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Abstract

In large databases, there may exist critical nuggets - small collections of records

or instances that contain domain-specific important information. This information

can be used for future decision making such as labeling of critical, unlabeled data

records and improving classification results by reducing false positive and false

negative errors. In recent years, data mining efforts have focussed on pattern and

outlier detection methods. However, not much effort has been dedicated to find-

ing critical nuggets within a data set. This work introduces the idea of critical

nuggets, proposes an innovative domain-independent method to measure critical-

ity, suggests a heuristic to reduce the search space for finding critical nuggets, and

isolates and validates critical nuggets from some real world data sets. It seems that

only a few subsets may qualify to be critical nuggets, underlying the importance of

finding them. The proposed methodology can detect them. This work also identifies

certain properties of critical nuggets and provides experimental validation of the

properties. Critical nuggets were then applied to 2 important classification task

related performance metrics - classification accuracy and misclassification costs.

Experimental results helped validate that critical nuggets can assist in improving

classification accuracies in real world data sets when compared with other stan-

dalone classification algorithms. The improvements in accuracy using the critical

nuggets were statistically significant. Extensive studies were also undertaken on

real world data sets that utilized critical nuggets to help minimize misclassifica-

tion costs. In this case as well the critical nuggets based approach yielded statis-

tically significant, lower misclassification costs than than standalone classification

methods.

ix



Chapter 1
Introduction

1.1 Data Mining

In the past 20 years, the rapid growth of the world wide web and spectacular

advances in technology and communications have generated an enormous amount

of data. During the same time period, the storage capacity for devices has grown

exponentially and the cost of storage devices has dramatically reduced as well.

Technological advances such as smart phones and tablet computers have provided

users with a host of ‘apps’ (or applications) that enable users to generate volumes

of data, transmit the data using mobile communication channels to remote servers

and also retrieve and analyze the data when they wish to. A simple example is

a ‘pedometer app’ that can record each step that you take and store the data

either on your phone or on a remote server (or to use computing jargon - store it

in the ‘cloud’). The next time you go for a walk, you can retrieve the data back,

analyze all previous workout details and use it to compare your current workout

with the previous workouts. This is just a simple example of how our daily lives are

intertwined with data generation, data storage and data access. Data is ubiquitous.

Since there is so much of data being collected, stored and accessed, how could

this data be put to good use and can one gain a better understanding of the data

sets being collected? This is where the field of data mining comes in. Data mining

involves the analysis of large data sets (or data bases) resulting in the discovery of

previously unknown relationships and patterns that may exist within the data sets

[24]. Hence, data mining is also commonly referred to as ‘knowledge discovery in

databases’. An implicit assumption in data mining is that the person analyzing the

1



data set is not looking for an obvious or known relationship or pattern, but instead

looking for previously unknown characteristics from the data set. A key aspect in

data mining is to use the data collected in gaining a stronger understanding of the

data domain. The gained knowledge provides the user the ability to make smarter

and efficient decisions. If one wishes to mine a data set, data mining essentially

involves the following steps:

• Preprocessing and cleaning of the data set.

• Apply a data mining algorithm.

• Analyze and test results.

A good overview of the field of data mining and knowledge discovery, including

steps in a data mining process is provided in [15].

1.1.1 Data Mining Algorithms

Depending on the task at hand, different algorithms can be used on large data sets.

These algorithms use several techniques drawn from statistics, computer science,

machine learning, operations research and information theory to construct data

mining models. These models are then used to make predictions, detect outliers,

derive patterns and discover knowledge about the underlying data domain. An

introductory reading on data mining methodologies can be found in work such as

[15], [7] and [16]. Data mining algorithms can be broadly categorized as follows:

Classification Tasks

These are used in data mining when the main goal is to predict if a data record

belongs to one class or another. In this case, data sets have among other

attributes, an attribute called the class attribute. During classification tasks,

2



one uses existing knowledge of class attribute values to predict unknown

class attribute values. Detecting spam among a group of email records can

be categorized as a classification task. In this example, the predicted value

would be if an email is spam or not. Other examples include detecting credit

card fraud and diagnosis of a disease. Typically, a classification task involves

2 steps - a training phase and a testing phase. During the training phase, a

group of data records (with known values of the class attribute) are used by

the data mining algorithm to learn specific characteristics about the data set.

As a result, a data mining model is derived. In the next step, data records

from the test data set are provided to the data mining model. The model

predicts values for the class attribute. The number of correct predictions is

a barometer on the accuracy of the classification algorithm.

Clustering

Clustering algorithms are used to group data records such that each group has

data records that have very similar characteristics. As an example, consider

a credit history data set. If the task at hand is to lower interest rates for

people with good credit history, its best to use a clustering algorithm that

clusters people with good credit history into one group and clusters people

with moderate and poor credit histories into two other groups. In a large

credit card transactional data set, say with more than a billion data records,

clustering may help a company to narrow their business focus on one group

of customers.

Association Rules

Association Rules are used to identify rules that represent frequent occur-

rences of certain relationships/patterns between the different data records.

3



Simply put, association rules answer questions such as if ‘X’ and ‘Y’ occur,

does ‘Z’ also occur? These algorithms have applicability in supermarkets

where a store manager can place items together after studying customer

purchase patterns that indicated that people tend to buy certain items to-

gether. As an example of association rule, if the finding (or rule) was that:

If Jambalaya Mix and Andouille Sausage are bought together, then LSU Fan

Gear are also bought, then the store manager can stock Louisiana cuisine

items and LSU fan gear in the same aisle. The methodology of association

rule is different from a classification task. One important difference is that

classification involves a non-deterministic goal which is predicting an pre-

viously unknown class value whereas association rule derivation is a more

deterministic task (as extensively covered in [18]).

Outlier Detection

In some applications and data sets, the task is to pick out outliers - data

records that are very different from the other data records. Outlier detec-

tion algorithms can also be used in the preprocessing stage to remove noisy

data records. Outliers may also indicate an interesting phenomenon occur-

ring within the data set. Outlier detection based data mining approaches are

outlined in work such as [29] and [5].

A detailed survey of various data mining approaches can be found in [9].

4



1.2 Critical Nuggets

Given the above background, this research work and dissertation focusses on clas-

sification tasks 1. During a classification task, there may be certain subsets of data

within a data set that are more interesting or more important than the rest of

the data set. These subsets are critical nuggets of information. In recent times,

detecting patterns and outliers has emerged as an important area of work in the

field of data mining. It has several applications including detecting fraud in busi-

ness transactional data [30], identifying network intrusions [30], isolating abnormal

trends in time-series data [47] and picking out suspicious criminal activity [51]. A

lot of work in data mining has been devoted to finding interesting patterns or rules

in data sets ([34], [19] and [45]). Work such as [50] consider the identification of

interestingness measures, but the work was catering towards pattern mining and

association rules. This is different from identifying critical nuggets during classi-

fication tasks. As mentioned earlier, the differences between association rules and

classification tasks have been outlined in [18]. In [29], research was carried out

on the mining of outliers and the concept of distance-based outliers. The work

proposed to identify records that were anomalous or different from the rest of the

data set. A good definition of an outlier is that of [25], an outlier is an observa-

tion that deviates so much from other observations as to arouse suspicions that it

was caused by a different mechanism. Distance-based measures as in [4], [44] and

[30] have been used in algorithms to delineate outliers or abnormal records from

normal records. However, not much work has focussed on finding critical nuggets

of information that may be hidden in data sets. These nuggets of information may

1Research work mentioned in chapters 1, 2, 3 and 4 has been accepted for publication in the IEEE Transac-
tions of Knowledge and Data Engineering c©IEEE 2012. A detailed citation is David Sathiaraj, Evangelos Tri-
antaphyllou, ”On Identifying Critical Nuggets Of Information During Classification Tasks,” IEEE Transactions
on Knowledge and Data Engineering, 23 May 2012. IEEE computer Society Digital Library. IEEE Computer
Society, http://doi.ieeecomputersociety.org/10.1109/TKDE.2012.112. It is also mentioned as [43]
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not always be detected by pattern mining methods or by distance-based outlier

detection methods as nuggets may not conform to a specific pattern and may not

be outliers. Critical nuggets may not necessarily lie at a great distance from the

rest of the data records.

A simple visual example is outlined in Fig. 1.1, where the data set with protru-

sions around the circular region (Fig. 1.1(b)) might be considered more interesting

than the simpler circular region (Fig. 1.1(a)). The protrusions serve as critical

nuggets of information that are more interesting as these areas can be studied

further for improved classification results. These protrusions also do not exhibit

any outlier properties and hence outlier detection methods are not suitable for

identifying them.

In real life, one such example is if one were asked to identify benign tumors that

are very close to becoming malignant. Such data records, if they were to exist in a

data set, would not ‘deviate so much’ from both benign and malignant observations,

but instead would lie extremely close to the class boundary separating the benign

and malignant classes. They may not necessarily ‘deviate enough’ to be captured

by distance-based outlier detection methods.

In tight elections, the undecided voters are crucial in deciding the outcome. The

problem of identifying the undecided voters and the attributes that can tilt them to

the opposite side is valuable information. Another example is to predict cases from

bank loan data that are very close to bankruptcy. In this setting, the important

task is to identify cases before they become bankrupt. In many applications the

problem is not of finding individual outliers, but instead, of finding critical nuggets

(subsets of data) that provide valuable information which in turn can be used for

improved classification results and a better understanding of false positive and

false negative errors.
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(a) An uninteresting circular region.

(b) Interesting protrusions around the circular region.

FIGURE 1.1. Grey dots indicate points of one class (−) while black dots indicate points
of another class (+).
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This research work considers the notion of identifying subsets of critical data

instances in data sets. Critical nuggets of information can take the following form

during classification tasks: data instances that lie very close to the class boundary

and are sensitive to small changes in attribute values, such that these small changes

result in the switching of classes. Such critical nuggets have an intrinsic worth that

far out-weighs other subsets of the same data set. In classification tasks, consider

a data set that conforms to a certain representation or a classification model. If

one were to perturb a few data instances by making small changes to some of their

attribute values, the original classification model representing the data set changes.

Also, if one were to remove those data instances, the original model could change

significantly. The magnitude of changes to the original model provides clues to the

criticality of such data instances, as more critical data instances tend to impact the

model more significantly than data instances that are comparatively non-critical.

This idea is exploited in this research work to introduce the notion of critical

nuggets, to define a metric for criticality and for the eventual mining of critical

nuggets.2

1.3 Outline

This thesis provides in detail, the research work done in identifying critical nuggets

in several 2-dimensional synthetic data sets and real world data sets. The work also

outlines how the identified critical nuggets were used to improve the quality and

accuracy of classification systems. This dissertation can be broadly divided into 3

parts:

• Motivation for critical nuggets and some algorithmic heuristics for deriving

them.

2From this point on, the use of the terms ‘critical nuggets’ and ‘critical sets’ refer to the same concept.
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• Improvement of classification accuracies using critical nuggets.

• Minimization of misclassification costs using critical nuggets.

In more detail, this research effort makes the following specific contributions:

• It defines a metric (CRscore, where CR stands for critical) to measure the

criticality of subsets in a data set. A number of definitions of criticality have

been explored. Though some of the definitions considered showed some initial

promise, only one captured the nature of a critical nugget. Experiments were

conducted to validate the most appropriate metric.

• Using the metric CRscore, experiments were conducted to identify the location

and features of critical nuggets. This information was used to narrow the

search space for finding critical nuggets.

• The CRscore provides for a rank ordering of nuggets. Only the sets that have

a high CRscore are considered as critical nuggets. An algorithm is proposed

to discover critical nuggets using the proposed CRscore. A simple test is pro-

vided that helps in resolving any conflicting scores revealed by the metric.

The methodology was tested on some 2-dimensional geographical data sets

to visually validate the proposed theories and then applied on some multi-

dimensional real world data sets from the UCI machine learning repository

[17]. On the real world data sets, the proposed methodology revealed that

only a small number of nuggets, whose scores (using the proposed CRscore)

were significantly higher than the rest of the subsets, need to be considered

and can be characterized as true critical nuggets.
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• Certain properties such as duality and the effect of the size of critical nuggets

(sets) on the CRscore are explored. Some experimental validations for those

properties are provided as well.

• Next, an experimental analysis is provided on how critical nuggets are used

to improve the accuracy of classification tasks.

• As another application, critical nuggets are used to minimize misclassification

costs. Some heuristic based approaches are provided for reducing misclassi-

fication costs. A detailed experimental analysis proved that critical nuggets

can be used to minimize misclassification costs in classification systems.

This work is organized as follows. Chapter 2 provides a discussion on some re-

lated work from the literature. A motivation for finding critical nuggets is also

provided. In Chapter 3, some ideas are explored to define a metric for criticality.

After some validation experiments with some of the explored ideas, the criticality

metric that best captured the notion of criticality was defined. This metric is used

to calculate the criticality of a subset of data instances and is denoted as CRscore.

In this chapter, algorithms have also been provided to help in calculating the met-

ric and to reduce the search space by isolating approximate class boundaries in

training data. In Chapter 4, a set of experiments are presented. The experiments

were conducted on some real world data sets. For each of the data sets, critical

nuggets were identified and properties such as the ones related to duality relations

were validated. Experimental results on how critical nuggets can help in improv-

ing classification accuracy and minimizing classification costs have been provided.

Chapter 5 provides the motivation for reducing misclassification costs and applying

the knowledge of critical nuggets to that problem. Some methodologies are out-

lined to help minimize misclassification costs. Chapters 6 and 7 provide a detailed
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experimental and computational analysis using various data sets to highlight how

critical nuggets can be applied to reduce misclassification costs. Chapter 8 provides

concluding remarks and some ideas for future work.
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Chapter 2
Motivation For Critical Nuggets

2.1 Related Work

Given the initial introduction to the problem in Chapter 1, can existing approaches

in outlier detection help in finding critical nuggets? In recent data mining litera-

ture, there have been a number of research efforts directed towards outlier detec-

tion, including recent work such as [31]. Outlier detection has several applications

including detecting fraud in business transactional data [30], identifying network

intrusions [30], isolating abnormal trends in time-series data [47] and picking out

suspicious criminal activity [51]. The concept of distance-based outliers was pro-

posed in [29] to identify records that are different from the rest of the data set.

