
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2013

Detection of Interesting Traffic Accident Patterns
by Association Rule Mining
Harisha Donepudi
Louisiana State University and Agricultural and Mechanical College, harisha.lsu@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Donepudi, Harisha, "Detection of Interesting Traffic Accident Patterns by Association Rule Mining" (2013). LSU Master's Theses.
2585.
https://digitalcommons.lsu.edu/gradschool_theses/2585

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2585&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2585?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

DETECTION OF INTERESTING TRAFFIC ACCIDENT PATTERNS BY

ASSOCIATION RULE MINING

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master of Science in Systems Science

in

The Department of Electrical and Computer Engineering

by

Harisha Donepudi

B.E., Anna University, 2010

August 2013

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my major professor Dr. Omer Soysal for his valuable

teachings, continuous support and guidance that motivated me to pick my thesis topic in the field of data

mining. He is a great mentor and guided me through every step of my thesis.

My sincere thanks to Dr. Jianhua Chen, co-chair of my thesis committee for her valuable teachings,

encouragement, guidance and suggestions that helped during my research.

I would also like to thank Dr. Jian Zhang for accepting my request to be a part of the thesis committee.

Finally, I thank my parents and grandparents for supporting my education till now and encouraging me

to do thesis. It was their motivation and trust which made my degree possible.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. ii

LIST OF FIGURES ..iv

ABSTRACT ... vii

1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Problem Statement .. 1

1.3 Objectives ... 1

1.4 Definitions... 1

2 BACKGROUND .. 3

3 PREVIOUS WORK ... 4

4 METHOD ... 6

4.1 Data Preprocessing .. 6

4.2 Detecting MASPs .. 7

4.2.1 Detail Explanation of the Algorithm Detecting MASP ... 9

4.3 Generating Frequent Pattern-Tree ... 18

4.3.1 Detail Explanation of the Algorithm Generating FP-tree .. 18

4.4 Generate K-Pattern Tree ... 22

4.4.1 Detail Explanation of the Algorithm Generate K-Pattern Tree .. 23

4.5 Forming rules from K-Pattern tree .. 30

4.5.1 Detail Explanation of the Algorithm .. 31

4.6 Data Structure ... 32

4.7 Complexity .. 37

4.8 Data Export Module .. 37

4.9 User Interface .. 37

5 EXPERIMENTS AND RESULTS ... 40

5.1 Data ... 40

5.2 Experimental Setup ... 40

5.3 Results and Discussion .. 40

6 CONCLUSION AND FUTURE WORK ... 44

REFERENCES .. 45

VITA ... 47

iv

LIST OF FIGURES

1. Properties of interestingness measures [7] .. 4

2. Null invariant measures [14] ... 5

3. MASP Framework .. 6

4. Converting raw data to bin data and bin data to encoded data .. 7

5. Blocks of MASP1 at the level 1, where the MASP1=(V11) .. 7

6. MASP blocks at the level k=2, where the MASP1= (V11, V41) ... 8

7. Data table .. 9

8. Item distribution of the candidate block .. 10

9. Bmax and P ... 10

10. Counter block and P .. 11

11. Candidate block and P ... 11

12. Block, counter block and P ... 11

13. Candidate block and P ... 12

14. Block, P and M ... 12

15. Candidate block, block , counter block, P and M .. 13

16. Candidate block, P and M ... 14

17. Candidate block, block, P and M .. 15

18. Candidate block, P and M ... 15

19. Candidate block, block, counter block, P and M... 16

20. Candidate block and M ... 17

21. Data table .. 19

22. Item-Value and frequency table .. 19

23. Root initialization .. 19

24. Point cursor to the root .. 19

25. Point cursor to the current node .. 19

v

26. Stepwise illustration of adding nodes.. 20

27. Adding nodes for next transaction .. 20

28. Illustration for adding nodes ... 21

29. FP-tree obtained .. 22

30. Basic structure of K-pattern tree ... 23

31. FP-tree with child positions .. 24

32. 2P-tree and List ... 24

33. 2P-tree and List ... 24

34. List .. 24

35. 2P-tree and List ... 25

36. 2P-tree and List ... 25

37. Stepwise construction of 2P-tree ... 26

38. Final 2P-tree .. 28

39. Construction of 3P-tree ... 28

40. 3P-tree ... 30

41. Array and look up table ... 31

42. Comparison of different data structures [16] .. 33

43. Code snippet for MASP implementation .. 34

44. Data structure for MASP ... 34

45. Code snippet for node implementation ... 34

46. Linked-list implementation of a directed tree (LL: Linked-list) ... 35

47. Code snippet for K-pattern tree implementation ... 36

48. Data structure for K-pattern tree. Values in the parenthesis are given as an example. 36

49. Association rule data structure .. 37

50. User interface .. 39

51. MASP21 ... 40

52. Rules from MASP21 .. 41

53. MASP515 .. 41

vi

54. MASP388 .. 42

55. Rules from MASPs blocks, in the form (MASP), antecedent consequent 42

56. MASPs detected for support 0.3%, confidence 30% and alpha =1 ... 43

vii

ABSTRACT
In recent years, the accident rate related to traffic is high. Analyzing the crash data and extracting

useful information from it can help in taking respective measures to decrease this rate or prevent the crash

from happening. Related research has been done in the past which involved proposing various measures

and algorithms to obtain interesting crash patterns from the crash records. The main problem is that large

numbers of patterns were produced and vast number of these patterns would be obvious or not interesting.

A deeper analysis of the data is required in order to get the interesting patterns. In order to overcome this

situation, we have proposed a new approach to detect the most associated sequential patterns in the crash

data. We also make use of the technique, “Association Rule Mining” to mine interesting traffic accident

patterns from the crash records. The main goal of this research is to detect the most associated sequential

patterns (MASP) and mine patterns within the data sets generated by MASP using a modified FP-growth

approach in regular association rule mining. We have designed and implemented data structures for

efficient implementation of algorithms. The results extracted can be further queried for pattern analysis to

get a deeper understanding. Efficient memory management is one of the main objectives during the

implementation of the algorithms. Linked list based tree structures have been used for searching the

patterns. The results obtained seemed to be very promising and the detected MASPs contained most of the

attributes which gave a deeper insight into the crash data and the patterns were found to be very interesting.

A prototype application is developed in C# .NET.

1

1 INTRODUCTION
Today, data plays a major role in all the aspects. Mining data has become one of the emerging fields.

In the field of data mining, many techniques have been proposed to extract useful information from the

available data. Analyzing the data and retrieving useful information from it is data mining. Association rule

mining is one of the techniques in data mining which is widely used to find relations hidden within data.

1.1 Motivation

 Crash patterns can be identified by association rule mining, but all crash patterns found are not

interesting and useful. Most of the rules obtained are obvious. There are various measures suggested in the

field of association rule mining to find interesting patterns according to their target problem and hence no

measure is universally best across all application domains [9].

The items with high frequency in the data may hinder the generation of interesting association rules.

Most of the rules generated would involve the high frequency attribute values in them. In order to avoid

this, we have proposed an algorithm to find the most associated sequential patterns and their respective

blocks/counter blocks to be mined with respect to the association strength threshold.

1.2 Problem Statement

Finding interesting rules is one of the main problems in the field of association rule mining. Apriori

and FP-Growth algorithms are more often used to find frequent item sets from the data. Vast number of

these patterns would be obvious or not interesting. A new approach “Detecting MASPs” is presented in this

thesis to find the most associated sequential patterns and also generate data sets (blocks) along with it that

contains the transactions to be mined to find interesting patterns. A prototype application is developed in

C# .NET.

1.3 Objectives

The objectives of this thesis are efficient implementation of the MASP and several other data mining

algorithms proposed by Dr. Soysal and applying the proposed approach to the traffic accident data for

detection of interesting patterns.

1.4 Definitions

 Data table, D: A set of all records which is consisted of attribute-value pairs.

 Attribute set: A = {Ai}, where i = 1, 2, .., |A|

 Set of classes of an attribute: Vi = {Vij}, where i = 1, 2, .., |A| and j = 1, 2, .., |Vi|

 Item: Each unique attribute-value pair is called an item. As a remark, each element of a record is

an instance of the item.

 Itemset: Any set of items. An itemset can be considered as a pattern.

 Transaction: An instance of the data table.

 Most associated sequential pattern (MASP): A sequential itemset (I1, I2, .., Ii-1, Ii, .., IK) where a

child item Ii has the highest frequency given its parent (I1, I2, .., Ii-1) among the other items at the

level i and satisfies the association strength threshold is named as MASP. That is the probability

P(Ii | I1, I2, .., Ii-1) is the maximum over the transactions conditioned to the parent MASP.

Sometimes MASPt is used to identify a specific MASP; for simplicity, we omit the subscript ‘t’

otherwise needed. A MASP pattern is sequential because each item in the pattern depends on the

sub-pattern before the item.

 Association Strength Threshold: Association strength threshold is used to decide

whether an item to be included in a MASP; where the weight adjust the strength of the threshold

and is the minimum confidence. Notice that the range of the alpha value is [⁄].
 Item-max: An item Ik at a level k is the item-max IMAX of the MASP(k-1).

 Item-space: The item space at a level k is the set of transactions retrieved from the data table by

the query statement of the level.

 Block: A set of transactions which is obtained by the query of the MASP. A MASP query is

composed of three parts: 1) select clause formed by from the all attributes in the predicate

excluding the ones which have the equality form of “attribute=value” in predicate of the MASP, 2)

2

Data source which is the set of all transactions to be mined, and 3) the predicate which is

composed with conjunctions of the items in the MASP. Hereafter, |B| denotes the number of

transactions in a block B.

 Counter-block: A set of transactions which are obtained by the query whose predicate is formed

with replacing the logical operator of the last item of the MASP with “inequality”; the select

clause is formed after this replacement as in formation of its block.

