
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2014

A study on fairness and latency issues over high
speed networks and data center networks
Lin Xue
Louisiana State University and Agricultural and Mechanical College, lxue2@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Xue, Lin, "A study on fairness and latency issues over high speed networks and data center networks" (2014). LSU Doctoral
Dissertations. 419.
https://digitalcommons.lsu.edu/gradschool_dissertations/419

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/419?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

A STUDY ON FAIRNESS AND LATENCY ISSUES
OVER HIGH SPEED NETWORKS AND DATA CENTER NETWORKS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

Department of Computer Science and Engineering

by
Lin Xue

B.S., China Agricultural University, 2005
M.S., Beijing University of Posts and Telecommunications, 2008

May 2014

ACKNOWLEDGMENTS

My most sincere gratitude and appreciation go to Dr. Seung-Jong Park as my major

professor and committee chair. I thank him for introducing me to this fantastic world

of scientific research. I thank him for his help on jumpstart of knowledge, his guidance,

encouragement and support throughout my Ph.D. studies. This dissertation would

not have been possible without him.

My deepest appreciation also extends to Dr. Costas Busch and Dr. Feng Chen for

taking their time to serve as my committee members. Their valuable feedback and

comments have improved the quality of this research.

I thank Dr. Mostafa Elseifi from Department of Civil and Environmental Engi-

neering for serving on my committee as Dean’s Representative. His suggestions and

comments are highly appreciated.

I also would like to thank all my lab mates and colleagues: Dr. Cheng Cui, Dr.

Suman Kumar, Praveenkumar Kondikoppa, Chui-hui Chiu, Georgi Stoyanov, Richard

Platania, and all people who helped me with testbed setup and paper writing and

constantly support me through all the stress. I deeply appreciate their time and help

during my PhD study.

Finally, I will be forever grateful to my parents, my wife Yi Liang and all my college

friends. Without their support and help, this journey would not have been possible.

This work has been supported in part by the NSF MRI Grant No.0821741, NSF

CC-NIE Grant No.1341008, GENI grant, and DEPSCoR project N0014-08-1-0856.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of tables . v

List of figures . vi

Abstract . ix

Chapter 1: Introduction . 1

1.1 Background . 1
1.1.1 High Speed Networks . 1
1.1.2 Data Center Networks . 4

1.2 Summary of Contribution . 6
1.3 Outline of Dissertation . 7

Chapter 2: Experimental Evaluation of the Performance of 10Gbps
High Speed Networks . 9

2.1 An Experimental Study of the Impact of Queue Management Schemes
and TCP Variants on 10Gbps High Speed Networks 9
2.1.1 Overview . 9
2.1.2 Related Works . 11
2.1.3 Network Performance Consideration 13
2.1.4 Experimental Preparation . 15
2.1.5 Results of Experimental Evaluation 19
2.1.6 Summary . 26

2.2 A Study of Fairness among Heterogeneous TCP Variants over 10Gbps
High-speed Optical Networks . 27
2.2.1 Overview . 27
2.2.2 Related Works . 30
2.2.3 Experimental Design . 32
2.2.4 Evaluation Results and Discussion 34
2.2.5 Summary . 51

Chapter 3: AFCD: an Approximated-Fair and Controlled-Delay
Queuing Scheme for High Speed Networks 52

3.1 Overview . 52
3.2 Related Works . 52
3.3 Design of AFCD . 55

3.3.1 Design Goals . 55

iii

3.3.2 Architecture . 56
3.3.3 Design . 57
3.3.4 Algorithm . 60

3.4 Experimental Evaluation . 61
3.4.1 1 CUBIC Flow and 1 TCP-SACK Flow 62
3.4.2 1 CUBIC Flow and 1 UDP Flow 65
3.4.3 3 Flows Case: 1 CUBIC, 1 HSTCP, and 1 TCP-SACK Flow . 65
3.4.4 Many Multiplexed Heterogeneous TCP Flows 66
3.4.5 Reduced RTT . 66
3.4.6 With Short-lived TCP Flows 67
3.4.7 CPU and Memory Usage . 68

3.5 Conclusion of AFCD over High Speed Networks 68

Chapter 4: FaLL: a Fair and Low Latency Queuing Scheme for
Data Center Networks . 70

4.1 Overview . 70
4.2 Related Works . 71

4.2.1 End Severs and Switches . 71
4.2.2 End Severs . 71
4.2.3 Switches . 72

4.3 Design Overview of FaLL . 73
4.4 Algorithm . 75

4.4.1 Enqueue Function . 75
4.4.2 Efficiency Module . 76
4.4.3 Fairness Module . 77

4.5 Experimental Evaluation and Discussion 79
4.5.1 Experimental Setup . 80
4.5.2 Results of Y-shape Topology 81
4.5.3 Results of Tree Topology . 83

4.6 Conclusion of FaLL over Data Center Networks 86

Chapter 5: Conclusion and Future Works 87

References . 89

Vita . 96

iv

LIST OF TABLES

2.1 Parameter setup for 4 queue management schemes 18

2.2 Fairness: Homogeneous TCP vs Heterogeneous TCP (buffer size = 20%
of BDP, RTT = 120ms, heterogeneous TCP variants include CUBIC,
HSTCP, and TCP-SACK) . 34

3.1 Parameter setup for 6 queue management schemes 62

4.1 Experimental setup for all solutions 81

v

LIST OF FIGURES

1.1 10Gbps high speed campus networks connected by Internet2 for large
scale scientific computing, distance learning, etc. 2

1.2 A data center network showing aggregation and top of rack (TOR)
switches . 6

2.1 CRON system architecture consisting of routers, delay links, and high-
end workstation operating up to 10Gbps bandwidth 16

2.2 Experimental topology: dumbbell topology 17

2.3 Link Utilization as a function of buffer size in each TCP variant . . . 20

2.4 Fairness among 20 flows as a function of buffer size in each TCP variant
(RTT = 120ms) . 22

2.5 RTT fairness as a function of RTT in each TCP variant 23

2.6 Delay as a function of buffer size in each TCP variant 25

2.7 Memory consumption as a function of buffer size in each TCP variant 26

2.8 Experimental Topology . 32

2.9 Fairness for 1 TCP-SACK, 1 CUBIC, and 1 HSTCP flow (RTT = 120ms) 35

2.10 Instant Cwnd for 3 TCP Flows in 300-400 Seconds (Buffer Size = 20%
BDP, RTT = 120ms) . 38

2.11 Instant Cwnd for 3 TCP Flows in 300-400 Seconds (Buffer Size = 1%
BDP, RTT = 120ms) . 39

2.12 Fairness for Multiple Long-lived Flows: 10 TCP-SACK, 10 CUBIC,
and 10 HSTCP flows (RTT = 120ms) 40

2.13 Fairness for Multiple Long-lived flows with Short-lived flows: 10 TCP-
SACK, 10 CUBIC, 10 HSTCP flows, and Short-lived flows (RTT =
120ms) . 42

vi

2.14 RTT Fairness for 2 Homogeneous TCP flows (Buffer Size = 20% BDP,
RTT of one flow is fixed to 120ms, RTT of the other flow is changed
from 30ms to 240ms shown on x-axis) 44

2.15 RTT Fairness for Heterogeneous TCP Flows without Short-lived flows
(Two kinds of TCP’s RTTs are fixed to 120ms, the other TCP’s RTT
is changed from 30ms - 240 ms shown on x-axis. Buffer Size = 20% BDP) 45

2.16 RTT Fairness for Heterogeneous TCP Flows with Short-lived flows
(Two kinds of TCP’s RTTs are fixed to 120ms, the other TCP’s RTT
is changed from 30ms - 240 ms shown on x-axis. Buffer Size = 20% BDP) 47

2.17 Link Utilization for Heterogeneous TCP Flows 48

2.18 A Topology for a Large Size High-speed Optical Network 49

2.19 Fairness for a Large Size High-speed Optical Network: 24 CUBIC, 24
HSTCP, 24 TCP-SACK flows, and Short-lived flows (RTT = 120ms) 50

3.1 Functional block diagram of AFCD queuing 57

3.2 Dumbbell experimental topology with 10Gbps environment 61

3.3 1 CUBIC and 1 TCP-SACK: performance of QM schemes when 1 CU-
BIC flow and 1 TCP-SACK flow are competing at the 10Gbps bottle-
neck, Propagation Delay = 120ms, Queue Size = 100% BDP 63

3.4 1 CUBIC and 1 TCP-SACK: instant congestion window size and de-
lay for different QM schemes 1 CUBIC flow and 1 TCP-SACK flow
are competing at the 10Gbps bottleneck, Propagation Delay = 120ms,
Queue Size = 100% BDP . 64

3.5 1 CUBIC and 1 UDP: performance of QM schemes when 1 CUBIC flow
and 1 UDP flow are competing at the 10Gbps bottleneck, Propagation
Delay = 120ms, Queue Size = 100% BDP 65

3.6 3 flows case: performance of queue management schemes in 10Gbps
high speed networks 1 CUBIC, 1 HSTCP, and 1 TCP-SACK flow,
Propagation Delay = 120ms, Queue Size = 100% BDP 66

3.7 Many multiplexed heterogeneous TCP flows: performance of queue
management schemes in 10Gbps high speed networks 10 CUBIC, 10
HSTCP, and 10 TCP-SACK flow, Propagation Delay = 120ms, Queue
Size = 100% BDP . 67

vii

3.8 Reduced RTT: performance of queue management schemes 10 CUBIC,
10 HSTCP, and 10 TCP-SACK flow, RTT = 60ms, Queue Size = 100%
BDP, Bottleneck = 10Gbps . 67

3.9 With short-lived TCP flows: performance of queue management schemes
in 10Gbps high speed networks 10 CUBIC, 10 HSTCP, 10 TCP-SACK
flow, and short-lived TCP flows, Propagation Delay = 120ms, Queue
Size = 100% BDP . 68

3.10 CPU and memory usage of queue management schemes: 10 CUBIC, 10
HSTCP, 10 TCP-SACK flow, and short-lived TCP flows, Propagation
Delay = 120ms, Queue Size = 100% BDP 69

4.1 Functional Block Diagram of FaLL 74

4.2 Experimental topologies: Y-shape (top) and Tree topology (botton).
All nodes, switches, and links have 10Gbps capacity 80

4.3 TCP outcast performance of 7 flows (Y-shape topologies, Flow1 to
Flow6 are from s1 and Flow7 is from s2) 82

4.4 Queuing delay and throughput (Y-shape topologies, 6 long-lived TCP
flows from s1 and 1 long-lived TCP flow from s2) 83

4.5 Without short-lived flows: Tree topology, 9 long-lived flows competing
for 10Gbps bandwidth (s1 - s9 each sends 1 flow to r1) 84

4.6 With short-lived flows: Tree topology with short-lived flows, 8 long-
lived flows competing for 10Gbps bandwidth (s8 sends many short-lived
flows to r1, other 8 senders each sends 1 long-lived flow to r1) 84

4.7 Multiplexed traffic: Tree topology with short-lived flows, 40 long-lived
flows competing for 10Gbps bandwidth (s8 sends many short-lived
flows to r1, other 8 senders each sends 5 long-lived flow to r1) 85

4.8 Different start time: Tree topology with short-lived flows, 40 long-lived
flows competing for 10Gbps bandwidth. 20 long-lived flows start 10
seconds earlier than other 20 long-lived flows (s1 - s4 first each sends
5 flows to r1. After 10 seconds, s5, s6, s7 and s9 each sends 5 flows to
r1. s8 sends many short-lived flows to r1) 85

viii

ABSTRACT

Newly emerging computer networks, such as high speed networks and data center

networks, have characteristics of high bandwidth and high burstiness which make it

difficult to address issues such as fairness, queuing latency and link utilization. In

this study, we first conduct extensive experimental evaluation of the performance of

10Gbps high speed networks. We found inter-protocol unfairness and larger queuing

latency are two outstanding issues in high speed networks and data center networks.

There have been several proposals to address fairness and latency issues at switch

level via queuing schemes. These queuing schemes have been fairly successful in ad-

dressing either fairness issue or large latency but not both at the same time. We pro-

pose a new queuing scheme called Approximated-Fair and Controlled-Delay (AFCD)

queuing scheme that meets following goals for high speed networks: approximated

fairness, controlled low queuing delay, high link utilization and simple implementa-

tion. The design of AFCD utilizes a novel synergistic approach by forming an alliance

between approximated fair queuing and controlled delay queuing. AFCD maintains

very small amount of state information in sending rate estimation of flows and makes

drop decision based on a target delay of individual flow.

We then present FaLL, a Fair and Low Latency queuing scheme that meets strin-

gent performance requirements of data center networks: fair share of bandwidth, low

queuing latency, high throughput, and ease of deployment. FaLL uses an efficiency

module, a fairness module and a target delay based dropping scheme to meet these

goals. Through rigorous experiments on real testbed, we show that FaLL outperforms

various peer solutions in variety of network conditions over data center networks.

ix

CHAPTER 1
INTRODUCTION

1.1 Background

In this section, we introduce the background of this work: high speed networks and

data center networks.

1.1.1 High Speed Networks

Advances in high speed networking technology coincide with the need for net-

work infrastructure development to support scientific computing, distant learning,

e-commerce, health, and many other unforeseen future applications. Consequently,

10Gbps high speed networks, such as Internet2 [36], NRL (National LambdaRail)

[51], and LONI (Louisiana Optical Network Initiative) [48], have been the first ones

that were developed to connect a wide range of academic institutes. Figure 1.1 shows a

10Gbps network infrastructure encompassing the campus network of LSU (Louisiana

State University) and MAX (Mid-Atlantic Crossroads). Network operators use Inter-

net2 network stitching [27] to federate all campus networks together, and core routers

are responsible for connection across various facilities located in-campus. The 10Gbps

high speed network enables resource sharing among different departments at different

institutes. As gigabit connectivities are easily available for gigabit-based PCs, servers,

data center storage and high performance computing, gigabit networking technology

is preferred by many organizations. Therefore, various organizations are increasingly

migrating to gigabit links in order to grow their networks to support new applications

and traffic types. It is true that the availability of multi-gigabit switches/routers pro-

vides the opportunity to build high-performance, high-reliability networks but only

if correct design approaches are followed at both hardware and software level.

1

...

...

...

...

LSU Campus

Network

Internet2

Department

of Physics

Department

of Chemistry

Department

of Biology

LSU Core

Router

LONI Switch

MAX Switch

MAX Resources

LONI Network:

Louisiana

Optical

Network

Initiative

MAX Network:

Mid-Atlantic

Crossroads

10Gbps Link

1Gbps Link

FIGURE 1.1. 10Gbps high speed campus networks connected by Internet2 for large scale
scientific computing, distance learning, etc.

To meet the demand of high speed networks, several TCP variants have been pro-

posed. Extensive performance evaluations of these protocols convinced network users

to adopt several of these seemingly promising proposals. Furthermore, open sourcing

of these protocols makes it flexible for user to select the choice of their protocols.

Therefore, current computer networks are ruled by heterogeneous TCP variants[77]

such as TCP-SACK, HighSpeed TCP (HSTCP) [22], CUBIC TCP (CUBIC) [31],

etc. TCP flows are dominant in Internet2 traffic [37] accounting for around 85% flows

while rest being UDP flows with most of the network usages being long-lived bulk

data transfer. One of the key design goals of the proposed TCP variants is fair band-

width sharing with other competing TCP flows. However, our study [76] discloses

severe inter-protocol unfairness among heterogeneous long-lived TCP flows in high

speed networks where faster TCP flows consume most of the network bandwidth,

whereas slow ones starve.

Packet delay is an equally key high speed network performance measure with others

being throughput and fairness. Although high speed networks do not have Bufferbloat

2

problem[28], queuing delay in high speed networks needs careful consideration. For

example, in a typical setting of a 10Gbps router [15] in high speed networks, the out-

put buffer size of routers could be up to 89MB, which may create large queuing delay

in high speed networks. The large queuing delay may create bad user experience in

live concert [35], video streaming, etc, over high speed networks like Internet2. Also,

popular applications such as Online shopping, Voice over IP, HDTV, banking, and

gaming, require not only high throughput but also low delay. In fact, importance of

packet delay is growing with the emergence of a new class of high performance com-

puting applications such as algorithmic trading and various data center applications

with soft real time deadlines that demand extremely low end-to-end latency (ranging

from microsecond to orders of milliseconds). It is clear that the large latency may

result in poor performance of the networks. Therefore, predictable and controllable

queuing delay is highly desired in contemporary high speed networks.

Performance of heterogeneous TCP flows depends on router parameters [66], but

high bandwidth, high latency, and bursty nature of high speed networks make it a

challenging task to design queue management (QM) schemes that ensure minimal

latency while maintaining fair share of bandwidth among heterogeneous flows. There

have been considerable efforts to address these challenges through various QM pro-

posals [61, 63, 52, 50]. The QM scheme in [61] uses stateful information of the flows

to classify the incoming packets, and puts the classified packets into different queues

which is not suitable for large scale networks. The QM scheme in [63] is stateless in

core layer, but it needs stateful information in edge layer. In [52], the authors proposed

a stateless active queue management (AQM) solution, and it achieves approximate

fairness for heterogeneous flows. Although the fairness problem has been addressed in

these QM schemes, controllable and predictable queuing delay has been overlooked.

Recently proposed controlled delay (CoDel) AQM scheme [50] focuses on providing

3

extremely low queuing delay, and CoDel works well in a wide range of scenarios.

While CoDel provides extremely low queuing delay, fairness issue is at bay. Only very

recently that there is an attempt to bring fair queuing into CoDel and a variation of

CoDel has been implemented in Linux kernel [19] that provides fairness by classify-

ing different flows into different CoDel queues. However, the history of research on

classification based QM suggests that any approach requiring huge amount of state

information is not practical for large scale networks.

1.1.2 Data Center Networks

Data centers are growing in capacity to host diverse Internet-scale web applications

such as social networking, web search, video streaming, advertisement, and so on.

Large IT enterprises such as Google, Facebook, Amazon, and Microsoft build their

own data center networks to provide large scale online services. As more of society

is relying on the growing use of pervasive devices creating new demand for storage

and computing facilities, businesses are increasingly moving to wholesale data center

model to take advantage of economy of scale [6]. Therefore, data center networks

are becoming the cornerstone of always evolving web applications. Web technology

trends suggest that low latency, fair share of bandwidth among applications, and high

throughput are the major performance requirements that data center networks are

expected to meet.

In fact, low latency is becoming a stringent performance requirement for data center

networks because of real-time nature of many applications that have become popular,

whose performance is critical to service revenue industry. For example, in algorithmic

high frequency trading where market data must arrive with minimal latency (of the

order of microseconds), financial service providers rely on high speed networks that

must provide low latency to carry these computational transactions [67]. Likewise,

in retail web services, single page request may require calling more than 100 services

4

and because these services can be interdependent, low latency is a critical factor for

user experience [18]. Many data center applications require task completion within

their deadlines. Missing the deadlines may create bad user experience or even failure

of the job resulting into lost revenue [17].

Fair bandwidth sharing is another critical performance metric for data center net-

works. Network traffic from diverse applications are multiplexed at network switches

in data center networks. These network traffic may come from different data center

tenants[42]. Enforcing fair share of bandwidth among these non-cooperating applica-

tions is considered to be an issue [59] that data center networks must address. Also,

multi-rooted tree (Figure 1.2), a natural topology of data center is exposed to severe

flow unfairness known as TCP outcast [57]. When a large set of flows and a small set

of flows come in at two input ports of a switch and come out at one common output

port, the small set of flows suffer from throughput starvation significantly. TCP out-

cast mainly occurs at drop-tail queues with a smaller TCP minimum retransmission

timeout, which is a common case in commodity data center networks.

Modern data center networks are complex network systems that contain hundreds

to thousands of servers making it challenging to address above issues. DCTCP[2], an

ECN (Explicit Congestion Notication) based server side congestion control mecha-

nism has been successful to solve TCP incast, queue buildup, and buffer pressure in

data center networks. Although DCTCP has been publicly available as a kernel patch

for Linux 2.6.38.3, regular TCP variants are still default options in widely used open

sourcing operating systems. To utilize the infrastructure of data center networks, net-

work operators and users may have their own choice of transport protocols on servers.

