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Abstract
The continuing technological progress resulted in a dramatic growth in aggregate com-

putational performance of the largest supercomputing systems. Unfortunately, these ad-

vances did not translate to the required extent into accompanying I/O systems and little

more in terms of architecture or effective access latency. New classes of algorithms de-

veloped for massively parallel applications, that gracefully handle the challenges of asyn-

chrony, heavily multi-threaded distributed codes, and message-driven computation, must

be matched by similar advances in I/O methods and algorithms to produce a well per-

forming and balanced supercomputing system. This dissertation proposes PXFS, a storage

model for persistent objects inspired by the ParalleX model of execution that addresses

many of these challenges. The PXFS model is designed to be asynchronous in nature to

comply with ParalleX model and proposes an active TupleSpace concept to hold all kinds

of metadata/meta-object for either storage objects or runtime objects. The new active

TupleSpace can also register ParalleX actions to be triggered under certain tuple opera-

tions. An first implementation of PXFS utilizing a well-known Orange parallel file system

as its back-end via asynchronous I/O layer and the implementation of TupleSpace com-

ponent in HPX, the implementation of ParalleX. These details are also described along

with the preliminary performance data. A house-made micro benchmark is developed to

measure the disk I/O throughput of the PXFS asynchronous interface. The results show

perfect scalability and 3x to 20x times speedup of I/O throughput performance comparing

to OrangeFS synchronous user interface. Use cases of TupleSpace components are dis-

cussed for real-world applications including micro check-pointing. By utilizing TupleSpace

in HPX applications for I/O, global barrier can be replaced with fine-grained parallelism

to overlap more computation with communication and greatly boost the performance and

efficiency. Also the dissertation showcases the distributed directory service in Orange file

system which process directory entries in parallel and effectively improves the directory

metada operations.
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Chapter 1
Introduction

Over the coming decade the performance of the largest computing systems is expected

to shift from Terascale and Petascale to Exascale. According to the TOP500 supercom-

puter list [1] of June 2014, the performance of the top 37 systems breaks the PetaFLOPs

barrier. These systems are composed of tens of thousands of cores and nodes running in

parallel. For example, the top supercomputer, Tianhe-2, has 16,000 nodes equipped with

3,120,000 computing cores and achieves the performance of 33.86 petaFLOP/s on the Lin-

pack benchmark [1]. The rapid growth in computing cores and high demand for parallelism

imposes significant challenges for the parallel runtime and storage system.

Applications employing conventional parallel runtime systems, such as the Communi-

cating Sequential Processes (CSP) [2] execution model as reflected by the Message Passing

Interface (MPI) [3] programming model, are getting more and more difficult to make ef-

fective use of the ever increasing number of processors to achieve desired scalability and

performance. The main limiting factors are:

Starvation : insufficient concurrent work to maintain high utilization of resources,

Latencies : delay of remote resource access and services,

Overheads : work for management of parallel actions and resources on critical path which

is not necessary in a sequential variant,

Waiting for contention resolution : delays due to lack of availability of oversubscribed

shared resources.

All of these factors (SLOW) are difficult to avoid using today’s prevalent programming

models, and a new computational strategy is required to achieve dramatic increases in per-

formance. The ParalleX execution model [4, 5, 6] is offered as a means of addressing these

critical computational requirements. It is striving to expose myriad forms of parallelism,
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hide system wide latencies, decouple hardware execution resources from executing software

tasks to prevent the blocking of processor cores, and to enable runtime dynamic adaptive

scheduling to employ real-time system state to resource management decisions.

In the meantime, parallel storage system is expected to handle the input/output (I/O)

requests from parallel applications with good performance and great scalability. Many

parallel file systems are developed to answer that challenge [7, 8, 9, 10]. Orange File System

(OrangeFS) [8, 11, 12] is a production-quality parallel file system designed for use on high

end computing (HEC) systems that provides very high performance access to disk storage

for parallel applications. However, I/O for Exascale high-end computing (HEC) systems

is still hampered by several unfortunate issues, including orders of magnitude slower speed

and response time, storage distribution problem, fast growing volume of application data

and complex data structures.

The challenges of Exascale computing suggest that not a simple extension of our current

model of computation, but rather a new model of computation is needed upon which

a new framework for mass storage may be built. It is both prudent and essential to

consider a corresponding model of I/O along with the design of next generation computation

ecosystem.

1.1 Research Objective

1.1.1 Goal

This dissertation presents PXFS (ParalleX File System), a new persistent storage model

aiming for Exascale computing. It will be taking advantage of ParalleX execution model and

OrangeFS parallel storage research to extract the maximum of parallelism and performance

out of the storage resources. Based on some preliminary work [13, 14], this dissertation,

for the first time, presents a novel design of PXFS model and a complete implementation

using HPX and OrangeFS interfaces.

To be specific, the goals of PXFS research lie below

Goal 1 : Establish a persistent storage model that utilizes asynchronous interface for I/O
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operations to hide the latency of I/O operations. And make it seamlessly incorporate

into ParalleX model.

Goal 2 : Unify the storage objects and runtime objects under the same namespace. With

PXFS, the objects in memory and in storage are treated in the same scope with dif-

ferent corresponding implementations. And all objects can be moved to and restored

from storage and memory.

Goal 3 : Better metadata management. Extend the concept of metadata of storage file

to runtime objects and hold all information of different forms in one place for any

entity to use, either program or user.

1.1.2 Hypothesis

The hypothesis of this dissertation are listed below.

Hypothesis 1 : I/O operations can be made asynchronous to hide I/O latencies with

communication and computation.

Hypothesis 2 : Storage items can be viewed as objects and managed under the ParalleX

namespace.

Hypothesis 3 : Metadata of storage objects and runtime objects can be merged and

processed at the same scope and can help improve the performance and increase

parallelism

1.1.3 Objective

The proposed research designs a new persistent storage model which takes advantage

of develop experiences of parallel file system and parallel runtime system to explore the

maximum of parallelism and performance in Exascale computing era. This model will

utilize the asynchronous nature of ParalleX execution model and distributed file system

design of OrangeFS to develop an innovative model to enhance parallel I/O performances.
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The research provides a new and efficient method to target the upcoming storage challenges

in the next decade.

The detailed objectives are list below.

1. Design asynchronous I/O interface with local file system, network file system, parallel

file system using HPX asynchronous APIs.

2. Design PXFS asynchronous I/O interface which employs the Orange file system asyn-

chronous I/O APIs and provide HPX interface.

3. Evaluate and compare performances of synchronous/asynchronous network file API,

synchronous/asynchronous Orange file API and asynchronous PXFS API.

4. Design and implement HPX active TupleSpace to actively hold and keep all meta

information of storage objects and runtime objects.

5. Migrate HPX objects to and from storage system by utilizing the meta information

in TupleSpace.

1.2 Technical Strategy

The technical strategy that used to test the hypothesis is composed of the following

steps.

Step 1 : Develop the asynchronous API in Orange file system which can register a callback

function to be executed automatically when an I/O operation is completed.

Step 2 : Write HPX file classes using HPX asynchronous interface and synchronous file

operations of local file system, network file system and Orange file system.

Step 3 : Write PXFS file class using HPX and asynchronous Orange file system APIs.

Step 4 : Design the active ParalleX TupleSpace and implement in HPX.

Step 5 : Enable locality/application movement between memory and storage which uti-

lizes TupleSpace and design other scenarios for TupleSpace.
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1.3 Main Contributions

The goal of this research is to create a persistent storage framework for ParalleX exe-

cution model with a parallel file system OrangeFS. As such it promises to have high impact

on a broad spectrum of applications depending on high performance parallel I/O.

The main contributions of dissertation can be summarized as below:

• Pioneering attempt to address the challenges of parallel runtime and storage system

of the next Exascale computing decade.

• Contributed new understanding, concepts, and methods for realizing advanced per-

sistent storage management. It merges two innovative system classes: an advanced

parallel file system, OrangeFS, and a unique execution model, ParalleX. The result

will be an exploratory vehicle for establishing a new paradigm for mass storage at

extreme scale. It will provide an event driven dynamic adaptive computation envi-

ronment in response to the uncertainty of data access times, related asynchrony and

imposed overheads through the embedding of futures-based synchronization.

• Proposed new syntax and semantics for asynchronous I/O in object-oriented parallel

runtime system. Developed asynchronous AIO interface in Orange file system which is

doing asynchrony on the file bytes level, and designed the asynchronous I/O operation

semantics in ParalleX model for object level asynchrony. The work also provide basis

to created storage classes for different file systems including network file system,

local file system and parallel file systems, which enables asynchronous semantics on

different layer in an abstract form.

• Unified the namespace of memory objects and storage objects. Translate traditional

file-based storage system into object-based storage entities and include them into

the same namespace scope with runtime objects. It will eliminate the division of

programming imposed by conventional file systems through the unification of name

spaces and their management.
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• Introduced the active TupleSpace model for better metadata management. Metadata

is becoming more and more important in parallel computing and the TupleSpace idea

can provide an active and flexible way to manage metadata from all kinds of objects

and entities. It can help the user and program to make smart decisions to improve

performance and parallelism.

• Designed and implemented distributed directory service in Orange file system, which

distributed directory entries among multiple data servers. This move will help par-

allelize the directory operations and help improve metadata performances.

• Provided insights and directions on how to target the challenges of efficient I/O in

the context of future Exascale systems. The conclusions will help scientists efficiently

process an unprecedented amount of data in a science computation and shine the light

on computer scientists of a new way to design the next generation storage system for

massively parallel runtime systems.

• The research creates outputs that can lead to a thriving continuous work for both

parallel file system and parallel runtime systems. The work follows can help shape the

next generation computation system in the next decade and can improve productivity

in both scientific and industrial fields

• This work of the dissertation has resulted in two full-length published papers: [12]

and [15], one tech talk at [13] and one poster at [16].
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1.4 Dissertation Outline

The remaining of the dissertation is organized as follows.

Chapter 2 introduces the related work of the parallel file system, the high performance

computing system and the Linda coordination model. It provides the background of these

research areas and provision the importance of this dissertation.

Chapter 3 details PXFS, the innovative persistent storage model established for ex-

treme computing. It is designed as a HPX component and provides an asynchronous

storage interface to the underlying storage system, including OrangeFS file system and

network file system. At the meantime, an active TupleSpace is proposed to store the meta-

data of all metadata of all object entities in one place including the storage objects and

runtime objects. It can kill the gap between storage objects and memory objects. A micro

benchmark is used to evaluate the performance of PXFS and the result shows much better

I/O throughput.

Chapter 4 outlines the design and implementation of distributed directory service in

Orange file system. By distributing the directory entries among storage servers, a much

higher metadata throughput of directory creation and deletion is achieved.

Chapter 5 draws the conclusion and derives the key contribution of this dissertation.

This chapter also points out the research directions that is beyond the scope of the dis-

sertation. It also highlights the specifics on future work to be carried out beyond this

research.
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Chapter 2
Background
2.1 State of Parallel File System

2.1.1 Overview

The high-performance computing (HPC) community is walking into an new era where

top clusters and systems are able to achieve a performance of petaFLOPs (1015) scale

easily. The rapid growth in computing power and high demand for parallelism imposes

significant challenges for the storage system, which is expected to handle the input/output

(I/O) requests from parallel applications with good performance and great scalability.

Many parallel and distributed file systems are developed to answer that challenge[17, 7,

8, 9, 10]. File data are distributed across multiple processing nodes in parallel file systems,

each with its own storage resources. In that case, concurrent I/O requests can be spread

across several servers to process rather than focusing I/O on a single server [18].

