivalent to the one in (b) of Figure 3.2 and thus

F`(G,F ) = G11(s) +G12(s)F [I −G22(s)F ]−1G21(s). (3.35)

As a result the dynamic equations in (3.33) are changed to

ẋ(t) = (A+B2F )x(t) +B1w(t), (3.36)

z(t) = (C1 +D12F )x(t) +D11w(t), (3.37)

w(t) = ∆tz(t), ∆t = ∆[x(t), Fx(t)]. (3.38)

Hence the closed-loop stability for the nonlinear feedback system in block diagram (b) of

Figure 3.2 is identical to that in (a) of Figure 3.1 with T1(s) replaced by

TF (s) = F`(G,F ) = D11+(C1 +D12F )(sI − A−B2F )−1B1. (3.39)

A similar method to the proof of Theorem 3.1.2 can be employed to eliminate D11 6= 0 by

noting the following set equality similar to (3.12):

SF :=
{
A+B2F +B1∆t (I −D11∆t)

−1 (C1 +D12F ) : σ(∆t) ≤ δ
}

=
{
Ã+B2F + B̃1∆̃t(C̃1 + D̃12F ) : σ(∆̃t) ≤ δ

}
=: S̃F . (3.40)

We thus have an equivalent feedback system in block diagram (b) of Figure 3.1 with T̃1(s)

replaced by

T̃F (s) = (C̃1 + D̃12F )(sI − Ã−B2F )−1B̃1. (3.41)

In light of the H∞ control theory and Lemma 3.1.1, the existence of a solution X > 0 to the
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ARI in (3.27) implies that ‖T̃F‖H∞ < δ−1 that is equivalent to ‖TF‖H∞ = ‖F`(G,F )‖H∞ <

δ−1. Local asymptotic stability of the origin for the closed-loop system thus holds which

admits RoQA of X-weighted size εm under the condition in (3.29) in light of Theorem

3.1.2 by setting V (t) = ‖x‖2
X = x(t)TXx(t). Global asymptotic stability of the closed-

loop system follows as well if the condition (3.29) holds for all x ∈ Rn that completes the

proof.

The result of Theorem 3.1.4 can be stated in terms of an algebraic Riccati equality

(ARE), rather than ARI. However the ARI is more convenient to deal with the case when

D12 does not have full row rank or even D12 = 0. For this reason, the LMI method is

preferred [GA94, Gah96].

Similar to Theorem 3.1.2, εm can be obtained via the monotonically increasing function

ϕ(ε) = max
{
σ[∆(x, Fx)] : xTXx ≤ ε2

}
. (3.42)

If ϕ(ε) is strictly increasing, then ϕ(εm) = δm has a unique solution εm for the given δm.

Otherwise δ(εi) = δm may admit more than one solution in which case εm can be chosen

as the minimum of the solution set {εi}. How to pick a suitable value for εm depends on

the form of ∆t. The simplest case is when ∆t is a linear function of x(t) and u(t) in the

form of

∆t =

[
Φ1x(t) + Ψ1u(t) · · ·Φnx(t) + Ψnu(t)

]
. (3.43)

More complicated ones may involve high order terms or even transcendental functions of

x(t) and u(t). For ∆t in (3.43), it can be shown that a suitable value for εm is given by

εm = δm

/√√√√√√λmax


 I

F

X−1

[
I F T

]. (3.44)
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N (f, h)

K(s)

u(t) y(t)

(a)

∆t

F`(G,K)

z(t) w(t)

(b)

Figure 3.4: (a) Nonlinear system with linear output feedback; (b) Equivalent loop

In the case when A is a stability matrix and F = 0, or u(t) ≡ 0, the above reduces to

εm = δm
√
λmin(X) by λmax (X−1) = 1/λmin(X), that agrees with the result in Section

3.1.1. The following result provides the spherical size of the RoA. Its proof is skipped since

it is similar to that of Corollary 3.1.3.

Corollary 3.1.5. Under the same hypotheses/conditions as in Theorem 3.1.4, the ori-

gin of the nonlinear system (3.1) is asymptotically stable with the spherical RoA of size

εm√
λmax(X)

max{1,
√
λmin(X)}.

We now consider stabilization of the nonlinear system in (3.21) under output feedback

control as illustrated in block diagram (a) of Figure 3.4.

While Lemma 3.1.1 served as a useful method to simplify stability analysis in Section

3.1.1 and state feedback synthesis, we prefer to invoke the loopshifting and scaling argument

[SL88] for output feedback synthesis. Consequently we assume that D11 = 0,

DT
12

[
C1 D12

]
=

[
0 Im2

]
, D21

[
BT

1 DT
21

]
=

[
0 Ip2

]
.

Let the strictly proper stabilizing controller K(s) be described by

˙̂x(t) = AK x̂(t) +BKy(t), u(t) = CK x̂(t). (3.45)

Then the closed-loop transfer matrix TOF (s) = F`[G(s), K(s)] with G(s) in (3.24) is given
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by

TOF (s) =

[
C1 D12CK

]sI −
 A B2CK

BKC2 AK



−1  B1

BKD21

 . (3.46)

The significance of the transfer matrix TOF (s) will be made clear in Theorem 3.1.6. Define

δm :=
(

inf
K
‖TOF‖H∞

)−1

> 0 (3.47)

that exists. By standard H∞ theory, ‖TOF‖∞ < δ−1 for some parameter δ ∈ (0, δm), if and

only if there exist X > 0 and Y > 0 to the following ARIs

AY + Y AT − (B2B
T
2 − δ2B1B

T
1 ) + Y CT

1 C1Y < 0, (3.48)

ATX +XA− (CT
2 C2 − δ2CT

1 C1) + Y B1B
T
1 Y < 0, (3.49)

respectively, which satisfy the coupling condition:

δ−1X I

I δ−1Y

 ≥ 0. (3.50)

The stabilizing output feedback controller is given by

AK = −U−1(AT + δ−2X(A+ LC2 +B2F )Y +XB1B
T
1 + CT

1 C1Y )(V T )−1,

BK =
1

δ
U−1XL, CK =

1

δ
FY (V T )−1, (3.51)

where V UT = I − δ−2Y X, F = −BT
2 Y
−1, and L = −X−1CT

2 .

Theorem 3.1.6. Consider the nonlinear system in (3.21) that admits the representation
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in (3.22). If there exists an εm > 0 such that

σ[∆(x,CK x̂)] < δm ∀

x
x̂

 ∈ BP(εm) (3.52)

with P =

1
δ
X U

UT X2

, then the nonlinear system in (3.21) under the output feedback con-

troller K(s) is regionally asymptotically stable with RoQA of P-weighted size εm. If (3.52)

holds for all x, x̂ ∈ Rn, then the nonlinear system in (3.21) under the output feedback

controller K(s) is globally asymptotically stable.

Proof. Similar to Theorem 3.1.4, the dynamic and measurement equations in (3.22) can be

described equivalently by

ẋ(t) = Ax(t) +B1w(t) +B2u(t) (3.53)

z(t) = C1x(t) +D12u(t) (3.54)

y(t) = C2x(t) +D21w(t) +D22u(t) (3.55)

where w(t) = ∆tz(t). This gives rise to the block diagram in Figure 3.5.

∆t

G(s)

K(s)

w(t)

u(t)

z(t)

y(t)

Figure 3.5: Equivalent LFT output feedback system

With the controller realization given in (3.45) and G(s) in (3.24), the block diagram in
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Figure 3.5 is equivalent to the one in (b) of Figure 3.4, and thus

F`(G,K) = G11 +G12K[I −G22K]−1G21 (3.56)

As a result the dynamic equations in (3.53) are changed to

ẋ(t) = Ax(t) +B2CK x̂(t) +B1w(t) (3.57)

˙̂x(t) = BKC2x(t) + AK x̂(t) +BKD21w(t) (3.58)

z(t) = C1x(t) +D12CK x̂(t) (3.59)

Define augmented state matrices as

A =

 A B2CK

BKC2 AK

 , B =

 B1

BKD21

 ,
C =

[
C1 D12CK

]
. (3.60)

Then is clear that

TOF(s) = F`(G,K) = C(sI −A)−1B (3.61)

Hence the closed-loop stability for the nonlinear output feedback system in block diagram

(b) of Figure 3.4 is identical to that in (a) of Fig. 3.1 with T1(s) replaced by TOF(s). In

light of H∞ control theory, the existence of a solution P > 0 to

ATP + PA+ δPBBTP + δCTC < 0 (3.62)

is equivalent to ‖TOF‖∞ < δ−1. By standard H∞ theory, we may restate (3.62) in terms

of the two ARIs in (3.48) and (3.49), plus the coupling condition in (3.50) that simplifies
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the computation of the RoQA and also allows us to compute the stabilizing controller.

Partition P =

 X̂ U

UT X2

 and P−1 =

 Ŷ V

V T Y2

. Define R =

X̂ U

I 0

 and S =

 I 0

Ŷ V

,

then SP = R. Assume that the controller order is not smaller than n. Hence U has more

columns than rows, which allows us to assume that U has full row rank. This implies that

R has full row rank too. Due to SP = R, S also has full row rank. Now multiply (3.62)

and P > 0 by S on the left and ST on the right to obtain

SATRT +RAST + δRBBTRT + δSCTCST < 0 (3.63)

SRT > 0 (3.64)

Note that the inequalities (3.62) and P > 0 are preserved since S has full row rank. After

some algebra, recalling Ŷ X̂ + V UT = I and defining

L = X̂−1UBK (3.65)

F = CKV
T Ŷ −1 (3.66)

we conclude that (3.63) and (3.64) may be written as

 (A+ LC2)T X̂ + X̂(A+ LC) AT + X̂(A+ LC2 +B2F )Ŷ + UAKV
T

A+ (X̂(A+ LC2 +B2F )Ŷ + UAKV
T )T (A+B2F )Ŷ + Ŷ (A+B2F )T

+

δ

X̂(B1 + LD21)(B1 + LD21)T X̂ X̂(B1 + LD21)BT
1

B1(B1 + LD21)T X̂ B1B
T
1

+

δ

 CT
1 C1 CT

1 (C1 +D12F )Ŷ

Ŷ (C1 +D12F )TC1 Ŷ (C1 +D12F )T (C1 +D12F )Ŷ

 < 0

(3.67)
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X̂ I

I Ŷ

 > 0 (3.68)

Now we use the fact that if xT

M11 M12

MT
12 M22

x < 0 ∀ x ∈ Rn then

[
x1 0

]T M11 M12

MT
12 M22


x1

0

 = xT1M11x1 < 0.

