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“... and when your deepest thoughts are broken,
keep on dreaming boy,

cause when you stop dreamin’ it’s time to die.”
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Abstract

In this dissertation we consider the problem of localization of wireless devices

in environments and applications where GPS (Global Positioning System) is not a

viable option. The first part of the dissertation studies a novel positioning system

based on narrowband radio frequency (RF) signals of opportunity, and develops

near optimum estimation algorithms for localization of a mobile receiver. It is

assumed that a reference receiver (RR) with known position is available to aid

with the positioning of the mobile receiver (MR). The new positioning system

is reminiscent of GPS and involves two similar estimation problems. The first is

localization using estimates of time-difference of arrival (TDOA). The second is

TDOA estimation based on the received narrowband signals at the RR and the

MR. In both cases near optimum estimation algorithms are developed in the sense

of maximum likelihood estimation (MLE) under some mild assumptions, and both

algorithms compute approximate MLEs in the form of a weighted least-squares

(WLS) solution. The proposed positioning system is illustrated with simulation

studies based on FM radio signals. The numerical results show that the position

errors are comparable to those of other positioning systems, including GPS.

Next, we present a novel algorithm for localization of wireless sensor networks

(WSNs) called distributed randomized gradient descent (DRGD), and prove that in

the case of noise-free distance measurements, the algorithm converges and provides

the true location of the nodes. For noisy distance measurements, the convergence

properties of DRGD are discussed and an error bound on the location estimation

error is obtained. In contrast to several recently proposed methods, DRGD does

not require that blind nodes be contained in the convex hull of the anchor nodes,

and can accurately localize the network with only a few anchors. Performance

xi



of DRGD is evaluated through extensive simulations and compared with three

other algorithms, namely the relaxation-based second order cone programming

(SOCP), the simulated annealing (SA), and the semi-definite programing (SDP)

procedures. Similar to DRGD, SOCP and SA are distributed algorithms, whereas

SDP is centralized. The results show that DRGD successfully localizes the nodes

in all the cases, whereas in many cases SOCP and SA fail. We also present a

modification of DRGD for mobile WSNs and demonstrate the efficacy of DRGD

for localization of mobile networks with several simulation results. We then extend

this method for secure localization in the presence of outlier distance measurements

or distance spoofing attacks. In this case we present a centralized algorithm to

estimate the position of the nodes in WSNs, where outlier distance measurements

may be present.
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Chapter 1
Introduction and Related Work

Location-based services are a new paradigm in computing/networking which are

expected to bring life-changing experience in many areas including work, health,

entertainment, personal and social life, and safety and security. A key function

of location-based services is the localization of a wireless device. While global

positioning system (GPS) has had an overwhelming success in this area, for many

applications or scenarios GPS may not be a viable option. In many environments

such as indoors, under a forest canopy or in urban canyons the GPS signal may

not be available or too weak for reliable positioning. In addition, in applications

where cost is of primary concern, a GPS device may not be suitable. An example

is in wireless sensor networks (WSNs) where hundreds or thousands of inexpensive

sensor nodes must be localized and the cost of a sensor node is expected to be

below that of a GSP chip. Finally GPS signals are susceptible to jamming.

With the proliferation of wireless devices, and the societal reliance on such de-

vices for a myriad of applications, positioning of such devices has become an es-

sential and in some cases a critical functionality. In this dissertation we consider

two localization algorithms tailored to slightly different applications in wireless net-

works. The first approach relies on ambient signals such as AM and FM radio, TV,

or WiFi signals often referred to as signals of opportunity (SOP). Here a reference

receiver (RR) is used to help localize a mobile receiver (MR). The time difference-

of-arrival (TDOA) between the signals of opportunity at the two receivers is first

estimated. In this application at least four SOP signals are required. One signal is

used to eliminate the clock offset between the two receivers and at least three sig-
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nals for the estimation of the three position variables in the Cartesian coordinate

system. The FM radio signal is considered in the simulations which show position

errors comparable to other positioning systems including GPS.

Next we consider localization of the sensor nodes in a wireless sensor network

(WSN). WSNs consist of a large number of tiny battery powered sensors that are

deployed in the sensor field which, despite their limited resources, can nevertheless

network themselves and communicate their collected information with a central

station over wireless links. Wireless sensor networks (WSN) have applications in

many military and civilian areas including intrusion detection and surveillance,

medical monitoring, emergency response, environmental monitoring, target detec-

tion and tracking, and battlefield assessment. For the information collected by the

sensor nodes to be of any value the information must be tagged with the location of

the reporting sensor. Therefore self-localization of the sensors in a WSN has been

the topic of intensive research studies in recent years. In Chapter 3 we present

a distributed algorithm for the localization of the nodes in a WSNs. This algo-

rithm uses the pairwise distances between all the nodes to calculate the positions.

Numerical results are obtained for a large number of different network topologies

which show the efficacy of the proposed algorithm compared with those existing

methods in the literature. We also extend our proposed method to localization of

WSNs when some distance measurements are highly unreliable. This may arise

due to the challenges of distance measurement techniques. For example it is well

known that distance estimations based on received signal strength in indoors can

be highly unreliable due to multipath fading effects. Distance errors may also be

due to mischief caused by an adversary who falsifies its reported distances.

2



In the remainder of this chapter we present a review of the literature on the two

problems considered in this dissertation and more details on our solutions for these

two problems.

1.1 Related Work

1.1.1 Positioning System based on Narrowband Signals of
Opportunity

Collaborative localization using wireless sensor networks has been an active area

of research [1, 2]. Recently, however, research activity in this area has been some-

what diminished due to the overwhelming success of the global positioning system

(GPS). On the other hand GPS has its own limitations, including low signal power,

inability to penetrate natural or man-made structures, and susceptibility to multi-

path fading. As such, GPS is believed to be less effective in urban canyons, forested

areas and mountainous regions, and it usually fails for localization inside building

structures. Another concern is the vulnerability of GPS to jamming and spoofing

which poses a threat to many law enforcement and military applications.

There are several alternatives for localization in the absence of GPS. The one

that interests us in this dissertation is collaborative localization based on signals

of opportunity (SOP). Such signals are not intended for localization purposes and

include broadcast radio, TV, and wireless LAN (WLAN) signals. The early work

in this field can be traced to [3, 4] where AM radio signals are used for positioning.

Later work in [5, 6, 7] explores FM radio signals. In [5] the authors utilize the

received signal strength (RSS) from FM radio stations and a radio map (a database

of RSS measurements at a number of reference locations) to estimate the location

of a mobile receiver. The accuracy of this scheme hinges on the availability of an

accurate and dense radio map whose construction is difficult as it requires a large

number of measurements. Moreover, in many application (e.g., law enforcement or

3



military) prior construction of such a database is not feasible. RSS of FM radio

signals is also used in [6, 7] for location estimation with [7] also using a simulated

signal strength map. Unfortunately the resulting location estimation error is too

high rendering these schemes unsuitable for most applications.

Compared to GPS signals, both AM and FM are narrowband signals. Even

though they have considerably higher signal strength than GPS signals, there are

no effective signal processing algorithms to achieve positioning accuracy compara-

ble with that of GPS. In [8, 9] the authors have considered the RSS from WLAN

base stations for indoor location estimation. They also rely on a database of refer-

ence RSS measurements. In [10] the authors exploit the multi-carrier structure of

WLAN signals for time-difference of arrival (TDOA) measurements which are then

used for localization. However, for wideband signals multipath fading degrades the

accuracy of the localization methods particularly in an indoor environment.

We are motivated by the work in [5, 3, 4, 6, 7], because of the ubiquity of AM and

FM radio signals. The relatively low carrier frequency allows for penetration into

building structures, and the narrow bandwidth of these signals enables localization

resilient to multipath fading. In addition, narrowband signals can be digitized

using fewer bits (lower rates) and therefore, require lower critical resources such as

storage capacity, transmission bandwidth and energy when used in collaborative

localization schemes.

We present effective signal processing algorithms for localization using FM SOP.

Our algorithms are reminiscent of those used in GPS but with significant depar-

ture dictated by the narrowband and TDOA features of SOP. To be specific, for

localization based on SOP, a reference receiver (RR) with a known location is as-

sumed. The TDOA between the FM radio signals received at the RR and the MR

is utilized for localization of the mobile. The number of unknowns includes the
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three position parameters of the MR in the Cartesian coordinate system, as well

as the clock synchronization error between the MR and the RR.

The positioning system proposed in this dissertation consists of two similar es-

timation problems. The first involves localization based on n (n ≥ 4) estimated

TDOAs. The second involves estimation of the n TDOAs based on narrowband

FM signals. This is in sharp contrast with GPS which relies on the estimation of

n time delays based on wideband pseudo random sequences. In addition to the

novel positioning system proposed in this dissertation, our main contributions also

include development of near optimum algorithms in the sense of MLE for both

of the aforementioned estimation problems, assuming independent and identically

distributed (i.i.d.) Gaussian noise sequences.

1.1.2 Localization of Node in Wireless Sensor Network

Global positioning system (GPS) has had an overwhelming success in local-

ization. However, for localization in WSNs, GPS may not be a viable option. In

many environments such as indoors, forested areas or urban canyons the GPS

signal may be too weak or not even available. In addition, for a network of hun-

dreds or thousands of nodes, fitting each sensor with a GPS device is too costly.

Therefore recently many research studies are devoted to developing cost-effective

self-localization schemes for WSNs [11, 12].

Range-based localization uses the distance measurements between the neighbor-

ing nodes which may be obtained in a number of ways including estimates of: time

of arrival (TOA), time difference of arrival (TDOA) or received signal strength

(RSS), [13, 14]. It is well known that knowledge of the distance profile of the net-

work may not be sufficient to uniquely localize all the nodes. Unique localizability

requires that the network’s underlying graph be globally rigid [15, 16].The prob-
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ability that a network is localizable can be improved by including a number of

anchors1 which can assist in localizing the non-anchor (blind) nodes.

Localization algorithms may be classified as centralized or distributed. Central-

ized algorithms require a great deal of communication between the sensors and

a central processor (fusion center) and therefore are not suitable for resource-

constrained WSNs. In contrast, in distributed algorithms each node computes its

position based on information available from its neighbors (i.e., those within its

radio range). Therefore, this approach is more efficient in resource utilization and

is also scalable in terms of the size of the network.

Sensor network localization is often stated as an optimization problem with an

objective function that depends on the distances and positions of the sensors2.

The main difficulty with this approach is that even in the absence of measurement

errors, it is a non-convex optimization problem with many local minima. Recently a

number of approaches are proposed which relax the non-convex problem in order to

obtain a convex problem that can be efficiently solved using techniques such as the

interior point method [19]. Two prominent approaches use semidefinite programing

(SDP), [20, 21, 22], and second-order cone programming (SOCP) [23, 24, 25]. While

the original versions of these algorithms were centralized [20, 21, 23], more recently

some distributed approaches have been proposed [26, 24, 27].

For a brief review of the advantages and disadvantages of SDP and SOCP we

refer to [20, 27]. Here we would like to point out a few of the shortcomings which

have not been previously discussed. The approach in [26] is not truly a distributed

method. Instead the network is partitioned into several clusters which are then in-

1It is assumed that the anchor nodes are aware of their own (global) positions, say, by manual configuration

or through GPS.

2Two alternative methods are presented in [17, 18].
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dependently solved by SDP. Now the sensors whose positions are accurately com-

puted are designated as “ghost anchors” and are used to decide the un-positioned

sensors. This scheme is then iterated. It can be seen that this approach breaks up

the centralized problem into a number of (centralized) sub-problems for which a

solution can be obtained from SDP. Furthermore, both SDP and SOCP rely on a

sophisticated optimization package (SeDuMi was used in [20, 24]) which cannot be

easily deployed on a sensor node with limited resources.

Another difficulty with the relaxation methods is that even when the original

problem is uniquely localizable, the relaxed problem may not be. Suppose that the

localization problem is to be solved in ℜd where d ≥ 1. In [20] the authors derive

conditions under which the solution of the relaxed problem is the same as that of

the original problem. However, these conditions are difficult to verify as they imply

that the original problem cannot be uniquely localized in a higher dimensional

space ℜl where l > d (see [20] for more details). In fact as pointed out in [20], in

the presence of measurement errors, SDP with interior point method results in a

solution in a higher dimensional space which must then be rounded onto ℜd. A

simple projection of the solution onto ℜd results in the crowding of the estimated

positions in the center of the field and in [21] the authors propose a method to

address this issue. The above problem is also present in SOCP relaxation approach,

[24], where spurious solutions may be introduced as a result of the relaxation. An

example of this is shown in Section 3.1.1.

Extensive simulations show that in the relaxation methods, the estimated po-

sitions of the blind nodes are always in the convex hull of the anchors. Therefore

when the actual positions of the nodes are outside of this convex hull, the estima-

tion errors are often very large. A solution is to carefully deploy a large number

of anchors on the periphery of the geographic area to ensure that no blind nodes
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are outside of the convex hull of the anchors. This, however, increases the cost

of the network and imposes a constraint on the network deployment strategy. In

particular, random scattering of the nodes in the sensor field which has been en-

visioned for some applications, [28], fails to satisfy this constraint. Another issue

with relaxation methods is that the dual solution obtained from the interior point

method is not guaranteed to be the same as the solution of the primal problem.

This is due to the gap between the cost functions which highly depends on the

parameters chosen in the implementation of the interior point method [19].

Zhu et al. proposed a distributed localization algorithm in [29], based on the

gradient descent algorithm which requires that blind nodes be contained in the

convex hull of their neighbors. In [30], the authors proposed a convex/non-convex

formulation. Each node solves a convex optimization problem using a subset of its

neighbors. Once a solution is reached, a refinement of the position is carried out

(non-convex part) based on a search process. Convergence of the algorithm is not

guaranteed.

Probabilistic approaches such as simulated annealing (SA) have long been used

for numerical optimization of non-convex problems to allow convergence (with

probability one) to the global optimum [31, 32]. Simulated annealing-based algo-

rithms have been proposed for localization in sensor networks in [33, 34]. However,

convergence of these algorithms has not been established and the accuracy of the

final result strongly depends on the selected parameters. Moreover, as pointed out

in [32], SA may fail if the basin of attraction of a local minimum (maximum) is

sufficiently wide.

It should point out that, for the sake of brevity, our survey of previous work here

is short of complete and only contains the previous work related to our work. For

a more complete survey we refer to [34, 27, 13] and the references therein. One of
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the major difficulties with range-based localization is that all the pairwise distance

measurements may not be reliable. This issue is different from noisy measurements

or errors occurring during the calculation of the distances. Algorithms which are

robust to such measurement noise or distance calculation errors have been pre-

viously developed [26, 20]. In the case under consideration here, some reported

distance measurements are significantly different from their true values. This may

be a result of Byzantine or malicious nodes inserted into the network by an ad-

versary for distance spoofing attacks. These nodes report false distance or position

information to their neighbors in order to defeat the localization algorithm. Large

distance errors may also arise as a result of faulty measurements. For example it is

well know that in indoor environments, due to multipath fading effects, some RSS

measurements may be highly inaccurate. We refer to such distance measurements

as outliers [35].

Secure positioning has been the subject of several studies in recent years. Dif-

ferent attack types and outliers are discussed in [36] and techniques to prevent

or/and deal with such issues are presented. Theoretical approaches to deal with

the presence of outliers or corrupted distances have been developed in [37, 38, 39].

These approaches are based on the rigidity property of the network, establishing

limitations of the triangle inequality for localization purposes and conditions to

uniquely estimate the position of the nodes in the presence of outlier distances. In

[40, 41], the authors provide a bound for the required anchor nodes for localization,

and describe algorithms that satisfy this condition.

Several algorithms have also been developed to detect malicious nodes or outlier

distance measurements, and to use this information in order to avoid such nodes or

distances in a localization algorithm. In [42, 43], the authors detect malicious nodes

by comparing the estimated distances with the round-trip time of the transmitted
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information, which is then used to develop a reputation metric for classifying the

nodes.

In [44] outlier distances are detected using the distribution of RSS. Consistencies

of the estimated positions with known model and observations are developed in

[45] in order to detect malicious nodes. In [46] an algorithm is developed to detect

malicious nodes by examining the regions where the nodes claim to be located. A

similar algorithm is developed in [47], which also includes a voting process used

to develop a reputation metric. A hypothesis testing method is presented in [48]

using the RSS measurements in order to detect outlier distances. The authors

in [49] identify malicious nodes by comparing the distributions of the TOA of

the transmitted signal, and using the expectation-maximization (EM) algorithm

to determine the reliability of the links. The TOA of the received signal is also

used in [50] to identify the malicious nodes and in [51], an algorithm to detect

wormwhole attacks is developed based on TOA of the signals and the measured

distances.