These parallel and distributed file systems can be roughly categorized into four types:

commercial parallel file systems, distributed file systems, high performance general-purpose

parallel file system and research parallel file systems.

The first type comprises commercial parallel file systems such as PFS for the Intel

Paragon [19] , PIOFS and GPFS for the IBM SP [20], HFS for the HP Exemplar [21],

and XFS for the SGI Origin2000 [22]. These file systems provide high performance and

functionality desired for I/O-intensive applications but are available only on the specific

platforms on which the vendor has implemented them.

Examples of distributed file systems are NFS [23], AFS/Coda [24], xFS [25], and

GFS [26]. These file systems are designed to provide distributed access to files from mul-

tiple client machines, and their consistency semantics and caching behavior are designed

accordingly for such access. The types of workloads resulting from large parallel scien-

tific applications usually do not mesh well with file systems designed for distributed access;

particularly, distributed file systems are not designed for high-bandwidth concurrent writes
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that parallel applications typically require.

Several parallel file systems are general-purposed and actively maintained/developed

by companies, community and research organizations, including Lustre [7, 27] and Par-

allel Virtual File System (PVFS) [10] / Orange File System (OrangeFS) [8]. They are

designed for high performance computing and can be installed on computing clusters built

on commodity hardwares. These file system are highly tunable and can provide reasonable

amount of support. Lustre and OrangeFS are deployed on a lot of data centers at national

labs and research institutions. Lustre runs in kernel mode and supports high availabil-

ity. PVFS/OrangeFS runs most of the server/client in the user mode and are easier to

install and configure. It also supports high availability and can support a lot more features

detailed below.

A number of research projects exist in the areas of parallel I/O and parallel file systems,

such as PIOUS [28], Ceph [17] and Galley [29]. PIOUS focuses on viewing I/O from the

viewpoint of transactions, Ceph is designed to be both self-healing and self-managing and

strives to reduce both administrator and budget overhead, and Galley looks at disk-access

optimization and alternative file organizations. These file systems may be freely available

but are mostly research prototypes, not intended for everyday use by others.

2.1.2 PVFS and OrangeFS

PVFS is a parallel file system that supports both distributing file data and metadata

among multiple servers and coordinated access to file data by multiple tasks of a parallel

program. PVFS has an object based architecture. The software consists of two major

components: a storage server that runs as a daemon on an IO node and a client library

that provides an interface for user programs running on a compute node. The storage

server stores all data in objects known as dataspaces and all IO operations are preformed

relative to one or more of these objects. A data space consists of two storage areas: a

bytestream that stores arbitrary binary data as a sequence of bytes, and a collection of

key/value pairs that allow structured data to be stored and quickly retrieved when needed.
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Trove is a subsystem of PVFS that implements dataspaces with a non-blocking post and

poll interface. The current implementation of Trove uses the host’s file system to implement

bytestreams and a set of Berkeley DB databases to manage key/value pairs and dataspaces

themselves. PVFS interacts over the network through an interface known as BMI. BMI

provides a non-blocking post and poll interface for sending messages, receiving messages

and checking to see if outstanding posts have completed. A special class of messages is

unexpected messages those for which the server cannot predict their arrival. These are

mostly requests from clients. Unexpected messages are limited in size but are useful for

most client requests. Larger messages are managed using Flows. Flows combine network

messages over BMI either with IO through Trove or directly to memory. Flows manage

multiple buffers and complex data routing algorithms to transfer data associated with file

IO from disk, across the network, to the client’s memory. BMI has implementations for

TCP/IP, GM, MX, IB, and other networking fabrics. Multiple networks can be used at the

same time, though there are performance issues in doing this and most installations do no.

The PVFS server manages requests to Trove, BMI, and Flows through a Job layer. The

Job interface is also a non-blocking post and poll design and provides a common interface

for having many outstanding operations in flight on the server at one time. Jobs are issued

by the server Request processor which is built using a custom state-machine language

SM. SM allows programs to define fundamental steps in the processing of each request

each ending in posting a job. Once a job is posted the state-machine is suspending until

completion at which point it automatically resumes. SM allows return codes to drive the

processing to different states. SM is designed to make the coding of server requests simpler

by abstracting away many details including interacting with BMI and Trove, encoding and

decoding messages, and asynchronous issues. The PVFS client code is built from many of

the same components as the server including BMI, Flows, Jobs, and state-machines. The

primary difference is that the state-machines are written to implement each function in the

PVFS System Interface (sysint). The sysint is designed based on operations typically found
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in a modern OS virtual file system. Thus, for example, there isn’t an open call, but rather

a lookup that takes a path name and returns a reference to the file’s metadata. Metadata

is read or written with getattr and setattr respectively. User programs are expected to use

PVFS via one of several user level interfaces. These include a VFS kernel module for Linux,

a FUSE interface, support via ROMIO (MPI-IO) and a User Interface (usrint) provided

with PVFS.

Orange File System is a branch of the Parallel Virtual File System. Like PVFS, Or-

angeFS is a parallel file system designed for use on high end computing (HEC) systems

that provides very high performance access to disk storage for parallel applications. Or-

angeFS is different from PVFS in that we have developed features for OrangeFS that are

not presently available in the PVFS main distribution. While PVFS development tends to

focus on specific very large systems, Orange considers a number of areas that have not been

well supported by PVFS in the past. OrangeFS development tends to be driven by input

from users with specific needs. To become one of these users open a dialog with the Or-

angeFS development team. PVFS design characteristics that are common with OrangeFS

include:

• Performance

• Reliability

• Optimized MPI-IO support

• Hardware Independence

• Painless Deployment

• Research Platform

The system architecture is illustrated in Figure 2.1. There are a number of specific

areas where Orange development has been focused over the last couple of years including:
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Client Server

Figure 2.1: OrangeFS System Architecture Diagram.

Metadata operations OrangeFS uses server-to-server collective communication to im-

prove the scalability of metadata operations. OrangsFS is implementing distributed

directories to make directory operations more scalable. Another project is developing

the ability to search metadata as an alternative to traditional path lookup.

Small, unaligned accesses OrangeFS is developing middleware driven caching on the

client side including configurable semantics that provide a trade-off between perfor-

mance and consistency management.

Cross-server redundancy Hardware failover provides a invaluable services for large stor-

age systems. Some installations want additional redundancy, and smaller installations

want redundancy without the high cost of hardware solutions. OrangeFS is devel-

oping configurable redundancy and fail-over mechanisms into the file system. These

allow different files to have difference levels of redundancy as required by the appli-

cation and also allow FS redundancy to the turned off for maximum performance.

Secure access control OrangeFS has developed an access control method based on signed

credentials and capabilities that works with federated authentication mechanisms and
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yet maintains performance characteristics. Current research is working on flexible ac-

cess control schemas beyond simple userid based permissions.

Improved documentation The OrangeFS project is working to be production ready

including improving the documentation base for all of PVFS.

2.2 State of High Performance Computing System

There are two popular parallel computing systems in the high performance computing

field when running applications on multiple machines: message passing system and virtual

shared memory system. The message passing systems treat each computing node as an

independent system and use message communication to coordinate and synchronize work.

The best known protocol is Message Passing Interface (MPI). On the other end, the vir-

tual shared memory model for parallel computing includes the computing resources on all

computing nodes under the same namespace and depends on fine-grained synchronization

among computing tasks as a coordination method. ParalleX is such a new execution model

and HPX is one implementation. Table 2.1 shows the pros, cons and models of these two

computing systems.

Table 2.1: Comparison of the message passing computing system and virtual shared mem-
ory computing system.

message-passing virtual shared-memory
Pros scalable; workers are inde-

pendent; data protection
scalable; easy to manage re-
sources; fine-grained paral-
lelism

Cons global barrier to synchro-
nize; need to manage re-
sources explicitly

setup overhead; concur-
rency and synchronization
problems

Models MPI, PVM, Titanium ParalleX, UPC

2.2.1 MPI - Message Passing Interface

MPI (Message Passing Interface) [3] is a message-passing application programmer in-

terface, together with protocol and semantic specifications for how its features must behave

in any implementation. It was defined by the MPI Forum [30], a broadly based group of

parallel computer vendors, library writers, and applications specialists.
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MPI includes point-to-point message passing and collective (global) operations, all

scoped to a user-specified group of processes. Furthermore, MPI provides abstractions for

processes at two levels.

• First, processes are named according to the rank of the group in which the commu-

nication is being performed.

• Second, virtual topologies allow for graph or Cartesian naming of processes that help

relate the application semantics to the message passing semantics in a convenient,

efficient way. Communicators, which house groups and communication context (scop-

ing) information, provide an important measure of safety that is necessary and useful

for building up library-oriented parallel code.

There are several MPI implementations [31, 32]. Most MPI implementations consist

of a specific set of routines (i.e., an API) directly callable from C, C++, Fortran and

any language able to interface with such libraries, including C#, Java or Python. The

advantages of MPI over older message passing libraries are portability (because MPI has

been implemented for almost every distributed memory architecture) and speed (because

each implementation is in principle optimized for the hardware on which it runs).

• MPI-IO - Parallel I/O for MPI

MPI-IO [33, 34] interface is designed as a widely used standard for describing parallel

I/O operations within an MPI message-passing application. The interface establishes a

flexible, portable, and efficient standard for describing independent and collective file I/O

operations by processes in a parallel application. In a nutshell, MPI-IO is based on the idea

that I/O can be modeled as message passing: writing to a file is like sending a message, and

reading from a file is like receiving a message. MPI-IO intends to leverage the relatively

wide acceptance of the MPI interface in order to create a similar I/O interface. The MPI-IO

interface is intended to be submitted as a proposal for an extension of the MPI standard in

support of parallel file I/O. The need for such an extension arises from three main reasons.
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First, the MPI standard does not cover file I/O. Second, not all parallel machines support

the same parallel or concurrent file system interface. Finally, the traditional UNIX file

system interface is ill-suited to parallel computing.

Currently there are several implementation of MPI-IO library such as ROMIO [35]. In

this paper we are trying to build a persistent storage model for the shared-memory model

of distributed and parallel computing model ParalleX. The relation is comparable to MPI

vs MPI-IO.

2.2.2 ParalleX - an Execution Model for Extreme Scale

ParalleX is an experimental execution model devised to support co-design and interop-

erability of the component layers of extreme scale (strong scale and Exascale) numeric and

symbolic computing systems. It is a synthesis of a number of key concepts from prior art

extending back multiple decades (in some cases) combined with original contributions that

together comprise a new paradigm (in detail) for governing the structure and operation

of future generation of efficient, scalable, and programmable high performance computing.

The development and employment of a new execution model is motivated by underlying

changes in the trends of enabling technologies and the need for responding to them in

order to continue the exponential growth in delivered sustained performance for numeric

applications in science and technology as well as new application domains in knowledge

management and data understanding. ParalleX is devised principally to expose and ex-

ploit new forms of parallelism to extend scalability by the essential orders of magnitude

required for extreme scale while hiding intrinsic latencies for necessary efficiencies in time

and energy required for practical computer systems at the end of this decade including but

not limited to Exascale processing capability.