So

M11 M12

MT
12 M22

 < 0 implies M11 < 0, the same argument may be applied to obtain that

M11 M12

MT
12 M22

 < 0 implies M22 < 0. Therefore, (3.67) implies

(A+B2F )Ŷ + Ŷ (A+B2F )T + δB1B
T
1 + δŶ (C1 +D12F )T (C1 +D12F )Ŷ < 0 (3.69)

(A+ LC2)T X̂ + X̂(A+ LC2) + δX̂(B1 + LD21)(B1 + LD21)T X̂ + δCT
1 C1 < 0 (3.70)

Now multiply (3.69) and (3.70) by δ and define Y = δŶ and X = δX̂ to obtain

(A+B2F )Y + Y (A+B2F )T + δ2B1B
T
1 + Y (C1 +D12F )T (C1 +D12F )Y < 0 (3.71)

(A+ LC2)TX +X(A+ LC2) +X(B1 + LD21)(B1 + LD21)TX + δ2CT
1 C1 < 0 (3.72)

Next we use the well known fact that for any F ,

(A+B2F )Y + Y (A+B2F )T + δ2B1B
T
1 + Y (C1 +D12F )T (C1 +D12F )Y ≥

AY + Y AT − (B2B
T
2 − δ2B1B

T
1 ) + Y CT

1 C1Y (3.73)
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and a dual version of it to conclude that (3.70) and (3.69) imply

AY + Y AT − (B2B
T
2 − δ2B1B

T
1 ) + Y CT

1 C1Y < 0 (3.74)

ATX +XA− (CT
2 C2 − δ2CT

1 C1) + Y B1B
T
1 Y < 0 (3.75)

It is claimed that if X and Y satisfy (3.48), (3.49), and (3.50), then an output feedback

controller can be synthesized. First we set F = −BT
2 Y
−1 and L = −X−1CT

2 . By the well

known fact quoted above, if X and Y satisfy (3.48) and (3.49), then with our particular

choice of F and L, (3.69) and (3.70) are also satisfied. Since (I − Ŷ X̂)−1 exists, there exist

U and V such that V UT = I − Ŷ X̂. A particular choice is U = I and V = I − Ŷ X̂.

Now set BK = U−1X̂L and CK = FŶ V −T which also satisfy (3.65) and (3.66). Now the

diagonal blocks of (3.67) are negative definite and we only need to compute AK . We choose

AK such that the off diagonal blocks are zero so that (3.67) holds. Hence

AK = −U−1(AT + X̂(A+ LC2 +B2F )Ŷ + δX̂(B1 + LD21)BT
1 + δCT

1 (C1 +D12F )Ŷ )V −T

(3.76)

which simplifies by the assumptions on the plant realization. Specifically, P > 0 is con-

structed as P =

δ−1X U

UT X2

 where X2 = −δ−1UTY (V T )−1. Local asymptotic stability

of the origin for the closed-loop system thus holds which admits RoQA of P-weighted size

εm under the condition in (3.52) in light of Theorem 3.1.2 by setting

V (t) =

∥∥∥∥∥
[
xT x̂T

]T∥∥∥∥∥
2

P

=

[
xT x̂T

]
P
[
xT x̂T

]T
.

Global asymptotic stability of the closed-loop system follows as well if the condition (3.52)

holds for all x, x̂ ∈ Rn that completes the proof.

Remark 3. As mentioned previously, the LMI approach to controller synthesis places the
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least amount of restrictions on plant data. In fact, it only requires that (A,B2) be stabilizable

and (C2, A) be detectable. The solvability conditions, (3.48), (3.49), and (3.50), too have

an equivalent description in the ARE approach. We refer to [LH06, Gah96] for further

reading.

For ∆t with the form in (3.43) with u = CK x̂, it can be shown that a suitable value

for εm for the output feedback case is given by

εm = δm

/√√√√√√λmax


I 0

0 CK

P−1

I 0

0 CT
K


. (3.77)

The following result provides the spherical size of the RoA. Its proof is skipped since it is

similar to that of Corollary 3.1.3.

Corollary 3.1.7. Under the same hypotheses/conditions as in Theorem 3.1.4, the ori-

gin of the nonlinear system (3.1) is asymptotically stable with the spherical RoA of size

εm√
λmax(P)

max{1,
√
λmin(P)}.

3.2 Polytope Method

We consider quadratic nonlinear systems of the form

ẋ(t) = f(x, u) = Ax(t) +Bu(t) +Q[x(t), u(t)], (3.78)

where Q[·, ·] is the quadratic term given by

Q[x, u] =


xTN1x

...

xTNnx

+


xTM1

...

xTMn

u+


uTK1u

...

uTKnu

 .

In this method, we exploit the well known fact that an affine function is negative definite

over a polytope if it is negative definite on its vertices, see for example [HB76]. As pointed
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out in [ACM07], this property of convex functions is useful for stability analysis of quadratic

systems, since the Lyapunov derivative of a quadratic system is negative definite over a

polytope if it is negative definite on the vertices of the polytope. For the controller design

we will use the following two equivalent descriptions of the polytope, P ,

P =
{
x : aTj x ≤ 1, j = 1, . . . , q

}
(3.79)

= conv
{
x(1), . . . , x(p)

}
(3.80)

where x(i) is the ith vertex of P , conv {C} is the convex hull of the set C, and aTj is a

row vector (not the jth element of vector aT ). The first description corresponds to the

solution of a set of linear inequalities while the second to the the convex hull of the finite

set
{
x(1), . . . , x(p)

}
[BV04]. For this method, it is difficult to explicitly provide an expression

for ∆(t) as we did in (3.5) since the bounding set consists of an intersection of sets. We

point out that a similar design procedure was presented in [AAA+07]. However, the work in

[AAA+07] did not consider systems that are quadratic in the input, i.e., the term involving

Ki in (3.78).

Theorem 3.2.1. Let δ > 0, and ∆∆∆ = {x : x ∈ P , Fx ≤ δ}. The system (3.78) is quadrat-

ically stable if there exist Y = Y T and Z s.t.

Y > 0 (3.81)

sym(AY + BZ) + sym



x(i)T (N1Y +M1Z)

...

x(i)T (NnY +MnZ)


+ sym



δK1

...

δKn

Z

 < 0, i = 1, . . . , p

(3.82)
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aTj Y aj ≤ 1, j = 1, . . . , q (3.83)−δ2I Z

ZT −Y

 ≤ 0 (3.84)

with RoQA BP (1), where P = Y −1. The stabilizing gain is given by F = ZY −1.

Proof. Let V (x) = xTPx. The Lyapunov derivative of V is given by

V̇ = xT

ATFP + PAF + sym

P

xT
(
N1 +M1F + F TK1F

)
...

xT
(
Nn +MnF + F TKnF

)


x. (3.85)

Now we pre and post multiply

ATFP + PAF + sym

P

xT
(
N1 +M1F + F TK1F

)
...

xT
(
Nn +MnF + F TKnF

)

 < 0 (3.86)

by P−1 and subsitute Y = P−1 and Z = FP−1 to obtain the equivalent expression

sym

AY +BZ +


xT (N1Y +M1Z)

...

xT (NnY +MnZ)


+ sym



xTF TK1

...

xTF TKn

Z
 < 0. (3.87)

If there exists a polytope P with vertices
{
x(1), . . . , x(p)

}
such that

sym

AY +BZ +


x(i)T (N1Y +M1Z)

...

x(i)T (NnY +MnZ)


+ sym

δ

K1

...

Kn

Z
 < 0, i = 1, . . . , p

(3.88)
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then V̇ < 0 ∀ x ∈ ∆∆∆. The inequality V̇ < 0 ∀ x ∈ ∆∆∆ under the hypothesis of (3.88) on

the vertices of P is due to the fact that (3.87) is an affine function of x (see theorem 1

in [HB76] or [BV04] for more general results) and due to Fx ≤ δ ∀ x ∈ ∆∆∆. Therefore,

if (3.81) and (3.82) hold, then V̇ < 0. To determine the RoQA we need to ensure that

BP (1) is contained in ∆∆∆. Condition (3.83) guarantees that BP (1) ⊆ P (see Section 5.2.2 in

[BGFB94]). In addition, Fx ≤ δ ∀ x ∈ BP (1) must hold. In order to guarantee that this is

indeed the case, we require that

FP−1F T = FY F T ≤ δ2 (3.89)

again, by the argument in Section 5.2.2 of [BGFB94]. Since FY F T = ZY −1ZT , we can

write (3.89) as an LMI by Schur complement to obtain (3.84).

An obvious disadvantage of this method is that the number of vertices that describe a

polytope grows at O (2n). Therefore p = 2n. This means that this method is only tractable

for systems with a rather small number of states.

3.3 Equilibrium Path Design

The methods for analysis and synthesis described in Sections 3.1 and 3.2 provide re-

gional stability results. However, if the initial condition is outside the RoQA of the desired

operating point then system stability and feedback stabilization cannot be claimed. For

practical problems this is an important issue. We address it in this section.

Consider the nonlinear system (3.21). In light of Theorems 3.1.4 and 3.1.6, a feedback

controller can be designed such that the operating point (xe, ue) is regionally stable. Now

the problem is to determine when the nonlinear system (3.21) can be semi-globally sta-

bilized, i.e., given each initial condition x0, does the state vector x(t) → xe as t → ∞?

Apparently it is not possible for us to use a single fixed linear feedback control law to

achieve semi-global stabilization. Therefore, our approach is the use of switching control

laws and the stability results from Section 3.1.2. This leads to the following definition.
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Definition 10 (Centered-ε-Cover). The state-space associated with system (3.21) is said

to have a centered-ε-cover, if the center of each RoQA is contained inside a neighboring

RoQA.

We exploit this idea in the following manner: If the system (3.21) has a centered-ε-

cover, then each initial state x0 can be attracted to the center of the next RoQA (that

is closer to the origin or the desired operating point) by an appropriate state or output

feedback control law. The requirement in this path is that the center of the ith RoQA must

be inside the domain of the (ith + 1) RoQA. This is illustrated in Figure 3.6 for a path

divided into two sections, one corresponding to ε1 and another to ε2.

x(0)
*

x1

x2

ε1

ε2

Figure 3.6: Equilibria path program example

Hence the following holds.