Distance-based measures as in [3], [44] and [20] have been used in algorithms to

delineate outliers or abnormal records from normal records. A lot of work in data

mining has also been devoted to finding interesting patterns or association rules

in data sets. . However, not much work has focussed on finding critical nuggets of

information that may be hidden in data sets.

Critical nuggets in certain cases may involve outliers, but this may not always

be true. In the example of the previous chapter, cells in tumors may not show

anomalous behavior on an individual basis but collectively, such cells may contain

critical pieces of information. In [8], the authors note that the performance of

a distance-based outlier detection method ‘greatly relies on a distance measure,

defined between a pair of data instances, which can effectively distinguish between

normal and anomalous instances. Defining distance measures between instances can

be challenging when the data is complex.’ Moreover, critical nuggets that belong to
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a data set may not be at a great ‘distance’ from the other ‘normal’ points, and may

end up being classified as ‘normal.’ For a comprehensive survey on outlier detection

methods, please refer to the extensive survey in [8]. In the field of distance-based

outlier detection, researchers have focussed on proposing algorithms that reduce

the time complexity O(n2) of calculating distances [5], [4], [44] and [20].

Work has also been done on density-based outlier detection such as [6] where

outliers are defined as objects that show anomalous trends with respect to their

local neighborhoods and tend to lie in a less dense area with respect to a more dense

local neighborhood. In [13], the concept of density-based detection is extended

to cluster-based outlier detection where the approach does not only find single

point outliers but instead clusters of outliers. However, cluster-based outliers may

not necessarily lead to critical nuggets and may not carry information that is

critically important to the data domain. Intuitively, cluster-based outlier methods

may not necessarily lead to identifying critical areas such as the protrusions in

Fig. 1.1(b) which do not lie at a great ‘distance’ from the rest of the points. With

this differentiation between critical nuggets and outliers, can critical nuggets be

found among data records near the boundary? One can utilize this intuition as

a motivation in the derivation of critical nuggets. This is elaborated more in the

ensuing section.

This work also uses critical nuggets to improve the classification accuracy of

classification algorithms and to minimize misclassification costs. Classification ac-

curacy improvements has been used as a benchmark to rate the performance of a

newly proposed classification methodologies when compared with existing method-

ologies. Work such as [1] and [32], and recent work such as [35] have used classifica-

tion accuracy as a benchmark to compare the predictive abilities of a classification

methodology. Another performance metric that is frequently used to gauge the
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performance of a classification task is misclassification cost. The basic idea is that

the predictive ability of a proposed classifier is able to reduce the number of wrong

classifications/predictions. Misclassification cost reduction is used in work such as

[48]. Examples of misclassification cost being used can be found in classification

algorithms being applied in diverse fields such as environmental science/hydrology

([14]) and finance ([23]).

In order to evaluate the performance of a new classification methodology, it

has become necessary to use statistical procedures to test if the improvements in

a performance metric (such as classification accuracy or classification costs) are

statistically significant. In the field of data mining and classification algorithms,

work such as [10] and [11] have recommended the use of non-parametric statistical

tests to rigorously compare the proposed methodology with existing classification

methods. Such related work ([10] and [11]) have recommended non-parametric tests

such as the Wilcoxon signed-ranks test [49] for comparing 2 classifiers (one of the

reasons for choosing Wilcoxon is that it does not assume normal distributions).

Work on reduction of misclassification costs such as [39] and [40] have ignored

such statistical rigor whereas work such as [43], [48] and [35] have included non-

parametric statistical tests to ensure that improvements in a proposed classifier’s

performance are statistically significant.

2.2 Motivation

The problem of finding critical nuggets brings up two important questions - how

does one define criticality and where to search for such critical nuggets? Intuitively,

one can look at criticality as the intrinsic worth of a subset of records. This worth

is realized when the records are collectively removed from the data set or their

attribute values undergo perturbation. This intuition is elaborated in the subse-
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quent sections, during the derivation of a metric for measuring criticality. In order

to answer the second question, as to where to search for such critical nuggets, one

can utilize an intuition that is motivated by two commonly occurring scenarios in

classification algorithms.

1. Points near the boundary, in general, are critical: The deciding factor

for most classification algorithms is how accurately the algorithm classifies

the points near the class boundaries (see also [45]). The points that are far

from the class boundaries are the “slamdunk”, easy cases, where the impact

of misclassification is pretty minimal. However, the points near the class

boundaries are more susceptible to misclassification. These points are crit-

ical in deciding the accuracy of any classification algorithm. The need for

understanding this problem can be best explained by the real world example

of a data set describing some type of cancer related cases. Most classification

algorithms can easily classify a full-blown cancer case or a clearly cancer-

free case. On the other hand, the border-line cases which may exhibit subtle

symptoms of cancer are critical, as early detection can save a life. Hence,

uncertain regions in and around the class boundaries can be crucial for iden-

tifying critical nuggets.

2. Boundary features can be critical: Secondly, as a corollary to the first

scenario, there are certain regions along the boundary where the problem

of classification becomes more difficult. As a simplistic example, consider a

geographical data set that corresponds to a political boundary. Classifying

records near sharply changing outlines (such as along a complex sea coast of

a political boundary) is more difficult than straight edges of the boundary.

For more complex data sets, there maybe certain inherent complex properties
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that render the points near the boundary difficult to classify. Such regions

have a higher potential for harboring critical nuggets.

In summary, using the first scenario, the search for critical nuggets is narrowed

to a region near the boundary separating the classes. On the basis of the second

scenario, where certain boundary features are more complex than others, the crit-

icality metric (the CRscore) has been defined in such a way that it yields higher

scores for sets of data records that lie near complex boundary features. In other

words, the greater the complexity of a boundary feature, the higher the probability

of misclassification. This results in higher scores being assigned for points near that

complex boundary.
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Chapter 3
Critical Nuggets and Problem
Description

3.1 Formal Notation

Consider a training data set Tr comprised of m data instances, n attributes and

two classes, denoted as ‘+’ and ‘-’ (these names are arbitrary). Consider also a

sample neighborhood N to be a subset of Tr, comprised of d data instances (i.e.,

number of rows in N) of the data set Tr.

Besides the above notation, the following notation will also be used:

• C - any classification algorithm.

• T+
r - the subset of Tr comprised of only the ‘+’ class.

• T−
r - the subset of Tr comprised of only the ‘-’ class.

• A - the set of attributes in Tr denoted as {A1, A2, A3, ..., An}.

• D - the set of the data instances in Tr denoted as {D1, D2, D3, ..., Dm}.

• d+j - the number of instances in N that switch classes when attribute Aj is

increased by δj.

• d−j - the number of instances in N that switch classes when attribute Aj is

decreased by δj .

• N [Aj ] - column vector of size d × 1, formed by choosing only attribute Aj

from matrix (neighborhood) N .

• N [A1 : Aj] - matrix of size d× j, formed by choosing attributes A1 through

Aj .
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• N1.N2 - appending two matrices, column-wise (e.g., if N1 and N2 were each

of size 2× 3, the combined matrix would be of size 2× 6).

• M0 - the model obtained by using classification algorithm C on training set

Tr.

• P0 - the vector of predicted class values by model M0 when applying M0 on

a neighborhood of instances, N .

• B+ - the set of ‘+’ points near the boundary separating the two classes, ‘+’

and ‘-’.

• B− - the set of ‘-’ points near the boundary separating the two classes, ‘+’

and ‘-’.

• B+ - the set of ‘+’ points not near the boundary separating the two classes,

‘+’ and ‘-’.

• B− - the set of ‘-’ points not near the boundary separating the two classes,

‘+’ and ‘-’.

From the above definitions, it follows that: |T+
r | = |B+| + |B+|, |T−

r | = |B−| +

|B−| and |Tr| = |T+
r |+ |T−

r |, where |X| denotes the cardinality of set X .

3.2 Definition of Criticality

One can look at criticality as the intrinsic worth of a subset of records. This worth

is realized when the records are collectively removed from the data set or their

attribute values undergo perturbation. Initial steps in defining the critical metric

(CRscore) relied on the effect of removing a neighborhood of data instances on a

classification model. A classification model M0 was initially derived by applying a

classification algorithm C on the training data Tr. Then a neighborhood of data
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instances, N , was removed from Tr and a new classification model M1 was obtained

by applying C on Tr − N . The difference in predictions made by M0 and M1,

divided by the number of data instances in N , was initially used as the criticality

measure, CRscore. The greater the difference in predictions between M0 and M1,

the higher the CRscore was and vice versa. Some 2-dimensional data sets were used

to validate this approach. However, this metric could not isolate all the critical

areas even though some of the critical areas were obvious during a simple visual

inspection of the 2-dimensional validation data set. Hence, a different approach

was considered and upon validation using the 2-dimensional data sets, this new

approach in deriving the CRscore is outlined. More experiments (as described in

Section 4) with some real world data sets further support the choice of this metric.

Consider a training data set Tr with m data instances, each instance having n

attributes denoted as Aj (jǫ{1, 2, ..., n}). The underlying assumption is that all

attributes are numeric and not categorical. From Tr, form a neighborhood N , by

choosing a data instance Di as a center and finding a group of points that belong

to the same class as Di and lying within a distance R from Di. For simplicity, let

us say that the neighborhood N is comprised of d data instances. The selection of

parameters R and Di used in forming a neighborhood N is further described in

Section 3.8. First, a classification modelM0 is generated by applying a classification

algorithm C to the training data set Tr. Using the classification model M0, one

can predict the class labels for the different data instances in question. For the d

instances in neighborhood N , consider an attribute Aj. Also, for the d instances,

the attribute Aj can be increased or decreased in magnitude. A parameter denoted

by δj is used for this and δj varies for different attributes in neighborhood N . The

calculation of this parameter is further explained in Section 3.5. After increasing

Aj by an extent δj for just the d instances, the classification model M0 for the new
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class labels for the d instances is queried. The average number of data instances

that have switched classes in neighborhood N is computed and is denoted as w+
j .

If all the data instances in N switch classes, then one can infer that N is very

sensitive to changes with respect to attribute Aj . The same test is applied on N

by decreasing Aj by the same extent δj and find w−
j by querying the classification

model M0 for the new class labels. For the attribute Aj , the average of w
+
j and w−

j

is computed to get wj . Repeating this process for all n attributes, the average of

the wj scores is computed as the CRscore for the neighborhood N .

Formally, the critical score is defined as

CRscore =

∑n

j=1(wj)

n
, (3.1)

where: wj =
w+

j
+w−

j

2
, w+

j =
d+
j

d
and w−

j =
d−
j

d
.

3.3 Properties of the Critical Score

Based on the score developed above, the following properties are outlined:

• Each wj value lies in the interval [0,1]. Each wj value is calculated by aver-

aging w+
j and w−

j and w+
j ǫ[0, 1] and w−

j ǫ[0, 1]. Hence, wjǫ[0, 1].

• CRscoreǫ[0, 1], as there are n instances of wj and CRscore is averaged over n.

• In calculating the critical score, the main idea is to find as many attributes

that are sensitive to small changes (such as the increase and decrease of Aj

by δj) that propel an entire subset from one class to another. The greater

the number of attributes that are sensitive to such changes, the higher is the

resulting CRscore.

• A neighborhood of data instances N1 is said to be more critical than a neigh-

borhood N2, if and only if CRscore(N1) > CRscore(N2).
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3.4 Computing the CRscore

Using the description in Section 3.2 on how the CRscore is calculated, the algorithm

GetNuggetScore is developed and is outlined as Fig. 3.1.

Require: Tr: the training set, N : a neighborhood of data instances and R: a distance
parameter used in creating the neighborhood set, N

1: M0 = Model resulting from applying C on training set, Tr

2: m = number of data instances in Tr

3: n = number of attributes in Tr

4: ScoresArray = φ
5: for each j in {1,2, ..., n} do

6: δj = max(N [Aj ]) - min(N [Aj]) {Finding the maximum and minimum values in
vector N [Aj ]}

7: if δj=0 then

8: δj = R
9: end if

10: V = N [Aj ] + δj {Extract Aj, increment all values in Aj by δj}
11: N1 = N [1 : Aj−1].V.N [Aj+1 : An] {Generate new matrix, keep previous columns

and replace Aj by V instead}
12: P0 = Query M0 to obtain new class labels for N1

13: w+
j = Average number of instances in P0 that have switched classes

14: V = N [Aj ] - δj {Decrement all values in column Aj by δj}
15: N2 = N [1 : Aj−1].V.N [Aj+1 : An]
16: P0 = Query M0 to obtain new class labels for N2

17: w−
j = Average number of instances in P0 that have switched classes

18: wj = (w+
j + w−

j )/2
19: Append wj to ScoresArray
20: end for

21: CRscore =
∑

(ScoresArray)
n

22: return CRscore

FIGURE 3.1: The GetNuggetScore algorithm.

The computational complexity of the algorithm is derived as follows. Deriving

the model M0 is dependent on the complexity of the chosen classification algo-

rithm (C). The complexity of the classification algorithm is denoted as t(C). Each

attribute Aj is analyzed by checking if increasing or decreasing the values of the

attributes by an extent δj , switches the class label. Hence, for each attribute, the

model M0 is queried twice. There are d data instances in N and thus for each at-

tribute there are 2× d queries. Since there are n attributes, the complexity of the
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for-loop in Fig. 3.1 is O(dn). When d ≪ n, the complexity of the for-loop becomes

≈ O(n). The total complexity of the algorithm is O(t(C) + dn) (≈ O(t(C) + n)

when d ≪ n).

3.5 Choosing δj

In the algorithm GetNuggetScore, the parameter δj is used. This parameter is a

measure of how much the attribute values should increase or decrease. For each

attribute Aj, an appropriate value of δj is calculated by computing the range of

values of Aj in neighborhood N . This is to ensure that all the attribute values Aj

get a chance to switch class labels. Fig. 3.2 is used to analyze a closely related issue.