ParalleX provides a conceptual framework for permitting dynamic adaptive runtime

methods to achieve yet further improvements in efficiency by exploiting runtime informa-

tion (not known at compile time) for adaptive load balancing and the circumvention of

hotspots due to contention for physical (e.g., memory banks, network channels) and logical
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(e.g., semaphores) objects. In support of latency mitigation and adaptive contention avoid-

ance ParalleX greatly expands the control space/state of a parallel execution by adding to

conventional program counter and global barrier based flow control the use of a broad

array of distributed control objects (LCO) based on dataflow semantics and the futures

construct (among others). This second global layer of control allows the control state

to migrate (literally move) across the computation and its physical computing medium.

This global distributed structure of synchronization control state allows the management

of asynchrony and at the same time reduces much of the data and service access latency.

A brief summary of the ParalleX model provides a foundation for the innovation an-

ticipated and the research proposed in the domain of persistent storage model. There are

seven primary constructs that comprise the ParalleX model, although substantial additional

detail in their form and use is beyond the scope of this synopsis.

ParalleX complexes Like many emerging models of computation, ParalleX includes a

set of lightweight task objects that are often referred to as user runtime threads or

equivalent terminology but here are identified as computational abstract complexes of

just complexes. The change in naming is to reflect that such executables in ParalleX

incorporate internal fine-grain static dataflow control semantics where intermediate

private variables are concerned (suggestive of single-assignment semantics) to pre-

clude anti-dependencies where possible and further that they are first class objects

capable of being named and manipulated in the same name space as any program vari-

able. Unlike some PGAS languages such as UPC, ParalleX complexes are ephemeral

in that they can be created and terminated at any time as well as being suspended

and transformed in to a synchronization object (LCO) with the same name.

ParalleX process Such complexes exist in the context of a ParalleX process. A process

defines a logically localized name space in which is maintained and managed multiple

first class objects besides the complexes such as other processes, data, code, and

mapping of logical process resources to system physical resources (e.g., nodes). This
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last suggests that unlike almost all other models, ParalleX permits logical processes

to span multiple physical nodes. Multiple processes may also share the same node.

A process is instantiated with operand values or references. Internal state may also

be accessed by a limited set of methods by other processes. The hierarchical name

space of a program comprises the tree of parent-child processes.

Local Control Objects LCO serve to provide the global layer of control state and are

lightweight synchronization constructs that may be linked together in dynamic graphs

for access and manipulation. While there are many forms including conventional

semaphores and mutexes, the most important among these are the dataflow and

futures constructs that manage asynchrony, establish constraint-based flow control,

support anonymous producer-consumer computation, can exploit graph meta-data

parallelism, balance eager versus lazy evaluation based on resource availability, and

many other important functionality.

Parcels Parcels are a form of active message that facilitates message-driven computation

to move the work to the data rather than always moving the data to the work.

Parcels support split-phase transactions across nodes to reduce latency effects and

improve both time and energy efficiencies. Parcels provide the means of asynchronous

operation across the global distributed system within the name space of the process

hierarchy.

Percolation Percolation is a variant of parcels that supports heterogeneous computation

by providing the means to move both work and the data upon which it is to be

performed to an ancillary subsystem like a new system node to add resources or

a GPU accelerator to optimize specific idioms of execution. Percolation hides the

latency for these costly resources and offloads their overhead to achieve their highest

possible utilization.

Active Global Address Space AGAS is an advanced version of virtual address space
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that extends PGAS beyond conventional practices. Its critical distinction is that the

virtual address of a first class object in AGAS is not localized to a particular pre-

designated system node as in PGAS. Instead, AGAS permits the migration of first

class objects across physical resources without having to change their virtual address.

This is essential for load balancing and for the management of persistent storage data

objects.

Synchronous Domains They are physical resources that serve as the nodes of conven-

tional systems. They establish the boundaries within which key operational prop-

erties can be guaranteed and between which asynchronous operation via Parcels is

assumed. Such attributed include bounded operational time properties amenable to

compile time optimization and atomic compound sequences of memory operations. It

is also assumed that all threads within a Synchronous Domain sees the same address

space which may include cache coherence.

ParalleX, is solidly rooted in the following governing principles:

• The utilization of an Active Global Address Space (AGAS), without the assumption

of cache coherence. This implies the preference of using adaptive locality management

over purely static data placement strategies.

• The exposure of new forms of program parallelism, including fine-grained parallelism,

a fundamental paradigm shift from CSP and MPI as today’s prevalent programming

model.

• The preference for mechanisms which allow hiding latencies over methods for latency

avoidance.

• The preference for moving work to data over moving data to work.

• The elimination of (implicit and explicit) global barriers, replacing them with constraint-

based synchronization built on Local Control Objects (LCOs) to enable the efficient
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use of fine-grain parallelism.

• The facilitation of dynamic and heuristic resource management and task-queue based

scheduling, to utilize information provided by runtime introspection and to allow

active, dynamic, resource management, and locality control for applications.

2.2.3 HPX - An Implementation of ParalleX

High Performance ParalleX (HPX [36, 5, 37, 38]) is the first open-source implementation

of the ParalleX execution model. HPX is a state-of-the-art runtime system developed for

conventional architectures and, currently, Linux-based systems, such as large Non Uniform

Memory Access (NUMA) machines and clusters. Strict adherence to Standard C++11 [39]

and the utilization of the Boost C++ Libraries [40] makes HPX both portable and highly

optimized. This modular framework facilitates simple compile- or runtime-configuration

and minimizes the runtime footprint. HPX has been carefully designed as an alternative to

mainstream parallel frameworks such as MPI. We have focused on overcoming conventional

limitations such as global barriers, poor latency hiding, and lack of support for fine-grained

parallelism. The current implementation of HPX (see Figure 2.2) supports most of the

key ParalleX elements: Parcels, PX-threads, Local Control Objects (LCOs) and the Active

Global Address Space (AGAS) .

Parcel Transport Layer: HPX parcels are a form of active messages used for com-

munication between localities [41]. In HPX, parcels encapsulate remote method calls. A

parcel contains the global name of an object to act on, a reference to one of the object’s

methods and the arguments to call the method with. Parcels are used to either migrate

work to data by invoking a method on a remote entity, or to bring pieces of data back to

the calling locality. Each locality has a parcel port which reacts to inbound messages and

asynchronously transmits outbound messages. After a parcel port receives and de-serializes

a message, it passes the parcel to a parcel handler. The parcel handler is responsible for

deciding how to process the parcel. The primary parcel handler currently used by HPX
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Figure 2.2: Architecture of the HPX runtime system. HPX implements the supporting
functionality for most of the elements needed for the ParalleX model: Parcels (parcel-
port and parcel-handlers), HPX-threads (thread-manager), LCOs, AGAS, HPX-processes,
performance counters and a means of integrating application specific components.
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is the action manager. If the target object of a parcel is local, then the action manager

converts the parcel into a HPX-thread, which is scheduled by the HPX thread-manager.

HPX-threads and their management: The HPX thread-manager is responsible for

the creation, scheduling, execution and destruction of HPX-threads. In HPX, threading

uses an M : N or hybrid threading model. In this model, N HPX-threads are mapped onto

M kernel threads (OS-threads), usually one OS-thread per core. This threading model

was chosen to enable fine-grained parallelization and low overhead context switches; HPX-

threads can be scheduled without a kernel call, reducing the overhead of their execution

and suspension. The thread-manager uses a work-queue based execution strategy with

work stealing similar to systems such as Cilk++ [42], Intel Threading Building Blocks

(TBB [43]) and the Microsoft Parallel Patterns Library (PPL [44]). HPX-threads are

scheduled cooperatively, that is, they are not preempted by the thread-manager. HPX-

threads voluntarily suspend themselves when they must wait for data that they require to

continue execution, I/O operations, or synchronization.

Local Control Objects (LCOs): LCOs provide a means of controlling parallelization

and synchronization in HPX. Any object that may create a new HPX-thread or reactivate

a suspended HPX-thread exposes the required functionality of an LCO. Support for event-

driven HPX-thread creation, protection of shared data structures, and organization of flow

control are provided by LCOs. They are designed to allow for HPX-threads to proceed in

their execution as far as possible, without waiting for a particular blocking operation, such

as a data dependency or I/O, to finish. Some of the more prominent LCOs provided by

HPX are:

• Futures [45, 46, 47] are proxies for results that are not yet known, possibly because

they have not yet been computed. A future synchronizes access to the result value

associated with it by suspending HPX-threads requesting the value if the value is not

available at the time of the request. When the result becomes available, the future

reactivates all suspended HPX-threads waiting for the value. These semantics allow
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execution to proceed unblocked until the actual value is required for computation.

• Dataflow objects [48, 49, 50] provide a powerful mechanism for managing data

dependencies without the use of global barriers. A dataflow LCO waits for a set of

values to become available and triggers a predefined function passing along all input

data.

• Traditional concurrency control mechanisms such as various types of mu-

texes [51], counting semaphores, spinlocks, condition variables and barriers are also

exposed as LCOs in HPX. These constructs can be used to cooperatively block an

HPX-thread while informing the HPX thread-manager that other HPX-threads can

be scheduled on the underlying OS-thread.

LCOs are first class objects in HPX, they enable intrinsic overlapping of computation

and communication. This not only hides latencies, but also allows many phases of a

computation to overlap, exposing greater application parallelism. They can be used to

control parallelism across multiple localities. The mechanisms for naming and referencing

first class objects such as LCOs are provided by AGAS.

The Active Global Address Space (AGAS): In HPX, AGAS currently is a set

of services that implement a 128-bit global address space that spans all localities. AGAS

provides two naming layers in HPX. The primary naming service maps 128-bit unique,

global identifiers (GIDs) to a tuple of meta-data that can be used to locate an object on

a particular locality. The higher-level layer maps hierarchical symbolic names to GIDs.

Unlike systems such as X10 [52], Chapel [53], or UPC [54], which are based on PGAS [55],

AGAS exposes a dynamic, adaptive address space which evolves over the lifetime of an HPX

application. When a globally named object is migrated, the AGAS mapping is updated,

however, its GID remains the same. This decouples references to those objects from the

locality that they are located on.

Performance Counter Framework: HPX performance counters provide an intru-

sive method of instrumenting the environment in which an HPX application is running,
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exposing metrics from hardware, the OS, HPX runtime services, and applications. The

data provided by performance counters facilitate the development of heuristic algorithms

that use introspection to make smarter runtime decisions. A performance counter is a first

class object associated with a symbolic name which exposes a uniform interface for col-

lecting arbitrary performance data on demand. Instrumentation utilities can connect to a

running HPX application through the parcel transport layer, query performance counters,

and then disconnect.

2.3 Linda: Coordination and Communication Model

Programming a distributed or parallel system can be seen as the combination of two

distinct activities: the actual computing part comprising a number of processes involved

in manipulating data and a coordination part responsible for the communication and co-

operation between the processes. Thus, coordination can be used to distinguish the com-

putational concerns of some distributed or parallel application from the communication

ones.

In a lot of computing systems, computation and coordination does not have clear dis-

tinction. For example, the coordination in MPI is achieved by synchronizations like global

barriers. And for the virtual shared memory model, LCOs can be used for coordination.

However, the computation problem in the next decade can have larger coordination prob-

lems on thousands and thousands of synchronizing problems which is very hard or inefficient

by only using the current small-scale synchronization methods. Separating the coordina-

tion model from the computation model is one way to target the problem from a brand

new perspective.

