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5.2 Näıve Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Execution configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Memory requirements and cache behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Memory Access Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Function DetPByDet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.2 Function UpdateConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Optimization efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6.1 Thread selection in depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6.2 Elimination of redundant copies of a configuration. . . . . . . . . . . . 46
5.6.3 Optimized memory access pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Merger of Equilibration and Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8 Streamlined function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Comparison between a CPU and GPU code . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Comparison between MPI-CPU and GPU code . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 GPU results in depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX

A CUDA CODE FOR THE MERGED EQUILIBRATION AND
ACCUMULATION STAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B DEVICE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

iv



List of Tables
4.1 Data Structures and Memory requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Classes used in the Implementation of VMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 FLOPS calculation for the VMC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Execution time for L = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Execution time for L = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Execution time for L = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Speculation of a GPU‘s cache behaviour for L = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Speculation of a GPU‘s cache behaviour for L = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Speculation of a GPU‘s cache behaviour for L = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Summary of Memory prediction for L = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Threads per MC and Number of MCs per SM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Occupancy calculation for L = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Comparison of CPU vs GPU Performance for bfactor=8. . . . . . . . . . . . . . . . . . . . . . 59

6.3 Comparison of CPU vs GPU Performance for bfactor=16 . . . . . . . . . . . . . . . . . . . . 59

6.4 Nodal architecture of Philip Supercomputer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Comparison of MPI vs GPU Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 GPU execution time in cycles for L = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.7 GPU execution time in cycles for L = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.8 GPU execution time in cycles for L = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



List of Figures
3.1 Floating Point operations per second for CPU vs GPU, Source:

CUDA Programming guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Memory Bandwidth for CPU vs GPU, Source: CUDA Program-
ming guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 GPU vs CPU architecture, Source: CUDA Programming guide . . . . . . . . . . . . . . . 11

3.4 Automatic Scalability of Applications, Source: CUDA Program-
ming guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 CUDA Thread hierarchy, Source: Programming Massively Par-
allel Processors- A hands-on Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 CUDA Memory Hierarchy, Source CUDA Programming guide . . . . . . . . . . . . . . . . 13

4.1 Sequential Memory Access Pattern for the up spin: (a) Ψ−1, (b)
Plist, (c) Pairfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Sequential Memory Access Pattern for the down spin: (a) Ψ−1,
(b) Plist, (c) Pairfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Update of a configuration for the up spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Update of a configuration for the down spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Pie chart for L = 5:(a) Split of Equilibration, (b) Split of Accumulation . . . . . . 26

4.6 Pie chart for L = 9:(a) Split of Equilibration, (b) Split of Accumulation . . . . . . 30

4.7 Pie chart for L = 15:(a) Split of Equilibration, (b) Split of Accumulation . . . . . 30

5.1 VMC Workflow for Multiple Markov Chains (MCs) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Memory Access Pattern for up spin: (a) Ψ−1, (b) Picking a site
from Plist, (c) Pairfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Memory Access Pattern for down spin: (a) Ψ−1, (b) Picking a
site from Plist, (c) Pairfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



5.4 Memory Access Pattern for up spin: (a) Ψ−1, (b) Picking a site
from Plist, (c) Pairfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Memory Access Pattern for down spin: (a) Ψ−1, (b) Picking a
site from Plist, (c) Pairfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Optimization for up spin: (a) Ψ−1, (b) Plist, (c) Pairfunction,
(d) Reduction on a shared memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Optimization for down spin: (a) Ψ−1, (b) Plist, (c) Transposed
Pairfunction, (d) Reduction on a shared memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.8 Optimization for up spin: (a) Ψ−1 - update of Ipairth column,
(b) Ψ−1 with threads-per-col, TP , (c) Pairfunction, (d) Ψ−1 -
update of other columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.9 Optimization for down spin: (a) Ψ−1 - update of Ipairth row, (b)
Ψ−1 with a blocking factor, bfactor (c) Transposed Pairfunction,
(d) Ψ−1 - update of other rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.10 Optimization for up spin: (a) Ψ−1 - with TP , (b) Pairfunction,
(c) Reduction in a shared memory to obtain dpbd1, (d) Calcu-
lation of dot product using Jpairth row of Ψ−1, (e) Calculation
of dot product using Transposed pairfunction, (f) Reduction in
a shared memory to obtain the final dpbd: dpbd = dpbd1 ∗Reduction(colval) . . 55

5.11 Optimization for down spin: (a) Ψ−1 - with TB, (b) Pairfunction,
(c) Reduction in a shared memory to obtain dpbd1, (d) Calcula-
tion of dot product using Jpairth column of Ψ−1, (e) Calculation
of dot product using Transposed pairfunction, (f) Reduction in
a shared memory to obtain the final dpbd: dpbd = dpbd1 ∗Reduction(rowval) . 56

6.1 Pie chart for L = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Pie chart for L = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Pie chart for L = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



Abstract
High-Performance computing is one of the major areas making inroads into the future

for large-scale simulation. Applications such as 3D nuclear test, Molecular Dynamics,

and Quantum Monte Carlo simulations are now developed on supercomputers using the

latest computing technologies. As per the TOP500 supercomputers rating, most of today‘s

supercomputers are now heterogeneous : with massively parallel Graphics Processing Units

(GPU) equipped with Multi-core CPU(s) to increase the computational capacity.

The Variational Monte Carlo(VMC) method is used in the Many Body Physics to study

the ground state properties of a system. The wavefunction depends on some variational

parameters, which contain the physics for a better prediction. In general, the variational

parameters are chosen to realize some sort of order or broken symmetry such as supercon-

ductivity and magnetism.

The variational approach is computationally expensive and requires a large number

of trajectories to obtain convergence. The Markov chains (MCs) exhibit abundant data

parallelism and parallelizing across CPU clusters will prove to be expensive and does not

scale in proportion to the system size. Hence, this method will be a suitable candidate on

a massively parallel Graphics Processing Unit (GPU).

In this research, we discuss about the various optimization and parallelization strategies

adopted to port the VMC method to a NVIDIA GPU using CUDA. We obtained a speedup

of nearly 3.85 X compared to the MPI implementation [4] and a speedup of upto 19 X

compared to an object-oriented C++ code.

viii



Chapter 1
Variational Monte Carlo (VMC)

1.1 Trial Wavefunction

Variational Monte Carlo (VMC) method is a direct application of Monte Carlo inte-

gration to strongly correlated systems. The variational approach has been used widely in

different areas of condensed matter physics, in particular the d-wave superconducting state

of the high TC cuprates at T=0 [1]. In quantum mechanics, variational principle can be

derived by expanding a normalized trial wavefunction, ΨT , in terms of the exact normalized

eigenstates of the Hamiltonian [9].

ΨT =
∞∑
i=0

ciΨi, (1.1)

where ci is given by,
∞∑
i=0

|ci|2 = 1 (1.2)

The many-body Hamiltonian, Ĥ , evaluated by,

〈
ΨT

∣∣∣Ĥ∣∣∣ΨT

〉
=

〈∑
i

ciΨi

∣∣∣∣∣Ĥ
∣∣∣∣∣∑
j

cjΨj

〉
=
∑
i

|ci|2εi, (1.3)

where εi =
〈

Ψi

∣∣∣Ĥ∣∣∣Ψi

〉
From the above equations [9], the expectation value of a trial wavefunction with the

Hamiltonian must be greater than or equal to the true ground state energy. The varia-

tional method depends mostly on the trial wavefunction used. Wavefunctions are normally

obtained by Hartree-Fock or similar methods and additional parameters added to build in

1



additional physics such as, known limits and derivatives of the many-body wavefunction.

The wavefunction is then further optimized by the variational parameters.

From [4], an example of a trial wavefunction is then taken to be,

Ψ(R) = D(R)exp

[
N∑
i<j

−u(rij)

]
, (1.4)

where D is a determinant of Hartree-Fock or meanfield solutions. The variational pa-

rameters for constructing D is used to optimize the trial wavefunction. The extra projection

factor u is included in the above wavefunction.

1.2 The VMC Algorithm

The VMC algorithm consists of two distinct phases [9, 5]: Equilibration and Accumu-

lation (Measurement). In the first phase, the system is made to equilibrate and sampled

for |Ψ|2. In the second phase, the energies and other observables are accumulated. Thus

we perform random walk across configurations.

1. Equilibration:

(a) Generate an initial random configuration.

(b) For each electron in the configuration:

i. Propose a move from mr to m′r

ii. Compute the ratio R = |Ψ(mr
′)/Ψ(mr)|2

iii. Perform metropolis acceptance comparison min(1, R)

iv. If the move is accepted, update the configuration.

v. Else restore the old configuration.

(c) Repeat the above steps until the system equilibrates.
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2. Accumulation:

(a) Repeat the same procedure from Equilibration.

(b) Accumulate the local energy and other observable parameters at m′r and mr,

(c) Perform metropolis acceptance comparison min(1, R)

(d) Repeat the above steps until energies are accumulated

1.2.1 Difficulty of VMC

The energy function [5] is defined as,

E(αi) =

∑
C Ψ∗α(C)HΨα(C)∑
C Ψ∗α(C)Ψα(C)

(1.5)

In many of these cases, the wavefunction in real space is given by, Ψα(r1↑, . . . , rN↑, r1↓, . . . , rN↓),

where riσ are the coordinates of the electrons on a lattice and C ≡ (r1↑, . . . , rN↑, r1↓, . . . , rN↓),

a configuration of electrons.

To sum over all configurations, for example: a lattice with 100 sites and 50 ↑ and 50 ↓

electrons, we need to visit over 1060 configurations. To overcome this difficulty, we use

Monte Carlo method to perform the sum[2].

E(αi) =
∑
C

P (C)
HΨα(C)

Ψα(C)
(1.6)

where P (C), the probability of the configuration, is given by,

P (C) =
|Ψα(C)|2∑

C Ψ∗α(C)Ψα(C)
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For any operator O

〈O〉 =
∑
C

P (C)
OΨα(C)

Ψα(C)
(1.7)

where,
∑

C P (C) = 1.

To avoid visiting all the configurations, we will visit the “most important” configu-

rations [5] and add up the corresponding contribution. The configurations with “high

probability” are considered to be important. This is called as importance sampling [5].

Using the importance sampling, accurate results for various quantites can be obtained

by a smaller number of Monte Carlo sweeps, NMC .

E(αi) =
1

NMC

NMC∑
k=1

HΨα(mr)

Ψα(mr)
(1.8)

For other operators,

〈O〉α =
1

NMC

NMC∑
k=1

OΨα(mr)

Ψα(mr)
(1.9)

For every Monte Carlo (MC) step, we need to evaluate the ratio of
|Ψ(mr′ |2
|Ψ(mr|2 which is of

complexity O(N3). In order to optimize with respect to αi, we need a complexity of O(N).