Two methods are developed for localization of WSNs in the presence of threats

in [52]. The first method filters out malicious signals by examining the consistency

amoung multiple signals and the second method use a voting procedure based on

the overlap between the regions where the nodes claim to reside. In [53, 54, 55]

authors use cryptography and intersection of regions to estimate the positions of

the nodes.

Several authors have formulated the localization problem as an (constrained)

optimization algorithm. In [56] the localization problem is cast as a minimization

of the median of the square of the difference between measured distances and

the distances from estimated positions using RSS. The approach in [57] verifies
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the triangularization properties between sets of distances. A similar algorithm is

presented in [58], by incorporating TDOA of the transmitted signals.

An important issue of these approaches is the fact that the blind nodes estimate

their position using information directly from the anchor nodes, i.e., it is assumed

that they have communication capabilities with the anchor nodes. Although the

large amount of proposed algorithms for localization or threats detection in WSNs

in presence of outlier distances and/or nodes, almost none of them has stated the

localization algorithm as an optimization problem for networks where the blind

nodes may not have communication capabilities with the anchor nodes.
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Chapter 2
Positioning System based on
Narrowband Signals of Opportunity

This chapter presents a localization algorithm in which the position of a device

is estimated using the available commercial signals and the position of an auxil-

iary device as reference. Section 2.1 describes and states the localization problem.

Section 2.2 details and analyzes the development of the localization algorithm.

Finally, Section 2.3 provides simulation results, analyzing the performance of the

algorithm.

2.1 Problem Formulation

The main problem stated in this research is the localization of a mobile device

(denoted by MR), by using Signals of Opportunity (SoP).

In order to achieve the mentioned objective, at least 4 sources of SoP are re-

quired, and a localization reference, denoted by Reference Rover (RR). The loca-

tion of the source of the SoP must be known as well.

The position of the RR is assumed to be known, through GPS (for example). In

addition, the SoPs must be received by RR and MR.

Based on this setting, the objective can be decomposed into two subproblems: the

first one consists in estimating the position of MR based on certain measurements

provided by the SoP arrived to MR and RR, the position of the RR, and the

positions of the SoP sources. This subproblem can be stated as a Least Square.

The second subproblem is to estimate certain measurements from on the SoPs

to be use for localization purposes. Time Difference of Arrival (TDOA) of the SoP

arriving to Rover and Mobile is considered as such measurement, which will lead

to a estimation of the distance between the RR and MR for each SoP.
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The SoP considered in this project are commercial Frequency Modulated Radio

(FM) signals. It is assumed that the position of the FM signal transmitters is

known. The choice of this type of signals is due to its availability in large urban

and rural regions, being able to be received in indoor environments without the

need of the line of sight between receiver and transmitter.

It is important to mention that the transmission of the signals is assumed to be

through a flat fading channel. Moreover, the localization procedure is though for

low speed mobile and references. Also, it is assumed that the mobile and reference

can interchange information such that the position of the rover can be estimated

in the reference.

2.2 Proposed Algorithm

The following subsections describe the methodology previously mentioned. Firstly,

a procedure is described for localization of the rover using TDOA from FM signals

that have arrived to RR and MR. Later, an algorithm to estimate the TDOA used

in the localization previously mentioned, which is designed for narrowband signals.

2.2.1 Localization with Time Difference of Arrival

Localization based on signals of opportunity assumes that the RR, whose po-

sition is precisely known, receives the same signals as those received by the MR.

In general there is a synchronization error between the two time clocks at the RR

and the MR. This clock synchronization error is assumed to be constant during

the time window that we collect the signals of opportunity used to compute the

TDOA. This assumption is valid as the clocks will not have a significant drift dur-

ing this short time window. In fact the same assumption is also made in the case

of GPS. As a result, there are four unknown parameters involved in estimating the

position of the mobile receiver: the position parameters of the mobile in the three-
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dimensional Cartesian coordinate system, plus the clock synchronization error. For

this reason, SOP broadcasted from a total of at least four different locations are

needed in localizing the mobile, yielding at least four equations in order to remove

the time synchronization error and to resolve the mobile’s position effectively.

Let (xb, yb, zb) be the known position of the reference receiver, and let (xm, ym, zm)

be the unknown position of the mobile receiver to be estimated. By convention,

the position of the ith broadcast tower of the signal of opportunity is assumed

to be fixed and known, denoted by (xi, yi, zi), where 1 ≤ i ≤ n and n ≥ 4. For

convenience denote

dm(xi, yi, zi) =
√
(xm − xi)2 + (ym − yi)2 + (zm − zi)2 (2.1)

as the distance from the mobile to the ith broadcast tower. If dbi denotes the

distance from the RR to the ith broadcast tower, then

dbi =
√
(xb − xi)2 + (yb − yi)2 + (zb − zi)2

and dbi is known for 1 ≤ i ≤ n. There holds

dm(xi, yi, zi) + ∆d = dbi + c(δti + ε), , 1 ≤ i ≤ n, (2.2)

with c the speed of light, ε the clock synchronization error, ∆d the error in distance

due to the clock synchronization error and δti the ith TDOA as shown in Figure

2.1.

Although (2.2) reveals a nonlinear relation between the TDOAs and the mobile’s

position, a pseudo-linear model exists [59, 60]. Without loss of generality, (x1, y1, z1)

is taken as the reference tower. By eliminating the synchronization error in (2.2),

the following equation

dm(x1, y1, z1) + cδti,1 + di,1 = dm(xi, yi, zi)
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FIGURE 2.1. Schematic illustration of TDOA

is obtained for 2 ≤ i ≤ n where δti,1 = δti − δt1 and di,1 = dbi − db1 . Squaring the

two sides and using (2.1) yields

(xm − xi)
2 + (ym − yi)

2 + (zm − zi)
2 [dm(x1, y1, z1) + cδti,1 + di,1]

2 . (2.3)

Denote rk =
√
x2k + y2k + z2k, dm,1 = dm(x1, y1, z1), ai = cδti,1 + di,1, and

bi = r2i − r21 − a2i − 2(xi,1x1 + yi,1y1 + zi,1z1) (2.4)

where xi,1 = xi − x1, yi,1 = yi − y1, and zi,1 = zi − z1. The equations in (2.3) for

2 ≤ i ≤ n can be rearranged and packed into the following pseudo-linear model:

b2

b3

...

bn


= 2



x2,1 y2,1 z2,1 a2

x3,1 y3,1 z3,1 a3

... · · · · · · ...

xn,1 yn,1 zn,1 an





xm,1

ym,1

zm,1

dm,1


(2.5)

satisfying d2m,1 = x2m,1 + y2m,1 + z2m,1.

For convenience, let pm =

[
xm,1 ym,1 zm,1

]′
where ′ indicates the transpose

operation, and let a and b be column vectors with ai+1 and bi+1 denoting the ith

15



element of a and b, respectively. There holds

b− 2adm,1 = Gpm, d2m,1 = p′
mpm, (2.6)

in which the matrix G of size (n − 1) × 3 is specified by the right hand side of

(2.5). A closed-form solution of pm to (2.6) is derived in [61, 60] in the case when

noise-free measurements of TDOA {δti,1} are available. The solution procedure is

quite simple and first writes pm = (G′G)−1G′(b − 2adm,1), as if dm,1 is known.

Using d2m,1 = p′
mpm with the expression of pm substituted in then gives

d2m,1 = (b− 2adm,1)
′G(G′G)−2G′(b− 2adm,1).

It can be easily verified that the above is the same as αx2 + βx + γ = 0 with

x = dm,1 and

α = 1− 4v′
ava, β = 2v′

bva, γ = −v′
bvb,

where va = (G′G)−1G′a and vb = (G′G)−1G′b. Hence there are two possible roots

and the one with positive real value can be used for dm,1 which in turn gives the

solution for pm. See [61] for the discussion on the existence of the positive real root

in the noise-free case.

Clearly the solution procedure becomes more complex when the measurements

of TDOA involve errors which are inevitable. In fact the simple procedure discussed

earlier is inapplicable in general due to the existence of possible complex roots when

noises are present in TDOAs. For this reason an effective two-stage LS algorithm

is proposed in [59] to estimate the position vector in the case of noisy TDOAs.

However, its optimality is difficult to analyze. This dissertation makes use of our

earlier result ([62] for GPS-based localization) in deriving an approximate MLE

in the case of i.i.d. Gaussian noise. To be specific, assume that the measurements

{δ̂ti}ni=1 are given by

δ̂ti = δti + vi =⇒ δ̂ti,1 = δti,1 + vi,1 (2.7)
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for 2 ≤ i ≤ n where {vi}ni=1 are i.i.d. Gaussian with mean 0 and variance σ2
v . The

notation ⇒ stands for “imply” or “give rise to”. As a result vi,1 = vi − v1 for

2 ≤ i ≤ n are also Gaussian with mean zero but are not independent anymore. In

fact the covariance of {vi,1}ni=2 is given by the following (n− 1)× (n− 1) matrix

Ci,1 = σ2
v



2 1 · · · 1

1
. . . . . .

...

...
. . . . . . 1

1 · · · 1 2


=: σ2

vC0. (2.8)

Hence the joint probability density function (PDF) of {vi,1} can be easily obtained

as in (4.5) of the Appendix (where the Cramer-Rao lower bound (CRLB) is also

derived for the error covariance associated with localization based on SOP using

TDOAs). It is important to point out that obtaining the exact MLE solution

involves maximization of the joint PDF which is in fact quite complex. Hence an

alternative is sought in this dissertation. Under the noisy measurements of TDOA,

ai and bi in (2.4) are replaced respectively by

âi = ai + cvi,1, b̂i = β̂i + µc2σ2
v ,

with β̂i = bi − 2caivi,1 − c2v2i,1, which are the (i − 1)th element of â and b̂ for

2 ≤ i ≤ n, leading to the noisy pseudo-linear model

b̂− 2âdm,1 = Gpm + v̂, d2m,1 = p′
mpm, (2.9)

where µ ≥ 0 is a real parameter. For 1 ≤ i < n, the ith element of v̂ is given by

v̂i = −2c(dm,1 + ai+1)vi+1,1 − c2(v2i+1,1 − µσ2
v).

Let E{·} denote expectation. If µ = 2, it can be verified that E{v̂i} = 0 and

E{v̂i−1v̂j−1}
2c2σ2

v

=

 4(dm,1 + ai)
2 + 4c2σ2

v , if i = j,

2(dm,1 + ai)(dm,1 + aj) + c2σ2
v , if i ̸= j,

(2.10)
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for i, j ≥ 2 using E{v2i,1} = 2σ2
v , E{v3i,1} = 0, and E{v4i,1} = 12σ4

v . The following

lemma shows that the joint distribution of {v̂i}n−1
i=1 is approximately Gaussian. The

proof and discussion are moved to the Appendix.

Lemma 1. Let Zi = −2κiUi+U
2
i −σ2 where κi ̸= 0 and {Ui}n−1

i=1 are jointly Gaus-

sian with mean zero and covariance C > 0. If the ratio of |κi| to σ is sufficiently

large for each i, then {Zi}n−1
i=1 admit an approximate joint Gaussian distribution

with common mean −σ2 and covariance DκCDκ where Dκ = 2diag(κ1, · · · , κn−1).

For application to our problem, Ui = v̂i,1/2c
2. The large ratio condition amounts

to

|dm,1 + ai|
cσv

=
|dm,1 + di,1 + cδti,1|

cσv
=
dm(xi, yi, zi)

cσv
>> 1

which holds for each i ≥ 2. In fact cσv can be regarded as the distance resolution

in TDOA estimates, and it has to be within O(1) in unit of meter in order to have

acceptable localization error.

Theorem 1. Suppose that {v̂i}n−1
i=1 are jointly Gaussian with mean zero and co-

variance Ĉ whose (i, j)th entry is specified in (2.10). Then the MLE solution to the

constrained pseudo-linear equation in (2.9) is the constrained minimizer p̂m that

solves

min
dm,1=∥x∥

∥∥∥b̂− 2âdm,1 −Gx
∥∥∥2
Ĉ−1

=
∥∥∥b̂− 2âdm,1 −Gp̂m

∥∥∥2
Ĉ−1

(2.11)

where ∥x∥2Q = x′Qx and ∥x∥2 = x′x.

Proof. The hypothesis on {v̂i}n−1
i=1 implies the joint PDF:

fV̂
(
{v̂i}n−1

i=1

)
=

exp

[
−1

2

∥∥∥b̂− 2âdm,1 −Gpm

∥∥∥2
Ĉ−1

]
√
(2π)n−1 det(Ĉ)

. (2.12)

The MLE solution aims at computing pm that maximizes fV̂
(
{v̂i}n−1

i=1

)
under the

constraint dm,1 = ∥pm∥, which is equivalent to minimizing
∥∥∥b̂− 2âdm,1 −Gpm

∥∥∥2
Ĉ−1
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subject to dm,1 = ∥pm∥. As such, the MLE solution satisfies (2.11) and this con-

cludes the proof.

Theorem 1 shows that under the Gaussian assumption, the MLE solution to

localization using TDOAs amounts to computing the constrained WLS solution

in (2.11). Although the exact Gaussian distribution does not hold for {v̂i}n−1
i=1 in

practice, they are approximately Gaussian by Lemma 1. Hence the constrained

WLS solution is an approximate MLE. To derive this solution, denote

H =

[
G 2â

]
, θp =

 pm

dm,1


=⇒ b̂− 2âdm,1 −Gpm = b̂−Hθp.

Lagrange multiplier is a standard method for constrained optimization. Let λ be

real and

J =
1

2

[(
Hθp − b̂

)′
Ĉ−1

(
Hθp − b̂

)
+ λθ′pQθp

]
where Q = diag(1, 1, 1,−1). The necessary condition for optimality yields the

condition

H ′Ĉ−1[Hθp − b̂] + λQθp = 0 ⇐⇒

θp = [H ′Ĉ−1H + λQ]−1H ′Ĉ−1b̂.
(2.13)

An optimal solution needs to satisfy the constraint θ′pQθp = 0 leading to

b̂′Ĉ−1H[H ′Ĉ−1H + λQ]−1Q[H ′Ĉ−1H + λQ]−1H ′Ĉ−1b̂ = 0. (2.14)

The solution algorithm hinges on the computation of the real root λ from the above

equation and there can be more than one such real root. The result of simultaneous

diagonalization in [63] can be employed for this purpose. Because Ĉ = Ĉ ′ > 0 and

Q = Q′, there exists a nonsingular matrix S such that H ′Ĉ−1H = SDĈS
′ and

Q = SDQS
′ where DĈ and DQ are both diagonal. It is noted that DĈ and DQ
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have the same inertia as Ĉ and Q, respectively. It follows that (2.14) is equivalent

to

(S−1H ′Ĉ−1b̂)′MλD
−1
Q Mλ(S

−1H ′Ĉ−1b̂) = 0. (2.15)

where Mλ = (λI + DĈD
−1
Q )−1 is diagonal. Let D−1

Q = diag(q1, q2, · · · , qℓ) with

ℓ = 4. It has the same number of negative and positive elements as D = DĈD
−1
Q =

diag(d1, d2, · · · , dℓ) by the positivity of Ĉ and DĈ . In fact qidi > 0. The matrices

S and D can be obtained by eigenvalue decomposition of H ′Ĉ−1HQ−1 = SDS−1.

Let γi be the ith element of S−1H ′Ĉ−1b̂ and γ =

[
γ1 γ2 · · · γℓ

]
. Then (2.15)

is equivalently converted into

γMλD
−1
Q Mλγ

′ =
ℓ∑

i=1

qiγ
2
i

(λ+ di)2
= 0. (2.16)

Because Q is indefinite, there is at least one strictly positive and one strictly

negative element from {qi}ℓi=1. Hence the above equation has at least one real root.

On the other hand, there are only finitely many real λ values satisfying (2.16).

In fact all the roots of the nonlinear equation in (2.16) are roots of the following

polynomial with degree 2(ℓ− 1) = 6:

ℓ∑
i=1

qiγ
2
i

∏
k ̸=i

(λ+ dk)
2 = 0. (2.17)

Let {λk}rk=1 be the r real roots of (2.17). It can be shown that

MQ := H(H ′Ĉ−1H + λkQ)
−1H ′Ĉ−1 − I

= HQ−1(λkI +H ′Ĉ−1HQ−1)−1H ′Ĉ−1 − I

= −λk(λkI +HQ−1H ′Ĉ−1)−1

= −λkĈ(λkĈ +HQ−1H ′)−1.