Theorem 3.3.1. Suppose that the state-space associated with the system (3.21) admits a

centered-ε-cover. Then there exists a linear time-varying state feedback control law such

that the system is semi-globally stable for each initial condition x0.

It is important to emphasize a few key points in our proposed method related to the

switched systems investigated in the literature and in our brief overview in Section 2.5.

The family of indexed systems that we consider consists of the local description of the

nonlinear system about the selected equilibrium point. Controller design is carried out

based on the local linearization about the selected equilibrium point. The switching signal

is most appropriately characterized as autonomous since switching depends on the location
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of the state vector in the state-space. Therefore, roughly speaking, the ε-cover condition

effectively determines the switching signal. In contrast to Theorem 2.5.1, we do not consider

a single common Lyapunov function to prove stability of the switched system. Instead we

establish the stability of the switched system by the Lyapunov arguments in Theorems 3.1.4

and 3.1.6 and the ε-cover condition. This allows us to use different Lyapunov functions

(one per operating point) to prove stability. It is also interesting to note that the switched

trajectory is continuous but may be non-differentiable at the switching instants.

3.4 An Illustrative Example

Consider a two spatial-dimension fluid convection problem with quadratic dynamics

and linear measurement equation as it appears in [Bew99].

˙̄x1 = σ(x̄2 − x̄1)

˙̄x2 = −x̄2 − x̄1x̄3

˙̄x3 = −bx̄3 + x̄1x̄2 − bū

y = x̄2 (3.90)

x̄1

ūx̄3

x̄2gravity

Figure 3.7: Fluid convection loop

Physically, x̄1 is proportional to the intensity of the fluid motion, x̄2 is proportional

to the lateral temperature fluctuations in the fluid, and x̄3 is proportional to the verti-

cal temperature fluctuations in the fluid. The control input is the loop Rayleigh num-

ber, ū, and is proportional to the heating rate at the bottom of the convective sys-
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tem. Laboratory scale parameter values σ = 4, b = 1 ,and ū = 48 ensure the sys-

tem operates in the chaotic regime as shown in Figure 3.8. We consider two unsta-

ble operating points (x̄
(1)
e , ū

(1)
e ) =

([√
b(r − 1)

√
b(r − 1) −1

]T
, r

)
and (x̄

(2)
e , ū

(2)
e ) =([√

b(r̃ − 1)
√
b(r̃ − 1) −1

]T
, r̃

)
which physically correspond to the fluid moving with

a constant clockwise velocity.

0 2 4 6 8 10 12 14 16 18 20
−30

−20

−10

0

10

20

30

t

x̄
(t

)

x̄1

x̄2

x̄3

Figure 3.8: Convection loop in chaotic regime

We will design a state and output feedback controller using the sector-bounded nonlin-

earity method, and a state feedback controller using the polytope method. Before designing

the controller we notice that x̄1(t) is always stable and tracks x̄2(t) asymptotically. This

special structure of the dynamics suggests us to only consider stabilization of the (x̄2, x̄3)

subsystem. In addition, designing a controller only for this subsystem results in less con-

servative estimates of the RoQA for the sector-bounded method.
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By defining x = x̄− x̄e and u = ū− ūe, the nonlinear state-space model (3.90) at x̄e is

rewritten into

ẋ =

−1 −x̄e1

x̄e1 −b

x+ E(t)x+

 0

−b

u

where E(t) =

 0 −x1

x1 0

. We compute the bound

E(t)′E(t) = x2
1

1 0

0 1

 ≤ δ2I ∀ x1(t) ∈ B(δ) (3.91)

and note that for this example, ∆t is a linear function of x(t). The control objective is to sta-

bilize the system to x̄
(1)
e =

[
6.8557 6.8557 −1

]T
and then to x̄

(2)
e =

[
7.1084 7.1084 −1

]T
. The state trajectory for the state and output feedback case is shown in Figures 3.9(a)

and 3.9(b), respectively. The initial condition for both the state and output feedback case

is

[
8.61 6.43 −1.11

]T
.

We see from Figures 3.10(a) and 3.10(b) that the main difference between the state and

output feedback controller is the transient performance and the more conservative RoQA

for the output feedback controller. In the case of the latter this is clear from the equilibria

path which requires more switches than the state feedback case. In fact, for output feedback

we have only illustrated the first half of the equilibria path (from x̄0 to x̄
(1)
e ) in order to

keep the figure clearer.

For both cases there is a tradeoff between δm and the RoQA of x2 and x3. If δm is

chosen near its maximum, then the RoQA of x2 and x3 will shrink too much. We therefore

chose a value roughly a third of the maximum for δm; this choice provided a good tradeoff

for this example.
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(b) Output feedback.

Figure 3.9: Closed loop equilibria path trajectory

We now design a state feedback controller via the polytope method. Although for the

sector bounded approach we have to design the controller only for the (x̄2, x̄3) subsystem

mainly due to a vanishing RoQA, for the present method we consider the whole state

vector. The initial condition is

[
6.81 6.53 −0.67

]T
and the state trajectory is shown in

Figure 3.11.

From Figure 3.12 we can see that the controller only requires two switches to steer the

state to x̄
(2)
e . In addition, the initial condition of the third component of the state vector

is farther away from the equilibrium value compared to the previous design method.
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Figure 3.10: Closed loop equilibria path trajectory in state-space
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Figure 3.11: Equilibria path trajectory for state feedback controller
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Figure 3.12: Equilibria path trajectory in state-space for state feedback controller
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Chapter 4
Application: Fluid Flow Control

The efficiency of a gas turbine is closely related to the temperature at which it operates;

essentially, efficiency is improved at a higher operating temperature as shown in Figure 4.1

[HDE00].

Figure 4.1: Increased turbine inlet temperature improves cycle power output

Usually the operating temperatures are in excess of 1600◦ F and it is not surprising

that this situation poses a difficult challenge for the design of materials that are able to

withstand these high temperatures. An alternative to material design is film cooling. Film

cooling refers to the process of injecting cool air on the surface of components, we focus on

the turbine blades, through small holes. If it is done right, a thin protective layer of cool

air will form on the surface of the blades reducing heat transfer from the environment into

the surface of the blade, allowing the turbine to operate at a high temperature without

damaging the blades. A schematic of a typical blade with film cooling holes as it appears in

[Lab06] is shown in Figure 4.2. A comprehensive overview of the technology can be found

in [BT06].
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Figure 4.2: A typical blade with film cooling holes

Since we are trying to modify the natural flow of the gas turbine fluid, our problem falls

into the category of fluid flow control problems. Fluid flow control problems are classified

into two: passive and active [GeHPB98]. In a passive flow control problem, the flow field

is modified through a control device that does not require external energy; for example,

the roughness, shape, or curvature of a wall. In an active flow control problem, the flow is

modified through a device that does require external energy; for example, suction/injection

of fluid at a boundary. We focus on active flow control, in particular, feedback flow control.

Fluid Flow Control

Active

Open Loop

Optimal Control

Closed Loop

Optimal Control,
LQR, H∞

Passive

Surface rough-
ness, shape,
or curvature
optimization

Figure 4.3: Fluid flow control classifications
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There are several approaches to the film cooling problem. We approach it as a velocity

tracking problem. The reason is that roughly speaking, we wish to prevent mixing of the

coolant and combustion fluids so that the coolant remains close to the wall where it is

injected. Although there is no consensus on what the best measure of mixing is, the kinetic

energy of the flow seems to be a good choice (see chapter 5 in [AK03]). In general, as shown

in [AKB01] for the Poiseuille flow problem, an increase in kinetic energy may serve as an

indicator of increased mixing and vice-versa. If we can find some desired steady flow and

design a controller that reduces the energy of the perturbation to this steady flow, then can

expect that mixing will be reduced and that the coolant and combustion fluids will remain

separate. A valid and obvious criticism is that we do not take into account the temperature

dynamics of the flow. Indeed this is a valid criticism and in this investigation we design a

feedback controller based only on the flow dynamics. However, at the end of this chapter

we provide expressions for the mathematical form of the temperature dynamics and the

difficulties they pose for control design. How to incorporate the temperature dynamics is

part of a future research agenda.

In the literature there are many works concerned with stabilizing a perturbation of

a flow to an equilibrium point. For example, [AR10] studies the linearized dynamics of

flow past a flat plate and the stabilization of unstable steady states. The application is

to regulate vortices in separated flows behind low aspect-ratio wings. The work [MIH12]

analyzes the transition from steady to unsteady flow of a jet in cross-flow. It applies

the tools of linear stability analysis to characterize the critical value of blowing ratio that

destabilizes the flow from an equilibrium point. Investigating the growth of TS waves in the

linearized Navier-Stokes equation, and their attenuation to a steady state using feedback

control is considered in [OSH11]. In [BSS09], a feedback controller is designed for to stabilize

a linearized open cavity flow to a steady flow. Global modes, POD, and balanced POD

modes are used as expansion bases for model reduction and their performance is compared;

the conclusion is that balanced POD modes provide the most effective approximation for
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this problem. The article [Rav07] considers feedback stabilization of flow past an airfoil by

POD/Galerkin model reduction. The feedback controller stabilizes the ROM solution but

it stops short of implementing the controller in the DNS simulation.

This chapter presents the continued work in flow control based on the linearization

method based on the ROM, which complements the existing work in the literature.

4.1 Modeling the Fluid Flow System

In this investigation we will consider a simplified geometry called a “jet in cross-flow”

to model the film cooling setup. It consists of a computational box of dimensions 17D ×

10D × 3D with a cross section in the xy plane along z = 1.5D shown in Figure 4.4. The

variables in this setup are shown in Table 4.1.
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Figure 4.4: Jet in cross-flow setup

Table 4.1: Jet in cross-flow variables

Symbol Variable

U∞ Free stream cross-flow velocity
V Peak inflow velocity of jet
D Jet diameter
δ∗0 Inflow boundary layer thickness
µ Fluid viscosity
ρ Fluid density

ν = µ
ρ

Kinematic viscosity
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Fluid flow modeling is a well known subject so the following material is standard.

Nevertheless we point out that we closely adhere to [AK03] in this section. We are interested

in the behavior of a fluid contained in the spatial domain Ω, which in our case is associated

with the geometry in Figure 4.4 in Cartesian coordinates. At every time instant t > 0, and

to every point p ∈ Ω we assign a velocity to the fluid,

u =

[
u(x, y, z, t) v(x, y, z, t) w(x, y, z, t)

]T
,

which is a vector valued function u : Ω × R+ → R3. We also associate a density to the

fluid, ρ : Ω× R+ → R, and a pressure P : Ω× R+ → R; both are scalar valued functions.