For example, there are heterogeneous regular TCP variants running in the Internet

[77]. We argue that queuing mechanism at layer-2 switch is the key to improvement in

fairness and latency while achieving high throughput. Figure 1.2 shows a data center

5

……

Aggregation switch

Top of rack

switch (TOR)

Rack

servers

Network

racks

Internet

Data

Center

Aggregation router

FIGURE 1.2. A data center network showing aggregation and top of rack (TOR) switches

network with switches connected to each other and to servers. Our study is based

on the observation that in data center networks, aggregate queuing delays caused

by layer-2 switches are a major contributor to in-network latencies [68, 2]. Although

a data center usually resides in a single building with very low propagation delay,

the high bandwidth and high burstiness still create high queuing delay resulting into

high latency in traditional switches [2, 3]. Moreover, since non-cooperating applica-

tions and multi-tenants coexist in data center networks, fairness issue is better to be

tackled at switch level through queuing scheme [66, 75].

1.2 Summary of Contribution

The main contributions of this study fall into following three parts:

1. Through extensive experimental evaluation of 10Gbps high speed networks, we

present for the first time the interplay of queue management schemes, high speed TCP

variants, and variety of buffer sizes over a 10Gbps high speed networking environment.

We found it difficult to address issues such as fairness, low queuing delay and high

link utilization. Current high speed networks carry heterogeneous TCP flows which

makes it even more challenging to address these issues. We identify two critical issues

high speed networks and data center networks now facing: inter-protocol unfairness

and large queuing latency.

6

2. We propose a new queuing scheme called Approximated-Fair and Controlled-

Delay (AFCD) queuing for high speed networks that aims to meet following design

goals: approximated fairness, controlled low queuing delay, high link utilization and

simple implementation. The design of AFCD utilizes a novel synergistic approach by

forming an alliance between approximated fair queuing and controlled delay queuing.

It uses very small amount of state information in sending rate estimation of flows and

makes drop decision based on a target delay of individual flow. Through experimental

evaluation in a 10Gbps high speed networking environment, we show AFCD meets

our design goals.

3. We present FaLL, a Fair and Low Latency queuing scheme for data center net-

works that meets following performance requirements: fair share of bandwidth, low

queuing latency, high throughput, and ease of deployment. FaLL uses an efficiency

module, a fairness module and a target delay based dropping scheme to meet these

goals. FaLL requires very small amount of state information. Through rigorous ex-

periments on real testbed, we show that FaLL outperforms various peer solutions in

variety of network conditions over data center networks.

1.3 Outline of Dissertation

The rest of this dissertation is organized as following parts:

Chapter 2 is the performance evaluation of 10Gbps high speed networks. We first

setup a real high speed networking testbed. We then present the experimental eval-

uation of the interrelationship among queue management schemes, high speed TCP

variants, and various buffer sizes. Fairness issue and latency issue are found to be the

most outstanding issues over 10Gbps high speed networks.

In Chapter 3, we propose the AFCD (Approximated-Fair and Controlled-Delay)

queuing for high speed networks. AFCD addresses the fairness issue and the latency

7

issue at the same time. We explain the detailed design and algorithm of AFCD. Then

we conduct experimental evaluation of AFCD in a high speed networking environ-

ment.

We present the FaLL (Fair and Low Latency) queuing scheme for data center

networks in Chapter 4. FaLL enforces fair share of bandwidth and low queuing latency

with minimum state informations. We present the design, algorithm, and experimental

evaluation of FaLL.

We draw our conclusion in Chapter 5.

8

CHAPTER 2
EXPERIMENTAL EVALUATION OF THE
PERFORMANCE OF 10GBPS HIGH SPEED
NETWORKS

We first conduct experimental evaluation the performance of 10Gbps high speed

networks in this chapter. Performance results are presented for important metrics of

interest such as link utilization, intro-protocol fairness, inter-protocol fairness, RTT

fairness, queuing delay and computational complexity. The results of evaluation sug-

gest two outstanding issues in contemporary networks: fairness and latency.

2.1 An Experimental Study of the Impact of Queue Management Schemes
and TCP Variants on 10Gbps High Speed Networks

In this section, we conduct a comprehensive experimental study of the impact of

queue management schemes and TCP variants on the performance of 10Gbps high

speed networks.

2.1.1 Overview

Over the years, the Drop-tail queue mechanism has been under scrutiny and is

found to be unsuitable choice to address issues such as transmission control protocols

(TCP) global synchronization, underutilization of link bandwidth, high packet drop

rate, high transmission delay, and high queuing delay. To address these issues, Random

Early Detection (RED) [24] was proposed as an active queue management (AQM)

solution in 1993. Thereafter, several AQMs, such as CHOKe(CHOose and Keep for

responsive flows, CHOose and Kill for unresponsive flows) [53], SFB(Stochastic Fair

Blue) [21] etc., have been proposed. Inspite of so many AQM proposals, there has been

a significant lack of comparative performance evaluation studies on real production

9

networks to permit any conclusion on the merits of these QM schemes. There are two

major consequences for the lack of comparative studies. Firstly, although these AQMs

are theoretically superior to Drop-tail, these AQMs are still scarce in production

networks; secondly, there is not much support from the testing to the development

of future QM schemes. To address the challenges in design and development of QM

schemes in future networks, our focus is to compare the performance of competing

QM proposals in a systematic and repeatable manner in a 10Gbps high speed network

environment.

Simulation and experiment are two main methods to perform such studies. Most

of the evaluation research works on AQM schemes rely on simulation models, such

as Network Simulator 2 (ns-2) or OPNET modeler. However, a linear increase in

bandwidth demands for an exponential increase in CPU-time and memory usage

for these discrete simulation methods [46] which makes it very difficult to finish the

simulation of high speed links in a reasonable time. Besides, to address issues in design

and real network deployment of QM schemes demands a real experimental network

environment [25].

Since the cost could be expensive for large businesses or ISP networks to deploy

the AQM schemes in the Internet, recent network research [49] tries to check if it

is beneficial to deploy the AQM schemes in the core routers. The existing research

focuses on the nature of the AQM scheme itself, but overlooks the effect of the AQM

scheme on transport layer congestion control. Often, the core of the network is a

playground for transport protocols and therefore, it is difficult for a network service

provider to address issues related to performance of their network. Due to the feedback

nature of AQM schemes, TCPs will behave differently according to its own congestion

control algorithm. Especially in production networks (or data centers), the pairing

of a TCP variant and an appropriate QM scheme to compliment that TCP is highly

10

desirable. In other words, it is highly desirable to know the impact of QM schemes

on transport protocols. Therefore, in this study, the performance metrics for QM

schemes are chosen to be very TCP specific. We also consider the metrics such as

memory usage and CPU requirement which we find in a direct correlation with ease

of deployment and operational costs.

We choose the popular QM schemes for evaluation, including Drop-tail, RED,

CHOKe, and SFB. Among high speed TCP variants, we select CUBIC (CUBIC TCP)

[31], HSTCP (HighSpeed TCP) [22], RENO (TCP-Reno), and VEGAS (TCP-Vegas)

[10]. It was noted that CUBIC, HSTCP and RENO account for 2/3 of all TCP vari-

ants used on the Internet [77]. VEGAS represents the delay-based TCP, and is the

only delay-based TCP supported in the current Linux kernel. We present the results

in terms of link utilization, intro-protocol fairness, RTT fairness, delay, and compu-

tational complexity.

2.1.2 Related Works

To evaluate performance of TCP variants, the authors in [29] and [30] evaluated

high speed TCP protocols in a realistic high speed networking environment. The high

speed TCP protocols were evaluated against itself in terms of several TCP perfor-

mance metrics. However, when evaluating all TCP protocols, the authors did not

consider the impact of queue management schemes in the router.

In [8], the authors presented a framework to evaluate AQM schemes. Five met-

rics were chosen to characterize overall network performance of AQM schemes. The

authors suggested simulation environments and scenarios, including ns-2 interfaces,

traffic models and network topologies. As a continuing work [9], the authors gave sim-

ulation based evaluation and comparison of a subset of AQM schemes. Their frame-

work was based on ns-2 simulation which is different than a real-world experiment,

especially the 10Gbps high speed networks.

11

The authors in [14] evaluated new proposed AQM schemes with some specific net-

work scenarios. They proposed a common testbed for the evaluation of AQM schemes

which includes a specification of the network topology, link bandwidths and delays,

traffic patterns, and metrics for the performance evaluation. Also, the authors real-

ized that AQM schemes need to cooperate closely with TCP. However, they evaluated

AQM schemes over regular Internet speed but not 10Gbps speed, and only presented

the results of TCP-RENO in their evaluation.

Moreover, the authors in [40] considered router buffer sizing in evaluation of high

speed TCP protocol. They conducted an experimental evaluation of CUBIC TCP in

small router buffers (e.g. a few tens of packets). Their work highlighted the need for

a thorough investigation on the performance of high speed TCP variants with small

router buffers for newly emerging high speed networks.

In a recent work [47], the authors found the tradeoff between throughput and

fairness in high speed networks. The network performance was evaluated by a model

based simulation method, which shows some bottlenecks in evaluating high speed

networks. In [74], the authors evaluated the impact of queue management schemes

on the performance of TCP over 10Gbps high speed networks. However, the detailed

setup of a 10Gbps environment was not unveiled. And some of the research results

were not presented such as TCP-VEGAS result, intro-protocol fairness result, memory

consumption, etc. In [76], fairness was evaluated thoroughly among heterogeneous

high speed TCP variants by using different queue management schemes with varying

degrees of buffer sizes, but other metrics have not been fully evaluated yet. The

authors in [75] evaluated extensively both fairness and latency of AQM schemes over

10Gbps high speed networks. They proposed a new AQM schemes which works well

in terms of fairness and latency over 10Gbps high speed networks.

12

In this work, we consider the most important metrics which need to be evaluated

for the interrelationship between TCP variants and queue management schemes. Per-

formance metrics have been defined in [23] previously. The authors discussed the

metrics to be considered to evaluate congestion control mechanisms for the Internet.

They brought 11 metrics in total, which could be used for evaluating new or modified

transport layer protocols.

2.1.3 Network Performance Consideration

Previous experimental studies treated evaluation of TCP, evaluation of AQMs and

effect of router parameters running a particular AQM on TCP separately. Also, these

studies do not include 10Gbps bandwidth consideration. In this study, we propose

a complementary approach of combining TCP, router parameters and a high speed

network of order of 10Gbps.

The following equation summarizes the dynamics of the TCP congestion window

W (t) at time t:

W (t) = Wmaxβ + α
t

RTT
(2.1)

Wmax is the congestion window size just before the last window reduction, RTT is

the round trip delay of this flow, and α and β are increase and decrease parameters

respectively.

Wmax depends on router parameters, such as a penalty signal P of queue manage-

ment schemes , router buffer size Q, and the bottleneck capacity C:

Wmax ←
QC

P
(2.2)

From the equation above, it is clear that the performance of a network depends

on the combination of TCP variants, queue management schemes and router buffer

sizes. Our argument is consistent with [64], which concluded that the TCP sending

rate depends on both the congestion control algorithms and the queue management

13

schemes in the links. A real network measurement on high speed networks shows that

burstiness increases with bandwidth because packets degenerate into extremely bursty

out flows with data rates going beyond the available bandwidth for short periods of

time [26]. It is clear that such surges can easily generate severe penalty signals and

further degrade the overall network performance.

The penalty signals for different queue management schemes are also different.

When the router buffer is full, A Drop-tail queue drops all the packets. A RED queue

drops packets early and randomly according to the queue length. CHOKe extends

RED to compare random packets and drops packets for fast flows. SFB uses a bloom-

filter to determine fast flows and drops packets from fast flows. Buffer size at the

routers also impacts network performance. Router buffers cause queuing delay and

delay-variance. And in the case of underflow, throughput degradation is observed.

Appropriate sizing of buffers has been considered a difficult task for router or switch

manufacturers.

Given the importance of router parameters, different high speed TCP variants will

differ in performance for the same router parameters. We elaborate on this point

by considering the impact of penalty signals on congestion window TCP variants in

consideration as below:

1) Traditional TCP’s AIMD algorithm has the increase parameter α and decrease

parameter β to be 1 and 0.5 respectively.

2) HSTCP’s increase parameter α and decrease parameter β are functions of the

current window size, namely α(W) and β(W). The range of α(W) could be from 1

to 73 packets, and β(W) from 0.5 to 0.09.

3) CUBIC updates the congestion window according to a cubic function as shown

below:

WCUBIC ← C(t− 3
√

Wmaxβ/C)3 +Wmax (2.3)

14

where C is a scaling factor, t is the elapsed time since the last window reduction,

Wmax is the window size just before the last window reduction, and β is the decrease

parameter.

4) VEGAS is a delay-based TCP variant. It has 2 thresholds, α and β, to control the

amount of extra data, i.e Textra = Texpected - Tactual, where Texpected is an estimation of

expected throughput calculated by Texpected = windowsize / smallestmeasuredRTT .

Window size of VEGAS is updated as follows:

If Texpected < α, window size increased by 1.

If α < Texpected < β, no change in window size.

If Texpected > β, window size decreased by 1.

A detailed understanding of the many facts of network parameters is critical for

evaluating the performance of networking protocols, for assessing the effectiveness

of proposed protocols, and for developing the next generation high speed networks.

In this work, we narrow down our focus to three key components that affect the

performance of 10Gbps networks: TCP variants, queue management schemes, and

router buffer size.

2.1.4 Experimental Preparation

1. CRON Setup

CRON [16] is an emulation-based 10Gbps high speed testbed, which is a cyberin-

frastructure of reconfigurable optical networking environment that provides multiple

networking testbeds operating up to 10Gbps bandwidth. As shown in Figure 2.1,

CRON provides users with automatic configuration of arbitrary network topologies

with 10Gbps bandwidth. Also, CRON can be federated with other 10Gbps high speed

networks, such as Internet2, NLR, and LONI. Details of demonstrations of how to

use the CRON testbed could be found here [1].

15

CRON

…
High-end

Servers

Cisco

N5000

Switch

Automated

Configuration

Server

Internet

Internet2/NLR/LONI

Resource

…

User level Collaborations:

Network research

Cloud computing

Bioinformatics, and etc.

10Gbps link

1Gbps link

CRON user

FIGURE 2.1. CRON system architecture consisting of routers, delay links, and high-end
workstation operating up to 10Gbps bandwidth

As dumbbell topology is a widely accepted network topology, we create a dumbbell

topology as shown in Figure 2.2 in CRON. In the topology, all nodes are Sun Firex4240

servers which have two quad core 2.7-GHz AMD Opteron 2384 processors, 8 GB/s

bus, 8GB RAM and 10GE network interface cards. From a software perspective, two

pairs of senders and receivers run a modified version of Linux 2.6.34 kernel, which

supports TCP variants of CUBIC, HSTCP, RENO, and VEGAS. The routers run a

modified version of Linux-2.6.39.3 kernel, which supports queuing disciplines of Drop-

tail, RED, CHOKe, and SFB. The delay node runs a modified version of FreeBSD

8.1, which supports a 10Gbps version of Dummynet[11] with 10Gbps bandwidth and

enlarged queue size.

We set the RTT on the delay node to 120ms. All the links have a 10Gbps capacity,

and the bottleneck link is the one between Router1 and Router2. We set the queue

disciplines at the output queue of Router1, where the congestion happens.

By default, we send 10 flows from Sender1 to Receiver1 and 10 flows from Sender2

to Receiver2. We choose the number of flows to be 10 according to recent statistics of

network flows of Internet2 [37], which suggested that the number of long-lived TCP

flows are always several tens of flows in 10Gbps high speed networks such as Internet2.

16

Sender1

Sender2

Dummynet

Delay Node

RTT=120ms Software Router1

Receiver1

Router

Queue

Receiver2

Software Router2

FIGURE 2.2. Experimental topology: dumbbell topology

The duration of each emulation test is 20 minutes, and all tests run for 7 to 10 times.

We get the final result based on the average value.

2. System Tuning for 10Gbps

To get a systematic and repeatable 10Gbps network environment, we perform sys-

tem tuning and software patching in the CRON testbed. Firstly, on the senders and

receivers with Linux kernel 2.6.34, we enlarge the default TCP buffer size for high

speed TCP transmit. According to [78], we implement the zerocopy Iperf to avoid the

overhead of data copy from user-space to kernel space, and we enable packets large

receive offload (LRO) and TCP segment offload on the NICs. We also set MTU to

9000 Bytes [72].

Secondly, on the routers with Linux kernel 2.6.39.3, the Linux default queuing

discipline controller, traffic control (tc), does not support control for CHOKe and SFB

in user-space. So we patch tc(8) to support CHOKe and SFB. In kernel-space, we find

that for RED, the scaled parameter of maximum queue threshold only supports 24

bit value which means up to only 16MB. So we change it to a 56 bit value to support

a higher maximum queue threshold. In addition, we use standard skbuf to forward

packets and disable LRO on the router NICs.

Thirdly, on the delay node which runs FreeBSD 8.1, we optimize memory utilization

by creating a continuous memory space for received packets to overcome the drawback

of the memory fragmentation of Mbuf allocation in FreeBSD. In Dummynet, we

17

change the type of bandwidth from int to long so that its bandwidth capacity gets

an improvement from 2Gbps to 10Gbps. We also increase the value of the Dummynet

hardware interruption storm threshold.

3. Queue Parameter Setup

Queue management schemes in consideration along with its parameters are shown

in Table 2.1.

In [4], the authors suggest that a link needs only a buffer of size O(C /
√
N),

where C is the capacity of the link, and N is the number of flows sharing the link.

In addition, we vary the router buffer size to examine all the combinations of TCP

variants and queue management schemes. In [20], the authors suggest that buffers

can be reduced even further to 20-50 packets. Given the significance of their role, we

vary the buffer size as 1%, 5%, 10%, 20%, 40%, and 100% of BDP to find out the

impact of the router buffer sizing on AQM schemes in 10Gbps high speed networks.

TABLE 2.1. Parameter setup for 4 queue management schemes

Queue Parameter Setup
Drop-tail queue length limit: from 1% to 100% BDP
RED queue length limit: from 1% to 100% BDP

minimum threshold qthmin: 0.1× limit
maximum threshold qthmax: 0.9× limit

average packet size avpkt: 9000
maximum probability maxP : 0.02

CHOKe queue length limit: from 1% to 100% BDP
minimum threshold qthmin: 0.1× limit
maximum threshold qthmax: 0.9× limit

SFB queue length limit: from 1% to 100% BDP
increment of dropping probability increment: 0.00050
decrement of dropping probability decrement: 0.00005

Bloom filter uses two 8 x 16 bins
target per-flow queue size target: 1.5/N of total buffer size

N: number of flows
maximum packets queued max: 1.2× target

18

4. Performance Metrics

(1) Link Utilization. Link utilization is the percentage of total bottleneck capacity

utilized during an experiment run.

(2) Intra-protocol Fairness. Intra-protocol fairness represents the fairness among all

TCP flows. Long term flow throughput is used for computing fairness according to

Jain’s fairness index [39].

(3) RTT fairness. RTT fairness is the fairness among TCP flows with different

RTTs. Longer RTT TCP flows suffer from lower throughput and shorter RTT flows

get more throughput.

(4) Delay. Delay is the average end-to-end delay experienced by the flows, also

known as Round-trip delay (RTT) of packets across the bottleneck paths. It includes

the queuing delay created by the queue at router.

(5) Computational Complexity. Computational complexity is the algorithm space

and time complexity of the queue management schemes, which is the memory con-

sumption and CPU usage on the servers in our experiments.

2.1.5 Results of Experimental Evaluation

1. Link Utilization

We vary queue buffer size to observe the link utilization. Figure2.3(a), Figure2.3(b),

Figure2.3(c), and Figure2.3(d) show link utilization for queue management schemes

as a function of buffer size for CUBIC, HSTCP, RENO with SACK, and VEGAS

respectively. With only 1% BDP buffer size on the bottleneck link; almost all of the

queue management schemes for all TCP variants show more than 85% link utilization,

which is close to the previous sizing router buffer researches [4], [45]. And if the buffer

size reaches 10% of BDP, almost all the queue management schemes under all TCPs

will get more than 90% link utilization except for TCP-VEGAS.