Hence by (2.13),

Hθp − b̂ =MQb̂ = −λkĈ(λkĈ +HQ−1H ′)−1b̂.
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Substituting the above into the performance index leads to

J =
1

2
λ2kb̂

′(λkĈ +HQ−1H ′)−1Ĉ(λkĈ +HQ−1H ′)−1b̂.

Let λopt be one of the r real roots that minimizes J over {λk}rk=1. Then in light of

(2.13), the optimal θp is obtained as θp = θopt given by

θopt = [H ′Ĉ−1H + λoptQ]
−1H ′Ĉ−1b̂.

Remark 1. The entries of Ĉ are functions of dm,1 and δti’s which are unknown.

The TDOAs δti’s can be replaced by δ̂ti’s obtained from measurements. This causes

negligible error if σ2
v is small. On the other hand, dm,1 has to be determined itera-

tively. That is, the solution p̂m may be initially obtained under Ĉ = I, which can

then be replaced to compute new solution p̂m under more accurate Ĉ. Only a few

iterations are needed in order to obtain a near MLE solution. 2

2.2.2 Time Difference of Arrival Estimation for
Narrowband Signals

The challenge in localization based on narrowband (real) signals of opportunity

lies in estimation of TDOA efficiently and accurately. Specifically, let [ΩL, ΩH) be

the support of the frequency response of the signal of opportunity where ΩH >

ΩL > 0. The narrowband nature of the signal implies that ΩH−ΩL << ΩL and thus

the SOP is a bandpass signal. Let k be the integer-valued time index, and {sm(k)}

and {sb(k)} be sampled signals of the same continuous-time signal received at the

mobile and reference, respectively, under the same sampling frequency ΩS ≥ 2ΩH .

There holds Sb(Ω) = ejΩδtSm(Ω) at all frequency Ω, if the TDOA δt is multiple

of the sampling period, where Ω is the physical frequency, and Sm(Ω) and Sb(Ω)

are discrete-time Fourier transforms (DTFT) of {sm(k)} and {sb(k)}, respectively.

Hence TDOA can be estimated using the existing results on estimation of time

delay. However, bandpass signals can be sampled at much lower sampling frequency
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Ωs << 2ΩH without aliasing, provided that Ωs > 2(ΩH −ΩL) [64], which leads to

considerably more efficient proceddure for the estimation of TDOA. Indeed TDOA

requires that both {sm(k)} and {sb(k)} be available in the same location in order

to estimate the TDOA. This requires that at least one of the sampled signals be

transmitted. A lower sampling frequency implies that fewer number of bits need to

be transmitted thereby reducing the transmission energy and bandwidth. However,

Sb(Ω) = ejΩδtSm(Ω) does not hold anymore, at least not for all Ω, if the sampling

frequency Ωs < 2ΩH . The reason lies in the fact that the TDOA δt is not likely

to be multiple of the sampling period. This problem is studied in this section. We

employ a multirate approach based on polyphase analysis.

Let {s(k)}∞k=−∞ be sampled at ΩS ≥ 2ΩH . Its DTFT with normalized frequency

is given by

S(ω) =
∞∑

k=−∞

s(k)e−jkω, ω = ΩTS := Ω(2π/ΩS).

Thus ωH = ΩHTS and ωL = ΩLTS. Consider the M polyphase components

{sℓ(k)}∞k=−∞ = {s(kM + ℓ)}∞k=−∞

where ℓ is some integer. For ℓ ∈ {0, 1, · · · ,M − 1},

Sℓ(ω) =
∞∑

t=−∞

sℓ(k)e
−jkω =

∞∑
k=−∞

s(kM + ℓ)e−jkω

is the DTFT of the ℓth polyphase of {s(k)}. Denote WM = e−j2π/M . It is easy to

show that [65]

Sℓ(ω) =
ejℓω/M

M

M−1∑
i=0

W−iℓ
M S

(
ω + 2iπ

M

)
. (2.18)

Lemma 2. Suppose that S(ω) has support [ωL, ωH) ⊂ [0, π] with 0 < ωL < ωH ≤

π and ωH ≈ π. Denote ⌊·⌋ as the operation of taking the integer part. Then

(i) M =

⌊
ωH

ωH − ωL

⌋
> 1 =⇒ (ii) ωL ≥ (M − 1)(ωH − ωL),
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and no aliasing exists for the DTFT of the ℓth polyphase of {s(k)}. Moreover, there

holds

Sℓ(ω) =
ejℓ(ω+2iωπ)/M

M
S

(
ω + 2iωπ

M

)
= ejℓ(ω+2iωπ)/MS0(ω) (2.19)

for each ω ∈ [0, 2π) and some iω ∈ {0, 1, · · · ,M − 1} that depends only on ω.

Proof. Recall that {s(k)} is real, and S(ω) is periodic with period 2π. Over the

frequency range of [0, 2π], S(ω) has a symmetric support

[ωL, ωH) ∪ (2π − ωH , 2π − ωL]

with respect to ω = π. The width of the total support, denoted by W , from ωL to

2π − ωL is no more than 2π/M . This is easy to see from the fact that

W = 2(ωH − ωL) ≤
2ωH

M
≤ 2π

M

since ωH ≤ π and from (i), ωH ≥ M(ωH − ωL). Furthermore, (ii) follows straight-

forwardly from (i).

Consider the first case when M is odd. Then the fundamental period [0, 2π]

of S(ω) can be divided into M equal size intervals with
[
2iπ
M
, 2(i+1)π

M

]
as the ith

one for 0 ≤ i < M . The support of S(ω) is located strictly inside the interval

corresponding to i = (M − 1)/2 and S(ω) = 0 over the other (M − 1) intervals.

As a result, Sℓ(ω) in (2.18) has M copies of S(ω) over [0, 2Mπ] without aliasing.

See the illustration in Figure 2.2 below. Hence the formula in (2.19) holds for each

ω ∈ [0, 2π) and some iω ∈ {0, 1, · · · ,M − 1} which depends only on ω.

When M is even, the fundamental period of [0, 2π] can be divided into (M +1)

intervals with the first and the last having equal lengths of π/M specified by

[0, π/M ] and [(2M − 1)π/M, 2π], respectively. The remaining (M − 1) intervals
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FIGURE 2.2. Graph of |Sℓ(ω)| over [0, 2Mπ] in the case of odd M illustrated for M = 3

are given by [
(2i− 1)π

M
,
(2i+ 1)π

M

]
, i = 1, 2, · · · ,M − 1,

which have equal lengths of 2π/M . Again the support of S(ω) lies in the center

interval with i = M/2 and S(ω) = 0 over other intervals. Hence again no aliasing

exists for Sℓ(ω) in (2.18) in the case of even M as illustrated in Figure 2.3. It

is interesting to observe that the center interval is the same as
[
(M−1)π

M
, π
]
. The

proof of the lemma is now complete.

FIGURE 2.3. Graph of |Sℓ(ω)| over [0, 2Mπ] in the case of even M illustrated for M = 4.

A few observations are made. The first regards the value of iω in (2.19). In

light of the periodicity of Sℓ(ω) with period of 2π, and summation index i = 0

corresponding to the center copy, iω = M−1
2

in the case of odd M for ω ∈ [0, 2π].
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When M is even, iω for ω ∈ [0, 2π] is given by

iω =


M
2
, if ω ∈ [0, π),

M
2
− 1, if ω ∈ (π, 2π],

(2.20)

by the proof of Lemma 2. The second regards the minimum sampling frequency.

Denote Ω as the physical frequency, ΩS as the sampling frequency for {s(k)},

and Ωs as the sampling frequency for {sℓ(k)}. Then ΩS = MΩs. Denote WB =

(ΩH −ΩL). Let Ωmin be the minimum sampling frequency that ensures (2.19), i.e.,

no aliasing for {sℓ(n)}. Then

2WB < Ωmin ≤ 2(1 + 1/M)WB.

The above agrees with the the result in [64]. The third observation from Lemma 2

is that

Sℓ(ω + 2π) =
ejℓ[ω+2(iω+1)π]/M

M
S

(
ω + 2(iω + 1)π

M

)
.

That is, ω replaced by ω+2π on the left is equivalent to iω replaced by (iω +1) on

the right. The final observation regards reconstruction of {s(k)} based on {sℓ(k) =

s(kM+ℓ)}∞k=−∞. Upsampler or expander with ratioM can be applied first to yield

the following new sequence:

s̃ℓ(k) =

 sℓ(k), if k is multiple ofM,

0, elsewhere.
(2.21)

Its DTFT at ω ∈ [0, 2π] satisfies

S̃ℓ(ω) = Sℓ(Mω) =
ejℓ(ω+

2iωπ
M )

M
S

(
ω +

2iωπ

M

)
(2.22)

where iω = M−1
2

for odd M , and iω has the expression in (2.20) for even M .

Bandpass filtering can then be applied to {s̃ℓ(k)} to reconstruct {s(k)}. Such a

procedure is implemented by the interpolator consisting of an upsampler of ratio

25



M followed by a bandpass filter (BPF). The BPF has amplitude M and linear

phase −ℓω over the passband in
(

(M−1)π
M

, π
)
by (2.22), and iω = 0 for the center

copy of the image. If zero phase bandpass filter is used, the filtered output needs

to be shifted by k samples. The reconstruction is illustrated in the Figure 2.4.

FIGURE 2.4. Block diagram for reconstruction of {s(n)} based on {sℓ(n)}

It is well known that upsampling induces the imaging effect [65]. The BPF filtering

of {s̃ℓ(k)} removes the extra copies and restores {s(k)} as illustrated in Figure 2.5.

FIGURE 2.5. Graph of |S̃ℓ(ω)| over [0, 2π] with BPF illustrated for M = 3

The next result follows from Lemma 2.

Corollary 1. Let integer M be the downsampling ratio. Suppose that ωH > (1 −

1/M)π where π ≥ ωH > ωL > 0, and condition (i) of Lemma 2 holds. Then

there exists no aliasing for the DTFT of the kth polyphase of {s(k)}, if and only

if ωL ≥ (1− 1/M)π.

This condition implies the expression of (2.19) for ω ∈ [0, 2π) and some integer

iω.
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Proof. For sufficiency, assume that ωL ≥ (1 − 1/M)π, i.e., M ≤ π/(π − ωL).

Consider

g(x) =
x

x− ωL

= 1 +
ωL

x− ωL

.

Clearly g(x) is monotonically decreasing for x > ωL. It follows that

M ≤ π

π − ωL

≤ ωH

ωH − ωL

which implies thatM ≤
⌊

ωH

ωH−ωL

⌋
by the fact thatM is integer-valued. We need to

consider only the largest possible M that yields condition (i) in Lemma 2. Hence

no aliasing exists for the DTFT of the kth polyphase of {s(k)} and the relation

in (2.19) is true. Conversely sℓ(ω) consists of M shifted copies of S(ω/M) over

[0, 2Mπ] or S(ω) over [0, 2π] which do not overlap. In the case of odd M , the

ith copy of S(ω) is located within [2iπ
M
, 2(i+1)π

M
]. The hypothesis on ωH implies

that ωH ∈
(
M−1
M

π, M+1
M

π
]
. Together with the assumption of no aliasing yields

ωL ≥ (1− 1/M)π. The case of even M can be argued similarly and is omitted.

The condition in Corollary 1 is easier to use and can be translated into

ΩL ≥ (1− 1/M)ΩS/2

in physical frequencies with ΩS the sampling frequency for {s(k)}. Together with

2M(ΩH − ΩL) ≤ ΩS for no aliasing, we have the following inequality:

2M(ΩH − ΩL) ≤ ΩS ≤ 2MΩL/(M − 1). (2.23)

The result from Lemma 2 can now be used to compute the time offset ℓ between

the two polyphase components {sℓ(k)} and {s0(k)} by computing the phase slope

or group delay of

Sℓ(ω)S
∗
0(ω) =

ej
ℓ[ω+2iMπ]

M

M

∣∣∣∣S (ω + 2iMπ

M

)∣∣∣∣2 (2.24)
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for all ω ∈ [0, π] where iM = (M − 1)/2 for odd M , iM = M/2 for even M , and

superscript ∗ denotes conjugation. Recall the first observation made after the proof

of Lemma 2. However, Lemma 2 and (2.24) do not provide an answer for the case

when ℓ is not an integer which is crucial in estimation of TDOA.

Let sc(t) be the continuous-time signal with t real-valued from which {sℓ(k)}

and {s0(k)} are obtained through sampling with sampling frequency Ωs = 2π/Ts

and Ts =MTS. Suppose that

sϵℓ(k) = sc[(kM + ℓ+ ϵ0)TS], ϵ0 ∈ [0, 1) (2.25)

where k = 0,±1,±2, · · · and 0 < ℓ < M . We are interested in knowing Sϵ
ℓ(ω),

DTFT of {sϵ(k)}, in terms of S0(ω), DTFT of {s0(k)} = {sc(kTs)}. The next

result holds.

Theorem 2. Let sc(t) be bandpass continuous-time signal whose frequency re-

sponse has a support over [ΩL, ΩH), and {sϵℓ(k)} in (2.25) and {s0(k) = sc(kTs)}

be samples of sc(t) under the same sampling frequency Ωs = 2π/Ts. Let M > 0

be the smallest integer such that ΩS =MΩs ≥ 2ΩH . Then there exists no aliasing

for frequency responses of {s0(k)} and {sϵℓ(k)}. In addition the DTFT of {sϵℓ(k)}

is related to the DTFT of {s0(k)} according to

Sϵ
ℓ(ω) = ej(ℓ+ϵ0)(ω+2iωπ)/MS0(ω) ∀ ω ∈ [0, π), (2.26)

for some integer iω dependent on ω.

Proof. The hypothesis implies that no aliasing exists for DTFTs of {s0(k)} and

{sϵℓ(k)}, in light of Lemma 2 and Corollary 1. To prove the theorem, consider first

the case when ℓ = 0. It follows from no aliasing that

Ŝ0(Ω) =
∞∑

i=−∞

Sc(Ω + iΩs) = Sc(Ω + iΩΩs)
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for all Ω ∈ [0, Ωs/2) and for some iΩ dependent on Ω. On the other hand, the

frequency response of {sϵ0(n)} is given by

Ŝϵ
0(Ω) =

∞∑
i=−∞

Sc(Ω + iΩs)e
jϵ0TS(Ω+iΩs)

= ejϵ0TS(Ω+iΩΩs)Sc(Ω + iΩΩs)

= ejϵ0TS(Ω+iΩΩs)Ŝ0(Ω)

for all Ω ∈ [0, ΩS/2) by again the fact of no aliasing. Since the normalized frequency

ω = ΩTs = ΩΩs/2π, we have Ω = 2πω/Ωs. Hence S0(ω) = Ŝ0(2πω/Ωs), and

Sϵ
0(ω) = Ŝϵ

0

(
2πω

Ωs

)
= ej

ϵ0(TsΩ+iΩTsΩs)

M Ŝ0

(
2πω

Ωs

)
= ej

ϵ0(ω+2iΩπ)

M S0 (ω)

are DTFTs of {s0(n)} and {sϵ0(n)}, respectively, by TS = Ts/M from which the

relations

Sϵ
0(ω) = ejϵ0(ω+2iωπ)/MS0(ω) =⇒

Sϵ
ℓ(ω) = ejϵ0(ω+2iωπ)/MSℓ(ω)

follow where iω = iΩ depends on ω. Applying Lemma 2 yields

Sϵ
ℓ(ω) =

ej(ℓ+ϵ0)(ω+2iωπ)/M

M
S

(
ω + 2iωπ

M

)
= ej(k+ϵ0)(ω+2iωπ)/MS0(ω)

which concludes the proof.

The result of Theorem 2 implies that the formula in (2.24) can now be replaced

by

Sϵ
ℓ(ω)S

∗
0(ω) =

ej
(ℓ+ϵ0)(ω+2iMπ)

M

M

∣∣∣∣S (ω + 2iMπ

M

)∣∣∣∣2 (2.27)

for all ω ∈ [0, π], which admits the linear phase with slope of (ℓ + ϵ0)/M . For

application to TDOA estimate, both the reference and mobile receive the same
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narrowband SOP under the same sampling frequency. Without loss of generality,

the signal at the mobile can be modeled by {αs0(k)} while the signal at the RR

by {βsϵℓ(k)} where α and β satisfying 0 < α, β ≤ 1 are some constants in order

to take the path loss of the radio signal into account. For narrowband signals,

frequency dependent fading can be ignored (which may not hold for wideband

signals). Because (α, β) affect only SNR, the relation in (2.27) will be employed

next to develop near MLE solution to TDOA estimation of which the true value of

TDOA is given by δt = (ℓ+ϵ0)TS = (ℓ+ϵ0)Ts/M for some integer ℓ and ϵ0 ∈ [0, 1).