Since we are studying gas turbines that operate at a low Mach number (the ratio of the

flow velocity to the local speed of sound), we may assume that ρ is constant. Furthermore,

the fluids we deal with are Newtonian. Hence we consider the Navier-Stokes (N-S) and

continuity equations for an incompressible Newtonian fluid as the fluid flow model. The

N-S equation for three spatial dimensions is a set of three coupled, non-linear, partial

differential equations that describe conservation of momentum:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
+
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
+
µ

ρ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
.

The continuity equation is an additional constraint that describes conservation of mass,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.
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These four equations are written compactly as

∂u

∂t
+ u · ∇u = −1

ρ
∇P +

µ

ρ
∇2u (4.1)

∇ · u = 0. (4.2)

Since there are 6 variables and 3 dimensions (length, time, and mass), the Buckingham

π theorem can be invoked to characterize the jet in cross-flow with the 3 independent

dimensionless parameters shown in Table 4.2.

Table 4.2: Jet in cross-flow dimensionless parameters

Symbol Dimensionless Parameter

Re = U∞D
ν

Free stream Reynolds number

Rejet = V D
ν

Jet Reynolds number

R = V
U∞

Velocity ratio

The equations can be non-dimensionalized by selecting a characteristic length scale l

and a characteristic velocity scale U . We choose l = D and U = U∞. By substituting the

nondimensionalized variables denoted by

x′ =
x

l
, y′ =

y

l
, z′ =

z

l
, t′ =

tU

l
, u′ =

u

U
, v′ =

v

U
, w′ =

w

U
, P ′ =

P

ρU2
,

into the N-S and continuity equations we obtain the nondimensionalized N-S and continuity

equations

∂u′

∂t′
+ u′ · ∇u′ = −∇P ′ + 1

Re
∇2u′ (4.3)

∇ · u′ = 0 (4.4)

where u′ =

[
u′(x′, y′, z′, t′) v′(x′, y′, z′, t′) w′(x′, y′, z′, t′)

]T
. From now on we drop the

prime notation (′) when referring to the nondimensionalized variables.
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4.1.1 Boundary Control

The boundary of Ω is denoted by Γ and is composed of Γ(w), Γ(f), and Γ(c). The

boundary Γw includes walls, Γi is the inflow, and Γc is the boundary to which the control

signal, ci(t), (or jet) is applied. Note that there may be more than one input, for instance,

if we wish to consider jets in different parts of the spatial domain. Consequently we have

Dirichlet boundary conditions of the type

u(x, t) =


c̃i(t)h̃i(x), x ∈ Γ

(c)
i , t ∈ (0, T ), i = 1, . . . ,m

ã0(t)h̃0(x), x ∈ Γ(f), t ∈ (0, T )

0, x ∈ Γ(w), t ∈ (0, T )

(4.5)

However, in this dissertation, we will only present results for one jet actuator, although the

theory holds for multi-input systems.

4.2 Numerical Implementation

The question “Does the 3D incompressible Navier-Stokes equation possess a unique,

continuously differentiable solution at high Reynolds number?” is presently not known

[Doe09]. However, the fact that several numerical methods converge to an approximate

solution has motivated the use of the direct numerical simulation (DNS) as an engineer-

ing tool. In addition, comparison between experimental results and numerical solutions

suggests that DNS simulations are reliable models for studying flow dynamics. To solve

the discretized N-S equation we use the hybrid staggered/semi-staggered finite difference

algorithm described in [BA11]. This algorithm uses the fractional step method to advance

the solution in time in two steps: 1) A semi-staggered grid structure is used to discretize

the momentum equations and solve for an intermediate velocity with the pressure gradient

term absent, and 2) A staggered grid is used to discretize the Poisson-Neumann equa-

tion that adds the pressure gradient to the projection step. This method combines the

favorable features of the staggered grid and semi-staggered grid approaches. All the com-

ponents of velocity are stored at the cell vertices and pressure is stored at the cell centers.
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The momentum equations are discretized at cell vertices thus providing a consistent dis-

cretization of the diffusive and convective terms as the boundaries are approached. The

projection method effectively evolves the discrete-time system of equations, while ensuring

a divergence-free velocity field is obtained. The discrete divergence and gradient operators

of the projection step are constructed on a staggered gird layout leading to the exact sat-

isfaction of the discrete continuity equation. It is important to note that the solution of

the Poisson-Neumann equation in the projection step is free of any spurious eigenmodes.

The code has been validated through the following benchmark problems: Taylor-Green

vortex problem, driven cavity, flow past cylinder, and flow in a 90◦ curved tube. In addi-

tion, it is capable of solving the discretized Navier-Stokes equation in a parallel computing

environment.

A simple grid independence study (using the problem setup described in Section 4.5)

was carried out using the grids illustrated in Table 4.3 and Figure 4.5.

Table 4.3: Grid sizes

Grid Size

1. Coarse 623,322

2. Medium 971,152

3. Medium-Fine 1,240,512

4. Fine 1,479,072

Figure 4.6 shows the profile of the time averaged u component of velocity at x = 4

(downstream and not too far away from the jet). The data corresponds to a time average

over a window of 60 time units after roughly 7 flow-throughs so that the results correspond

to a statistically steady-state solution. We note that the numerical solutions obtained from

grids 1-3 appear to converge to the solution obtained on the fine grid. Since there are not

much computational savings between the medium-fine and fine grids, we choose to model

the flow problem using the fine grid. In fact, using 8 Intel XeonE5620 2.4Ghz, 12M cache

processors, it took about 8s to advance the solution one time-step.
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Figure 4.5: Grids used for grid-independence study
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Figure 4.6: Time average of u component of velocity at x = 4 at midplane

4.3 Model Reduction for Fluids

Solving the discrete N-S equation provides us with valuable data, but does not give us

too much insight into the dynamics of the system. It was this fact, as well as investigations
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for a proper statistical framework in which to study turbulent flows, that motivated the

search for mathematical techniques that would aid in the analysis of the dynamics of fluid

flows. The proper orthogonal decomposition (POD) coupled with the Galerkin projection

turned out to be a very useful model reduction tool. POD is also known as Karhunen-

Loève expansion, principal component analysis, and total least squares estimation; for a

detailed treatment of the Galerkin projection using POD see [HLB96, Kir00, Sir87] and the

references therein. The key idea, as expressed in these references, in the model reduction

framework for fluids is to adopt a dynamic systems approach similar to the Eulerian view-

point of fluid dynamics. The state of the fluid at a given time is specified everywhere in

the spatial domain of interest by a single point in a suitable phase space. This phase space

turns out to be the reduced order model (ROM). As the dynamical system evolves, its

solution describes a path or trajectory in this phase space, each point of which corresponds

to a new velocity field in the physical domain. An explicit relation between physical space

and phase space is provided by a modal decomposition such as

u(x, t) =
∞∑
i=1

ai(t)ψψψi(x). (4.6)

where ai(t) evolve in a phase space. A nice consequence of the ROM is that it also provides

us with a method to construct models suitable for feedback control. It is important to

point out that most of the results of this section are either known or easily derived from

the known work. ROMs of various forms exist in the research literature.

4.3.1 Computing the POD Basis

In this subsection we closely follow [Fah00]. We assume that the flow field solution,

u(x, t), belongs to the L2 Hilbert space of square integrable functions, i.e.,

(u,u) :=

∫
Ω∪Γ

u(x, t) · u(x, t)dx <∞. (4.7)
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We associate with the inner product (·, ·) the norm ‖u‖ =
√

(u,u); notice that the inner

product is a function of t. Therefore we may express any flow field solution as a linear

combination of basis functions

u(x, t) =
∞∑
i=1

ai(t)ψψψi(x). (4.8)

If, in addition ψψψi satisfy (ψψψi,ψψψj) = δij, where δij is the Kronecker delta, then ai(t) may be

determined by ai(t) = (u,φφφi). This means that we may write (4.8) as

u(x, t) =
∞∑
i=1

(u,ψψψi)ψψψi(x) (4.9)

At this point it is not clear how to choose the basis functions {ψψψi}∞i=1 although intuitively

we would like them to be optimal in some sense. We delay the discussion on how to

compute these basis functions to address an important issue that frequently arises in fluid

flow problems.

Usually a transformation of the (x, y, z) coordinates to a new coordinate system given

by (ξ1, ξ2, ξ3) simplifies solving the N-S equations numerically. In our case, we must solve the

N-S equation on a nonuniform (and potentially non-orthogonal depending on the geometry

of the problem) grid given by (x, y, z), but instead of solving it on this grid, we transform

(x, y, z) to (ξ1, ξ2, ξ3), which is the coordinate system of a uniform/orthogonal grid. Such

a transformation is represented by the multivariate function c : R3 → R3 and is written as

ξ1 = c1(x, y, z)

ξ2 = c2(x, y, z)

ξ3 = c3(x, y, z).
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By applying the change of variables from multivariable calculus, it can be shown that

∫
Ωξ∪Γξ

u · udξξξ =

∫
Ω∪Γ

u · u|J |dx

where |J | = det(Jc) and Jc =


∂c1
∂x

∂c1
∂y

∂c1
∂z

∂c2
∂x

∂c2
∂y

∂c2
∂z

∂c3
∂x

∂c3
∂y

∂c3
∂z

 is the Jacobian matrix of the transformation

c. By defining the J weighted inner product

(u,u)J :=

∫
Ωξ∪Γξ

u(ξξξ, t) · u(ξξξ, t)|J |−1dξξξ

we can see that (u,u) = (u,u)J which is useful for computing these values numerically.