The data set in Fig. 3.2 has two attributes - let us say attributes ‘X ’ and ‘Y ’ and

two subsets of interest denoted as area ‘A’ and area ‘B.’ Considering Fig. 3.2(a),

increasing and decreasing the attribute values of ‘X ’ by δj results in a majority of

area A to be inside the opposite class. However, increasing and decreasing attribute

values along ‘Y ’, results in the switching of class values only when increasing ‘Y ’

values. So, for this example, only along 3 out of 4 directions (increasing and de-

creasing of attributes), can there be a switch of classes. In this case, in 3 directions,

all points in the neighborhood ended up shifting to the opposite class. Hence, us-

ing the defined CRscore, the score for area A would be 3/4 = 0.750. Performing a

similar analysis on area B, reveals (Fig. 3.2(b)), that in only 2 out of 4 directions

(increasing attributes ‘X ’ and ‘Y ’) result in switching of class labels for all points

in the neighborhood. Decreasing the attribute Y by δj results in only a portion of

the points moving to the opposite class, ultimately, reducing the CRscore. Assum-

ing that only half the points in the neighborhood switch classes when decreasing

the attribute Y , one would have a CRscore of (1+1+ 0.5)/4=0.625.
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(a) An example to illustrate shifting of points in neighborhood ‘Area A’.

(b) An example to illustrate shifting of points in neighborhood ‘Area B’.

FIGURE 3.2: Shifting of data instances.
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The above analysis reveals that two subsets (i.e., areas A and B in Fig. 3.2),

which in reality should be considered of equal importance when the entire subset

is considered may end up with different CRscore values. In other words, although

area A plays the same role as area B, the two end up with considerably different

CRscore values (e.g., 0.750 and 0.625 respectively).

The cause of this phenomenon is the relative orientation of the axes system

and the two areas (subsets) in general. This was indicated in the analytical steps

described earlier in deriving those two values. This can be easily remedied as

follows. We rotate one attribute (say axis ‘X ’ in Fig. 3.2) with respect to another

attribute (axis ‘Y ’ in Fig. 3.2). We consider a sequence of rotations by some angle

θ until a complete rotation of 360◦ is achieved. The summation of weights, w+
j and

w−
j (equation (1)) are recorded at each step. At the end of these iterations, the

maximum value of the sum of weights, w+
j and w−

j is returned and recorded in

memory for each attribute being considered. The final CRscore value for a given

subset is the average of all the previously recorded w+
j and w−

j values, after all

the attributes have been considered. When this approach is used on the example

depicted in Fig. 3.2, then both areas A and B are assigned similar CRscore values

(i.e., the value of 0.750).

The above remedied approach is incorporated as a modification to theGetNuggetScore

algorithm. The modified algorithm is called the GetNuggetScoreRevised algo-

rithm. The algorithm’s steps are provided in Fig. 3.3. The modified algorithm in-

cludes a call to the RotationTest heuristic, outlined as Fig. 3.4, which attempts to

resolve the above discussed problem of two similar areas receiving different or non-

representative scores. In the GetNuggetScoreRevised algorithm one tests for non-

representative results for each attribute (lines 18-32). Recall from Fig. 3.2(b), that

a non-representative result occurred during the following scenario. When the points
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in the neighborhood were shifted along one direction, the class labels switched for

all the points in the neighborhood. However, when the points were shifted in the

opposite direction, it resulted in only a partial switching of class labels. A threshold

parameter is used to test what percentage of instances in a neighborhood ended up

switching class labels when a certain attribute value is increased or decreased. If all

the instances end up switching class labels during either increasing or decreasing

an attribute’s values, then the algorithm RotationTest need not be invoked since

the non-representative scores result only during partial switching of class labels. If

none of the instances end up switching class labels along both directions, there is

no necessity to invoke the RotationTest either. However, if all the instances end

up switching class labels along one direction and a partial switching of labels oc-

curs in the opposite direction, then one can use the threshold parameter to decide

whether to invoke the RotationTest or not.

If one wishes to minimize the number of calls to this test, then the threshold

parameter can be set as high as 1, in order to short circuit the test and reduce

the computation time. However, if the need is to ensure that all critical nuggets

are mined out without any conflict, then one can lower the threshold to a value

between 0.5 and 1. Setting a threshold of less than 0.5 is not necessary, as that

would mean the attribute in question is not switching labels when shifted in both

directions. If the condition in line 30 is satisfied (an XOR boolean operation is

used), then the RotationTest is invoked. The key idea in the RotationTest is sum-

marized as follows: for each attribute Aj, rotate the values corresponding to Aj by

an angle θ with respect to another attribute Ak (j 6=k). For each of the different

angles considered and the different attributes Ak, the sum of weights, w+
j and w−

j

is computed and recorded. After all the angles have been considered, the maximum

value among the recorded sum of weights w+
j +w−

j is chosen. If the RotationTest is
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Require: Tr: the training set, N : a neighborhood of data instances and R: a distance
parameter used in creating the neighborhood set, N

1: M0 = Model resulting from training C using training set, Tr

2: m = number of data instances in Tr

3: n = number of attributes in Tr

4: ScoresArray = φ
5: for each j in {1,2, ..., n} do

6: δj = max(N [Aj ]) - min(N [Aj ])
7: if δj=0 then

8: δj = R
9: end if

10: V = N [Aj ] + δj {Extract Aj, increment all values in Aj by δj}
11: N1 = N [1 : Aj−1].V.N [Aj+1 : An] {Generate new matrix, keep previous columns

and replace Aj by V instead}
12: P0 = Query M0 to obtain new class labels for N1

13: w+
j = Average number of instances in P0 that have switched classes

14: V = N [Aj ] - δj {Decrement all values in column Aj by δj}
15: N2 = N [1 : Aj−1].V.N [Aj+1 : An]
16: P0 = Query M0 to obtain new class labels for N2

17: w−
j = Average number of instances in P0 that have switched classes

18: threshold=1
19: if w+

j ≥ threshold then

20: up counter = True
21: else

22: up counter = False
23: end if

24: if w−
j ≥ threshold then

25: down counter = True
26: else

27: down counter = False
28: end if

29: sum score = w+
j + w−

j

30: if (up counter ⊕ down counter) = True then

31: sum score=RotationTest(M0,N ,Aj ,R)
32: end if

33: wj = (sum score)/2
34: Append wj to ScoresArray
35: end for

36: CRscore =
∑

(ScoresArray)
n

37: return CRscore

FIGURE 3.3: The GetNuggetScoreRevised algorithm using the RotationTest.
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invoked for each and every attribute, then the combined complexity of algorithms

GetNuggetScoreRevised and RotationTest will be O(n2) (since the number of

angles considered is a constant). However, during the experiments with some real

world data sets, the data in some of the data sets was such that the complexity of

finding a CRscore for each neighborhood was far lower than the worst-case theo-

retical complexity of O(n2). The methodology for the RotationTest is outlined in

Fig. 3.4.

3.6 Searching Near The Class Boundary

Using the methodology for finding the CRscore, our goal is to find critical nuggets in

Tr. The brute-force method would be to exhaustively examine all possible subsets,

calculate their CRscore values and choose the critical nuggets based on the ordering

of the CRscore values. However, for a large data set, this would be computationally

cumbersome due to the combinatorial explosion of the problem. The question then

becomes: How can one computationally mine for such small-sized critical nuggets

in large data sets?

Since the brute-force method of investigating all possible combinations, would

be computationally hard, one can look at candidate sets that have a high likelihood

of being critical nuggets. A possible area that can be investigated is near the class

boundary that separates the classes of the training set. The basis for this is that

points near the boundary are more susceptible to switching of classes. When certain

attribute values of boundary points 1 are perturbed, the chances of a boundary

point switching to the opposite class are higher than a point deep in the interior.

In order to validate the idea that boundary points have higher potential of

having high CRscore values, an experiment was conducted. The 2-dimensional ran-

1From this point on, the use of the terms ‘boundary points’ and ‘points near the boundary’ refer to the data
instances that lie on or very close to the class boundary separating the two classes
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Require: M0: Model, N : a neighborhood of data instances, Aj : an attribute and R: a
distance parameter used in creating the neighborhood set, N

1: Array = φ
2: for each θ in {10,20, ..., 360} do

3: TempArray = φ
4: δj = max(N [Aj ]) - min(N [Aj ])
5: if δj=0 then

6: δj = R
7: end if

8: for each k in {1,2, ..., m} and k != j do

9: δx = δj * cos((π/180) × θ)
10: δy = δj * sin((π/180) × θ)
11: Vj = N [Aj] + δx
12: Vk = N [Ak] + δy
13: if j < k then

14: N1 = N [1 : Aj−1].Vj .N [Aj+1 : Ak−1].Vk.N [Ak+1 : An]
15: else

16: N1 = N [1 : Ak−1].Vk.N [Ak+1 : Aj−1].Vj .N [Aj+1 : An]
17: end if

18: P0 = Query M0 to obtain new class labels for N1

19: w+
j = Average number of instances in P0 that have switched classes

20: Vj = N [Aj] - δx
21: Vk = N [Ak] - δy
22: if j < k then

23: N2 = N [1 : Aj−1].Vj .N [Aj+1 : Ak−1].Vk.N [Ak+1 : An]
24: else

25: N2 = N [1 : Ak−1].Vk.N [Ak+1 : Aj−1].Vj .N [Aj+1 : An]
26: end if

27: P0 = Query M0 to obtain new class labels for N2

28: w−
j = Average number of instances in P0 that have switched classes

29: Append (w+
j + w−

j ) to TempArray
30: end for

31: Append max(TempArray) to Array {i.e., find the max score among the k at-
tributes}

32: end for

33: return max(Array)

FIGURE 3.4: The RotationTest method.
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domly generated synthetic data set depicted in Fig. 1.1(b) was used for this ex-

periment. Fig. 3.5 is the result of the experiment. For each point of class ‘+’, the

GetNuggetScoreRevised algorithm was used to find a list of scores. The scores

were then plotted as a heat map with higher scores being marked as darker grey

dots and lower scores being marked as lighter grey dots. The heat map is rep-

resented in Fig. 3.5. It can be observed that there are darker shades along the

boundary as compared to the interior. This indicates that the potential of finding

critical nuggets is higher along the boundary. Hence, one can focus the search along

the boundary as compared to the interior. This would greatly reduce the search

space as well. Similar experiments were conducted with the two dimensional sets

and similar conclusions were reached.

In order to find an approximate boundary set from the training data, a boundary

detection algorithm is proposed. The algorithm is tested using the 2-dimensional

randomly generated synthetic data set depicted in Fig. 1.1(b). In [36], the authors

proposed a boundary detection algorithm to speed up classifications by Support

Vector Machines (SVMs). Though our boundary detection algorithm is similar in

spirit to the one in [36], our methodology is simpler as our goal in finding an ap-

proximate boundary is merely to reduce the search space in finding the critical

nuggets. The proposed algorithm uses Euclidean distances to rank the distances

between points. The algorithm, FindBoundary, is outlined in Fig. 3.6. The al-

gorithm works in two phases since this study focusses on two-class classification

problems. In each phase, a boundary set is isolated for each class in the data set.

So for isolating the boundary points for the ‘+’ class, the algorithm works by cal-

culating distances to all points in T−
r from each point in T+

r . For every point in

T+
r , 5 closest T−

r points are chosen and the average of the 5 distances is calculated

(Si). The score Si, computed for each of the T+
r points, is sorted and stored in
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UC Scores

under 0.11
0.11 − 0.23
0.23 − 0.34
0.34 − 0.45
0.45 − 0.56
over 0.56

With R=0.45

FIGURE 3.5: Boundary Points Having Higher CRscore values.
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Require: T+
r and T−

r : The training sets for classes ‘+’ and ‘-’
1: Initialize array S = φ
2: for each point i in T+

r do

3: Calculate distance to all points in T−
r

4: Find the nearest 5 T−
r points to i

5: Using the above top 5 distances, compute an average to get a score Si

6: Store each Si score in list S
7: end for

8: Sort all the scores in the list S
9: Plot a graph of sorted scores in S.

10: Find cut-off index i where the slope of the graph starts increasing drastically. {Points
near the boundary will have smaller scores and as one moves away from the boundary,
the scores start increasing drastically.}

11: Points corresponding to scores S1, S2, ..., Si in list S form the boundary set B+.
12: return Boundary Set B+.
13: Repeat algorithm with T−

r in the role of T+
r to get Boundary Set B−.

FIGURE 3.6: The FindBoundary algorithm.

a list S. To find the boundary set, one needs a cut-off point that would provide

the required subset. Using a visualization technique, a graph of the scores in S is

plotted. The points that lie closest to the class boundary will have the smallest

average distances. A cut-off point is chosen where the slope of the graph increases

sharply, indicating a threshold, beyond which, includes interior points with higher

Si scores. This procedure is then carried out again for isolating boundary points

for the ‘-’ class.

3.6.1 Complexity of the FindBoundary algorithm

The complexity of the for-loop in the FindBoundary algorithm is: O(|T+
r | ×

|T−
r |) = O(m2). Sorting takes O(mlogm). Thus the total complexity is O(m2) +

O(mlogm) = O(m2).

3.7 The FindCriticalNuggets Algorithm

The FindCriticalNuggets algorithm works in two phases where in each phase,

it identifies critical nuggets for each one of the two classes. Using the reduced

boundary set for each class, the data instances in the boundary set are considered
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one at a time. Each data instance in the boundary set is considered as a center

for a neighborhood. A neighborhood is formed by finding all points that belong

to the same class and lie within a distance R from the center point. One class at

a time is considered since the goal is to find critical nuggets that belong to one

class but switch to the other class when their attribute values are perturbed (a

total of two classes is assumed). If there are |B+| data instances in the boundary

set which belong to the same class (say ‘+’), one can form |B+| neighborhoods by

considering each instance in B+ as a center. For each of the |B+| neighborhoods,

the CRscore is computed. The scores are then ranked and the higher scores are

used to identify the critical nuggets in T+
r . In the second phase, the other class

(say ‘-’) is considered. Hence |B−| neighborhoods are then considered to compute

the CRscore values which in turn are sorted and ranked to identify critical nuggets

in T−
r . The algorithm is outlined in Fig. 3.7.

Require: Tr: the training set and R: the distance parameter to form the neighborhood
set N

1: ScoresArray=φ
2: Split Tr into T+

r and T−
r

3: B+ = FindBoundary(T+
r )

4: for each p0 in B+ do

5: N = {x | x ∈ B+ ∧ |x− po| ≤ R} {Finding same class points, within a distance
R from po}

6: CRscore=GetNuggetScoreRevised(Tr , N,R)
7: Append CRscore to ScoresArray
8: end for

9: Sort (descending) and rank scores in ScoresArray
10: Plot sorted scores in ScoresArray as a histogram and use the histogram to find

index k that separates the highest k scores from the rest of the scores.
11: Use k to find top k Critical Nuggets for class ‘+’.
12: Re-initialize ScoresArray and repeat steps 2-11 with B− in the role of B+.