1.2.2 Faster VMC

Consider the spinless fermions [5, 4] with a configuration k given by a wavefunction Ψ

and a configuration l given by a wavefunction Φ. Both the configurations differ only by a

position of a electron e, el and e′l
ψa1(e1) . . . ψa1(el) . . . ψa1(eN)

... . . .
... . . .

...

ψaN(e1) . . . ψaN(el) . . . ψaN(eN)

 (1.10)
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Since Ψ and Φ differ by only one column, the ratio can be determined as[2],

det[Φ]

det[Ψ]
=
∑
k

Ψ−1
kl Φkl (1.11)

which of O(N)

The calculation of Ψ−1 is reduced to the order of O(N2) using Sherman-Morrison-

Woodbury (SMH) method.

1.2.3 Summary of VMC method

1. Start with a random configuration

2. For k = 0, NMC

(a) Pick an electron at random for the configuration mr and move to a random

position. Name this configuration m′r.

(b) Check for Probability, accept the configuration if the ratio is greater than a

uniform random number: min
{

1, |Ψ(m′r)|2
|Ψ(mr)|2

}
, set mr+1 = m′r if accepted, else set

mr+1 = mr.

(c) Perform the update of Ψ−1 using SMH formula.

(d) Wait until the system Equilibriates.

(e) Repeat the above steps (a - c).

(f) Accumulate the energy contributions.

OΨα(mr+1)

Ψα(mr+1)

3. Determine necessary averages for E(αi).
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4. Optimize over αi to obtain |ΨG〉.

5. Study the ground state |ΨG〉.

The VMC method is tested on a tilted square lattice [4, 1]. The Resonance Valance

Bond model is used to represent the high TC . The number of sites, NS is given by NS =

L2 + 1, where L is odd. The number of electron pairs, NP is given by, NP = Ne/2 where

Ne, is the number of electrons. The number of electrons can be calculated based on a given

hole doping (x), Nsites× (1.0− x) [5].

The Hubbard model for this method is given by,

−
∑
ij

tijciσcjσ + U
∑
i

ni↑ni↓ (1.12)

where U = 0 (free electrons) and U =∞ (Extremely correlated liquid) and the model

is a t− t′ − t′′ model to study the material dependencies.
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Chapter 2
Prior Work

2.1 CPU Implementation

In [1, 4], the VMC method is used to study the competition between Antiferromagnetic

and Superconducting states in High-TC superconductors. A Fortran implementation of

VMC was done by [4] by simulating identical systems, called Markov chains (MCs), each

initialized randomly. Since the initial implementation was a sequential version and in order

to exploit the parallelism involved in the MCs, the programming model was converted to

a MPI version [5].

2.2 MPI Implementation

A MPI Fortran implementation was done by [5, 4] to study the d-correlated systems

using the variational approach. The programming model designates a MPI rank (or pro-

cessor) per Markov chain and requires inter-processor and inter-node communication to

calculate the average energy and error distribution. This implementation does not utilize

cache blocking for regions within the code which require locality of reference. Since, des-

ignating a CUDA thread per MC will result in a poor performance due to the working

set exceeding the device limits, a better MPI implementation can still yield a good perfor-

mance. However, the MPI version will be computationally expensive and we need to find

a cost effective approach for the VMC algorithm.

2.3 GPU Implementation

The first step in porting VMC code to CUDA was done by Byron Tasseff, an REU

student at our research group. A naive GPU implementation was done by [17] which laid

the foundation for our research on tuning this algorithm. In his implementation, a CUDA
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thread performs a MC and the number of MCs correspond to the number of threads running

in parallel. The implementation lacks enough thread-level parallelism and does not utilize

the fast memory resources on a GPU, such as, shared and constant memory. Functions such

as update of a configuration and ratio of determinant of the configurations have different

memory access pattern and certain caching techniques can yield a better performance. In

our GPU implementation, we address these issues and optimize the memory usage.

A GPU and a FPGA implementation was done by [18]. This implementation com-

pares the performance of Quantum Monte Carlo calculations between a CPU, GPU and a

FPGA. Atoms ranging from 256 to 8192 were tested on a Dual-Core-Dual-processor AMD

Opteron @ 2.2 GHz, NVIDIA C1060 GPU and a Virtex-4 XC4VLX160 FPGA. Results

show a speedup of ≈ 2 for the GPU implementation compared to the CPU version. The

implementation does not effectively utilize the memory resources on a GPU and we address

these issues in our code.
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Chapter 3
Graphics Processing Units

3.1 Increasing Trend in Parallel Computing

The semiconductor industry has now settled on two main trajectories for microproces-

sor design [8]. The Multicore trajectory strives to improve the performance of sequential

program, while doubling the number of cores with each generation. As an example, Intel c©

CoreTM i7 microprocessor has four processor cores, each of which is an out-of-order, mul-

tiple instruction issue processor. The processor implements the full x86 instruction set

and supports hyperthreading with two threads per core [8]. On the contrary, a GPU in-

creases the throughput of parallel applications. As an example, the NVIDIA Tesla M2090 c©

supports upto 512 cores, Dual Warp Scheduler, which simultaneously schedules and dis-

patches instructions from two independent warps and NVIDIA GIGATHREAD for faster

application context switching.

Figures 3.1, 3.2 show that NVIDIA GPU(s) have better FLOPS and Memory Band-

width compared to their CPU counterpart [7]. Data-parallel appplications, when ported

to GPU, are observed to get a performance boost compared to the CPU. This discrepancy

is maily due to more number of transistors dedicated for data processing rather than data

caching and flow control [8].

Figure 3.3 compares the architecture of a Multicore CPU and a GPU model. CPU dedi-

cates more transistors for caching and control, whereas GPU dedicates it for computational

units.
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Figure 3.1: Floating Point operations per second for CPU vs GPU, Source: CUDA Pro-
gramming guide

Figure 3.2: Memory Bandwidth for CPU vs GPU, Source: CUDA Programming guide
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Figure 3.3: GPU vs CPU architecture, Source: CUDA Programming guide

3.2 CUDA Programming model

Introduced by NVIDIA in November 2006, CUDATM is a new parallel programming

model that leverages the compute engine in NVIDIA GPU(s) to solve complex computa-

tional problems efficiently than a traditional CPU [7].

The CUDA programming model is designed for an easy transition from the C code

by a minimal set of language extensions, thereby providing a low learning curve for the

programmer. The core has three key abstractions [7] - a hierarchy of thread groups, shared

memories and barrier synchronization. These abstractions enable the programmer to par-

tition the application to fine-grained data parallelism and thread parallelism, nested within

coarse-grained data parallelism and task parallelism.

Figure 3.4 shows the scaling model based on the Multiprocessor count (SM) on a GPU.

The threadIdx can be of one, two or three-dimensions, hence forming a one, two, or three

dimensional thread block. Each Streaming Multiprocessor (SM) is capable of hosting 1536

CUDA threads, with limited memory resources shared between them. The total number

of resident thread blocks per SM is given by 8 for a fermi architecture [11]. Blocks are

organized into a one, two or a three-dimensional grid of thread blocks.
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Figure 3.4: Automatic Scalability of Applications, Source: CUDA Programming guide

Each thread has a private local memory, and a thread block has a shared memory

with read/write capability for all threads within the block [7]. Finally, all threads have

access to the same global memory, two read-only memory spaces, constant and texture.

The global, constant and texture memory spaces are optimized for different memory usage

[7, 8]. Global memory coalescing should be followed to avoid longer memory latency. The

fermi architecture offers the flexibility of partioning the shared/L1 memory space according

to the application. The 64 KB memory space can be partioned into 16 KB shared/64 KB

L1 or vice-versa. Figure 3.5, 3.6 shows the memory hierarchy and their access pattern.
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Figure 3.5: CUDA Thread hierarchy, Source: Programming Massively Parallel Processors-
A hands-on Approach

Figure 3.6: CUDA Memory Hierarchy, Source CUDA Programming guide
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Chapter 4
CPU Implementation of VMC

VMC has been implemented targeting a cluster level system by [4, 5], a CPU, GPU

and a reconfigurable Field Programmable Gate Array (FPGA) by cite [18]. In this chapter,

we present a straightforward implementation of the VMC method using C++ based on an

object-oriented approach. The following sections describe the pseudocode for the VMC

method and its core components, structure of the CPU code, algorithm analysis and the

results obtained for a single-core implementation. Based on our results and taking factors

such as computational cost into consideration [17] and [4], we claim a cost-effective and

efficient model can be implemented on a GPU.

4.1 Pseudocode for the VMC Method

In this section, we show the pseudocodes for the VMC method and its core stages:

Equilibration and Accumulation given by Algorithms 4, 3. The VMC method, given

by Algorithm 1 has four main stages: Electron move, calculation of ratio of determi-

nants(DetPByDet), update of a configuration (UpdateConfig), and copy of a configuration

(Copyconfig), if the move is rejected [5, 9]. The electron move procedure will pick a pair,

spin at random and an oldsite from the electron occupancy list (plist). Now, a newsite is

picked based on the neighbor probability and an electron is moved to this site. The spinflip

is determined and then DetPByDet, UpdateConfig and DetPByDet are called in-order to

determine the product of the ratio of determinant of the configurations (dpbd1 × dpbd2).