The following provides an approximate MLE to TDOA estimation.

Theorem 3. Let {ŝ0(k)} and {ŝϵℓ(k)} be measurements of the sampled bandpass

signals {s0(k)} and {sϵℓ(k)} at the reference receiver and mobile receiver, respec-

tively. Denote Ψ0(ω), and Ψℓϵ(ω) as the power spectral density (PSD) functions

of {s0(k)} and {sϵℓ(k)}, respectively, and Ψ0,ℓϵ(ω) the cross-PSD of {s0(k)} and

{sϵℓ(k)}. Define

W (ω) =
|Ψ0,ℓϵ(ω)|

2

Ψ0(ω)Ψℓϵ(ω)− |Ψ0,ℓϵ(ω)|
2 .

Finally let Ψ̂0,ℓϵ(ω) = |Ψ̂0,ℓϵ(ω)|ejφ̂(ω) be the estimated cross PSD based on the

measured signals {ŝ0(k)} and {ŝϵℓ(k)}. Then under high SNR, approximate MLE

δ̂t
ML

for TDOA is given by

δ̂t
ML

= argmin
δt

∫ π

0

[(ω + 2iMπ)δt− φ̂(ω)]2W (ω) dω. (2.28)

Proof. By equation (44) in [66] with modification to discrete-time signals, the MLE

maximizes the real-valued cost function

J1 =

∫ π

−π

Ψ̂0,ℓϵ(ω)

|Ψ0,ℓϵ(ω)|
W (ω)e−j(ω+2iωπ)δt dω. (2.29)
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Under the high SNR assumption, there holds Ψ0,ℓϵ(ω) ≈ Ψ̂0,ℓϵ(ω) and

J1 ≈
∫ π

−π

Ψ̂0,ℓϵ(ω)

|Ψ̂0,ℓϵ(ω)|
W (ω)e−j(ω+2iωπ)δt dω

≈
∫ π

−π

cos [(ω + 2iωπ)δt− φ̂(ω)]W (ω) dω

≈
∫ π

−π

{
1− .5 [(ω + 2iωπ)δt− φ̂(ω)]2

}
W (ω) dω

where cos(x) ≈ 1− x2/2 is used. Hence maximization of J1 is equivalent to mini-

mization of

J2 =

∫ π

0

[(ω + 2iMπ)δt− φ̂(ω)]2W (ω) dω

considering that the signals are real and iω = iM is a constant dependent only on

whether M is even or odd by ω ∈ [0, π). The formula in (2.28) thus holds.

Theorem 3 shows that the MLE is approximately a WLS solution. Indeed mea-

sured signals always have a finite number of samples. As long as δt = (ℓ+ϵ0)TS <<

TD, where TD is the duration of the received signals at the RR and mobile, and is

considerably smaller than 1 second, we can regard the signal duration adequately

long. Hence with suitable windowing, FFT (fast algorithm for discrete Fourier

transform) can be employed to estimate the cross PSD. If {ωi}Li=1 is the total fre-

quency samples over the signal bandwidth, then the minimization in (2.28) can be

replaced by

Jδt(δt) =
L∑
i=1

[(ωi + 2iMπ)δt− φ̂(ωi)]
2 Ŵ (ωℓ) (2.30)

where Ŵ (ωi) is based on estimated PSDs and cross-PSD. The minimizer to Jδt(·)

can be easily computed and is an approximate MLE to TDOA. The details are

omitted.
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Remark 2. (i) The estimation error based on near MLE in Theorem 3 is approx-

imately Gaussian distributed. Indeed by (2.29),

Ψ̂0,ℓϵ(ω)

|Ψ0,ℓϵ(ω)|
≈ ejφ(ω) +O

(
2√

SNR(ω)
+

1

SNR(ω)

)

where SNR is now function of frequency and 1/SNR(ω) is linear with respect

to noise power. The proof of Theorem 3 and the first order approximation for

ln(1 + x) ≈ x yield

φ̂(ω) ≈ φ(ω) +O

(
2√

SNR(ω)
+

1

SNR(ω)

)
.

In light of Lemma 1, the above is approximately Gaussian under high SNR. We thus

have an approximate linear approximation problem in the presence of Gaussian

noise. MLE for such an estimation problem is the WLS solution as in Theorem 3,

leading to Gaussian distributed estimation error [67].

(ii) It needs to be commented that a different estimation procedure can be de-

veloped by using an interpolator illustrated in Figure 2.4 to first upsample and

filter the signals, which may generate more accurate signals at a higher sampling

frequency ΩS ≥ 2ΩH . The interpolated signals can then be used to estimate the

TDOA using the same estimation algorithm in Theorem 3. This new procedure

will increase the computational complexity considerably, especially when M is a

large integer. The resolution of the TDOA estimate is limited by the CRLB and

cannot be improved by the interpolator alone.

(iii) Although Ωs can be as low as 2(ΩH −ΩL), this is not suggested due to consid-

eration of SNR. Specifically the total signal and noise powers are fixed in practice.

If Ωs = 2(ΩH − ΩL), the total noise power is entirely distributed over the signal

bandwidth, leading to poor SNR. On the other hand, if Ωs >> 2(ΩH − ΩL), then

only a small fraction of the noise power is distributed over the signal bandwidth in
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which the TDOA is estimated. Hence large sampling frequency will result in bet-

ter SNR. For this reason, the sampling frequency is primarily limited by the data

rate of the wireless channel used to transmit the sampled signals to the computing

center. 2

2.3 Simulation Results

FM radio signals will be used in this section to illustrate our proposed position-

ing system based on narrowband signals. A typical FM receiver is shown in Figure

2.6 [68]. The received signal sFM(t) is filtered using a tunable bandpass filter whose

center frequency is adjusted by the frequency of a local oscillator. The resulting

radio-frequency signal sRF (t) is mixed with the local oscillator signal which has a

frequency equal to ωc + ωIF , where ωc is the the carrier frequency of the desired

radio station and ωIF is the fixed intermediate frequency (IF). The mixing process

produces an image of the bandpass-filtered signal centered at the IF frequency.

After passing through bandpass filters in the IF stage at ωIF , adjacent-channel

interferences are suppressed greatly [68], producing the signal sIF (t). Finally the

FM demodulator (e.g., a phase lock loop) is used to obtain the information sig-

nal m(t). Our approach employs sIF (t) implying that the demodulator can be

excluded, yielding a simpler receiver than the full FM radio.

FIGURE 2.6. General diagram of a typical FM receiver.
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In the United States, Federal Communications Commission (FCC) has estab-

lished the intermediate frequency for FM radio broadcasting as 10.7 MHz, with

a separation of 200 KHz between carrier frequencies from different stations. The

peak frequency deviation of the FM signal is 75 KHz. Moreover, a minimum dis-

tance must be observed between FM transmitters (antennas) depending on the

class of the radio station and the adjacent channels in the frequency spectrum.

In our simulation study, IF signals at four different carrier frequencies, equal to

100.7 MHz, 100.9 MHz, 101.1 MHz, and 103.3 MHz, are employed, which ensure the

200 MHz separation dictated by FCC. These four signals are from four different FM

radio stations, assumed to be transmitted from four different broadcast towers. The

positions of the four corresponding transmitter antennas of the broadcast towers

are specified by their coordinates given by

p
E1

=


0

0

0.1

 , p
E2

=


0

72

0.1

 ,

p
E3

=


72

72

0.1

 , p
E4

=


50

0

0.1


with the units in kilometer (KM). Figure 2.7 shows the positions of these four

antennas, together with the positions of the RR and MR given by

pb =


28

40

0

 , pm =


40

25

0

 .

Table 2.1 summarizes the distances in KM from the RR and MR to each FM

transmitter {Ei}4i=1:
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FIGURE 2.7. Scheme of the position of the FM transmitters, Base and Mobil.

TABLE 2.1. Distance from base/mobile to FM transmitters.

E1 E2 E3 E4

RR 48.8263 42.5207 54.4060 45.6509
MR 47.1700 61.7172 56.8569 26.9260

In accordance with Section 2, the TDOAs {δti}4i=1 are defined by δti = (dmi
−dbi)/c

with c the speed of light, and dmi
and dbi the distance from the transmitter Ei to

the mobile and RR, respectively. It follows that

δt1 = −5.521µs, δt2 = 63.988µs,

δt3 = 8.1787µs, δt4 = −62.416µs.

The bandwidth of the baseband FM signal is assumed to be equal to 15 KHz.

We used a modulating signal m(t) composed of 20 sinusoidal signals with unit

amplitude given by

m(t) = sin(2πfmaxt) +
19∑
k=1

sin(2πfkt+ φk), (2.31)
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where 0 < f1 < f2 < · · · < fmax = 15 KHz. The FM signal is then obtained as

sFM(t) = cos

(
ωct+ 2πkf

∫ t

−∞
m(τ) dτ

)
. (2.32)

By setting kf = 3000, the peak frequency deviation satisfies the FCC’s require-

ment. The frequencies {fk}19k=1 and phases {φk}19k=1 are generated randomly for

each broadcast station with uniform distributions on (0, 15KHz), and (−π, π),

respectively. The sampling frequency used at the MR and RR is taken to be 400

KHz which results in the sampling period of 2.5 µs.

In our simulation study a total of 1000 ensemble runs are carried out for each

FM signal under two different SNR values, namely 20 dB, and 10 dB. In each en-

semble run, four different FM baseband signals are generated as discussed above,

which are modulated, and transmitted. The received signals at the mobile and RR

are corrupted by independent white Gaussian noise processes, and are processed

as in Figure 2.6. After the four IF signals are received and sampled at both the RR

and mobile over the period of 10 milliseconds, the corresponding TDOAs are com-

puted and the position of the mobile is then estimated using the two approximate

MLE algorithms proposed in the previous two sections. Table 2.2 summarizes the

simulation results for TDOA estimation under SNR of 20 dB.

TABLE 2.2. Mean and variance for estimated TDOAs under SNR = 20 dB
FM Tx δti (µs) E{δ̂ti} (µs) var{δ̂ti − δti} (ns2)
E1 −5.521 −5.519 118.2
E2 63.988 63.980 1, 469.1
E3 8.179 8.175 154.9
E4 −62.416 −62.413 1, 418.2

Table 2.3 shows the statistics of the TDOA estimates for the SNR value of 10 dB,

while keeping the rest of the parameters the same as those in Table 2.2.

It is easy to see that variances of the TDOA estimation error are dominated by

δ̂ti at E2 and E4 because of the large differences between the distances of the two
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TABLE 2.3. Mean and variance for estimated TDOAs under SNR = 10 dB
FM Tx δti (µs) E{δ̂ti} (µs) var{δ̂ti − δti} (ns2)
E1 −5.521 −5.517 790.1
E2 63.988 63.980 2, 112.8
E3 8.179 8.176 878.8
E4 −62.416 −62.413 2, 110.5

towers to the RR and mobile. This phenomenon has been constantly observed by

our simulation results. After the TDOAs {δ̂ti}4i=1 are estimated, the localization

procedure in Section 2 is applied to compute the mobile position. The performance

measure of the position error is the outage curve [2] shown in Figure 2.8. It shows

that for SNR of 20 dB, the position errors are smaller than 30 meters for about

94% of the position estimations, smaller than 20 meters for about 82% of the

position estimations, and 10 meters for about 53% of the position estimations. The

performance deteriorates as SNR decreases. For SNR of 10 dB, the location errors

are smaller than 30 meters for about 86% of the position estimations, smaller than

20 meters for about 69% of the position estimations, and smaller than 10 meters

for about 32% of the position estimations. Our simulation results demonstrate the

comparable performance to many existing positioning systems, including GPS,

even though the underlying SOP have much smaller bandwidth.

37



FIGURE 2.8. Outage curve for localization accuracy averaged over 1000 emsemble runs
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Chapter 3
Localization of Nodes in Wireless Sensor
Networks

This chapter presents the localization of nodes in WSNs. Section 3.1 presents a

distributed localization approach, in which each node estimates its position based

on information from their neighbors, whose positions may not be known. In Section

3.2, the second algorithm describes the localization algorithm based on the previous

algorithm, but considering mobility capability of the nodes. Later, Section 3.3

describes a centralized localization algorithm in presence of outliers, which is also

based on theoretical approaches stated in the first algorithm.

Each Section provides analysis of the developed algorithm, as well as simulation

results.

3.1 Distributed Nodes Localization in WSN

3.1.1 Problem Formulation

Consider a network of M nodes with n blind nodes and m = M − n anchor

nodes in ℜd (d > 1). Let pi denote the (unknown) position of blind node i for i =

1, 2 · · · , n and let ai be the (known) position of the ith anchor for i = n+1, · · · ,M .

Let dij denote the distance between nodes i and j which is assumed to be known for

i, j = 1, 2, · · · ,M . The localization problem is to determine the positions {pi}ni=1

such that all the pairwise distance relations are satisfied.

It is assumed that the network is localizable and is equipped with only a few

anchor nodes 1. Moreover, the blind nodes are not required to be contained in the

1It should be pointed out that localizability of the network is not the subject of this research. Necessary and
sufficient conditions for unique localizability are derived in [69]. I would like to note that as pointed out in [69],
network localizability is not a significant issue in practice, as many applications can function properly as long as
a sufficient number of anchor nodes are available.
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convex hull of the anchor nodes, and pi ̸= pj.∀i, j = 1, . . . , n with i ̸= j, and

pi ̸= aj, ∀i = 1, . . . , n and j = n+ 1, . . . ,M .

Let Rr denote the radio range of each node and let E , {(i, j) : ∥pi − pj∥ ≤

Rr, i < j, i, j = 1, 2, · · · , n} and F , {(i, j) : ∥pi − aj∥ ≤ Rr, i = 1, 2, · · · , n, j =

n+ 1, · · · ,M} denote all pairs of sensor/sensor and sensor/anchor nodes that are

within range of each other, respectively, where ∥.∥ denotes the Euclidean norm. We

assume that the nodes are able to estimate the distances to their neighbor nodes

(e.g. using Signal Strength Indicator). The method for which the nodes estimate

the mentioned distance is out of the scope of this dissertation.

In the following we describe the problem with the relaxation methods where

spurious solutions may be introduced as a result of relaxing the constraints. In [20]

the localization problem is stated as the following non-linear optimization problem.

min
p1,··· ,pn

J(p) , 1

2

∑
(i,j)∈E

∣∣∥pi − pj∥2 − d2ij
∣∣+ 1

2

∑
(i,j)∈F

∣∣∥pi − aj∥2 − d2ij
∣∣ (3.1)

In [24] the problem in (3.1) is relaxed to obtain the following convex optimization

problem which is then solved using the second-order cone programming method.

min
p1,··· ,pn,yij

∑
(i,j)∈E

|yij − d2ij|, such that yij ≥ ||pi − pj||2, ∀ (i, j) ∈ E (3.2)

Since the unknowns {pi}ni=1 do not explicitly appear in the objective function in

(3.2), it is rather trivial to obtain a solution for (3.2) which yields a value of zero

for the objective function (simply pick n positions that are very close to each

other and let yij = d2ij for all i, j) while the constraints are satisfied with strict

inequality. Therefore, although the original problem is uniquely localizable, the

relaxed problem may not be.
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Our approach in this dissertation is based on a novel randomized gradient descent

method. Therefore we define the objective function as

F (p) , 1

2

∑
(i,j)∈E

(∥pi − pj∥ − dij)
2 +

1

2

∑
(i,j)∈F

(∥pi − aj∥ − dij)
2 (3.3)

where p =
[
pT
1 , . . . ,p

T
n

]T
and where pi is a d× 1 column vector. The optimization

problem is then formulated as

min
p
F (p) (3.4)

We note that F (p) is continuous and bounded below (F (p) ≥ 0, ∀p), and F (p) →

∞ as ∥p∥ → ∞. Furthermore, F (p) has a finite number of minima. The latter

property will be used in proving the convergence of our algorithm. Note that a

gradient-based method is not applicable to (3.1) or (3.2) since the objective func-

tions are not differentiable. As stated previously, we assume that the network is

uniquely localizable and therefore (3.4) has a unique optimal solution p∗ such that

F (p∗) = 0.