19

84

86

88

90

92

94

96

98

100

0.01 0.05 0.10 0.20 0.40 0.60 1.00

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

SFB

(a) Link Utilization vs buffer size for CUBIC

84

86

88

90

92

94

96

98

100

0.01 0.05 0.10 0.20 0.40 0.60 1.00

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

SFB

(b) Link Utilization vs buffer size for HSTCP

84

86

88

90

92

94

96

98

100

0.01 0.05 0.10 0.20 0.40 0.60 1.00

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

SFB

(c) Link Utilization vs buffer size for RENO

65

70

75

80

85

90

95

100

0.01 0.05 0.1 0.2 0.4 1

%

Li

n
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail RED

CHOKe SFB

(d) Link Utilization vs buffer size for VEGAS

FIGURE 2.3. Link Utilization as a function of buffer size in each TCP variant

Figure2.3(a) is for link utilization of queue management schemes for CUBIC, when

the buffer size is very small to 1% BDP, Drop-tail performs worst, while SFB gets

highest link utilization among others. If the buffer size increases up to 100% BDP,

CHOKe and SFB get higher link utilization. In Figure2.3(b), link utilization of

queue management schemes is for HSTCP, and SFB almost always outperforms other

queuing schemes, while RED almost always gets lowest link utilization than others.

Figure2.3(c) shows the link utilization of queue management schemes for RENO with

SACK, Drop-tail performs best in this case, SFB is still better than the other two,

while RED almost always gets the lowest link utilization.

In Figure2.3(d), VEGAS shows different link utilization behaviors because of its

delay-based nature, which depends on the queue size. In general, when the buffer size

20

becomes larger, all queue management schemes get higher link utilization. In the case

of less than 10% BDP, Drop-tail almost always gets the highest link utilization. In the

case of more than 10% BDP, AQM schemes almost always get higher link utilization.

The reason is when the queue size becomes larger, AQM schemes do not have early

drops because VEGAS controls the queue size in a limited range, and therefore, link

utilization of the AQM scheme improves.

2. Intra-protocol Fairness

Intra-protocol fairness is the fairness among TCP flows with the same kind of TCP.

In our evaluation, Jains fairness index is calculated for intra-protocol fairness among

20 flows with same TCP variant and same RTT of 120ms.

Figure2.4 shows the intra-protocol fairness for these 20 flows. In general, CUBIC

shows the highest fairness index, which has a fairness index in the range of 0.97 to

1. HSTCP seconds with a fairness index in the range of 0.94 to 0.99. RENO is third,

which has a fairness index higher than 0.89. VEGAS is last with a fairness index

higher than 0.8.

Figure2.4(a) shows the case for CUBIC, RED and CHOKe have a very high intro-

protocol fairness around 0.99 fairness index. SFB generally shows lower intro-protocol

fairness than other queue management schemes. According to our observation, al-

though SFB has bucket drops to limit the fast flows, SFB always has more tail drops

than other queue management schemes in high speed networks because of its more

complex queuing mechanism. That is the reason SFB can not perform as fairly as

other AQM schemes.

Figure2.4(b) is the result for HSTCP, which is similar to the case of CUBIC. RED

and CHOKe still show higher intro-protocol fairness, while Drop-tail and SFB show

lower intro-protocol fairness.

21

0.95

0.96

0.97

0.98

0.99

1

0.01 0.05 0.1 0.2 0.4 1

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED

CHOKe SFB

(a) Fairness for 20 CUBIC flows

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.01 0.05 0.1 0.2 0.4 1

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED

CHOKe SFB

(b) Fairness for 20 HSTCP flows

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.01 0.05 0.10 0.20 0.40 1.00

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED

CHOKe SFB

(c) Fairness for 20 RENO flows

0.75

0.8

0.85

0.9

0.95

1

0.01 0.05 0.1 0.2 0.4 1

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED

CHOKe SFB

(d) Fairness for 20 VEGAS flows

FIGURE 2.4. Fairness among 20 flows as a function of buffer size in each TCP variant (RTT
= 120ms)

In the case of RENO, Figure2.4(c) shows that RED always gets the highest intro-

protocol fairness. Drop-tail is second, and CHOKe is the third. The slow instinct

of RENO makes AQM schemes have a similar performance to Drop-tail in terms of

fairness. Whenever RENO flows have early drops from AQM schemes, it takes some

time for the flows to recover, which in consequence degrades the fairness of AQM

schemes. SFB still almost always shows the lowest intro-protocol fairness because of

having more tail drops than others.

Figure2.4(d) shows the case for VEGAS. Since VEGAS is a delay-based TCP vari-

ant, it keeps the queue size as small as possible. AQM schemes all get better fairness

than Drop-tail. Drop-tail makes relatively large changes on the queue size, and there-

fore it performs relatively unfair.

22

3. RTT Fairness

We measure RTT fairness by Jain’s fairness index for 20 competing flows of the

same TCP variant but different RTTs. In these 20 flows, 10 of them have a fixed RTT,

while the other 10 flows have a different RTT. The RTT of 10 flows from Sender1 is

fixed at 120ms, while the RTT of the other 10 from Sender2 is changed as 30ms, 60ms,

120ms, and 240ms respectively. We set the bottleneck buffer to 10% BDP because

link utilization of the bottleneck link shows good performance with buffer size 10%

BDP in general. Also, in this case queuing delay can be neglected.

Figure 2.5(a) shows CUBIC RTT fairness for four queue management schemes. In

our measurement, CUBIC shows very good behavior of RTT fairness. Even under

240ms RTT, every queue management scheme shows more than 90% of RTT fairness.

0.85

0.88

0.91

0.94

0.97

1

30 60 120 240

Ja
in

's
 F

a
ir

n
e

ss

In

d
e

x

RTT (ms)

Drop-tail

RED

CHOKe

SFB

(a) RTT fairness for CUBIC

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

30 60 120 240

Ja
in

's
 F

a
ir

n
e

ss

In

d
e

x

RTT (ms)

Drop-tail

RED

CHOKe

SFB

(b) RTT fairness for HSTCP

0.4

0.5

0.6

0.7

0.8

0.9

1

30 60 120 240

Ja
in

's
 F

a
ir

n
e

ss
In

d
e

x

RTT(ms)

Drop-tail

RED

CHOKe

SFB

(c) RTT fairness for RENO

0.4

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

R
T

T
 F

a
ir

n
e

ss

Fraction of BDP

Drop-tail RED

CHOKe SFB

(d) RTT fairness for VEGAS

FIGURE 2.5. RTT fairness as a function of RTT in each TCP variant

23

SFB performs better than others; while RED gets least fairness. Figure 2.5(b) and

2.5(c) show HSTCP’s and RENO’s RTT fairness cases. HSTCP’s RTT fairness is

better than RENO’s for all queue management schemes, and both HSTCP’s RTT

fairness and RENO’s RTT fairness are quite lower than CUBIC’s. We can still see

SFB shows the best for all the TCP variants under different RTT scenarios, and when

one RTT increases to 240ms, we get a low RTT fairness in both cases. Figure 2.5(d)

shows VEGAS’s RTT fairness. Every queuing scheme gets around 0.8 to 0.9 fairness

index except that of Drop-tail which gets a low RTT fairness in the case of 240ms

RTT.

4. Queuing Delay

We observe performance in delay by varying buffer size. Since this measurement

is based on round trip propagation delay of 120ms, the average RTT will be 120 +

[0,max queuing delay]. Figure 2.6(a) shows CUBIC result, Drop-tail always has more

queuing delays than others. SFB is the second with more queuing delay than RED

and CHOKe. Figure 2.6(b) shows result for HSTCP, we can still see Drop-tail and

SFB show more queuing delay than the others, and SFB shows an oscillation, and

exhibits queue delays more than double the amount of propagation delays. Figure

2.6(c) is for RENO, Drop-tail and SFB queuing delays grow faster than the others.

RED and CHOKe show nearly the same behavior and both grow more smoothly with

the increase in buffer size as compared to Drop-tail and SFB.

Figure 2.6(d) shows results for VEGAS. For all queue management schemes, VE-

GAS almost does not create any queuing delay. In all cases, the average RTTs for

VEGAS are only 120ms, which is the propagation delay we set. This is because VE-

GAS itself maintains the queue in a very small size, such as several packets. The

results confirm that delay-based TCP variant maintains a stable and small queue size

in 10Gbps high speed networks.

24

110

130

150

170

190

210

230

0.01 0.05 0.10 0.20 0.40 0.60 1.00

A
v
e

ra
g

e
 R

T
T

 (
m

s)

Franction of BDP

Drop-tail

RED

CHOKe

SFB

(a) Delay vs. buffer size in CUBIC

110

150

190

230

270

310

0.01 0.05 0.10 0.20 0.40 0.60 1.00

A
v
e

ra
g

e
 R

T
T

 (
m

s)

Fraction of BDP

Drop-tail

RED

CHOKe

SFB

(b) Delay vs. buffer size in HSTCP

110

130

150

170

190

210

230

0.01 0.05 0.10 0.20 0.40 0.6 1.00

A
v
e

ra
g

e
 R

T
T

 (
m

s)

Fraction of BDP

Drop-tail

RED

CHOKe

SFB

(c) Delay vs. buffer size in RENO

110

120

130

140

150

160

170

180

190

200

0.01 0.05 0.1 0.2 0.4 1

A
v
e

ra
g

e
 R

T
T

 (
m

s)

Fraction of BDP

Drop-tail RED

CHOKe SFB

(d) Delay vs. buffer size in VEGAS

FIGURE 2.6. Delay as a function of buffer size in each TCP variant

5. Computational Complexity

Figure 2.7 shows the average memory consumption in a function of buffer size on the

bottleneck router. We can see that for CUBIC, HSTCP and RENO, the general trend

is that when the buffer size increases, the memory consumption increases. When the

buffer size is 100% BDP, the memory consumption reaches more than 500MB. Drop-

tail generally needs more memory than other AQM schemes. Figure 2.7(d) shows

that VEGAS almost does not create any additional memory for queuing mechanisms,

because it maintains a very small size queue.

The results of CPU usage reveal less than 10% of total CPU usage of all CPU cores

in all of our experiments, and therefore we do not list the detailed CPU usage result

here.

25

200

250

300

350

400

450

500

550

0.01 0.05 0.1 0.2 0.4 1

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Fraction of BDP

Drop-tail RED

CHOKe SFB

(a) Memory consumption in CUBIC

200

250

300

350

400

450

500

550

0.01 0.05 0.1 0.2 0.4 1

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Fraction of BDP

Drop-tail RED

CHOKe SFB

(b) Memory consumption in HSTCP

200

250

300

350

400

450

500

550

0.01 0.05 0.10 0.20 0.40 1.00

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Fraction of BDP

Drop-tail RED

CHOKe SFB

(c) Memory consumption in RENO

200

250

300

350

400

450

500

550

0.01 0.05 0.1 0.2 0.4 1

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Fraction of BDP

Drop-tail RED

CHOKe SFB

(d) Memory consumption in VEGAS

FIGURE 2.7. Memory consumption as a function of buffer size in each TCP variant

2.1.6 Summary

We present the experimental study of the interplay of queue management schemes

and high speed TCP variants over a 10Gbps high speed networking environment.

TCP specific performance metrics such as link utilization, fairness, delay, and com-

putational complexity are chosen to compare the impact of queuing schemes on the

performance of TCP-RENO, CUBIC, HSTCP and VEGAS. Our test reveals that

Drop-tail is most suited for TCP-RENO and observed to be worst for CUBIC and

HSTCP. In our experiment scenario, we observe at least 10% BDP of buffer size is

required for more than 90% link utilization. RED exhibits higher fairness as compared

to other QMs for all the TCP variants. SFB is shown to be effective in RTT fairness

improvement. TCP VEGAS shows very low queuing delay and memory consumption.

26

In summary, we observe differences in performance of queue management schemes for

different TCP variants.

We hope that even a preliminary understanding of key factors, when combined with

critical performance metrics, can provide a perspective that is easily understood and

can serve as guidelines for network designers of 10Gbps high speed networks. Also, the

results of the study address the current need for the research on the impact of queue

management schemes on the performance of the high speed TCP variants. It is also

desirable to observe the same impacts on a more realistic experimental environment

by considering background traffic. For our future work, it is interesting to observe

the impact of these queue management schemes in a wide range of different network

topologies. In this study, although our focus has been on homogeneous TCP flows,

we expect a different behavior in the case of heterogeneous TCP flows. The presented

work supports further research work on the design and deployment issues of queue

management schemes for high speed networks.

2.2 A Study of Fairness among Heterogeneous TCP Variants over 10Gbps
High-speed Optical Networks

In this section, we conduct an experimental study of fairness among heterogeneous

TCP variants over 10Gbps high-speed optical networks. We choose most popular TCP

variants and present the fairness behavior of these heterogeneous TCP variants.

2.2.1 Overview

High-speed optical networks such as National Lambda Rail (NLR) [51], Internet2

[36], Louisiana Optical Networks Initiative (LONI) [48], etc., with their capacity to

deliver a data transfer rate in excess of 10Gbps, have been developed to serve the de-

mand of end users. Efficiency and fairness of these high-speed optical networks among

its end users have been concerned among researchers. Traditional congestion control

mechanism Additive Increase Multiplicative Decrease (AIMD) has been outstanding

27

in fulfilling the requirements of efficiency and fairness, and has been a first choice

for large networks. However, it is not scalable in high bandwidth and large delay

networks. Therefore, researchers proposed several TCP variants, such as HighSpeed

TCP (HSTCP) [22], Scalable TCP (STCP) [44], FAST TCP (FastTCP) [41], BIC

TCP (BIC) [73], CUBIC TCP (CUBIC) [31], etc. Open sourcing of these protocols

enables Linux/BSD users to choose their own transport layer protocols. Also, a recent

study [77] on 5000 most popular web servers shows that AIMD, BIC/CUBIC, and

HSTCP/CTCP are used by 16.85-25.58%, 44.5%, and 10.27-19% respectively among

the web servers. Active use of these high-speed TCP variants by web servers suggests

that our traditional homogeneous network is rapidly evolving into a heterogeneous

one.

Because every TCP employs its own congestion control mechanism differently, it

is hard to predict behavior of a network where these different TCP variants interact

at a bottleneck link. Since these TCP variants are designed for high-speed networks,

we believe they are all able to provide high throughput, and we confirm the high

link utilization for heterogeneous TCP flows in Section 2.2.4. On the other hand,

these TCP variants react differently to packet losses and use different mechanisms

to quickly adapt to the available bandwidth. Fairness among heterogeneous TCP

variants becomes hard problem, and mainly depends on router parameters such as

queue management schemes and buffer size [65].

Most of TCP variants have been evaluated in fairness behavior against itself or

traditional AIMD [29]. However, it is clear that future high-speed optical networks

will be heterogeneous in nature, which means it will consist of flows of many different

variants of TCP. Therefore, it is critical for us to evaluate fairness behavior among

heterogeneous TCP flows in newly emerging high-speed optical networks.

28

To address the fairness behavior, it is important to understand the interaction of

these TCP variants in a high-speed optical network environment. However, due to the

high cost and limited availability of high-speed optical networks, it is hard for network

researchers or operators to get privilege to evaluate network performance by inves-

tigating different network parameters, such as heterogeneous TCP variants, router

parameters, etc. In this work, we evaluate fairness among heterogeneous TCP flows

with various network parameters over a cyberinfrastructure of reconfigurable optical

networking environment (CRON) [16], which is an emulation-based reconfigurable

10Gbps high-speed optical network testbed.

Moreover, this study presents fairness issues among heterogeneous TCP variants,

which could exist in all-optical routers that are designed to have very limited buffer

size. One of the challenges in deploying high-speed optical networks is to manage

all-optical routers with very small buffer to cooperate with various TCP variants

[12, 60, 70]. This study brings the fairness issues to the table and matches the needs

of preliminary research of deploying all-optical routers in high-speed optical networks.

Our heterogeneous TCP flows consist of flows of TCP-SACK, HSTCP and CUBIC.

It is to be noted that these three protocols have substantial presence in current

Internet [77]. Experimental scenarios presented in this study have similar traffic

characteristics as observed in high-speed optical networks such as Internet2 [37], where

number of high speed flows (long-lived TCP flows, bulk data transfer, etc.) ranges

from a few to a few tens of flows. Thus, we first show fairness behavior for single

long-lived TCP flow case; then the case for many long-lived TCP flows; and finally

the case with both long-lived TCP flows and short-lived TCP flows. We also show

RTT fairness behavior with and without short-lived TCP flows.

Among router parameters, we choose queue management schemes such as Drop-tail,

RED(Random Early Detection) [24], CHOKe(CHOose and Keep for responsive flows,

29

CHOose and Kill for unresponsive flows) [53], and AFD(Approximated Fair Dropping)

[52]. RED, CHOKe, and AFD, as active queue management (AQM) schemes, have

been studied for a long time to avoid network congestion and to improve fairness.

Furthermore, fairness behavior is presented for buffer sizes ranging from 1% to 100%

of Bandwidth-Delay Product (BDP), where BDP = C × RTT , C is the data rate

of the link and RTT is the round trip time. Nowadays, researchers are looking to

decrease router buffer size to a point where network performance can be optimized.

In [4], authors suggested a link with n flows requires no more than buffer size of

BDP/
√
N for long-lived or short-lived TCP flows. And authors in [20] argued that

buffer size of 20 - 50 packets could be sufficient to serve the requirements. Thus, we

examine various router buffer sizes in our experiments to see the impact of buffer

sizing on fairness among heterogeneous high-speed TCP flows.

Our findings suggest that fairness becomes poor when there are heterogeneous TCP

flows mixed at the bottleneck link. AQM schemes, such as RED, CHOKe, and AFD,

can improve fairness to some extent when router buffer size is more than 10% of

BDP. For buffer sizes less than 10% of BDP, AQM schemes lose their advantage on

fairness. Furthermore, multiplexing of many long-lived flows and short-lived flows

improve fairness. To the best of our knowledge, this work is the first one to present a

comprehensive study on fairness behavior of heterogeneous TCP flows over a 10Gbps

high-speed optical network testbed.

2.2.2 Related Works

In [64, 66], authors explored that bandwidth allocation among heterogeneous flows

is coupled with router parameters, such as router queue management schemes, router

buffer size, etc. Their solution for fairness is source-based, which means every source

should change its algorithm. The authors conducted pairwise comparison only be-

tween FastTCP and TCP-Reno through regular network simulations. In [52], authors

30

proposed a queue management scheme called Approximate Fair Dropping (AFD)

to achieve reasonable fair bandwidth allocation. Then, AFD was evaluated by mix-

ing heterogeneous TCP flows in the bottleneck. In their work, they assumed that

router’s buffer is sufficient. Although they considered different shadow buffer size

b, they overlooked the impact of router buffer sizing on fairness behavior. Effect of

buffer sizing on fairness has been investigated in [71]. Authors studied the interrela-

tionship among fairness, small buffer size, and desynchronization of long-lived TCP

flows. Their analysis is based on the pair of TCP-Reno and Drop-tail, but not on the

heterogeneous instinct of current high-speed optical networks. In [32], authors added

RED into consideration, and evaluated the impact of loss synchronization and buffer

sizing on fairness behavior. However, they only evaluated intra-protocol fairness for

homogeneous TCP flows. Also, in [72], authors raised TCP performance issue of intra-

protocol fairness for 10Gbps high-speed optical networks, but they did not consider

the influence of router parameters. In [70], the authors investigated the bandwidth

sharing issue when heterogeneous traffic multiplex at an optical router with very small

buffers. The authors explored buffer allocation strategies to share bandwidth among

heterogeneous flows in optical packet switched networks. Their study only focused on

the interplay between traditional TCP and UDP under different buffer sizes. Authors

in [74] presented experimental results of intra-protocol fairness with different router

parameters, and considered evaluation of inter-protocol fairness for heterogeneous

TCP flows as future work. As a continuous work, authors in [76] evaluated fairness

among heterogeneous high-speed TCP variants, but the results of AFD queue and

RTT fairness for heterogeneous TCP variants were not presented.