 Q(D): Q(D) is defined as a query to obtain a subset of the data table.

 FP-tree: The classic frequent-pattern tree is a tree structure defined below.

“1. It consists of one root labeled as “null”, a set of item-prefix subtrees as the children of the root,

and a frequent-item-header table.

2. Each node in the item-prefix subtree consists of three fields: item-name, count, and node-link,

where item-name registers which item this node represents, count registers the number of

transactions represented by the portion of the path reaching this node, and node-link links to the

next node in the FP-tree carrying the same item-name, or null if there is none.

3. Each entry in the frequent-item-header table consists of two fields, (1) item-name and (2) head

of node-link (a pointer pointing to the first node in the FP-tree carrying the item-name)” [1].

 K-Patterns: An itemset of length K is called K-patterns.

 Frequent pattern: A pattern is frequent if its count is greater than or equal to the minimum

support.

Note that the notion of our most associated sequential pattern (MASP) is different from the traditional

sequential patterns [2] in the association rule mining literature. The items in the well-known concepts of

sequential patterns are associated with a time stamp and aims at finding the frequently occurring sequences

to predict the future data or mining the periodical patterns. For example “80% customers who bought a

phone also bought a case and then bought the screen guard with certain time gap.” On contrast, the items in

the MASP are in a sequential order and do not have time stamps. A sequential pattern is like (I1, I2)(I3)(I4,

I5). In a normal pattern, the order of the items does not matter, but in our approach, the items in the pattern

are called sequential due to the order of the items. For example (I1, I2) is different from (I2, I1).

3

2 BACKGROUND
“Association rules are if/then statements that help uncover relationships between seemingly unrelated

data in a relational database or other information repository” [2]. “An association rule is an implication

expression of the form , where and are disjoint itemsets. i.e., ∩ = Φ. The strength of the

association rule can be measured in terms of its support and confidence” [3]. “The support of an association

rule is the percentage of groups that contain all of the items listed in that association rule” [5]. “Support

determines how often a rule is applicable to a given data table” [3]. The confidence of the rule is defined as

the ratio of the proportion of the transaction in the data set that contains all the items in the rule to the

proportion of the transaction in the data set that contains all the items in the rule antecedent. “Confidence

determines how frequently items in Y appear in transactions that contain X” [3]. Given a rule , where

 is the antecedent and is the consequent, and the data set of size N, the support and confidence are

defined by the equations (1) and (2). The interestingness of the association rule is measured using lift. The

lift is defined as the ratio of the confidence of the rule to the expected confidence of the rule. The expected

confidence of the rule is defined as the product of the support of the antecedent and the consequent divided

by the support of the antecedent [5]. The lift value can be calculated using equation (3).

 ()

 ()

(eq 1)

 ()

 ()

 ()

(eq 2)

 ()

 ()

 ()

(eq 3)

http://searchsqlserver.techtarget.com/definition/relational-database

4

3 PREVIOUS WORK
The algorithms to mine association rules generate large number of patterns and it is not feasible for an

expert to go through all possible patterns to assess them. The support and confidence acts as a primary and

secondary filter in rule mining [6]. One of the methods used to cope up with such an amount of output

depends on using association rule interestingness measure. Finding interesting patterns has become one of

the important criteria in the field of association rule mining. In [7], it is stated that many measures were

proposed to determine the interestingness of association patterns but they provide conflicting information

about the interestingness of a pattern. This paper suggests to consider several key properties in order to

select the right measure for a given application domain and the measures with their properties are shown in

Figure 1.

The interestingness measures may not produce all the interesting patterns. Some patterns produced by

these measures may not be interesting to the user. Most of the objective interestingness measures can be

transformed to subjective measures by replacing the average probability by the expected probability.

Figure 1 Properties of interestingness measures [7]

Several factors like disjunct size, the imbalance of the class distribution, attribute costs,

misclassification costs and asymmetry in classification rules are often neglected which influence the

interestingness of the rule. A new criterion called attribute surprisingness is introduced and these factors are

discussed in [8].

The objective measures indicate the support and degree of correlation of a pattern for the data

considered. They automatically remove the obvious rules. “The objective measure is based only on the raw

data and no knowledge of the user or application is required” [9]. The subjective measures take the

knowledge of the user who uses the data into account. The semantic measures are special type of subjective

measures that considers the semantics and explanations of the patterns. [9].

A rule selection framework was proposed in “Structure-Based Rule Selection Framework for

Association Rule Mining of Traffic Accident Data” which classifies, selects and filters the rules based on

the rule structures. This framework consists of semantic rule classification and permutation analysis. The

5

semantic rule classification involves classifying the rules to candidate, strongly, abundant and weakly

abundant while the permutation analysis filters the equivalent but less significant ones and the rules that

cover the other rules are selected and the ones being covered are discarded [10].

In [11] and [12], the association rules generated from the crash data are filtered using the measures

support, confidence and lift. The lift is considered as the parameter in order to obtain interesting rules. The

rules with higher lift values were considered as interesting rules. We have used the same measures in

obtaining the association rules from the MASP blocks.

The traffic safety has become one of the highest priorities of the government. Black spots and black

zones in terms of crash data and location characteristics are determined in [6]. Patterns at high frequency

accident locations are obtained and compared with the patterns at low frequency accident locations. “The

strength of this approach lies within the identification of relevant variables that make a strong contribution

towards a better understanding of accident circumstances and the discerning of descriptive accident patterns

from more discriminating accident circumstances to profile black spots and black zones” [6]. The

interestingness measure used is

 where and is the support of rules in high frequency

accident locations and low frequency accident locations respectively [6].

An association rule that contains more than one dimension or predicate is known as multidimensional

association rule. In [13], the multidimensional association rules were found in the crash records which

could mine the conditional factors of the traffic accidents.

Piatetsky-Shapiro’s properties aim at specifying what a good measure is. The three key properties of

Piatetsky-Shapiro for a Rule and Measure M are as follows [7].

 P1: M = 0 if and are statistically independent;

 P2: M monotonically increases with P(,) when P() and P() remain the same;

 P3: M monotonically decreases with P() (or P()) when the rest of the parameters (P(,) and

P() or P()) remain unchanged.

The transactions that do not contain item (antecedent) and item (consequent) has no influence on

the result. This is called null invariance property and the null invariant measures are in Figure 2 [14].

Figure 2 Null invariant measures [14]

Some methods were proposed in selecting appropriate interestingness measures like multi-criteria

decision approach towards measure selection [15], the property matching [7], match expert ranking with

the measure ranking [7]. In multi-criteria decision approach each measure is analyzed with respect to the

properties and evaluated. The intuition of property matching approach is there is no measure that is

consistently better than others in all application domains. This is because different measures have different

intrinsic properties, some of which may be desirable for certain applications but not for others. Thus in

order to find the right measure, we need to match the desired properties of an application against the

properties of the existing measures. In matching expert ranking with the measure ranking t is practically not

possible for an expert to rank all the tables manually, so a smaller set of contingency tables are given to the

experts for ranking and use this information to determine the most appropriate measure.

6

4 METHOD
The main objective of the proposed method is to obtain MASPs and conduct the pattern mining over

the block of each MASP. In construction of a MASP, the item-space is searched to find the most frequent

item IMAX. The IMAX is added to the MASP under construction if it satisfies the two conditions as 1)

minimum support and 2) association strength threshold. The formation of the MASP is finalized when no

item is found in the item-space of the last level.

The detected MASPs are further utilized to obtain sub-sets of the data table. These sub tables are

further mined to generate association rules. We have used modified version of the FP-Tree proposed in [1]

to generate frequent patterns and the K-Pattern tree proposed by Dr. Soysal to generate rules. Figure 3

shows the overall framework of association rule mining by MASPs. The framework is composed of four

main steps as

 Data preprocessing

 Detecting MASPs

 Generating patterns

o Generating FP-Tree

o Generating K-Pattern tree

 Finding association rules

Figure 3 MASP Framework

4.1 Data Preprocessing

Association rule mining uses discrete data; hence the input data must be preprocessed so that the

continuous data is discretized. After the discretization, the records are encoded to speed up the search

process and to reduce memory allocation cost.

In our application, the user will be able to get the data for the selected attributes from the source data

table and will be able to discretize the numeric data. By default, the bin type is set to default. The user can

either give the total number of bins, or give the bins directly.

Example: Let us consider the values of an attribute A={62.5, 76.6, 72.4, 15.3}, Bins={0, 10, 20, 30,

40, 50, 60, 70, 80, 90}. When a value lies between x and y then the value is replaced with x. Therefore the

continuous data is discretized as A_dis= {60, 70, 70, 10}.

Once the bins are set, the raw data is converted into Bin data. The Bin data is encoded by giving

unique id to each discrete value starting from 1; Figure 4 illustrates the discretization process.

Data preprocessing

Detecting MASP

Generating FP-Tree

Generating K-Pattern tree

Finding Association Rules

7

Figure 4 Converting raw data to bin data and bin data to encoded data

4.2 Detecting MASPs

In the second step, all of the most associated sequential patterns are detected. A frequent item is

decided to be most associated if it passes the association strength threshold whose range is [0, 1]. This

threshold is equal to or greater than the minimum confidence. In sequel, we explain MASP detection

process.

Let MASP1 = {} and the occurrence of the item V11 is higher than the others. If the occurrence of V11

is greater than or equal to the association strength threshold, then IMAX = is added to the MASP

resulting in MASP1 = (). As seen in Figure 5, each IMAX divides its parent’s block into two children data

set as the block and the counter-block. Similarly ̅ is checked whether it should be added to the MASP or

not.