3.1.2 Proposed Algorithm

The optimization in (3.4) can be implemented using a distributed gradient de-

scent method. Denote the set of blind and anchor neighbors of blind node i by Gi,

and Hi, respectively, i.e.,

Gi , {j : ∥pi − pj∥ ≤ Rr, j ̸= i, j = 1, . . . , n} (3.5)

Hi , {j : ∥pi − aj∥ ≤ Rr, j = n+ 1, . . . ,M} . (3.6)

The component of the gradient of F (p) corresponding to position pi is given by

∇iF (p) =
∑
j∈Gi

(pi − pj)γij
∥pi − pj∥

+
∑
j∈Hi

(pi − aj)δij
∥pi − aj∥

, (3.7)

where γij , ∥pi − pj∥ − dij and δij , ∥pi − aj∥ − dij. From (3.7), we see that

∇iF (p) depends only on the information (distances and positions) from neighbors

41



of node i. For node i define the objective function

fi(p;A,B) ,
1

2

∑
j∈A

(∥pi − pj∥ − dij)
2 +

1

2

∑
j∈B

(∥pi − aj∥ − dij)
2 (3.8)

where A ⊆ Gi and B ⊆ Hi. From (3.7) and (3.8) we see that

∇ifi(p;Gi,Hi) = ∇iF (p) (3.9)

where ∇ifi(p;Gi,Hi) is the gradient of fi(p;Gi,Hi) with respect to pi. This shows

that the Gradient Descent (GD) algorithm for the objective function F (p) can be

implemented as a (synchronous) distributed algorithm. Based on the observation

in (3.9) we present the following.

3.1.2.1 Distributed Gradient Descent Algorithm

3.1.2.1.1 Algorithm 1

At each step, each blind node i solves a “local” optimization problem to minimize

the objective function fi(p,Gi,Hi) using the GD method. The kth iteration of the

algorithm is given by

p̂i(k + 1) = p̂i(k)− αk∇ifi(p̂(k);Gi,Hi), (3.10)

where αk ∈ ℜ+, p̂i(k) stands for the position of node i at iteration k of the

algorithm, and p̂(k) =
[
p̂T
1 (k), . . . , p̂

T
n (k)

]T
. Algorithm 1, defined by (3.10), stops

when a minimum of F (p) is reached, i.e., ∇iF (p̂(k)) = 0 (equivalently ∥p̂i(k +

1)− p̂i(k)∥ = 0), for all i = 1, . . . , n, for some k ≥ 0. 2

In view of (3.7) and (3.9), Algorithm 1 is the same as the GD method applied

to (3.4) and is guaranteed to converge to a minimum of (3.3) when the step sizes

{αk} satisfy the Wolfe conditions [70]. However, it should be noted that, since

F (p) is non-convex and, in the case of a large number of blind nodes, it has many
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local minima, the GD method described above may not converge to the optimal

solution p∗.

Two issues must be addressed regarding the choice of the step sizes {αk}.

1. First, the convergence rate of the GD method depends on the choice of the

step sizes {αk}. One method relies on the (exact) line search by setting

αk = argmin
α
F [p̂(k)− α∇F (p̂(k))] (3.11)

However this approach requires a great deal of computation. Barzilai and

Borwein have proposed an alternative method for the calculation of the step

size according to

α̃k =
∥p̂(k)− p̂(k − 1)∥2

(p̂(k)− p̂(k − 1))T (∇F (p̂(k))−∇F (p̂(k − 1)))
(3.12)

which guarantees convergence of the GD and does not require any line search

[71].

2. Next, The computation in (3.12) is centralized. For implementation in WSNs,

a distributed algorithm is needed where each sensor can compute its own step

size. Based on the consensus algorithm, [72, 73], and using the above result,

a distributed method is presented for step size computations in [74], which

can be used to estimate α̃k. Each node i = 1, 2, · · · , n runs the consensus

iteration using information from its neighbors according to

ρi(q + 1) , Wiiρi(q) +
∑

j∈Gi∪Hi

Wij ρj(q) (3.13)

ψi(q + 1) , Wiiψi(q) +
∑

j∈Gi∪Hi

Wij ψj(q) (3.14)
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for q = 0, 1, · · · . The initial conditions are given by

ρi(0) , ∥p̂i(k)− p̂i(k − 1)∥2 (3.15)

ψi(0) , (p̂i(k)− p̂i(k − 1))T (∇ifi(p̂(k);Gi,Hi)−∇ifi(p̂(k − 1);Gi,Hi)),

(3.16)

and

Wij ,



1
max{|Gi∪Hi|,|Gj∪Hj |} , (i, j) ∈ E ∪ F

1−
∑

k∈Gi∪Hi

Wik, i = j

0, otherwise

(3.17)

where |C| denotes the number of elements in the set C. Note that index q

refers to the iterations of the distributed consensus algorithm that needs to

be performed (to compute α̃k) once per each iteration k of the GD algorithm.

It is shown in [74] that for all i = 1, 2, · · · , n,

lim
q→∞

ρi(q)

ψi(q)
= α̃k (3.18)

3.1.2.2 Distributed Randomized Gradient Descent (DRGD) Algorithm

We now present an algorithm that allows the distributed GD algorithm to “es-

cape” from any local minimum and converge to the optimal solution p∗. We start

by describing some of the properties of the distributed Algorithm 1.

Lemma 3. Suppose that Algorithm 1 has converged to a point p̃ =
[
p̃T
1 , . . . , p̃

T
n

]T
,

i.e., ∇ifi(p̃(k),Gi,Hi) = 0 for all i = 1, 2, · · · , n. If p̃ ̸= p∗, then there exists

at least one node ℓ ∈ {1, 2, · · · , n} and two subsets of neighbors of ℓ, Aℓ ⊂ Gℓ,

Bℓ ⊂ Hℓ, such that ∇pℓ
fℓ(p̃;Aℓ, Bℓ) ̸= 0.

Proof. If there is no such ℓ, then from (3.7) and (3.9) it follows that γ̃ij = ∥p̃i −

p̃j∥ − dij = 0 for i, j = 1, 2, · · · , n (i ̸= j) and δ̃ij = ∥p̃i − aj∥ − dij = 0 for all

i = 1, 2, · · · , n and j = n + 1, n + 2, · · · ,M . This implies that p̃ is a solution
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to the optimization problem in (3.4) which contradicts the assumption that p∗ is

unique.

Remark 3. Note that if Lemma 3 holds for a node ℓ, then there exists a node

s ∈ Gℓ∪Hℓ such that ∇ℓfℓ(p̃;Gℓ−{s},Hℓ−{s}) ̸= 0. Therefore if node ℓ removes

s from its set of neighbors and restarts the GD iteration,

p̂ℓ(k + 1) = p̃ℓ(k)− λ∇pℓ
fℓ(p̃(k);Gℓ − {s},Hℓ − {s}), (3.19)

where λ > 0, then p̂ℓ(k + 1) ̸= p̃ℓ(k). We will use this property to enable the

algorithm to scape from the local minima of F (p). 2

Lemma 4. Suppose that Algorithm 1 has converged to the unique optimal solu-

tion p∗. Then for any ℓ = 1, 2, · · · , n and any subsets Aℓ ⊂ Gℓ and Bℓ ⊂ Hℓ,

∇ℓfℓ(p
∗;Aℓ, Bℓ) = 0.

Proof. We have F (p∗) = 0, implying that γij = ∥p∗
i − p∗

j∥ − dij = 0, for all

i, j = 1, 2, · · · , n (i ̸= j) and δij = ∥p∗
i − aj∥ − dij = 0 for i = 1, 2, · · · , n and

j = n+ 1, n+ 2, · · · ,M . The result follows from differentiating (3.8).

The following definition is used in our subsequent discussion.

Definition 1. Consider the function F : ℜnd −→ ℜ in (3.3) and let x0 ∈ ℜnd

denote a (local) minimum of F (.). A basin of attraction of x0 is the set of points

x ∈ ℜnd such that using x as the initial position for Algorithm 1 leads to the same

minimum x0.

Let M ⊂ ℜnd denote the set of minima of F (p). Since, as mentioned previously,

F (p) has a finite number of minima, M is finite. Let M = {x1,x2, · · · ,xL,p
∗}

where xj, j = 1, 2, · · · , L are the local minima of F (p) and, as before, p∗ is the

unique global minimum. Also denote the attraction basin of xj by Uj, and for
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i = 1, 2, · · · , n let xj,i denote the component of xj corresponding to the ith node,

i.e., xj = [xT
j,1,x

T
j,2, · · · ,xT

j,n]
T . Based on Lemmas 3 and 4, we propose the following

algorithm.

3.1.2.2.1 Algorithm 2

We start with some initial position vector p̂(0) =
[
p̂T
1 (0), p̂

T
2 (0), . . . , p̂

T
n (0)

]T
,

where p̂i(0) is the initial position of the ith blind node. Using Algorithm 1, the

nodes compute a (possibly local) minimum of F (.) corresponding to the attraction

basin in which the initial point p̂(0) resides. Denote this minimum by p(1) =

[pT
1 (1),p

T
2 (1), · · · ,pT

n (1)]
T . Note that p(1) ∈ M. At this point each node i =

1, 2, · · · , n selects a proper subset of its neighbors, namely Ai(1) ⊂ Gi and Bi(1) ⊂

Hi, at random and computes a new initial position vector p̂i(1) according to

p̂i(1) = pi(1)− Λi(1)∇ifi(p(1);Ai(1), Bi(1)), (3.20)

where Λi(1), i = 1, 2, . . . , n are chosen randomly. Using Algorithm 1, the nodes

compute a new (local) minimum p(2) = [pT
1 (2),p

T
2 (2), · · · ,pT

n (2)]
T with each node

i using p̂i(1) as its initial position vector, and continue. The kth iteration of the

algorithm uses the initial position vector p̂(k − 1) and Algorithm 1 to compute a

(possibly local) minimum p(k). From this minimum the next initial position vector

p̂(k) is computed for Algorithm 1 according to the following.

p̂i(k) = pi(k)− Λi(k)∇ifi(p(k);Ai(k), Bi(k)). (3.21)

We assume that the constants Λi(k) are selected from a Gaussian distribution with

zero mean and unit variance2. Furthermore, the sequences of {Λi(k)} form a col-

2The selection of Gaussian distribution ensures that, with a positive probability, the constants Λi(k) can assume
arbitrarily large values. This on the other hand ensures that (with a positive probability) the algorithm will be
able to escape from any local minimum. We should point out that any distribution with an infinite support such
as Laplacian or exponential can also be used here.
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lection of n independent processes, each of which is an independent and identically

distributed (iid) process.

Algorithm 2 produces a random sequence of position vectors. In particular if we

only consider the points of convergence of Algorithm 1, i.e., {p(k)}, then a random

sequence of the minima of F (.) is observed.

For k = 1, 2, . . . let Yk = p(k). Then {Yk} forms a random process with state

space M. Lemma 5 is used in our proof of convergence of Algorithm 2.

Lemma 5. For any xj ∈ M, and any k = 1, 2, · · · ,

P (Yk+1 ̸= xj|Yk = xj) > 0 (3.22)

Proof. Suppose at time k the process is in state xj, i.e., Yk = xj. At this point

each node i computes a new position p̂i(k) according to (3.21) resulting in a new

position vector p̂(k) = [p̂T
1 (k), p̂

T
2 (k), · · · , p̂T

n (k)]
T for the entire network. In view of

Lemma 3 and given the finite number of nodes in the network, there is a positive

probability that for some node ℓ, the subsets Aℓ(k), Bℓ(k) are chosen such that

∇ℓfℓ(p(k);Aℓ(k), Bℓ(k)) ̸= 0. Now since Λℓ(k) is a Gaussian random variable,

it follows from (3.21) that p̂ℓ(k) ̸= xj,ℓ. Therefore, p̂(k) ̸= xj. Now if the new

position vector p̂(k) is still in the basin of attraction of xj, i.e., p̂(k) ∈ Uj, then

Algorithm 1 will again converge to xj, i.e., Yk+1 = xj. However, there is also a

positive probability that p̂(k) /∈ Uj. In particular, let ξj denote the width of the

basin of attraction of xj defined by

ξj = sup{∥g − h∥ : g,h ∈ Uj} (3.23)

Now since Λℓ(k) is a Gaussian random variable, it follows that

νℓ , P
[
Λℓ(k)∇ℓfℓ(p(k);Aℓ(k), Bℓ(k)) > ξj

]
> 0
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Therefore, it follows that P (p̂(k) /∈ Uj) ≥ νℓ > 0. Consequently Algorithm 1 which

is now initialized with p̂(k) /∈ Uj, will converge to some x ∈ M where x ̸= xj.

This verifies (3.22).

We have summarized Algorithm 2 in Table 3.1 which appears after a discussion

of implementation issues in Section 3.1.2.4.

Given that the processes {Λi(k)} are iid, and that at each step the subsets

{(Ai(k), Bi(k))}ni=1 are chosen independently of the past shows that {Yk} is a

Markov chain, i.e.

P (Yk+1 = yk+1|Yl, l < k, Yk = yk) = P (Yk+1 = yk+1|Yk = yk), yk,yk+1 ∈ M

(3.24)

Lemmas 3 and 4 imply that xj, j = 1, 2, · · · , L, are transient states and p∗ is an

absorbing state for {Yk}. Now since L <∞, we conclude that with probability one

the process will enter the absorbing state p∗, i.e.,

P ( lim
r→∞

Yr = p∗) = 1 (3.25)

We summarize the discussion above in the following

Theorem 4. In the absence of measurement noise, with probability one Algorithm

2 converges to the optimal solution p∗.

Remark 4. We should point out that as long as each node has at least d + 2

neighbors, the convergence of the proposed method is not affected by the connectivity

of the network (the number of neighbors for each node). The d + 2 neighbors are

required due to the fact that at least d+1 nodes are needed to uniquely localize each

node. Furthermore, since we eliminate at least one neighbor in order to “escape” a

local minimum, then d+2 neighbors are required for each node. However, a higher

network connectivity results in improved convergence rate. This is due the fact that
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there are more subsets Ai(k) ⊂ Gi and Bi(k) ⊂ Hi to choose in order to escape a

local minimum.

3.1.2.3 Upper Bound for Cost Function under Noisy Distance
Measurements

We assume that the distance measurements {dij} in (1) are expressed as follows:

dij = d̂ij|1 + ϵij|, (3.26)

where {d̂ij} are the true distances between the nodes, and the ϵij’s represent mea-

surement errors which, as in [20, 21], are modeled as iid Gaussian random variables

with zero mean and known variance σ2.

Theorem 5. Let F (p) denote the cost function defined in (3.3) where the distances

{dij} are given by (3.26). Define

v∗ = min
p
F (p). (3.27)

Then

0 ≤ E(v∗) ≤ 1

2

(
σ2 + 2e−

1
2σ2

) ∑
(i,j)∈E∪F

d̂2ij (3.28)

Proof.

F (p) =
1

2

∑
(i,j)∈E

(∥pi − pj∥ − dij)
2 +

1

2

∑
(i,j)∈F

(∥pi − aj∥ − dij)
2

=
1

2

∑
(i,j)∈E

(
∥pi − pj∥ − d̂ij|1 + ϵij|

)2
+

1

2

∑
(i,j)∈F

(
∥pi − aj∥ − d̂ij|1 + ϵij|

)2
=

1

2

∑
(i,j)∈E

(
∥pi − pj∥2 + d̂2ij(1 + 2ϵij + ϵ2ij)− 2 ∥pi − pj∥ d̂ij|1 + ϵij|

)
(3.29)

+
1

2

∑
(i,j)∈F

(
∥pi − aj∥2 + d̂2ij(1 + 2ϵij + ϵ2ij)− 2 ∥pi − aj∥ d̂ij|1 + ϵij|

)
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It follows that

0 ≤ v∗ = min
p
F (p) ≤ 1

2

∑
(i,j)∈E∪F

d̂2ij(2 + 2ϵij + ϵ2ij − 2|1 + ϵij|) (3.30)

Let q(x) denote the probability density function of ϵi,j ∼ N (0, σ2). Taking ex-

pectation in (3.30) and after some manipulations we get

0 ≤ E[v∗] ≤ 1

2

∑
(i,j)∈E∪F

d̂2ij(2 + E[ϵ2ij]− 2E[|1 + ϵij|])

=
1

2

∑
(i,j)∈E∪F

d̂2ij

[
2 + σ2 − 2

(∫ ∞

−1

(1 + x)q(x) dx−
∫ −1

−∞
(1 + x)q(x) dx

)]

=
1

2

∑
(i,j)∈E∪F

d̂2ij

(
σ2 + 4Q(

1

σ
)− 2σ

√
2

π
e−

1
2σ2

)

≤ 1

2

(
σ2 + 2e−

1
2σ2

) ∑
(i,j)∈E∪F

d̂2ij (3.31)

where we have used the fact that Q(x) , 1√
2π

∫∞
x
e−u2/2 du ≤ 1

2
e−x2/2 for x ≥ 0.