We now return to the question of computing the basis functions. We are looking for

{ψψψi}∞i=1 that solve (4.10)

min
{ψψψk}∞k=1

∥∥∥∥∥u(x, t)−
∞∑
j=1

(u,ψψψj)ψψψj(x)

∥∥∥∥∥
2

s.t. (ψψψi,ψψψj) = δij. (4.10)

Given our discussion on the coordinate transformation, we state an equivalent problem to

(4.10) that is given by (4.11):

min
{ψψψk}∞k=1

∥∥∥∥∥u(x, t)−
∞∑
j=1

(u,ψψψj)J ψψψj(x)

∥∥∥∥∥
2

J

s.t. (ψψψi,ψψψj)J = δij. (4.11)

However, we will only search for a finite number of basis functions, {ψψψi}ni=1. We start our

derivation with a given solution flow field ensemble U = {u1, . . . ,uN}, where ui := u(x, ti),

x ∈ Ω ∪ Γ.
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Definition 11 (POD problem). Given U , find orthonormal basis functions {ψψψi}ni=1 that

solve

min
{ψψψk}nk=1

N∑
i=1

∥∥∥∥∥ui −
n∑
j=1

(ui,ψψψj)J ψψψj(x)

∥∥∥∥∥
2

J

s.t. (ψψψi,ψψψj)J = δij. (4.12)

Definition 12. A solution {φφφ1, . . . ,φφφn} to (4.12) is a POD basis of order n and

UPOD = {φφφ1, . . . ,φφφn} (4.13)

Since the data U comes from DNS, instead of solving the POD problem, we will solve

a discretized POD problem. First, define the finite dimensional state vector corresponding

to the velocity field obtained by DNS

x(i) :=


u(M)(ti)

v(M)(ti)

w(M)(ti)

 ∈ RM (4.14)

where M corresponds to the number of degrees of freedom in the the spatial variables. The

notation u(M)(ti) should be read as the finite dimensional column vector corresponding to u

component of velocity obtained from a DNS simulation with M degrees of freedom (discrete

spatial points) at ith time. From now on we think of the solution flow field ensemble, U , as

the set of vectors x(i) ∈ RM , i = 1, . . . , N .

Definition 13. Let the solution flow field ensemble U =
{
x(i)
}N
i=1

be given. We denote

X =

[
x(1) x(2) · · · x(N)

]
∈ RM×N (4.15)

as the snapshot data matrix of U .

65



In order to state the solution of the discretized version of (4.12), we specify the dis-

cretized version of the inner product (u,u)J as
〈
x(i), x(j)

〉
J

= x(j)TJx(i) and the norm∥∥x(i)
∥∥
J

=

√〈√
Jx(i),

√
Jx(i)

〉
. The matrix J is M ×M positive-definite diagonal (hence

symmetric), where the entries on the diagonal represent the “volume” of each grid-cell in

the (x, y, z) coordinate system.

Define φ(i) ∈ RM and x(i) ∈ RM as the discretized version of φφφi and ui respectively.

The discretized version of (4.12) is given by

min
{φ(i)}

N∑
i=1

∥∥∥∥∥x(i) −
n∑
j=1

〈
x(i), φ(j)

〉
J
φ(j)

∥∥∥∥∥
2

J

s.t.
〈
φ(i), φ(j)

〉
J

= δij. (4.16)

Using the fact that
〈
x(i), x(j)

〉
J

=
〈
x(i), Jx(j)

〉
, we rewrite (4.16) as

min
{φ(i)}

N∑
i=1

∥∥∥∥∥√Jx(i) −
√
J

n∑
j=1

〈
x(i), Jφ(j)

〉
φ(j)

∥∥∥∥∥
2

s.t.
〈
φ(i), Jφ(j)

〉
= δij (4.17)

in order to formulate it in a matrix approximation context as in the following lemma.

Lemma 4.3.1. Let U with snapshot data matrix X be given. Then (4.17) is equivalent to

solving

min
∥∥∥√JX −√JΦΦTJX

∥∥∥2

F
s.t. ΦTJΦ = In (4.18)

where Φ :=

[
φ(1) φ(2) · · · φ(n)

]
and ‖·‖F is the Frobenius norm.

Proof. First, note that

ΦΦTJX:,i =

(
φ(1)TJx(1)φ(1) + φ(2)TJx(1)φ(2) + · · ·+ φ(n)TJx(1)φ(n)

)
=

n∑
j=1

〈
x(i), Jφ(j)

〉
φ(j) (4.19)
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then we use the relation ‖X‖2
F =

N∑
i=1

‖X:,i‖2 to show that the problems are equivalent. The

notation X:,i denotes the ith column of X.

Problem (4.18) is a special case of the minimum rank approximation problem in linear

algebra

min
Y ∈<M×N

‖X − Y ‖2
F s.t. rank(Y ) = n (4.20)

which is solved by means of the singular value decomposition (SVD).

Theorem 4.3.2 (SVD for real matrices). For every real M × N matrix A, there exist

orthogonal matrices U ∈ RM×M and V ∈ RN×N (UTU = IM = UUT and V TV = IN =

V V T ) such that

A = USV T

where S =

S1 0

0 0

 ∈ RM×N , r = rank(A), S1 = diag(σi) ∈ Rr×r, i = 1, 2, . . . , r and

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

We call σi the ith singular value of A. The vectors ui and vj are the ith column of U

and the jth column of V respectively and are referred to as the ith left singular vector and

the jth right singular vector respectively. They are also often referred to as Schmidt pair.

An important property of the SVD of a matrix is that it provides a dyadic decomposition

for it,

A =
r∑
i=1

σiuiv
T
i .

This decomposition provides a canonical description of a matrix (also called reduced SVD)

as a sum of r rank-one matrices of decreasing importance as measured by the singular

values. The dyadic decomposition is essential to the computation of the POD basis as we

will see next.
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Theorem 4.3.3. Let A = USV T ∈ RM×N and k < r = rank(A), then

min
rank(B)≤k

‖A−B‖F = ‖A− Ak‖F =

√√√√ r∑
j=k+1

σ2
j (4.21)

where Ak =
∑k

i=1 σiuiv
T
i is the dyadic decomposition of A.

Theorem 4.3.3 shows that the solution to (4.18) is given by a truncated singular value

decomposition (TSVD). The next result provides the method for constructing the POD

basis functions.

Theorem 4.3.4 (Computation of the POD basis). Let U with snapshot data matrix X be

given. Compute SVD of
√
JX,

√
JX = USV T . Then the POD basis Φ is given by

Φ = J−1/2

[
u1 u2 · · · un

]
. (4.22)

Furthermore there holds the tail equality

min
Φ

∥∥∥√JX −√JΦΦTJX
∥∥∥2

F
=

N∑
j=n+1

σ2
j (4.23)

where σj are the singular values of
√
JX.

Proof. By Theorem 4.3.3 we know that the solution to (4.18) is given by a TSVD of
√
JX

of order n, i.e.,
√
JX = UnSnV

T
n . Now we just need to solve for Φ in

√
JΦΦTJX =

√
JΦ(
√
JΦ)T

√
JX = UnSnV

T
n (4.24)

which is the second term of (4.18) . Since
√
JX = UnSnV

T
n

√
JΦ(
√
JΦ)T = UnU

T
n = I, (4.25)
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and Φ = J−1/2

[
u1 · · · un

]
satisfies (4.24).

Remark 4. Depending on the spatial discretization and number of snapshots that have

to be collected, the size of
√
JX may become too large for the computation of its SVD.

In this case we have to compute
√
JX = USV T indirectly, by the so called method of

snapshots [Sir87]. The limiting dimension for the computation is N , i.e., as long as we can

compute the SVD of an N × N matrix, the computation of the SVD of
√
JX is possible.

In addition, we suggest the following procedure to implement the method of snapshots: By

taking “blocks” of data at a time, it is possible to compute SVDs of data sets that may not

completely fit in computer memory.

1. Partition
√
JX into b blocks

√
JX =

[
√
JX1

√
JX2 · · ·

√
JXb−1

√
JXb

]

where the number of columns of each
√
JXi block should be chosen such that each

√
JXi fits in the computer memory.

2. Compute the covariance matrix

C = XTJX =


XT

1 JX1 · · · XT
1 JXb

...
. . .

...

XT
b JX1 · · · XT

b JXb

 ∈ <N×N

one block at a time.

3. Compute TSVD of C, i.e., C = XTJX = (USV T )T (USV T ) = V S2V T . Note that

V ∈ <N×n and S ∈ <n×n.
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4. Compute Φ one block at a time.

Φ = J−1/2XV S−1 = J−1/2

[
X1 · · · Xb

]
V1

...

Vb

S−1 = J−1/2 (X1V1 + · · ·+XbVb)S
−1

A similar discussion applies to the construction of temperature POD modes. In fact,

the POD modes for temperature may be viewed as a d = 1 ’flow field’ ensemble.

4.4 Computing the Reduced Order Model

Computing the ROM will consist in performing a Galerkin projection on the N-S equa-

tion to derive a set of ODEs. Before computing the ROM though, we need to take care of

how to include the boundary control terms. To achieve this we propose a modal expansion

of the form

u(x, t) =
n∑
i=1

ai(t)φφφi(x) + ã0(t)h̃0(x) +
m∑
i=1

c̃i(t)h̃i(x) (4.26)

where φφφi, i = 1, . . . , n are homogeneous on the boundary POD basis functions and h̃0 and

h̃i, i = 1, . . . ,m are divergence-free extensions of the boundary conditions in (4.5) (i.e., they

match boundary conditions on Γ and are divergence free in Ω). Since there is no danger

of confusion, we refer to the boundary conditions and their divergence free extensions by

the same symbol. While in the literature there are several methods on how to compute

these extra modes, for example [NTM04a], [KSOE08], [NTM04b], [BGL06], and [Rav07],

we take a slightly different route.

First, we call uunact(x, t) an unactuated solution when it is obtained with the boundary

conditions c̃i(t) = 0 ∀ i and ã0(t) = a0. We call uacti(x, t) an ith actuated solution when it

is obtained with the boundary conditions c̃i(t) = ci, c̃j(t) = 0 ∀ j 6= i and ã0(t) = a0. The

term h̃0(x) is taken as the time average of an unactuated solution and h̃i(x) is taken as

the time average of uacti(x, t)− uunact(x, t).
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Second, while (4.26) is a useful expansion, we would prefer divergence-free extensions

of the boundary that are orthonormal to the POD basis. We denote this orthonormal

expansion as

u(x, t) =
n∑
i=1

ai(t)φφφi(x) + a0(t)h0(x) +
m∑
i=1

ci(t)hi(x) (4.27)

where h0(x) is the inflow boundary mode and hi(x) is the ith control mode. We use the

following procedure to compute the POD modes, inflow, and ith control mode:

1. Let X denote a snapshot matrix corresponding to

u(x, t)− ã0(t)h̃0(x)−
m∑
i=1

c̃i(t)h̃i(x). (4.28)

Note that X is homogeneous on the boundary.