Linda [56, 57] is historically the first genuine member of the family of coordination

languages. It provides a simple and elegant way of separating computation from commu-

nication concerns. Linda is based on the so-called generative communication paradigm: if

two processes wish to exchange some data, then the sender generates a new data object

(referred to as a tuple) and places it in some shared dataspace (known as a tuple space)
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from which the receiver can retrieve it. This paradigm decouples processes in both space

and time: no process need to know the identity of other processes, nor is it required of

all processes involved in some computation to be alive at the same time. In addition to

passive tuples containing data, the tuple space can also contain active tuples representing

processes which after the completion of their execution, turn into ordinary passive tuples.

Linda is in fact not a fully fledged coordination language but a set of some simple

coordination primitives. In particular, out(t) is used to put a passive tuple t in the tuple

space, in(t) retrieves a passive tuple t from the tuple space, rd(t) retrieves a copy of

t from the tuple space (i.e., t is still there) and eval(p) puts an active tuple p (i.e., a

process) in the tuple space. The primitives rd and in are blocking primitives and will

suspend execution until the desired tuple has been found. The primitives out and eval

are nonblocking primitives. A process that executes eval(p) will carry on executing in

parallel with p, which will turn into a passive tuple when it completes execution. Over the

years, a number of additional primitives were introduced into the basic model; for instance

rdp(t) and inp(t) are non-blocking variants of rd(t) and in(t), respectively, which when

the desired tuple is not found in the tuple space will return FALSE. Tuples are actually

sequences of typed fields. They are retrieved from the tuple space by means of associative

pattern matching. More to the point, the parameter t of the primitives in, inp, rd and

rdp is actually a tuple schemata containing formal parameters; pattern matching of t with

an actual tuple ta in the tuple space will succeed provided that the number, position, and

types of ts fields match those of ta.

The Linda primitives are indeed completely independent of the host language; thus, it is

possible to derive natural Linda variants of almost any programming language or paradigm

(imperative, logic, functional, object-oriented, etc.).

There are several implementations of Linda TupleSpace on various platforms, such as

JavaSpaces [58], TSpaces [59] and GigaSpaces [60], etc.
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Chapter 3
PXFS: A Persistent Storage Model
for Extreme Scale
3.1 PXFS Design

The PXFS model is designed as a layer on top of storage media and file systems, and

as a part of the ParalleX runtime system. The system diagram is depicted in Fig. 3.1.

It is implemented as a component of HPX and manages I/O operations and object meta

properties through different levels.

HPX Application Localities

OrangeFS
Servers

OrangeFS 
Interface

PXFS Component

Local FS 
Interface

Other FS 
Interface

….

threadsTupleSpace

Figure 3.1: Design of PXFS storage component as a part of HPX runtime.
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The interfaces of different file systems can be expanded to more general storage media

like tape or network. HPX threads are essential to guarantee the asynchronous properties of

pxfs calls. The TupleSpace entities will be detailed below to active manage meta properties

of both runtime objects and storage objects.

3.2 Asynchronous I/O Operations

3.2.1 OrangeFS Asynchronous I/O Interface

As a coordinated work, an OrangeFS asynchronous interface is designed and a proto-

type has been implemented [14]. It is part of the PXFS model to interact with parallel

file system in an asynchronous fashion. The asynchronous interface will use the OrangeFS

system calls to schedule I/O operations and execute a callback function when the task is

finished. PXFS will create HPX futures for I/O operations and set the future value in

the callback function to integrate the parallel file system into the HPX runtime system

seamlessly.

The HPX asynchronous interface will use the OrangeFS asynchronous I/O (AIO) sub-

system which add a thread managing layer on top of OrangeFS system interface. The AIO

subsystem provides a set of asynchronous I/O functions to perform basic I/O operations.

It will store the result in a pointer and enable a callback function.
Examplar OrangeFS AIO Write Call

int pxfs_write(int fd, const void *buf, size_t count,

ssize_t *bcnt, pxfs_cb cb, void *cdat);

Figure 3.2: Prototype for the OrangeFS AIO write operation.

As an example, the asynchronous write function call is listed in Fig. 3.2. The first three

arguments correspond directly to the POSIX write definition: fd represents the associated

file descriptor, buf points to the buffer of data to be written, and count specifies the

amount of bytes to be written from the buffer. The next argument, bcnt, points to the

location where the output value (number of bytes written) should be written. The last

two arguments correspond to the continuation specifier: cb stores the associated callback

function for the continuation and cdat stores the pointer to the user-supplied data block.
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The function returns 0 on a successful asynchronous submission to PXFS and returns -1 if

an error occurred before submission.

The AIO library contains most of the I/O operations provided in OrangeFS user inter-

face, including read/pread, write/pwrite, lseek and directory operations.

Figure 3.3: Data flow diagram illustrating an example I/O operation in the AIO library.
Thread 1 submits a pxfs write operation with a continuation which spawns Thread 2.

A data flow diagram illustrating the asynchronous nature of the AIO subsystem is

given in Fig. 3.3. This diagram provides an insight into how external threads submit I/O

operations and respond to their completion. After a thread has submitted an I/O oper-

ation, the PXFS AIO subsystem manages all client-side computation and communication

necessary to service the operation, clearly alleviating the programmer from the burden of

repeatedly checking for its completion. When the operation has finally completed, the AIO

subsystem utilizes the provided continuation specifier to notify the initiating application.

In the case of Fig. 3.3, the continuation spawns a new thread of execution, but could be

27



easily modified to notify the original thread or perform any other functionality.

To integrate the OrangeFS AIO interface with HPX, an HPX application can pass

a future as the argument of the callback function and set the value of the future in the

callback function. A simple code example is illustrated in Fig. 3.4. The callback function

set promise cb will set the value of the future passed through the argument to notify the

external HPX application when the I/O operations is finished. There are some register and

unregister functions in the callback function to deal with the different thread mechanisms

between HPX threads and posix threads.

Moreover, the AIO interface is highly configurable and the number of internal threads

and the size of thread waiting queues can be tuned and changed according to the actual

environment to fit the requirements.
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Examplar HPX AIO Call

typedef hpx::lcos::local::promise<int> int_promise_type;

typedef hpx::runtime rt_type;

// structure to pass HPX runtime information

struct promise_rt_ptr_type

{

std::string thread_name_;

int_promise_type* p_p_;

rt_type* rt_p_;

}

// this function will be executed by an HPX thread

void set_value(

hpx::lcos::local::promise<int> *p,

int result)

{

// notify the waiting HPX thread and return a value

p->set_value(result);

}

// the callback function to set the future value

int set_promise_cb(void *cdat, int status)

{

promise_rt_ptr_type *pr_p = (promise_rt_ptr_type *) cdat;

pr_p->rt_p_->register_thread(pr_p->thread_name_.c_str());

// Create an HPX thread to guarantee that the promise::set_value

// function can be invoked safely.

hpx::threads::register_thread(hpx::util::bind(&set_value, pr_p->p_p_, status));

pr_p->rt_p_->unregister_thread();

return status;

}

// init promise_rt_ptr

promise_rt_ptr_type promise_rt_ptr;

// make the AIO call

pxfs_write(fd, buf, bufsiz, &num_written, set_promise_cb, &promise_rt_ptr);

Figure 3.4: An example code to show the integration of HPX and OrangeFS AIO interface
to make an asynchronous write call in HPX applications.
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3.2.2 HPX Asynchronous I/O Class APIs

While designing the API for the implementation of the presented persistent storage

model special attention was directed towards a natural integration with the existing highly

asynchronous programming model exposed by HPX. By design, all functionality in HPX

which can potentially take longer than 100 microseconds to execute is exposed through

asynchronous functions. An asynchronous function in HPX is a function which is return-

ing a future representing the result of that function. The caller can continue executing

immediately without being suspended or without having to wait for the function result.

Three C++ classes, local file, orangefs file and pxfs file are written to incorporate the

asynchronous nature into I/O calls. The code example in Fig. 3.5, Fig. 3.6 and Fig. 3.7

show part of the developed file oriented APIs, respectively.

Note that the HPX future type exposes an interface consistent with the C++11 Stan-

dard [39] with extensions as proposed to the C++ standardization process [61, 62].

The file class and orangefs class interfaces are using the client/server architecture

in HPX which creates a component on a designated server side and on current locality calls

the server actions through a thin client interface to deal with the asynchronism mechanism.

The client side interface is an asynchronous wrapper which schedules the asynchronous task

and manages the results processed at the server side which is utilizing the synchronous

I/O functions provided by the C++ fstream library and the OrangeFS synchronous user

interfaces.

On the other hand, the pxfs file is directly employing the OrangeFS AIO interface

which is already asynchronous by itself. Thus the pxfs file is merely an HPX client class

which setup the interface and thread then handle the function to the OrangeFS AIO inter-

face in OrangeFS client and then communicate with the remote OrangeFS servers.
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HPX local file Asynchronous class API

namespace hpx { namespace io {

class local_file {

~local_file(); // closes file synchronously

// asynchronous function by default

lcos::future<void> open(std::string const& name, std::string const& mode);

void open_sync(std::string const& name, std::string const& mode)

lcos::future<void> close();

void close_sync();

lcos::future<int> remove_file(std::string const& file_name);

int remove_file_sync(std::string const& file_name);

// read/write operations

lcos::future<std::vector<char> > read(size_t const& count)

std::vector<char> read_sync(size_t const count)

lcos::future<std::vector<char> > pread(ssize_t const count, off_t const offset);

std::vector<char> pread_sync(size_t const count, off_t const offset)

lcos::future<ssize_t> write(std::vector<char> const& buf);

ssize_t write_sync(std::vector<char> const& buf);

lcos::future<ssize_t> pwrite(std::vector<char> const& buf, off_t const offset);

ssize_t pwrite_sync(std::vector<char> const& buf, off_t const offset);

lcos::future<int> lseek(off_t const offset, int const whence);

int lseek_sync(off_t const offset, int const whence);

};

}}

Figure 3.5: This code example shows the asynchronous file oriented API exposed by the
implementation of the local file class presented persistent storage model. The local file
class is responsible to operate on local file systems using the HPX asynchronous interfaces
and C++ standard file I/O libraries.
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HPX orangefs file Asynchronous class API

namespace hpx { namespace io {

class orangefs_file {

~orangefs_file(); // closes file synchronously

// asynchronous function by default

lcos::future<void> open(std::string const& name, int const& flag);

void open_sync(std::string const& name, std::string const& mode)

lcos::future<void> close();

void close_sync();

lcos::future<int> remove_file(std::string const& file_name);

int remove_file_sync(std::string const& file_name);

// read/write operations

lcos::future<std::vector<char> > read(size_t const& count)

std::vector<char> read_sync(size_t const count)

lcos::future<std::vector<char> > pread(ssize_t const count, off_t const offset);

std::vector<char> pread_sync(size_t const count, off_t const offset)

lcos::future<ssize_t> write(std::vector<char> const& buf);

ssize_t write_sync(std::vector<char> const& buf);

lcos::future<ssize_t> pwrite(std::vector<char> const& buf, off_t const offset);

ssize_t pwrite_sync(std::vector<char> const& buf, off_t const offset);

lcos::future<int> lseek(off_t const offset, int const whence);

int lseek_sync(off_t const offset, int const whence);

};

}}

Figure 3.6: This code example shows the asynchronous file oriented API exposed by the
implementation of the orangefs file class presented persistent storage model. The or-
angefs file class is responsible to operate on OranegeFS using the HPX asynchronous
interface and OrangeFS synchronous user interfaces.
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HPX pxfs file Asynchronous class API

namespace hpx { namespace io {

class pxfs_file {

~pxfs_file(); // closes file synchronously

// asynchronous function by default

lcos::future<void> open(std::string const& name, int const& flag);

void open_sync(std::string const& name, std::string const& mode)

lcos::future<void> close();

void close_sync();

lcos::future<int> remove_file(std::string const& file_name);

int remove_file_sync(std::string const& file_name);