The norm of this product is compared to a real uniform random number and the move is

accepted/rejected based on this. [5].
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Algorithm 1 Overview of the VMC Method

begin vmc
Initialization() . Generate lattice object, wavefunction and pairfunction
Equilibration() . Perform the Equilibration procedure
Accumulation() . Accumulate the energy and study the groundstate
end vmc

Algorithm 2 Equilibration

procedure Equilibration( )
for i← 0, nsweeps do

Electron move() . Call the electron move procedure
Perform MonteCarlo Sweep() . Determine the acceptance of the move

and update the Configuration
end for

end procedure

Algorithm 3 Accumulation

procedure Accumulation( )
for i← 0, navesweeps do . Change the loop bounds to navesweeps and npsweep

for j ← 0, npsweep do . Repeat the procedures from Equilibration
Electron Move()
Perform MonteCarlo Sweep()

end for
energy ← EnergyofConfig() . Call the energy of configuration
eneloc← eneloc+ energy . Accumulate the energy

end for
end procedure
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Algorithm 4 Electron Move

procedure Electron Move( )
ipair ← rand(Npairs) . Pick a pair and spin at random
ispin← rand(2)
oldsite← plist(ipair, ispin)
while (newsite == 0) do . Find a site for the electron move

if neiprob > 0.0 then
newsite← rand(Nsites)

else
newsite← neiblist() . neiblist maintains the neighbour information

end if
if (latocc(newsite) ! = (BT orHL)) then . latocc will determine the spin at the

newsite
spinflip← true
jpair ← whichpair(newsite ∗ 2 + 1− ispin) . whichpair(ilat,spin), “spin” at

lattice site ilat
else

newsite = 0
end if

end while
end procedure

16



Algorithm 5 Perform MonteCarlo Sweep

procedure Perform MonteCarlo Sweep( )
. Determine the spinflip from the electron move stage

if spinflip = true then
. Calculate the Ratio of determinants and Update the Configuration

dpbd1← DetPByDet(ipair, 2 ∗ ispin− 1, newsite)
UpdateConfig(ipair, 2 ∗ ispin− 1, newsite, dpbd1)
dpbd2← DetPByDet(jpair, 1− 2 ∗ ispin, oldsite)
dpbd← dpbd1 ∗ dpbd2

else
dpbd← DetPByDet(ipair, 2 ∗ ispin− 1, newsite)

end if
norm2← norm(dpbd) . Determine Ψ′−1

Ψ−1

if norm2 ≥ uniformrand(0, 1) then . Move is accepted
if spinflip = true then

UpdateConfig(jpair, 1− 2 ∗ ispin, oldsite, dpbd2)
else

UpdateConfig(ipair, 2 ∗ ispin− 1, newsite, dpbd)
end if

else . Restore the configuration: Move is not accepted
Copyconfig()

end if
end procedure
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Algorithm 6 Energy of a configuration

procedure EnergyofConfig( )
saved = config() . Make a copy of the configuration
tempconf = config() . Make a temporary configuration to

calculate dpdbd and update the configuration
for ispin← 0, 2 do . Calculate the Kinetic energy part of the Hamiltonian

spin← 2 ∗ ispin− 1
for ipair ← 0, Npairs do

isite← plist(ipair ∗ 2 + ispin)
for jn← 0, nneibs do

jsite← neiblist(jn+ nneibs ∗ isite)
if latocc(jsite) = HL then

dpbd← DetPByDet(ipair, spin, jsite)
enekloc← enekloc+ thop(ishell(jn)) ∗ real(dpbd)
spkeloc(ispin)← spkeloc(ispin) + thop(ishell(jn)) ∗ real(dpbd)

end if
end for

end for
end for

. Compute the Exchange term of the Hamiltonian
otheloc← 0 . To hold the energy from the exchange term
for inn← 0, nearnsets do

isite← nearnp(inn ∗ 2); jsite← nearnp(inn ∗ 2 + 1)
ispin← latocc(isite); jspin← latocc(jsite)
ipair ← whichpair(isite ∗ 2 + (1 + ispin)/2)
jpair ← whichpair(jsite ∗ 2 + (1 + jspin)/2)
if ispin ∗ jspin < 0 then

tempconf ← CopyConfig()
dpbd← DePByDet(ipair, ispin, jsite); UpdateConfig()
dpbd1← DetPByDet(jpair, jspin, isite)
otheloc = otheloc− real(dpbd ∗ dpbd1) + 1.0

end if
end for
otheloc← (Jij ∗ otheloc)/(2) . Jij represents the Antiferromagnetic exchange
enektot← enekloc
othetot← otheloc
energy ← (enektot+ othetot)/Nsites
kinenergy ← (spkeloc(0) + spkeloc(1))/Nsites
othenergy ← othetot
return energy

end procedure
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The programming model follows the object-oriented approach and the major data struc-

tures, such as Ψ−1 and pairfunction are members of the classes defined in Table 4.2. By

varying the input parameters such as hole doping and the lattice size, data structures such

as Ψ−1 and pairfunction become the point of interest due to increasing memory consump-

tion. Table 4.1 shows the memory consumption for different lattice models.

Table 4.1: Data Structures and Memory requirements

Data structure Formula Data Type L = 5 L = 9 L = 15
Nsites(NS) L2 + 1 int 26 82 226
Nelecs(Ne) Nsites ∗ (1.E0− x) int 24 74 204

where x is hole doping
Npairs(NP ) Nelecs/2 int 12 37 102

PsiInv (Npairs2) double 1.152 kB 10.952 kB 83.232 kB
Pairfunction (Nsites2) double 5.408 kB 53.792 kB 408.608 kB

Plist (2 ∗Npairs) int 96 B 296 B 816 B

Table 4.2: Classes used in the Implementation of VMC

S.No Class Functionality
1 Sqlat Holds Lattice parameters such as Nsites, Nelecs,

Npairs and hopping, etc
2 Config Contains the energy arrays, and functions for calculating

the Ratio of Determinants and Update of Ψ−1

3 Wavefunction Contains the variational parameters required to
generate the pairfunction or wavefunction

4 Montecarlo Contains the lattice object, pairfunction and
randomseeds for a corresponding Markov chain

4.1.1 Structure of the CPU code
The implementation uses an object-oriented approach for the individual functions men-

tioned in the previous section. Each class is used to create an object and the final executable
is obtained by compiling and linking the individual objects. Table 4.2 describes the classes
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and the corresponding functionality.

4.2 Calculation of the Ratio of Determinants using

SMH Formula

The SMH formula, as explained in Section 1.2.2, is used to calculate the ratio of

determinant of the configurations. This is implemented using a function called DetPByDet.

Figure 4.1: Sequential Memory Access Pattern for the up spin: (a) Ψ−1, (b) Plist, (c)
Pairfunction
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Figure 4.1 shows the access pattern for the up spin. A site is picked from an electron

list and referred to as an oldsite. This site corresponds to the column of pairfunction. A

newsite given by an input parameter corresponds to the row of pairfunction. The Ipair

represents the electron pair and corresponds to the column of Ψ−1. Thus, a dot product of

a row of pairfunction and a column of Ψ−1 is calculated (dpbd). There will be NP cache

misses for the Ψ−1 array and one cache miss, to load the first pairfunction element on the

L1 cache. For the given lattice size, L, there will be a total of NP fused multiply-add

floating point operations (FLOPS) to compute a dot-product.

Figure 4.2: Sequential Memory Access Pattern for the down spin: (a) Ψ−1, (b) Plist, (c)
Pairfunction
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Figure 4.2 shows the access pattern for the down spin. In this case, the access pattern

is reversed, where a column of the pairfunction and a row of Ψ−1 are accessed. There will

be NS of cache misses for the pairfunction array and one cache miss for the Ψ−1. From

section 1.2.2, the ratio of determinants can be calculated in the order of O(NP ) using SMH

formula [5].

4.3 Update of a configuration

Figure 4.3: Update of a configuration for the up spin

Figure 4.3 shows the update of a configuration for the up spin of an electron. The

Ipairth column of Ψ−1 is first updated using dpbd.
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The remaining columns of Ψ−1 are updated using the dot product between Ψ−1 and

pairfunction. The update of Ψ−1 is of order O(N2
P ).

Figure 4.4: Update of a configuration for the down spin

For the case of a down spin, the access pattern is reversed, where an electron pair

represents the Ipairth row in Ψ−1. The remaining rows are updated by using the dot

product between Ψ−1 and pairfunction. Figure 4.4 shows the update of a configuration for

the down spin of an electron.
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4.4 Algorithm Analysis

The execution time of the individual functions is dependent on parameters such as, NP ,

NS, neqlsweeps, npsweep and navesweeps. Table 4.3 gives the Floating point operations

per second (FLOPS) calculation for different functions of the VMC method. The FLOPS

are calculated based on a speculation that a spinflip will occur 50% of the time in both

the Equilibration and Accumulation stage. Thus, the FLOPS are an estimate to different

lattice models based on NP and may vary depending on the occurrence of a spinflip.

Table 4.3: FLOPS calculation for the VMC method

Function FLOPS Operation
DetPByDet Npairs ∗MUL Either case of

spinflip
UpdateConfig Npairs ∗DIV For Ipairth

row or col of Ψ−1

+Npairs2 ∗ (MUL+ ADD) For dot product
calculation

+Npairs2 ∗ (MUL+ SUB) For updating other
rows or cols of Ψ−1

CopyConfig NIL NIL
Energy of a 2 ∗Npairs ∗Nneibs
Configuration ∗(DetPByDet+MUL+ ADD) Kinetic energy

calculation
+Nearnsets∗(DetPByDet)
+Nearnsets∗Updateconfig
+Nearnsets∗(DetPByDet)
+Nearnsets ∗ (ADD + SUB) Accumulation

4.5 Cache Behavior

The implementation utilizes a single core of the CPU and further testing and optimiza-

tion of the code are decided upon the cache behavior. We consider the Intel(R)Core(TM)i7-

2600 CPU architecture for determing the cache behavior.
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From [10], the cache hierarchy is given by: 32 kB data + 32 kB instruction L1 cache, 256

kB L2 cache per core.

4.5.1 Function DetPByDet

Referring to Section 4.1.1, one dot product requires a total of NP fused multiply-add

floating-point operations. Since a cache line is 64 B wide, we find that for lattice size of

L = 5, a row of pairfunction or a column of Ψ−1 does not fit within a cache line. There

will be only one miss penalty to load the first element for pairfunction. There will be NP

cache misses for Ψ−1 since we access a column. The penalties are reversed for the down

spin, where there will be NS of cache misses for the pairfunction and one miss penalty for

Ψ−1.

4.5.2 Function UpdateConfig

Referring to section 4.3, the update of Ψ−1 is of order O(N2
P ). For the case of an up

spin, there will be NP cache misses for every element of the Ipairth of Ψ−1. To perform a dot

product, the penalty levels will be the same as mentioned in 4.5.1. To update the remaining

columns there will be NP cache misses for every element per column. The penalties are

reversed for the down spin, where there will be one cache miss per row of Ψ−1, while NS

of cache misses per element of pairfunction. The pairfunction access is permuted in either

case of the spin and hence the latency will increase if the data falls outside the cache.

4.5.3 Function Pairfunction

For the case of an up spin of an electron, a row of pairfunction is accessed. Though

the access pattern within a row is permuted, the data is still cached and will have a lower

latency. The case is reversed for the down spin, where there will be several cache misses as

explained in Section 4.1.1. From Figures 4.3, 4.4, the pairfunction will suffer a mimimum
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cache miss for the up spin, while there will be several cache misses for the down spin. All

these cache misses are viewed from the L1 cache level. Since, the pairfunction is accessed

more than 104 in both the Equilibration and Accumulation stage and the size for any lattice

model is less than that of L2 cache, we can speculate the hardware to move it to the L2

cache.

4.6 Results

The VMC method has been tested on Intel(R)Core(TM)i7-2600 CPU @ 3.40 GHz.

The method performs one MC and from the timing results, we find the hot spots for futher

parallelism and optimization using GPU. More work on porting VMC to GPU using CUDA

are discussed in Chapter 5. Tables 4.4-4.6 give the timing results for individual functions

and for the overall VMC method for L = 5, 9, 15.