FIGURE 3.7: The FindCriticalNuggets Algorithm.
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3.7.1 Overall Complexity

In summary, the process of finding critical nuggets first involves the identification

of an approximate boundary set, and next considering a neighborhood around

each boundary point and finding its CRscore. Identifying an approximate boundary

involves complexity of O(m2), where m is the number of data instances in Tr. Using

the boundary set and the CRscore values different neighborhoods are investigated.

There are |B| neighborhoods (|B| ≪ m) and for each neighborhood the worst

complexity (including the rotation test) is O(dn2) where d is the size of a typical

neighborhood. This yields a total complexity for the entire process of identifying

critical nuggets of O(m2+t(C)+|B|dn2) which can be further simplified to O(m2+

t(C) + n2) (since |B| ≪ m and d ≪ n).

3.8 Choosing R

In the FindCriticalNuggets algorithm, the distance parameter R is introduced to

define a typical neighborhood. Choosing R is an important decision in identifying

critical nuggets. Choosing a too small R value may yield single element critical

nuggets (sets) while choosing a too large value of R will yield large sized neighbor-

hoods that may not be sensitive to small changes in their attribute values. Also

choosing a large value of R can increase the value of d, ultimately increasing the

complexity of the algorithm. So for the experimental study, a range of R values are

considered. The range of R values for our experiments depended on the data set.

The general rule used during the study was to vary R in the following range [0, x]

- where x was a value that caused the maximum size of the neighborhood to not

exceed 20% of the size of the data set. The main intuition for setting this was to

limit the size of the neighborhoods, as large neighborhoods include points that are

located away from the class boundary and hence are less sensitive to small changes
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in attribute values. Larger neighborhoods also have lower CRscore values and are

not useful in mining of critical nuggets.

To find the critical nuggets among neighborhoods formed by different values ofR,

the following analysis was conducted. Using different values ofR, the FindCriticalNuggets

algorithm was used to find the CRscore values for each neighborhood (each neigh-

borhood was formed using every element in the boundary set as a center). For each

value of R, the top k neighborhoods are identified based on their scores (The top

k subset of neighborhoods were identified by first sorting the scores in descend-

ing order. Visualization methods such as plotting the sorted scores as a histogram

can be used to identify an appropriate cut-off value of k. k is chosen by select-

ing a appropriate point in the histogram which delineates the small group of high

scores from the majority of small scores). Therefore, if there are r values of R, one

would have k×r neighborhoods. Some of the k×r neighborhoods could have been

formed around the same center. Hence, among the k× r neighborhoods, the scores

are ranked based on unique centers. The top k scores among the unique centers

and their associated R value are used to identify the top k critical nuggets.

3.9 Duality

In the FindCriticalNuggets algorithm, recall that the search for critical nuggets

was on a class-by-class basis on two-class problems. Hence, for each class label, one

obtains a set of critical nuggets. Since critical nuggets were identified for each of the

class labels, a study was conducted to see if there were any relationships between

the two sets of critical nuggets. A property that was investigated was duality -

relationships between critical nuggets of the two classes. In Fig. 3.8, some critical

nuggets for two classes are illustrated using darker shades of grey. The experiments

mainly checked to see if the following scenarios occurred:
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FIGURE 3.8: Illustration For Duality.
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1. Scenario 1 - Do critical nuggets belonging to different classes lie in ‘proximity’

to one another? In other words, a check was done to see if the critical nuggets

of different class labels lie in ‘proximity’ but on opposite sides of the class

boundary (see Fig. 3.8 for Scenario 1).

2. Scenario 2 - Are there any sets (neighborhoods) that are non-critical for one

class label, but lie in ‘proximity’ to a critical nugget belonging to another

class and vice versa (see also Fig. 3.8 for Scenario 2)?

Both scenarios have good potential as they help in broadly dividing the data set

into three regions. These regions are summarized as follows (assuming two classes

‘+’ and ‘-’):

1. Region 1 - This is comprised of critical nuggets of one class that lie in close

proximity to critical nuggets of the opposite class (i.e., subsets of the data

set that have high CRscore values and lie in close proximity, but on opposite

sides of the class boundary) and vice versa. This is depicted as Scenario 1 in

Fig. 3.8.

2. Region 2 - Critical nuggets of one class that lie in close proximity to neigh-

borhoods of the opposite class, neighborhoods that are not critical nuggets

(and vice versa). This is depicted as Scenario 2 in Fig. 3.8.

3. Region 3 - Neighborhoods (or subsets of the training data) that lie in the

interior (not near the class boundary) of either class (characterized by very

low CRscore values).

The empirical results for this study indicate that if there are a group of nuggets

from one class in close proximity with each other, then it is likely to have a cor-

responding group of nuggets for the other class on the other side of the boundary.
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In other words, a group of nuggets for one class indicates a region of the data

set of potential high interest for both classes. Decomposing a data set into the

three regions described as above, has the potential to offer useful insights of the

data. Such insights may assist the analyst to better understand the phenomenon

or systems related to the data. Clearly, this is domain dependent.

3.10 Improving Classification Accuracy

Classification algorithms are usually judged based on the accuracy of their pre-

dictions. If the predictions include a minimum number of false positives and false

negatives, the accuracy of an algorithm is rated as high. During the experimental

stage with various data sets, tests were conducted to see if critical nuggets could

help improve the classification accuracy. The identified nuggets were used in de-

riving additional small scale classification models. For each class, an additional

classification model is built/trained by first deriving a new data set which is a

subset of the original training data set. The new data set was derived by relabeling

a subset of the original data records into two new classes as follows:

• Data records that belong to the top k (for finding k, see lines 9-11 in Fig.

3.7) critical nuggets (of say, the ‘+’ class) become a part of one class.

• Data records that are near the top k ‘+’ class critical nuggets but NOT

belonging to the set of ‘+’ class critical nuggets are labelled as another class

(this may include instances that belong to both ‘+’ and ‘-’ classes).

An additional model is built similarly using the critical nuggets from the other class

(say, ‘-’). This is illustrated in Fig. 3.9. In this figure, the right region indicates

critical nuggets belonging to the ‘+’ class (labeled as dark shaded ‘+’ symbols )

and surrounded by some neighboring points belonging to both ‘+’ and ‘-’ classes.
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The region on the top left illustrates critical nuggets belonging to the ‘-’ class

(labeled as dark shaded ‘-’ symbols) and surrounded by both ‘+’ and ‘-’ neighbors.

Using this newly derived data set, a classification model was setup. Since very

few subsets qualify as critical nuggets, the newly re-labelled data set has a skewed

distribution of classes. There are very few data instances that belong to the first

class of critical nuggets. At the same time, there is a disproportionately large

number of non-critical neighbors. This skewed distribution can be remedied using

a cost sensitive classifier [12]. One can model a cost sensitive learner that assigns

higher costs for misclassifying the class that is less represented when compared

to misclassifying objects of the more represented class. In our case, it is more

important to identify a critical nugget correctly. So the cost classification model

is derived by assigning a higher cost for not identifying a critical nugget correctly.

Using the newly trained classification models built around critical nuggets, one can

use it in tandem with the original classification model to predict the class labels of

data records. According to the experiments described next, it turns out that this

method of post-processing of classified data records using the information gained

from the critical nuggets helps in improving the classification accuracy in data sets.

In summary, the steps in improving classification accuracy are outlined as follows:

1. Using a standard classification algorithm C, derive a classification model M0.

2. For the first class (such as the ‘+’ class in Fig. 3.9), build a data set com-

prising of two new classes:

• One class is comprised of only the top k critical nuggets (e.g., dark

shaded ‘+’ points within the right circle in Fig. 3.9). Label this class as

‘I’.
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• The other class is comprised of non-critical records and it is derived

by using the following principle: for each member in the set of critical

nuggets (class ‘I’ in the previous step), choose the closest neighbors that

are not part of class ‘I’ (e.g., points just outside the right circle in Fig.

3.9). Label these data instances as class ‘O’.

3. Using a nearest neighbor classifier, build a cost-sensitive classification model,

assigning higher costs for misclassifying a record belonging to critical nuggets.

The derived classification model is denoted as M+
nuggets.

4. Repeat steps 2-3 for the second class (such as the ‘-’ class in Fig. 3.9) and

the derived model is denoted as M−
nuggets.

For a given test data instance or a new unlabeled data instance, the derived

critical nuggets models (M+
nuggets and M−

nuggets) are used along with the standard

classification model M0. We assign a class label guided by testing against the

following set of rules:

• If M+
nuggets assigns a class label of ‘I’ and M−

nuggets assigns a class label of ‘O’,

then the data instance is assigned a label of ‘+’.

• If M−
nuggets assigns a class label of ‘I’ and M+

nuggets assigns a class label of ‘O’,

then the data instance is assigned a label of ‘-’.

• If M+
nuggets and M+

nuggets assign a class label of ‘O’, then the data instance

is assigned a class label based on the class assigned by model M0 obtained

from the standard classification algorithm.

• If M+
nuggets and M−

nuggets assign a class label of ‘I’, then the data instance is

assigned a class label based on the class assigned by M0.
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Chapter 4
Computational Analysis On Extraction
Of Critical Nuggets And Accuracy
Improvements
Some experiments were conducted on eleven multi-dimensional real world data

sets from the UCI machine learning repository [17] and two 2-dimensional geo-

graphical synthetic data sets. The software was written in R [42] and Python [46]

and utilized the data mining library Weka [22]. Associated software packages such

as [27] were utilized as well. The algorithm FindCriticalNuggets was applied to

each of the data sets. The next two sections provide detailed summaries of the

experimental analysis on one of the 2-dimensional synthetic data sets and two of

the real world data sets. These summaries include details such as some results

of the FindCriticalNuggets algorithm, validation of properties such as duality,

and the improvements in classification accuracy using critical nuggets. A similar

analysis has been conducted for ten other real world data sets, but for the sake of

space, detailed explanations have been provided only for two of the real world data

sets. However, the classification accuracy improvements for all eleven real world

data sets and two 2-dimensional synthetic data sets have been provided in the last

subsection.

All the data sets used in the experiments were normalized (values for each at-

tribute in a data set lie within [0, 1]) using normalization routines available in the

Weka library. Euclidean distance measures were used in computing distances. For

all the data sets, data instances were normalized and ten runs of 10-fold cross

validations were performed. The following classification algorithms from Weka

were used for this study: J48 (Weka’s software implementation of the C4.5 [41]

algorithm), IBk (Weka’s implementation of K-nearest neighbor classifier [2], LMT
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(Weka’s implementation of Logistic Model Trees [32]) and NaiveBayes [28]. Default

options in Weka were used for the algorithms J48, LMT and NaiveBayes and for

the IBk algorithm, the nearest-neighbor parameter of K was set to 5. Table 4.1

provides a description of the data sets used during the experimental study.

TABLE 4.1. Description Of Data Sets Used.

Data Set

Number
of

Instances

Number
of

Attributes
Class

(Distribution)

Synthetic Geographical
(Georgia, USA) 10,387 2

+ (2,649),
- (7,738)

Synthetic Geographical
(Idaho, USA) 10,233 2

+ (2,963),

- (7,270)

Wisconsin Breast
Cancer (WDBC)

569 30
Benign (357),

Malignant (212)

SPECT Heart 267 42
Normal (212),
Abnormal (55)

Spambase 4,601 57

Spam(1,813),

Not Spam(2,788)
German Credit Data 1,000 24 Good(700), Bad(300)

Pima Indian
Diabetes 768 8

Positive(268),

Negative(500)
Sonar 208 60 R(97), S(111)

Ionosphere 351 34 good(225), bad(126)

Cardiotocography2 a 1,950 22
Normal(1655),
Suspect(295)

Liver Disorders 345 6 A(145), B(200)
Parkinsons [33] 195 22 H(48),P(147)

Glass2 b 163 9 Y(87), N(76)

aA variant of the Cardiotocography Data Set of UCI Repository, formed by considering data records
belonging to only 2 out of 3 class attributes and ignoring the third class attribute called ‘Pathologic’.

bA variant of the Glass Identification Data Set of UCI Repository, formed by combining data records
belonging to class attributes 1 and 3 and renaming the class attribute as class ‘Y’, combining records having
class attributes 2 and 4 and renaming as class ‘N’ and excluding records belonging to class attributes 5, 6
and 7. This variant has been used in prior work such as [32].

For the experiments, decisions had to be made with regard to the choice of a

cost-sensitive classifier to handle the skewed data distribution (when building small

classification models around critical nuggets) and the assignment of costs for the
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cost-sensitive classifier. For the improvement of accuracies using critical nuggets,

two cost-sensitive algorithms (CostSensitiveClassifier [52] and MetaCost [12]) from

Weka were considered to tackle the imbalanced data distribution. The algorithms,

MetaCost and CostSensitiveClassifier, use a base classifier to instantiate the train-

ing process (the base classifier can be any standard classification algorithm). For

the base classifier in MetaCost, the four classification methods used in the study

(J48, LMT, IBk and NaiveBayes) were tested against the various data sets to see

which classification method yielded the best accuracy. IBk, as a base classifier, con-

sistently performed better than the others since the small models created around

the critical nuggets were suited for neighborhood-based classification techniques.

Hence IBk was chosen as the base classifier for MetaCost. MetaCost in combina-

tion with IBk consistently yielded better accuracies for different data sets when

compared to the CostSensitiveClassifier method. So MetaCost in combination with

IBk was chosen as the cost-sensitive classifier for the experiments. Cost ratios for

cost-sensitive classifiers are ideally provided by domain experts. However, in this

case, three different cost ratios 2:1, 5:1 and 10:1 were initially considered. The ratio

of 5:1 (a cost of 5 was allocated towards misclassification of a critical nugget as

compared to a cost of 1 allocated towards misclassification of a non-critical data in-

stance) provided higher improvements in accuracy as compared to the ratio of 2:1.