Figure 5 Blocks of MASP1 at the level 1, where the MASP1=(V11)

The formation of the Block11 is a resultant of a query. This query consists of select clause, where

clause and the data source of encoded data. The select clause includes the attributes other than the attributes

of the items of the form “attribute = value” in the MASP’s where-clause. The where clause includes

conjunction of the items in MASP. Let’s assume that the occurrence of in the block Block11 satisfies

the MASP’s thresholds, so V41 is added to the MASP1. Similarly the block and counter blocks for V41 are

formed as seen in Figure 6 MASP1= (,).

If the occurrence of ̅ in the block Block11 satisfies the MASP’s thresholds, ̅ is added to a new

MASP2= (, ̅).
This process continues until there is no data left or until a set of records (block) with no item satisfies

the MASP’s thresholds is found. As a remark, a block is obtained from the encoded data table using the

most associated sequential pattern.

A1 A2 A3

A1 A2 A3

A1 A2 A3

a c 62.5 a c 60 1 4 7

a d 76.5 a d 70 1 5 8

b d 72.5 b d 70 2 5 8

c e 15.3

c e 10

3 6 9

Raw Data

Bin Data

Encoded Data

Encoded Data

V
11

Block
11

 ̅ Counter Block
11

8

Figure 6 MASP blocks at the level k=2, where the MASP1= (V11, V41)

The final blocks obtained from each MASP are individually mined to generate association rules. Once

the final blocks are generated, each block is processed to find K-Patterns. In order to generate patterns, we

need to first form the FP- tree. “A large database is compressed into a condensed, smaller data structure,

FP-tree which avoid the costly, repeated database scans” [1]. In our FP- tree construction we do not use the

frequent item header table. We have proposed a different approach to generate K-patterns from the FP-tree

which is discussed in the algorithms section of this paper.

From the K- frequent patterns, the possible combinations of antecedent and consequent are formed and

checked if they satisfy the minimum support and confidence given by the user in order to generate

association rules. The algorithm proposed is discussed below.

Algorithm Detecting MASPs:

Inputs:

 Data table D

to be mined, the attribute set A, and set of classes of an attribute Vi as defined in

section 1.4 Definitions.

 The association strength threshold, .

 The threshold Smin to decide whether an item is frequent.

Output:

The set of MASPs.

Steps:

A) Initialize

1. P = {Q(D)} //set of all candidate block queries to be processed

2. M = {} //Set of all block queries to be mined

B) Repeat until P = {}:

1. CanB = P(1) //Candidate-block

2. P = P \ P(1) //First in first out

3. Within CanB , obtain distributions Si={Count1, Count2, ..} of each Ai and the set S={S1,

S2, .., S|A|}, i = 1, 2, .., |Vi|, in CanB.

4. Obtain the set SmaxA = {max{Si} Smin} from S

5. If SmaxA {}, //that is CanB does not have any frequent itemset

5.1. Find Smax={max{SmaxA}} and obtain the most associated item Imax.

5.2. If Attribute_Name(last item of CanB) = Attribute_Name(Imax)

5.2.a. Remove the last item of the CanB

5.3. If Smax SO (= O |CanB|) //association strength threshold condition

5.3.a. Form block Bmax of the item Imax

Block
11

V
41

Block
41

 ̅

Counter Block
41

9

5.3.b. If |Bmax| >0

i. Add Bmax to P

5.3.c. Else

i. Add Bmax to M

5.3.d. Form the counter-block CrB of Imax

5.3.e. If |CrB| Smin

i. If O > 0.5 Or Smax > |CanB| (1 - O) //Under-

representing condition as a short-cut

1. Add CrB to M

ii. Else

1. Add CrB to P

5.3.f. Else

i. Indicate that the block will not be mined

ii. Add CrB to M

5.4. Else

5.4.a. Add CanB to M

6. Else

6.1. Check if the Candidate block is a block or a counter block

6.1.a. If CanB’s last item is of the form (Attribute ≠ Value)

i. Indicate that the block will not be mined

ii. Add CanB to M

6.1.b. Else

i. Add Parent block of the candidate block to M

4.2.1 Detail Explanation of the Algorithm Detecting MASP

The algorithm is discussed with an illustration. Let us consider a data table D as represented in Figure 7.

Minimum support = 20% 2 records, and association strength threshold = 30% 3 records. Initialize the

set of candidate blocks P= {D} and the set of MASPs M = {}. Since P is not empty, the candidate block,

CanB = P(1) = D, P= P \ P(1) ={}. According to step B.3, the distribution of each item in the candidate

block is obtained as shown in

Figure 8.

A1 A2 A3 A4 A5

V11 V21 V31 V41 V51

V11 V21 V32 V41 V53

V11 V22 V31 V42 V52

V11 V21 V32 V42 V52

V11 V22 V32 V43 V52

V11 V22 V32 V43 V52

V12 V22 V31 V44 V51

V12 V22 V31 V44 V51

V12 V23 V31 V45 V51

V12 V23 V32 V46 V51

Figure 7 Data table

10

Item Frequency

A1=V11 6

A1=V12 4

A2=V21 3

A2=V22 5

A2=V23 2

A3=V31 5

A3=V32 5

A4=V41 2

A4=V42 2

A4=V43 2

A4=V44 2

A4=V45 1

A4=V46 1

A5=V51 5

A5=V52 4

A5=V53 1

Figure 8 Item distribution of the candidate block

SmaxA is obtained as in step B.4, SmaxA = { N(V11)= 6, N(V12) = 4, N(V21) = 3, N(V22) = 5, N(V23) =

2, N(V31) = 5, N(V32) = 5, N(V41) = 2, N(V42) = 2, N(V43) = 2, N(V44) = 2, N(V51) = 5, N(V52) = 4},

where N(X) gives the number of transactions having X. Since SmaxA {}, SmaxA ={max{SmaxA}} ={ N(V11)

=6}. Imax = V11. Step B.5.2 indicates whether the last item of the CanB MASP’s attribute is same as the

V11’s attribute name, i.e. A1. Since MASP is currently empty, we can proceed to step B.5.3 that involves

checking if Smax is greater than or equal to association strength threshold, S0. S0= 0.3×|CanB|= 0.3×10=3

records. From this it is seen that Smax > S0. According to step B.5.3.a form a block Bmax from item Imax. The

first step to form a block is adding Imax to the predicate part (MASP) of the query and the second step is

adding all attributes of the candidate block, CanB except the attribute of the item, A1 to the select clause.

So the query of Bmax obtained is “SELECT A2, A3, A4, A5 FROM encoded data table WHERE

A1=V11”. Thus, the block Bmax is the set of transactions formed by querying the encoded data table with

the above query. Since |Bmax| >0, we add the query of Bmax to P as shown in Figure 9.

A2 A3 A4 A5

V21 V31 V41 V51

V21 V32 V41 V53

V22 V31 V42 V52

V21 V32 V42 V52

V22 V32 V43 V52

V22 V32 V43 V52

Bmax

Figure 9 Bmax and P

 QUERY

P(1) Select A2, A3, A4, A5 from encoded data

table where A1=V11

11

Now, we have to form the counter block, see step B.5.3.d in the algorithm. The first step to form the

counter block is adding Imax to the predicate (MASP) of the query with inequality, i.e. A1≠ V11 and the

second step is adding all the attributes of the candidate block CanB. Thus, the counter block CrB is the set

of transactions formed by querying the encoded data table with the query “Select A1, A2, A3, A4, A5 from

encoded data table where A1≠V11”. According to Step B.5.3.e |CrB |=4 is greater than minimum support =

2, and O =0.3 which is less than 0.5, so we add the counter block CrB to P as shown in Figure 10.

A1 A2 A3 A4 A5

V12 V22 V31 V44 V51

V12 V22 V31 V44 V51

V12 V23 V31 V45 V51

V12 V23 V32 V46 V51

CrB

 QUERY

P(1) Select A2, A3, A4, A5 from encoded data

table where A1=V11

P(2) Select A1, A2, A3, A4, A5 from encoded

data table where A1≠V11

Figure 10 Counter block and P

According to step B, repeat the logic until P is empty. CanB = P(1) = Select A2, A3, A4, A5 from

encoded data table where A1=V11. P=P \ P(1). Refer Figure 11, to find the updated candidate block, CanB

and P.

A2 A3 A4 A5

V21 V31 V41 V51

V21 V32 V41 V53

V22 V31 V42 V52

V21 V32 V42 V52

V22 V32 V43 V52

V22 V32 V43 V52

CanB

 QUERY

P(1) Select A1,A2, A3, A4, A5 from encoded

data table where A1≠V11

Figure 11 Candidate block and P

Within the CanB it is seen that Smax = 4. Imax

can be either V32 or V52. Let us consider Imax as A3=

V32. Since Smax > S0, we form the block. Since the |Bmax| >0, we add Bmax to P. The counter block of Imax is

obtained. Since |CrB| = Smin and O <0.5 we add counter block into P as shown in Figure 12.

A2 A4 A5

V21 V41 V53

V21 V42 V52

V22 V43 V52

V22 V43 V52

Bmax
Figure 12 Block, counter block and P

CrB

12

 QUERY

P(1) Select A1,A2, A3, A4, A5 from encoded

data table where A1≠V11

P(2) Select A2, A4, A5 from encoded data

table where A1=V11, A3=V32

A2 A3 A4 A5

V21 V31 V41 V51

V22 V31 V42 V52

CrB

 QUERY

P(1) Select A1,A2, A3, A4, A5 from encoded

data table where A1≠V11

P(2) Select A2, A4, A5 from encoded data

table where A1=V11, A3=V32

P(3) Select A2, A3, A4, A5 from encoded

data table where A1=V11, A3≠V32

Figure 12 continued

P is not empty, so CanB = P(1) = Select A1,A2, A3, A4, A5 from encoded data table where A1≠V11.

P = P \ P(1), refer to Figure 13.