Figure 4.5: Pie chart for L = 5:(a) Split of Equilibration, (b) Split of Accumulation
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Table 4.4: Execution time for L = 5

Lattice Size Function Execution Time(s)
Equilibration
1.Electron Move 0.02
2.Spinflip = true:

DetPbyDet 0.01
UpdateConfig 0.03

3.Spinflip = false:
DetPbyDet 0.00
UpdateConfig 0.00

4.Copyconfig 0.04
Move rejected 0.02

5.Total 0.24
L = 5 Accumulation

1.Electron Move 0.01
2.Spinflip = true:

DetPbyDet 0.01
UpdateConfig 0.07

3.Spinflip = false:
DetPbyDet 0.01
UpdateConfig 0.02

4.Energy calculation
DetPbyDet 0.02
UpdateConfig 0.08
Total 0.18

5.Copyconfig 0.08
Move rejected 0.03

6.Total 0.46
Total VMC 0.70
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Table 4.5: Execution time for L = 9

Lattice Size Function Execution Time(s)
Equilibration
1.Electron Move 0.01
2.Spinflip = true:

DetPbyDet 0.11
UpdateConfig 1.32

3.Spinflip = false:
DetPbyDet 0.02
UpdateConfig 0.04

4.Copyconfig 0.74
Move rejected 0.68

5.Total 3.04
L = 9 Accumulation

1.Electron Move 0.07
2.Spinflip = true:

DetPbyDet 0.07
UpdateConfig 1.44

3.Spinflip = false:
DetPbyDet 0.00
UpdateConfig 0.09

4.Energy calculation
DetPbyDet 0.17
UpdateConfig 1.85
Total 2.91

5.Copyconfig 0.62
Move rejected 0.64

6.Total 6.03
Total VMC 9.07

28



Table 4.6: Execution time for L = 15

Lattice Size Function Execution Time(s)
Equilibration
1.Electron Move 0.19
2.Spinflip = true:

DetPbyDet 0.51
UpdateConfig 25.15

3.Spinflip = false:
DetPbyDet 0.07
UpdateConfig 0.96

4.Copyconfig 12.29
Move rejected 11.99

5.Total 51.74
L = 15 Accumulation

1.Electron Move 0.18
2.Spinflip = true:

DetPbyDet 0.44
UpdateConfig 25.17

3.Spinflip = false:
DetPbyDet 0.03
UpdateConfig 0.98

4.Energy calculation
DetPbyDet 0.80
UpdateConfig 36.50
Total 52.67

5.Copyconfig 12.30
Move rejected 11.61

6.Total 104.05
Total VMC 156.02
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Figure 4.6: Pie chart for L = 9:(a) Split of Equilibration, (b) Split of Accumulation

Figure 4.7: Pie chart for L = 15:(a) Split of Equilibration, (b) Split of Accumulation
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Figure 4.5 gives the execution time for L = 5 using a pie-chart. The upper half

represents the execution time taken by the accumulation procedure. From the chart, we

determine that accumulation is the most time consuming procedure. On further profiling,

we found that the execution time for calculating the energy was higher than other functions.

Further breakdown revealed the most time consuming and computationally intensive part

to be the update of a configuration. Chapter 5 describes the parallelization efforts on GPU

for this procedure. On the lower half of the figure, variables such as, DPBD-T and UPD-T

represents the execution time taken for the case when the spinflip is true.

Figures 4.6, 4.7 gives the execution time for L = 9, 15. From the charts, we find

that the contribution is more when the spinflip is true. Variables DPBD-F and UPD-F

represents the contribution when there is no spin-flip. Based on these charts, we claim that

the speedup of the application will be enhanced, if the individual functions are parallelized

and optimized for effective memory access.

4.7 Multiple MCs and the system behavior

The sequential code can be expanded to a MPI-version performing N MCs in parallel

on N CPU cores. Issues such as the total execution time, parallel and sequential regions

within the equilibration and accumulation stages need to addressed. Let T (N) be the total

execution time to complete N MCs in parallel. Let Te be the equilibration time on a serial

implementation and let Ta be the accumulation time on a serial implementation.

If we execute N MCs on N CPUs in parallel, the total time can be theoretically,

T (N) = (Te + Ta)(N)−1.

Practically, we cannot expect this execution time due to the follwing factors.

• Large equilibration time which will be constant for N MCs.
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• Serial regions within a MC such as: Electron move, DetPbyDet and update of a

configuration.

1. For every MC we start with a random configuration and wait until the system

equilibrates and start accumulating the energy.

2. Since, certain MCs can finish well ahead, there will be a race around condition

in the energy accumulation and average calculation.

• Inter-node communication delays if the number of MCs is of order 100 or more.

Hence, these factors will affect the parallelism approach and we cannot expect a direct

speedup of over N for this algorithm on a MPI model.
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Chapter 5
Porting VMC to CUDA

5.1 GPU Acceleration of the VMC Method

In the previous chapter, we explained the CPU implementation of the VMC method and

determined the hot spots for further parallelization. From Section 4.6, we found that the

CPU implementation is time consuming for lattice models L = 9, 15. Functions such as the

ratio of determinants, update and energy of a configuration are computationally intensive

and exhibit data-level parallelism, thereby becoming the best candidates for parallelization.

Hence, in this chapter, we discuss the several strategies adopted to parallelize the VMC

method for multiple MCs on a NVIDIA GPU using CUDA.

Figure 5.1 represents the workflow for the GPU implementation. Each MC is inde-

pendent and can be executed in parallel on a GPU. Every chain has its own copy of a

configuration object with members such as, Ψ−1, neighbor list, energy and whichpair. The

pairfunction and lattice object are shared by all MCs. A block of CUDA threads will han-

dle a MC and hence we have N parallel CUDA blocks executing in parallel on a NVIDIA

GPU. At the end of each MC, the energy per site is accumulated and the result is written

to the energy array corresponding to that chain. The results are copied back to the CPU,

where the mean energy and standard deviation are calculated. The groundstate, |ΨG〉 is

then optimized with the variational parameters.

5.2 Näıve Implementation

The CUDA implementation described here is based upon a preliminary CUDA port,

which will be called the näıve implementation, performed by [17], an intern student who

worked for the La-Sigma research group at LSU. In this implementation, each MC is han-
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Figure 5.1: VMC Workflow for Multiple Markov Chains (MCs)
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dled by a single CUDA thread and the total number of CUDA blocks were equal to the

number of MCs. This does not utilize the capability of the massively parallel GPU and

hence no improvement was found over the CPU code. With only one thread per block,

the code cannot exceed using 1
32

of the GPU‘s computing potential per warp (group of 32

threads). The other factors contributing to the slowdown being: Higher memory access

latency due to global memory read/write(s) and the lack of usage of shared memory and

constant memory, and unoptimized use of the L1 and L2 caches. Hence, in the following

sections, we describe in detail, the parallelization and effective memory utilization efforts

done to improve this näıve implementation.

5.3 Execution configuration

The number of threads required to obtain occupancy and SM utilization was the de-

ciding factor for our implementation. The threads per MC depends upon the NP of the

given lattice.

On a Fermi device (Architecture model for a NVIDIA GPU) with compute capability

2.X [11], a SM can support 8 resident blocks of threads. However, the total number of

threads per SM cannot exceed 1536 and the shared or L1 cache per SM is limited to 48

or 16 kB. More blocks will increase the warp occupancy per SM, while the shared memory

usage shrinks to a factor of 48/8 = 6 kB per block. Another factor affecting the performance

will be the register usage per SM. On a Fermi device, the total number of registers per

thread values to 63 [12]. If a thread exceeds this limit, it will result in a local memory

spill, which will move the data to high latency global memory [12]. Hence, to avoid higher

access latency and assign enough work for the threads, we pick the number of threads per

block based on the complexity of the functions. The order of these functions are given by:

DetPByDet - O(NP ); Updateconfig - O(N2
P ); CopyConfig - O(2 ∗ NS). If the number of
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threads is set to N2
P , there will be enough threads to cover the latency for UpdateConfig

and CopyConfig. On the contrary, this will reduce the speedup due to sequential zones

such as Electron move and wasteful threads in DetPByDet. If we recall from the previous

chapter, the memory access pattern is distinct for either case of a spinflip of UpdateConfig.

Thus, the number of threads should be in the range of (NP < threads/MC < N2
P ) and

rounded to the nearest multiple of a warp. We discuss more about this in Section 5.6.1.

5.4 Memory requirements and cache behaviour

Though the amount of parallelism in a MC is low, by GPU standards, as this section

will show the working set, careful use of the available high-speed memory will make this

code efficient.

From Section 4.1, we recall the memory requirements for different lattice models. The

total device global memory on a fermi device is approximately 5 ∼ 6 GB. From the Table

4.1, we find that the total memory requirements for a lattice model of size L = 15 is within

the GPU global memory limit. However, global memory has the highest latency compared

to other memory resources on a GPU and hence we need to find effective ways to utilize

the high-speed memories such as, registers, L1/shared, and constant memory [7]. In this

section, we discuss about the caching behaviour on a GPU. Tables 5.1, 5.2 and 5.3 shows

whether each major array used by the code fits into three different parts of the memory

hierarchy for different lattice sizes.

From Table 5.1, arrays such as Ψ−1, pairfunction and plist fits within the L1 cache.

The repeated access of the pairfunction by different MCs will result in caching at L2 level

by the hardware. Consider the lattice model, L = 5: From Table 5.1, we find the size of

Ψ−1 to be 1.152 kB. The total number of threads per MC is 64. Therefore, the total number

of blocks per SM will be 1536/64 = 24. Fermi device has a limit of 8 resident blocks per
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Table 5.1: Speculation of a GPU‘s cache behaviour for L = 5

GPU Memory Ψ−1 Pairfunction Plist
(double) (double) (int)

L = 5 1.152 KB 5.408 KB 96 B
L1 cache/ Yes Yes Yes
shared
L2 cache No Yes.Due No

to sharing
between MC

Constant No No No
Memory

Table 5.2: Speculation of a GPU‘s cache behaviour for L = 9

GPU Memory Ψ−1 Pairfunction Plist
(double) (double) (int)

L = 9 10.952 KB 53.792 KB 296 B
L1 cache/ Yes No Yes
shared
L2 cache No Yes.Due No

to sharing
between M.C

Constant No No No
Memory

SM [8]. The memory consumption per SM will be: Ψ−1 = 1.152 ∗ 8 = 9.216 ∗ 3 = 27.648

kB, since we have three copies of a configuration. This is still within the limit of 48 KB of

L1 cache and hence will be cached by the hardware; The pairfunction will be 5.408 kB and

is within the limit of 64 kB of constant memory; The plist array will be 96 ∗ 3 = 288 B,

for three configurations and still can reside in L1 cache. All these speculations are based

on the assumption that the pairfunction does not evict lines holding Ψ−1. Since, there are

three copies of a configuration and the cache requirements per MC is close to 27 kB, the
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Table 5.3: Speculation of a GPU‘s cache behaviour for L = 15

GPU Memory Ψ−1 Pairfunction Plist
(double) (double) (int)

L = 15 83.232 KB 408.608 KB 816 B
L1 cache/ Yes, but No Yes
shared partly cached
L2 cache Yes. Exceeds Yes. Due No

L1 cache size to sharing
between M.C

Constant No No No
Memory

Table 5.4: Summary of Memory prediction for L = 5

Lattice Threads per Config Ψ−1 Pairfunc Plist SM
MC occupancy

Config1 L1 Constant-Common L1
L = 5 64 Config2 L1 to all MC L1

Config3 L1 L1
Total 27.648 kB 5.408 kB 288 B 1 MC

number of MC per SM will be limited to 1. Table 5.4 summarizes this memory prediction

for L = 5.