Increasing it to 10:1 did not provide any significant improvement when compared

to accuracy improvements with the 5:1 ratio. The main goal among all the data

sets was to correctly classify records that belong to critical nuggets. By assigning

a higher cost (5) as a penalty for misclassification of critical nugget (as compared

to equal cost penalties) was sufficient to meet the goal of improving classification

accuracies for different data sets. Hence 5:1 was used as a cost ratio for the study.
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4.1 Analyzing the Synthetic Geographical Data

Set

This training data set is a synthetic data set that conforms to the political bound-

ary of the State of Georgia, USA. This is a large data set that contains 10,387 ob-

servations comprising of 2 classes: ‘+’ (2,649 instances) and ‘-’ (7,738 instances). In

other words, points inside the State of Georgia are defined as positive points, while

the ones outside the political boundary are defined as negative points. A boundary

set was approximated to 500 instances of class ‘+’ and 500 instances of class ‘-’.

This 2-dimensional data set has an advantage as it provides visual validation to

the results. Figure 4.1 outlines the original data set.

Fig. 4.2 provides an approximation of the boundary set for the state of Georgia.

Fig. 4.3 depicts the results of the FindCriticalNuggets algorithm on the data set.

Fig. 4.3 is similar to Fig. 4.2, except that some of the critical nuggets for both

classes have been superimposed. Notice that in Fig. 4.3 the black dots indicate ‘+’

data instances that have been identified as members of positive critical nuggets

with a high CRscore. Also notice that these black dots line up along areas that

have visually interesting features such as sharp bends and curves. Similarly, the

dark grey dots indicate ‘-’ data instances that have been identified as members of

negative critical nuggets with a high CRscore.

Duality in this data set can be explained through the visual features. Areas 1,

2, 3 and 4 in Fig. 4.3 are visually interesting features. One can observe that critical

nuggets for both classes have lined up near these visually interesting features. Also

observe that critical nuggets for one class (black dots) tend to line up near the

critical nuggets of the other class (dark grey dots).

Histograms of CRscore values for two different R values for each of the two

classes are depicted as Fig. 4.4. Among the 500 different neighborhoods investi-
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FIGURE 4.1: The Geographical Data set representing the state of Georgia, USA
(black dots indicate points belonging to class ‘+’ and Grey dots indicate points
with class ‘-’.
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FIGURE 4.2: Boundary Approximation - Black dots indicate points belonging to
class ‘+’ and Grey dots indicate points with class ‘-’.
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FIGURE 4.3: Critical Nuggets: Black dots indicate ‘+’ points that belong to positive
critical nuggets. Dark grey dots indicate ‘-’ points that belong to negative critical
nuggets. Light grey dots indicate ‘+’ and ‘-’ points that did NOT emerge as critical
nuggets.
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gated, it can be observed that there are indeed very few sets with high CRscore

values, say greater than 0.75. This indicates the potential value of finding the

critical nuggets in large data sets.
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FIGURE 4.4: The Geographical Data set - Histograms of sorted scores for two
different R values.
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4.2 Analyzing the Wisconsin Breast Cancer

(WDBC) Data Set

This data set has 569 data instances (357 Benign and 212 Malignant), 32 at-

tributes (30 attributes when the record locator and class labels are skipped) and

two types of class labels (Benign and Malignant). Using the FindBoundary algo-

rithm, an approximate boundary set comprising of 150 Benign and 150 Malignant

data instances was selected. The main task was to apply the FindCriticalNuggets

algorithm to identify critical nuggets. The standard normalization function avail-

able in the Weka library was used to normalize this data set. For different values

of R and for a given class, the FindCriticalNuggets algorithm was run. For this

analysis, five different R values were used: {0.20, 0.25, 0.30, 0.35, 0.40}. Increasing

the range of R values beyond 0.40 increased the maximum size of the neighborhood

to exceed the set limit of 100 neighbors (see Section 3.8). The neighborhoods that

had the top 20 scores were identified for each value of R. Among the 100 (= 20×5)

neighborhoods, the top 20 neighborhoods were selected based on their scores and

these neighborhoods were the critical nuggets.

The above steps of finding the top 20 critical nuggets was done for the other class

as well. The top ranked critical nuggets for Benign and Malignant classes have been

tabulated in Tables 4.2 and 4.3, respectively. A critical nugget is represented by

the record numbers in the data set (e.g., Data instance #147 in the Breast Cancer

data set is denoted as 147 in Table 4.2). Also, in each neighborhood represented

in the table, the first instance is the point (center) around which a neighborhood

was formed. This table includes for each critical nugget, the closest opposite class

neighbors to the center, the most sensitive attribute and the R value that yielded

the maximum score for that center.
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Histograms of the CRscore values for two different values of R are outlined as

Fig. 4.5. The histograms reveal that only a very small number of neighborhoods

qualify as critical nuggets among the 150 different neighborhoods surveyed for each

value of R. This underscores the potential importance of finding such sets.

The duality properties of critical nuggets can be studied by using Tables 4.2

and 4.3. The data instances that are surrounded by dark and transparent boxes

are some of the examples to explain the duality properties of critical nuggets. As

an example, note that the data instance 147 in Table 4.2 under the first column,

“Critical Nuggets for Benign” also happens to be a neighbor of some of the critical

nuggets of the malignant class in Table 4.3. Similarly, record 394 in Table 4.3

(surrounded by the transparent box) is a neighbor of some of the critical nuggets in

the benign class (represented in Table 4.2). For this data set one finds that critical

nuggets belonging to one class tend to be ‘close’ to critical nuggets belonging to

the opposite class.

Above all, the methodology for finding critical nuggets has isolated benign

records, whose attribute values when slightly perturbed, end up switching to the

malignant class. This is valuable information as it can help identify benign records

that are susceptible to switching over to the malignant class.

4.3 Analyzing the SPECTF Heart Data Set

This data set has 267 (212 Normal and 55 Abnormal) data instances with two

class labels - Normal and Abnormal. The data set is defined on 44 attributes. A

boundary set was generated comprising of 150 normal points and 30 abnormal

points. The range of the R values used for the normal and abnormal classes was

0.50, 0.55, 0.60 and 0.65 (as per Section 3.8). Histograms of CRscore values for

both normal and abnormal classes for different values of R are provided as Fig-
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FIGURE 4.5: The WDBC Data set - Histograms of sorted scores for two different
R values.
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TABLE 4.2. Top results for the Benign Class in the WDBC Data Set.
Critical Nuggets for
the Benign Class

Malignant Neighbors CRscore R Attribute With Max Sensitivity

147 374, 402, 410, 422,

447 , 452, 453, 465,
486, 557

1.00 0.20 Mean Radius

288, 147 , 239 , 247 ,

265 , 279, 353

374, 394 , 402 , 410,

423 , 447 , 452, 453,
527, 557

0.19 0.35 Worst Concave Points

239 , 7 , 147, 247,
288, 336

391, 394, 402, 422, 423,

435, 452, 453 , 557,
563

0.18 0.35 Worst Concave Points

247, 147 , 184, 224,
279, 288

391, 398, 410, 419, 422,

453, 465, 486, 557 ,
563

0.18 0.30 Worst Texture

224 , 66, 97 , 98,

147 , 247, 321

374 , 398, 410, 419,

422, 447 , 486, 538,

557 , 563

0.18 0.35 Worst Concave Points

111, 56, 66, 147, 184,
208, 211, 247, 284

384, 410, 439 , 445,

453 , 465, 486, 511,
540, 557

0.14 0.35 Worst Concave Points

TABLE 4.3. Top results for the Malignant Class in the WDBC Data Set.
Critical Nuggets for
the Malignant Class

Benign Neighbors CRscore R Attribute With Max Sensitivity

394 7 , 30, 41, 153, 201,
269, 292, 299, 337

1.00 0.20 Mean Radius

431 7 , 28, 97, 98, 112,

147 , 205, 224 , 236,
239

1.00 0.20 Mean Radius

437 7 , 42, 97 , 116, 202,
236, 251, 272, 299

1.00 0.20 Mean Radius

494 30, 67, 79, 153, 265 ,
275, 292, 297, 337

1.00 0.20 Mean Radius

503, 437 4, 33, 57, 61, 94, 157,
202, 232, 258

0.53 0.55 SE Texture

447, 368, 374, 394, 402,
423, 431, 437, 452, 494,

527, 557

7, 32, 97 , 108, 147,

203, 205, 265 , 303

0.34 0.40 Mean Texture

549, 368, 394, 453 ,
454, 466, 494

62, 79, 147 , 153, 207,

233, 239 , 264, 284

0.30 0.55 Mean Texture
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ure 4.6. A total of 150 neighborhoods were investigated for the normal class and

only a few neighborhoods had high CRscore values. For the abnormal class, only

30 neighborhoods were investigated as the data set has a very small number of

data instances for this class and hence the boundary set is small as well. Hence,

the histograms for the abnormal class do not show as much variation in CRscore

values as the histograms for the normal class. An analysis similar to the one for

the Wisconsin Breast Cancer Data was done to study duality and the results have

been outlined in Tables 4.4 and 4.5. For the purposes of illustrating dual proper-

ties of critical nuggets, some of the data instances have been marked with boxes.

This information could be highly useful in identifying patients that are at risk of

becoming classified as ‘abnormal’.

TABLE 4.4. Top results for the Normal Class in the SPECTF Data Set.
Critical Nuggets for
Class “Normal”

Neighbors in Class
“Abnormal”

CRscore R Attribute With Max Sensitivity

131 215, 216 , 221, 225,
226, 227, 229, 230, 239,

241, 244, 246 , 247,

248, 259, 262 , 263,
264, 265, 267

1.00 0.50 F1R

35, 77 213, 214, 216, 220, 225,
227, 230, 233, 235, 241,

244, 248, 251, 252 ,
253, 255, 258, 259, 263,
267

0.49 0.50 F1R

86, 18 213, 221, 224, 225, 226,
227, 230, 234, 235, 244,
248, 250, 252, 253, 255,
256, 259, 262, 263, 267

0.49 0.65 F1R

201, 16, 18, 68 215, 221, 226, 238, 240,
243, 244, 245, 248, 250,
252, 253, 255, 256, 258,
260, 261, 262, 263, 266

0.25 0.70 F8S

1 , 18, 29 , 68, 109 215, 221, 224, 226, 228,
234, 238, 240, 242, 243,
245, 249, 250, 252, 255,
256, 260, 262, 263, 266

0.21 0.65 F5S
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FIGURE 4.6: The SPECT Data Set - Histograms of sorted scores for two different
R values.
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TABLE 4.5. Top results for the Abnormal Class in the SPECTF Data Set.
Critical Nuggets for
“Abnormal” Class

Neighbors in Class
“Normal”

CRscore R Attribute With Max Sensitivity

223 , 214, 216, 227,
228, 229, 232, 236, 237,
240, 244, 246, 252, 258,
262, 263, 267

2, 46, 69, 71, 95, 105,
135, 142, 149, 150, 157,
161, 168, 169, 173, 186,
190, 191, 197, 207

0.20 0.70 F2S

262 , 216, 221, 223,
226, 229, 232, 236, 237,
238, 240, 242, 244, 245,
247, 250, 252, 255, 263,
266, 267

1 , 2, 4, 6, 29 , 69, 71,
72, 109, 142, 150, 155,
157, 161, 173, 175, 193,
197, 209, 210

0.18 0.70 F2S

252 , 213, 214, 215,
216, 220, 221, 223, 226,
228, 232, 236, 237, 238,
240, 243, 244, 245, 248,
250, 253, 255, 256, 258,
261, 262, 263, 264, 266,
267

2, 7, 29, 44, 46, 57, 68 ,
70, 71, 109, 147, 156,
161, 163, 164, 175, 186,
191, 210, 211

0.17 0.70 F2S

246 , 215, 216, 221,
223, 225, 226, 227, 229,
232, 237, 239, 240, 244,
247, 248, 253, 263, 264,
265, 267

2, 42, 69, 72, 82, 89, 95,
105, 115, 135, 142, 149,
150, 151, 168, 186, 190,
195, 197, 207

0.16 0.70 F2S

216 , 214, 217, 219,
220, 221, 223, 225, 226,
227, 228, 229, 232, 233,
235, 237, 238, 239, 240,
241, 244, 246, 248, 250,
252, 253, 255, 258, 259,
261, 262, 263, 265, 266,
267

2, 7, 15, 20, 44, 46, 57,
70, 71, 77 , 82, 89, 105,
142, 150, 156, 168, 186,
190, 207

0.16 0.70 F20S
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4.4 Classification Accuracy Improvements

Using Critical Nuggets

In Table 4.6, a summary of the classification accuracy improvements are provided.

Eleven real world data sets from the UCI Repository [17] and two synthetic data

sets were used. The column labelled as a0 provides the accuracy of the chosen clas-

sification algorithm on a given data set, without the knowledge of critical nuggets.

The next column labelled as a1 indicates the improvements in accuracy of clas-

sification results as a result of knowledge gained through identification of critical

nuggets.

In order to understand the values in the last column of Table 4.6 (labelled

”Relative Improvement”), consider any row of the table. Suppose we consider the

results for the SPECT Heart data set using ‘J48’ as the classification method.

Without the use of the nuggets that accuracy was equal to 73.22%. With the use of

critical nuggets the accuracy increased to 93.93%. The increase in accuracy is equal

to 20.71% = (93.93% − 73.22%). However, the maximum possible improvement

would be equal to 100−73.22 = 26.78%. The previous increase of 20.71% represents

77.33%(= 20.71
26.78

) of the maximum possible improvement. The rest of the results in

Table 4.6 have been computed in a similar manner. The exceptionally high values

in the last column of Table 4.6 indicate the high potential critical nuggets may

offer in improving classification accuracy.

Using the results of Table 4.6, the Wilcoxon [49] test was used to test the sta-

tistical significance of accuracy improvements using critical nuggets as compared

to using a standard classification algorithm (without the knowledge of critical

nuggets). For the comparison of two classifiers, the Wilcoxon Test has been rec-

ommended over other non-parametric and parametric tests by prior studies such

as [10]. These results are summarized in Table 4.7. Notice that at 99% confidence
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level, the accuracy improvements using critical nuggets are statistically significant

(p-values being less than 0.01) when compared to results obtained by using only

the standard classification algorithms (J48, LMT, NaiveBayes and IBk).
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TABLE 4.6. Improvements in Accuracy Using Critical Nuggets.