Denoting the number of links in the network by L = |E ∪ F|, and noting that

d̂ij ≤ Rr, (3.31) implies that

0 ≤ E[v∗] ≤ 1

2

(
σ2 + 2e−

1
2σ2

)
LR2

r . (3.32)

In the case of noisy distance measurements, the minimum of the cost function

F (p) may not be zero. More importantly, the minimum may not be known. Thus

Eq. (3.32) provides an upper bound on the minimum of the cost function F (p)

which can be used in a stopping criterion for Algorithm 2.

Remark 5. In the presence of noisy measurements the network may not be local-

izable. One possibility is that the minimizing solution p∗ such that F (p∗) = 0 is

not unique. In this case all such solutions are absorbing states of the Markov chain
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{Yk} described in Section Distributed Randomized Gradient Descent (DRGD) Al-

gorithm. Therefore Algorithm 2 will converge to one of these solutions. Another

possibility is that a solution p∗ such that F (p∗) = 0 does not exist. In this case

all the local minima of F (p) are positive recurrent states of the Markov chain.

Therefore all these minima will be visited by Algorithm 2 and the global minimum

among them can be selected. Therefore even in the presence of noisy measurements

the proposed algorithm is guaranteed to converge to the minimum of the cost func-

tion F (p). We should also point out that, as indicated in next Section Simulation

Results, in all of our simulations, Algorithm 2 always converged where the cost

function F (p) was below the threshold in (3.32).

3.1.2.4 Implementation Considerations

A practical question often not discussed explicitly is how should the sensor nodes

realize that a (local) minimum of F (p) has been reached. For this a distributed

stopping criterion is required. Two such criteria are needed in Algorithm 2. One is

to determine that a local minimum of F (p) has been reached by Algorithm 1, and

next is to determine that the global minimum of F (p) is reached. The distributed

consensus algorithm in [73] can be used in both cases. This algorithm allows the

nodes to compute the average of their individual costs using a recursive procedure.

Denote the cost of node i by ui. Node i computes the sequence {zi(q)} as follows,

zi(q + 1) = zi(q) + µ
∑
j∈Gi

(zj(q)− zi(q)), (3.33)

where zi(0) = ui for i ∈ {1, . . . , n}. It is shown that for an appropriate choice of

µ, lim
q→∞

zi(q) =
1

n

n∑
ℓ=1

uℓ, for all i ∈ {1, . . . , n} [75].

We note that a local minimum is reached by Algorithm 1 when ∥p̂i(k + 1) −

p̂i(k)∥ = 0, ∀i = 1, . . . , n and ∀k ≥ k0, for some k0. Thus, setting zi(0) = ∥p̂i(k)−

p̂i(k−1)∥ and running the recursive procedure in (3.33), each node i can determine
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that a local minimum of F (p) has been reached when zi(q) ≤ ς, for some small ς

and all i = 1, . . . , n.

To determine that Algorithm 2 has reached the optimal solution p∗ such that

F (p∗) = 0, we note that

F (p̂(k)) =
1

2
MC(k), (3.34)

where C(k) = 1
M

M∑
i=1

fi(p̂(k),Gi,Hi), which includes the costs at both blind and

anchor nodes. Thus each node i sets zi(0) = fi(p̂(k),Gi,Hi) and runs the recursion

in (3.33). Node i determines that the optimal solution has been reached when

zi(q) ≤ η, for some small η.

Finally, if the area of deployment of the network is known, the time to conver-

gence of our algorithm can be improved. Let ΩF be the bounded region where the

nodes are deployed. In order to reduce the time to convergence, equation (3.21)

can be followed by:

p̂i(k + 1) =

 p̂i(k), if p̂i(k + 1) /∈ ΩF

p̂i(k + 1), otherwise
(3.35)

Another important consideration is related to eq. 3.7. Consider the node i. In

case that during the optimization algorithm described in Algorithm 2 the positions

pi(k) = pj(k), j ∈ Gi, or pi(k) = aj(k), j ∈ Hi, then the gradient defined in 3.7 is

undefined, and similar situation occurs with 3.9 and later defined gradients. Due

to pi ̸= pj, ∀i, j = 1, . . . , n, and pi ̸= aj, i, j = 1, . . . ,M , then in case that the

mentioned undesired situation occurs we can deviate any of the mentioned positions

in order to avoid such situation and continue with the optimization algorithm.

3.1.3 Simulation Results

In this section we present the results of the proposed localization algorithm

DRGD for several network configurations and compare our results with those from
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TABLE 3.1. Summary of Algorithm 2.

1- Initialization
Choose initial position p̂(0)
Set k = 0

2- Algorithm 1
Set l = 0
Set p̃(0) = p̂(k).
Do

Estimate global α̃l via (3.13)-(3.17)
∀i ∈ {1, . . . , n}, do:

p̃i(l + 1) = p̃i(l)− α̃l∇ifi(p̃(l);Gi,Hi)
l = l + 1

While (∥p̃(l)− p̃(l − 1)∥ > ι)
k = k + 1
p(k) = p̃(l)

3- Escaping the Local Minima
∀i ∈ {1, . . . , n}, randomly choose Λi(k), Ai(k) ⊂ Gi, Bi(k) ⊂ Hi

∀i ∈ {1, . . . , n}, do:
p̂i(k) = pi(k)− Λi(k)∇ifi(p(k);Ai(k), Bi(k))

4- Go step 2

SDP in [20] (which, as mentioned previously, is a centralized algorithm) and those

from SOCP in [24] and SA in [76] (which are distributed algorithms). We were

unable to obtain the parameters used in the localization algorithm described in

Figure 2 in [76]. The parameters we have used in the following simulations are

T = 1, 000, α = 0.75, β = 0.9, q = 2 and p = 20. (Please see [76] for the definitions

of these parameters.)

In all the examples the networks are assumed to be deployed in the plane with

pi = [xi, yi]
T ∈ ℜ2 and satisfy the criteria for localizability discussed in [16]. Also,

we assume that the nodes have the capability to estimate the distances to their

neighbors. In the figures that follow the position of the anchors is shown by black

squares. The true position of the blind nodes is shown with a blue circle. The red

circles indicate the initial or estimated positions of the blind nodes. The simulations

were carried out on a PC with a 2.2 GHz Intel Core 2 Duo and 3 GB RAM running
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Matlab R2009a. Following the implementation considerations described in Section

3.1.2.4, for the proposed algorithm DRGD the value of η was chosen to be 60%

of the upper bound in (3.32). We would like to note that, since our algorithm is

guaranteed to converge, for smaller values of η, the localization error of DRGD

will be smaller. However, the algorithm will take longer to converge.

Figure 3.1 shows a comparison of the performance of DRGD vs. SOCP, SDP and

SA. Distance measurements {dij} were considered to be error-free. Figure 3.1-(a)

shows the topology of the network. The communication radio range of the nodes

is assumed to be Rr = 1.8 units. With this radio range the blue links represent the

adjacency of the nodes. The initial position of the nodes were chosen randomly and

are shown in Figure 3.1-(b), where the black links represent the error between the

true position and the initial positions. The estimated position using SOCP, SDP,

SA and DRGD are shown in Figures 3.1-(c), 3.1-(d), 3.1-(e) and 3.1-(f), respec-

tively. From the results in Figure 3.1 we observe that the performance of DRGD

is comparable to the one obtained from SDP, which, as mentioned previously, is a

centralized algorithm. On the other hand the performances of SOCP and SA are

poor. Furthermore, it can be seen from this example as well as other simulations

in the following that, in the case of SOCP, the estimated positions of the blind

nodes are contained in the convex hull of the anchors. This is clearly undesirable

as it requires that a large number of anchors be deployed in the periphery of the

sensor field. Furthermore, as the simulation results below show even in such cases

the performance of SOCP is not satisfactory.

We now consider the performance of the algorithms in the presence of measure-

ment errors using the networks whose topologies are shown in Figures 3.2-(a) and

3.3-(a). The network in Figure 3.2-(a) has 6 anchor nodes and 33 blind nodes while

the network in Figure 3.3-(a) has 7 anchor nodes and 85 blind nodes. The radio
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FIGURE 3.1. (a) The Network topology. (b) Initial positions for the localization al-
gorithms. (c) Localization results using relaxation and SOCP. (d) Localization results
using SDP. (e) Localization results using SA. (f) Localization results using the proposed
DRGD.

range of the networks in Figures 3.2 and 3.3 are Rr = .7 and Rr = 2 and the

standard deviation σ for ϵij are equal to 0.05 and 0.1, respectively. Figures 3.2-(b)

and 3.3-(b) show the estimated position of the nodes using SOCP. Figures 3.2-(c)

and 3.3-(c) show the estimated position of the nodes using [20] and Figures 3.2-(d)

and 3.3-(d) show the estimated position of the nodes using [76]. Finally Figures

3.2-(e) and 3.3-(e) show the estimated position of the nodes using the proposed

algorithm DRGD. From the localization results, it is again evident that the per-

formance of DRGD is comparable to SDP while the performance of SOCP and SA

is not acceptable.

In Figures 3.4 and 3.5 we compare the performance of the four algorithms for

20 different networks. The networks in Figure 3.4 were generated randomly with a

topology similar to that in Figure 3.2 with the same number of blind and anchor

nodes and the same values for radio range Rr and standard deviation for measure-

ment error σ. The networks in Figure 3.5 have characteristics similar to the network
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FIGURE 3.2. (a) The Network topology. (b) Localization results using relaxation and
SOCP. (c) Localization results using SDP. (d) Localization results using SA. (e) Local-
ization results using the proposed DRGD.

in Figure 3.3. In these figures we have plotted the normalized root-mean-squared

error (RMSE) defined as

E ,

√√√√ 1

n

n∑
i=1

∥p∗
i − p̂i∥2

R2
r

, (3.36)

for each of the 20 networks, where p∗
i and p̂i are the true and the estimated position

of node i. For reference, the RMSE of DRGD in Figures 3.2 and 3.3 is 0.0639 and

0.0949, respectively. It can be seen that DRGD significantly outperforms SOCP

and SA in all the cases and its performance is close to or in many cases better

than SDP.

In order to verify the effect of the position and the number of anchor nodes on

the efficacy of the localization algorithms we consider four cases in Figures 3.6-3.9

where the network of blind nodes is the same but the number and the location

of the anchors is varied. The distance measurements are assumed to be error-free.

Figure 3.6 shows the localization performance of the four algorithms for the case
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FIGURE 3.3. (a) The Network topology. (b) Localization results using relaxation and
SOCP. (c) Localization results using SDP. (d) Localization results using SA. (e) Local-
ization results using the proposed DRGD.

of five anchors deployed such that all the blind nodes are located in the convex

hull of the anchors. It can be seen that the performance of SOCP and SA improves

with respect to previous cases such as in Figure 3.1. In Figure 3.7 there are 10

anchors but are randomly deployed. A comparison of the results in Figures 3.6

and 3.7 shows that, in the case of SOCP and SA, the localization error for the

nodes on the boundary of the network (not in the convex hull of the anchors)

increases significantly even though the number of anchors has increased from five

to ten. In Figures 3.8 and 3.9 we have further increased the number of anchors but

ensured that some anchors are placed close to the boundary of the sensor field. The

placement of the anchors in these figures is intended to ensure good performance

from SOCP and SA. It can be observed that in fact the performance of SOCP

and SA improves. However, even in these cases, the proposed DRGD outperforms

these two algorithms.
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FIGURE 3.4. RMSE for the localization of 20 networks with similar characteristics to
Figure 3.2-(a) using SOCP, SDP, SA and DRGD.

3.1.3.1 Computational Complexity

Due to the complexity of the cost function F (p) and the high dimension of

p, it is difficult to determine the number of minima of F (p) and the geometry

of their attraction basins. This implies that the number of states of the Markov

chain {Yk} and its transition probability matrix are very difficult to compute.

Therefore, an analysis of the convergence rate for the proposed DRGD algorithm

is mathematically intractable.

In order to compare the complexity of DRGD with the two distributed localiza-

tion algorithms SOCP and SA we have computed the average CPU time of each

algorithm when run for 50 simulations on networks of Figures 3.6-3.9. The results

are shown in Table 3.2. Before we discuss the results we need to point out an impor-

tant issue. As mentioned previously in Section Implementation Considerations, in

a truly distributed localization algorithm, a distributed algorithm such as the con-

58



FIGURE 3.5. RMSE for the localization of 20 networks with similar characteristics to
Figure 3.3-(a) using SOCP, SDP, SA and DRGD.

sensus algorithm of Section Implementation Considerations is also needed so that

the sensor nodes can determine that the localization algorithm has converged. The

implementations of SOCP and SA do not include such a distributed algorithm.

The iterations in the localization algorithms in SOCP and SA are stopped in a

centralized manner by checking the vector of positions from all the sensors. In

the execution times shown in Table 3.2 the time for DRGD includes the time of

the consensus algorithm while SOCP and SA do not include this time. If such a

distributed convergence criteria is included for SOCP and SA, their convergence

time will be increased from those in Table 3.2. It can be seen from the results in

Table 3.2 that DRGD has significantly shorter convergence time than SOCP and

SA in all the cases.

Another issue that we should point out is that both SOCP and SDP rely on a

complex software package, namely the SeDuMi optimization package. For low cost

sensor nodes with limited memory and computational resources, implementation
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FIGURE 3.6. (a) The Network topology. (b) Localization results using relaxation and
SOCP. (c) Localization results using SDP. (d) Localization results using SA. (e) Local-
ization results using the proposed DRGD.

TABLE 3.2. Average CPU execution time (in seconds) for localization using SOCP, SA
and DRGD.

Net. Figure 3.6 Net. Figure 3.7 Net. Figure 3.8 Net. Figure 3.9
SOCP 173.052 139.418 108.483 135.815
SA 68.0944 80.044 90.3714 114.5671

DRGD 6.683 37.958 9.832 9.892

of such an optimization tool may be not be feasible. The proposed localization

algorithm does not require complex computations since it is based on the gradient

descent algorithm.

Finally, Figure 3.10 shows the CPU execution time-to-convergence vs. the num-

ber of anchors using DRGD. The parameters of the network are the same as those

considered in Table 3.2. A significant drop in time-to-convergence is observed as

the number of anchors is increased from 5 to 20 after which the time remains

almost constant.
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FIGURE 3.7. (a) The Network topology. (b) Localization results using relaxation and
SOCP. (c) Localization results using SDP. (d) Localization results using SA. (e) Local-
ization results using the proposed DRGD.

3.2 Distributed Mobile Nodes Localization in

WSN

We now consider localization of nodes in a mobile WSN using the DRGD al-

gorithm. Without loss of generality, we assume that pi ∈ ℜ2,∀i ∈ {1, . . . ,M}.

Assume that we desire to determine the position of the nodes every T s, denoted

as the position sampling period (PSP). It is easy for a sensor node to determine

whether during a PSP it has moved or not, for instance by using an accelerometer.

Therefore, during each PSP, only the nodes that have moved need to compute their

new positions and the stationary nodes can act as anchor nodes. In the following

we only need to consider a single PSP and denote by NM ⊆ {1, 2, · · · , n} the set

of blind nodes in the network that have traveled during this PSP. We next describe

the so-called random walk mobility model for the nodes [77]. We should, however,

point out that although in this section we present a modification of DRGD and
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FIGURE 3.8. (a) The Network topology. (b) Localization results using relaxation and
SOCP. (c) Localization results using SDP. (d) Localization results using SA. (e) Local-
ization results using the proposed DRGD.

the subsequent simulation results for this model, DRGD can be easily tailored to,

and is equally effective for any mobility model.

3.2.1 Mobility Model

We consider a maximum velocity of Vmax for all the nodes. Therefore in a single

PSP, the maximum distance a node can travel is Lmax = VmaxT . We assume that

the distance, L, traveled by any node during a single PSP is uniformly distributed

in the interval [0, Lmax].

Let pi[wT ] denote the position of node i at time wT , w = 1, 2, . . .3. Let ζi(w)

denote the angle of the vector pi[wT ]− pi[(w − 1)T ] with the x-axis. We assume

that the direction of travel for node i at time wT is given by the unit vector

u(wT ) = [cos(θ), sin(θ)], where θ is uniformly distributed in the interval [ζi(w)−

3Note that here and in the sequel, when brackets [.] are used, we are referring to the positions of the nodes
at PSPs, e.g., pj [wT ] is the position of node j at PSP wT . On the other hand, as before, when parentheses (.)
are used, we are referring to the positions evaluated during the iterations of Algorithm 2, e.g., p̃j(k) refers to the
estimated position in the kth step of Algorithm 2 in Table 3.1.
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FIGURE 3.9. (a) The Network topology. (b) Localization results using relaxation and
SOCP. (c) Localization results using SDP. (d) Localization results using SA. (e) Local-
ization results using the proposed DRGD.