For the case of L = 15, the number of threads per MC will be 416; the number of blocks

per SM will be 1536/416 ≈ 3; and the memory consumption for Ψ−1 = 83.232 KB. Hence,

it does not fit within the L1 cache and it will be cached on L2 level by the hardware. This

drawback will be overcome by more threads which will hide the global memory latency due

to coalescing.
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5.5 Memory Access Pattern

In this section, we discuss about the memory access pattern and initial parallelization

efforts for functions such as: DetPByDet (Ratio of determinants) and UpdateConfig (To

update a configuration). Section 5.6 discusses more about the optimization strategies

adopted for these functions.

5.5.1 Function DetPByDet

This function is used to calculate the dot product of Ψ−1 and pairfunction. We followed

these steps to parallelize this function using CUDA:

• Spinflip = up

1. The electron pair, represented by Ipair, will correspond to the column of Ψ−1.

2. A newsite is picked where the electron will be moved.

3. From the lattice occupancy list, given by plist, we find the lattice site of the

electron, given by othsite.

4. Now, the newsite will correspond to the row and the othsite will correspond to

the column of pairfunction.

5. Thus, we perform a dot product of a column of Ψ−1 and a row of pairfunction

using the faster VMC technique given by SMH.

6. In this implementation, we use NP threads to perform the dot product, whereas

[17] uses one thread. Figure 5.2 explains this procedure.
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Figure 5.2: Memory Access Pattern for up spin: (a) Ψ−1, (b) Picking a site from Plist, (c)
Pairfunction
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Figure 5.3: Memory Access Pattern for down spin: (a) Ψ−1, (b) Picking a site from Plist,
(c) Pairfunction
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• Spinflip = down

1. The electron pair, represented by Ipair, will correspond to the row of Ψ−1.

2. A newsite is picked where the electron will be moved.

3. From the lattice occupancy list, given by plist, we find the lattice site of this

electron, given by othsite.

4. Now the newsite will correspond to the column and the othsite will correspond

to the row of pairfunction.

5. Thus, we perform a dot product of a row of Ψ−1 and a column of pairfunction,

thereby summing the contribution using the faster VMC technique given by

SMH.

6. In this implementation, we use NP threads to perform the dot product, whereas

[17] uses one thread. Figure 5.3 explains this procedure.

5.5.2 Function UpdateConfig

• Spinflip = up

1. The electron pair, represented by Ipair, will correspond to a column of Ψ−1.

2. The Ipairth column is updated using the dpbd from function DetPByDet.

3. Now, a dot product is computed between every column of Ψ−1 and a row of

pairfunction.

4. The remaining columns of Ψ−1 are now updated with this dot product.

5. This implementation utilizes NP threads for updating the Ψ−1 and N threads-

per-col to perform the dot product. Figure 5.4 describes this procedure.
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Figure 5.4: Memory Access Pattern for up spin: (a) Ψ−1, (b) Picking a site from Plist, (c)
Pairfunction
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• Spinflip = down

1. The electron pair, represented by Ipair, will correspond to a row of Ψ−1.

2. The Ipairth row is updated using the dpbd from function DetPByDet.

3. Now, a dot product is computed between every row of Ψ−1 and a column of

pairfunction.

4. The remaining rows of Ψ−1 are now updated with this dot product.

5. This implementation utilizes NP threads for updating the Ψ−1 and N threads-

per-col to perform the dot product. Figure 5.5 describes this procedure.

5.6 Optimization efforts

In the previous Section, we mentioned the preliminary parallelization of functions using

CUDA. In this section, we discuss the various memory optimization strategies adopted for

these functions.

5.6.1 Thread selection in depth

Functions such as Updateconfig and Copyconfig have loop bounds on the order of

O(N2
P ) and O(2 ∗NS). An optimal thread selection range for a MC will be within (NP ≤

blocksize ≤ N2
P ). Functions such as updateconfig have different access patterns for either

case of a spinflip. Hence, we set a parameter called, threads-per-col, to determine the

number of threads per CUDA block. The number of threads per block is given by: Blocksize

= Round(threads-per-col*NP ,nearest multiple of warp). Table 5.5 mentions the threads per

block for different lattice models.

44



Figure 5.5: Memory Access Pattern for down spin: (a) Ψ−1, (b) Picking a site from Plist,
(c) Pairfunction
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Table 5.5: Threads per MC and Number of MCs per SM

Lattice Npairs Threads-per-col No.threads No.resident
per MC MCs

per SM
L = 5 12 4 64 24
L = 9 37 4 160 9
L = 15 102 4 416 3

5.6.2 Elimination of redundant copies of a configuration

We predicted the memory requirements and the SM occupancy for L = 5 on Section

5.4. The prediction was done with three copies of a configuration per MC. In this section,

we predict the SM occupancy by eliminating the redundant copies of a configuration.

Table 5.6 calculates the total memory requirements for L = 5 with a single configura-

tion. The SM occupancy (Number of MCs) is given by, 48/9.312 = 5.15 ≈ 5.

Table 5.6: Occupancy calculation for L = 5

Lattice Threads per Config Ψ−1 Pairfunc Plist SM
MC occupancy

L = 5 64 Config1 L1 Constant Memory L1
Total 9.216 kB 5.408 kB 96 B 5 MCs

5.6.3 Optimized memory access pattern

In the previous section, we explained the parallelization efforts for the device functions.

For the function Detpbydet, the dot product can be accumulated and reduced in a shared

memory. This will result in faster reduction compared to the reduction done on a global

memory. For the function Updateconfig, the entire Ψ−1 array is accessed and updated

based on the spinflip. Caching effects can be explored if this function is customized with a
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blocking factor for the L1 cache.

• Function DetPByDet

A total of NP threads work on this function. The dot product of each element of

Ψ−1 and pairfunction is stored in a register for either case of a spinflip. The dot product

of all elements are accumulated and reduced in a shared memory. The pairfunction has a

permuted access and for the case of a down spinflip, a transposed version of the pairfunction

is used. This will result lower cache misses and caching of the pairfunction at L1 level.

Figure 5.6 and 5.7 explains the optimization techniques.

• Function UpdateConfig

For lattice models, L = 5, 9, the Ψ−1 fits within the L1 cache and can be updated

within this memory level. For L = 15, it does not fit within this cache and hence we need

to make use of blocking factor. The following steps illustrate the optimization techniques

for this function.

• Spinflip = up

1. Update the Ipairth column of Ψ−1 with the dpbd parameter. Here, we use NP

threads to update the column.

2. We use the threads-per-col (Tp) parameter to set the row and column index.

3. col = threadIdx.x / threads-per-col; row = threadIdx.x % threads-per-col.

4. Now, these threads (4 as per the code) will work on a column of Ψ−1 and a row

of pairfunction to compute the dot product.

5. Perform a reduction in shared memory to compute the dot product. The dot

product is then used to update the remaining columns of Ψ−1. Figure 5.8 ex-

plains these optimization techniques.
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Figure 5.6: Optimization for up spin: (a) Ψ−1, (b) Plist, (c) Pairfunction, (d) Reduction
on a shared memory.
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Figure 5.7: Optimization for down spin: (a) Ψ−1, (b) Plist, (c) Transposed Pairfunction,
(d) Reduction on a shared memory.
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Figure 5.8: Optimization for up spin: (a) Ψ−1 - update of Ipairth column, (b) Ψ−1 with
threads-per-col, TP , (c) Pairfunction, (d) Ψ−1 - update of other columns.
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• Spinflip = down

1. We use the blocking factor, bfactor to set the row and column index.

2. row = threadIdx.x / bfactor; col = threadIdx.x % bfactor.

3. Set the number of rows per chunk = blocksize/bfactor.

4. Update the Ipairth row of Ψ−1 with the dpbd parameter. NP threads work on

a row.

5. Use the transposed pairfunction to compute the dot product. Perform a reduc-

tion in shared memory to compute the dot product.

6. Use this dot product to update the other columns in Ψ−1. Figure 5.9 shows the

optimization techniques.

• Drawbacks in the Optimization

In function DetPByDet, we access only a row or a column of Ψ−1 and pairfunction to

compute a dot product. In function UpdateConfig, we first update the Ipairth column or

row of Ψ−1, then compute the dot product and finally update the remaining columns or rows

of Ψ−1. Thus, to reduce the amount of work, we suggest a merger of these two functions.

Instead of three function calls to determine the dpbd, given by dpbd = dpbd1 ∗ dpbd2, we

reduce it to a single function call by calculating the dpbd without updating the Ψ−1.

5.7 Merger of Equilibration and Accumulation

If we notice from the Algorithms 4 and 3, the steps of Electron move, Ratio of determi-

nants (DPBD) and Update of a Configuration (UPD) are similar, except the fact that we

calculate the energy of a configuration for Accumulation. Hence, in our GPU implemen-

tation we merged the two algorithms into a single function and reduced the kernel launch

overhead.
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Figure 5.9: Optimization for down spin: (a) Ψ−1 - update of Ipairth row, (b) Ψ−1 with a
blocking factor, bfactor (c) Transposed Pairfunction, (d) Ψ−1 - update of other rows.
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5.8 Streamlined function

In this function, we merged the DetPByDet and the UpdateConfig functions to cal-

culate the dpbd(s) without updating the Ψ−1. We consider either case of a spinflip and

optimize accordingly.

• Spinflip = up

1. Set the column and row index: col = threadIdx.x / TP ; row = threadIdx.x % TP

2. Compute the dot product of Ψ−1 and pairfunction, with TP working on a column.

3. Store the dot product in shared memory. Perform a reduction to obtain the

dpbd1.