In this study, we evaluate the fairness behavior of heterogeneous TCP flows mixed

in the bottleneck link. Different queue management schemes, as well as different router

31

buffer sizes, have been considered in our experiments. Moreover, this study has been

done for the first time in a 10Gbps high-speed optical networking testbed.

2.2.3 Experimental Design

1. Testbed Setup

As shown in Figure 2.8, we create a dumbbell topology in CRON. Multiple TCP

sessions share a bottleneck link between two routers. Three separate senders, which

run a modified version of Linux 2.6.34 kernel, are used to initiate TCP flows. The

two routers run a modified version of Linux-2.6.39.3 kernel, which supports various

Linux queuing disciplines. The delay node runs a modified version of FreeBSD 8.1,

which supports 10Gbps version of Dummynet as a software network emulator. The

bottleneck link is the link between Router1 and Router2. So the bottleneck queue is

Router1’s output queue.

All the presented results are averaged over five experiments and duration of each

run is 20 minutes.

All links in the testbed support 10Gbps data transfer. We perform system tuning

for a 10Gbps network environment which includes kernel optimizations for Linux and

FreeBSD, TCP parameters tuning, NIC driver optimizations, jumbo frame, patches

for 10Gbps version of RED and CHOKe queuing disciplines both in Linux user-space

and kernel-space, and patches for Dummynet with enlarged queue size and bandwidth

FIGURE 2.8. Experimental Topology

32

both in FreeBSD user-space and kernel-space. We implement AFD queuing discipline

in Linux kernel as well as tc traffic control support for AFD.

2. Network Parameters

In our experiments, three senders send three different TCP variants, namely, TCP-

SACK, CUBIC, and HSTCP. At output queue of Router1, we evaluate four kinds of

Linux queuing disciplines, namely, Drop-tail, RED, CHOKe, and AFD. For param-

eters of RED and CHOKe, we set minimum queue size threshold to 20% of buffer

size, maximum queue size threshold to 90% of buffer size, and drop probability to

0.02. For AFD, we set a shadow buffer to be 2000 slots and a sample interval of 500

packets. We vary the queue size at Router1’s output queue from 1% to 100% of BDP.

On delay node, default RTT is set as 120ms to emulate the long propagation delay in

high-speed optical networks. For RTT fairness as shown in Section 2.2.4, we fix the

RTT of two links as 120ms, and vary the RTT of the other link from 30ms to 240ms.

3. Traffic Generation

In our experiments, long-lived TCP flows are generated by zero-copy Iperf [78],

which avoids the overhead of data copy from user-space to kernel space. In case

of experiments with short-lived TCP flows, we add a pair of sender and receiver,

and generate short-lived TCP flows using Harpoon traffic generator [62]. Harpoon

generates continuous short-lived TCP requests from the client to the server. The TCP

client and server have inter-connection times generated from exponential distribution

with mean 1 second, and have file sizes generated from Pareto distribution with

alpha=1.2 and shape=1500. The chosen distributions and parameters are taken from

Internet traffic characteristics [29].

4. Fairness Index

Fairness is calculated among heterogeneous TCP flows in terms of the long term

throughput received by each flow as Jain’s fairness index [38]:

33

f(x1, x2, x3, ..., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(2.4)

where f is Jain’s fairness index, x is the long term throughput of the flow, and n is

the flow number.

2.2.4 Evaluation Results and Discussion

In this section, we start from a simple scenario of single long-lived TCP flow. Next,

we evaluate more practical scenarios of multiple long-lived TCP flows, and multiple

long-lived TCP flows with short-lived TCP flows. Then we present our findings in

RTT fairness. Link utilization results are shown at the end.

1. Fairness: A Case for Single Long-lived TCP Flow

We simultaneously send one TCP-SACK flow from Sender1 to Receiver1, one

HSTCP flow from Sender2 to Receiver2, and one CUBIC flow from Sender3 to Re-

ceiver3. Figure 2.9 shows fairness index as a function of router buffer size for four

different types of routers. The network behaves very unfairly as compared to pre-

vious studies focused on homogeneous TCP flows [29], [74]. To show the degree of

decrease of fairness while transitioning from homogeneous network to heterogeneous

one, fairness index is presented in Table. 2.2 for these two cases.

TABLE 2.2. Fairness: Homogeneous TCP vs Heterogeneous TCP (buffer size = 20% of BDP,
RTT = 120ms, heterogeneous TCP variants include CUBIC, HSTCP, and TCP-SACK)

Drop-tail RED CHOKe AFD
CUBIC 0.988 0.994 0.991 0.995
HSTCP 0.978 0.987 0.990 0.993
TCP-SACK 0.936 0.977 0.970 0.985
Heterogeneous TCP 0.681 0.732 0.747 0.884

As shown in Figure 2.9, when the queue size on Router1 is larger than 10% BDP,

AFD, CHOKe and RED all show more fairness behavior than Drop-tail. AFD shows

34

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1% 5% 10% 20% 40% 60% 100%

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED CHOKE

FIGURE 2.9. Fairness for 1 TCP-SACK, 1 CUBIC, and 1 HSTCP flow (RTT = 120ms)

much higher fairness index than other queue management schemes. CHOKe is the

second, whereas RED is the third. Interestingly, when the queue size is less than 10%

BDP, fairness behavior of AQM schemes degrades. CHOKe, RED and Drop-tail all

show almost the same fairness, whereas AFD also has a performance degradation on

fairness.

(1). Fairness problem for heterogeneous TCP flows

Based on our observation in Figure 2.9, firstly, we need to know why there is a

fairness problem for heterogeneous TCP flows. We know that for loss based congestion

control mechanism, the congestion window size W (t) of a flow at time t is:

W (t) = Wmaxβ + α
t

RTT
(2.5)

where Wmax is the congestion window size just before the last window reduction, α

and β are increase parameter and decrease parameter respectively.

Different TCP variants have different α and β. In our experiment, TCP-SACK has

α to be 1 and β to be 0.5. HSTCP uses table driven increase and decrease factors,

that is α is 1 to 72 and β is 0.5 to 0.9. CUBIC increases its congestion window

based on a cubic function, which has a steadier growth. Among these three, CUBIC

is the fastest in growth, HSTCP is the second, and TCP-SACK is the slowest. In

35

packet loss event, CUBIC and HSTCP get less congestion window degradation, while

TCP-SACK gets more. Due to the large-bandwidth character of high-speed optical

networks, the fairness problem for heterogeneous TCP variants becomes severer.

(2). Heterogeneous TCP flows over different queue management schemes

The second question is why different queue management schemes perform differ-

ently for fairness. The sending rate of a source not only depends on TCP variants in

the sender but also depends on queue parameters in intermediate router. Router pa-

rameters may include loss probabilities, queue size, explicitly feedbacks, etc. Different

queue management schemes create different congestion feedbacks to the senders.

Drop-tail drops packets for every flow when the queue is full. That causes a se-

vere fairness problem as slow TCP variants (e.g. TCP-SACK) grow up slowly, and

suffer from large loss penalty; while fast TCP variants (e.g. CUBIC and HSTCP)

can always consume most of the bandwidth. RED alleviates the fairness problem by

monitoring the average queue size and using randomization to choose flows to notify

of congestion. The probability of dropping or marking a packet from a particular flow

is roughly proportional to that flow’s share of the bandwidth through the router. In

case of CHOKe, besides the randomization method, it has a simple mechanism to

approximately identify the flow rate. CHOKe checks a incoming packet with a ran-

domly selected packet in the queue. If the two packets belong to a same flow, CHOKe

identifies an estimated fast flow and drops the packet. Thus, fast flows get penalized,

while slow flows get protected. AFD uses a shadow buffer and flow table to approxi-

mately estimate the sending rate of a flow. As the number of fast flows is small, AFD

could be considered to be a stateless queuing scheme[52]. AFD also estimates a fair

share rate of the network. If the estimated rate of a flow is faster than the fair share

rate, the flow is penalized by dropping packets. Therefore, AFD performs much better

than other queue management schemes in terms of fairness.

36

(3). Heterogeneous TCP flows over different queue sizes

The third question is why different queue sizes make different fairness behaviors

over queue management schemes. To answer this question, we need to explore the

relationship among queue size, loss synchronization and fairness.

Different queue sizes create different behaviors of flow loss synchronization. A small

queue size may induce more loss synchronization among flows as the queue is filled up

very quickly and all flows have loss events at the same time. On the other hand, a large

queue size is less likely to create loss synchronization among flows. AQM schemes are

able to perform their own mechanisms before the queue is filled up, which may avoid

the loss synchronization.

Different behaviors of flow loss synchronization create different fairness behaviors

among heterogeneous TCP flows. Loss synchronization is the instinct of TCP, which

happens when two or more TCP flows experience packet losses at same short time

interval. Because of the synchronized loss events, every TCP flow simultaneously

decreases its congestion window (Cwnd) without any differentiation. Therefore, fast

TCP variants with large Cwnd can always grow faster than slow TCP variants. Thus,

loss synchronization induces unfairness.

In the following, we zoom into Cwnd dynamics of these TCP variants to take a

close look at the relationship among queue size, loss synchronization and fairness.

As Figure 2.9 shows, 20% of BDP queue size can distinguish AQM schemes from

Drop-tail. We first set the router queue size to 20% BDP. In Figure 2.10, we show

Cwnd dynamics between 300 to 400 second on time axis for these three TCP variants.

Our goal is to analyze the difference in fairness for these queue management schemes.

Figure 2.10(a) shows that Drop-tail makes CUBIC flow and HSTCP flow highly

synchronized. In the RED router, Figure 2.10(b) shows CUBIC and HSTCP flows are

desynchronized. At different times, CUBIC flow and HSTCP flow get Cwnd drops.

37

Figure 2.10(c) is for CHOKe router, flows are also desynchronized. CHOKe tries to

drop fast flows, and to protect slow flows. Although CHOKe drops one time at HSTCP

flow at the 345th second, this is because of the instinct of mis-detection (detecting

a non-high-bandwidth flow) of AQM schemes. Results for AFD router are shown in

Figure 2.10(d). AFD makes more fairness than other queue management schemes.

CUBIC flow is penalized because of its fast sending rate. In the figure, the line of

HSTCP flow Cwnd overlaps with the line of CUBIC flow Cwnd. The Cwnd of TCP-

SACK flow is also increased. In all four figures, there is no Cwnd drop on TCP-SACK

flow, but on a bigger time scale, we observe that RED, CHOKe, and AFD get fewer

drops at TCP-SACK flow than Drop-tail. Given these figures, we confirm that AQM

schemes tend to avoid loss synchronization among TCP flows. That’s why these three

0

2

4

6

8

10

12

14

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(a) Drop-tail Router

0

2

4

6

8

10

12

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(b) RED Router

0

2

4

6

8

10

12

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(c) CHOKe Router

0

2

4

6

8

10

12

14

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(d) AFD Router

FIGURE 2.10. Instant Cwnd for 3 TCP Flows in 300-400 Seconds (Buffer Size = 20% BDP,
RTT = 120ms)

38

AQM schemes perform better fairness than Drop-tail when the queue size is large

enough.

As Figure 2.9 shows in 1% of BDP queue size all queue management schemes have

similar poor fairness behavior, we set router queue size to 1% of BDP. We get the

Cwnd plot again between 300 to 400 second in Figure 2.11. This time, Figure 2.11(a),

Figure 2.11(b), Figure 2.11(c), and Figure 2.11(d) show three TCP flows get loss

synchronization in all four routers. The reason why AQM schemes behave like Drop-

tail in small queue size is that with small queue size heterogeneous high-speed TCP

flows flush the queue quickly in a high-bursty manner. Within such a short amount

of time, AQM schemes consider early drops the same as tail drops. Small queue size

0

2

4

6

8

10

12

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(a) Drop-tail Router

0

2

4

6

8

10

12

14

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(b) RED Router

0

2

4

6

8

10

12

14

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(c) CHOKe Router

0

2

4

6

8

10

12

300 320 340 360 380 400

C
w

n
d

 (
K

 p
a

ck
e

ts
)

Duration (seconds)

SACK CUBIC HSTCP

(d) AFD Router

FIGURE 2.11. Instant Cwnd for 3 TCP Flows in 300-400 Seconds (Buffer Size = 1% BDP,
RTT = 120ms)

39

makes loss synchronization no matter which queue management scheme the router

uses and therefore, all four queue management schemes perform similar poor fairness.

Our experimental results confirm that, in case of large queue sizes, AQM schemes

achieve desynchronization among heterogeneous high-speed TCP flows, which penal-

izes the fast flows, protects the slow flows and improves fairness. With small queue

sizes, heterogeneous high-speed TCP flows become synchronized regardless of what

kind of router these TCP flows go through, which in consequence makes no differen-

tiation on the flows and makes all routers behave similar in fairness.

3. Fairness: A Case for Multiple Long-lived TCP Flows

To emulate a more practical scenario, we start more flows into the bottleneck. We

simultaneously send 10 flows for each of TCP-SACK, CUBIC, and HSTCP to the

corresponding receivers. Fig 2.12 shows fairness for a total of 30 heterogeneous TCP

flows competing for 10Gbps bottleneck bandwidth. The fairness index varies from

0.65-0.95, which is more than the scenario of single flow case. Multiplexing of large

number of heterogeneous high-speed TCP flows on a single bottleneck link creates

desynchronization of the TCP flows. As a result, fairness is improved.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1% 5% 10% 20% 40% 60% 100%

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Droptail RED CHOKE

FIGURE 2.12. Fairness for Multiple Long-lived Flows: 10 TCP-SACK, 10 CUBIC, and 10
HSTCP flows (RTT = 120ms)

40

AFD still shows the best fairness performance among all queue management schemes.

Heterogeneous TCP flows get 0.8 to 0.96 fairness index in all queue sizes, but still the

fairness performance decreases with the queue size being small. The reason is that

a larger router buffer is more likely to hold the incoming packets for all TCP flows,

and therefore AFD is able to perform its mechanism to approximately estimate the

sending rate of flows and to tame the unfairness.

For RED and CHOKe, if the queue size is more than 10% BDP, RED gets more

fairness index than Drop-tail by 0.05 to 0.15, and the larger the buffer is the more

fairness RED gets than Drop-tail does. And CHOKe further improves fairness index to

RED by around 0.05. Again, when queue size is 1% BDP, RED and CHOKe perform

the same as Drop-tail. Compared to the case of single TCP flow with 1% BDP in

Figure 2.9, fairness index improves from less than 0.6 to more than 0.75. Although

with 1% BDP buffer size, multiplexing of 30 heterogeneous TCP flows makes flow

desynchronized so that fairness gets much improved. However, RED and CHOKe still

do not have advantage over Drop-tail in terms of fairness. We observe the Cwnd

for all 30 heterogeneous flows in 1% BDP. Unlike the case for single long-lived TCP

flow, the Cwnd of 30 long-lived TCP flows this time shows desynchronized because of

multiplexing. Also, RED, CHOKe and Drop-tail get similar desynchronization, which

is because with small size buffer and bursty traffic, RED and CHOKe do not have

adequate time to drop packets early and gently for many high-speed TCP flows.

We also see that with buffer sizes larger than 10% BDP Drop-tail starts to get

fairness degradation in case of many long-lived TCP flows. The Cwnd plot for Drop-

tail router shows that with buffer size set to some extent which is large enough to

accommodate the incoming packets, some of the fast flows have high chance to be

dropped at tail, while other fast flows can still grow without tail dropping. Thus, slow

flows get lesser throughput and fairness becomes poor.

41

4. Fairness: A Case for Multiple Long-lived TCP Flows with Short-lived TCP Flows

Now we want to do some more realistic experiments as in high-speed optical net-

works. The traffic statistics of high-speed optical networks [37] show the distribution of

network traffic consists of long-lived TCP flows and short-lived TCP flows. Although

most of the flows are short-lived TCP flows (web browsing, small file transfers, etc.),

they consume very little bandwidth. A large fraction of the traffic is sent by long-lived

TCP flows, but the number of them is small. In this section, we add short-lived TCP

flows along with 30 heterogeneous TCP flows into the bottleneck.

Figure 2.13 shows our results. When queue size is less than 10% BDP, we see fairness

improvement than the case without short-lived TCP flows (around 0 - 0.05 fairness

index). We plotted out the Cwnd graph for 30 long-lived TCP flows when short-

lived TCP flows are injected with 10% BDP buffer size, and found that short-lived

TCP flows induce more randomized losses for long-lived TCP flows. Thus, long-lived

TCP flows get more desynchronized than the case without short-lived TCP flows.

Because of randomized losses caused by short-lived TCP flows, fast flows have higher

probability to be dropped. Accordingly, fairness is better than the case without short-

lived TCP flows.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1% 5% 10% 20% 40% 60% 100%

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED CHOKe

FIGURE 2.13. Fairness for Multiple Long-lived flows with Short-lived flows: 10 TCP-SACK,
10 CUBIC, 10 HSTCP flows, and Short-lived flows (RTT = 120ms)

42

When queue size is more than 10% BDP, we do not see much fairness improvement

as compared to the case without short-lived TCP flows. That is because long-lived

TCP flows get less chance to be impacted by the short-lived TCP flows as the queue

size is large enough to hold all the packets.

Our results show that with short-lived flows, heterogeneous high-speed flows gen-

erally get more fairness. Those short-lived TCP flows make the long-lived TCP flows

more desynchronized, especially when queue size is less than 10% BDP, and therefore

fairness performance is improved.

5. RTT Fairness

RTT fairness is an important metric in TCP study. It measures fairness of band-

width sharing among competing TCP flows that have different RTTs. As we know

that bandwidth of a TCP flow is inversely proportional to RTT of the TCP flow.

TCP flows with long RTT tend to get less bandwidth than TCP flows with short

RTT flows. For end users of high-speed optical networks, it is desirable to understand

the RTT fairness behavior to avoid starvation for long RTT TCP flows.

We first measure the RTT fairness for 2 homogeneous TCP flows to get a clear

view of each TCP’s RTT fairness in 10Gbps high-speed optical networks. We have

2 senders, both of which send 1 same TCP flow. One flow’s RTT is fixed to 120ms,

while the other’s is changed from 30ms to 240ms. We fix queue size to 20% BDP in

all experiments of RTT fairness.

Figure 2.14 shows that CUBIC maintains very high RTT fairness up to 0.98. The

reason is that Cwnd size of CUBIC WCUBIC is according to a cubic function:

WCUBIC ← C(t− 3
√

Wmaxβ/C)3 +Wmax (2.6)

where C is a scaling factor, t is the elapsed time since last window reduction,

Wmax is the window size just before the last window reduction, and β is the decrease

43

parameter. Compared to Equation 2.5 of other loss based TCP variants, Cwnd growth

function of CUBIC is independent of RTT and therefore, CUBIC flows with different

RTTs have the same Cwnd growth rate. In order to maintain an ideally flat line

of RTT fairness index, like CUBIC does, could be considered as RTT fair for TCP

variants.

RTT fairness indexes of TCP-SACK and HSTCP are similar between 0.75 - 0.95,

while HSTCP’s is little higher than TCP-SACK’s. The peak in Figure 2.14 indicates

that two TCP flows both have 120ms RTT, and they perform fairly.

Next, we measure the RTT fairness for heterogeneous TCP flows. We initiate si-

multaneously 10 TCP-SACK, 10 HSTCP and 10 CUBIC long-lived TCP flows in the

bottleneck link. We fix two kinds of the TCP flows’ RTT to 120ms, and change the

other kind of TCP flows’ RTT from 30ms to 240ms. For example, TCP-SACK’s RTT

fairness in heterogeneous TCP flows is calculated by fixing the RTTs of CUBIC and

HSTCP flows to 120ms, and varying the RTT of TCP-SACK flows from 30ms to

240ms. As short-lived TCP flows can improve fairness, we measure RTT fairness for

0.7

0.75

0.8

0.85

0.9

0.95

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

FIGURE 2.14. RTT Fairness for 2 Homogeneous TCP flows (Buffer Size = 20% BDP, RTT
of one flow is fixed to 120ms, RTT of the other flow is changed from 30ms to 240ms shown
on x-axis)

44

both with and without short-lived TCP flows scenarios to see the impact of short-lived

TCP flows on RTT fairness.