Data set Classifier
a0

(Accuracy
before
Critical
Nuggets)

(%)

a1
(Accuracy

With
Critical
Nuggets)

(%)

Accuracy
Increase
(a1 − a0)

(%)

Relative
Improve-
ment

( a1−a0
100−a0

)

(%)

Synthetic Geographical
(Georgia, USA)

J48 98.43 98.61 0.18 11.46
LMT 99.49 99.91 0.42 10.19
NaiveBayes 82.78 83.73 0.95 5.52
IBk 98.29 98.51 0.22 12.87

Synthetic Geographical
(Idaho, USA)

J48 98.83 98.93 0.10 8.55
LMT 98.99 99.10 0.11 10.89
NaiveBayes 80.02 81.33 1.31 6.56
IBk 98.14 98.32 0.18 9.68

Wisconsin
Breast Cancer

(WDBC)

J48 94.22 98.05 3.83 66.26
LMT 97.47 99.12 1.65 65.22
NaiveBayes 93.34 96.00 2.66 39.94
IBk 95.36 97.68 2.32 50.00

SPECT
Heart

J48 73.22 93.93 20.71 77.33
LMT 79.03 93.67 14.64 69.81
NaiveBayes 68.13 89.36 21.23 66.61
IBk 69.89 89.06 19.17 63.67

Spambase
J48 92.67 96.28 3.61 49.25
LMT 93.33 96.60 3.27 49.03
NaiveBayes 79.62 89.38 9.76 47.89
IBk 90.85 95.41 4.56 49.84

German Credit
J48 73.13 79.76 6.63 24.67
LMT 76.96 81.26 4.30 18.66
NaiveBayes 75.42 82.50 7.08 28.80
IBk 67.19 73.18 6.00 18.26

Pima
Indian
Diabetes

J48 75.00 84.69 9.70 38.78
LMT 76.80 87.29 10.49 45.22
NaiveBayes 75.74 86.44 10.70 44.11
IBk 70.22 84.09 13.87 46.57

Sonar
J48 73.61 89.71 16.10 61.00
LMT 77.07 90.05 12.98 56.61
NaiveBayes 67.74 89.38 21.64 67.08
IBk 86.44 95.43 8.99 66.30

Ionosphere
J48 89.68 98.40 8.72 84.50
LMT 91.96 98.03 6.07 75.50
NaiveBayes 82.65 94.73 12.08 69.63
IBk 86.63 91.62 4.99 37.32

Cardiotocography2
J48 93.73 94.50 0.77 12.28
LMT 94.66 95.61 0.95 17.79
NaiveBayes 86.39 89.43 3.04 22.34
IBk 92.72 93.68 0.96 13.19

Liver
Disorders

J48 65.68 85.19 19.51 56.85
LMT 69.71 85.22 15.51 51.20
NaiveBayes 55.94 77.36 21.42 48.62
IBk 63.01 82.14 19.13 51.72

Parkinsons [33]
J48 83.79 95.90 12.11 74.71
LMT 84.56 97.08 12.52 81.09
NaiveBayes 69.38 94.36 24.98 81.58
IBk 95.79 98.67 2.88 68.41

Glass2
J48 79.14 96.32 17.18 82.36
LMT 77.48 96.07 18.59 82.55
NaiveBayes 61.96 94.36 32.40 85.17
IBk 77.42 96.75 19.33 85.61
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TABLE 4.7. Significance of Improvements

Comparison
Positive
Ranks

Negative
Ranks p-

value

J48 vs.
J48+Critical Nuggets 0 91 < 0.01

LMT vs.
LMT+Critical
Nuggets

0 91 < 0.01

NaiveBayes vs.
NaiveBayes+Critical
Nuggets

0 91 < 0.01

IBk vs. IBk+Critical
Nuggets

0 91 < 0.01
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Chapter 5
Minimizing Misclassification Costs Using
Critical Nuggets

Consider the illustration in Figure 5.1. The illustration depicts a common, generic

decision making scenario when predicting class labels using critical nuggets. The

positive and negative critical nuggets models are represented as circles in the illus-

tration. This is a two-class (classes ‘+’ and ‘-’) data set, the classes being separated

by a class boundary (represented as a jagged line in the illustration). The regions

representing false positive and false negative are indicated as well. However, if the

positive and negative critical nuggets models intersect, then data records that lie

within the common area of intersection can be difficult to classify. In the previous

chapter, during the improvement of classification accuracies using critical nuggets,

class labels that were within this uncertain region were classified using the base

classifier. In the illustration, this region of uncertainty is shaded in grey. In this

chapter, the problem of minimizing misclassification costs is handled using 2 dif-

ferent approaches. In the first approach, the uncertainty is resolved by considering

a case called the undecided case. This entails redefining the definition of misclas-

sification cost TC to account for the undecided case. In the latter approach, the

uncertainty is resolved by allowing the base or original classifier to make the deci-

sion. In the latter approach, the standard misclassification cost TC0 is not changed

and does not account for any additional costs other than false positive and false

negative costs.

5.1 Misclassification Cost, TC0

In classification tasks, accuracy of an algorithm is based on the number of correct

predictions made by the classification algorithm. Implicitly, this method factors in
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FIGURE 5.1: Illustrating the Minimize TC problem.

only true positive and true negative classifications. Based on the above definition,

misclassification cost, TC0, is defined as:

TC0 = cFP × FP + cFN × FN (5.1)

where cFP is the cost of committing a false positive error and cFN is the cost of

committing a false negative error. FP and FN are the false positive and false

negative rates respectively. A false positive rate, FP , is defined as the percentage

of false positive errors when compared with the total number of data records being

tested and the false negative rate, FN , is defined as the percentage of false negative

errors when compared with the total number of data records being tested. In some

cases, the misclassification cost TC0 is computed by assigning the costs cFP and

cFN as 1 (i.e., they are weighted equally).
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5.2 Redefining TC0 As TC

Some of the problems with the above approach are:

• This measure treats the false positive and the false negative errors equally. In

certain cases, especially in disease diagnosis, it is more serious not to have one

type of error than the other type of error. For example, in cancer diagnosis,

it is more important not to make an error in classifying a malignant case as

a benign case. To handle this scenario, the measure can be redefined with

added penalties or weights assigned to handle the type of error one would

like to avoid. In other words, cFP and cFN are not weighted equally and are

assigned values based on the gravity of the type of error.

• In certain cases, a classification algorithm may not be able to decide on what

prediction to make. In other words, the degree of certainty associated with a

prediction is low. During the prediction of a class, especially during a medical

diagnosis, it may be better to conclude a prediction as undecided instead of

committing a false positive or false negative error. In an undecided situation,

the accuracy measure can be redefined in such a way that it handles not

only false positive and false negative errors but also the cost of undecided

predictions.

The above drawbacks were first considered and discussed extensively in [45],

[40] and [39]. To overcome, the above drawbacks, the work by [40] also suggested

redefining TC as

TC = cFP × FP + cFN × FN + cUC × UC (5.2)

where cUC is the cost of the undecided or unclassifiable case and UC is the rate of

unclassifiable cases (basically the percentage of unclassifiable cases when compared
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to the total number of test data instances). The new definition takes into account

the unclassifiable cases.

In the light of the previous section on improving classification accuracy and to

incorporate the unclassifiable case, one will have to revise how data records are

assigned class labels using critical nuggets. Recall from the previous section that

two models were created for each of the two classes using critical nuggets. When a

new data point has to be assigned a class label, the following revised set of rules

are applied.

1. If a data record is classified as a critical nugget (or I) by the positive critical

nugget model and non-critical by the negative critical nugget model (or O),

then the data record is classified as positive.

2. If a data record is classified as a critical nugget (or I) by the negative critical

nugget model and non-critical by the positive critical nugget model (or O),

then the data record is classified as negative.

3. If a data record is classified as a critical nugget (or I) by both the positive and

negative critical nugget models, then the point is labelled as unclassifiable or

labelled as U .

4. If a data record cannot be classified as a critical nugget (or O) by both the

positive and negative critical nugget models, then instead of relying on the

original base classifier (as in the previous study), assign the class label as

’unclassifiable’ or U . This will account for the unclassifiable class and one

can use this to calculate the revised TC score.

Comparing the revised rules above with those provided in Section 3.10, only the

last rule is different. In Section 3.10, one relied on classification provided by the
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original base classifier to handle conflicts between classifications provided by the

positive and negative critical nuggets model. In the revised rules, the classification

is marked out as unclassifiable.

5.3 Using Critical Nuggets To Minimize TC

The computational experiments with critical nuggets (outlined in earlier chapters)

have showed that critical nuggets tend to lie close to the class boundary separating

the two classes in a data set. Areas near the class boundary also tend to be the

places where the unclassifiable type is more likely to occur. These areas also tend

to have the most likelihood of encountering false positive and false negative errors.

Given that one now has a set of positive and negative critical nuggets, can their

sizes be changed or adjusted so as to lead to a minimum misclassification cost

TC? Recall from Chapter 3 that positive critical nuggets were built by growing a

subset of positive data records that were within a distance R from a center p0. For

minimization of TC, the critical nuggets for a particular class (say, positive) are

shrunk/grown by a certain scale factor. Since a critical nugget is built around a

point say p0, a scale factor of 0.5 would essentially yield a critical nugget that is

built of data records that lie within 0.5×R from p0.

The shaded grey region in the center of Figure 5.1 is the undecided region where

the positive and negative critical models conflict. The point of the illustration is

that by varying the sizes of the positive and negative critical nuggets models, one

can alter the sizes of the problematic regions (false positive, false negative and

undecided cases), thereby helping one to adjust the cost TC. The ideal scenario is

a scenario where there are no false positive, false negative and undecided regions.

However, such a scenario is also dependent on the data set and may not be realistic

while considering real world data sets.
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The knowledge of critical nuggets was used to conduct a series of experiments and

find optimal sizes of critical nuggets that help minimizing the total misclassification

cost TC. Given an a priori list of costs, cFP , cFN and cUC , the size of critical nuggets

(obtained using the FindCriticalNuggets algorithm) can be varied (increased or

decreased proportionately). For each variation of size of critical nuggets, the total

cost TC is computed and stored.

The size of the critical nuggets can be varied using the following steps.

• For each of the positive critical nuggets, identify the center c0 and the value

of R used initially to build the neighborhood of positive points that formed

the critical nuggets.

• Use c0 to grow a neighborhood N by identifying all points (including positive

and negative instances) that lie within distance R × p1 (where p1 is a scale

factor for positive critical nuggets and p2 is a scale factor for negative critical

nuggets).

• Use the newly identified neighborhood N in building the positive critical

nuggets model, M+
nuggets.

• Repeat the same procedure for the negative critical nuggets by replacing p1

with p2 and M+
nuggets with M−

nuggets.

Given the above background on how to shrink and grow the critical nuggets, two

search-based approaches are outlined that can help minimize TC.

5.4 Approach 1 - A Candidate Set Based

Search (CNCS)

The first approach was to use a candidate set of critical nuggets sizes or scale factors

(recall that critical nuggets were derived using the size parameter R). Evaluating
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every scale factor in the candidate set one can calculate the minimization cost,

TC for different sizes of critical nuggets. After all the TC values are evaluated for

the entire candidate set, one can identify the minimum TC cost. The main idea in

finding the minimum TC score was the following: by expanding and shrinking the

positive and negative critical nuggets, the models built around them (M+
nuggets and

M−
nuggets) change. This results in changing the false positive rates, false negative

rates and the undecided case rates ultimately impacting the value of TC. By

adopting a nested loop approach, one can shrink and expand the positive and

negative critical nuggets, evaluate TC value for each iteration and then find the

minimum TC value. One also finds a good balance between over-generalization and

over-fitting of the data sets in question. After a range of sizes are considered for

both positive and critical nuggets and TC values are evaluated at each iteration,

two plots were constructed. One plot depicts total cost TC vs. Sizes of Positive

Critical Nuggets (keeping the sizes of negative critical nuggets constant) and the

other depicts total cost TC vs. Size of Negative Critical Nuggets (keeping the sizes

of the positive critical nuggets constant). From either one of the plots, a minimum

score can be visually identified by finding the point with the smallest score of TC.

The algorithm is outlined in Figure 5.2.

The algorithm CNCS loops through various sizes of positive and negative criti-

cal nuggets. Elaborating on this, recall that each positive critical nugget comprises

of one or more positive points and each negative critical nugget comprises of one or

more negative points. Also, recall that the FindCriticalNuggets algorithm yields a

group of such positive and negative critical nuggets. Assuming that the size of each

critical nugget (positive and negative) obtained from the FindCriticalNuggets

algorithm is an arbitrary unit of 1, one can shrink and expand each nugget by a

proportional amount (say a 25% decrease would mean that the arbitrary unit of 1
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Require: cFP , cFN , cUC : the costs for false positive, false negative and undecided cases.
Require: : Critical Nuggets for classes ‘+’ and ‘-’ and data set, Tr.
1: TCArray=φ
2: From the range of R values used in calculating critical nuggets, find candidate set

of size ratios, CS1 and CS2 to grow and shrink the respective positive and negative
critical nuggets.

3: for each ratio p1 in CS1 do

4: Proportionally change size of all Positive Critical Nuggets using ratio p1.
5: Generate Positive Critical Nuggets Model, M+

nuggets, using new Positive Critical
Nuggets.

6: for each ratio p2 in CS2 do

7: Proportionally change size of all Negative Critical Nuggets using ratio p2.
8: Generate Negative Critical Nuggets Model, M−

nuggets.

9: Use M+
nuggets, M

−
nuggets and M0 to predict class labels for Tr.

10: FP=Number of False Positives/|Tr |
11: FN=Number of False Negatives/|Tr |
12: UC = Number of Undecided Cases/|Tr|
13: TC = (cFP x FP + cFN x FN + cUC x UC) x 100
14: Append TC to TCArray
15: end for

16: end for

17: Find minimum from TCArray.

FIGURE 5.2: The CNCS Algorithm.

becomes 0.75 or in other words, each critical nugget is shrunk to 75% of its origi-

nal size, losing some of the members of the original set). In the algorithm CNCS,

various levels of the proportional ratio p1 are used to vary the size of the positive

critical nuggets and various levels of the proportional ratio p2 are used to vary

the size of the negative critical nuggets. Once a critical nugget has been expanded

and shrunk, two critical nuggets models (as in the previous section, M+
nuggets and

M−
nuggets) are derived by relabeling the data instances as I and O. Using the derived

models, M+
nuggets, M

−
nuggets and M0 (derived from the original classifier), one can

predict the class labels of test data instances, using the rules derived in the previ-

ous sub-section. A 10-fold cross validation procedure was used for testing of data

instances. For each iteration of p1 and p2, the total classification cost is computed
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and stored. After all the iterations are completed, the minimum TC is found from

the stored list of classification costs.