A1 A2 A3 A4 A5

V12 V22 V31 V44 V51

V12 V22 V31 V44 V51

V12 V23 V31 V45 V51

V12 V23 V32 V46 V51

CanB

 QUERY

P(1) Select A2, A4, A5 from encoded data

table where A1=V11, A3=V32

P(2) Select A2, A3, A4, A5 from encoded

data table where A1=V11, A3≠V32

Figure 13 Candidate block and P

Smax =4, Imax is A1=V12. It is seen that Smax > S0. According to step B.5.2 the attribute of last item of

MASP is same as the attribute of Imax, so we have to remove the last item of MASP and then form Bmax,

refer Figure 14.

A2 A3 A4 A5

V22 V31 V44 V51

V22 V31 V44 V51

V23 V31 V45 V51

V23 V32 V46 V51

Bmax

Figure 14 Block, P and M

13

 QUERY

P(1) Select A2, A4, A5 from encoded data

table where A1=V11, A3=V32

P(2) Select A2, A3, A4, A5 from encoded

data table where A1=V11, A3≠V32

P(3) Select A2, A3, A4, A5 from encoded data

table where A1=V12

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5

from encoded data table where A1≠V11,

A1≠V12

Figure 14 continued

Counter Block is formed according to step B.5.3.d and it is seen that there are no rows in counter

block. So we add the Counter to M indicating that the candidate block will not be mined. Since P is not

empty, CanB = P(1) = Select A2, A4, A5 from encoded data table where A1=V11, A3=V32. P=P \ P(1).

Within the CanB it is seen that Smax = 3. Imax is A5=V52. Since Smax > S0, we form the block. Since |Bmax|

>0, add |Bmax| to P. Form the counter-block CrB of Imax. Since | CrB| < Smin, indicate that the counter

block will not be mined and add CrB to M, see Figure 15.

A2 A4 A5

V21 V41 V53

V21 V42 V52

V22 V43 V52

V22 V43 V52

CanB

 QUERY

P(1) Select A2, A3, A4, A5 from encoded data

table where A1=V11, A3≠V32

P(2) Select A2, A3, A4, A5 from encoded data

table where A1=V12

A2 A4

V21 V42

V22 V43

V22 V43

Bmax

Figure 15 Candidate block, block , counter block, P and M

14

 QUERY

P(1) Select A2, A3, A4, A5 from encoded

data table where A1=V11, A3≠V32

P(2) Select A2, A3, A4, A5 from encoded

data table where A1=V12

P(3) Select A2, A4 from encoded data table

where A1=V11, A3=V32, A5 = V52

A2 A4 A5

V21 V41 V53

CrB

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5

from encoded data table where A1≠V11,

A1≠V12

M(2) Don’t Mine-Select A2, A4, A5 from

encoded data table where A1=V11,

A3=V32, A5≠V52

Figure 15 continued

Since P is not empty. CanB = P(1) and P = P \ P(1). The CanB items are found to fall below

association strength threshold, so add CanB to M according to step B.5.4, refer Figure 16.

A2 A3 A4 A5

V21 V31 V41 V51

V22 V31 V42 V52

CanB

 QUERY

P(1) Select A2, A3, A4, A5 from encoded data

table where A1=V12

P(2) Select A2, A4 from encoded data table

where A1=V11, A3=V32, A5 = V52

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5 from

encoded data table where A1≠V11, A1≠V12

M(2) Don’t Mine-Select A2, A4, A5 from encoded

data table where A1=V11, A3=V32, A5≠V52

M(3) Select A2, A3, A4, A5 from encoded data table

where A1=V11, A3≠V32

Figure 16 Candidate block, P and M

15

P is not empty, so CanB = P(1) and P = P \ P(1). Since |Bmax| >0, add |Bmax| to P. Within the CanB it is

seen that Smax = 4. Imax is A5=V51. Since Smax > S0, we form the block. Since |Bmax| >0, add |Bmax| to P. The

counter block has no rows, so indicate that the CrB will not be mined and add CrB to M, see Figure 17.

A2 A3 A4 A5

V22 V31 V44 V51

V22 V31 V44 V51

V23 V31 V45 V51

V23 V32 V46 V51

CanB

 QUERY

P(1) Select A2, A4 from encoded data table

where A1=V11, A3=V32, A5 = V52

A2 A3 A4

V22 V31 V44

V22 V31 V44

V23 V31 V45

V23 V32 V46

Bmax

 QUERY

P(1) Select A2, A4 from encoded data table

where A1=V11, A3=V32, A5 = V52

P(2) Select A2, A3, A4 from encoded data

table where A1=V12, A5=V51

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5 from

encoded data table where A1≠V11, A1≠V12

M(2) Don’t Mine-Select A2, A4, A5 from encoded

data table where A1=V11, A3=V32, A5≠V52

M(3) Select A2, A3, A4, A5 from encoded data table

where A1=V11, A3≠V32

M(4) Don’t Mine-Select A2, A3, A4, A5 from

encoded data table where A1=V12, A5≠V51

Figure 17 Candidate block, block, P and M

A2 A4

V21 V42

V22 V43

V22 V43

CanB

Figure 18 Candidate block, P and M

16

 QUERY

P(1) Select A2, A3, A4 from encoded data

table where A1=V12, A5=V51

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5 from

encoded data table where A1≠V11, A1≠V12

M(2) Don’t Mine-Select A2, A4, A5 from encoded

data table where A1=V11, A3=V32, A5≠V52

M(3) Select A2, A3, A4, A5 from encoded data table

where A1=V11, A3≠V32

M(4) Don’t Mine-Select A2, A3, A4, A5 from

encoded data table where A1=V12, A5≠V51

M(5) Select A2, A4 from encoded data table where

A1=V11, A3=V32, A5 = V52

Figure 18 continued

P is not empty, so form the candidate block, CanB = P(1) and P = P \ P(1). The Smax =2 is obtained

from the CanB in Figure 18. Since Smax <S0, according to step 5.4, add CanB to M, see Figure 18.

It is seen that the P in Figure 18 is not empty, so CanB = P(1). P=P/P(1)={}. Smax =3, Imax is A3=V31.

It is seen that Smax = S0, so form the block. Since |Bmax| >0, add |Bmax| to P. Form the counter block.

Since |CrB| < Smin, indicate that the counter block will not be mined and add it to M, see Figure 19.

A2 A3 A4

V22 V31 V44

V22 V31 V44

V23 V31 V45

V23 V32 V46

CanB

A2 A4

V22 V44

V22 V44

V23 V45

Bmax

 QUERY

P(1) Select A2, A4 from encoded data table

where A1=V12, A5=V51, A3=31

Figure 19 Candidate block, block, counter block, P and M

17

A2 A3 A4

V23 V32 V46

CrB

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5 from

encoded data table where A1≠V11, A1≠V12

M(2) Don’t Mine-Select A2, A4, A5 from encoded

data table where A1=V11, A3=V32, A5≠V52

M(3) Select A2, A3, A4, A5 from encoded data table

where A1=V11, A3≠V32

M(4) Don’t Mine-Select A2, A3, A4, A5 from

encoded data table where A1=V12, A5≠V51

M(5) Select A2, A4 from encoded data table where

A1=V11, A3=V32, A5 = V52

M(6) Don’t Mine-Select A2, A3, A4 from encoded

data table where A1=V12, A5=V51, A3≠31

Figure 19 continued

P is not empty, therefore form the candidate block, CanB = P(1) and P = P \ P(1). P is {}. Smax=2.

Since Smax <S0, according to step B.5.4, add CanB to M, refer Figure 20.

A2 A4

V22 V44

V22 V44

V23 V45

CanB

 QUERY

M(1) Don’t Mine - Select A1, A2, A3, A4, A5 from

encoded data table where A1≠V11, A1≠V12

M(2) Don’t Mine-Select A2, A4, A5 from encoded

data table where A1=V11, A3=V32, A5≠V52

M(3) Select A2, A3, A4, A5 from encoded data table

where A1=V11, A3≠V32

M(4) Don’t Mine-Select A2, A3, A4, A5 from

encoded data table where A1=V12, A5≠V51

M(5) Select A2, A4 from encoded data table where

A1=V11, A3=V32, A5 = V52

M(6) Don’t Mine-Select A2, A3, A4 from encoded

data table where A1=V12, A5=V51, A3≠31

M(7) Select A2, A4 from encoded data table

where A1=V12, A5=V51, A3=31

Figure 20 Candidate block and M

18

Since P is {}, the final blocks to be mined and MASP is obtained. Each block in M is mined to

generate association rules. Thus for each block FP-Tree is formed, frequent patterns are mined and

association rules are generated.

4.3 Generating Frequent Pattern-Tree

There are various approaches in the field of association rule mining to find K-patterns. One of it is

finding k-patterns from the FP-tree [1]. We have implemented the FP-tree without the header table. The

header table consists of the items sorted and their frequency head that allows us to traverse the FP-tree to

find patterns by following the link of each frequent item. This approach occupies memory and consumes

more time to find the following link in the FP-tree. In order to avoid this, we directly traverse through each

node of the FP-tree and form 2-tree with the items in it saved along with the linked list of address location

which are further used to generate K-patterns, K>2. This address location contains the address of the node

in the FP-tree which helps directly accessing the node in the FP-tree. Since we used a linked list, a

continuous memory block is not required. The steps involved in the construction of FP-tree are discussed in

the algorithm.

Algorithm FP-Tree Generation:

Input: Count array C(I1) (or support value S(I1)) of I1, data table D = {T(z)}. Ordered frequent 1-itemset

I1 can be needed if the transaction items does not have a fix order; e.g., T(z) = (a,b,c) or T(z) = (b,a,c). In

our implementation, we assume T(z) of D come in a fixed order.