// read/write operations

lcos::future<std::vector<char> > read(size_t const& count)

std::vector<char> read_sync(size_t const count)

lcos::future<std::vector<char> > pread(ssize_t const count, off_t const offset);

std::vector<char> pread_sync(size_t const count, off_t const offset)

lcos::future<ssize_t> write(std::vector<char> const& buf);

ssize_t write_sync(std::vector<char> const& buf);

lcos::future<ssize_t> pwrite(std::vector<char> const& buf, off_t const offset);

ssize_t pwrite_sync(std::vector<char> const& buf, off_t const offset);

lcos::future<int> lseek(off_t const offset, int const whence);

int lseek_sync(off_t const offset, int const whence);

};

}}

Figure 3.7: This code example shows the asynchronous file oriented API exposed by the
implementation of the pxfs file class presented persistent storage model. The pxfs file
class is responsible to operate on OranegeFS using the OrangeFS AIO asynchronous user
interfaces.
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The advantage of the chosen asynchronous programming model is demonstrated in the

code example shown in Fig.3.8, which demonstrates how easy it is to fully overlap the

asynchronous IO operations (create a file followed by writing several chunks of data to it)

with other useful work.
Examplar Usage of Asynchronous pxfs file API

using namespace hpx;

using namespace hpx::io::pxfs_file;

std::vector<char> data1 = {...};

std::vector<char> data2 = {...};

std::vector<char> data3 = {...};

pxfs_file pf;

pf.open_sync(file_name, O_WRONLY|O_CREAT);

std::vector<hpx::lcos::future<ssize_t> > futures;

// spawn asynchronous file write operations

futures.push_back(pf.pwrite(data1, 0));

futures.push_back(pf.pwrite(data2, data1.size()));

futures.push_back(pf.pwrite(data3, data1.size() + data2.size()));

// do other operations here, concurrently to I/O

hpx::lcos::wait_each(futures); // synchronize with whole I/O operations

// do other I/O operations to the file

pf.close();

Figure 3.8: This code example demonstrates an exemplar use of the file oriented pxfs file
API to asynchronously create a new file and to write some chunks of data to it. The
I/O operation is performed fully overlapping any other work which needs to be performed
before synchronizing with the result of the I/O.

Unlike the traditional I/O operations which takes a local byte buffer as the input and

fill in the contents, the asynchronous I/O operations are all about objects. The data that

used to read from or write to files are encapsulated inside a vector¡char¿ object and

delivered to the data source. This is also conform to the idea of ”send work to data” which

can efficiently reduce the overhead in communication and send less amount of data between

client and server.
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3.3 Active TupleSpace Model

3.3.1 Introduction

Linda[56, 57] is the first programming language of a coordination model for distributed

applications. It is built around TupleSpace, a virtual shared memory holding a collection

of ordered tuples. A tuple is an ordered list of typed fields which can contain executable

code or passive data values. Linda supports a small, yet elegant, set of operations on

TupleSpace.

• out: insert a tuple into the TupleSpace.

• in: retrieve a tuple from the TupleSpace and remove it from the space.

• rd: retrieve a tuple from the TupleSpace and preserve it in the space.

To find a tuple in the TupleSpace, a tuple template which contains a subset of exact

matching or wildcards matching of tuple fields. Both in and rd operations are blocking,

which combines synchronization and communication in an extremely simple model with a

high level of abstraction.

3.3.2 HPX TupleSpace

HPX implements the Active Global Address Space (AGAS) which exposes a dynamic,

adaptive address space which evolves over the lifetime of an HPX application. The shared

memory model of HPX is a perfect hot bed to implement TupleSpace within.

The HPX TupleSpace will implement and extend Linda model under HPX framework.

TupleSpace can be located in one locality or distributed over multiple localities. A tuple

can contain active HPX actions/continuations or passive data values of any type.

Besides the three basic operations (out, in and rd), an asynchronous notification

interface is added which can trigger an HPX action when a certain operation on a matched

tuple is carried out. This capability will fit into the “move work to data” principle of HPX

nicely.
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Also the TupleSpace will support serialize and de-serialize itself to move to and from

the data. The serialization and de-serialization can be stored as a closure to be triggered in

the TupleSpace under certain circumstances. Some use cases will be illustrated in the next

few chapters. It can be used as a snapshot holder to store temporary states and resume.

The role of HPX TupleSpace can not only be served as a coordinating language, but

also as a meta-space for objects. The TupleSpace can hold all attributes and properties

of objects, localities, files, processes, applications, and etc. These information can be

called meta entities because they are holding attributes and properties of an entity, just as

metadata vs data in file system fields. A meta entity lives along with the corresponding

entity instance. It has the same life time as the base entity. It can be stored at the same

or different places with the entity instance. It can contain all aspects of information about

the entity instance. The TupleSpace can also be a knowledge base to connect with other

libraries/applications, including OrangeFS.

Some examples of meta entity can be illustrated below.

• The status(suspend/running), gid, properties(some features enabled or not, etc), at-

tributes(life time, user-defined etc), performance counter, etc

• All namespace information, relation to other objects and the knowledge of where

some certain object is located(partial AGAS space upon interaction with AGAS or

other objects). For example, process hierarchy tree, data dependence graph.

• security properties(permission for owner,group,others), protection framework.

• metadata of OrangeFS file objects, such as data server address and data distribution

topology.

Since all meta entities are kept in TupleSpace, it is really easy to conduct meta space

search. Search criteria can be composed as a tuple template and the result can be retrieved

as another tuple. It is also ideal for debugging at the runtime.
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3.3.3 The Implementation

The HPX TupleSpace is implemented as a HPX component. The tuple structure is

described in Fig. 3.9. It utilizes the hpx::util::any type which can hold any type of

objects.

hpx::util::any

{int | std::string | small_object | big_object | ...}

hpx::util::any hpx::util::any hpx::util::any ...

hpx::util::storage::tuple

Figure 3.9: Diagram of HPX Tuple structure. HPX tuple is composed of an ordered list of
any object, which can hold any type of object.

The diagram of the HPX TupleSpace is shown in Fig. 3.10. All tuples are kept in tu-

ple warehouse and the asynchronous interface is also included. From outside, HPX threads

can perform read, take and insert operations and third-party libraries can also interact

with TupleSpace. If all HPX threads store and update their status and all other attributes

in the TupleSpace, then it can be treated as a huge meta space based on which better deci-

sions about any aspect can be made. It also support serialize and de-serialize to and from

disk files, which can store a snapshot of current application status so that in the future it

can load all the information back and resume running.

A central TupleSpace has been implemented in HPX. Tuples are indexed in tuple warehouse

and three operations, insert,read and take are provided. TupleSpace can examine each

element of an incoming template tuple to find the best-matched tuple. HPX threads are

able to find the TupleSpace via AGAS and communicate with it using HPX actions. Tu-

pleSpace is able to serialize and de-serialize itself to and from storage media, which provides

the capability of store and load a snapshot of itself in disk.

A code example of using the HPX TupleSpace is listed in Fig. 3.11. A TupleSpace

can be created with a symbol name and other threads can connect to the TupleSpace
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Figure 3.10: Diagram of HPX TupleSpace component.
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through the symbol name. Three operations, write, read and take are supported in both

synchronous and asynchronous fashion. The tuple retrieval functions, read and take will

take a template tuple and return the best match tuple.
Examplar HPX TupleSpace Usage

// Find the localities to hold the tuplespace.

std::vector<hpx::id_type> locality;

const std::string tuplespace_symbol_name = "/tuplespace"; // tuplespace name

examples::simple_central_tuplespace central_tuplespace;

// create tuplespace

central_tuplespace.create(tuplespace_symbol_name, locality);

// create tuple

tuple_type tuple1;

tuple1.push_back(std::string("first"))

.push_back(10) // first elem: int

.push_back(small_object(20)) // second elem: small_object

.push_back(big_object(30, 40)); // third elem: big_object

// write to tuplespace asynchronously

future<int> write_op = central_tuplespace.write(tuple1);

// tuple template

tuple_type partial_tuple = <...>;

// read operation, 2nd argument means infinity waiting time, blocking

future<tuple_type> read_op = central_tuplespace.read(partial_tuple, 0);

// take operation, 2nd argument means infinity waiting time, blocking

future<tuple_type> take_op = central_tuplespace.take(partial_tuple, 0);

// doing other computation and communications

// get the results when needed

int ret = write_op.get();

tuple_type read_result = read_op.get();

tuple_type take_result = take_op.get();

Figure 3.11: This code example demonstrates an exemplar use of the TupleSpace and the
three operations. There are synchronous and asynchronous tuplespace operations.

Another code example of using the HPX TupleSpace serialization interfaces is shown

in Fig. 3.12. A TupleSpace client can connect to a server-side tuplespace identified by a

symbol name and issue a serialization command to stroe the whole contents into storage

file objects. Also a TupleSpace can load new contents from a serialized disk file and start

from there.

3.3.4 Use Case: Micro Check-pointing

This section describes a check-pointing use case of HPX applications by utilizing the

active TupleSpace. The basic scenario is that a large scientific application will have a large
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Examplar TupleSpace Serialization Usage

examples::simple_central_tuplespace tuplespace;

// connect to existing tuplespace

tuplespace.connect(tuplespace_symbol_name);

// serialize the whole tuplespace into a file

future<int> store_op = tuplespace.store(file_name);

// doing other computation and communications

int store_ret = store_op.get();

// deserialize the tuplespace from a file

future<int> load_op = tuplespace.load(another_file_name);

// doing other computation and communications

int load_ret = load_op.get();

Figure 3.12: This code example demonstrates an exemplar use of the TupleSpace serializa-
tion interfaces.

amount of data and needs a long time to run, even days or weeks. Nowadays when running

application on large computing clusters which has a lot of computing nodes, the probability

of nodes failure will increase dramatically. It could result in a halt of the computation in

the middle, which could waste a lot of time and resources.

Check-pointing is one way to solve this problem by storing the current data and status

into a snapshot file. The if the computation is interrupted later and restarted, the appli-

cation can load the snapshot file and resume computation from a middle point instead of

start over. However, current implementation of the check-pointing step will bring the whole

application to a stop and then store every necessary parts to storage files, whose process

might cost a huge time and all computer resources are wasted because of the blocking

nature of the process. When using MPI to implement check-pointing, a global barrier is

essential to bring every process to a synchronized stage and then start the possible lengthy

check-pointing process.

Here within the ParalleX model with the help of the active TupleSpace model, it is

possible to overcome these disadvantages by using a micro-check-pointing mechanism. The

basic diagram is illustrated in Figure 3.13.

The HPX application is composed of the AGAS component and other components
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Figure 3.13: Use case of check-pointing of HPX application using the active TupleSpace.
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residing in different HPX localities. In the middle of the computation, when the application

reaches one point to store its whole data and status, each locality or component can decide

on their own when to start the check-pointing process. And the meaning of micro check-

pointing is that it does not need a global barrier to force all parts to run the check-pointing

at the same time, rather it can only depend on a small set of localities/objects to start the

check-pointing on its own schedule.

The process of check-pointing is that every component stores itself to the TupleSpace

and the AGAS could register an action to serialize the TupleSpace when all objects/localities

have submitted their data and status. The use of asynchronism ensures that the check-

pointing is done automatically and will not interfere with the computation flow, which will

improves the performance.