2. Obtain the POD basis functions corresponding to X by the method in Section 4.3.1,

i.e., SVD factorization of X. The POD basis will be zero on the boundary by con-

struction.

3. Compute h0 =
h̃0−

∑n
i=1(h̃0,φφφi)φφφi

‖h̃0−
∑n
j=1(h̃0,φφφj)φφφj‖

.

Compute hi =
h̃i−

∑n
j=1(h̃i,φφφj)φφφj−

∑m
j=1(h̃i,hj−1)hj−1

‖h̃i−
∑n
j=1(h̃i,φφφj)φφφj−

∑m
j=1(h̃i,hj−1)hj−1‖

, i = 1, . . . ,m

Note that the inflow and control modes are orthogonal to the POD basis by the construction

in step 3. A standard Galerkin projection with POD basis functions, inflow, and control

modes can be carried out to derive the ROM. This is done by projecting the N-S equation

to the ith POD basis function using the inner product that we defined earlier

∫
Ω

∂u

∂t
· φφφidx +

∫
Ω

u · ∇u · φφφidx = −
∫

Ω

∇P · φφφidx +

∫
Ω

1

Re
∇2u · φφφidx. (4.29)
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Using integration by parts on the term
∫

Ω
1
Re
∇2u · φφφidx, i.e.,

∫
Ω

1

Re
∇2u · φφφidx =

1

Re

(∫
Γ

∇u · φφφidx−
∫

Ω

∇u · ∇φφφidx
)

and noting that the POD basis functions are divergence free and homogeneous on the

boundary, i.e.,

∫
Ω

∇P · φφφidx = −
∫

Ω

P∇ · φφφidx +

∫
Γ

Pφφφi · ~ndx = 0

we obtain

∫
Ω

∂u

∂t
· φφφidx +

∫
Ω

u · ∇u · φφφidx +
1

Re

(∫
Ω

∇u · ∇φφφidx−
∫

Γ

∇u · φφφidx
)

= 0. (4.30)

Since the POD basis functions are homogeneous on the boundary,
∫

Γ
∇u·φφφidx = 0. Finally,

we substitute u with its truncated modal decomposition

uROM(x, t) =
n∑
j=1

aj(t)φφφj(x) + a0(t)h0(x) +
m∑
i=1

ci(t)hi(x) (4.31)

and insert it into (4.30) to obtain the following terms:

Time derivative

∫
Ω

∂uROM
∂t

· φφφidx =
n∑
j=1

ȧj(t) (φφφj,φφφi) + ȧ0(t) (h0,φφφi) +
m∑
i=1

ċi(t) (hi,φφφi)

= ȧi(t)
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Convection

∫
Ω

uROM · ∇uROM · φφφidx =

(
n∑
j=1

aj(t)φφφj · ∇
n∑
k=1

ak(t)φφφk,φφφi

)
+

(
n∑
j=1

aj(t)φφφj · ∇a0(t)h0,φφφi

)

+

(
n∑
j=1

aj(t)φφφj · ∇
m∑
k=1

ck(t)hk,φφφi

)
+

(
a0(t)h0 · ∇

n∑
j=1

aj(t)φφφj,φφφi

)

+ (a0(t)h0 · ∇a0(t)h0,φφφi) +

(
a0(t)h0 · ∇

m∑
j=1

cj(t)hj,φφφi

)

+

(
m∑
j=1

cj(t)hj · ∇
n∑
k=1

ak(t)φφφk,φφφi

)
+

(
m∑
j=1

cj(t)hj · ∇a0(t)h0,φφφi

)

+

(
m∑
j=1

cj(t)hj · ∇
m∑
k=1

ck(t)hk,φφφi

)

=
n∑
j=1

aj(t)
n∑
k=1

ak(t) (φφφj · ∇φφφk,φφφi) + a0(t)
n∑
j=1

aj(t) (φφφj · ∇h0,φφφi)

+
n∑
j=1

aj(t)
m∑
k=1

ck(t) (φφφj · ∇hk,φφφi) + a0(t)
n∑
j=1

aj(t) (h0 · ∇φφφj,φφφi)

+ a2
0(t) (h0 · ∇h0,φφφi) + a0(t)

m∑
j=1

cj(t) (h0 · ∇hj,φφφi)

+
m∑
j=1

cj(t)
n∑
k=1

ak(t) (hj · ∇φφφk,φφφi) + a0(t)
m∑
j=1

cj(t) (hj · ∇h0,φφφi)

+
m∑
j=1

cj(t)
m∑
k=1

ck(t) (hj · ∇hk,φφφi)

Diffusion

∫
Ω

∇uROM · ∇φφφidx =

(
n∑
j=1

aj(t)∇φφφj,∇φφφi

)
+ (a0(t)∇h0,∇φφφi) +

(
m∑
j=1

cj(t)∇hj,∇φφφi

)

=
n∑
j=1

aj(t) (∇φφφj,∇φφφi) + a0(t) (∇h0,∇φφφi) +
m∑
j=1

cj(t) (∇hj,∇φφφi)
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Finally we obtain the nonlinear state-space model:

˙̄χ = Āχ̄+ B̄ū+


χ̄T N̄1χ̄

...

χ̄T N̄nχ̄

+


χ̄TM̄1ū

...

χ̄TM̄nū

+


ūT K̄1ū

...

ūT K̄nū

+ a0D̄1χ̄+ a0D̄2ū+ D̄3a0 + D̄4a
2
0

(4.32)

where

Āij = − 1

Re
(∇φφφj,∇φφφi) , B̄ij = − 1

Re
(∇hj,∇φφφi) ,

N̄ijk = − (φφφj · ∇φφφk,φφφi) , M̄ijk = − (φφφj · ∇hk,φφφi)− (hk · ∇φφφj,φφφi) ,

K̄ijk = − (hj · ∇hk,φφφi) , D̄1ij = − (h0 · ∇φφφj,φφφi)− (φφφj · ∇h0,φφφi) ,

D̄2ij = − (h0 · ∇hj,φφφi)− (hj · ∇h0,φφφi) , D̃3i = − 1

Re
(∇h0,∇φφφi) ,

D̃4i = − (h0 · ∇h0,φφφi) ,

It is clear that χ̄(t) ∈ Rn is the state vector consisting of {ai(t)}ni=1 as its elements, and

ū(t) ∈ Rm is the input vector consisting of {ci(t)}mi=1 as its elements. Recall that the

boundary and control modes are orthogonal to the POD basis, thus canceling the corre-

sponding terms in
∫

Ω
∂uROM
∂t
·φφφ(i)dx. For this investigation a0(t) will always be constant as

it corresponds to a time-invariant inflow.

Regarding the output equation, we assume that the output measurements only have

access to the velocity field information at a few points, say at p points, in the domain.

Therefore for i = 1, 2, · · · , p, using the POD expansion, we have

u(xi, t) =
n∑
j=1

aj(t)φφφj(xi) + a0(t)h0(xi) +
m∑
j=1

cj(t)hj(xi)

=

[
φφφ1(xi) · · · φφφn(xi)

]
χ̄+ h0(xi)a0 +

[
h1(xi) · · ·hm(xi)

]
ū
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With

C1 =


φφφ1(x1) · · · φφφn(x1)

...
. . .

...

φφφ1(xp) · · · φφφn(xp)

 , C2 =


h0(x1)

...

h0(xp)

 , and C3 =


h1(x1) · · · hm(x1)

...
. . .

...

h1(xp) · · · hm(xp)

 ,

the output equation then has the form

y = C1χ̄+ C2a0 + C3ū.

4.4.1 ROM Error Analysis

The relative error difference between the DNS and ROM solution that we focus on is

the same one that we consider for the POD problem, i.e.,

Eu =
1

N


N∑
i=1

∫
‖uDNS(ti)− uROM(ti)‖2 dx

N∑
i=1

∫
‖uDNS(ti)‖2 dx

 (4.33)

It is important to note that due to the inclusion of the inflow and control modes, the modal

expansion in (4.31) is not optimal in the POD sense. To see this, remember that {φφφk}nk=1

solves the problem

min
{φφφk}nk=1

N∑
i=1

∥∥∥∥∥
(

ui − ã0(t)h̃0(x)−
m∑
i=1

c̃i(t)h̃i(x)

)
−

n∑
j=1

aj(t)φφφj(x)

∥∥∥∥∥
2

J

(4.34)

but not

min
{φφφk}nk=1

N∑
i=1

∥∥∥∥∥
(

ui − a0(t)h0(x)−
m∑
i=1

ci(t)hi(x)

)
−

n∑
j=1

aj(t)φφφj(x)

∥∥∥∥∥
2

J

(4.35)

which is the expansion we finally use, i.e., uROM .
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However, as seen from the simulation results presented in this section, the error between

the DNS and ROM solution is small enough to proceed with the controller design.

4.5 Fluid Flow System in Open Loop

We now show DNS and ROM simulation results for the system in open loop. The

simulation results correspond to Re = 650 and R = 1 (ū = 1, ā0 = 1). The inflow

boundary condition is given by the Blasius solution and the jet inflow by

v(r) = R
(
1− r2

)
e−( r

0.7)
4

where r is the distance from the jet center. This expression is intended to model the

parabolic velocity profile of pipe Poiseuille flow and is used in several studies, including

[BSSH09] and [MIH12].

After about 7 flow-throughs, snapshots were collected and the POD and control modes

were computed using Theorem 4.3.4 and the method outlined in Section 4.4. A total of

180 snapshots with a sampling period of ∆t = 0.0665 were collected to compute the POD

basis; this spans about 3.5 shedding cycles. The energy distribution in the POD modes is

shown in Figure 4.7. We note that the singular values appear in pairs, a characteristic of

flow systems with traveling structures [DKKO91].

Although most of the energy is contained in the first 8 modes as shown in Table 4.4,

we investigate POD expansions of 16 and 32 modes. It is important to recall that here we

are reporting the % energy captured by the POD modes with respect to the homogeneous

on the boundary snapshots. Shortly we will consider the more appropriate error as defined

in (4.33).

In Figures 4.8, 4.9, and 4.10 we plot the λ2-criterion as defined in [JH95] and [CBA05]

of the first 16 POD modes and the inflow and control modes. The λ2-criterion is a measure
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Figure 4.7: Energy in σi

Table 4.4: Energy captured by POD expansion

n % Energy

2 61.4

4 80.4

8 92.9

16 98.1

32 99.7

64 100

used to identify vortices and is defined as the second eigenvalue of S2 + Ω2 where

S =
1

2

(
∇u +∇uT

)
Q =

1

2

(
∇u−∇uT

)
.