Output: FP-Tree

Steps:

A. Initialize:

1. Create a root node of the tree RooT

B. Constructing branches:

1. Repeat until no transaction left //Traversing transactions T(z) of D

1.1. Set transaction cursor tc to the next transaction

1.2. Get the item counts

1.3. Sort the items of T(z) //Item index for T(z, j=null)

1.4. Set current root cursor crc as RooT

1.5. Repeat until no item left // Traversing items of transaction T(z)

1.5.1. Search CNs of the root pointed by crc whether item = crc(CN).item

1.5.2. If SearchChilds(*) returns a CN

1.5.2.1. Then increase CN.count by 1,

1.5.3. Else

1.5.3.1. Add a new child (CN) to the node pointed by crc

1.5.3.2. Set CN.item = item and set CN.count = 1

1.5.4. Point crc to CN

4.3.1 Detail Explanation of the Algorithm Generating FP-tree

The algorithm is illustrated with an example. Let us consider a block with set of transactions given in

Figure 21 and minimum support as 3 records. The items that satisfy the minimum support are represented

in Figure 22. According to step A, initialize the root as shown in Figure 23. Step B deals with the

construction of branches. The following process is repeated until no transaction is left.

According to step B.1.1, set the transaction cursor tc to first transaction. The count of each is obtained

from the Item-Value and frequency table. The order of the items sorted in the transaction is 1, 2, 4, 6, 8. Set

the current cursor crc as root according to B.1.4 as shown in Figure 24.

19

A1 A2 A3 A4 A5 A6 A7 A8

1 2 4 6 8

1 2 3 4 5 6 7

1 5 7

 2 5 8

1 2 3 4 6 8

Figure 21 Data table

Item Value Frequency

1 4

2 4

4 3

5 3

6 3

8 3

Figure 22 Item-Value and frequency table

.

Figure 23 Root initialization

Figure 24 Point cursor to the root

For each item in the transaction, search the children nodes, CN of the root pointed by crc whether item

is same as the current node item. Since the current node, crc is root and there are no children currently, we

add a new child CN to the node pointed by crc. The child node’s item is set to the item 1 and its count is set

to 1. The child node is represented as “child node item : child node count”, that is, 1:1 and Point crc to CN,

refer to step B.1.5.4 as seen in Figure 25.

Figure 25 Point cursor to the current node

The same process is repeated for all the items and this process is illustrated stepwise in Figure 26.

root

root crc

root

1:1

crc root

1:1 crc

20

Figure 26 Stepwise illustration of adding nodes

Figure 27 Adding nodes for next transaction

crc

root

1:1

2:1

4:1

root

1:1

2:1

crc 4:1

root

1:1

2:1

crc 6:1

root

1:1

2:1

4:1

crc 8:1

6:1

root

1:2

2:1

4:1

crc

8:1

6:1

21

Figure 28 Illustration for adding nodes

All the items in the first transaction are processed so we go to the next transaction, refer to the step

B.1.1. The count of each item is retrieved from the Item-Value and frequency table and the items are sorted

according to the count as 1, 2, 4, 5, and 6. The crc is set to root and for every item in the transaction search

the children nodes, CN of the root pointed by crc whether item = crc(CN) item. The item is 1 and it is the

CN of the crc. Therefore increase its count by 1 and point the crc to CN as seen in Figure 27. Similarly the

other items are processed which are illustrated in Figure 28. This process continues until no transaction is

left and the FP-Tree is obtained as in Figure 29.

root

1:2

2:2

4:1

crc

8:1

6:1

4:2

root

1:2

2:2

crc

8:1

6:1 crc

8:1

6:1 5:1

4:2

root

1:2

2:2

crc 8:1

6:1 5:1

4:2

root

1:2

2:2

6:1

22

Figure 29 FP-tree obtained

From this FP-Tree obtained, the Pattern trees are generated.

4.4 Generate K-Pattern Tree

The K-patterns are generally obtained from the FP-tree. Since our FP-tree does not have the header

table, we have proposed a new approach to find the K-patterns. The patterns are stored in a tree like

structure.

Algorithm to generate K-pattern trees:

Input: FP-tree.

Output: k-Pattern Tree.

Steps:

A. Initialize:

2. Create the 2-pattern Tree’s root root2P.

3. Add all children of the FP-Tree’s root rootFP to the List

B. Constructing 2-Patterns Tree:

1. Repeat until no item left in the List

1.1. Read the first item in the List as the current node of the FP-tree (cnFP),

1.2. Delete the first item from the List.

1.3. If cnFP is not a child of root2P, then

1.3.1. Add it as a child to the root2P.

1.4. Set the parent of cnFP as the current ancestor node (caFP)

1.5. Repeat until caFP reaches rootFP

1.5.1. Find root2P’s child (as the parent2P) whose name matches the name of caFP

1.5.2. Add cnFP as a child to the parent2P

1.5.3. Set the parent of caFP as the new caFP

8:2

6:2 5:1

4:2

root

1:3

2:2

6:1

2:1

8:1

5:1 5:1

23

1.6. Add child (or children) of cnFP to the List at the position where cnFP is deleted.

2. Delete the parent node that has no children.

C. Constructing k-Patterns Tree (k>2):

1. Create the k-pattern Tree’s root rootKP.

2. Create an empty List.

3. Repeat for all children pK_1 of the (k-1)-Pattern Tree

3.1. Repeat for all children cK_1 of pK_1,

3.1.1. If cK_1 satisfies the min support, then

3.1.1.1. Add (pK_1.name, cK_1.name) as pK to the rootKP

3.1.1.2. Repeat for all items nK_1 in the list of cK_1

3.1.1.2.1. Add all children of the cK_1 of the FP-tree to the List

3.1.1.2.2. Repeat until no item left in the List

3.1.1.2.2.1. Read the first item in the List

3.1.1.2.2.2. If the item is a child of pK

3.1.1.2.2.2.1. Add the item to this child’s list as a new node

3.1.1.2.2.3. Else

3.1.1.2.2.3.1. Add the item as a new node to the pK

3.1.1.2.2.4. Add child (or children) of the node in FP-tree to the List

3.1.1.2.2.5. Delete the first item from the List

3.1.1.3. if pK has no child, then delete pK.

4.4.1 Detail Explanation of the Algorithm Generate K-Pattern Tree

The frequent patterns are generated in the form of tree structure. A sample FP-Tree is shown Figure

30. Each child with its parent is a pattern. The algorithm is illustrated with an example. Let us generate the

patterns from the FP-Tree given in Figure 31.

Figure 30 Basic structure of K-pattern tree

root K-P

K-1 Parent1 K-1 Parent2

K-1 Parent3

C2 C1 ..…. C2 C1 ..…. C2 C1 ..….

24

Figure 31 FP-tree with child positions

Initialize the root of the 2P-tree and add all the children of the FP-Tree root to the List. The list

contains the items in the form address : item : frequency, refer to Figure 32.

Figure 32 2P-tree and List

 Construction of 2P-tree, refer to section D in the algorithm 4.4.1.1
Repeat until no item is left in the list. Read the first item of the list from bottom as the current node of

the FP-tree cnFP. Set cnFP = P0 : i1 : 3. Delete the first item from the List. If cnFP is not a child of root2P,

then add it as a child to the root2P, refer to Figure 33. Add the child of cnFP to the list at the position where

cnFP is deleted, refer Figure 34.

Figure 33 2P-tree and List

Figure 34 List

P4 : i2 : 1

P0 : i1 : 3

P4 : i2 : 1

List

P4 : i2 : 1

P3 : i3 : 1

P1 : i2 : 2

List

P4

P1

P0

P5 P3

P2

root

i1:3 i2:1

i2:2 i3:1 i3:1

i3:2

Root2P

List

i1

Root2P

25

According to step B.1, we have to repeat the process until there are no items left in the List. Read the

first item of the List from the bottom as cnFP and delete it from the list. cnFP = P1 : i2 : 2. Since cnFP is

not the child of root2P, add it as a child to the root2P, as in Figure 35.

Figure 35 2P-tree and List

Step B.1.4, indicates to set caFP as P0: i3: 3. Step B.1.5, indicates to repeat the following until caFP

reaches root. Find root2P’s child (as the parent2P) whose name matches the name of caFP , add cnFP as a

child to the parent2P and set the parent of caFP as the new caFP. Now caFP = root2P. So exit the loop at

step B.1.5 and add the child of cnFP to the list, refer Figure 36. Since the list is not empty, the same

procedure is repeated which is shown in Figure 37.

Figure 36 2P-tree and List

P4 : i2 : 1

P3 : i3 : 1

List

P4 : i2 : 1

P3 : i3 : 1

P2 : i3 : 2

List

i1

Root2P

i2

i2 P1 : 2

i1

Root2P

i2

26

cnFP = P2 : i3 : 2 P4 : i2 : 1

 P3 : i3 : 1

 List

cnFP = P3 : i3 : 1 P4 : i2 : 1

 List

caFP = root

(b)

Figure 37 Stepwise construction of 2P-tree

Root2P

i1 i2

i2 P1 : 2 i3 P2 : 2

i3

i3 P2 : 2 caFP = P1 : i2 : 2

caFP = P0 : i1 : 3

(a)

Root2P

i1 i2

i2 P1 : 2 i3 P2 : 2

i3

i3 P2 : 2 P3 : 1

caFP = P0 : i1 : 3

27

cnFP = P4 : i2 : 1 List = {}

caFP = root

cnFP = P4 : i2 : 1 List = {}

caFP = root List = {}

Figure 37 continued

P5 : i3 : 1

List

(c)

Root2P

i1 i2

i2 P1 : 2 i3 P2 : 2

i3

i3 P2 : 2 P3 : 1

Root2P

i1 i2

i2 P1 : 2 i3 P2 : 2

i3

i3 P2 : 2 P3 : 1

P5 : 1

caFP = P0 : i1 : 3

(d)

28

Step 2 in the algorithm indicates to delete the parent node that has no children. Since i3 has no children

we can remove it. The final 2P-tree is Figure 38.