One big problem remains to solved is to determine the global consistent state of all the

object in one snapshot file. This topic remains out of the scope of this dissertation.

3.4 Performance Evaluation

3.4.1 Method

A disk performance micro benchmark is developed in HPX to measure the total through-

put of PXFS module on I/O reading and writing performance. The benchmark can adjust

the following parameters:

• nc: number of client nodes

• nt: number of threads on each client node, a thread is carrying out the actual I/O

operations.

• r/w: select between read and write tests.

• nf : number of test files.

• nb: number of total blocks composed in one file. A thread is operating on one block

when issuing one I/O commands.
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• sb: number of bytes in one block.

These test files are read or written in a sequential fashion at the current time. Then the

read/write throughput can be calculated as

Throughput =
nc ∗ nt ∗ nf ∗ nb ∗ sb

Elapsed Time

It is obvious that larger throughput means a better performance.

3.4.2 Synchronous I/O v.s. Asynchronous I/O

This experiment will compare the performances of synchronous I/O and asynchronous

I/O on local file system, network file system and orange file system. It will use the bench-

mark mentioned in Section 3.4.1 to measure the I/O throughput of synchronous and asyn-

chronous I/O operations on these file systems.

• Experiment Setup

All the tests are executed on the Hermione cluster at STE | |AR [37] group in Center for

Computation and Technology (CCT)[63] at Louisiana State University (LSU) [64]. At the

time when the experiments are conducted, the cluster is a heterogeneous system consisting

of 39 computing nodes connected with Gigabit Ethernet. The nodes are running Linux

and using SLURM as the scheduler.

Four OrangeFS systems are started with 2,4,8,16 server nodes. The client nodes are

distributed in the cluster and not using the server nodes. The number of client nodes

is selected to be comparable to the number of server nodes. HPX runtime system is

responsible for managing threads on the client nodes. Large number of blocks and files are

picked to keep the system under its full capacity.

Several sets of test cases is performed in this experiment on HPX with and without

PXFS module systems on top of OrangeFS file system and Network File System (NFS) [23].

• w/r-5f-100x64KB: writing or reading 5 files with 100 blocks and block size 64KB;

• w/r-5f-100x1MB: writing or reading 5 files with 100 blocks and block size 1MB;
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• w/r-100f-1x64KB: writing or reading 100 files with 1 block and block size 64KB;

• w/r-5f-1x100MB: writing or reading 5 files with 1 block and block size 100MB;

These four file test cases can represent reading and writing small, medium and large block

size cases in large scale scientific applications which read and create sets of data frequently.

As an alternative use case, the OrangeFS user interface is called directly from the

benchmark. The user interface can only support 1 thread per client node and deploys a

synchronous API set. In the PXFS module, multiple threads can be enabled and multi-core

architecture can be utilized.

• Results and Discussions

The I/O throughput results of four test cases are presented in Fig. 3.14, Fig. 3.15,

Fig. 3.16, Fig. 3.17, Fig. 3.18, Fig. 3.19, Fig. 3.20 and Fig. 3.21 respectively. The number

of clients are chosen to be the same as the number of OrangeFS servers and 1.5x times

number of OrangeFS servers.

It is crystal clear that the PXFS module has increased the throughput dramatically

than the direct synchronous interface. For one thread, 24 clients and 16 OrangeFS servers,

the PXFS has 10x speedup for w-5f-100x64KB, 20x speedup for r-5f-100x64KB, 4x speedup

for w-5f-100x1MB, 3x speedup for r-5f-100x1MB, 1.5x speedup for w-5f-1x100MB, 2x

speedup for r-5f-1x100MB, 2x speedup for w-100f-1x64KB,2x speedup for r-100f-1x64KB.

When using multiple threads, w-5f-100x64KB nearly doubles the throughput, w/r-100f-1x64KB

has better performances, r-5f-100x64KB and w-5f-1x100MB sees some downgrades, and

w/r-5f-100x1MB and r-5f-1x100MB have little variations. It is indicated that the thread

management can influence the throughput and w-5f-100x64KB case still has potentials for

higher performance, while r-5f-100x64KB might have some thread contention and needs

some fine tune.

In all of the four cases, PXFS has shown perfect scalability when the number of Or-

angeFS servers are changing from 2 through 16. The throughput increases at the same

ratio as the number of OrangeFS servers. The great scalability is a strong argument for
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Figure 3.14: I/O performance of file test case w-5f-100x64KB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.15: I/O performance of file test case r-5f-100x64KB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.16: I/O performance of file test case w-5f-100x1MB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.17: I/O performance of file test case r-5f-100x1MB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.18: I/O performance of file test case w-5f-1x100MB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.19: I/O performance of file test case r-5f-1x100MB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.20: I/O performance of file test case w-100f-1x64KB between PXFS and direct
interface on HPX and OrangeFS.
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Figure 3.21: I/O performance of file test case r-100f-1x64KB between PXFS and direct
interface on HPX and OrangeFS.
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running large scale application on thousands of nodes now and in the future.

One more thing to mention is that sometimes the writing throughput is better than the

reading throughput for the same file block size and test cases. One possible reason is that

when doing write, it might write to cache first and then write to disk afterwards, while for

reading they directly go to disk, which will cause congestion in the I/O system.

To compare the performance of a parallel file system and a centralized file system, the

tests are also run on NFS with 24 HPX clients and the results are displayed in Fig. 3.22.

Figure 3.22: I/O performance of all four file test cases between HPX+PXFS module on
OrangeFS and HPX on NFS.

As seen from the results, the performance with the PXFS model and a parallel system

underneath greatly surpasses the NFS system with a 5 to 10 times improvement in I/O

throughput with 24 HPX clients. It is shown that in Exascale era, the new storage model

should take into account the experience of parallel file system development.
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3.4.3 Asynchronous I/O Throughputs of HPX File Classes

As seen in Section 3.4.2, different number of threads is having a substantial influence on

the I/O throughput performance. In this section, performances of the HPX asynchronous

file classes (local file, orangefs file and pxfs file) are measured using the method men-

tioned in Section 3.4.1. The purpose is to compare the throughputs of different asyn-

chronous file classes and their performance under different number of threads.

• Experiment Setup

All the tests are executed on the Palmetto Cluster housed by Clemson Computing and

Information Technology [65]. At the time when the experiment was conducted, the status

of Palmetto cluster is listed as below:

• Both multicore large-shared-memory systems and standard multicore distributed-

memory configurations available

• Jobs allocated on a per-core basis (i.e., small jobs may share nodes with other jobs)

• Benchmarked operating at a sustained 551 TFlops using 276 nodes

• Ranked #4 among academic research clusters on June 2014 Top 500 list

• Currently comprises 1,978 compute nodes (20,728 cores) + 598 NVIDIA Tesla GPU

accelerators

• InfiniBand and Myrinet network interconnects

• Operating system on all nodes: Scientific Linux 6 (based on RedHat Enterprise Linux)

• Job queuing system: PBS Professional 12.0

• Connected to Internet2’s 100 GbE (gigabit Ethernet) Advanced Layer 2 Service

Three OrangeFS systems are started with 4,8,16 server nodes and the number of client

nodes are set to twice the number of servers, meaning 8, 16 and 32 client nodes respectively.
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The client nodes are distributed in the cluster and not using the server nodes. HPX runtime

system is responsible for managing threads on the client nodes. Different test cases of files

which has different number and size of file blocks are picked to evaluate the system from

different prospectives.

Several sets of test cases is performed in this experiment on HPX with local file,

orangefs file and pxfs file asynchronous interfaces on top of OrangeFS file system and

Network File System (NFS) [23].

• w/r-50f-100x64KB-Xp: X threads on each client nodes, writing or reading 50 files

with 100 blocks and block size 64KB;

• w/r-50f-10x64KB-Xp: X threads on each client nodes, writing or reading 50 files

with 100 blocks and block size 64KB;

• w/r-5f-1x100MB-Xp: X threads on each client nodes, writing or reading 5 files with

1 block and block size 100MB;

• w/r-5f-100x1MB-Xp: X threads on each client nodes, writing or reading 5 files with

100 blocks and block size 1MB;

These four file test cases can represent reading and writing small, medium and large block

size cases in large scale scientific applications which read and create sets of data frequently.

All test cases are run with varying number of threads ranging from 1 to 4 to test the

throughput under multiple threads in detail.

First of all, the horizontal comparison of all three file classes are conducted to measure

the scalability and absolute throughput of these asynchronous interfaces.

Secondly, another bunch of experiments are carried out to study the influences of

number of I/O threads in each file class and test cases. This is to show if multiple threads

per node will affect the I/O throughput or not.

The results are shown and analysed in the next few sections.
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• Horizontal Comparison: All Asynchronous File Classes with 1 Thread

The throughput results of the asynchronous file classes with 1 thread and all the test

cases are illustrated in Figure 3.23, Figure 3.24, Figure 3.25, Figure 3.26, Figure 3.27,

Figure 3.28, Figure 3.29 and Figure 3.30.

Figure 3.23: I/O performance of file test case w-50f-100x64KB-1p of HPX local-file,
orangefs-file and pxfs-file asynchronous interfaces.
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Figure 3.24: I/O performance of file test case r-50f-100x64KB-1p of HPX local-file,
orangefs-file and pxfs-file asynchronous interfaces.
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Figure 3.25: I/O performance of file test case w-50f-10x64KB-1p of HPX local-file,
orangefs-file and pxfs-file asynchronous interfaces.
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Figure 3.26: I/O performance of file test case r-50f-10x64KB-1p of HPX local-file,
orangefs-file and pxfs-file asynchronous interfaces.
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Figure 3.27: I/O performance of file test case w-5f-1x100MB-1p of HPX local-file, orangefs-
file and pxfs-file asynchronous interfaces.
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Figure 3.28: I/O performance of file test case r-5f-1x100MB-1p of HPX local-file, orangefs-
file and pxfs-file asynchronous interfaces.
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Figure 3.29: I/O performance of file test case w-5f-100x1MB-1p of HPX local-file, orangefs-
file and pxfs-file asynchronous interfaces.

62



Figure 3.30: I/O performance of file test case r-5f-100x1MB-1p of HPX local-file, orangefs-
file and pxfs-file asynchronous interfaces.
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The following observations about these results can be made without much effort.

• Writing throughput is much less than reading in all cases because writing data to

disk cost more time.

• For small file block sizes like 64KB in the first 2 test cases, local file performs much

better because it does not have a lot of overhead for small files like in parallel file

systems. However, orangefs file and pxfs file are improving with more client nodes

and data servers, while local file has less throughput with more client nodes and

data servers. This clearly shows a lack of scalability for local file class.

• For large file block sizes (100MB), orangefs file and pxfs file are doing much better

than small files and can be comparable or better than the local file class. This is due

to the parallel nature of OrangeFS to distribute large files on multiple data servers.

• For medium file block sizes (1MB), orangefs file and pxfs file are doing great on

writing comparing to local file, and slightly better on reading medium file blocks.

This might due to the reason that OrangeFS has a better balance of communication

overhead and actual I/O operations for medium file blocks.

• These files shows small scalability for orangefs file and pxfs file for reading and

writing in 4,8,16 data servers. The reason might be the small number of data servers

and clients in these test cases. More servers causes instability of the benchmark and

did not return reasonable results.