FIGURE 5.3: A graphical illustration of minimization of TC

An explanation of this methodology can be explained graphically using Figure

5.3. The graph depicts the proportion parameter p1 (used to grow and shrink the

sizes of positive critical nuggets) on x-axis and the classification cost TC on the

y-axis. Each of the line graphs indicate different levels of proportion p2 (used to
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grow and shrink the sizes of negative critical nuggets). For this illustration, the line

depicting p2 value of 0.5 is used and three points (each representing p1 values of 0.3,

1.0 and 3.0 respectively) are considered (indicated by black arrows). The algorithm

CNCS was used on the German Credit data set using the classifier ANN(Artificial

Neural Networks) in conjunction with critical nuggets. The cost parameters used

were 20(cFP ), 1(cFN) and 3(cUC). Notice in Figure 5.3, that for a constant level of

p2 = 0.5, as one varies p1, the TC values decrease (dropping from an initial value of

TC = 300.0) and hit a minimum value at p1 = 1.0 (TC = 93.9). As one continues

to increase p1, then TC values increase again to a value of TC = 295.5. Also it can

be observed that initially the undecided case rate (UC) is high and and it starts

falling until one hits the minimum value of TC. UC then starts increasing as we

continue to increase the value of p1. Though the false positive rate (FP ) does not

change for different values of p1, the false negative rate initially increases and after

reaching a maximum at p1 = 1.0, FN starts decreasing again. Notice the balance

between the cost parameters and their respective rates. The cost parameters cFP

is significantly higher than the other parameters and hence the false positive rate

FP remains steady. Also cUC is higher than cFN and hence the undecided rate UC

drops for the minimum value of TC. A good balance between over-generalization

and over-fitting is achieved as a result of using the CNCS algorithm. A detailed

set of experiments for various cost scenarios using different data sets and different

classification algorithms is provided in the next chapter.

The complexity of CNCS can be derived as follows. In each loop of the nested

loop algorithm, a positive and negative critical nuggets model is created and

queried. Assuming the time to create the positive and negative critical nuggets

models is t(C) and the time to query is n, the total time is t(C) + n. Since this
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is a nested-loop algorithm, and since we loop through a candidate set, say c, the

overall time complexity is O(|c|2(t(C) + n)) (also note that |c| << n).

5.5 Approach 2 - A Genetic Algorithm (GA)

Based Search, CNGA

While the prior approach utilized a candidate set to reduce the search space, the

second approach uses a genetic algorithm (GA) based approach ([21] and [26]) to

search for the optimal set of parameters that yield the minimum value of total

classification cost, TC. This type of search technique has been used in prior mis-

classification cost studies such as [37], [48] and [40]. The genetic algorithm based

approach considers a randomized approach in finding the optimal set of parame-

ters. The fitness function considered for this methodology was:

TC = cFP × FP + cFN × FN + cUC × UC (5.3)

The parameters used (chromosomes in GA-based terminology) were the expan-

sion factors (α+, α−) for expanding the positive and negative critical nuggets re-

spectively and contraction factors (β+, β−) for reducing the the positive and neg-

ative critical nuggets respectively. The chosen parameters are consistent with the

approaches used in identifying critical nuggets. The chosen parameters were also

used in similar prior studies such as [39] and [40]. For the purposes of this study

an initial population size of 50 was considered. The number of evolutionary gener-

ations considered was 50. For the purposes of mutation in the GA-based approach,

a gaussian distribution was used. The ranges for α+, α−, β+, β− were selected as

appropriate for each of the data sets. The chromosomes were varied using appro-

priate crossover and mutation rates for each of the data sets. The variation of the

genomes (chromosomes) was then used to evaluate the cost TC at each step. The
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evolutionary steps stop when there was no further improvement in the TC cost

after successive mutations and crossovers of the genetic sequence.

The algorithm is outlined in Figure 5.4.

Require: cFP , cFN , cUC : the costs for false positive, false negative and undecided errors.
Require: : Critical Nuggets for classes ‘+’ and ‘-’ and data set, Tr.
1: TCArray=φ
2: Using GA initialize genome parameters - expansion parameter, α and contraction

parameter, β
3:

4: while TC not converging do

5: Proportionally change size of all Positive Critical Nuggets using ratio α.
6: Generate Positive Critical Nuggets Model, M+

nuggets, using new Positive Critical
Nuggets.

7: Proportionally change size of all Negative Critical Nuggets using ratio β.
8: Generate Negative Critical Nuggets Model, M−

nuggets.

9: Use M+
nuggets, M

−
nuggets and M0 to predict class labels for Tr.

10: FP=Number of False Positives/|Tr |
11: FN=Number of False Negatives/|Tr |
12: UC = Number of Undecided Cases/|Tr|
13: TC = (cFP x FP + cFN x FN + cUC x UC) x 100
14: end while

15: Minimum TC is reached when there is no further improvement in TC.

FIGURE 5.4: The CNGA Algorithm.

The CNGA algorithm was coded in Python and used the genetic algorithms

library, Pyevolve ([38]). The CNGA algorithm was applied on various data sets

using different cost scenarios. The computational analysis using CNGA is provided

in the next chapter. A time comparison analysis between CNGA and CNCS has

been provided as well.
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Chapter 6
Computational Analysis On Minimizing
Misclassification Costs Using Critical
Nuggets
A number of computational experiments were conducted to analyze the differ-

ent approaches that had been proposed in the previous chapter. An overview of

the the entire computational analysis mentioned in this chapter is outlined as an

illustration in Figure 6.1

Given an a priori list of cost parameters (cFP , cFN , cUN), extensive computa-

tional experiments were performed on the datasets to test the methodology of

minimization of classification costs using critical nuggets. As described earlier, the

algorithm outlined in Figure 5.2 was used to find the minimum TC for various data

sets when critical nuggets were used in conjunction with a standard classification

algorithm. For the following set of experiments, the classification algorithms used

in conjunction with critical nuggets were J48, SVM (Support Vector Machines)

and ANN (Artificial Neural Networks). These algorithms were chosen as they have

been used in prior similar studies such as [39] and [40]. In [39], a heuristic called

Homogeneity-Based Algorithm (or HBA) was introduced wherein a genetic algo-

rithm based approach was used to find a minimum value of TC. The method was

also computationally slow and took enormous time to complete a run. In [40], a

remedial approach to HBA was proposed, called the Convexity Based Algorithm

(CBA). The CBA proved to be computationally more efficient than the HBA, but

the misclassification costs (TC) obtained using CBA were inferior (or greater in

value) than those obtained by the HBA.

In this work, two approaches are outlined that seek to minimize TC values. One

is a genetic algorithm based search procedure called CNGA and the other is a
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FIGURE 6.1: An overview of the computational analysis for minimization of TC
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candidate set based search called CNCS. 4 cost functions were used to analyze

how critical nuggets help in minimizing the misclassification cost and to compare

the relative performance of CNGA and CNCS. Each of the cost functions are now

analyzed to demonstrate the utility of critical nuggets. The cost functions used

in this study were also used in other prior studies such as [39] and [40]. All the

data sets used in this experimental study form a subset of the datasets listed

in Table 4.1. A description of the data sets used for this study is provided as

Table 6.1. The software implementation for the classifiers (J48, SVM and ANN)

used in [39] and [40] differs from that used in this study (alternatively, this study

used the Weka data mining software library [22], software libraries such as RWeka

[27] and programming languages, R and Python). The implementation aspects of

the computational experiments (cross-validations and parameters used within the

classification algorithms) differs from that used in prior studies such as [39] and

[40]. Hence the results obtained in prior studies (such as [39] and [40]) cannot

be directly compared with this study. This study uses a 10-fold cross validation

approach. For J48 and ANN, the default options within Weka ([22]) have been used.

For SVM, the options of K = 3 and G = 2 were set (parameters for radial basis

function as the type of kernel and the gamma parameter for the kernel function

respectively).

6.1 Comparing CNCS and CNGA
6.1.1 Using a Geographical Data Set

In the first set of experiments, a synthetic geographical data set, representing the

outline of the political boundary of the state of Georgia was used. Three different

cost ratios were used (20-1-3, 1-20-3, 3-1-20) and CNCS and CNGA was run for

each of the cost functions. As an example, a cost ratio of 20-1-3 indicates a penalty

of 20 for incurring a false positive error, a penalty of 1 for incurring a false negative

74



TABLE 6.1. Description Of Data Sets Used.

Data Set

Number
of

Instances

Number
of

Attributes
Class

(Distribution)

Liver Disorders 345 6 A(145), B(200)

Ionosphere 351 34 good(225), bad(126)

Pima Indian
Diabetes 768 8 Positive(268), Negative(500)

German Credit Data 1,000 24 Good(700), Bad(300)

Synthetic Geographical
(Georgia, USA) 10,387 2 + (2,649),- (7,738)

Cardiotocography2 1 1,950 22 Normal(1655),Suspect(295)

error and a penalty of 3 for the undecided case. The decision tree classifier, J48,

was used as a base classifier. The results have been tabulated in Table 6.2. From

Table 6.2 one can see that CNCS and CNGA perform on par with one another on

two of the cost ratios (1-20-3 and 20-1-3). However, when the penalty for undecided

case is increased to 20, CNCS performs poorly (TC = 326.4) when compared to

CNGA (TC = 204.1).

TABLE 6.2. Results For Geographical Data Set - GA

Using J48 as a classifier

Cost Function Method FP (%) FN(%) UC(%) TC

1-20-3
CNCS 10.4 1.7 19.8 104.4

CNGA 7.1 2.9 11.5 99.4

20-1-3
CNCS 0.0 12.8 32.7 111.5

CNGA 3.3 10.3 13.9 117.7

3-1-20
CNCS 12.1 4.9 14.3 326.4

CNGA 14.2 5.9 7.8 204.1

6.1.2 Using Cost Function
TC = min(1× FP + 20× FN + 3× UC)

In certain classification tasks, it is more important not to commit one type of er-

ror (false positive or false negative) over another. In this cost function, the cost
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of false negative rate is weighted heavily (= 20) when compared to false positive

errors. In certain domains such as medicine, a less serious medical condition maybe

wrongly misclassified as a very serious condition, leading to unnecessary psycho-

logical trauma for the patient in question. This cost function accounts for that by

assigning a heavy penalty for committing a false negative error (where the neg-

ative class maybe compared to a serious condition and the positive class maybe

compared to a benign or less serious condition) when compared to a false positive

error. For the above set of cost parameters, the results are tabulated in Table 6.3.

Using this cost function, 18 computational runs (9 for CNGA and 9 for CNCS)

were conducted. Medical data sets such as Cardiotocography2 were used for this

study. CNCS and CNGA perform on par with one another in most cases except for

some exceptions (such as the result for Cardiotocography with J48 where CNCS

outperforms CNGA). However, note that the false negative rate is lower than both

the false positive and undecided rates for all the experiments. Since the penalty

for committing the false negative rate was the highest, the algorithms CNCS and

CNGA have achieved their goals of reducing the rate (in this case false negative)

that has the highest penalty. Figure 6.2 illustrates the analysis of this cost function

on the Cardiotocography2 data set using the CNCS methodology.

6.1.3 Using Cost Function
TC = min(1× FP + 100× FN + 3× UC)

In this case, the cost parameters are changed from the previous section by increas-

ing the cost of false negative rate from 20 to 100. This cost function penalizes the

false negative rate to a greater extent. The results have been provided in Table

6.4. Figure 6.3 provides a graphical representation of the results obtained using

the CNCS algorithm on the Liver Disorders Data Set.
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TABLE 6.3. Results For TC = min(1× FP + 20× FN + 3× UC)

Pima Indian Diabetes
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 51.7 0.0 28.6 137.5
CNGA 42.3 0.8 26.3 137.2

SVM
CNCS 52.2 0.0 28.6 138.0
CNGA 41.1 0.9 26.7 139.2

ANN
CNCS 52.2 0.0 28.8 138.6
CNGA 39.1 1.2 25.9 140.8

Liver Disorders
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 29.0 0.0 53.9 190.7
CNGA 29.9 0.3 46.7 176.0

SVM
CNCS 27.5 0.0 49.3 175.4
CNGA 28.1 0.0 46.9 168.8

ANN
CNCS 33.0 0.0 42.9 161.7
CNGA 32.5 0.0 39.1 149.8
Cardiotocography2

Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 4.7 0.0 33.7 105.8
CNGA 2.9 3.7 28.1 161.2

SVM
CNCS 4.8 0.0 33.4 105.0
CNGA 4.8 0.0 32.8 103.2

ANN
CNCS 4.8 0.0 33.0 103.8
CNGA 4.3 0.5 32.5 111.8
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FIGURE 6.2: Applying CNCS on ‘Cardiotocography2’ with TC = min(1× FP +
20× FN + 3× UC)
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Using this cost function, a total of 18 experiments (9 for CNGA and 9 for

CNCS) were conducted. Medical data sets were again used for this study. For

this cost function, even small false negative rates are penalized heavily. So in this

case, small false negative rates for CNGA inflates the TC cost (as an example

see rows corresponding to the CNGA for the Pima Indian Diabetes dataset) well

above the TC values for CNCS. For this cost function, CNCS outperforms CNGA

in a majority of the experiments. One can also observe from Table 6.4 that the

false negative rate is lower than both the false positive and undecided rates for all

the experiments. Since the penalty for committing the false negative rate was the

highest, the algorithms CNCS and CNGA have achieved their goals of reducing the

rate (in this case, false negative) that has the highest penalty. Figure 6.3 illustrates

the analysis of the Liver Disorders data set using the CNCS methodology.