Figure 38 Final 2P-tree

 Construction of 3P-tree, refer to section E in the algorithm 4.4.1.2
Step C explains the construction of K-pattern tree where K>2. The procedure involves creation of K+1

pattern tree using K-pattern tree. A Root3P is created and an empty list is created. Let us consider the

minimum support as 2. According to step C.3 for each child of the parent, where parent is the child of

Root2P in K-pattern tree , that is 2-pattern tree, if the child satisfies the minimum support add (parent

name, child name) as parent pK to the Root 3P. It is seen that i2 satisfies the minimum support. Therefore a

new parent node is added to Root3P as shown in Figure 39 (a). For each position of the child in the FP,

tree, add all children of the child of the FP-tree to the List and repeat the following until no item is left in

the list according to step C.3.1.1.2.2. The position P1 has only one child, P2 : i3: 2 and the position P4 has

one child, P5 : i3 : 1. For P1, the item i3 is added into the list and read the first item in the list. Check if the

item is a child of the current parent. Since it is not, add a new child i3 with its address as shown in Since P2

has no children, no further items are added into the list. Remove the first item. For P4, the item i3 is added

into the list and read the first item in the list. Check if the item is a child of the current parent. Since it is,

just increase its count and add its position as shown in Figure 39 (b). Since P2 has no children, no further

items are added into the list. Remove the first item. For P4, the item i3 is added into the list and read the

first item in the list. Check if the item is a child of the current parent. Since it is, just increase its count and

add its position as shown in Figure 39 (c).

Figure 39 Construction of 3P-tree

Root2P

i1 i2

i2 P1 : 2 i3 P2 : 2

i3 P2 : 2 P3 : 1

P5 : 1

Root3P

i1, i2

(a)

29

Figure 39 continued

Since P2 has no children, no further items are added into the list. Remove the first item. The next

child is i3 and it satisfies the minimum support according to step C. 3.1.1. It is seen that there is no children

futher, so the parent will also have no children. According to step C..1.1.3, delete the current pk, that is

i1,i3. The loop is executed for all the children, so we move to the next parent of 2P-tree, which is i2.

According to step 3.1.1 it is seen that the child i3 satisfies the minimum support, therefore, we add

a new parent i2,i3. The position of i3 is P2 and P5, and it is seen that they have no further children. So, the

current parent node will also not have any children. According to step C.3.1.1.3, delete the current pk, that

is i2,i3. The loop E3 ends as there are no further parent nodes in 2P- tree. The final 3P-tree is shown in

Figure 40.

P2 : i3 : 2

List

P5 : i3 : 1

List

(b)

Root3P

i1, i2

i3 P2 : 2

(c)

Root3P

i1, i2

i3 P2 : 2 P5 : 1

30

Figure 40 3P-tree

The 4P-tree is formed from the 2P-tree, similar to how the 3P-tree is formed from the 2P-tree. From

the Figure 40, it is seen that there can be only one parent in the 4P-tree, they cannot have children as

position P2 and P5 in the FP tree has no children. So there are no 4 patterns for this FP-tree and the

maximum size that a pattern can have is 3.

4.5 Forming rules from K-Pattern tree

The association rules are produced from the K-patterns, by forming various combinations of the items

as antecedent and consequent from the patterns. This section explains how a rule antecedent and

consequent is formed.

Algorithm to generate rules:

Aim: Find rules from K-Pattern tree

Input: K-Pattern Tree Collection

Output: Rules

Steps:

1. Initialize

1.1. K = 2

1.2. Rule-List-Collection = {}

1.3. Final-Rule-List={}

2. Repeat until no tree is left in the pattern tree collection

2.1. Set collection cursor CC to K-pattern tree

2.2. Repeat until no pattern is left in the K-pattern tree

2.2.1. Rule-List = {}

2.2.2. Read the pattern from the tree

2.2.3. Add each item in the pattern into the look-up table and item array

2.2.4. Generate base rules from the pattern and add them into the Rule-List using AddRule-I

2.2.5. Repeat for j= 2,3, .., K-1

2.2.5.1. tempRuleList = Rule-List

2.2.5.2. Rule List = {}

2.2.5.3. Repeat for each Rule in the tempRuleList

2.2.5.3.1. key = Last item in the antecedent of the Rule

2.2.5.3.2. index = Dictionary[key]

2.2.5.3.3. Repeat t= index+1, index+2, .., K-1

2.2.5.3.3.1. Add rules to the Rule-List using AddRule-II

2.2.5.4. If |Rule-List| = 0

2.2.5.4.1. Break

Root3P

i1, i2

i3 P2 : 2 P5 : 1

31

AddRule-I: Generate Rules and add them into the Rule List

1. Repeat for i = 0,1, .., K-1

1.1. Initialize a new rule

1.2. Add Array[i] into Antecedent of new Rule

1.3. Find Consequent (see details below)

1.4. Calculate confidence of the rule

1.5. If confidence of the rule is greater than or equal to min_conf

1.5.1. Add the rule into Final-Rule-List

2. Add the rule into Rule-List

AddRule-II: Generate Rules and add them into the Rule List

1. Antecedent = Antecedent of the current rule + Array[t]

2. Find Consequent (see details below)

3. Calculate confidence of the rule

4. If confidence of the rule is greater than or equal to min_conf

4.1. Add the rule into Final-Rule-List

5. Add the rule into Rule-List

Steps to find consequent:

1. Start=0

2. Repeat for each Antecedent Item in antecedent

2.1. Repeat until i is less than the index of the item in Dictionary, where i = Start, Start +1, ..

2.1.1. Add item of index i from array to the consequent

2.2. Start= Antecedent item index +1

3. Repeat for j is less than K, where j = Start, Start +1, Start +2….

3.1. Add item of index j from array to the consequent.

4.5.1 Detail Explanation of the Algorithm
The pattern tree collection consists of K-pattern trees. Since the pattern tree starts from 2 patters we

have initialized K = 2. The Final-Rule-List is a collection of rules that satisfy the minimum confidence. For

each pattern in the pattern trees of the pattern tree collection the rules are generated. Let us consider a 3–

pattern = {I1, I2, I3}, where K=3.

 Initialize Rule-List = {} and read the pattern from the tree. The items are added into the look up table

and array as shown in Figure 41.

Figure 41 Array and look up table

Step 2.2.4 indicates to generate base rules from the pattern and add them into the Rule-List. The

function AddRule-I generate rules from a K-pattern = {I1, I2, .., Ii, .., IK}. We have index value i = 0,1,2. A

new rule is initialized and array[i=0] is added to the antecedent, that is antecedent = I1. Then, find

consequent items for the given antecedent by adding items other than the item present in antecedent into the

consequent. Initially the start is 0 and i assigns the value from start Dictionary[I1]-1. Since Dictionary[I1]-1

< 0, the loop is not executed. Now the start is set to Dictionary[i1] +1which is equal to 1. The variable j

Key Index Value

I1 0

I2 1

I3 2

Look up table

I1 I2 I3

Array

32

assigns the value from1 to K-1, that is j=1,2. Therefore we get array[j] = i2, when j=1 and array[j] = i3,

when j=2 which are added into the consequent list.

The rule is I1 -> I2, I3. The confidence of the rule is found and if the confidence is greater than the

minimum confidence the rule is added into the Rule-List. Similarly the other base rules are generated as I2-

>I1, I3 when i = 1 and I3->I1, I2 when i =2. Step 2.2.5 indicates for j=2 , tempRuleList = Rule-List and

Rule List = {}. For each rule in the tempRuleList, Key is the last item in the antecedent of the rule, I1 in

rule I1->I2, I3. The index assigns the value of Dictionary[key] which is 0, and for the variable t from 1 to 2

add rules to Rule-List using AddRule-II. For t=1, the antecedent items are the antecedent of the current rule

and Array[t] which is i1 and i2. The consequent will be found as i3. The rule generated is I1,I2->I3, will be

added to the final rule list if it satisfies the minimum confidence and rule list. Similarly for t=2, antecedent

item are antecedent of the current rule and Array[t] which is i1 and i3. The consequent will be found as i2.

The rule generated is I1,I3->I2, will be added to the final rule list if it satisfies the minimum confidence and

rule list. The same process is done for the other rules; the final rules generated from this pattern are below.

I1 -> I2, I3

I2 -> I1, I3

I3 -> I1, I2

I1, I2 -> I3

I1, I3 -> I2

I2, I3 -> I1

4.6 Data Structure

In this section, we are going to discuss the data structure of the MASP, FP-tree, K-Patterns and

association rules implemented in our application.

The comparison of different data structures [16] available in C# is shown in Figure 42. The Dictionary,

SortedList, List, HashSet, Stack and Queue occupy contiguous memory. Since our approach deals with

huge data, it is necessary to efficiently manage the memory and contiguous storage leads to out of memory.

Among the non-contiguous storage collections we have selected LinkedList since sorting is not required in

our approach.

The MASP query is composed of two parts, they are “select attributes” and “where clause”. The

“select attributes” is a linked list of attribute names and the “where clause” consists of the MASP items. We

have implemented the MASP using the code snippet in Figure 43. Figure 44 represents the data structure

for MASP.

The FP-tree is a directed tree whose nodes may have zero or more children. We implemented the node

of FP-tree using the link-list as seen in Figure 46 and we have implanted the FP-tree using the code snippet

in Figure 45.

 Figure 46 illustrates the implementation of this node. As an example, the node N1, N1.1, and N1.1.2

have severity = fatal, primary contribution factor = violation and construction maintenance zone = true,

respectively. Notice that, each node of the linked-list initiates another linked-list.

33

Collection Ordering
Contiguous

Storage?

Direct

Access

Lookup

Efficiency

Manipulate

Efficiency
Notes

Dictionary Unordered Yes Via Key
Key:

O(1)
O(1)

Best for high

performance

lookups.