From the figures we can see the features of the coherent structures of the jet in cross-flow

such as the horseshoe vortex, jet shear-layer vortices, and wake vortices.
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(a) φφφ1 (b) φφφ2

(c) φφφ3 (d) φφφ4

(e) φφφ5 (f) φφφ6

(g) φφφ7 (h) φφφ8

Figure 4.8: λ2-criterion of POD modes (λ2 = −0.06)
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(a) φφφ9 (b) φφφ10

(c) φφφ11 (d) φφφ12

(e) φφφ13 (f) φφφ14

(g) φφφ15 (h) φφφ16

Figure 4.9: λ2-criterion of POD modes (λ2 = −0.06)
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(a) h0 (b) h1

Figure 4.10: λ2-criterion of control modes (λ2 = −0.06)

Figures 4.11 and 4.12 show the x and y component of velocity at different time instants.

A quick look at the figures confirms that for the considered time period there is a good

match between the ROM solution (n = 32) and the DNS solution. However, high frequency

features start to appear around t = 3 and become more pronounced as time advances. As

expected, the same behavior is noted for the n = 16 ROM.

It is important to note that the fidelity of the ROM solution tends to decay as time

advances. This becomes evident when the time history of χ̄(t), or POD coefficients are

visualized. Figures 4.13 and 4.14 show the time history of χ̄(t) as well as the projection of

the DNS data to the POD coefficients {ai(t)}32
i=1. First, we notice that the ROM and DNS

solutions match well at the beginning, and the time at which the DNS and ROM solutions

start to diverge depends on the mode number. For example, the 7th mode matches well up

until t = 5, while the 1st mode starts to diverge around t = 1. The figures also show that

the amplitude of the higher modes grows in the ROM solution, while they stay ’small’ in

the projected DNS data. This behavior helps to explain the appearance of high frequency

features in the flow in both Figures 4.11 and 4.12. We also plot the same data for n = 16

in Figure 4.15 and note the same kind of behavior. It is well known that ROMs usually

diverge to a limit cycle not present in the original data as time advances, this has been

reported in [CWRM04], [MK02], and chapter 5 in [Row02], among many others.
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Figure 4.11: x-component of velocity. Left: DNS. Right: ROM.
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Figure 4.12: y-component of velocity. Left: DNS. Right: ROM.
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Figure 4.13: ROM (solid) and DNS (dotted) solution, n = 32

The error for the n = 16 model, as calculated in (4.33), is Eu = 1.99 × 10−4 and the

error for the n = 32 model is Eu = 1.95 × 10−4. In addition, we plot the error in (4.33)

as a function of time (i.e., the sequence) in Figure 4.16. Two observations that we obtain

from that plot are that the difference in energy captured between a 16 and 32 order model

is not significant and that the difference is larger for low values of t. As time increases the

error seems to converge to the same values for both n = 16 and n = 32.
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Figure 4.14: ROM (solid) and DNS (dotted) solution, n = 32

An additional property that we verify is the behavior of the correlation matrix

R =



∫ T
0
a1(t)a1(t)dt

∫ T
0
a1(t)a2(t)dt · · ·

∫ T
0
a1(t)an(t)dt∫ T

0
a2(t)a1(t)dt

∫ T
0
a2(t)a2(t)dt · · ·

∫ T
0
a2(t)an(t)dt

...
...

. . .
...∫ T

0
an(t)a1(t)dt

∫ T
0
an(t)a2(t)dt · · ·

∫ T
0
an(t)an(t)dt


(4.36)
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Figure 4.15: ROM (solid) and DNS (dotted) solution, n = 16

Figure 4.17 shows the structure of R for the DNS simulation projection with n = 16,

and Figure 4.18 shows the structure of R for the ROM with n = 16. It is evident that the

coefficients are not uncorrelated. The reason is that the inclusion of the inflow and control

modes modifies the properties of the POD decomposition. As noted earlier, the inflow and

boundary modes are computed after the SVD of
√
JX is computed, and so, appending the

inflow and boundary modes to the POD modes matrix Φ modifies the properties of the

SVD expansion.
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Figure 4.16: Error between DNS and ROM solution
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Figure 4.17: Correlation matrix R, DNS, n = 16
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Figure 4.18: Correlation matrix R, ROM, n = 16

4.6 Feedback Control of Fluid Flow System

Following the discussion in the first section of this chapter, we approach the film cool-

ing problem from a feedback control point of view and as a velocity tracking problem.

Specifically, we are interested in stabilizing the flow to a certain desired operating point,

(χ̄d, ūd). As we will see, this operating point may not be stable, especially for high enough

values of velocity ratio, R.

The first step in the design process is to define a new system, called the perturbation

system, with (χ̄d, ūd) as its origin. Let χ = χ̄− χ̄d and u = ū− ūd. Then we have

χ̇(t) = ˙̄χ− ˙̄χd

= Āχ̄+ B̄ū+


χ̄T N̄1χ̄

...

χ̄T N̄nχ̄

+


χ̄TM̄1ū

...

χ̄TM̄nū

+


ūT K̄1ū

...

ūT K̄nū

+ a0D̄1χ̄+ a0D̄2ū+ D̄3a0 + D̄4a
2
0

−

Āχ̄d + B̄ūd +


χ̄Td N̄1χ̄d

...

χ̄Td N̄nχ̄d

+


χ̄Td M̄1ūd

...

χ̄Td M̄nūd

+


ūTd K̄1ūd

...

ūTd K̄nūd

+ a0D̄1χ̄d + a0D̄2ūd + D̄3a0 + D̄4a
2
0
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=

Ā+ a0D̄1 +


χ̄TdN1

...

χ̄TdNn

+


ūTd M̄

T
1

...

ūTd M̄
T
n


χ

+

B̄ + a0D̄2 +


χ̄Td M̄1

...

χ̄Td M̄n

+


ūTdK1

...

ūTdKn


u+


χT N̄1χ

...

χT N̄nχ

+


χTM̄1u

...

χTM̄nu

+


uT K̄1u

...

uT K̄nu

 (4.37)

where Ni = N̄T
i + N̄i and Ki = K̄T

i + K̄i. We finally obtain the system

χ̇(t) = f(χ, u) = A(χ̄d, ūd)χ(t) +B(χ̄d, ūd)u(t) +Q[χ(t), u(t)] (4.38)

where

A = Ā+ a0D̄1 +


χ̄TdN1

...

χ̄TdNn

+


ūTd M̄

T
1

...

ūTd M̄
T
n

 , B = B̄ + a0D̄2 +


χ̄Td M̄1

...

χ̄Td M̄n

+


ūTdK1

...

ūTdKn

 ,

and Q[·, ·] is the quadratic term given by

Q[χ, u] =


χT N̄1χ

...

χT N̄nχ

+


χTM̄1u

...

χTM̄nu

+


uT K̄1u

...

uT K̄nu

 .

Note that χ̄d and ūd are constant, hence A(·) and B(·) are time invariant. We could also

consider stabilization to a trajectory, χ̄d(t) and ūd(t), in which case A(·) and B(·) will be

time varying.

We may now apply the stabilization and equilibria path programming results from the

previous chapter to the perturbation system in (4.38). The first issue we deal with is which
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operating point to pick. Using the MATLAB function fsolve we numerically solve

f(χ̄, ū, a0) = 0

in (4.32) with ū = 1 and a0 = 1 to obtain the desired operating point χ̄
(1)
d . To obtain the

second operating point, χ̄
(2)
d , we set ū = 1.0010 and a0 = 1. The values of the states for

both operating points are shown in Tables 4.5 and 4.6.

Table 4.5: Operating point χ̄
(1)
d

State Value State Value

χ̄
(1)
d1

0.1804 χ̄
(1)
d9

0.0112

χ̄
(1)
d2

-0.2973 χ̄
(1)
d10

0.0201

χ̄
(1)
d3

-0.0015 χ̄
(1)
d11

-0.0013

χ̄
(1)
d4

0.0420 χ̄
(1)
d12

0.0289

χ̄
(1)
d5

0.0219 χ̄
(1)
d13

0.0177

χ̄
(1)
d6

-0.0690 χ̄
(1)
d14

0.2212

χ̄
(1)
d7

0.2815 χ̄
(1)
d15

-0.4283

χ̄
(1)
d8

0.3764 χ̄
(1)
d16

-0.1707

Table 4.6: Operating point χ̄
(2)
d

State Value State Value

χ̄
(1)
d1

0.1804 χ̄
(1)
d9

0.0112

χ̄
(1)
d2

-0.2973 χ̄
(1)
d10

0.0201

χ̄
(1)
d3

-0.0015 χ̄
(1)
d11

-0.0013

χ̄
(1)
d4

0.0420 χ̄
(1)
d12

0.0289

χ̄
(1)
d5

0.0220 χ̄
(1)
d13

0.0177

χ̄
(1)
d6

-0.0691 χ̄
(1)
d14

0.2215

χ̄
(1)
d7

0.2816 χ̄
(1)
d15

-0.4271

χ̄
(1)
d8

0.3767 χ̄
(1)
d16

-0.1713

With an operating point identified, we now study the stability of the operating point.

Figures 4.19 and 4.20 clearly show that if the ROM is solved with a small perturbation to

χ̄(0) = χ̄
(1)
d or χ̄(0) = χ̄

(2)
d , then the resulting solution eventually leaves the operating point

and so this shows that both operating points are unstable.
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Figure 4.19: ROM solution with χ̄0 = χ̄
(1)
d
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Figure 4.20: ROM solution with χ̄0 = χ̄
(2)
d

We also note that both solutions are very similar since χ̄
(1)
d and χ̄

(2)
d are very near each

other. To verify our intuition, Figures 4.21 and 4.22 show the eigenvalues of the matrix A

of the perturbation system at χ̄
(1)
d and χ̄

(2)
d , respectively. The two pairs of eigenvalues on

the right hand side of the imaginary axis reveal that the selected operating point is indeed

unstable. The role of the feedback controller then is to shift the unstable eigenvalues to the

left hand side of the imaginary axis and to enlarge the RoQA of the perturbation system.