• In all cases, pxfs file is showing better performance of orangefs file in I/O oper-

ations. The difference between them is that orangefs file handles asynchronism in

HPX runtime, while pxfs file deals with asynchronism on OrangeFS side. The better

performance of pxfs file indicates that moving the asynchronism closer to the actual

data will improve the I/O throughput.
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• Vertical Comparison: local file class with Different Number of Threads

The throughput results of the asynchronous local file class with varying number of

threads on all the test cases are displayed in Figure 3.31, Figure 3.32, Figure 3.33, Fig-

ure 3.34, Figure 3.35, Figure 3.36, Figure 3.37 and Figure 3.38.

Figure 3.31: HPX local-file asynchronous I/O performance of test case w-50f-100x64KB

with different number of threads on client nodes.
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Figure 3.32: HPX local-file asynchronous I/O performance of test case r-50f-100x64KB

with different number of threads on client nodes.

66



Figure 3.33: HPX local-file asynchronous I/O performance of test case w-50f-10x64KB

with different number of threads on client nodes.

67



Figure 3.34: HPX local-file asynchronous I/O performance of test case r-50f-10x64KB

with different number of threads on client nodes.
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Figure 3.35: HPX local-file asynchronous I/O performance of test case w-5f-1x100MB with
different number of threads on client nodes.
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Figure 3.36: HPX local-file asynchronous I/O performance of test case r-5f-1x100MB with
different number of threads on client nodes.
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Figure 3.37: HPX local-file asynchronous I/O performance of test case w-5f-100x1MB with
different number of threads on client nodes.
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Figure 3.38: HPX local-file asynchronous I/O performance of test case r-5f-100x1MB with
different number of threads on client nodes.
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The following observations of these diagrams can be made without much efforts.

• For small file block size (64KB), local file does not see a lot of variation of the

throughputs when increasing the number of threads for different number of clients.

In reading, increasing the number of threads will improve the throughput a little bit.

• For large file block size (100MB) and medium file block size (1MB), increasing

the number of threads will largely downgrade the reading and writing throughputs.

And with more clients, smaller number of threads are necessary to maintain a good

throughput.

Thus in conclusion, the number of threads will largely affect the reading and writing

throughput of local file asynchronous classes, and with more clients less number of threads

are allowed to prevent poor performances.

• Vertical Comparison: orangefs file class with Different Number of Threads

The throughput results of the asynchronous orangefs file class with varying number

of threads on all the test cases are displayed in Figure 3.39, Figure 3.40, Figure 3.41,

Figure 3.42, Figure 3.43, Figure 3.44, Figure 3.45 and Figure 3.46.

The following observations of these diagrams can be made without much efforts.

• For all cases of file block size (64KB, 1MB, 100MB), orangefs file does not see a lot

of variation of the throughputs when increasing the number of threads for different

number of clients. In reading, increasing the number of threads will improve the

throughput.

• More data servers shows near-scalable performance for writing and comparable per-

formance for reading. It might be caused by the small number of OrangeFS data

servers and small number of client nodes. These test cases did not reach the point

where scalability can be shown.
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Figure 3.39: HPX orangefs-file asynchronous I/O performance of test case w-50f-100x64KB
with different number of threads on client nodes.
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Figure 3.40: HPX orangefs-file asynchronous I/O performance of test case r-50f-100x64KB
with different number of threads on client nodes.
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Figure 3.41: HPX orangefs-file asynchronous I/O performance of test case w-50f-10x64KB

with different number of threads on client nodes.
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Figure 3.42: HPX orangefs-file asynchronous I/O performance of test case r-50f-10x64KB

with different number of threads on client nodes.
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Figure 3.43: HPX orangefs-file asynchronous I/O performance of test case w-5f-1x100MB

with different number of threads on client nodes.
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Figure 3.44: HPX orangefs-file asynchronous I/O performance of test case r-5f-1x100MB

with different number of threads on client nodes.
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Figure 3.45: HPX orangefs-file asynchronous I/O performance of test case w-5f-100x1MB

with different number of threads on client nodes.
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Figure 3.46: HPX orangefs-file asynchronous I/O performance of test case r-5f-100x1MB

with different number of threads on client nodes.
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Thus in conclusion, the number of threads does not affect the reading and writing through-

put of orangefs file asynchronous classes, and with more clients and more servers, better

performances can be expected which indicates a scalable system.

• Vertical Comparison: pxfs file class with Different Number of Threads

The throughput results of the asynchronous pxfs file class with varying number of

threads on all the test cases are displayed in Figure 3.47, Figure 3.48, Figure 3.49, Fig-

ure 3.50, Figure 3.51, Figure 3.52, Figure 3.53 and Figure 3.54.

Figure 3.47: HPX pxfs-file asynchronous I/O performance of test case w-50f-100x64KB

with different number of threads on client nodes.
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Figure 3.48: HPX pxfs-file asynchronous I/O performance of test case r-50f-100x64KB

with different number of threads on client nodes.
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Figure 3.49: HPX pxfs-file asynchronous I/O performance of test case w-50f-10x64KB with
different number of threads on client nodes.
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Figure 3.50: HPX pxfs-file asynchronous I/O performance of test case r-50f-10x64KB with
different number of threads on client nodes.
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Figure 3.51: HPX pxfs-file asynchronous I/O performance of test case w-5f-1x100MB with
different number of threads on client nodes.
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Figure 3.52: HPX pxfs-file asynchronous I/O performance of test case r-5f-1x100MB with
different number of threads on client nodes.
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Figure 3.53: HPX pxfs-file asynchronous I/O performance of test case w-5f-100x1MB with
different number of threads on client nodes.
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Figure 3.54: HPX pxfs-file asynchronous I/O performance of test case r-5f-100x1MB with
different number of threads on client nodes.
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The following observations of these diagrams can be made without much efforts.

• For all cases of file block size (64KB, 1MB, 100MB), pxfs file does not see a lot

of variation of the throughputs when increasing the number of threads for different

number of clients. In reading, increasing the number of threads will improve the

throughput.

• More data servers shows near-scalable performance for writing and comparable per-

formance for reading. It might be caused by the small number of OrangeFS data

servers and small number of client nodes. These test cases did not reach the point

where scalability can be shown.

Thus in conclusion, the number of threads does not affect the reading and writing through-

put of pxfs file asynchronous classes, and with more clients and more servers, better

performances can be expected which indicates a scalable system.
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Chapter 4
Distributed Directory Service in
Orange File System

The high-performance computing (HPC) community is walking into an new era where

top clusters and systems are able to achieve a performance of petaFLOPs (1015) scale

easily. The rapid growth in computing power and high demand for parallelism imposes

significant challenges for the storage system, which is expected to handle the input/output

(I/O) requests from parallel applications with good performance and great scalability.

Many parallel file systems are developed to answer that challenge[17, 7, 8, 9, 10]. File

data are distributed across multiple processing nodes in parallel file systems, each with its

own storage resources. In that case, concurrent I/O requests can be spread across several

servers to process rather than focusing I/O on a single server [18]. Recently there’s growing

concern with making directories scalable on parallel file systems. It is a typical scenario for

applications which do data mining and real-time application monitoring to create numerous

small files under the same directory every second. As a result, it is important to build

scalable directory services for parallel file systems to support efficient concurrent access to

even larger directories in the future.

OrangeFS distributes large files across multiple servers, however, in prior versions a

directory object and its data object are still stored on a single server. This design of a

directory is inadequate to scale large directories when multiple clients are accessing the

same directory concurrently.

A scalable directory service [66] designed for PVFS was demonstrated based on GIGA+ [67].

A prototype was built on a parallel file system simulator, where it achieved high throughput

and scalability while minimizing bottlenecks and synchronization overheads. It is necessary

to incorporate the scalable directory service into a production-quality high-performance

parallel file system to get benefits. In this chapter, a scalable distributed directory is
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designed based on previous work and implemented into OrangeFS seamlessly.

The main contributions of this chapter include:

• Implemented a complete scalable distributed directory service which distributes di-

rectory entries across multiple servers, and incorporated the service into Orange File

System seamlessly. The number of directory entry partitions is configurable during

directory creation and can be dynamically incremented with usage.

• Evaluated throughput performance in large scale under a production-level environ-

ment and compared the outcomes with that of vanilla OrangeFS. The result shows

great scalability when the number of servers and clients are varied.

In the rest of the chapter, Section 4.1 lists some related works by other researchers.

Section 4.2 describes the design and implementation of the scalable distributed directory.

Section 4.3 gives results of performance evaluation and Section 4.4 draws the conclusion.

4.1 Background

GPFS [9] supports efficient file name lookup in large directories through extensible

hashing [68]. Directory entries of a large directory are stored in multiple disk blocks. To

map an entry to a disk block, a hash function is applied to the entry name and the n

low-order bits of the hash value is used as the block number, where n depends on the size

of the directory. As a directory grows, a disk block can be split in two. The logical block

number of the new directory block is derived from the old block number by adding a ‘1’

in the n + 1st bit position, and directory entries with a ‘1’ in the n + 1st bit of their hash

value are moved to the new block.

Lustre File System [7] is a massively parallel distributed file system for cluster comput-

ing. Lustre is working on distributed metadata service which seems to support one level of

splitting, and some results of a pre release [27] shows over 10,000 files creates per second.

Ceph [17] is a research distributed file system which offers dynamic distributed meta-

data management based on current access patterns. Ceph writes a directory’s content to

the object storage devices using the same striping and distribution strategy as file data.
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Each metadata server keeps a record of the popularity of metadata within the directory

and adaptively distributes metadata hierarchically with dynamic subtree partitioning strat-

egy [69].

GIGA+ [67] is a scalable directory design for shared file systems which divides each

directory into a scalable number of fixed-size partitions that are distributed across multiple

servers in the cluster. A bitmap is used to represent a tree of partitions of the corresponding

servers where ‘1’ indicates presence and ’0’ for absence. At first, only the zero-th bit position

in the bitmap is set to ‘1’. As a directory is filled, an overflowing partition with index i

and depth r will move half of its hash space to a partition i + 2r, and both partitions will

be at depth r+ 1. Each server manages its partitions independently. An illustration of the

splitting process in GIGA+ is shown in Figure 4.1.

Figure 4.1: Illustration of a three-level splitting process in GIGA+. The hash space is
divided evenly for each split.

The design of scalable distributed directory on OrangeFS employs the extensible hash-

ing technique and the splitting strategy of GIGA+, however, it differs in other aspects in

order to be incorporated into OrangeFS seamlessly.

4.2 Design and Implementation

4.2.1 OrangeFS Structure

OrangeFS organizes files and directories in the form of several storage objects. Some

important objects are

• Metadata objects store data about files or directories. Besides usual file attributes
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like owner, group, permissions, etc. OrangeFS metadata object keeps file distribution

information of the actual data. Metadata objects do not contain contents of files or

directories.

• Datafile objects are blocks of actual file contents. OrangeFS stripes a file across

multiple datafiles on multiple servers to facilitate parallel access.

• Dirdata objects contain contents of directories, or directory entries. Each directory

entry is a pair of entry name and the identifier to its metadata object, either a file

metadata object or a directory metadata object.

OrangeFS objects are uniquely identified by handles, which are unique, opaque, integer-

like identifiers. This provides a concise, non path dependent mechanism for specifying what

object to operate on when clients and servers communicate.