SortedDictionary Sorted No Via Key
Key:

O(log n)
O(log n)

Compromise of

Dictionary speed

and ordering,

uses binary

search tree.

SortedList Sorted Yes Via Key
Key:

O(log n)
O(n)

Very similar to

SortedDictionary,

except tree is

implemented in

an array, so has

faster lookup on

preloaded data,

but slower loads.

List

User has

precise

control over

element

ordering

Yes
Via

Index

Index:

O(1)

Value:

O(n)

O(n)

Best for smaller

lists where direct

access required

and no sorting.

LinkedList

User has

precise

control over

element

ordering

No No
Value:

O(n)
O(1)

Best for lists

where

inserting/deleting

in middle is

common and no

direct access

required.

HashSet Unordered Yes Via Key
Key:

O(1)
O(1)

Unique

unordered

collection, like a

Dictionary except

key and value are

same object.

SortedSet Sorted No Via Key
Key:

O(log n)
O(log n)

Unique sorted

collection, like

SortedDictionary

except key and

value are same

object.

Stack LIFO Yes
Only

Top
Top: O(1) O(1)*

Essentially same

as List<T>

except only

process as LIFO

Queue FIFO Yes
Only

Front

Front:

O(1)
O(1)

Essentially same

as List<T>

except only

process as FIFO

Figure 42 Comparison of different data structures [16]

34

Figure 43 Code snippet for MASP implementation

Figure 44 Data structure for MASP

Figure 45 Code snippet for node implementation

public class SelectWhere
 {
 private bool _mine = true;

 private LinkedList<string> sel = new LinkedList<string>();
 private LinkedList<string> wh = new LinkedList<string>();
 public LinkedList<string> Select { get{return sel;} set{sel = value;} }
 public LinkedList<string> Where { get{ return wh;} set{wh = value;} }
 public bool Mine { get { return _mine; } set { _mine = value; } }
 }

Select attributes Where clause

Attribute1

Attribute2

Item1

Item2

public class Node
 {
 public string nodeName { get; set; }
 public int nodeCount { get; set; }
 public IntPtr parent { get; set; }

 LinkedList<Node> Nodes = new LinkedList<Node>();
 }

35

Figure 46 Linked-list implementation of a directed tree (LL: Linked-list)

The K-pattern tree also adapts a directed tree data structure in our implementation. The structure is

composed of a root node with children of K-1 patterns (pattern tree nodes), which act as the prefix, refer to

Figure 48. As an example, let the 3-pattern tree has the sequences of {FC, FA, ..} and the node “FA” has

the children of {(A,2), (M, 3, 6), ..}. Then PTN1 = FC, PTN2 = FA, .. where PTN is the pattern tree node

and the node CP1.1 will have a tree of the root “A” with a child node AD.1.1 as “2”, a tree of the root “M”

with two linked-list nodes “3” and “6”.We have implemented the K-pattern tree using the code snippet in

Figure 47. The CP 1.1 is the child position for the PTN1 with index 1. The AD 1.1.1 holds the addresses

and count of the CP 1.1 in the FP-tree.

N1 N1.1

N1.2

N1.3

N1.4

N1.1.1

N1.1.2

N1.2.1

N1.2.2

Header

LL node

LL

header

pointer

LL next

node

pointer

LL of

N1.1

LL of

N1

36

Figure 47 Code snippet for K-pattern tree implementation

Figure 48 Data structure for K-pattern tree. Values in the parenthesis are given as an example.

The members of the association rule are antecedent, consequent, block ID, support and confidence.

The antecedent and consequent are linked list of items. The data structure of an association rule is shown in

Figure 49.

 public class PatternTreeNodes

 {

 public string prefixName { get; set; }

 public LinkedList<ChildPositions>

_childPositions = new

LinkedList<ChildPositions>();

 public LinkedList<ChildPositions>

ChildPositions

 {

get { return _childPositions; }

set { _childPositions = value; }

 }

 }

rootKP
PTN 1

(FC)

CP 1.1

(A)

CP 1.2

(M)

AD 1.1.1

(2)

37

Figure 49 Association rule data structure

4.7 Complexity

The MASP algorithm generates candidate nodes where the number of distinct items I with their

frequency is obtained and the Imax is found from I = {I1, I2, I3,….., } where ≤ N, total number of distinct

items and the number of rows in a block |B| ≤ |D|, D is the data table. The complexity in terms of the

number of items and the number of candidate nodes is obtained as follows: Let ND be the number of

candidate nodes generated, |BA| denotes average number of rows in B and MA denotes average number of

attributes for the block B, and |IA| denotes average number of items in B. IA is obtained in O(|BA| MA) and

Imax is found in O(|IA|). The overall complexity for all candidate nodes will be O(ND max(|BA| MA, |IA|)) =

O(ND |BA| MA).

4.8 Data Export Module

This module allows the user to export the following in various formats

 Bins: The application allows the user to set the bins for the numerical attributes. The discrete data

for each attribute can be exported in text or xml format. The text format uses the StringBuilder

object and saves in the .txt file. The attributes, bin type and bins are saved in a table format so that

they can also be exported in xml format.

 Item dictionary: The item dictionary is dictionary with value as an item and it’s key with numbers

as unique id exported to an excel sheet.

 MASP: The MASP is exported in three formats. The table structure of MASP is exported in excel

and xml format, whereas the query structure of MASP is exported in .txt format.

 Processed Data and Encoded Data: The processed data and encoded data are data tables which that

can be exported in .csv, .txt and .xml formats.

 Session: The session is exported in .session format. StringBuilder is used to construct a session.

The session exports the input parameters data source, selected attributes and bins. The “Session

all” exports session with the item dictionary.

 Association rule: Exporting association rule involves exporting MASP in excel format, antecedent

and consequent in table format, rule statistics in table format, item dictionary and item information

such as minimum support, confidence and association strength threshold. The advantage of

exporting in table format is allowing the user to query the output to obtain his required results.

4.9 User Interface

We have implemented our approach using C# .net. The user interface is shown in Figure 50. The data

source is the place where we give the input data. The type of the data is given at database type and the

location of the database can be browsed. Session can also be imported. Once the data source is given the

attributes are listed in the attributes list box of the select attributes block. User can select the attributes and

load the data for the selected attributes only. The numerical data can be processed to discretize it by setting

the bins. The minimum support, confidence and alpha values are entered in the parameters block. Once the

Antecedent Consequent

A1

A2

Ai where i>0

A1

A2

Aj where j>0

38

data is processed and all the parameters required are entered, the user can mine the MASPs. Export Data

helps the user to export the rules generated, MASP’S, bins, processed data, encoded data and session in

various formats.

39

Figure 50 User interface

40

5 EXPERIMENTS AND RESULTS

5.1 Data

We have experiment our approach using the crash records. We have used and 7997 records with 10 attributes

namely Weather, DriverAgeGroupDes, AlcoholPresent, ViolationsCode, Lighting, MannerCollision,

PrimaryContributingFactor, RoadwayDeparture, DayOfWeek, TimeofDay. The “TimeofDay” attribute bin type is

changed to bin range and its values are discretized to 8 distinct values. After setting the bins the raw data is

discretized into the bin data. The bin data is encoded as described before.

5.2 Experimental Setup

 We have conducted experiments for the above data with different input parameters. The first experiment is

conducted with the minimum support as 10 records, alpha = 1 and minimum confidence as 15%. The second

experiment for the same data is conducted with the minimum support as 10 records, alpha = 1 and minimum

confidence as 80%.

5.3 Results and Discussion

The total numbers of MASPs detected in experiment 1 are 620, from which most of them were found to be

interesting. Some of them are discussed in this section. MASP is also considered as a collection of rules and Figure

52 shows the rules from MASP21 in Figure 51. The probability of adults involved in the crash when AlcoholPresent

= alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather = clear, Lighting = daylight,

MannerCollision = rear end is 14%, the reliability of the rule is 60% and lift is 1 in MASP21, refer Figure 51. The

same conditions added with the DriverAgeGroupDes = Adult, Violations = no violations, and TimeofDay= late

afternoon, it is seen that the probability of crashes on Friday is 1%, with the confidence as 26% and lift as 1.4 in

MASP21 and in MASP74 the probability of crashes on Friday is 1%, the confidence as 21% and lift as 1.4. From

Figure 53, it is seen that the probability of crashes involving youth is 0.1% with confidence 20% and lift 2 when

the situation is AlcoholPresent = alcohol no, RoadwayDeparture = 1, MannerCollision = non-collision with

motor vehicle, PrimaryContributingFactor = violations, Violations = careless operation, Weather = clear, Lighting =

dark - no street lights. MASP388 in Figure 54, explains that the probability of crashes due to vehicle condition is

0.21% when AlcoholPresent = alcohol no, RoadwayDeparture = 1, MannerCollision = non-collision with motor

vehicle, PrimaryContributingFactor ≠ violations, Weather = clear, Lighting = daylight and DriverAgeGroupDes =

Adult. The second experiment detected one MASP with AlcoholPresent = Alcohol No and RoadwayDeparture = 0

with support 78%, confidence 81% and lift 1.

The association rules obtained from the MASPs blocks also seemed to be interesting. In experiment 1, 173764

rules were produced from blocks of the MASPs and some of them are in Figure 55.