θmax, ζi(w)+ θmax], and where θmax ∈ [0, π). This implies that the position of node

i at time (w + 1)T is given by

pi[(w + 1)T ] =

 pi[wT ] , i /∈ NM

pi[wT ] + Lu(wT ) , i ∈ NM

(3.37)

The mobility model described above is often referred to as the random walk model

[77], and for small values of T , where the traveled distance L is small compared to

the dimensions of the sensor field, it is a good model.

3.2.2 Modification of DRGD for Mobile Sensors

With the mobility model of Section of Mobility Model, we modify DRGD (in

Table 3.1) as follows. Note that the algorithm is now only run for the nodes in the

set NM with all the other nodes treated as anchors. Suppose we wish to compute

the new positions of the nodes j ∈ NM at time wT . Denote by p̃j[(w − 1)T ] the

position that DRGD has evaluated for node j at time (w − 1)T . The algorithm
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FIGURE 3.10. CPU execution time-to-convergence vs. the number of anchors using
DRGD.

stores the last two positions, namely p̃j[(w − 1)T ] and p̃j[(w − 2)T ] that it has

evaluated for each node j. DRGD now computes the unit vector

ûj((w − 1)T ) =
p̃j[(w − 1)T ]− p̃j[(w − 2)T ]

∥p̃j[(w − 1)T ]− p̃j[(w − 2)T ]∥
(3.38)

which represents an estimate of the direction of travel of node j in the interval

[(w−2)T , (w−1)T ]. To estimate the new positions p̃j[wT ], j ∈ NM, at time wT ,

the initial positions p̂j(0) in Table 3.1 are set as follows.

p̂j(0) = p̃j[(w − 1)T ] + 0.5Lmaxû((w − 1)T ) (3.39)

In other words, using the two previously estimated positions for each node and

the mobility model, an estimate of the current position is computed from (3.39)

and used as the initial setting for Algorithm 2. The algorithm is now run until

convergence is achieved. Figure 3.11 shows the mobility model and the initial

position of node j given by (3.39). If the estimated positions p̃j[(w − 1)T ] and
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p̃j[(w− 2)T ] are the true positions of node j, then the shaded area represents the

set of possible positions of node j at wT .

FIGURE 3.11. Depiction of the mobility model and the initial position assumed in Table
3.1 for the blind nodes.

In order to improve the convergence rate of DRDG, Eq. (3.35) is used within

each iteration of Algorithm 2.

In the case of error-free measurements ΩF can be chosen as the shaded area in

Figure 3.11. This is justified by the fact that in this case the positions estimated

by DRGD converge to the true positions of the nodes. Therefore, in view of our

mobility model, it is guaranteed that at time wT , node j is located in the shaded

area. In case the measurements are not error-free, the shaded area must be enlarged,

according to the variance of the measurement errors, to ensure that it includes the

true position of the nodes.

3.2.3 Simulation Results

Simulation results are obtained for the network depicted in Figure 3.12 which

consists of 50 blind nodes and 6 anchor nodes.The large number of nodes ensures

that, as the nodes travel, the network remains globally rigid (uniquely localizable)

and that the nodes have at least four neighbors to enable localization using DRGD.

The radio range of the nodes is assumed to be Rr = 0.7 and the distance measure-

ments are assumed to be error-free. We assume that all the blind nodes are mobile
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and each node travels a total of 15 PSPs during the simulations. The anchors are

assumed to be stationary.

FIGURE 3.12. Topology of the network with the initial position of the blind and anchor
nodes.

Figures 3.13 and 3.14 show a one-step movement of the blind nodes, where

T = 1 and θmax = π/2. For Figure 3.13 we set Vmax = 0.1 and for Figure 3.14,

Vmax = 0.7. The actual starting and final positions of the nodes are shown by

circles and squares, respectively. The cross shows the initial position assumed for

each node according to (3.39) and + shows the estimated position. It can be seen

that in both cases the algorithm converges to the correct position of the nodes.

Figures 3.15-a and 3.15-b show the trajectories of nodes 1 − 25 and 26 − 50,

respectively, for 15 PSPs for Vmax = 0.1. The actual positions of the nodes are

shown in blue circles while the estimated positions using the modified DRGD

(with (3.35) and (3.39)) are shown as red crosses. Figure 3.16 shows the same results

(3.16-a for nodes 1−13, 3.16-b for nodes 14−26, 3.16-c for nodes 27−38, 3.16-d for
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nodes 39−50) for Vmax = 0.7. It can be seen that the algorithm accurately localizes

all the mobile nodes in both cases. To provide a concrete example, consider a

network deployed outdoors with the sensors having a radio range of 70 meters. Since

for this example Rr was chosen to be 0.7 units, this implies that a unit corresponds

to 100 meters. Therefore Vmax = 0.1 corresponds to a maximum velocity of 10 m/s

or 36 km/h. On the other hand, Vmax = 0.7, chosen in Figure 3.14, corresponds to

a maximum velocity of 70 m/s or 252 km/h. Although this velocity is too high for

most applications, it is chosen to show the efficacy of the proposed algorithm in

localizing mobile WSNs as verified by the results in Figures 3.13-3.16.

FIGURE 3.13. One-step movement of the blind nodes. Actual starting and final positions
are shown by circles and squares, respectively, along with the initial position (cross)
assumed for each node according to (3.39) and the final estimated position from the
algorithm (+ sign) for Vmax = 0.1.

Remark 6. Our simulation results verify that the proposed algorithm is very effi-

cient in localizing mobile sensors. This is not surprising given the structure of the

proposed algorithm. Suppose the network has been localized in its starting position.

67



FIGURE 3.14. One-step movement of the blind nodes. Actual starting and final positions
are shown by circles and squares, respectively, along with the initial position (cross)
assumed for each node according to (3.39) and the final estimated position from the
algorithm (+ sign) for Vmax = 0.7.

Now if the distance traveled by the nodes during the next PSP is small, it is likely

that the next position vector resides in the attraction basin of the starting position.

Therefore in this case, the gradient descent algorithm converges quickly and the

new positions of the nodes are obtained. As the nodes travel, in some cases the

new position vector does not belong to the attraction basin of the previous position.

However, even in this case the algorithm converges quickly due to the fact that the

next position of each node is contained in the small shaded area in Figure 3.11 and

a good initial position vector is selected for the algorithm.

3.3 Centralized Node Localization in WSN

with Outlier Communication Links

Due to interference or unreliable methods for distance measurement (for exam-

ple using Receive Signal Strength (RSS) [44, 78]), the distances {dij} may not
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FIGURE 3.15. Trajectories of the blind nodes (blue circles) and the estimated trajectories
(red crosses) using the modified DRGD algorithm, Vmax = 0.1.

correspond to the exact distance between nodes, or they may not be close to {d̂ij}

following certain distribution as stated in (3.26). Therefore, these measurements

can be considered as outliers.

Now, we consider a centralized localization algorithm of nodes in WSNs in pres-

ence of outlier communication links. We follow the same notation used in Section

3.1.

It is assumed that each node is capable of estimating its distance to any of its

neighbors. For example each node i, using a known transmit power sends a signal

to all its neighbors in the set Gi

∪
Hi. The neighbors can measure the RSS and

using the appropriate channel path loss model estimate their distances to node i.

In order to localize the blind the sensor nodes, all the sensors transmit their

distances to their neighbors to a Fusion Center (FC) which implements the local-

ization algorithm. Let dij = ∥pi − pj∥ denote the distance between nodes i and j,

for i, j = 1, 2, · · · ,M . Note, however that, dij may be equal to the true distance

between the nodes i and j, or it may it be an outlier or a falsified value. It is
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assumed that if node i is falsifying its distance di,j to its neighbor j, then it also

ensures that dj,i = di,j so that the FC cannot detect the falsification by comparing

the two distances reported by i and j.

The FC uses the received distance profile {di,j} along with the position of the

anchor nodes (which is assumed to be known at the FC) to estimate the position of

all the blind nodes. In the absence of distance spoofing or outliers, the localization

problem is to determine the positions {pi}ni=1 such that all the pairwise distance

relations are satisfied. In the next section we present a localization algorithm which

is robust to distance outliers/spoofing.

The implementation of distributed localization in presence of outlier distances

is possible, and very similar to the algorithm described in Section 3.1. The main

concern about this implementation is the time at which the distributed algorithm

converges, which may increase considerably. This increasing localization time is due

to the fact that we need to include the use of consensus algorithm for a distributed

localization. Additionally, we need to consider the extra information shared by the

nodes (such the reliability weights), and algorithms to reach a consensus about

their values.

We define the following cost function:

F (p, {wij}(i,j)∈E∪F) = 1
2

∑
(i,j)∈E

ω2
ij (∥pi − pj∥ − dij)

2

+1
2

∑
(i,j)∈F

ω2
ij (∥pi − aj∥ − dij)

2 ,
(3.40)

where p =
[
pT
1 , . . . ,p

T
n

]T
, and ωij is the weight associated with the distance di,j

(edge (i, j)).In order to deal with the uncertainties of the distance profile, we

associate with each reported distance di,j, (i, j) ∈ E∪ ∈ F , a positive weight

ωij ∈ [0, 1]. ωij = 0 implies that the distance di,j is completely unreliable. In this

case the term corresponding to di,j as well as the positions pi,pj are eliminated
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from the cost function. Ont he other hand ωij = 1 implies that the distance di,j is

completely reliable. Also, it is assumed that the anchor nodes are secure and the

distance information that they provide is completely reliable, i.e., for all i, j ∈ F ,

ωij = 1.

The function F (p, {wij}(i,j)∈E∪F) is a continuous and positive function. More-

over, in absence of outlier distances F (p∗, {wij}(i,j)∈E∪F) = 0, ∀ωij ∈ E ∪F , where

p∗ is the real position of the nodes. Furthermore, if ωij = 0 for outliers and ωij > 0

for reliable edges, then p∗ is the unique global minimum of F (p, {wij}(i,j)∈E∪F)

with F (p∗, {wij}(i,j)∈E∪F) = 0. Thus, there may be several minimums at which the

cost function (3.40) is equal to zero.

The localization problem can now be stated as a constraint optimization problem

as follows:

min
{p},{ωij}(i,j)∈E∪F

F (p, {wij}(i,j)∈E∪F)

s.t.
∑

j∈Gi∪Hi

ω2
ij ≥ K, ∀i ∈ {1, · · · , n}

ω2
ij ≤ 1, ∀(i, j) ∈ E ∪ F ,

(3.41)

where K ∈ N is parameter to be selected. For each node i, the value of K deter-

mines the minimum number of reliable distances that the algorithm must consider

in evaluating the positions. Therefore we must select K ≥ 3. The second constraint

is intended to avoid cases in which one edge alone would satisfy the first constraint.

Several approaches have been proposed in to solve constraint optimization prob-

lems as in (3.41), [79]. The most prominent is the Lagrange multipliers method.

However, for large WSNs, the number of variables increases significantly. There-

fore, although mathematically appealing, the complexity of this approach becomes

prohibitive Another approach for solving the constraint optimization problem uses

the penalty function described in [80]. An advantage of this method over methods
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proposed in [79] is the fact the number of variables is lower, thereby reducing the

computational cost.

We define the penalty function as follows:

L(A,B) = 1
2

∑
(i,j)∈A

ω2
ij (∥pi − pj∥ − dij)

2

+1
2

∑
(i,j)∈B

ω2
ij (∥pi − aj∥ − dij)

2

+c
n∑

i=1

[
max

(
0, K −

∑
j∈Gi∪Hi

ω2
ij

)]2
+c

∑
(i,j)∈A∪B

(max(0, ω2
ij − 1))2,

(3.42)

where c is a parameter of the optimization algorithm, and A ⊆ E and B ⊆ F In the

following we would like to minimize the penalty function in (3.42) with respect to

the unknown positions {pi} and the weights {ωi,j}. In this way we have converted

the “hard” constraints in (3.41) to “soft” constraints in (3.42).

Let Ai ⊂ Gi and Bi ⊂ Hi. The gradient of the penalty function L(A,B) with

respect to the position pi be defined as follows:

∇pi
L(Ai, Bi) =

∑
j∈Ai

ω2
ij(∥pi − pj∥ − dij)

(pi − pj)

∥pi − pj∥

+
∑
j∈Bi

ω2
ij(∥pi − aj∥ − dij)

(pi − aj)

∥pi − aj∥
,

(3.43)

The gradient with respect to the weight ωij ∈ E is defined as follows:

∇ωij
L(E ,F) = ωij(∥p̃i − p̃j∥ − dij)

2

+4cωij max(0, ω2
ij − 1)

−4cωij max

(
0, K −

∑
k∈Ai∪Hi

ω2
ik

)

−4cωij max

0, K −
∑

l∈Aj∪Hj

ω2
lj

 ,

(3.44)

Based on the algorithms described in [80] and the use of algorithm described

Table 3.1, the algorithm to find the position of the blind nodes is described in
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Table 3.3. The steps in this table are described as follows. The first step sets all

the initial parameters of the algorithm. Using the optimization algorithm based on

penalty function from [80], Step 2 finds a (local) minimum of the penalty function

(3.42). It is pointed out that the Step 2 in Table 3.3 is the Gradient Descent

Algorithm.

After the minimum has been reached, Step 3 checks the constraints of (3.41). If

the constraints are not satisfied, then increase the penalty term c of the penalty

function (3.42), and go back to Step 2 to find a new minimum.

In case that the constraints have been satisfied in Step 3, then it checks is the

cost function (3.40) has reached a global minimum, at which the position of the

nodes have been estimated. Otherwise, it goes to Step 4 to scape the local minimum

following similar algorithm from Table 3.1.

Notice that the gradients (3.43) and (3.44) are zero at the solution of problem

(3.41), which is the real position of the blind nodes and with weights equal to zero

for outlier edges. Thus, the global minimums from (3.41) are absorbing states,

similarly to 3.1. Thus, same arguments establish convergence to the real position

of the blind nodes with probability one.

Another important issue to mention is the procedure to identify a minimum of

(3.41), which is computationally time consuming. In order to verify that a minima

or local minimum have been reached, variables υ and ι are used for such purposes,

respectively, as it is described in Table 3.3.

Additionally, it is remarked that satisfying all the constraints from (3.41) is

computationally time consuming and depending on the selected parameters of the

algorithm in [80] they may not be satisfied rigorously. In order to avoid this issue,

we incorporate a counter ν in order to check the number of times at which a

minimum of (3.42) is reached, while all the constraints are not satisfied. Once this
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counter ν has reached a threshold Φ, then algorithm considers this minimum as

valid and will attempt to scape from it. This procedure is also included in Table

3.3.

Notice that eq. (3.43) is not defined if p̃i(l) = p̃j(l). In order to deal with this

fact, due to the positions of the sensor nodes are different, in case that the positions

p̃i(l) and p̃j(l) are the same during the optimization algorithm, it is possible to

deviate the position of one of them in order to avoid the mentioned issue.

3.3.1 Simulation Results

In order to ensure that THE unique localizability condition in [38, 41] is satisfied,

the networks considered in this dissertation are assumed to be densely connected.

This requirement is needed due to the fact that the position of the nodes must

be estimated in the presence of unreliable distance reports. If this requirement is

not satisfied, the network without the outliers distances measurements may not be

localizable [16] or may not be even connected.

In this Section the algorithm described in Table 3.3 is implemented. The param-

eters used in Table 3.3 and (3.41) are K = 8, c0 = 0.5, η = 3, Φ = 10, ι = 10−3.

The random variables Λi(k) and Λij(k) are chosen from a Gaussian distribution

with zero mean and unit variance, for the same reasons explained in Section 3.1.

The first network considered is shown in Figure 3.17. The network has 20 blind

nodes (blue circles) and 3 anchor nodes (in black square). The radio range is

equal to 4.5 units, ensuring that each node has at least 10 neighbors. The number

of outlier distances is equal to 8, and no error is considered in the non-outlier

distance measurements. For this case ν = 0.1. The outlier distances were set in

such a way as to be 5 times higher than the true distance. Figure 3.18 shows the

real position of the blind nodes (blue circle), the estimated position of the blind

nodes (red cross) and the edges considered non-outliers (blue links). Figure 3.19
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TABLE 3.3. Localization Algorithm in Presence of Outlier Edges

1- Initialization
Choose initial position p̂(0)
Choose initial weights {ω̂ij(0)}(i,j)∈E not satisfying all constraints.
Choose initial c = c0 < 1. Set k = 0, and ν = 0. Go to Step 2.