Figure 2.15 shows the case without short-lived TCP flows. Figure 2.15(a) shows

results for Drop-tail. If we increase the RTT of TCP-SACK flows, TCP-SACK’s RTT

fairness decreases linearly. It is because that TCP-SACK is a slow TCP variant.

With longer RTT, TCP-SACK flows get lesser throughput. On the other hand, with

shorter RTT, TCP-SACK flows get back throughput from other fast TCP variants,

and improve fairness. CUBIC keeps the RTT fairness index stable to be around 0.75.

Although CUBIC is RTT independent, it still experiences poor RTT fairness behavior

among heterogeneous TCP flows. If we vary the RTT of HSTCP flows, the fairness

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(a) Drop-tail Router

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(b) RED Router

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(c) CHOKe Router

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(d) AFD Router

FIGURE 2.15. RTT Fairness for Heterogeneous TCP Flows without Short-lived flows
(Two kinds of TCP’s RTTs are fixed to 120ms, the other TCP’s RTT is changed from 30ms
- 240 ms shown on x-axis. Buffer Size = 20% BDP)

45

index varies in a range of 0.65-0.75. HSTCP’s RTT fairness is low when it has short

RTTs like 60ms and 30ms. The reason is that with short RTT HSTCP flows, fast

TCP variants such as HSTCP and CUBIC almost consume all of the bandwidth.

Figure 2.15(b) shows RED controls the RTT fairness in a higher level than Drop-tail.

RTT fairness index of TCP-SACK gets improvement up to 0.1, while RTT fairness

index of CUBIC and HSTCP are both improved around 0.05. Figure 2.15(c) is for

CHOKe, and its results are similar to RED. CHOKe also gets more RTT fairness than

Drop-tail. Figure 2.15(d) is for AFD. AFD creates even more RTT fairness than other

queue management schemes. AQM schemes again tame unfairness. Compared to RTT

fairness for homogeneous TCP flows in Figure 2.14, RTT fairness for heterogeneous

TCP flows becomes poor.

Figure 2.16 shows the case with short-lived TCP flows. In Figure 2.16(a) for Drop-

tail, CUBIC and HSTCP get relatively stable RTT fairness index ranging from 0.7 to

0.8. TCP-SACK’s RTT fairness index is from 0.75 to 0.95, which is an improvement

as compare to the case without short-lived TCP flows. Figure 2.16(b) shows RED

gets similar RTT fairness as Drop-tail. Figure 2.16(c) shows CHOKe gets higher

RTT fairness than the other two, and it always has 0.05 more RTT fairness index

for CUBIC and HSTCP than the case without short-lived TCP flows. Again, AFD

in Figure 2.16(d) shows the best RTT fairness for heterogeneous TCP flows in the

presence of short-lived TCP flows. In general, short-lived TCP flows improve RTT

fairness.

In summary, in 10Gbps high-speed optical networks, we firstly observe that het-

erogeneous TCP flows induce more RTT unfairness than homogeneous TCP flows.

Secondly, CUBIC maintains its RTT unawareness, while TCP-SACK performs the

worst RTT fairness. Thirdly, AQM schemes tame the RTT unfairness to some extent.

46

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(a) Drop-tail Router

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(b) RED Router

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(c) CHOKe Router

0.5

0.6

0.7

0.8

0.9

1

30 60 120 180 240

F
a

ir
n

e
ss

 I
n

d
e

x

RTT (ms)

SACK CUBIC HSTCP

(d) AFD Router

FIGURE 2.16. RTT Fairness for Heterogeneous TCP Flows with Short-lived flows
(Two kinds of TCP’s RTTs are fixed to 120ms, the other TCP’s RTT is changed from 30ms
- 240 ms shown on x-axis. Buffer Size = 20% BDP)

And finally, we confirm that short-lived TCP flows improve RTT fairness to some

extent.

6. Link Utilization

In this section, we present link utilization results. We calculate link utilization as

the percentage of total bottleneck capacity which has been utilized.

We have 3 different kinds of heterogeneous TCP flows in the bottleneck link, namely

TCP-SACK, CUBIC, and HSTCP. Figure 2.17(a) shows link utilization for a single

long-lived TCP flow scenario. Link utilization is improved when buffer size is in-

creased. AFD performs the worst in terms of link utilization because AFD does a lot

packet drops to ensure fairness. Drop-tail performs the best in link utilization among

47

75

80

85

90

95

100

1% 5% 10% 20% 40% 60% 100%

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

(a) 3 TCP Flows

75

80

85

90

95

100

1% 5% 10% 20% 40% 60% 100%

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail

RED

CHOKe

(b) 30 TCP Flows

75

80

85

90

95

100

1% 5% 10% 20% 40% 60% 100%

%
 L

in
k

 U
ti

li
za

ti
o

n

Fraction of BDP

Drop-tail
RED
CHOKe

(c) 30 TCP Flows with Short-lived TCP Flows

FIGURE 2.17. Link Utilization for Heterogeneous TCP Flows

all queue management schemes. Figure 2.17(b) shows link utilization for many long-

lived TCP flows case. In 1% BDP, the link utilization is almost up to 85%. While

Drop-tail still gets more throughput than other AQM schemes. Figure2.17(c) is for the

case of many long-lived TCP flows with short-lived TCP flows, link utilization gets

further improved as compare to the case without short-lived flow except for AFD. And

Drop-tail still almost always gets the highest link utilization. There is an inevitable

trade-off between fairness and link utilization for queue management schemes. AQM

schemes get more fairness, while Drop-tail performs the best in link utilization.

7. Fairness: A Case for Large Size High-speed Optical Networks

In this section, we evaluate the fairness behavior for a large size high-speed optical

network. According to the observation of networking flow data in next generation

high-speed networks [37] (Internet2), [48] (LONI), the number of long-lived TCP flows

is usually not large. Therefore, we setup a considerably large networking topology

48

as shown in Figure 2.18 in the high-speed optical networking environment CRON.

Sender1 to Sender3 each sends 8 CUBIC flows to Receiver1, creating total of 24

CUBIC flows. Sender4 to Sender 6 each sends 8 HSTCP flows to Receiver2, creating

total of 24 HSTCP flows. Sender7 to Sender9 each sends 8 TCP-SACK flows to

Receiver3, creating total of 24 TCP-SACK flows. Sender1 also generates short-lived

TCP flows to Receiver1.

The performance of loss-based TCP flows depends on the loss point, which is the

most congested point along the sending path of TCP flows. Since Router1 to Router5

all have different levels of congestion, we have to identify the most congested link to

be the bottleneck link. In the topology, since all senders send TCP flows to receivers

connecting to Router4, we identify the most congested link is the link between Router5

and Router4. We set corresponding queue management schemes for our experiments

at the output queue of Router5.

Fairness behavior of heterogeneous TCP flows is shown in Figure 2.19. We see

that AFD still outperforms other queue management schemes in all BDP conditions.

CHOKE performs the second best fairness with RED following next. With more

multiplexing TCP flows, fairness behavior is generally improved in all BDP conditions

Sender1

Sender2

Sender3

Sender4

Sender5

Sender6

Sender7

Sender8

Sender9

Receiver1

Receiver2

Receiver3

Router1

Router2

Router3

Router4

Router5

Delay

Node

(120ms)

FIGURE 2.18. A Topology for a Large Size High-speed Optical Network

49

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1% 5% 10% 20% 40% 60% 100%

F
a

ir
n

e
ss

 I
n

d
e

x

Fraction of BDP

Drop-tail RED

CHOKE AFD

FIGURE 2.19. Fairness for a Large Size High-speed Optical Network: 24 CUBIC, 24 HSTCP,
24 TCP-SACK flows, and Short-lived flows (RTT = 120ms)

to previous experiments. The advantage of AQM schemes in terms of fairness still

remains in large scale networks.

8. Discussion: Fairness for Heterogeneous TCP Variants in 40Gbps, 100Gbps and

beyond High-speed Optical Networks

Assuming C is the link capacity and W is the congestion window size of a TCP

flow. We know that to reach the full capacity of the link, time T will be taken and

given by:

T =
C

W
(2.7)

According to our explanation in Section 2.2.4, W is determined by Equation 2.5

where different TCP variants have their own parameter of α and β. From Equation 2.5

and Equation 2.7, when the system capacity grows larger, the time taken to reach the

maximum system capacity becomes longer. Therefore, more aggressive TCP variants

(with bigger α and smaller β) consume more and more bandwidth than less aggressive

TCP variants (with smaller α and bigger β). Eventually, the system becomes more

unfairness in presence of heterogeneous TCP flows. Previous study [56] presented

challenges in 40Gbps high-speed optical networks to deploy all-optical routers with

50

very small buffer size. One of the challenges is fairness issue which remains open. As

the system capacity grows larger, fairness among heterogeneous TCP variants must be

addressed. This study suggests that AQM schemes somehow improve fairness issues

among heterogeneous TCP flows to some extend, but fairness issues still depend on

several networking conditions, such as buffer size, flow number, short-lived flows,

system capacity, etc. We hope this study provides experimental data to further a step

toward the deployment of all-optical routers in high-speed optical networks.

2.2.5 Summary

In this section, we present a comprehensive study of fairness among heteroge-

neous TCP variants over 10Gbps high-speed optical networks. We address the fairness

behavior of heterogeneous TCP flows by investigating different queue management

schemes with various queue sizes. In summary, fairness problem becomes severer in

case of heterogeneous TCP flows. AFD performs the best in terms of fairness with

CHOKe being the second, RED being the third, and Drop-tail being the worst. If

buffer size in the router is small, say less than 10% of BDP, we observe similar fair-

ness performance irrespective of queue management schemes. Also, short-lived flows

improve fairness among long-lived high-speed optical TCP flows. RTT fairness also

becomes poor with heterogeneous TCP traffic. The tradeoff between link utilization

and fairness still exists in 10Gbps high-speed optical networks. Our experimental

results confirm that fairness among heterogeneous TCP variants depends on router

parameters, such as queue management schemes and buffer sizes. We believe this

study sheds a light to experimental study of fairness issues in future high-speed op-

tical networks. Through this study, we further motivate to gain more understanding

about behavior of high-speed optical networks with heterogeneous TCP flows.

51

CHAPTER 3
AFCD: AN APPROXIMATED-FAIR AND
CONTROLLED-DELAY QUEUING SCHEME
FOR HIGH SPEED NETWORKS

In this section, we present the design, algorithm, and evaluation of an approximated-

fair and controlled-delay queuing for high speed networks: AFCD.

3.1 Overview

We are highly motivated to address fairness and queuing delay issues in high speed

networks. We propose an AQM scheme: Approximated-Fair and Controlled-Delay

(AFCD) queuing that satisfies the requirement of high speed networks by providing

approximated fairness and controllable low queuing delay. AFCD is a synergy of fair

AQM design and controlled delay AQM design. The key idea of our novel AFCD

queuing is to form an alliance between fairness based queuing and controlled delay

based queuing. Proposed AQM uses a relatively small amount of state information to

provide approximated fairness while ensuring very low queuing delay for high speed

networks. AFCD achieves comparable throughput as other popular AQM schemes as

well. Extensive evaluation of AFCD shows that AFCD performs well in a 10Gbps

high speed networking testbed CRON [16].

3.2 Related Works

Drop-tail (DT) is the most used QM in commercial router nowadays. Packets are

served in the order of first in first out. When DT queue is full, packets are simply

dropped at the tail. However several studies have shown the limitations that imposed

by DT. AQM scheme is suggested to eliminate those limitations. The authors in

[34] compare AQM with DT and shows that AQM have a minor impact on the

52

aggregate performance metrics and AQM is sensitive to traffic characteristics that

may compromise their operational deployment.

Random early detection (RED) [24] is an AQM scheme. Packets are dropped early

and randomly before the queue is full. RED has two thresholds: min threshold and

max threshold. When the exponentially average queue size is smaller than the min

threshold, no packet is dropped. When the exponentially average queue size is bigger

than the max threshold, all packets are dropped. When the exponentially average

queue size is between min threshold and max threshold, packets are marked/dropped

based on a probability which is increased linearly with the queue size. RED has its own

limitations. Level of congestion and the parameter settings affect the average queue

size and the throughput is also sensitive to the traffic load and to RED parameters.

Various modifications have been suggested to improvise RED. DRED with multiple

packet drop precedence to allow differentiating traffic based on priority [5], Gentle

RED [58] with smooth dropping functions and many more.

Besides, totally new AQM schemes are also proposed in different studies such as

BLUE [13] which uses packet loss and link idle events, instead of queue length, to

manage congestion. Stochastic fair blue (SFB) [21] is an AQM for enforcing fairness

among a large number of flows. SFB uses a bloom-filter to identify the non-responsive

flows. The bloom-filter hashes the incoming packets to a hash value which stands for

the flows. SFB maintains a mark/drop probability pm for each of the flows and a

qlen which is the number of queued packets belonging to the flow. SFB has two

thresholds: max is the maximum length of qlen, target is the desired length of qlen.

If a flow’s qlen is larger than max, packets are dropped. If a flow’s qlen is smaller

than max, packets are marked/dropped randomly with probability pm, meanwhile

pm is adjusted to keep qlen between 0 and target. If pm of a flow reaches 1, the flow

53

is identified as non-responsive flow, and therefore SFB enters rate-limit function to

rate-limit the non-responsive flows.

In next few paragraphs, we describe the two notable approaches namely, AFQ [52]

and CoDel [50] which form the basis and background for our approach.

Approximate fair dropping queue (AFQ) [52] provides approximate fair bandwidth

allocation among flows. AFQ makes the drop decision based on the sending rate of

the flow. To estimate the sending rate of the flow, AFQ uses a shadow buffer and a

flow table. The shadow buffer is used to sample the incoming packets. The flow table

contains the packet count of the flow. AFQ estimates the flow’s rate ri and the fair

share rate rfair. ri is estimated by mi which is the amount of traffic from flow i during

an interval. rfair is estimated dynamically by mfair, which is determined by:

mfair ← mfair + α(Qold −Qtarget)− β(Q−Qtarget) (3.1)

where Q is the instantaneous queue length in current interval, Qold is the queue length

in previous interval, Qtarget is the target queue length, α and β are the averaging

parameters. The drop probability of a packet from flow i is denoted as:

Di = (1− rfair/ri)+ (3.2)

If ri < rfair, no packet is dropped. If ri > rfair, Di is increased and packets are

dropped based on Di.

Recently proposed CoDel queue [50] provides extremely low queuing delay and aims

to solve the Bufferbloat problem in the Internet. Unlike other AQM’s complicated

setting of parameters, CoDel is parameterless, and works efficiently for a wide range

of scenarios. CoDel calculates the packet-sojourn time at the dequeue function and

keeps a single-state variable of how long the minimum packet queuing delay has been

above the target value. If the packet queuing delay is larger than target for at least

54

interval, a packet is dropped and CoDel’s control law is set for the next drop time.

The control law sets the next drop time in inverse proportion to the square root of

the number of drops happened since CoDel has entered dropping state. If the packet

queuing delay is smaller than target, CoDel’s controller stops dropping.

In summary, all of these QM schemes aim to concentrate on some specific aspects

of the network performance. However, none of these QM schemes provides fairness,

very low queuing delay, and a considerable throughput at the same time for high

speed networks.

3.3 Design of AFCD

In this section, we present the idea and mechanism behind Approximated-Fair and

Controlled-Delay queuing.

3.3.1 Design Goals

AFCD has the following key design goals:

(1). Fairness: AFCD needs to provide approximately fair bandwidth allocation for

the flows sharing a high speed bottleneck link. Here, the approximate fairness means

the max-min fairness among long-lived flows.

(2). Minimal Queuing Delay: In addition to providing approximate fairness, AFCD

needs to provide a very low queuing delay for high speed networks. In terms of queuing

delay, AFCD needs to perform as well as CoDel does.

(3). Acceptable Link Utilization: Like other AQM schemes, AFCD drops pack-

ets early and gently, which makes some sacrifices in terms of throughput. Here, by

throughput we mean the long term throughput achieved by the flows in the bottleneck

link. We do not claim that AFCD can provide the same throughput performance as

DT, but AFCD needs to have similar throughput performance to other AQM schemes.

55

(4). Simple Implementation: Our design of AFCD aims to facilitate fair share among

flows while keeping queuing delay very low in high speed networking environment.

According to the statistics of high speed networks [37], most of the network resources

are consumed by long-lived bulk data transfer and the number of the long-lived flows

is small. Thus, it is feasible for us to take an approach similar to AFQ’s to estimate

the flow’s sending rate by using shadow buffer and flow table, which only require

a very small amount of state information. When we make drop decision at dequeue

function, the single-state variable of delay information is also extremely light-weighted

to implement.

3.3.2 Architecture

Architecture of AFCD is presented in Figure 3.1. When a packet comes to the

enqueue function of AFCD, we sample the packet based on a sample interval. As

presented in AFQ [52], packet sampling is good enough for the queue to obtain enough

state information to estimate the rate for long-lived flows. A shadow buffer and a flow

table is used for estimating the flow’s sending rate information. The shadow buffer

is used to keep the sampled packets. The flow table contains the flow’s packet count.

The shadow buffer and the flow table do not need to be big, because the number of

long-lived flows in high speed networks is small [37]. Thus, AFCD only maintains a

small amount of flow state information. If the packet is sampled, the packet is hashed

based on its flow information tuples. We update the shadow buffer and the flow table

by the hash value. The packet is mapped into the shadow buffer, and the flow table

is also updated by increasing or decreasing the flow’s packet count. Therefore, AFCD

gets enough state information to estimate the sending rate of the long-lived flows.

After we get the flow’s approximate rate information from the enqueue function,

we make the drop decision at the dequeue function based on each packet’s queuing

delay. We only require single-state variables for a minimum delay within an interval

56

FIGURE 3.1. Functional block diagram of AFCD queuing

and a target delay for individual flow. A target delay for a flow is a threshold. Within

an interval, if the minimum delay has been above the target delay of this flow, we

start to make drop decision on this flow. We create formulas to calculate the target

delay for individual flow based on the bandwidth share of this flow. Because AFCD

makes the drop decision at dequeue function with the information of packets queuing

time, AFCD controls queuing delay very accurately.

3.3.3 Design

In this section, we elaborate the design of AFCD with detailed formulas which form

the dynamics between bandwidth share and latency.

With the flow table, we know flow i’s bandwidth share mi is proportional to flow

i’s packet count in flow table:

mi ← flow table[i] (3.3)

The fair bandwidth share mf can be estimated by the shadow buffer size, flow

count and an averaging value of mf :

mf ←
SHADOW BUFFER SIZE

flow count
(3.4)

mf (t2)← mf (t1) + α(Q(t1)−Qtarget)− β(Q(t2)−Qtarget) (3.5)

where Equation 3.5 is the same as in AFQ [52]. t1 is the previous time, t2 is the

current time, Q is the instantaneous queue length, and α and β are the averaging

parameters.

In AFCD’s dequeue function, there is a target delay that needs to be set by network

operators the same as in CoDel[50]. Within an interval, if the minimum queuing de-

57

lay is higher than this target delay, packets are dropped. Based on this target delay,

AFCD sets different target delay for different flows to approximately enforce fair

bandwidth allocation among the flows. Flow i’s target delay target delayi is a cal-

culated value based on target delay for individual flow. When the minimum packet

queuing delay of flow i has been above target delayi for the interval, AFCD starts

to drop on flow i. target delayi is calculated as follows.

The Cwnd (congestion window) Wi of a TCP flow i at time t can be modeled as

[33]:

Wi(t) =
1

R(t)
−Wi(t)

Wi(t−R(t))

2R(t−R(t))
P (t−R(t)) (3.6)

where R is the round trip time and P is the drop probability in the router.

Assuming Qi is the queuing delay created by flow i in the bottleneck queue. Qi can

be calculated by:

Qi(t) ≈
Wi(t)

R(t)C
(3.7)

where C is link capacity.