Attribute = or ≠ Value Lift Confidence Support

AlcoholPresent E alcohol no 96%

RoadwayDeparture E 0 1 81% 78%

PrimaryContributingFactor E violations 1 80% 62%

Weather E clear 1 77% 48%

Lighting E daylight 1.1 71% 34%

MannerCollision E rear end 1.3 71% 24%

DriverAgeGroupDes E adult 1 60% 14%

Violations E no violations 1.3 59% 8%

TimeofDay E late afternoon 1.4 35% 3%

DayOfWeek E friday 1.4 26% 1%

Figure 51 MASP21

41

Figure 52 Rules from MASP21

Attribute = or ≠ Value Lift Confidence Support

AlcoholPresent E alcohol no 96%

RoadwayDeparture E 1 0.9 19% 18%

MannerCollision E

non-collision with motor

vehicle 4.1 67% 12%

PrimaryContributingFactor E violations 0.9 67% 8%

Violations E careless operation 3.2 71% 6%

Weather E clear 0.9 64% 4%

Lighting E dark - no street lights 2.5 32% 1%

DriverAgeGroupDes E youth 2 20% 0.19

Figure 53 MASP515

AlcoholPresent = alcohol no -> RoadwayDeparture = 0 Support = 78%, confidence = 81%, lift = 1

AlcoholPresent = alcohol no, RoadwayDeparture = 0 PrimaryContributingFactor = violations

 Support = 62%, confidence = 80%, lift = 1

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations Weather

= clear Support = 48% confidence = 77%, lift = 1

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather =

clear Lighting = daylight Support = 34%, confidence = 71 %, lift = 1.1

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather =

clear, Lighting = daylight MannerCollision = rear end Support = 24%, confidence = 71%, lift = 1.3

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather =

clear, Lighting = daylight, MannerCollision = rear end DriverAgeGroupDes = adult Support =

14%, confidence = 60%, lift = 1

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather =

clear, Lighting = daylight, MannerCollision = rear end, DriverAgeGroupDes = adult Violations = no

violations Support = 8%, confidence = 59%, lift = 1.3

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather =

clear, Lighting = daylight, MannerCollision = rear end, DriverAgeGroupDes = adult, Violations = no

violations TimeofDay = late afternoon Support = 3%, confidence = 35%, lift = 1.4

AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations, Weather =

clear, Lighting = daylight, MannerCollision = rear end, DriverAgeGroupDes = adult, Violations = no

violations, TimeofDay = late afternoon DayOfWeek = Friday Support = 1%, confidence = 26%, lift =

1.4

42

Attribute = or ≠ Value Lift Confidence Support

AlcoholPresent E alcohol no 1 96% 96%

RoadwayDeparture E 0 1 81% 78%

MannerCollision E

non-collision with motor

vehicle 1 80% 62%

PrimaryContributingFactor NE violations 1 77% 48%

Weather E clear 1.1 71% 34%

Lighting daylight 1.3 71% 24%

DriverAgeGroupDes E adult 1 60% 14%

PrimaryContributingFactor E vehicle conditions 12 27% 0.21%

Figure 54 MASP388

Figure 55 Rules from MASPs blocks, in the form (MASP), antecedent consequent

The MASPs detected for the same data with the support 0.3, confidence 30% and alpha 1 is given in Figure 56.

Experiment 1 and experiment 2 were conducted using Weka with the support and confidence values generated 6885

rules with maximum number of items involved in a rule = 5 and 827 rules maximum number of items involved in a

rule = 7 using Apriori algorithm, respectively. Most of the rules generated using weka was obvious and the FP-

growth algorithm was out of memory for the data used by us, but our approach handled the same data and detected

interesting MASPs and association rules from the blocks of MASPs. In our approach, the maximum number of items

involved in a rule in experiment 2 is 10. The same experiments were conducted using R software, but it was noticed

that R did not have user friendly interface. In weka and R, the results are exported in text format, but our application

is user friendly and allows the user to export the results in text and table format. The intermediate results like the

encoded data, bin data, bins set for each attribute, etc. can be exported in various formats. The table format allows

the user to further query the results to get a deeper insight into the results obtained.

(AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations,

Weather = clear, Lighting = daylight, MannerCollision = rear end, DriverAgeGroupDes ≠ adult,

Violations = careless operation), TimeofDay = late morning DriverAgeGroupDes = young

adult Support = 0.1%, confidence = 50%, lift= 5.1

(AlcoholPresent = alcohol no, RoadwayDeparture = 0, PrimaryContributingFactor = violations,

Weather = clear, Lighting = daylight, MannerCollision = rear end, DriverAgeGroupDes ≠ adult,

Violations = careless operation), DriverAgeGroupDes = young adult TimeofDay = late morning

 Support = 0.1%, confidence = 80%, lift= 8.99

(AlcoholPresent = alcohol no, RoadwayDeparture = 1, PrimaryContributingFactor ≠ violations,

Weather ≠ clear, Lighting ≠ daylight, Lightning ≠ dark-continuous street light), Weather = cloudy

 DriverAgeGroupDes = adult, MannerCollision = rear end Support = 0.12%, confidence =

40%, lift= 1.53

43

Figure 56 MASPs detected for support 0.3%, confidence 30% and alpha =1

ROOT

7* 7

45 45*

32 32*

84 84*

9 9*

20 20*

1 1*

63 63*

3 3*

56*

63 63*

56 56*

Attribute name Attribute value ID

DriverAgeGroupDes senior 1

DriverAgeGroupDes adult 3

AlcoholPresent alcohol no 7

Lighting daylight 9

MannerCollision rear end 20

PrimaryContributingFactor violations 32

RoadwayDeparture 0 45

TimeofDayDescription late afternoon 56

Violations no violations 63

Weather clear 84

44

6 CONCLUSION AND FUTURE WORK
In this thesis, we aim to introduce a new association rule detection method. The proposed approach searches for

the most associated sequential patterns and generate rules from these patterns. Further, regular association rules can

be generated from the sub-data space of the original data. The proposed approach can be very promising for analysis

of Big Data as well since the MASP algorithm can detect very long interesting patterns efficiently. In the

implementation of the data structures for association rule mining algorithms LinkedList class from the C# library is

utilized for efficient memory allocation instead of array-like data structures which requires continuous memory

blocks. In the future, parallel programing, multi-threading, using array-likes and LinkedList for storage and B-tree

based search can be implemented to improve the speed and memory management. Since there is a large volume of

data, it would be more useful to increase the efficiency in terms of speed and memory.

45

REFERENCES
[1] P. JIAN, Y. YIN, R. MAO and M. Heikki, "Mining Frequent Patterns without Candidate Generation: A

Frequent-Pattern Tree Approach*," Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53-87, 2004.

[2] IBM, [Online]. Available: http://searchbusinessanalytics.techtarget.com/definition/association-rules-in-

data-mining.

[3] P.-N. Tan, M. Steinbach and V. Kumar, "Association Analysis: Basic Concepts and Algorithms," in

Introduction to Data Mining, 2006.

[4] IBM, [Online]. Available: http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.i

m.model.doc/c_lift_in_an_association_rule.html.

[5] IBM, [Online]. Available: http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.i

m.model.doc/c_lift_in_an_association_rule.html.

[6] K. Geurts, G. Wets, T. Brijs and K. Vanhoof, "Profiling High Frequency Accident Locations Using

Association Rules," Transportation Research Record: Journal of the Transportation Research Board, vol.

1840, pp. 123-130, 2003.

[7] P.-N. Tan, V. Kumar and J. Srivastava, "Selecting the right interestingness measure for association

patterns," in KDD '02 Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, New York, 2002.

[8] A. Freitas, "On rule interestingness measures," Knowledge-Based Systems, vol. 12, no. 5-6, pp. 309-315,

1999.

[9] L. Geng and H. J. Hamilton, "Interestingness measures for data mining: A survey," vol. 38, 2006.

[10] R. Marukatat, "Structure-Based Rule Selection Framework for Association Rule Mining of Traffic

Accident Data," in Computational Intelligence and Security, Springer Berlin Heidelberg, 2006, pp. 231-

239.

[11] A. Montella, "Identifying crash contributory factors at urban roundabouts and using association rules to

explore their relationships to different crash types," Accident Analysis and Prevention, vol. 43, p. 1451–

1463, 2011.

[12] A. Pande and A.-A. Mohamed, "Market basket analysis of crash data from large jurisdictions and its

potential as a decision support tool," Safety Science, vol. 47, no. 1, pp. 145-154, 2009.

[13] H. Song-bai , Y.-j. Wang, Y.-k. Sun, W.-W. Gao, Q. Chen and Y.-Q. An , "The Research of

Multidimensional Association Rule in Traffic Accidents," in Wireless Communications, Networking and

Mobile Computing, 2008. WiCOM '08. 4th International Conference, 2008.

[14] T. Wu, Y. Chen and J. Han, "Association Mining in Large Databases: A Re-examination of Its Measures,"

in Knowledge Discovery in Databases: PKDD 2007, Springer, 2007, pp. 621-628.

[15] F. Guillet and H. J. Hamilton, "Choosing the Right Lens: Finding What is Interesting in Data Mining," in

Quality Measures in Data Mining, Springer, 2007, pp. 3-24.

[16] [Online]. Available: http://geekswithblogs.net/BlackRabbitCoder/archive/2011/06/16/c.net-fundamentals-

choosing-the-right-collection-class.aspx.

46

[17] J. Blanchard, F. Guillet, R. Gras and H. Briand, "CiteSeerX," 2005. [Online]. Available:

http://citeseer.uark.edu:8080/citeseerx/viewdoc/similar?doi=10.1.1.60.6689&type=ab.

[18] R. Agrawal and S. Ramakrishnan, "Mining sequential patterns: Generalizations and performance

improvements," in Advances in Database Technology, 1996, pp. 1-17.

47

VITA
Donepudi, Harisha was born in Vishakhapatnam, India to Mrs. Rajeswari and Mr. Srinivas Chakravarthy. After

graduating from her high school with distinction, she went to study B.E in Electronics and communications. She is

currently a Masters student in the Department of Electrical and Computer Engineering at Louisiana State University,

where she has been a graduate student since Spring 2011.

	Louisiana State University
	LSU Digital Commons
	2013

	Detection of Interesting Traffic Accident Patterns by Association Rule Mining
	Harisha Donepudi
	Recommended Citation

	tmp.1483774927.pdf.Rb4th