4. Set the column index to: col = threadIdx.x

5. The dpbd is stored at the Ipairth index of shared memory.

6. If the col = Ipair, perform the operation of a down spin from DetPByDet.

7. If the col 6= Ipair, multiply the dpbd with the Jpairth row elements of Ψ−1

and subtract from the Ipairth column of Ψ−1. Here Jpair is obtained from the

whichpair array (Tells which pair has an electron of spin “spin” at lattice site

ilat, whichpair(ilat,spin))

8. Multiply again with a row of transposed pairfunction. Accumulate the results

in a shared memory.

9. Perform a reduction to obtain the final dpbd: dpbd = dpbd1 ∗ dpbd2. Thus, we

have merged these operations: dpbd1 = DetPByDet, UpdateConfig, dpbd2 =

DetPByDet into a single function without writing to Ψ−1.
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• Spinflip = down

1. Set the blocking factor, bfactor

2. Set the row and column index: row = threadIdx.x / bfactor; col = threadIdx.x

% bfactor

3. Set the rows-per-chunk: rows-per-chunk = blocksize / bfactor

4. Now compute the dot product of every row of Ψ−1 with every row of transposed

pairfunction. Store the dot product in a shared memory.

5. Perform a reduction inside the shared memory to get the dpbd.

6. Set the row index to: row = threadIdx.x

7. We need to perform the operation of Spinflip = up for DetPByDet.

8. If row = Ipair, obtain the product of Ipairth row and Jpairth column of Ψ−1

with the pairfunction.

9. If row 6= Ipair, multiply the dpbd with the Jpairth column elements of Ψ−1

and subtract from the Ipairth row of Ψ−1. Here Jpair is obtained from the

whichpair array (Tells which pair has an electron of spin “spin” at lattice site

ilat, whichpair(ilat,spin))

• Figure 5.10 and 5.11 explain the techniques followed for either case of a spinflip.
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Figure 5.10: Optimization for up spin: (a) Ψ−1 - with TP , (b) Pairfunction, (c) Reduction
in a shared memory to obtain dpbd1, (d) Calculation of dot product using Jpairth row
of Ψ−1, (e) Calculation of dot product using Transposed pairfunction, (f) Reduction in a
shared memory to obtain the final dpbd: dpbd = dpbd1 ∗Reduction(colval)
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Figure 5.11: Optimization for down spin: (a) Ψ−1 - with TB, (b) Pairfunction, (c) Reduction
in a shared memory to obtain dpbd1, (d) Calculation of dot product using Jpairth column
of Ψ−1, (e) Calculation of dot product using Transposed pairfunction, (f) Reduction in a
shared memory to obtain the final dpbd: dpbd = dpbd1 ∗Reduction(rowval)
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Chapter 6
Results

In this section, we compare our results to the CPU, and MPI implementation [4].

6.1 Input Parameters

The input parameters used to run the VMC method on both CPU and GPU are given

by Table 6.1.

From these parameters we obtain the Ne, NP and NS as per the Table 4.1.

6.2 Comparison between a CPU and GPU code

The CUDA code has been tested on a Tesla M2070 NVIDIA GPU and the results are

benchmarked against a Intel(R)Core(TM)i7-2600 CPU @ 3.40 GHz. The MCs are done in

parallel by a block of CUDA threads on a GPU, whereas a CPU core performs multiple

MCs sequentially. We tested our GPU code by varying the blocking factor, bfactor for the

UpdateConfig and the Streamlined function. Table 6.2 and 6.3 show the speedup compared

to the CPU code for bfactor = 8, 16.

From Table 6.3 we notice a speedup of≈ 2 compared to the GPU code with bfactor = 8.

The speedup is mainly due to the access of 16 words (128 byte transaction) per warp

compared to 8 words (64 byte transaction) for bfactor = 8.

6.3 Comparison between MPI-CPU and GPU code

We compared our CUDA code with the MPI code implemented by[5] using Fortran 90.

The MPI code designates a CPU core per MC. The code has been tested on Philip super-

computer at HPC, LSU. Table 6.4 gives the nodal architecture for Philip supercomputer.

The MPI code written in Fortran 90, suffers from inter-processor and inter-node com-

munication. The massive speedup on a GPU is due to the fact CUDA threads communicate
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Table 6.1: Input Parameters

Parameter Function Value
t First neighbor 1.0

hopping
tp Second neighbor 0.0

hopping
tpp Third neighbor 0.0

hopping
Jex Antiferromagnetic 0.3

exchange
L Lattice 5/9/15
x Hole Doping 0.1
nattemptmax Maximum generation 1000000

attempts
ConditionNumberMin Minimum condition 1.E-07

number
Delta Gap 1.5
mu Chemical Potential 0.0
nsweeps Number of sweeps 10000
neqlsweeps Number of equilibration 5000

sweeps
nfac Sweep factor 1
nbins Number of bins 10
neifrac Neighbor fraction 0.0
naveseeds Number of seeds 1

to average over
selfrac Selection fraction 0.75
iseedseed Seed for random number 13213
nMarkov Number of MCs 32

58



Table 6.2: Comparison of CPU vs GPU Performance for bfactor=8

Lattice No.MCs CPU Exec Time(s) GPU Exec Time(s) Speedup
L = 5 32 22.66 3.19 7.26
L = 9 32 287.13 17.37 16.72
L = 15 32 4992.24 309.72 16.11

Table 6.3: Comparison of CPU vs GPU Performance for bfactor=16

Lattice No.MCs CPU Exec Time(s) GPU Exec Time(s) Speedup
L = 5 32 22.66 2.48 9.13
L = 9 32 287.13 14.44 19.88
L = 15 32 4992.24 256.83 19.43

Table 6.4: Nodal architecture of Philip Supercomputer

Nodal Two 2.93 GHz Quad Core Nehalem Xeon 64-bit Processors
Configuration
No.Processors/node 8
Total No.Nodes 32
DRAM 24GB @ 1333MHz
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Table 6.5: Comparison of MPI vs GPU Performance

Lattice No.MCs MPI Exec Time(s) GPU Exec Time(s) Speedup
L = 5 32 4.89 3.19 1.53
L = 9 32 63.66 17.37 3.66
L = 15 32 1193.687 309.72 3.85

in group of warp (32 threads) and all threads have a barrier synchtonization on a SM.

6.4 GPU results in depth

In this Section, we examine the individuals functions and their percentage of the total

execution time.

Figures 6.1 illustrates the execution time taken by functions such as DPBD and Up-

dateConfig for L = 5. Figures 6.2 - 6.3 illustrates for L = 9, 15.

Table 6.6: GPU execution time in cycles for L = 5

Function No.Cycles
Electron move 420361934
DPBD
DPBD-UP 95922170
DPBD-DN 97922630
Total 193844800
UPD
UPD-UP 322257414
UPD-DN 259125546
Total 581382960
Energy 969450046
Streamlined 1630512656
(DPBD-UPD-DPBD)
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Figure 6.1: Pie chart for L = 5

Table 6.7: GPU execution time in cycles for L = 9

Function No.Cycles
Electron move 1398769542
DPBD
DPBD-UP 321308398
DPBD-DN 351500708
Total 672809106
UPD
UPD-UP 1275117358
UPD-DN 1476716774
Total 2751834132
Energy 6105049222
Streamlined 10717256244
(DPBD-UPD-DPBD)
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Figure 6.2: Pie chart for L = 9

Table 6.8: GPU execution time in cycles for L = 15

Function No.Cycles
Electron move 4958484770
DPBD
DPBD-UP 890322994
DPBD-DN 932234278
Total 1822557272
UPD
UPD-UP 5874557324
UPD-DN 7310109920
Total 13184667244
Energy 48836694164
Streamlined 8600610984504
(DPBD-UPD-DPBD)
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Figure 6.3: Pie chart for L = 15

63



Chapter 7
Conclusion

7.1 Conclusion

The VMC algorithm got extensive speedup compared to the MPI-Fortran implemen-

tation. We obtained nearly 114 times speedup compared to the MPI and nearly 16 times

speedup compared to the C++ version. The MPI implementation suffers from extensive

inter-processor and inter-node communication. Since, one Markov chain is designated to

a MPI-Rank and no further optimization has been deployed, the MPI code does not scale

well with the system size. From the results in the previous section, we observe that our

GPU code gives a linear speedup as the lattice size increases.

7.2 Future Work

From the Algorithm‘s perspective, the ground state energy obtained by the VMC

method will used be used to optimize the variational parameters and study the ground

state properties of a system. The results can be compared with other approaches such as

Exact Diagonalization to provide a better guess for the wavefunction. The GPU code can

be enhanced by increasing the blocking factor for lattice models more than 15. Futher op-

timization can be done by examining the low-level assembly code to reduce the WAR, and

RAW hazards. Possible expansion to multi-GPU(s) and porting it to future accelerators

such as NVIDIA Kepler [13] and Intel Xeon Phi [14] will boost the performance further.
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Appendix A
CUDA code for the Merged
Equilibration and Accumulation stage
__global__ void k_sysAve

(

Configuration d_config,

MonteCarlo d_mcarlo, Lattice d_sqlat, Pairfunction pairfunc, double *d_enearr,

curandState *state

)

{

int tid = threadIdx.x;

int MID = blockIdx.x;

curandState localState = state[MID];

#define dplist(i) d_config.plist[MID*2*npairs+(i)]

#define dlatocc(i) d_config.latocc[MID*nsites+(i)]

#define dwhichpair(i) d_config.whichpair[MID*2*nsites+1+(i)]

__shared__ int idat, nbsamp;

__shared__ int ipair,ispin,oldsite,newsite;

__shared__ bool spin_flip;

bool donenei;

__shared__ double eneloc;

# ifdef COLLECT_CYCLE_COUNTS

// These are declared shared to avoid wasting registers.