The penalization (drop probability) of flow i Pi is set to be proportional to the

queuing delay flow i created:

Pi(t)← Qi(t) (3.8)

From Equation (3.6) - (3.8), the maximum sending rate of flow i Wi max is bounded

by:

Wi max ←
Wi(t)

3

R(t)2C
(3.9)

From Equation (3.9), the target delay of flow i target delayi is bounded by target

Cwnd Wi target:

target delayi ←
Wi target(t)

3

R(t)2C
(3.10)

58

target delay is determined by Wi max, therefore it is bounded by:

target delay ← Wi max(t)
3

R(t)2C
(3.11)

The max sending rate of flow i is bounded by the estimated sending rate in enqueue

function:

Wi max(t)← mi(t) (3.12)

The goal of AFCD is to make fair bandwidth share, therefore the target sending

rate of flow i is the estimated fair bandwidth share in enqueue function:

Wi target(t) ≈ mf (t) (3.13)

From Equation (3.10) - Equation (3.13), target delayi is calculated as:

target delayi ← target delay × (
mi

mf

)−3 (3.14)

With this cubic kind function, we form a relationship between bandwidth share

and latency. If flow’s bandwidth share is equal to the fair bandwidth share, flow’s

target delay is the target delay. If flow’s bandwidth share becomes lower than the

fair bandwidth share, flow’s target delay becomes much higher than the target delay,

and therefore packets from the slow flows are not dropped. If flow’s bandwidth share

becomes higher than the fair bandwidth share, flow’s target delay becomes much

lower than the target delay, and therefore the fast flows are penalized.

A packet from flow i is dropped because the queuing delay has exceeded target delayi

for at least interval. Then AFCD controller dequeues next packet from the queue,

and sets the next drop time which is decreased in inverse proportion to the square

root of the number of drops since the last dropping state. Until the queuing delay of

a packet from flow i is lower than target delayi, AFCD stops dropping.

59

3.3.4 Algorithm

A pseudo code of AFCD algorithm is shown in Algorithm 1. The Linux kernel code

implementation can be found at 1.

In the algorithm, AFCD maintains a shadow buffer shadow buffer and a flow

table flow table.

In enqueue function, AFCD samples packet by using sample packet(). Then AFCD

calculates hash value afcd hash for sampled packets and updates shadow buffer and

flow table correspondingly by the hash value afcd hash.

In dequeue function, AFCD calculates the target delay of flow i target delayi and

the minimum queuing delay minimum queuing delay within interval interval. Then

AFCD makes its drop decision.

Algorithm 1 Algorithm of AFCD
shadow buffer[SHADOW BUFFER SIZE]
flow table[FLOW TABLE SIZE]

function afcd qdisc enqueue
if sample packet() then

Calculate hash for packet, afcd hash
Use afcd hash to update shadow buffer
Use afcd hash to update flow table

end if
do enqueue()

end function

function afcd dequeue
Calculate hash for packet, afcd hash
Use afcd hash and flow table to calculate target delay of the flow i, target delayi
while within interval, minimum queuing delay > target delayi do

qdisc drop()
Dequeue next packet
Schedule next drop time

end while
Stop drop

end function

1https : //github.com/AFCD − Linux/afcd− source

60

3.4 Experimental Evaluation

In this section, we evaluate AFCD carefully, and compare AFCD to other related

QM schemes such as DT, RED, SFB, CoDel, and AFQ. We conduct various experi-

ments to emulate various scenarios in high speed networks.

We setup a dumbbell networking topology in a 10Gbps high speed networking

testbed CRON [16] as shown in Figure 3.2. All servers and links in the topology have

10Gbps capacity. The bottleneck queue is the output queue of Router1, where we set

the queue management schemes. Three pairs of Senders and Receivers run a modified

Linux 2.6.34 kernel, and are used to transfer TCP/UDP flows by using Zero-copy Iperf

[78]. Two routers run a modified Linux 3.6.6 kernel, which supports all related Linux

queue disciplines including newly developed CoDel. The 10Gbps hardware emulator is

used to accurately emulate propagation delay. We initially set the propagation delay

in the hardware emulator to be 120ms. Queue size in the bottleneck queue is set to

be 100% of bandwidth-delay product (BDP).

In CRON, we did system tunning for 10Gbps high speed networking environment

as described in [76, 74]. In addition, we implement AFQ and AFCD queue disciplines

in Linux kernel as well as user-space tc command. For AFCD, we have initial setting

of parameters as CoDel [50]. target delay is set to 5ms and interval is set to 100ms.

target delayi will be calculated by AFCD algorithm.

FIGURE 3.2. Dumbbell experimental topology with 10Gbps environment

61

We set the parameters of queue management schemes as shown in Table 3.1. Set-

tings of RED and SFB in 10Gbps environment are chosen according to previous

studies [76, 74]. We set typical parameters for CoDel [50] and AFQ [52], with which

parameters of AFCD are set accordingly.

3.4.1 1 CUBIC Flow and 1 TCP-SACK Flow

We first send 1 CUBIC flow from Sender1 to Receiver1 and 1 TCP-SACK flow from

Sender2 to Receiver2. The experiment ran for 300 seconds. Figure 3.3 shows the results

of throughput and delay for all QM schemes. Figure 3.3(a) shows DT, RED, and

CoDel have serious unfairness when CUBIC and TCP-SACK are competing each other

in a 10Gbps high speed bottleneck. SFB alleviates unfairness a little, but TCP-SACK

still gets much less throughput. AFQ and AFCD show a good fairness performance,

where CUBCI and TCP-SACK have almost the same throughput. Figure 3.3(b) shows

the maximum queuing delay created by all the QM schemes. DT creates extremely

TABLE 3.1. Parameter setup for 6 queue management schemes

Queue Parameter Setup
DT queue size 100% BDP
RED queue size 100% BDP

qth min: 0.2; qth max: 0.8
avpkt: 9000; maxP : 0.02

SFB queue size 100% BDP
dropping probability increment/decrement: 0.00050/0.00005

Bloom filter: two 8 x 16 bins
per-flow target: 1.5/N of total buffer (N: number of flows)

maximum packets queued max: 1.2× target
CoDel queue size 100% BDP

target delay: 5ms, interval: 100ms
AFQ queue size 100% BDP

SHADOW BUFFER SIZE: 2000
SAMPLE INTERV AL:500

AFCD queue size 100% BDP
target delay: 5ms, interval: 100ms
SHADOW BUFFER SIZE: 2000

SAMPLE INTERV AL:500

62

 0

 2

 4

 6

 8

 10

DT RED SFB CoDel AFQ AFCD

T
hr

ou
gh

pu
t (

G
bp

s)
CUBIC

TCP-SACK

(a) Throughput of TCP flows

 0

 20

 40

 60

 80

 100

DT RED SFB CoDel AFQ AFCD

Q
ue

ui
ng

 D
el

ay
 (

m
s)

(b) Maximum queuing delay

FIGURE 3.3. 1 CUBIC and 1 TCP-SACK: performance of QM schemes when 1 CUBIC
flow and 1 TCP-SACK flow are competing at the 10Gbps bottleneck, Propagation Delay =
120ms, Queue Size = 100% BDP

high queuing delay. RED, SFB, and AFQ all create a queuing delay larger than

15ms. CoDel and AFCD show an extremely low queuing delay compare to other QM

schemes, which is less than 1ms.

We see that AFCD performs the same as AFQ in terms of fairness, while AFCD

performs the same as CoDel in terms of delay. To get a clear view of why AFCD has

such kind of performance, we plot out the instantaneous congestion window (Cwnd)

and instantaneous RTT of DT, CoDel, AFQ, and AFCD in Figure 3.4. Figure 3.4(a)

and 3.4(e) show the performance of a DT QM scheme. DT makes unfairness between

CUBIC and TCP-SACK, and a very high queuing delay. Figure 3.4(b) and 3.4(f) show

that CoDel makes unfairness between CUBIC and TCP-SACK, but CoDel keeps an

extremely low queuing delay. 3.4(c) and 3.4(g) are for AFQ. AFQ, on the other hand,

treats CUBIC and TCP-SACK fairly, but AFQ makes some queuing delay.

As shown in 3.4(d) and 3.4(h), AFCD makes approximated fair between two differ-

ent TCP flows as well as low queuing delay. AFCD estimates the sending rate of the

flows and sets different target delay for different flows based on the sending rate of the

flows, and therefore both fairness and very low queuing delay are achieved. In case

of AFQ and AFCD, there is a peak of bursty traffic at the beginning of the traffic,

63

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300

Time (second)

Congestion Window Size
CUBIC

TCP-SACK

(a) DT: congestion window

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100 120 140 160 180 200

Time (second)

Congestion Window Size
CUBIC

TCP-SACK

(b) CoDel: congestion window

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200

Time (second)

Congestion Window Size
CUBIC

TCP-SACK

(c) AFQ: congestion window

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160 180 200

Time (second)

Congestion Window Size
CUBIC

TCP-SACK

(d) AFCD: congestion window

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 50 100 150 200 250 300

Time (second)

RTT (ms)

(e) DT: delay

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 20 40 60 80 100 120 140 160 180 200

Time (second)

RTT (ms)

(f) CoDel: delay

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 20 40 60 80 100 120 140 160 180 200

Time (second)

RTT (ms)

(g) AFQ: delay

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 20 40 60 80 100 120 140 160 180 200

Time (second)

RTT (ms)

(h) AFCD: delay

FIGURE 3.4. 1 CUBIC and 1 TCP-SACK: instant congestion window size and delay for
different QM schemes 1 CUBIC flow and 1 TCP-SACK flow are competing at the 10Gbps
bottleneck, Propagation Delay = 120ms, Queue Size = 100% BDP

64

which is because that AFQ and AFCD need some time to gain the state information

of the flows.

3.4.2 1 CUBIC Flow and 1 UDP Flow

Next we start 1 CUBIC flow from Sender1 to Receiver1 and 1 UDP flow from

Sender2 to Receiver2 simultaneously. The experiment also runs for 300 seconds. The

UDP flow is a non-responsive flow sending at a speed of 10Gbps. Figure 3.5 shows

throughput and delay performance of the QM schemes. In Figure 3.5(a), DT, RED

and CoDel all have serious unfairness. CUBIC flow barely gets any bandwidth, but

UDP flow consumes almost all of the bandwidth. SFB, AFQ, and AFCD make fair-

ness between CUBIC and UDP. SFB has an improvement in fairness performance

compared to Section 3.4.1 because of its instinct to detect non-responsive flows. Fig-

ure 3.5(b) shows that DT, RED, SFB, and AFQ all make different degrees of large

queuing delay, but CoDel and AFCD keep the queuing delay less than 1ms. This test

shows that AFCD works well in the presence of non-responsive flow.

3.4.3 3 Flows Case: 1 CUBIC, 1 HSTCP, and 1 TCP-SACK Flow

In this section, we mix 3 of the most popular TCP variants [77] in the bottleneck.

1 CUBIC flow, 1 HSTCP flow, and 1 TCP-SACK flow are transfered between the 3

 0

 2

 4

 6

 8

 10

DT RED SFB CoDel AFQ AFCD

T
hr

ou
gh

pu
t (

G
bp

s)

CUBIC
UDP

(a) Throughput of TCP/UDP flows

 0

 20

 40

 60

 80

 100

 120

DT RED SFB CoDel AFQ AFCD

Q
ue

ui
ng

 D
el

ay
 (

m
s)

(b) Maximum queuing delay

FIGURE 3.5. 1 CUBIC and 1 UDP: performance of QM schemes when 1 CUBIC flow and
1 UDP flow are competing at the 10Gbps bottleneck, Propagation Delay = 120ms, Queue
Size = 100% BDP

65

pairs of senders and receivers respectively. We run the experiments 5 to 7 times, and

get the results in Figure 3.6. Figure 3.6(a) shows AFQ and AFCD get the highest

Jainś fairness index, while DT, RED, and CoDel perform bad in terms of fairness. In

terms of queuing delay as shown in Figure 3.6(b), CoDel and AFCD keep the delay

very low, while DT gets the highest delay. Figure 3.6(c) is the result of throughput.

AFCD performs almost the same as RED and AFQ.

3.4.4 Many Multiplexed Heterogeneous TCP Flows

We increase the multiplexing of long-lived TCP flows in this test. 10 CUBIC, 10

HSTCP, 10 TCP-SACK flows are mixed in the 10Gbps bottleneck link. Figure 3.7

shows the performance of the QM schemes in case of increased multiplexing. Figure

3.7(a) shows fairness performance is improved in all QM schemes because of the

multiplexing. AFQ and AFCD still get the highest fairness among all QM schemes.

Figure 3.7(b) is the delay results. CoDel and AFCD still create the least queuing

delay. Figure 3.7(c) shows AFCD has similar throughput performance to SFB and

CoDel.

3.4.5 Reduced RTT

We reduce the delay in the hardware emulator to be 60ms in this test to see the

performance of AFCD with smaller propagation delay. We get the result in Figure

3.8. Because of the reduced RTT, all performances are improved compared to that

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

DT RED SFB CoDel AFQ AFCD

Fa
ir

ne
ss

 I
nd

ex

(a) Jain’s fairness index

 0

 20

 40

 60

 80

 100

DT RED SFB CoDel AFQ AFCD

Q
ue

ui
ng

 D
el

ay
 (

m
s)

(b) Average Queuing Delay

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

DT RED SFB CoDel AFQ AFCD

T
hr

ou
gh

pu
t (

G
bp

s)

(c) Throughput

FIGURE 3.6. 3 flows case: performance of queue management schemes in 10Gbps high speed
networks 1 CUBIC, 1 HSTCP, and 1 TCP-SACK flow, Propagation Delay = 120ms, Queue
Size = 100% BDP

66

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

DT RED SFB CoDel AFQ AFCD

Fa
ir

ne
ss

 I
nd

ex

(a) Jain’s fairness index

 0

 20

 40

 60

 80

 100

 120

DT RED SFB CoDel AFQ AFCD

Q
ue

ui
ng

 D
el

ay
 (

m
s)

(b) Average Queuing Delay

 7

 7.5

 8

 8.5

 9

 9.5

 10

DT RED SFB CoDel AFQ AFCD

T
hr

ou
gh

pu
t (

G
bp

s)

(c) Throughput

FIGURE 3.7. Many multiplexed heterogeneous TCP flows: performance of queue manage-
ment schemes in 10Gbps high speed networks 10 CUBIC, 10 HSTCP, and 10 TCP-SACK
flow, Propagation Delay = 120ms, Queue Size = 100% BDP

of Section 3.4.4. Figure 3.8(a) shows AFQ and AFCD make more fairness than other

QM schemes. Figure 3.8(b) shows CoDel and AFCD have the least queuing delay

among all QM schemes. Figure 3.8(c) shows AFCD has throughput performance as

good as other AQM schemes.

3.4.6 With Short-lived TCP Flows

To test the performance of AFCD in a more realistic high speed networking en-

vironment, we evaluate the QM schemes with both long-lived and short-lived TCP

flows going through the queue. We add a pair of sender and receiver, and use Harpoon

traffic generator [62] to create two-way short-lived TCP flows in the bottleneck link.

The inter-connection times from Harpoon TCP client to Harpoon TCP server follow

exponential distribution with 1 second of mean. The request file sizes follow Pareto

distribution with alpha=1.2 and shape=1500. Figure 3.9(a) shows AFQ and AFCD

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

DT RED SFB CoDel AFQ AFCD

Fa
ir

ne
ss

 I
nd

ex

(a) Jain’s fairness index

 0

 10

 20

 30

 40

 50

 60

DT RED SFB CoDel AFQ AFCD

Q
ue

ui
ng

 D
el

ay
 (

m
s)

(b) Average Queuing delay

 8

 8.5

 9

 9.5

 10

DT RED SFB CoDel AFQ AFCD

T
hr

ou
gh

pu
t (

G
bp

s)

(c) Throughput

FIGURE 3.8. Reduced RTT: performance of queue management schemes 10 CUBIC, 10
HSTCP, and 10 TCP-SACK flow, RTT = 60ms, Queue Size = 100% BDP, Bottleneck =
10Gbps

67

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

DT RED SFB CoDel AFQ AFCD

Fa
ir

ne
ss

 I
nd

ex

(a) Jain’s fairness index

 0

 20

 40

 60

 80

 100

 120

DT RED SFB CoDel AFQ AFCD

Q
ue

ui
ng

 D
el

ay
 (

m
s)

(b) Average Queuing Delay

 7.5

 8

 8.5

 9

 9.5

 10

DT RED SFB CoDel AFQ AFCD

T
hr

ou
gh

pu
t (

G
bp

s)

(c) Throughput

FIGURE 3.9. With short-lived TCP flows: performance of queue management schemes in
10Gbps high speed networks 10 CUBIC, 10 HSTCP, 10 TCP-SACK flow, and short-lived
TCP flows, Propagation Delay = 120ms, Queue Size = 100% BDP

still perform better in terms of fairness. Figure 3.9(b) shows CoDel and AFCD still

maintain very low queuing delay. Figure 3.9(c) shows AFCD has similar throughput

performance to other QM schemes in the presence of short-lived TCP flows.

3.4.7 CPU and Memory Usage

To see the complexity and scalability of AFCD, we show the CPU and memory

usage of AFCD on the router. The workstation running Linux software router is Sun

Fire X4240 Server with 2x AMD Opteron Model 2384 2.7GHz quad-core processor

and 8 GB (4 x2GB) DDR2-667 memory. We ran htop on the router and calculated

the average values of CPU usage per core and memory usage within 300 seconds of

experimental run. The results are based on the scenario of with short-lived TCP flows

in Section 3.4.6. As shown in Figure 3.10(a), AFCD has similar CPU usage as other

queue management schemes. Memory usage on the router is shown in Figure 3.10(b).

AQM schemes all get much smaller memory usage than Drop-tail queue. AFCD shows

very small memory usage.

3.5 Conclusion of AFCD over High Speed Networks

AFCD uses very small amount of state information of flows to approximately esti-

mate the flows’ sending rate when packets are enqueued. When packets are dequeued,

AFCD uses a single-state variable to calculate a target delay of the flow and makes

drop decisions for different flows based on the target delay of the flow. We evaluate

68

 30

 35

 40

 45

 50

DT RED SFB CoDel AFQ AFCD

C
PU

 U
sa

ge
 P

er
ce

nt
ag

e
/ C

or
e

(a) CPU usage percentage per core

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

DT RED SFB CoDel AFQ AFCD

M
em

or
y

U
sa

ge
 O

n
R

ou
te

r
(M

B
)

(b) Memory usage (MB)

FIGURE 3.10. CPU and memory usage of queue management schemes: 10 CUBIC, 10
HSTCP, 10 TCP-SACK flow, and short-lived TCP flows, Propagation Delay = 120ms,
Queue Size = 100% BDP

the performance of AFCD in a 10Gbps high speed networking environment. Overall

performance of AFCD is superior among its peers in various scenarios. In terms of

fairness, AFCD performs as good as AFQ. Heterogeneous flows get approximated fair

bandwidth share over AFCD. In terms of queuing delay, AFCD controls queuing delay

to be very low, which is as good as CoDel. Also, AFCD gets comparable throughput

performance to other AQM schemes.

69

CHAPTER 4
FALL: A FAIR AND LOW LATENCYQUEU-
ING SCHEME FORDATA CENTERNET-
WORKS

In this section, we present the design, algorithm, implementation, and evaluation

of a fair and low latency queuing for data center networks: FaLL.

4.1 Overview

We propose FaLL, a novel high performance queuing scheme for data center net-

works that has following features that are inline with the stringent requirements on

the performance of data center networks:

(1). Fairness: FaLL provides fair bandwidth sharing among competing flows by

addressing issues such as TCP outcast, multi-tenant issue, etc.

(2). Low Latency: FaLL provides a very low queuing delay and addresses latency

related issues in data center networks, such as TCP incast, queue buildup, buffer

pressure, etc.

(3). High Link Utilization: Compare to other solutions in data center networks,

FaLL also provides the same or better link utilization to its peers.

(4). Ease of deployment: FaLL is a queuing scheme for data center networks there-

fore, no server side change is required and it makes it easy to deploy and manage

for data center operators. Through experiments we show that FaLL provides high

network efficiency even with regular TCP at end servers in data center networks.

FaLL utilizes an efficiency module to ensure low latency and a fairness module to

enforce approximate fairness among competing flows while achieving high throughput.

FaLL drops packets based on a single state variable of target delay of individual

70

flows and in doing so, FaLL requires very small amount of state information keeping

the memory overhead very low. Through rigorous experiments on a real high speed

networking testbed, we show that FaLL outperforms its peers significantly in variety

of network conditions.