2- Find minimum of Penalty Function L
Set l = 0, p̃(0) = p̂(k), ω̃ij(0) = ω̂ij(k).
Do

Estimate α̃l via Armijo Algorithm [79].
∀i ∈ {1, . . . , n}, do:

p̃i(l + 1) = p̃i(l)− α̃l∇pi
L(E ,F)

∀(i, j) ∈ E , do:
ω̃ij(l + 1) = ω̃ij(l)− α̃l∇ωij

L(E ,F)
l = l + 1
Set: P(s) = [p̃(s), {ωij(s)}(i,j)∈E ], with s ∈ {l, (l − 1)}

While (P(l)−P(l − 1)∥ > ι)
k = k + 1
p(k) = p̃(l), ωij(k) = ω̃ij(l), ∀(i, j) ∈ E
Go to Step 3.

3- Check that constraints are satisfied.
If all constraints are satisfied:

If F (p(k), {wij(k)}(i,j)∈E∪F) ≤ υ:
Estimated position of the nodes p(k),
with link weights {wij(k)}(i,j)∈E∪F

Else
Go to Step 4.

End If
Else

If (ν ≤ Φ)
Set c = ηc and ν = ν + 1. Go to Step 2.

Else
ν = 0. Go to step 4.

End If
End If

4- Escaping the Local Minimum
∀i ∈ {1, . . . , n}, ∀(i, j) ∈ E do:
Randomly choose a subset Ai ⊂ Gi, Aj ⊂ Gj

Randomly choose Λi(k) and Λij(k)
∀i ∈ {1, . . . , n}, do:

p̂i(k) = pi(k)− Λi(k)∇pi
L(Ai,Hi)

∀(i, j) ∈ E , do:
ω̂ij(k) = ωij(k)− Λωij

(k)∇ijL(E ,F)
Set c = c0. Go to Step 2.
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shows the real position of the blind nodes (blue circle), the estimated position of

the blind nodes (red cross), the edges considered outliers (in black links), and the

true outlier edges (red links).

We now consider the network topology shown in Figure 3.20, keeping the same

number of nodes and radio range of the network from Figure 3.17. The number of

outlier links was increased to 10, with ν = 0.01. Figures 3.21 and 3.22 show the

similar information than Figures 3.18 and 3.19, respectively.

Simulation results in Figures 3.18 and 3.21 show that the proposed algorithm

correctly estimates the position of the nodes in the presence of outlier links. On

the other hand, it is possible to observe that some nodes do not satisfy the first

constraint of (3.41), which is due to the optimization procedure as it was pointed

out before.

Although the algorithm is capable to assign a weight equal to zero to the outlier

edges, it also considers as outliers some links with correct distance. This fact is

possible to observe in Figures 3.19 and 3.22. Therefore, even though the algorithm

is capable of estimating the position of the nodes correctly, it is not able to identify

the true outlier links.

The value of K is very important as it is possible to observe in the simulations.

In some cases, for some nodes the algorithm considers the number of non-outliers

edges lower than K. Thus, if the value of K is very low, then there exists a chance

that the algorithm would tend to estimate the position of the node of a network

not satisfying the conditions in [16] for localizability.

It was mentioned that a similar analysis to Section 3.1 could be stated in case

of distances following certain distribution with mean equal to the real distances

between nodes. Based on the simulation results, the upper bound for the expected

minimum value of the cost function (3.40) may not be straight forward to establish
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since the number of edge considered non-outlier is not predicted by the algorithm,

as it can be observed in Figures 3.18 and 3.21. An alternative to address this issue is

considering all the edges (outliers and non-outliers) to determine the upper bound.

Anyway, based on the localization algorithm described in Table 3.3 and following

the same reasoning from Section 3.1, the minimum of the problem (3.41) can be

reached, estimating the position of the blind nodes with certain level of accuracy.

Simulation results in Figures 3.18 and 3.21 show that the proposed algorithm

correctly estimates the position of the nodes in presence of outlier links. On the

other hand, it is possible to observe that some nodes do not satisfy the first con-

straint of (3.41), which is due the numerical issue of the optimization process as it

was pointed out before. Anyway, those Figures show that the network without the

outlier communication links satisfy the conditions for localizability [16], meeting

the purpose of the constraints.

Although the algorithm is capable to weight the outlier communication link

with value equal to zero, it also considers outliers some links with correct distance

estimations. This fact is possible to observe in Figures 3.19 and 3.22. Therefore,

even though the algorithm is capable to estimate the position of the nodes correctly,

it is not capable to identify the true outlier links.

The value of K is very important as it is possible to observe in the simulations.

In some cases, for some nodes the algorithm considers the number of non-outliers

communication links lower than K. Thus, If the value of K is very small, then

there exists a chance that the algorithm would tend to estimate the position of the

node of a network not satisfying the conditions in [16] for localizability.

It was mentioned that a similar analysis to Section 3.1 could be stated in case

of distances following certain distribution with mean equal to the real distances

between nodes. Based on the simulation results, the upper bound for the expected
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minimum value of the cost function (3.40) may not be straight forward to establish

since the number of communication link considered non-outlier is not predicted by

the algorithm, as it can be observed in Figures 3.18 and 3.21. An alternative to

address this issue is considering all the communication links (outliers and non-

outliers) to determine the upper bound. Anyway, based on the localization algo-

rithm described in Table 3.3 and following the same reasoning from Section 3.1,

the minimum of the problem (3.41) can be reached, estimating the position of the

blind nodes with certain level of accuracy, similarly to the results in Section 3.1.
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FIGURE 3.16. Trajectories of the blind nodes (blue circles) and the estimated trajectories
(red crosses) using the modified DRGD algorithm, Vmax = 0.7.
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FIGURE 3.17. Topology of the sensor network, where blue links represent the edges,
black squares correspond to anchor nodes, and blue circles correspond to blind nodes.

FIGURE 3.18. Real position of the blind nodes (blue circle), the estimated position of
the blind nodes (red cross) and the communication links considered non-outliers (blue
links)
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FIGURE 3.19. Real position of the blind nodes (blue circle), the estimated position of
the blind nodes (red cross), the communication links considered outliers (in black links),
and the true outlier communication links (red links)

FIGURE 3.20. Topology of the sensor network, where blue links represent the edges,
black squares correspond to anchor nodes, and blue circles correspond to blind nodes.
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FIGURE 3.21. Real position of the blind nodes (blue circle), the estimated position of
the blind nodes (red cross) and the communication links considered non-outliers (blue
links)

FIGURE 3.22. Real position of the blind nodes (blue circle), the estimated position of
the blind nodes (red cross), the communication links considered outliers (in black links),
and the true outlier communication links (red links)
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Chapter 4
Conclusion

In this dissertation we present two approaches for localization of wireless devices.

The algorithms are focused on systems were GPS is not available.

Firstly, we have studied the problem of localization based on narrowband sig-

nals of opportunity, and have developed a new positioning system reminiscent of

GPS. This problem is important because narrowband signals are more resilient to

multipath fading and are capable of penetrating common building structures, and

in contrast to the wideband GPS signals. The drawback of narrowband signals lies

in the difficulty in estimating TDOA, and in localizing the mobile receiver with

accuracy comparable to that of GPS. Hence near optimum algorithms in the sense

of MLE which are developed in this dissertation are crucial to the success of the

proposed new positioning system. In fact the novelty of our proposed solution al-

gorithms is highlighted by their excellent positioning error performance illustrated

by the simulation example using the FM radio signals as an application platform.

Our results demonstrate the applicability of the proposed positioning system and

contribute to the existing research literature in this important field. Although our

investigation has focused on narrowband signals, the results in this dissertation

may have broader applications. Indeed future positioning systems will be of multi-

platform, including both GPS and SOP, as well as wideband and narrowband

signals. Our work presented in this dissertation provides the design algorithms for

narrowband signals, and thus complements the known positioning systems avail-

able today.
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While our theoretical results and simulation example are encouraging, it would

be interesting to validate the proposed method as a practical positioning system.

We hope to develop a prototype system in the future and to conduct the necessary

field tests in order to demonstrate its viability. We believe that the novel posi-

tioning system proposed in this dissertation has great potential for applications in

localizations when and where GPS is unavailable.

Next we considered range-based localization of nodes in a wireless sensor network

(WSN). A distributed localization algorithm based on a novel randomization of

the gradient descent method is proposed. The randomization method is tailored

to and easy to implement in a WSN. It is proven that in the case of noise-free

measurements and when the network is localizable, the algorithm converges and

provides the true location of the nodes. In contrast to several recently proposed

methods, the convergence of the algorithm does not require that the blind nodes be

in the convex hull of the anchor nodes. In fact only a few anchor nodes are needed to

ensure localizability of the network. Error bounds are obtained in the case of noisy

distance measurements. The performance of the proposed algorithm is compared

to two relaxation based methods, namely semi-definite programing (SDP) and

second-order cone programing (SOCP), as well simulated annealing (SA) for several

networks with and without distance errors. The results show that the proposed

algorithm successfully localizes the nodes in all the cases whereas SOCP and SA

fail in most of the cases. Furthermore, the computational requirements of the

proposed algorithm is significantly lower than SOCP and SA. Finally the algorithm

is applied for localization of mobile WSNs. Simulation results show the efficacy of

the proposed algorithm in such applications.

We also extend our proposed method to localization of WSNs when some re-

ported distances are outliers. This may arise due to the challenges of distance
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measurement techniques. For example it is well known that distance estimations

based on received signal strength in indoors can be highly unreliable due to mul-

tipath fading effects. Distance errors may also be due to mischief caused by an

adversary who falsifies its reported distances.
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Appendix A:
Proof and Discussion of Lemma 1

Without loss of generality, σ2 = 1 and κi > 0 for each i are assumed. If it is

not, Zi/σ
2 can be regarded as new random variable with |κi|/σ as the new κi.

Hence the large ratio condition is translated into large κi for all i. By noting that

Zi = (Ui − κi)
2 − (1 + κ2i ), there holds

Ui = κi ±
√
Zi + 1 + κ2i , Zi ≥ −(1 + κ2i ). (4.1)

Since {Ui} are jointly Gaussian distributed with mean 0 and covariance C, the

random variables {Zi} admit joint PDF (probability density function)

fZ({zi}) =
exp

[
−1

2

(
κ− ϕ

)′
C−1

(
κ− ϕ

)]√
[2π det(C)]n−1

(
2n−1

∏n−1
i=1 ϕi

) + · · · (4.2)

with ϕ =
√
z + 1 + κ2 where ϕ, z, κ, κ2, and 1 are column vectors with ϕi, zi,

κi, κ
2
i , and 1 as the ith entry, respectively. By convention, square-root of a vector

takes square-root of each entry. The joint PDF in (4.2) involves a summation of

2n−1 terms due to 2n−1 different ± signs in (4.1) for 1 ≤ i < n, but only the first

term is shown. The (n− 1)-integral of this first term can find to be

I1 =

∫ ∞

−κn−1

· · ·
∫ ∞

−κ1

e−
1
2
y′C−1y√

[2π det(C)]n−1
dy1 · · · dyn−1 ≈ 1,

if κi >> 1 where yi =
√
zi + 1 + κi − κi for 1 ≤ i < n. It follows that fZ({zi}) is

dominated by the first term under the condition of large κi in the case of σ = 1,

or large ratio κi/σ in the case of σ ̸= 1. It is also easy to see that E{Zi} = 0. In

the case of σ ̸= 1, the variance of Zi is found to be

σ2
Zi

= E{|Zi|2} = 2σ2(2κ2i + σ2).
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Thus 4κ2iσ
2 dominates σ2

Zi
for large ratio of |κi|

σ
. In the neighborhood of zi = −σ2,

there holds

fZ(z) ≈
exp

[
−1

2
(z + 1σ2)

′
(DκCDκ)

−1 (z + 1σ2)
]√

[2π det(DκCDκ)]n−1
(4.3)

by κi −
√
zi + σ2 + κ2i ≈ −(zi + σ2)/2κi, thereby concluding that Z admits an

approximate joint Gaussian distribution in the neighborhood of z = −1σ2. 2

Although Lemma 1 states that {Zi} are approximately Gaussian distributed

near −1σ2, it does not imply that its joint PDF peaks at z = −1σ2. In fact it can

be shown by straightforward calculation that the PDF of {Zi} peaks at zi = −3σ2

for 1 ≤ i < n. Figure 4.1 shows the approximate PDF of Z in the case of n = 2,

given by

fZ(z) ≈
1√
2πσ2

e
− 1

2σ2

(
κ−
√

z+(σ2+κ2)
)2

2
√
z + (σ2 + κ2)

 (4.4)

in solid line and the PDF of Gaussian random variable with mean −σ2 and vari-

ance (2κσ)2 in dashed line where κ = 10σ is used. Therefore Z is approximately

Gaussian not only in the neighborhood of Z = −σ2 but in a much greater interval.

We comment that the approximate PDF of Z and the exact of PDF of Z are

indistinguishable for the case κ ≥ 10σ.
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FIGURE 4.1. PDF fZ(z) versus Gaussian PDF with x-axis scaled by σ−1, y-axis by σ,
and κ = 10σ.
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Appendix B:
CRLB and MLE for Localization using
TDOA

For localization based on SOP, the associated MLE and CRLB have some subtle

differences from those based on other signals such as GPS. Recall the difference of

TDOA in (2.7) where vi,1 = vi − v1 with {vi}ni=1 i.i.d. Gaussian of mean zero and

variance σ2
v . Hence its joint PDF fVi,1

({
δ̂ti,1 − δi,1

}n

i=2

)
is given by

fVi,1
(· · · ) =

exp

[
− 1

2σ2
v

(
δ̂d − δd

)′
C−1

0

(
δ̂d − δd

)]
√

[2π det(C0)]n−1σn−1
v

(4.5)

where δ̂d and δd are column vectors of size (n − 1) with δ̂ti+1,1 and δi+1,1 as the

ith element, respectively, and C0 is specified in (2.8). Recall vi,1 = δ̂i,1 − δi,1. Since

{δi+1,1}n−1
i=1 are functions of pm =

[
xm ym zm

]′
, so is the joint PDF fVi,1

(·).

Denote

cosϕxi
=

xm − xi
dm(xi, yi, zi)

,

cosϕyi =
ym − yi

dm(xi, yi, zi)
,

cosϕzi =
zm − zi

dm(xi, yi, zi)
.

The relation cδti = dm(xi, yi, zi)− dbi with

dm(xi, yi, zi) =
√
(xm − xi)2 + (ym − yi)2 + (zm − zi)2

yields

c
dδti
dxm

=
xm − xi

dm(xi, yi, zi)
= cosϕxi

,

c
dδti
dym

=
ym − yi

dm(xi, yi, zi)
= cosϕyi ,

c
dδti
dzm

=
zm − zi

dm(xi, yi, zi)
= cosϕzi .
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Direct calculation gives

∂ln(fVi,1
)

∂pm

= − 1

cσ2
v

ΦC−1
0

(
δ̂d − δd

)
,

with Φ a matrix given by

Φ =


cosϕx2 − cosϕx1 · · · cosϕxn − cosϕx1

cosϕy2 − cosϕy1 · · · cosϕyn − cosϕy1

cosϕz2 − cosϕz1 · · · cosϕzn − cosϕz1

 .

The necessary condition for optimality yields ΦC−1
0

(
δ̂d − δd

)
= 0 at the MLE

δd = δd(x̂m, ŷm, ẑm). A common procedure to find the MLE solution employs the

Newton method and involves iterative LS. Since both Φ and δd are functions of

pm, the iterative LS can become quite complicated. For this reason the exact MLE

method is not used in this dissertation.

For CRLB, we note that
(
δ̂d − δd

)
is a Gaussian random vector with mean zero

and covariance σ2
vC0 by {δ̂ti,1 − δti,1} = {vi,1}. The associated Fisher information

matrix can be shown to be

FIM(pm) := E

{(
∂ln(fVi,1

)

∂pm

)(
∂ln(fVi,1

)

∂pm

)′
}

=
1

(cσv)2
ΦC−1

0 Φ′.

The CRLB for the mobile position (xm, ym, zm) can thus be obtained as

CRLB(xm, ym, zm) := [FIM(pm)]
−1

= (cσv)
2
(
ΦC−1

0 Φ′)−1
.

For any unbiased estimate p̂m to the true mobile’s position pm, there holds

E {(p̂m − pm)(p̂m − pm)
′} ≥ (cσv)

2
(
ΦC−1

0 Φ′)−1
.
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