Figures 4.23 and 4.24 show the location of the eigenvalues of the matrix A + BF of the

perturbation system at χ̄
(1)
d and χ̄

(2)
d , respectively. The feedback gain F is designed using
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the method in Section 3.1. The ROM solution of the perturbation system clearly depicts

the stabilizing effect of the controller as shown in Figures 4.25 and 4.26.
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Figure 4.21: Eigenvalues of A (perturbation at χ̄
(1)
d )
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Figure 4.22: Eigenvalues of A (perturbation at χ̄
(2)
d )

We can see from Figures 4.25 or 4.26 that the RoQA is fairly small. This means that to

stabilize the ROM, a fairly large number of switches will be required if the initial condition

is far away from χ̄d. However, this method provides us with an estimate of the RoQA

while a simpler linearization study only provides asymptotic results, i.e., the RoQA may

be vanishingly small.

91



−9 −8 −7 −6 −5 −4 −3 −2 −1 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

<(λi (A+BF ))

=
(λ

i
(A

+
B
F

))

Figure 4.23: Eigenvalues of A+BF (perturbation at χ̄
(1)
d )
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Figure 4.24: Eigenvalues of A+BF (perturbation at χ̄
(2)
d )

Figure 4.28 shows a two stage equilibria path simulation, from χ̄0 to χ̄
(1)
d and settling

at χ̄
(2)
d . The initial condition for the simulation is shown in Table 4.7 is computed via our

controller design method and lies in the maximized RoQA. The location of χ̄
(2)
d is chosen

such that χ̄
(1)
d lies in the RoQA of χ̄

(2)
d . The switch occurs at t = 12 and appears clearly in

the plot of the control signal.
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Figure 4.25: ROM solution in closed loop (perturbation at χ̄
(1)
d )

Table 4.7: Initial condition for switched system simulation, χ̄0

State Value State Value State Value State Value
χ̄1 0.1807 χ̄5 0.0215 χ̄9 0.0108 χ̄13 0.0183
χ̄2 -0.2974 χ̄6 -0.0688 χ̄10 0.0197 χ̄14 0.2212
χ̄3 -0.0015 χ̄7 0.2815 χ̄11 -0.0003 χ̄15 -0.4296
χ̄4 0.0419 χ̄8 0.3763 χ̄12 0.0286 χ̄16 -0.1657
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Figure 4.26: ROM solution in closed loop (perturbation at χ̄
(2)
d )

The result presented in Figure 4.28 corresponds to the setup shown in Figure 4.27 (a).

Once a state feedback F has been designed, it is inserted into a DNS simulation as shown

in Figure 4.27 (b) and (c).

The jet inlflow boundary condition is implemented as

v(r, t) = ū(t)
(
1− r2

)
e−( r

0.7)
4

.

The results of the ROM and DNS in closed loop (implementation 1) are shown in Figures

4.29 and 4.30. There is a noticeable difference between the ROM and DNS solution starting
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at around t = 2 and from then onwards the DNS solution leaves the operating condition.

In this sense, the behavior between the ROM and DNS solution is the same as in open

loop, eventually the ROM solution loses fidelity. The solution using DNS implementation

2 behaves similarly in the first few units of time, but the control signal calculated in this

setup diverges from the signal c1(t) of Figure 4.27 (a) . After about t = 2 the control signal

behaves erratically which illustrates the difficulty in implementing the control signal from

the ROM to the DNS simulation.

˙̄χ = f(χ̄, ū)

F (χ̄, χ̄d, ūd)

c1(t) χ̄(t)

(a) ROM in closed loop

∂u
∂t

= f(u, c1(t))
c1(t) u(t)

(b) DNS closed loop implementation 1

∂u
∂t

= f(u, c1(t))

F (χ̄, χ̄d, ūd) (u,φφφi)

c1(t) u(t)

χ̄(t)

(c) DNS closed loop implementation 2

Figure 4.27: DNS closed loop implementations
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Figure 4.28: ROM solution in closed loop and input signal
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Figure 4.29: x-component of velocity in closed loop. Left: DNS. Right: ROM.
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Figure 4.30: y-component of velocity in closed loop. Left: DNS. Right: ROM.
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4.6.1 Temperature Dynamics

In this section we give a brief introduction to a future research direction that in-

corporates temperature dynamics for controller design. The temperature of the fluid is

modeled as a passive scalar field, T (x, t), and it satisfies the scalar “one-way-coupled”

non-dimensional equation

∂T

∂t
+

(
u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
=

1

RePr

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
. (4.39)

where Pr is the Prandtl number. In a similar manner to the computation of the velocity

POD basis functions, we compute the temperature POD basis functions {Tj}nj=1, where

n is not necessarily the number of velocity POD basis functions. The following truncated

modal decomposition is used to represent the temperature

TROM(x, t) =
n∑
j=1

bj(t)Tj(x). (4.40)

We note that there are no control modes since the controlled variable is the boundary

velocity, not the temperature of the fluid. We then carry out a Galerkin projection by

inserting (4.40) into (4.39) to obtain the following equations:

∫
Ω

∂TROM
∂t

Tidx =

nT∑
j=1

ḃj(t) (Tj,Ti) = ḃi(t),

∫
Ω

uROM
∂TROM
∂x

Tidx =
n∑
j=1

aj(t)

nT∑
k=1

bk(t)

(
φuj

∂Tk

∂x
,Ti

)
+ a0

nT∑
k=1

bk(t)

(
hu0

∂Tk

∂x
,Ti

)

+
m∑
j=1

cj(t)

nT∑
k=1

bk(t)

(
huj

∂Tk

∂x
,Ti

)
,
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∫
Ω

vROM
∂TROM
∂y

Tidx =
n∑
j=1

aj(t)

nT∑
k=1

bk(t)

(
φvj

∂Tk

∂y
,Ti

)
+ a0

nT∑
k=1

bk(t)

(
hv0

∂Tk

∂y
,Ti

)

+
m∑
j=1

cj(t)

nT∑
k=1

bk(t)

(
hvj

∂Tk

∂y
,Ti

)
,

∫
Ω

wROM
∂TROM
∂z

Tidx =
n∑
j=1

aj(t)

nT∑
k=1

bk(t)

(
φwj

∂Tk

∂z
,Ti

)
+ a0

nT∑
k=1

bk(t)

(
hw0

∂Tk

∂z
,Ti

)

+
m∑
j=1

cj(t)

nT∑
k=1

bk(t)

(
hwj

∂Tk

∂z
,Ti

)
,

and

∫
Ω

(
∂2TROM
∂x2

+
∂2TROM
∂y2

+
∂2TROM
∂z2

)
Tidx =

nT∑
j=1

bj(t)

(
∂2Tj

∂x2
+
∂2Tj

∂y2
+
∂2Tj

∂z2
,Ti

)
.

Finally we obtain the nonlinear state-space model for the temperature dynamics:

ḃ = Lb+


χ̄TJ1

...

χ̄TJnT

 b+


ūTH1

...

ūT H̄nT

 b+ a0Ib (4.41)

where

Lij =
k

ρcV l

(
∂2Tj

∂x2
+
∂2Tj

∂y2
+
∂2Tj

∂z2
,Ti

)
, Jijk =

(
φuj

∂Tk

∂x
+ φvj

∂Tk

∂y
+ φwj

∂Tk

∂z
,Ti

)
,

Hijk =

(
huj

∂Tk

∂x
+ hvj

∂Tk

∂y
+ hwj

∂Tk

∂z
,Ti

)
, and Iij =

(
hu0

∂Tj

∂x
+ hv0

∂Tj

∂y
+ hw0

∂Tj

∂z
,Ti

)
,

and b(t) ∈ RnT is the temperature state vector consisting of {bi(t)}nTi=1 as its elements. The

structure of (4.41) complicates the design of a feedback controller since the control input

enters as a coefficient of the state.
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Chapter 5
Conclusion and Future Work

We have developed a design methodology for state and output feedback stabilization

of nonlinear sector-bounded control systems in state-space form. In the tradition of the

absolute stability problem, we have represented the nonlinear system with an LFT of

the linearized part and the nonlinear error dynamics. This LFT representation enables

the use of H∞-based robust control to stabilize the nonlinear system and to maximize

the estimated RoQA. Each operating point of the original nonlinear system is regionally

stabilized by a linear controller that has been designed to solve aH∞-norm problem and this

strategy maximizes the estimate of the RoA of each stabilized operating point. The overall

design consists of a sequence of linear controllers implemented in a switching strategy that

regionally stabilize the desired equilibrium under the assumption that the system admits a

centered-ε-cover. If this assumption is satisfied, then the switching controller will achieve

semi-global stabilization of the nonlinear system. A formula to compute the ε-distance was

derived under both state feedback and output feedback control. Roughly speaking, this

provides a quantifiable region where the linearized representation of the system’s dynamics

is valid.

We then applied the control strategy to a ROM of the Navier-Stokes equation. We

designed a two path switching controller that successfully stabilizes the ROM to an operat-

ing point and then implemented it in DNS. The controller that was designed based on the

ROM was able to stabilize the flow to the selected operating point in DNS for a short time

period until the DNS solution diverged to another operating condition. This highlights the

difficulties encountered when a controller is designed for a ROM and then implemented on

the full system.
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Future work

Perhaps the most pressing issue is to obtain a better model than the current ROM,

especially if it will be used for controller design. From the results obtained in Section 4.6,

the current ROM provides useful physical information, but is not sufficient for controller

design. It is clear that a feedback controller design based on the ROM does not perform

as well as expected in DNS. For linear models, the balanced POD method has provided

promising results and a nonlinear version of this method has been investigated in [LMG02]

which may provide a path to obtaining better models for control design.

Closely related to the modeling problem, is incorporating the temperature dynamics for

control design. We have sketched out the form of the ROM that includes the temperature

variable and have pointed out the difficulty in designing a controller since the input enters

the state equation as a coefficient of the state. Investigating this issue would undertake a

considerable amount of effort but would provide more natural results since the controller

design is based on temperature too, which is ultimately the main concern of film cooling.

Another future research problem is to consider switching at non-equilibrium points.

The main idea is to construct linearized models at arbitrary points in the state space. This

would probably relax the ε-cover condition and allow the designer to apply the controller

design to more general classes of systems. A gain scheduling approach that explores this

idea is the so called “velocity-based linarization” described in [LL98].

In addition, a more complete control strategy should consider performance issues of

the transient response. Currently, the transient behavior is not part of the design but it

should be considered for practical applications.
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