4.2 Related Works

In this section, we aim to describe some most promising approaches organized in

categories based on the target network locations of those solutions. We first introduce

the related works and then list the pros and cons of these works.

4.2.1 End Severs and Switches

DCTCP (Data Center TCP) [2] is a congestion control mechanism for data center

networks. DCTCP uses ECN from the switch to adjust the sending rate of servers.

DCTCP provides a very high link utilization the same or better than traditional

TCP. DCTCP maintains a very small queue size in switches, and therefore controls

the latency at minimum. DCTCP requires that servers run DCTCP congestion con-

trol and switches support ECN mechanism. Widely used operating systems have not

supported DCTCP yet.

HULL (High-bandwidth Ultra-Low Latency) [3] is a further step of DCTCP to

trade a litter bandwidth for an extremely low latency. HULL employs DCTCP in

servers and Phantom queues in switches. HULL also uses packet pacing to overcome

the high burstiness. HULL requires changes of hardware or software both in servers

and switches.

4.2.2 End Severs

Seawall [59] runs on a virtualization layer on servers and addresses fairness issues

by a network bandwidth allocation scheme. However, the authors also stated that

71

Seawall alone may not maintain a low queuing delay unless corporate with DCTCP

when the switch supports ECN.

4.2.3 Switches

Although most solutions described here are not specific to data center networks, for

fair comparison and completeness of the proposed work, we choose to mention them

RED (Random Early Detection) [24] is an AQM (active queue management) scheme

which drops or marks packets early and randomly before the queue is full. The prob-

ability of dropping or marking is proportional to queue size. RED avoids congestion

in switches and maintains a smaller queue size than drop-tail queue. Some studies

suggest RED also alleviates fairness issues to some extend [76], but there is still way

to go to improve on latency and fairness issues.

AF-QCN (Approximate Fairness with Quantized Congestion Notification) QCN

[55] is a congestion control mechanism running inside switches. AF-QCN [42] makes

an extension to QCN for fair bandwidth share among multi-tenants in data center

networks. AF-QCN requires no modification on QCN sources and a little modification

on QCN switches. To enforce fairness, AF-QCN employs AFD (Approximate Fair

Dropping) algorithm [52]. However, the latency issues have been overlooked in AF-

QCN.

Codel[50] is a recently proposed AQM scheme that controls queuing delay at an

extremely low level in the Internet. CoDel is parameterless and easy to deploy in

switches. Codel monitors the packet sojourn time in the queue and keeps a single-

state variable of how long the minimum packet queuing delay has been above a target

value. If the queuing delay of a packet is longer than the target value for at least an

interval, the packet is dropped. Although Codel works well in controlling delay, Codel

does not aim to solve fairness issues.

72

PIE (Proportional Integral controller Enhanced) [54] makes random drops on con-

gestion to control bufferbloat in the Internet. Like in Codel, PIE uses queuing delay

to determine the congestion level and maintains low latency. PIE is also deployable to

data center networks. However, PIE has not been extended to ensure fairness issues.

There are also several fair queuing [61] based solutions FQ Codel [19] and FQ PIE

[54] trying to bring fairness into corresponding AQM schemes by classifying different

flows into different queues. However, this requires huge amount of state information

of flows, and therefore it is not scalable in large scale networks.

AFCD (Approximated-Fair and Controlled-Delay) [75] is a recently proposed AQM

scheme to provide approximated fairness and controlled low queuing delay for high

speed networks. The design of AFCD combines approximated fair queuing (AFD)

and controlled delay queuing (Codel). AFCD uses small amount of state information

to estimate the sending rate of flows. AFCD then calculates the target delay value

for individual flow by estimated sending rate of the flow. If the packet queuing delay

is beyond this individual target delay value, the packet is dropped. However, the

design of AFCD targets at high speed networks which carry much less network traffic

and dynamics than data center networks. Thus, it is critical to design a novel AQM

scheme based on the traffic nature of data center networks.

4.3 Design Overview of FaLL

In this section, we elaborate the design of FaLL: a Fair and Low Latency queuing

scheme for data center networks.

Figure 4.1 shows the general architecture of FaLL.

The enqueue function estimates the sending rate of a flow. When a packet comes

into the enqueue function, FaLL samples the packet based on a sample interval.

FaLL maintains a shadow buffer to keep the sampled packets and a flow table to

73

Enqueue

Dequeue

Estimate flow rate

Sample incoming packets

Efficiency module

(calculate global target delay)

Drop decision

Fairness module

(calculate target delay i for flow i)

FaLL

FIGURE 4.1. Functional Block Diagram of FaLL

count the flows. Recent proposals [52, 42, 75] have acknowledged that this sampling

and counting method works well in various scenarios in large scale networks. Recent

studies on traffic pattern in data center networks [43, 7] also presented that long-lived

flows won’t last for long in data center networks (e.g. more than 80% of the flows last

less than ten seconds). Thus, the shadow buffer and the flow table in FaLL do not

need to be big. FaLL only maintains a small amount of flow state information.

In Dequeue function, FaLL runs two detached modules: efficiency module and fair-

ness module.

The efficiency module is used to trade minimum latency for optimally maximum

throughput. Unlike the Internet or high speed networks, traffic in data center networks

are heavily mixed and exhibit dynamic changes [43, 7]. With this observation, FaLL

utilizes a global target delay parameter which dynamically adjusts itself according

to the network conditions, such as flow number, queuing delay etc. We measure the

packet queuing delay accurately by recording packet enqueue time and packet dequeue

time. Whenever the minimum packet queuing delay within an interval has been above

74

the global target delay, FaLL proceeds to possible packet drops (see Codel [50] and

AFCD [75] papers where this approach for estimation of queuing delay works pretty

well).

It is to be noted that the key difference between FaLL and Codel/AFCD is that

FaLL dynamically changes the target value according to the network dynamics. This

mechanism is inline with the observation that a link with N flows requires buffer

sizing no more than (C ∗ RTT)/
√
N , where C is link capacity and RTT is round

trip time [4]. Using this minimum buffer size, FaLL estimates global target delay to

achieve high throughput.

The fairness module is designed to enforce bandwidth fair share among all com-

peting long-lived flows. After getting global target delay, FaLL computes individual

target delay target delayi for individual flow i. Within an interval, if the minimum

packet queuing delay of flow i has been above the target delayi, flow i will be penal-

ized by a dropping probability. We have formulas to calculate target delayi based on

the estimated sending rate of flow i and global target delay (detail in Section 4.4).

The formulas allow faster flows to have less target delayi and slower flows to have

more target delayi, and therefore FaLL enforces fair bandwidth share among flows.

4.4 Algorithm

In this subsection, we present the detailed algorithm and explain the mathematical

basis behind our proposal.

4.4.1 Enqueue Function

The enqueue function of FaLL is similar to other AFD-based solutions [52, 42, 75].

Considering flow i exists in the FaLL queue, the bandwidth share of flow i is mi. mi

is proportional to the packet count of flow i in flow table:

mi ← flow table[i] (4.1)

75

With above equation, The fair bandwidth sharemf can be estimated by the shadow

buffer size, flow count and an averaging value of mf :

mf ← SHADOW BUFFER SIZE/flow count (4.2)

where SHADOW BUFFER SIZE is the shadow buffer size, and flow count is flow

count in the flow table. Apply mf to an averaging value [52]:

mf (t2)← mf (t1) + α(Q(t1)−Qtarget)− β(Q(t2)−Qtarget) (4.3)

where t1 and t2 are the previous time and the current time respectively, Q is the

queue length at current time, and α and β are the averaging parameters.

4.4.2 Efficiency Module

Since the network traffic in data center networks show dynamic changes [43, 7], it

is impractical to set a fixed target delay like in Codel and AFCD to control the delay.

Previous study on sizing router buffers [4] found when N TCP flows multiplexed

together on a single bottleneck link, the buffer B needed for these long-lived or short-

lived TCP flows is no more than:

B = (C ∗RTT)/
√
N (4.4)

where C is data rate of the link and RTT is round trip time. With this minimum

buffer size needed and the link rate C, we know that the minimum queuing delay

Dmin created by buffer B is:

Dmin = RTT/
√
N (4.5)

We set global target delay as Dmin, meaning we trade this minimum queuing delay

for an optimally maximum throughput. Only if the minimum queuing delay within

an interval has been above this global target delay, FaLL proceeds to possible drops.

global target delay = Dmin (4.6)

76

global target delay is set dynamically according to the network dynamics such as

number of flows, delay, etc.

4.4.3 Fairness Module

After getting global target delay, we calculate target delayi which is the target

delay of individual flow i. Whenever the minimum packet queuing delay of flow i has

been above the target delayi for an interval, FaLL may start to penalize flow i. Next

we present the guidelines to set target delayi.

Previous study [33] has summarized a behavior model of a TCP sender:

Wi(t) =
1

RTT (t)
−Wi(t)

Wi(t−RTT (t))

2RTT (t−RTT (t))
P (t−RTT (t)) (4.7)

where Wi is the Cwnd (congestion window) of flow i, t is current time, and P is

the drop probability.

With flow i in the bottleneck queue, we know that the queue is occupied by flow i

by Qi and Qi can be calculated by:

Qi(t) =
Wi(t)

RTT (t)
− C (4.8)

Queuing delay created by flow i Di is:

Di(t) ≈
Wi(t)

RTT (t)C
(4.9)

We set the penalization of flow i according to the queuing delay flow i created:

Pi(t)← Di(t) ≈
Wi(t)

RTT (t)C
(4.10)

where Pi(t) is the drop probability of flow i. From Equation (4.7) and Equation (4.10),

the maximum sending rate of flow i Wimax is bounded by:

Wimax ←
Wi(t)

3

RTT (t)2C
(4.11)

77

Using Equation (4.11), we know the target delay of flow i which is used to get

target Cwnd Witarget for flow i is bounded by:

target delayi ←
Witarget(t)

3

RTT (t)2C
(4.12)

We calculate global target delay in Section 4.4.2. global target delay is determined

by Wimax, therefore it is bounded by:

global target delay ← Wimax(t)
3

RTT (t)2C
(4.13)

We know that according to the estimation of flow sending rate in Section 4.4.1, the

max sending rate of flow i is bounded by the estimated sending rate:

Wimax(t)← mi(t) (4.14)

Our goal is to make fair bandwidth share, therefore the target sending rate of flow

i needs to be the estimated fair bandwidth share:

Witarget(t)← mf (t) (4.15)

Using Equation (4.12) - Equation (4.15), we calculate target delayi as following:

target delayi ← global target delay(
mf (t)

mi(t)
)3 (4.16)

With Equation (4.16), we know that if the sending rate of a flow is equal to the

estimated fair sending rate, target delayi is equal to global target delay. So this flow

will not be penalized. If the sending rate of a flow is slower than the estimated fair

sending rate, target delayi is much higher than global target delay, thus this slow

flow will not be penalized. If the sending rate of a flow is faster than the estimated

fair sending rate, target delayi is much lower than global target delay, thus this fast

flow will be penalized.

78

A pseudo code of FaLL algorithm is shown in Algorithm 2. In Enqueue function,

FaLL runs sampling method to update shadow buffer and flow table. In Dequeue

function, FaLL first estimates sending rate mi and fair rate mf . Then FaLL uti-

lizes an efficiency module and a fairness module to calculate global target delay and

target delayi. Finally, FaLL makes its drop decision.

Algorithm 2 Pseudo code of algorithm of FaLL

function fall qdisc enqueue
if sample packet() then

Calculate hash for packet, fall hash
Use fall hash to update shadow buffer and flow table

end if
do enqueue()

end function

function fall qdisc dequeue
Calculate hash for packet, fall hash
Use fall hash and flow table to estimate mi and mf

function efficiency module
Calculate global target delay

end function
function fairness module

Use global target delay to calculate target delayi
end function
function drop decision

while in interval, min qdelay > target delayi do
qdisc drop()
Dequeue next packet
Schedule next drop time

end while
Stop drop

end function
end function

4.5 Experimental Evaluation and Discussion

In this section, we present the experimental evaluation of FaLL in a data center

networking environment. We compare FaLL to other congestion control mechanisms

such as DCTCP. Also, we compare FaLL to other AQM schemes, such as RED, Codel,

79

switch2 switch3 switch4 switch5

switch1

s

1

s

2

s

3

s

4

s

5

s

6

s

7

s

8

s

9

r

1

switch1

s

1

s

2

r

1

FIGURE 4.2. Experimental topologies: Y-shape (top) and Tree topology (botton). All
nodes, switches, and links have 10Gbps capacity

and AFCD. We show that FaLL outperforms its peer AQM schemes in terms of both

fairness and latency. FaLL also has same or better link utilization among its peers.

4.5.1 Experimental Setup

Our experimental evaluation consists of two networking topologies: a Y-shape topol-

ogy and a tree topology as shown in Figure 4.2. Both networking topologies are set

up in a 10Gbps high speed networking testbed CRON [16].

All servers, switches, and links in both Y-shape topology and tree topology have

10Gbps capacity [74].

The servers and switches are high-end Sun Fire X4240 machines. The servers run a

Linux 2.6.38.3 kernel with a patch of DCTCP. We use Zero-copy Iperf [78] to transfer

long-lived TCP flows and Harpoon traffic generator [62] to generate short-lived TCP

flows. The default TCP is CUBIC except experiments of DCTCP.

The switches run a Linux 3.6.6 kernel which supports newly developed Codel AQM

scheme. We implemented AFCD and FaLL modules in Linux 3.6.6 kernel as well as

user-space tc command. The buffer size in the switches is 1MB.

Each experiment runs 5 to 7 times. We show the average results. The detailed

experimental setup for all solutions is shown in Table 4.1.

80

TABLE 4.1. Experimental setup for all solutions

Solutions Server Side Setup Switch Side Setup
DCTCP Linux 2.6.38.3 kernel with

DCTCP patch; min rto =
1ms [69]

Patched RED: both the low and high
thresholds set to K (K = 20), mark
packets based on instant queue length,
instead of average queue length. En-
abled ECN

RED CUBIC TCP min rto =
1ms

min = 0.2; max = 0.8; probability =
0.02

Codel CUBIC TCP min rto =
1ms

Linux 3.6.6 kernel ; target delay =
1ms; interval = 5ms

AFCD CUBIC TCP min rto =
1ms

Linux 3.6.6 kernel with AFCD module;
target delay = 1ms, target delayi dy-
namic calculation

FaLL CUBIC TCP min rto =
1ms

Linux 3.6.6 kernel with FaLL module
global target delay and target delayi
both dynamic calculation

4.5.2 Results of Y-shape Topology

We first use Y-shape topology to simultaneously send 6 TCP flows from s1 to r1

and 1 TCP flows from s2 to r1. The experiment runs 10 seconds.

(1). Fairness: TCP outcast

In this scenario, a large set of flows (flow 1 to flow 6) compete with a small set

of flows (flow 7). Also, we have very small TCP min rto in senders. Therefore, TCP

outcast may induce unfairness among competing flows.

Figure 4.3 shows the throughput of 7 flows. We see that Drop-tail (Figure 4.3(a))

and RED (Figure 4.3(b)) create TCP outcast problem, where small set of flows (flow 7

in this case) have throughput starvation. DCTCP (Figure 4.3(c)) solves TCP outcast

problem because DCTCP maintains a very small queue size and therefore there is no

port blackout [57]. Codel (Figure 4.3(d)) shows unfairness among competing flows.

AFCD (Figure 4.3(e)) and FaLL (Figure 4.3(f)) show a fair behavior among competing

flows, thus solve the TCP outcast problem.

81

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 3 4 5 6 7

T
h

ro
u

g
h
p

u
t
(G

b
p

s
)

(a) Drop-tail

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 3 4 5 6 7

T
h

ro
u

g
h
p

u
t
(G

b
p

s
)

(b) RED

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 3 4 5 6 7

T
h

ro
u
g

h
p

u
t

(G
b
p

s
)

(c) DCTCP

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

1 2 3 4 5 6 7
T

h
ro

u
g

h
p

u
t

(G
b
p

s
)

(d) Codel

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(e) AFCD

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(f) FaLL

FIGURE 4.3. TCP outcast performance of 7 flows (Y-shape topologies, Flow1 to Flow6 are
from s1 and Flow7 is from s2)

(2). Queuing delay and throughput

Figure 4.4(a) shows results of averaging queuing delay in switch1. Drop-tail and

RED create huge queuing delay (1600 - 1800 µs), whereas DCTCP, Codel, AFCD

and FaLL control delay very well and have low queuing delay as 800 - 1000 µs.

Figure 4.4(b) shows total throughput of 7 flows. DCTCP and FaLL both have very

high throughput (up to 9.8Gbps) similar to Drop-tail and RED. Codel and AFCD

have relatively low throughput because of inappropriate packet dropping in a data

center networking environment.

82

 600

 800

 1000

 1200

 1400

 1600

 1800

Drop-tail RED DCTCP Codel AFCD FaLL

Q
u

e
u

in
g

 D
e

la
y
 (

u
s
)

(a) Queuing delay in the switch

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

Drop-tail RED DCTCP Codel AFCD FaLL

T
h
ro

u
g

h
p

u
t

(G
b

p
s
)

(b) Total throughput of 7 flows

FIGURE 4.4. Queuing delay and throughput (Y-shape topologies, 6 long-lived TCP flows
from s1 and 1 long-lived TCP flow from s2)

4.5.3 Results of Tree Topology

In this subsection, we evaluate the performance of FaLL in tree topology where s1

to s9 send TCP flows to r1. We evaluate various scenarios including with short-lived

flows, without short-lived flows, multiplexed flows, and different flow start time. We

choose Jain’s fairness index as fairness metric for results of fairness. Latency results

is shown as average queuing delay of the switch. We also show link utilization of the

bottleneck link. By default, all experiments run for 10 seconds.

(1). Without short-lived flows

We first send 1 long-lived TCP flow each from s1 - s9 to r1 without any short-lived

TCP flows. Results of fairness, latency, and link utilization is as follows:

Figure 4.5(a) shows DCTCP and FaLL get the highest fairness among 9 competing

long-lived TCP flows. Figure 4.5(b) shows DCTCP, Codel, and FaLL all get very low

queuing delay. Figure 4.5(c) shows DCTCP and FaLL both get high link utilization

better than other AQM schemes and similar to Drop-tail.

(2). With short-lived flows

Now we send many short-lived TCP flows from s8 to r1. Other senders still each

sends 1 long-lived TCP flows to r1. The size of short-lived TCP flows is Pareto

83

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Drop-tail RED DCTCP Codel AFCD FaLL

F
a

ir
n

e
s
s
 I

n
d

e
x

(a) Jain’s fairness index

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

Drop-tail RED DCTCP Codel AFCD FaLL

Q
u

e
u

in
g

 D
e

la
y
 (

u
s
)

(b) Average Queuing Delay

 90

 91

 92

 93

 94

 95

 96

 97

 98

Drop-tail RED DCTCP Codel AFCD FaLL

L
in

k
 U

ti
liz

a
ti
o

n
 (

%
)

(c) Link utilization

FIGURE 4.5. Without short-lived flows: Tree topology, 9 long-lived flows competing for
10Gbps bandwidth (s1 - s9 each sends 1 flow to r1)

distributed with a mean of 10KB and a shape parameter of 1.1. This kind of short-

lived TCP flows represent the common dynamic flows in data center networks [42].

Figure 4.6(a) shows DCTCP and FaLL again get the highest fairness. Figure 4.6(b)

shows DCTCP, Codel, and FaLL still get very low queuing delay. Figure 4.6(c) shows

FaLL gets similar link utilization to other peer solutions.

(3). Multiplexed flows

We now increase the multiplexing of long-lived TCP flows. s8 still sends many

short-lived TCP flows to r1. Other 8 senders each sends 5 long-lived TCP flows to r1.

So total of 40 long-lived TCP flows compete for the 10Gbps bandwidth.

Figure 4.7(a) shows DCTCP and FaLL again get the highest fairness. Figure 4.7(b)

shows DCTCP and FaLL both get very low queuing delay. Figure 4.7(c) shows FaLL

gets a high link utilization similar to Drop-tail.