__shared__ clock_t timer_start_thread, timer_start_eoc, timer_start_findpairs;

__shared__ clock_t time_eoc, time_findpairs;

# endif

if ( !tid )

{

# ifdef COLLECT_CYCLE_COUNTS

timer_start_thread = clock64();

time_eoc = time_findpairs = 0;

time_detpbydet[0] = time_detpbydet[1] = 0;
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time_update_config[0] = time_update_config[1] = 0;

time_update_config_cnt = time_detpbydet_cnt = 0;

time_d_update_d[0] = time_d_update_d[1] = 0;

time_d_update_d_cnt = 0;

# endif

idat = 0; eneloc = 0.0; nbsamp = 0;

}

// Equilibrate the system by performing a large number of Monte Carlo sweeps

for ( int i2 = 0; i2 < navesweeps + neqlsweeps; i2++ )

{

for (int i = 0; i < npsweep; i++ )

{

if(tid == 0)

{

# ifdef COLLECT_CYCLE_COUNTS

timer_start_findpairs = clock64();

# endif

// Pick a pair and a spin at random

ipair = curand_uniform( &localState ) * dc.npairs_randscaler;

ispin = curand( &localState ) % 2;

oldsite = dplist(ipair*2+ispin);

// Find a site where this electron may be moved

newsite = 0;

while ( newsite == 0 )

{

const float neiprob = curand_uniform( &localState );

donenei = neiprob <= dc.neifrac;

if ( !donenei )

{

newsite = curand_uniform( &localState )

* dc.nsites_randscaler;

}

else

{

const int inei = curand_uniform( &localState )

* dc.nneibs_randscaler;
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newsite = d_sqlat.neiblist[oldsite*nneibs+inei];

}

if ( dlatocc(newsite) != ispin )

{

if ( dlatocc(newsite) == HL )

{

spin_flip = false;

}

else if ( false && dlatocc(newsite) == BT )

{

assert( false );

newsite = 0;

//miscutils::InfoPrint( "****WARNING: Gutzwiller projection violation" );

//exit( 0 );

}

else

{

spin_flip = true;

}

}

else

{

newsite = 0;

}

}

# ifdef COLLECT_CYCLE_COUNTS

time_findpairs += clock64() - timer_start_findpairs;

# endif

}

__syncthreads();

// Note: these were complex doubles in original C++ code

double dpbd;

if ( spin_flip )

{

const int jpair = dwhichpair(newsite*2-ispin);

dpbd = d_UpdateConfig_d

( ipair, ispin, newsite, MID, pairfunc, d_config,

jpair, oldsite );

70



}

else

{

dpbd = DetPByDet_parallel( ipair, ispin, newsite, MID, pairfunc, d_config.PsiInv, d_config.plist );

}

__shared__ bool accept;

if ( !tid )

{

const float norm2 = dpbd * dpbd;

const float prob = curand_uniform( &localState );

accept = norm2 >= prob;

}

__syncthreads();

if ( accept )

{

// Accept the move

if ( !tid ) d_mcarlo.naccept[MID] += 1;

if ( spin_flip )

{

const int jpair = dwhichpair(newsite*2-ispin);

const double dpbd1 =

DetPByDet_parallel

( ipair, ispin, newsite, MID,

pairfunc, d_config.PsiInv, d_config.plist );

// Update the configuration

UpdateConfig_parallel

( ipair, ispin, newsite, MID,

pairfunc, dpbd1, d_config );

const double dpbd2 = DetPByDet_parallel

( jpair, 1-ispin, oldsite, MID,

pairfunc, d_config.PsiInv, d_config.plist );

// Now, move the other spin electron to the old site

UpdateConfig_parallel( jpair, 1-ispin, oldsite, MID, pairfunc, dpbd2, d_config );

if(tid == 0)
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d_mcarlo.nflip[MID] += 1;

}

else

{

UpdateConfig_parallel( ipair, ispin, newsite, MID, pairfunc, dpbd, d_config );

if(tid == 0)

d_mcarlo.nsingle[MID] += 1;

}

if ( donenei )

{

if(tid == 0)

d_mcarlo.nneistep[0] += 1;

}

}

}

if ( i2 < neqlsweeps ) continue;

__syncthreads();

// Now, calculate the energy of the configuration

# ifdef COLLECT_CYCLE_COUNTS

if ( !tid ) timer_start_eoc = clock64();

# endif

const double energyvalue =

EnergyOfCurrentConfiguration( d_config, d_sqlat, pairfunc);

# ifdef COLLECT_CYCLE_COUNTS

if ( !tid ) time_eoc += clock64() - timer_start_eoc;

# endif

if ( !tid )

{

idat++;

eneloc += energyvalue;

if ( idat == ndat )

{

d_enearr[MID*nbins+nbsamp] = eneloc / double( ndat );

nbsamp++; eneloc = 0.0; idat = 0;
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}

}

}

if ( !tid )

{

d_mcarlo.nsteps[MID] = navesweeps * npsweep;

# ifdef COLLECT_CYCLE_COUNTS

clock_t time_total = clock64() - timer_start_thread;

timers[blockIdx.x].total = time_total;

timers[blockIdx.x].eoc = time_eoc;

timers[blockIdx.x].detpbydet[0] = time_detpbydet[0];

timers[blockIdx.x].detpbydet[1] = time_detpbydet[1];

timers[blockIdx.x].detpbydet_cnt = time_detpbydet_cnt;

timers[blockIdx.x].update_config[0] = time_update_config[0];

timers[blockIdx.x].update_config[1] = time_update_config[1];

timers[blockIdx.x].update_config_cnt = time_update_config_cnt;

timers[blockIdx.x].d_update_d[0] = time_d_update_d[0];

timers[blockIdx.x].d_update_d[1] = time_d_update_d[1];

timers[blockIdx.x].d_update_d_cnt = time_d_update_d_cnt;

timers[blockIdx.x].findpairs = time_findpairs;

# endif

}

#undef dplist

#undef dlatocc

#undef dwhichpair

}
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Appendix B
Device Functions
// Energy of a configuration

__device__ double

EnergyOfCurrentConfiguration

( Configuration d_config, Lattice d_sqlat, Pairfunction pairfunc )

{

int MID = blockIdx.x;

__shared__ double enekloc, otheloc, spkeloc[2];

// ***---------------------------------------------------------

// Kinetic energy part of the Hamiltonian

// _

// H = -\sum t ( c c )

// t (i,j) ij is js

// ***---------------------------------------------------------

#define PsiInv(r,c) d_config.PsiInv[MID*npairs*npairs+(r)*npairs+(c)]

#define Plist(i) d_config.plist[MID*2*npairs+(i)]

{

const int ispin = 0; // Down

// The variables below need to be tuned.

const int thd_per_jn = 1;

const int thd_per_ipair = thd_per_col;

const int my_1st_ipair = threadIdx.x % thd_per_ipair;

const int my_1st_col = threadIdx.x / thd_per_ipair % thd_per_jn;

const int jn = threadIdx.x / ( thd_per_ipair * thd_per_jn );

double thread_sum = 0;

if ( jn < nneibs )

{

for (int ipair = my_1st_ipair; ipair < npairs; ipair += thd_per_ipair )

{

const int isite = Plist(ipair*2+ispin);

const int jsite = d_sqlat.neiblist[jn+nneibs*isite];
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if ( d_config.latocc[MID*nsites+jsite] == HL )

for ( int col = my_1st_col; col < npairs; col += thd_per_jn )

thread_sum +=

TPairfunc(Plist(col*2+1),jsite) * PsiInv(ipair,col);

}

thread_sum *= d_sqlat.thop_ishell[jn];

}

const double sum =

reduce_dbl_buffer( thread_sum, nneibs * thd_per_ipair * thd_per_jn );

if ( !threadIdx.x )

{

enekloc = sum;

spkeloc[ispin] = sum;

}

}

{

const int ispin = 1; // Up

const int thd_per_jn = 1;

const int thd_per_ipair = thd_per_col;

const int my_1st_ipair = threadIdx.x % thd_per_ipair;

const int my_1st_row = threadIdx.x / thd_per_ipair % thd_per_jn;

const int jn = threadIdx.x / ( thd_per_ipair * thd_per_jn );

double thread_sum = 0;

if ( jn < nneibs )

{

for (int ipair = my_1st_ipair; ipair < npairs; ipair += thd_per_ipair )

{

const int isite = Plist(ipair*2+ispin);

const int jsite = d_sqlat.neiblist[jn+nneibs*isite];

if ( d_config.latocc[MID*nsites+jsite] == HL )

for ( int row = my_1st_row; row < npairs; row += thd_per_jn )

thread_sum +=

Pairfunc(jsite,Plist(row*2)) * PsiInv(row,ipair);

}
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thread_sum *= d_sqlat.thop_ishell[jn];

}

const double sum =

reduce_dbl_buffer(thread_sum, nneibs * thd_per_jn * thd_per_ipair);

if ( !threadIdx.x )

{

enekloc += sum;

spkeloc[ispin] = sum;

}

}

#undef PsiInv

#undef Plist

// ***---------------------------------------------------------

// Now compute the Exchange Term

// _ _ 1

// H = J ( S .S - --- n n ) Term

// J i j 4 i j

// ***---------------------------------------------------------

if ( !threadIdx.x ) otheloc = 0.0;

for ( int inn = 0; inn < nearnsets; inn++ )

{

const int isite = d_sqlat.nearnp[inn*2+0];

const int jsite = d_sqlat.nearnp[inn*2+1];

// Note ispin is used as spin here.

const int sispin = d_config.latocc[MID*nsites+isite];

const int jspin = d_config.latocc[MID*nsites+jsite];

if ( sispin + jspin == 1 )

{

const int jpair =

d_config.whichpair[MID*2*nsites+jsite*2+jspin];

const int sipair =

d_config.whichpair[MID*2*nsites+isite*2+sispin];

const double e = d_UpdateConfig_d
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( sipair, sispin, jsite, MID, pairfunc, d_config, jpair, isite );

if ( !threadIdx.x ) otheloc -= e + 1;

}

}

double energy = 0;

if ( !threadIdx.x )

{

otheloc = Jij * otheloc / 2.0;

energy = ( enekloc + otheloc ) / double( nsites );

d_config.energy[MID] = energy;

d_config.kinenergy[MID] = ( spkeloc[0] + spkeloc[1] ) / double( nsites );

d_config.othenergy[MID] = otheloc;

d_config.modified[MID] = false;

}

return energy;

}

// Reduction Routine

//

// Uses dbl_buffer, so cannot be mixed with other code using dbl_buffer.

//

__device__ double

reduce_dbl_buffer(double val, int size, bool pre_written = false)

{

// Return sum of VAL for threads 0 to SIZE-1.