The metadata object of a file keeps a list of datafile handles identifying the actual data

blocks, while the metadata object of a directory keeps only one dirdata handle representing

the dirdata object at this time. The structures of these objects are visualized in Figure 4.2.
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Figure 4.2: Diagram of structures of OrangeFS objects. A directory metadata object only
has one dirdata object, which resides on the same metadata server. Usual file attributes
fields are omitted in this diagram.
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4.2.2 Scalable Distributed Directory Design

• Data Structure

An array of dirdata handles and a dirdata bitmap are added to a directory metadata

object and dirdata objects to enable distribution of directory entries across multiple servers.

The structures are shown in Figure 4.3.

Figure 4.3: Diagram of object structures in scalable distributed directory OrangeFS design.
A directory metadata object holds a number of dirdata objects across all metadata servers.
Dirdata handles array and dirdata bitmap are added on the directory metadata object and
the dirdata object.

When a directory is created, an array of dirdata objects is allocated with one dirdata
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object on each metadata server. Within each dirdata object, directory entries are indexed

by Berkeley DB [70], which uses B+ tree to provide low-cost lookup, insert and delete

operations plus efficient sequential access. Consequently there is no need to keep multiple

dirdata objects of the same directory on one metadata server.

The dirdata bitmap keeps a one-to-one mapping between the bit position and the index

of the dirdata handle array. A bit value of ‘1’ indicates an active dirdata object while a bit

value of ‘0’ indicates an inactive dirdata object. The bitmap is initialized during directory

creation to set the initial number of active dirdata objects to use. Unlike GIGA+ which

always starts from one partition and increases the number of partitions gradually, the

initial number of active dirdata objects is configurable. The splitting process is found to

be expensive [66] and for a directory which is expected to be large, it is better to utilize all

the dirdata objects to enjoy better scalability from the start.

The metada object of a directory keeps a most up-to-date copy of dirdata bitmap,

which is done by accepting bitmap updates from dirdata objects. Each dirdata object also

keeps a copy of dirdata bitmap and array of dirdata handles. One purpose is to verify the

incoming directory entry request belongs to its hash space and another is to find the new

dirdata object when issuing a split operation. Thus the dirdata bitmap on a dirdata object

only needs to be locally updated and accurately reflects its own status.

• Directory Entry Lookup

When initiating a directory request, the OrangeFS client library is responsible for fetch-

ing the scalable distributed directory attributes, including the dirdata array and dirdata

bitmap, and deciding which dirdata object to contact to complete directory operations.

We made this decision to simplify the design on the server side and reduce metadata server

waiting time for each client request, since metadata and dirdata are probably not sitting

on the same server.

Another reason is that OrangeFS uses client-side caching of object metadata to optimize

the performance of file system access patterns [71]. There is an acache module, which stands
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for attribute cache, in OrangeFS system. It is used to cache metadata of storage objects

including ownership, timestamp and distributed file information. By keeping a copy of

distributed directory attributes on the client side, we can take advantage of the acache

module.

The extensible hashing technique mentioned in Section 4.1 is used to map a directory

entry to a dirdata object using the algorithm as detailed in Figure 4.4. A directory entry is

assigned to an active dirdata handle based on its name. To achieve a random distribution,

the directory entry name is encoded by a strong hash algorithm (MD5 in our case) first.

The hashed value then serves as the key to dirdata object selection. The lower R bits

(R = dlog2(N)e, where N is the size of dirdata array) are taken as an initial matching

index. If the dirdata bitmaps shows an inactive dirdata handle at that index, the highest

bit is taken off and the dirdata bitmap is checked again with the new matching index. In the

end, an active dirdata handle is picked and the corresponding operations can be processed.

The dirdata object at index 0 is always active which guarantees a dirdata object is selected

under any circumstances.

• Dirdata Splitting

Dirdata splitting is supported when the number of directory entries in one dirdata

object exceeds a threshold value, which is a configurable parameter with a default value.

Because the maximum number of dirdata objects of a directory is fixed at the number of

metadata servers, splitting is not possible, or necessary, when all of the dirdata objects are

in use. In that case, the number of directory entries stored in the dirdata object is allowed

to exceed the threshold. If new servers are added to the system, overloaded dirdata objects

can resume splitting to dirdata objects on new servers.

The dirdata splitting process follows the splitting method of GIGA+ mentioned in

Section 4.1. If the initial number of active dirdata objects is n, then during directory

creation, the first n bits of dirdata bitmaps will be set to ‘1’ and their depths will be

calculated. Upon splitting from a dirdata object with an index of i and depth of r, the
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Figure 4.4: Illustration of the lookup process in scalable distributed directory on OrangeFS.
N denotes the total number of dirdata objects. In this example, N=8 and the key starts
at 7.

index of the new dirdata object is i+ 2r if the index is still within range. Directory entries

with a ‘1’ on the r + 1st bit position of their hash values will be moved to the new dirdata

object. Both dirdata objects will bump to a depth of r + 1 afterwards.

After splitting is completed between two dirdata objects, an updated bitmap is sent

to the server holding the metadata object of the directory to update the bitmap there,

basically setting the bit at the new dirdata position as ‘1’. With this mechanism, the

metadata object will have the most up-to-date information of the directory at all times.

If the client uses an out-of-date bitmap in its cache and finds that the directory entry is

no longer on the indicated dirdata server because of splitting, it can always turn to the

metadata object for the newest copy of the bitmap and start again. This simplifies the
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synchronization process and a client only needs a maximum of two probes to locate the

correct dirdata object, comparing to possible multiple probes in GIGA+ because of the

lazy client update mechanism they used [67].

• Maintenance and Removal

Some attributes, such as the timestamp information and the number of directory en-

tries, will be distributed with the dirdata and collected by the client if needed. Only active

dirdata objects are contacted for these distributed attributes and directory entries. Other

attributes like permissions are kept in the metadata object, similar to regular files.

The removal of a scalable distributed directory is conducted mainly by the server which

holds the metadata object to simplify the error handling procedure. It will make sure all

the dirdata objects are deleted before the removal of the metadata object of the directory.

If anything goes wrong when removing dirdata objects, the dirdata array can be rebuilt to

restore the functionality of the directory.

4.3 Performance Evaluation

4.3.1 Experiment Setup

The performance of the scalable distributed directory was evaluated on the Palmetto

Cluster housed by Clemson Computing and Information Technology [65]. The cluster was

configured as follows at the time of our experiments. There were 1,541 nodes in total with

8 cores per node. The nodes were running Linux 2.6.18 and equipped with Intel Xeon

E5345/E5410/L5420 at 2.33GHz/2.5GHz or AMD Opteron 2356 at 2.3GHz and memory

sizes of 12GB/16GB. The interconnect network utilizes Myrinet 10G and high throughput

storage is attached to all nodes.

4.3.2 Results and Analysis

The UCAR metarates benchmark [72] is an MPI application that measures throughput

of file creation rates in one directory with multiple clients concurrently. We modified the

benchmark program to use OrangeFS native APIs to communicate with OrangeFS servers

and add a function to measure the file removal rates under a directory. The throughput
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results from creating and removing empty files under one directory with different numbers

of OrangeFS servers is illustrated in Figure 4.5. The number of clients is twice the number of

OrangeFS servers. The throughput of scalable distributed directory shows great scalability

as the number of servers increase and can reach more than 8,000 file creations and over

11,000 file removals on average in one second with 64 servers.

Next, the number of clients is varied when running the benchmark on a 64 server setup.

The results are illustrated in Figure 4.6. The results show that OrangeFS with scalable

distributed directories can scale with the number of clients up to twice the number servers,

while the vanilla OrangeFS can not scale up with the number of clients. Figure 4.6 also

shows the results with 192 clients and 256 clients, where the average file creations per

second maintains over 8,000 and the average file removals per second drops a little from

11,000 but still lingers above 8,000. This means the servers are overloaded with client

requests and are reaching their full capacities. The faster drops in file removal may be due

to the OrangeFS file removal implementation because the vanilla OrangeFS shows similar

trend as servers are saturated.

4.4 Chapter Conclusions

This chapter describes a scalable distributed directory design and implementation on

Orange File System. Similar to data files, directory entries are distributed across multiple

servers. The number of partitions can be specified during directory creation and dynam-

ically incremented when filling the directory. Files are assigned to a specific partition by

hashing their names to achieve load balancing among partitions. Clients are responsible

for contacting the correct server when initiating a request.

A complete scalable distributed directory implementation on OrangeFS has been car-

ried out except the dynamic splitting function when the paper was prepared. A modified

version of UCAR metarates benchmark is used to evaluate the performance of the scalable

distributed directory. Comparing with vanilla OrangeFS, the scalable distributed directory

shows great scalability in creating and removing large number of files by multiple clients
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concurrently. On a 64-servers setup and 128 clients accessing the same directory concur-

rently, the scalable distributed directory can achieve more than 8,000 file creations per

second and over 11,000 file removals per second on average.

The scalable distributed directory feature is available in current 2.8 release of OrangeFS

at

http://orangefs.org/download/
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(a) average file creation throughput with different numbers of servers

(b) average file removal throughput with different numbers of servers

Figure 4.5: Scale and performance of scalable distributed directory implementation on
OrangeFS with different number of OrangeFS servers. The UCAR metarates benchmark
is used and the number of clients are selected to be 2x the number of servers.
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(a) average file creation throughput with different numbers of clients on 64-server sys-
tem

(b) average file removal throughput with different numbers of clients on 64-server system

Figure 4.6: Scale and performance of 64 servers scalable distributed directory implementa-
tion on OrangeFS with different number of clients.
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Chapter 5
Conclusions and Future Work

This dissertation presents PXFS, a novel persistent storage model for extreme scale.

It aims to explore the maximum of parallelism and performance out of the storage layer

in the Exascale computing era, which is expected to arrive in the next decade. The early

implementation of PXFS is composed of two parts, asynchronous I/O operations and an

active TupleSpace model.

The asynchronous I/O interface utilizes Orange parallel file system as the back-end

and incorporate an asynchronous I/O interface into HPX, an implementation of ParalleX

execution model. The I/O performance is evaluated with a homemade benchmark and the

I/O throughput shows a perfect scalability, along with a 3x to 20x times speedup against the

OrangeFS user interface and a 5x to 10x times higher throughput than NFS with 24 clients.

Another benchmark is conducted to study the performance of different asynchronous HPX

file classes and the effects of number of client threads. The result shows that local file

class is not scalable and its performance is largely affected by the number of client threads,

while orangefs file and pxfs file are not affected by the number of client threads under

all cases, which shows a sign of scalability. And by comparing the result of orangefs file

and pxfs file class, another conclusion can be made that move the asynchronism closer to

the data object will improve the I/O operations.

The other part of PXFS is the innovative design of active TupleSpace model which

can be served as a coordinating places for concurrent operations and a meta-space for all

objects, including storage objects and runtime objects. The meta-properties of objects

can be used to aid application and programmers to make smarter decisions based on all

information. A micro check-pointing use case is illustrated to showcase the power of the

active HPX TupleSpace.

Another part of the dissertation is the design of a scalable distributed directory service
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and its implementation on Orange file system. It enables the scalability of directory opera-

tions and the result shows perfect scalability and excellent metadata operation throughputs.

In the future, more layers of Orange parallel file system and ParalleX model will be

analyzed to develop a more sophisticated storage model. For the benchmark, the effect of

threads and various architectures on I/O performance will be tested thoroughly. More real

world applications will be used to evaluate the performance of PXFS.

Another part of work in the future could be detailed research in metadata management

in object level runtime system. The TupleSpace could be utilized to include all metadata

from either storage objects and runtime objects. More use cases can be found and appli-

cations be implemented to benefit from the unified metadata management.
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