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Drop-tail RED DCTCP Codel AFCD FaLL

F
a

ir
n

e
s
s
 I

n
d

e
x

(a) Jain’s fairness index

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

Drop-tail RED DCTCP Codel AFCD FaLL

Q
u

e
u

in
g

 D
e

la
y
 (

u
s
)

(b) Average Queuing Delay

 90

 91

 92

 93

 94

 95

 96

 97

 98

Drop-tail RED DCTCP Codel AFCD FaLL

L
in

k
 U

ti
liz

a
ti
o

n
 (

%
)

(c) Link utilization

FIGURE 4.6. With short-lived flows: Tree topology with short-lived flows, 8 long-lived flows
competing for 10Gbps bandwidth (s8 sends many short-lived flows to r1, other 8 senders
each sends 1 long-lived flow to r1)

84

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Drop-tail RED DCTCP Codel AFCD FaLL

F
a

ir
n

e
s
s
 I

n
d

e
x

(a) Jain’s fairness index

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

Drop-tail RED DCTCP Codel AFCD FaLL

Q
u

e
u

in
g

 D
e

la
y
 (

u
s
)

(b) Average Queuing Delay

 93

 94

 95

 96

 97

 98

 99

Drop-tail RED DCTCP Codel AFCD FaLL

L
in

k
 U

ti
liz

a
ti
o

n
 (

%
)

(c) Link utilization

FIGURE 4.7. Multiplexed traffic: Tree topology with short-lived flows, 40 long-lived flows
competing for 10Gbps bandwidth (s8 sends many short-lived flows to r1, other 8 senders
each sends 5 long-lived flow to r1)

(4). Different flow start time

To increase the the dynamics like in data centers, we start long-lived TCP flows at

different times. We first start s1- s4 each sending 5 flows to r1. After 10 seconds, s5,

s6, s7 and s9 each sends 5 flows to r1. s8 still sends many short-lived TCP flows to

r1. The experiment runs for 20 seconds.

Figure 4.8(a) shows FaLL achieves the highest fairness. Figure 4.8(b) shows FaLL

gets the lowest queuing delay. Figure 4.8(c) shows FaLL gets very high link utilization

similar to Drop-tail.

Because FaLL adjusts its parameters according to the dynamics of networking envi-

ronment, Fall shows better performance in case of a dynamically changing networking

environment. Moreover, all the single-state variables make sure FaLL remains efficient.

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Drop-tail RED DCTCP Codel AFCD FaLL

F
a

ir
n

e
s
s
 I

n
d

e
x

(a) Jain’s fairness index

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

Drop-tail RED DCTCP Codel AFCD FaLL

Q
u

e
u

in
g

 D
e

la
y
 (

u
s
)

(b) Average Queuing Delay

 93

 94

 95

 96

 97

 98

 99

 100

Drop-tail RED DCTCP Codel AFCD FaLL

L
in

k
 U

ti
liz

a
ti
o

n
 (

%
)

(c) Link utilization

FIGURE 4.8. Different start time: Tree topology with short-lived flows, 40 long-lived flows
competing for 10Gbps bandwidth. 20 long-lived flows start 10 seconds earlier than other 20
long-lived flows (s1 - s4 first each sends 5 flows to r1. After 10 seconds, s5, s6, s7 and s9
each sends 5 flows to r1. s8 sends many short-lived flows to r1)

85

4.6 Conclusion of FaLL over Data Center Networks

We present the design of FaLL, an AQM scheme to address the performance require-

ments of data center networks. FaLL runs inside the data center switches and requires

no changes in the servers. This approach makes FaLL easy to deploy and manage.

FaLL utilizes very small amount of state information to estimate flow sending rate.

Through an efficiency module and a fairness module, FaLL achieves performance

requirements on data center networks imposed by contemporary evolution of data

center networks: low latency, fairness, and high throughput. Through experimental

evaluation, we show that FaLL achieves superior performance among its peers in var-

ious traffic conditions and scenarios. In the future, we plan to implement FaLL in

10Gbps NetFPGA to improve the performance of FaLL.

86

CHAPTER 5
CONCLUSION AND FUTURE WORKS

In this study, we first present two experimental evaluation of the performance issues

over 10Gbps high speed networks: an experimental study of the impact of queue

management schemes and TCP variants on 10Gbps high speed networks and a study

of fairness among heterogeneous TCP variants over 10Gbps high speed networks.

Two critical performance issues are found: inter-protocol unfairness and large queuing

latency.

We then propose AFCD queuing scheme which provides approximated fairness and

controlled queuing delay over high speed networks. AFCD approximately estimate the

sending rate of flows by maintaining very small amount of state information. When

packets are dequeued, AFCD uses a single-state variable to calculate an individual

target delay of the flow and makes drop decisions based on the individual target delay.

Performance evaluation of AFCD over high speed networks shows AFCD is superior

among its peers in various scenarios. AFCD enforces approximated fair bandwidth

share with a very low queuing delay.

We also present the design of FaLL, a Fair and Low Latency queuing scheme to

address fairness and latency issues of data center networks. FaLL runs only inside

the data center switches and requires no changes in the servers, which makes FaLL

easy to deploy and manage. By using an efficiency module, a fairness module, and a

target delay based dropping mechanism, FaLL achieves following goals: low latency,

fairness, and high throughput. Through experimental evaluation in a real testbed,

we show that FaLL achieves superior performance among its peers in various traffic

conditions and scenarios over data center networks.

87

In the future, we plan to optimize the algorithm of AFCD and FaLL to get bet-

ter performance in high speed networks and data center networks. We also plan to

implement the AFCD and FaLL algorithm in 10Gbps NetFPGA board.

88

REFERENCES

[1] CRON demonstration, 2011. https://www.cron.loni.org/crondemo.php/.

[2] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center tcp (dctcp). ACM SIGCOMM
Computer Communication Review, 40(4):63–74, 2010.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin
Vahdat, and Masato Yasuda. Less is more: Trading a little bandwidth for ultra-
low latency in the data center. In Proc. of NSDI, 2012.

[4] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In ACM
SIGCOMM Computer Communication Review, volume 34, pages 281–292. ACM,
2004.

[5] Aweya, Michel Ouellette, Abel Dasylva, and Delfin Y. Montuno. Dred-mp: queue
management with multiple levels of drop precedence. International Journal of
Network Management, 14(6), 2004.

[6] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines. Synthesis lectures on computer
architecture, 4(1):1–108, 2009.

[7] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understand-
ing data center traffic characteristics. ACM SIGCOMM Computer Communica-
tion Review, 40(1):92–99, 2010.

[8] A. Bitorika, M. Robin, and M. Huggard. An evaluation framework for active
queue management schemes. In Modeling, Analysis and Simulation of Computer
Telecommunications Systems, 2003. MASCOTS 2003. 11th IEEE/ACM Inter-
national Symposium on, pages 200–206. IEEE, 2003.

[9] A. Bitorika, M. Robin, M. Huggard, and C. Mc Goldrick. A comparative study
of active queue management schemes. In Proceedings of IEEE ICC 2004, volume
201, page 6. Citeseer, 2004.

[10] L.S. Brakmo, S.W. O’malley, and L.L. Peterson. TCP Vegas: New techniques
for congestion detection and avoidance, volume 24. ACM, 1994.

[11] M. Carbone and L. Rizzo. Dummynet revisited. ACM SIGCOMM Computer
Communication Review, 40(2):12–20, 2010.

[12] Maurizio Casoni, Walter Cerroni, and Matteo Fiorani. Tcp performance in multi-
epon access networks under different optical core switching paradigms. Optical
Switching and Networking, 13:17–33, 2014.

89

[13] Wu chang Feng, Kang G. Shin, Dilip D. Kandlur, and Debanjan Saha. The blue
active queue management algorithms. IEEE/ACM Transactions on Networking
(TON), 10(4), 2002.

[14] L. Chrost and A. Chydzinski. On the evaluation of the active queue management
mechanisms. In Evolving Internet, 2009. INTERNET’09. First International
Conference on, pages 113–118. IEEE, 2009.

[15] Cisco. Buffers, Queues, and Thresholds on the Catalyst 6500 Ethernet Modules,
2007. http://www.cisco.com/en/US/prod/collateral/switches/ps5718
/ps708/prod white paper09186a0080131086.pdf.

[16] CRON. CRON Project: Cyberinfrastructure for Reconfigurable Optical Net-
working Environment, 2011. http://www.cron.loni.org/.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM,
56(2):74–80, February 2013.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 205–220, 2007.

[19] Eric Duzamet. CoDel fair queuing, 2012. https://dev.openwrt.org/browser/
trunk/target/linux/generic/patches-3.3/042-fq codel-Fair-Queue-Codel-
AQM.patch.

[20] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden. Routers
with very small buffers. In Proc. IEEE Infocom, volume 6. Citeseer, 2006.

[21] W. Feng, D.D. Kandlur, D. Saha, and K.G. Shin. Stochastic fair blue: A queue
management algorithm for enforcing fairness. In INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1520–1529. IEEE, 2001.

[22] S. Floyd. Highspeed tcp for large congestion windows. RFC 3649, 2003.

[23] S. Floyd. Metrics for the evaluation of congestion control mechanisms. 2005.

[24] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. Networking, IEEE/ACM Transactions on, 1(4):397–413, 1993.

[25] S. Floyd and V. Paxson. Difficulties in simulating the internet. IEEE/ACM
Transactions on Networking (TON), 9(4):392–403, 2001.

90

[26] D.A. Freedman, T. Marian, J.H. Lee, K. Birman, H. Weatherspoon, and C. Xu.
Exact temporal characterization of 10 gbps optical wide-area network. In Pro-
ceedings of the 10th annual conference on Internet measurement, pages 342–355.
ACM, 2010.

[27] GENI. Network Stitching, 2012. http://groups.geni.net/geni/wiki/
GeniNetworkStitching/.

[28] J. Gettys and K. Nichols. Bufferbloat: dark buffers in the internet. Communi-
cations of the ACM, 55(1):57–65, 2012.

[29] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu. A step toward realistic evaluation of
high-speed tcp protocols. In Proc. International Workshop on Protocols for Fast
Long-Distance Networks (PFLD-net2006), 2006.

[30] S. Ha, L. Le, I. Rhee, and L. Xu. Impact of background traffic on performance
of high-speed tcp variant protocols. Computer Networks, 51(7):1748–1762, 2007.

[31] S. Ha, I. Rhee, and L. Xu. Cubic: A new tcp-friendly high-speed tcp variant.
ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[32] S. Hassayoun and D. Ros. Loss synchronization, router buffer sizing and high-
speed tcp versions: Adding red to the mix. In Local Computer Networks, 2009.
LCN 2009. IEEE 34th Conference on, pages 569–576. IEEE, 2009.

[33] CV Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. A control theoretic
analysis of red. In INFOCOM 2001. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3,
pages 1510–1519. IEEE, 2001.

[34] Gianluca Iannaccone, Martin May, and Christophe Diot. Aggregate traffic per-
formance with active queue management and drop from tail. In ACM SIG-
COMM, 2001.

[35] Internet2. Global Concert Series over Internet2, 2009.
https://k20.internet2.edu/projects/100.

[36] Internet2. Internet2, 2012. http://www.internet2.edu/.

[37] Internet2. Internet2 Netflow Data, 2012. http://www.internet2.edu/research-
solutions/research-support/observatory/.

[38] R. Jain, D.M. Chiu, and W. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems. DEC Research
Report TR-301, 1984.

[39] R. Jain, A. Durresi, and G. Babic. Throughput fairness index: an explanation.
In ATM Forum Contribution 99, volume 45, 1999.

91

[40] S. Jain and G. Raina. An experimental evaluation of cubic tcp in a small buffer
regime. In Communications (NCC), 2011 National Conference on, pages 1–5.
IEEE, 2011.

[41] C. Jin, D.X. Wei, and S.H. Low. Fast tcp: motivation, architecture, algorithms,
performance. In INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, volume 4, pages 2490–2501.
IEEE, 2004.

[42] Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji
Prabhakar. Af-qcn: Approximate fairness with quantized congestion notification
for multi-tenanted data centers. In High Performance Interconnects (HOTI),
2010 IEEE 18th Annual Symposium on, pages 58–65. IEEE, 2010.

[43] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ron-
nie Chaiken. The nature of data center traffic: measurements & analysis. In
Proceedings of the 9th ACM SIGCOMM conference on Internet measurement
conference, pages 202–208. ACM, 2009.

[44] T. Kelly. Scalable tcp: Improving performance in highspeed wide area networks.
ACM SIGCOMM Computer Communication Review, 33(2):83–91, 2003.

[45] S. Kumar, M. Azad, and S.J. Park. A fluid-based simulation study: The effect
of loss synchronization on sizing buffers over 10gbps high speed networks. In
PFLDNeT, 2010.

[46] S. Kumar, S.J. Park, and S. Sitharama Iyengar. A loss-event driven scalable fluid
simulation method for high-speed networks. Computer Networks, 54(1):112–132,
2010.

[47] Suman. Kumar, Lin. Xue, and Seung-Jong Park. Impact of loss synchronization
on reliable high speed networks: A model based simulation. Journal of Computer
Networks and Communications, 2014, 2014.

[48] LONI. Louisiana Optical Network Initiative, 2012. http://www.loni.org/.

[49] P. Mrozowski and A. Chydzinski. On the deployment of aqm algorithms in the
internet. In Proceedings of the 11th WSEAS international conference on Math-
ematical methods and computational techniques in electrical engineering, pages
276–281. World Scientific and Engineering Academy and Society (WSEAS), 2009.

[50] K. Nichols and V. Jacobson. Controlling queue delay. Communications of the
ACM, 55(7):42–50, 2012.

[51] NLR. National LambdaRail, 2012. http://nlr.net/.

[52] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness
through differential dropping. ACM SIGCOMM Computer Communication Re-
view, 33(2):23–39, 2003.

92

[53] R. Pan, B. Prabhakar, and K. Psounis. Choke-a stateless active queue manage-
ment scheme for approximating fair bandwidth allocation. In INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE, volume 2, pages 942–951. IEEE, 2000.

[54] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana Prabhu,
Vijay Subramanian, Fred Baker, and Bill VerSteeg. Pie: A lightweight control
scheme to address the bufferbloat problem. In High Performance Switching and
Routing (HPSR), 2013 IEEE 14th International Conference on, pages 148–155.
IEEE, 2013.

[55] Rong Pan, Balaji Prabhakar, and Ashvin Laxmikantha. Qcn: Quantized conges-
tion notification. IEEE802, 1, 2007.

[56] Hyundai Park, Emily F Burmeister, S Bjorlin, and John E Bowers. 40-gb/s
optical buffer design and simulations. Numerical Simulation of Optoelectronic
Devices (NUSOD), 2004.

[57] Pawan Prakash, Advait Dixit, Y Charlie Hu, and Ramana Kompella. The tcp
outcast problem: Exposing unfairness in data center networks. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation,
pages 30–30. USENIX Association, 2012.

[58] Vincent Rosolen, Olivier Bonaventure, and Guy Leduc. A red discard strategy
for atm networks and its performance evaluation with tcp/ip traffic. SIGCOMM
Comput. Commun. Rev., 29(3):23–43, July 1999.

[59] Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas
Saha. Sharing the data center network. In Proceedings of the 8th USENIX con-
ference on Networked systems design and implementation, pages 23–23. USENIX
Association, 2011.

[60] Basem Shihada, Sami El-Ferik, and Pin-Han Ho. Fast tcp over optical burst
switched networks: Modeling and stability analysis. Optical Switching and Net-
working, 10(2):107–118, 2013.

[61] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round-robin.
Networking, IEEE/ACM Transactions on, 4(3):375–385, 1996.

[62] J. Sommers, H. Kim, and P. Barford. Harpoon: a flow-level traffic generator
for router and network tests. In ACM SIGMETRICS Performance Evaluation
Review, volume 32, pages 392–392. ACM, 2004.

[63] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: a scalable
architecture to approximate fair bandwidth allocations in high-speed networks.
IEEE/ACM Transactions on Networking (TON), 11(1):33–46, 2003.

93

[64] A. Tang, J. Wang, S.H. Low, and M. Chiang. Equilibrium of heterogeneous
congestion control: Existence and uniqueness. Networking, IEEE/ACM Trans-
actions on, 15(4):824–837, 2007.

[65] A. Tang, D. Wei, S.H. Low, and M. Chiang. Heterogeneous congestion control:
Efficiency, fairness and design. In Network Protocols, 2006. ICNP’06. Proceedings
of the 2006 14th IEEE International Conference on, pages 127–136. IEEE, 2006.

[66] A. Tang, X. Wei, S.H. Low, and M. Chiang. Equilibrium of heterogeneous con-
gestion control: Optimality and stability. Networking, IEEE/ACM Transactions
on, 18(3):844–857, 2010.

[67] New York Times. Traders profit with computers set at high speed,
2009. http://dealbook.nytimes.com/2009/07/24/traders-profit-with-computers-
set-at-high-speed/.

[68] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar. Deadline-aware dat-
acenter tcp (d2tcp). In Proceedings of the ACM SIGCOMM, 2012.

[69] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G Ander-
sen, Gregory R Ganger, Garth A Gibson, and Brian Mueller. Safe and effective
fine-grained tcp retransmissions for datacenter communication. In ACM SIG-
COMM Computer Communication Review, volume 39, pages 303–314. ACM,
2009.

[70] Arun Vishwanath and Vijay Sivaraman. Sharing small optical buffers between
real-time and tcp traffic. Optical Switching and Networking, 6(4):289–296, 2009.

[71] M. Wang and Y. Ganjali. The effects of fairness in buffer sizing. NETWORK-
ING 2007. Ad Hoc and Sensor Networks, Wireless Networks, Next Generation
Internet, pages 867–878, 2007.

[72] Y. Wu, S. Kumar, and S.J. Park. Measurement and performance issues of trans-
port protocols over 10 gbps high-speed optical networks. Computer Networks,
54(3):475–488, 2010.

[73] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control (bic) for fast
long-distance networks. In INFOCOM 2004. Twenty-third AnnualJoint Confer-
ence of the IEEE Computer and Communications Societies, volume 4, pages
2514–2524. IEEE, 2004.

[74] Lin Xue, Cheng Cui, Suman Kumar, and Seung-Jong Park. Experimental eval-
uation of the effect of queue management schemes on the performance of high
speed tcps in 10gbps network environment. In Computing, Networking and Com-
munications (ICNC), 2012 International Conference on, pages 315–319. IEEE,
2012.

94

[75] Lin Xue, Suman Kumar, Cheng Cui, Praveenkumar Kondikoppa, Chui-Hui Chiu,
and Seung-Jong Park. Afcd: An approximated-fair and controlled-delay queuing
for high speed networks. In Computer Communications and Networks (ICCCN),
2013 22nd International Conference on, pages 1–7. IEEE, 2013.

[76] Lin Xue, Suman Kumar, Cheng Cui, and Seung-Jong Park. An evaluation of
fairness among heterogeneous TCP variants over 10gbps high-speed networks.
In 37th Annual IEEE Conference on Local Computer Networks (LCN 2012),
pages 348–351, 2012.

[77] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu. Tcp congestion avoidance
algorithm identification. In Distributed Computing Systems (ICDCS), 2011 31st
International Conference on, pages 310–321. IEEE, 2011.

[78] T. Yoshino, Y. Sugawara, K. Inagami, J. Tamatsukuri, M. Inaba, and K. Hi-
raki. Performance optimization of TCP/IP over 10 gigabit ethernet by precise
instrumentation. In Proceedings of the 2008 ACM/IEEE conference on Super-
computing, page 11. IEEE Press, 2008.

95

VITA

Lin Xue was born on December 1983, in Shanghai, China. He finished his under-

graduate studies in computer science at China Agricultural University, Beijing, China,

in June 2005. He earned a master degree in computer science from Beijing University

of Posts and Telecommunications, Beijing, China, in April 2008. He then worked as

a member of technical staff 1 at Alcatel-Lucent, Beijing, China for a year and a half.

In January 2010 he came to Louisiana State University, Baton Rouge, LA to pursue

graduate studies in computer science. He spent summer 2012 and summer 2013 at

Google, Mountain View, CA as a network engineering intern for Google Fiber and

Google Platforms Networking respectively. He is currently a candidate for the degree

of Doctor of Philosophy in computer science for spring 2014.

96