// If PRE_WRITTEN is true, ignore VAL and use value already in dbl_buffer.

const int tid = threadIdx.x;

__shared__ double sum;

__syncthreads(); // Don’t write sum too early.

if ( !pre_written )

{

if ( tid < size + 31 ) dbl_buffer[tid] = val;

__syncthreads();

}

const bool one_warp = size <= WP_SZ;

// Optimization-friendly, sync-free code for a single-warp block.
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# define STEP(offset) if ( tid < offset ) \

dbl_buffer[tid] += dbl_buffer[tid + offset];

if ( tid < WP_SZ )

{

if ( !one_warp )

for ( int i = tid + WP_SZ; i < size; i += WP_SZ )

dbl_buffer[tid] += dbl_buffer[i];

if ( size >= 16 ) STEP(16);

STEP(8); STEP(4); STEP(2); STEP(1);

if ( !tid ) sum = dbl_buffer[0];

}

__syncthreads();

return sum;

#undef STEP

}

__device__ double

reduce_dbl_buffer(int size)

{

// Return sum of values already in dbl_buffer, from index 0 to size-1

return reduce_dbl_buffer(0,size,true);

}

// Ratio of Determinant of the configurations - DetPByDet

__device__ double DetPByDet_parallel

(

int ipair, int spin, int newsite, int mid,

Pairfunction pairfunc, double *d_PsiInv, int *d_plist

)

{

#define PsiInv(r,c) d_PsiInv[mid*npairs*npairs+(r)*npairs+(c)]

#define Plist(i) d_plist[mid*2*npairs+(i)]

# ifdef COLLECT_CYCLE_COUNTS

__shared__ clock_t time_start;

if ( !threadIdx.x ) time_start = clock64();
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# endif

double ans = 0.0;

const int i = threadIdx.x;

if ( spin == UP )

{

if(i<npairs)

{

int othsite = Plist(i*2); // 0 for DN

ans = Pairfunc(newsite,othsite) * PsiInv(i,ipair);

}

}

else if ( spin == DN )

{

if(i<npairs)

{

int othsite = Plist(1+i*2); // 1 for UP

ans = TPairfunc(othsite,newsite) * PsiInv(ipair,i);

}

}

#undef PsiInv

#undef Plist

const double sum = reduce_dbl_buffer(ans,npairs);

# ifdef COLLECT_CYCLE_COUNTS

if ( !threadIdx.x )

{

time_detpbydet[spin==DN?0:1] += clock64() - time_start;

time_detpbydet_cnt++;

}

# endif

return sum;

}

//Update of a configuration

__device__ void UpdateConfig_parallel
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(

int ipair, int ispin, int newsite, int mid, Pairfunction pairfunc, double dpbdt, Configuration d_config

)

{

const int tid = threadIdx.x;

# ifdef COLLECT_CYCLE_COUNTS

__shared__ clock_t timer_start;

if ( !threadIdx.x ) timer_start = clock64();

# endif

# define dPsiInv(i) d_config.PsiInv[ mid * npairs * npairs + (i) ]

# define dplist(i) d_config.plist[mid*2*npairs + (i) ]

# define dwhichpair(i) d_config.whichpair[mid*2*nsites + (i)]

# define dlatocc(i) d_config.latocc[mid*nsites + (i)]

// First, update the pair list and lattice occupancy

if(tid == 0) {

const int oldsite = dplist(ipair*2+ispin);

dplist(ipair*2+ispin) = newsite;

dwhichpair(oldsite*2+ispin) = 0;

if ( dlatocc(oldsite) == BT )

{

dlatocc(oldsite) = 1-ispin;

}

else

{

dlatocc(oldsite) = HL;

}

if ( dlatocc(newsite) == 1-ispin )

{

dlatocc(newsite) = BT;

}

else

{

dlatocc(newsite) = ispin;

}
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dwhichpair(newsite*2+ispin) = ipair;

}

__syncthreads();

// Now, update PsiInv

if ( ispin == UP )

{

// First, update the ipair-th column of PsiInv

if ( tid < npairs ) dPsiInv(ipair+tid*npairs) /= dpbdt;

__syncthreads();

// Update the other columns

// WARNING: block size must be >= thd_per_col * npairs.

const int my_col = threadIdx.x / thd_per_col;

const int my_1st_row = threadIdx.x % thd_per_col;

if ( my_col < npairs && my_col != ipair )

{

double fac = 0.0;

for ( int i = my_1st_row; i < npairs; i+=thd_per_col)

{

const int othsite = dplist(i*2);

fac += dPsiInv(i*npairs+my_col) * Pairfunc(newsite,othsite);

}

if ( thd_per_col > 1 )

{

if ( my_1st_row == 0 ) dbl_buffer[my_col] = fac;

for ( int k = 1; k < thd_per_col; k++ )

if ( my_1st_row == k ) dbl_buffer[my_col] += fac;

fac = dbl_buffer[my_col];

}

for ( int i = my_1st_row; i < npairs; i+=thd_per_col )

dPsiInv(i*npairs+my_col) -= fac * dPsiInv(i*npairs+ipair);

}

__syncthreads();

}

// all threads
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else if ( ispin == DN )

{

// First, update the ipair-th row of PsiInv

if ( tid < npairs ) dPsiInv(ipair*npairs+tid) /= dpbdt;

__syncthreads();

// Update the other rows

const int ispin = 1;

const int bfactor = 8; // Blocking factor.

const int my_1st_row = tid / bfactor;

const int my_1st_col = tid % bfactor;

const int nthds = blockDim.x; // nthds must be a mult of bfactor.

const int rows_per_chunk = nthds / bfactor;

for ( int my_row = my_1st_row; my_row < npairs; my_row += rows_per_chunk )

if ( my_row != ipair )

{

double fac = 0.0;

// Compute sum of "our" row elements.

for ( int i = my_1st_col; i < npairs; i+= bfactor )

{

const int othsite = dplist(i*2+ispin);

fac += dPsiInv(i+npairs*my_row) * TPairfunc(othsite,newsite);

}

// Get sum of entire row.

if ( bfactor == 8 && DBL_BUFFER_SIZE >= blockDim.x + 4 )

{

// Optimize for popular value of bfactor.

dbl_buffer[tid] = fac;

fac = dbl_buffer[tid] = fac + dbl_buffer[tid+1];

fac = dbl_buffer[tid] = fac + dbl_buffer[tid+2];

dbl_buffer[tid] = fac + dbl_buffer[tid+4];

fac = dbl_buffer[my_1st_row * bfactor];

}

else if ( bfactor > 1 )

{

if ( my_1st_col == 0 ) dbl_buffer[my_row] = fac;
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for ( int k = 1; k < bfactor; k++ )

if ( my_1st_col == k ) dbl_buffer[my_row] += fac;

fac = dbl_buffer[my_row];

}

// Update row using sum.

for ( int i = my_1st_col; i < npairs; i+=bfactor )

dPsiInv(my_row*npairs+i) -= fac * dPsiInv(ipair*npairs+i);

}

__syncthreads();

}

if ( !threadIdx.x )

{

d_config.modified[mid] = true;

# ifdef COLLECT_CYCLE_COUNTS

time_update_config[ispin==DN?0:1] += clock64() - timer_start;

time_update_config_cnt++;

# endif

}

# undef dplist

# undef dPsiInv

# undef dwhichpair

# undef dlatocc

}

//Streamlined function - DetPByDet-UpdateConfig-DetPByDet

__device__ double d_UpdateConfig_d

( int ipair, int spin, int newsite,

int mid, Pairfunction pairfunc, Configuration d_config,

int jpair, int isite )

{

const int tid = threadIdx.x;

# ifdef COLLECT_CYCLE_COUNTS

__shared__ clock_t timer_start;

if ( !threadIdx.x ) timer_start = clock64();
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# endif

double rv = 0;

# define dPsiInv(r,c) d_config.PsiInv[ mid*npairs*npairs + npairs*(r) + (c) ]

# define dplist(i) d_config.plist[mid*2*npairs + (i) ]

if ( spin == UP )

{

// WARNING: block size must be >= thd_per_col * npairs.

const int my_col = threadIdx.x / thd_per_col;

const int my_1st_row = threadIdx.x % thd_per_col;

double fac = 0.0;

if ( my_col < npairs )

{

for ( int i = my_1st_row; i < npairs; i+=thd_per_col)

{

const int othsite = dplist(i*2);

fac += dPsiInv(i,my_col) * Pairfunc(newsite,othsite);

}

if ( thd_per_col > 1 )

{

if ( my_1st_row == 0 ) dbl_buffer[my_col] = fac;

for ( int k = 1; k < thd_per_col; k++ )

if ( my_1st_row == k ) dbl_buffer[my_col] += fac;

fac = dbl_buffer[my_col];

}

}

__syncthreads();

double col_val = 0;

if ( tid < npairs )

{

const int my_col = tid;

const int othsite = dplist(my_col*2+1);

const double fac = dbl_buffer[my_col];

const double dpbdt = dbl_buffer[ipair];

col_val =

my_col == ipair
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? ( dPsiInv(jpair,ipair) * TPairfunc(newsite,isite) )

: ( ( dPsiInv(jpair,my_col) * dpbdt - fac * dPsiInv(jpair,ipair) )

* TPairfunc(othsite,isite) );

}

rv = reduce_dbl_buffer(col_val,npairs);

}

else

{

// Update the other rows

const int ispin = 1;

const int bfactor = 8; // Blocking factor.

const int my_1st_row = tid / bfactor;

const int my_1st_col = tid % bfactor;

const int nthds = blockDim.x; // nthds must be a mult of bfactor.

const int rows_per_chunk = nthds / bfactor;

__syncthreads();

for ( int my_row = my_1st_row; my_row < npairs; my_row += rows_per_chunk )

{

double fac = 0.0;

// Compute sum of "our" row elements.

for ( int i = my_1st_col; i < npairs; i+= bfactor )

{

const int othsite = dplist(i*2+ispin);

fac += dPsiInv(my_row,i) * TPairfunc(othsite,newsite);

}

// Get sum of entire row.

if ( bfactor == 8 && DBL_BUFFER_SIZE >= blockDim.x + 4 )

{

// Optimize for popular value of bfactor.

dbl_buffer[tid] = fac;

fac = dbl_buffer[tid] = fac + dbl_buffer[tid+1];

fac = dbl_buffer[tid] = fac + dbl_buffer[tid+2];

if ( my_1st_col == 0 )

dbl_buffer[blockDim.x+my_row] = fac + dbl_buffer[tid+4];

}
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else if ( bfactor > 1 )

{

if ( my_1st_col == 0 ) dbl_buffer[my_row] = fac;

for ( int k = 1; k < bfactor; k++ )

if ( my_1st_col == k ) dbl_buffer[my_row] += fac;

fac = dbl_buffer[my_row];

if ( my_1st_col == 0 )

dbl_buffer[blockDim.x+my_row] = fac;

}

}

__syncthreads();

double row_val = 0;

if ( tid < npairs )

{

const int my_row = tid;

const int othsite = dplist(my_row*2);

const double fac = dbl_buffer[blockDim.x+my_row];

const double dpbdt = dbl_buffer[blockDim.x+ipair];

row_val =

my_row == ipair

? ( dPsiInv(ipair,jpair) * Pairfunc(isite,newsite) )

: ( ( dPsiInv(my_row,jpair) * dpbdt - fac * dPsiInv(ipair,jpair) )

* Pairfunc(isite,othsite) );

}

rv = reduce_dbl_buffer(row_val,npairs);

}

# ifdef COLLECT_CYCLE_COUNTS

if ( !threadIdx.x )

{

time_d_update_d[spin==DN?0:1] += clock64() - timer_start;

time_d_update_d_cnt++;

}

# endif

# undef dplist

# undef dPsiInv

return rv; }
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