TABLE 6.4. Results For TC = min(1× FP + 100 × FN + 3× UC)

Pima Indian Diabetes
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 52.0 0.0 28.4 137.2
CNGA 43.4 0.9 26.2 212.0

SVM
CNCS 51.7 0.0 28.6 137.5
CNGA 40.1 1.0 26.2 218.7

ANN
CNCS 50.9 0.0 28.3 135.8
CNGA 41.7 0.8 27.0 202.7

Liver Disorders
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 27.8 0.0 53.9 189.5
CNGA 29.9 0.0 48.4 175.1

SVM
CNCS 28.7 0.0 47.5 171.2
CNGA 29.3 0.0 45.5 165.8

ANN
CNCS 33.9 0.0 42.6 161.7
CNGA 34.8 0.0 39.7 153.9
Cardiotocography2

Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 4.7 0.0 33.0 103.7
CNGA 2.8 3.4 28.3 427.7

SVM
CNCS 4.7 0.0 33.6 105.5
CNGA 4.8 0.0 32.6 102.6

ANN
CNCS 4.9 0.0 33.5 105.4
CNGA 4.3 0.7 32.1 170.6
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FIGURE 6.3: Applying CNCS on ‘Liver Disorders’ with TC = min(1×FP+100×
FN + 3× UC)
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6.1.4 Using TC = min(20× FP + 1× FN + 3× UC)

This cost function considers the case where it is costlier to commit a false positive

error when compared to a false negative error. Two data sets are studied here - the

German Credit data set and the Ionosphere data set. A total of 24 experiments

were conducted (12 for CNGA and 12 for CNCS). The results are reported in

Table 6.5. Figure 6.4 represents a graphical representation of the analysis of this

cost function on the German Credit data set using CNCS. From Table 6.5, one can

observe that CNCS and CNGA perform on par with one another for the German

Credit Data set and for the Ionosphere data set, CNGA performs better than

CNCS. One can also observe from the table that CNCS and CNGA are fulfilling

the roles of reducing the rates that have the highest penalty (in this case the false

positive rate).

TABLE 6.5. Results For TC = min(20× FP + 1× FN + 3× UC)

German Credit Data
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 0.0 56.9 21.1 120.2
CNGA 0.0 56.9 21.1 120.2

SVM
CNCS 0.0 65.3 10.9 98.0
CNGA 0.0 65.2 10.2 95.8

ANN
CNCS 0.0 65.7 9.4 93.9
CNGA 0.0 62.6 13.9 104.3

Ionosphere
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 0.9 18.5 62.4 223.7
CNGA 0.9 10.5 45.9 166.2

SVM
CNCS 0.6 17.7 63.0 218.7
CNGA 1.1 9.1 45.6 167.9

ANN
CNCS 0.9 16.5 48.1 178.8
CNGA 1.4 16.2 40.2 164.8

6.1.5 Using Cost Function

TC = min(100× FP + 1× FN + 3× UC)

This function is similar to the previous cost function, except that in this case, the

false positive rate is penalized even higher when compared to the false negative
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FIGURE 6.4: Applying CNCS on ‘German Credit’ with TC = min(20×FP +1×
FN + 3× UC)
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rate. The results are tabulated in Table 6.6. Figure 6.5 represents a graphical

representation of the analysis of this cost function on the German Credit data set

using CNCS.

FIGURE 6.5: Illustration for CNCS on TC = min(100×FP +1×FN +3×UC)

6.1.6 Statistical Comparisons between CNCS and CNGA

The computational test results of CNCS and CNGA (66 experimental results)

were compared using the non-parametric statistical test, Wilcoxon test [49] (as
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TABLE 6.6. Results For TC = min(100 × FP + 1× FN + 3× UC)

German Credit Data
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 0.0 57.0 21.0 120.0
CNGA 0.0 57.0 21.0 120.0

SVM
CNCS 0.0 65.3 10.9 98.0
CNGA 0.0 65.2 10.2 95.8

ANN
CNCS 0.0 65.7 9.4 93.9
CNGA 0.0 65.6 9.4 93.8

Ionosphere
Base Classifier Method FP (%) FN(%) UC(%) TC

J48
CNCS 0.0 3.4 78.1 237.7
CNGA 0.0 17.7 52.1 174.0

SVM
CNCS 0.0 17.9 81.5 262.4
CNGA 0.0 17.7 53.3 177.6

ANN
CNCS 0.0 21.7 54.4 184.9
CNGA 0 23.9 49.6 172.7

recommended for comparing two classifiers by studies such as [10] and [11]). The

Wilcoxon test yielded a p-value of 0.4506 at α = 0.05. Hence the null hypothesis

that the two methods CNCS and CNGA are the same is NOT rejected. In other

words, the differences between CNCS and CNGA are statistically not significant

and yield similar performance.

6.1.7 Computational Time Comparisons between CNCS
and CNGA

In this subsection, the time to run CNGA and CNCS across various data sets, cost

functions and base classifiers is compared.

For each of the data sets in question, the average run time using CNCS and

CNGA were computed. The results are outlined in Table 6.7. Note that the CNCS

method consistently runs faster than the CNGA approach. The reason for the

faster run time for CNCS is that it uses a smaller candidate set of values. On

the other hand, CNGA considers a wider, randomized range of values to search

for lower TC values than the smaller range of values used by CNCS. Hence the
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time to compute, iteratively, the different crossover and mutating gene sequences

in CNGA yields a longer average computation time than CNCS.

6.1.8 Summary

In summary, the above study establishes the following conclusions. CNCS and

CNGA were applied on a number of data sets using different cost functions. In

this section, a total of 66 computational experiments were conducted using different

data sets and cost functions. In a majority of the 66 experiments, CNCS performs

on par with CNGA. Though CNGA investigates a lot more possibilities than CNCS

(which uses a candidate search space), CNCS and CNGA consistently track each

other’s performance closely. One can observe from the 66 experiments that CNGA

provides only a marginal improvement over CNCS (in terms of the number of

times it outperforms CNCS and the lowering of TC values using CNGA is only

marginal). However, when comparing the average time to run CNGA and CNCS,

CNCS outshines CNGA by a maximum speedup factor of approximately 33.5 for

one dataset and by a minimum speedup factor of 4.8 for another dataset. Clearly

from Table 6.7, the time to compute minimum TC using CNCS is much shorter

than CNGA. In comparison, the gains obtained in minimizing TC using CNGA is

marginal when compared to the overall gain of running a faster CNCS to obtain

TC values that are close to the values obtained by CNGA. In summary, the shorter

computation time for CNCS far outweighs the marginal improvements in TC values

using CNGA. CNCS is a better choice for minimizing TC values.
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TABLE 6.7. Computational Time Comparison Between CNCS and CNGA

Data set Method

Average
Run Time
(in Hours) Speedup

Liver Disorders
CNCS 0.1

30CNGA 3.0

Pima
CNCS 0.2

33.5CNGA 6.7

German
CNCS 0.6

7.3CNGA 4.4

Geographical Data Set, GA
CNCS 2.7

9.2CNGA 24.8

Ionosphere
CNCS 0.4

5.0CNGA 2.0

Cardiotography
CNCS 1.6

4.8CNGA 7.7

6.2 Optimizing CNCS (The CNCS-OPT

algorithm)
6.2.1 Using CNCS − OPT To Minimize TC

The CNCS algorithm is a nested loop algorithm with the core loop having a O(n2)

complexity. However, from the graphs depicted in Figures 6.2, 6.3, 6.4 and 6.5, one

can see that the graphs have a point of inflexion for each of the line graphs that

depict TC vs. p1 for different values of p2 and TC vs. p2 for different values of p1.

Assuming one starts with a fixed p1 value and then a study is conducted for the

relationship, p2 vs. TC by varying p2 alone, one can find a minimum value of TC for

a given, fixed p1. The value of p2 that yielded the minimum TC is now fixed and for

a different range of values of p1, TC is computed again. Using this newly computed

array of TC values, one can find the minimum TC value. Essentially, the O(n2)

component of the CNCS algorithm’s time complexity is now reduced to O(2n),

leading to a decrease in computation time for CNCS. This optimized methodology

is outlined as CNCS-OPT (for CNCS-Optimized) and is outlined in Figure 6.6.

On the same note, the CNCS−OPT and CNCS are similar algorithms, yielding

the same results (TC values) as each other. The only difference between the two
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methodologies is that CNCS −OPT is faster than CNCS. Hence the TC results

provided for CNCS in Section 6.1 hold for CNCS − OPT as well.

6.2.2 Comparing CNCS-OPT and CNCS

The computational performance of CNCS − OPT and CNCS was compared by

conducting a series of experiments on various data sets. The average computation

time for each data set was computed and has been tabulated in Table 6.8. From the

table, one can observe the significant boost in performance using CNCS − OPT

when compared to using CNCS.

TABLE 6.8. Computational Time Analysis For CNCS and CNCS-OPT

Data set Method

Average
Run Time
(in Hours) Speedup

Liver Disorders
CNCS 0.1

CNCS-OPT 0.03 3.3

Pima
CNCS 0.2

CNCS-OPT 0.06 3.3

German
CNCS 0.6

CNCS-OPT 0.2 3.0

Geographical Data Set, GA
CNCS 2.7

CNCS-OPT 1.1 2.5

Ionosphere
CNCS 0.4

CNCS-OPT 0.1 4.0

Cardiotocography2
CNCS 1.6

CNCS-OPT 0.4 4.0

6.3 CNCS − OPT using Original

Misclassification Cost Definition TC0

6.3.1 Using CNCS − OPT To Minimize TC0

Recall from Figure 5.1, the area of uncertainty where the positive and negative

critical nuggets model conflict. In the earlier section, the TC definition factored

in the undecided case to account for the area of uncertainty. In this section, the

original TC definition, TC0 is used which includes only the false positive and false

negative rates. In this case, the data records lying in the area of uncertainty are
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Require: cFP , cFN , cUC : the costs for false positive, false negative and undecided cases.
Require: : Critical Nuggets for classes ‘+’ and ‘-’ and data set, Tr.
1: TCArray=φ
2: From the range of R values used in calculating critical nuggets, find candidate set of

size ratios, CS1 and CS2 for positive and negative critical nuggets respectively.
3: Select a p1 randomly from the set (CS)1.
4: Proportionally change size of all Positive Critical Nuggets using ratio p1.
5: Generate Positive Critical Nuggets Model, M+

nuggets, using new Positive Critical
Nuggets.

6: for each ratio p2 in CS2 do

7: Proportionally change size of all Negative Critical Nuggets using ratio p2.
8: Generate Negative Critical Nuggets Model, M−

nuggets.

9: Use M+
nuggets, M

−
nuggets and M0 to predict class labels for Tr.

10: FP=Number of False Positives/|Tr |
11: FN=Number of False Negatives/|Tr |
12: UC = Number of Undecided Cases/|Tr|
13: TC = (cFP x FP + cFN x FN + cUC x UC) x 100
14: Append TC to TCArray
15: end for

16: tempMin=Minimum from TCArray.
17: tempIndx = Index of TCArray where tempMin occurs.
18: Reset TCArray=φ
19: p2 = Find tempIndx element from CS2

20: Proportionally change size of all Negative Critical Nuggets using ratio p2.
21: Generate Negative Critical Nuggets Model, M−

nuggets.
22: for each ratio p1 in CS1 do

23: Proportionally change size of all Positive Critical Nuggets using ratio p1.
24: Generate Positive Critical Nuggets Model, M+

nuggets, using new Positive Critical
Nuggets.

25: Use M+
nuggets, M

−
nuggets and M0 to predict class labels for Tr.

26: FP=Number of False Positives/|Tr |
27: FN=Number of False Negatives/|Tr |
28: UC = Number of Undecided Cases/|Tr|
29: TC = (cFP x FP + cFN x FN + cUC x UC) x 100
30: Append TC to TCArray
31: end for

32: Find minimum TC from TCArray.

FIGURE 6.6: The CNCS − OPT Algorithm.
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classified using the original base classifier’s prediction. Since CNCS − OPT is

the best choice both in terms of computation time and the ability to minimize

TC (with undecided case factored), CNCS − OPT is applied now to TC0. Since

standard data mining software implementations and research literature conform

to the standard misclassification cost definition of TC0, it provides a basis for

comparing CNCS − OPT ’s performance with other standard base classifiers.

For the computational analysis with CNCS − OPT and TC0 minimization, 72

computational experiments were performed using various data sets, cost functions

and base classifiers. The base classifiers used were the same as earlier in the chapter

- J48, SVM and ANN.

6.3.2 Computational Analysis For Different Cost

Functions

Tests were conducted using 4 different cost functions. The cost functions used in

the study were the following:

1. TC0 = min(1×FP+20×FN). This cost function penalizes the false negative

rate with a cost that is 20 times higher than penalty for the false positive

rate.

2. TC0 = min(1 × FP + 100 × FN). This cost function penalizes the false

negative rate with a cost that is 100 times higher than penalty for the false

positive rate.

3. TC0 = min(20×FP+1×FN). This cost function penalizes the false positive

rate more heavily than the false negative rate.

4. TC0 = min(100 × FP + 1 × FN). This cost function penalizes the false

positive rate with a penalty that is 100 times that of a false negative rate.
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The CNCS − OPT algorithm was run on different data sets using each of

the cost functions. For the first 2 cost functions, a total of 36 experiments were

conducted. For the latter 2 cost functions, 36 experiments were conducted. In

total, 72 computational experiments were conducted using 3 base classifiers and

5 different real-world data sets. In these set of tests, the TC0 values obtained by

CNCS − OPT can be compared with the TC0 values obtained by the standard

classifiers such as J48, SVM and ANN. The results for each of the cost functions

have been tabulated in Tables 6.9, 6.10, 6.11 and 6.12.

TABLE 6.9. Results For TC0 = min(1× FP + 20× FN)

Base Classifier With CNCS-OPT
Dataset

Classifier
FP FN TC0 FP FN TC0

Pima
J48 10.6 14.7 304.6 58.1 4.9 156.1

SVM 7.8 15.8 323.8 54.4 5.9 172.4
ANN 10.5 14.6 302.5 57.7 5.5 167.7

Liver Disorders
J48 19.6 14.1 301.6 35.9 11.0 255.9

SVM 23.3 6.7 157.3 30.4 12.2 274.4
ANN 18.1 13.1 280.1 41.7 7.0 181.7

Cardiotocography2
J48 2.5 3.7 76.5 7.3 1.6 39.3

SVM 1.9 4.8 97.9 8.3 1.4 36.3
ANN 2.8 3.3 68.8 6.9 2.1 48.9

German
J48 15.6 11.4 243.6 23.0 5.6 135.0

SVM 26.9 1.5 56.9 29.3 0.6 41.3
ANN 15.7 13.0 275.7 25.2 5.0 125.2

Ionosphere
J48 6.2 3.9 84.2 9.4 1.1 31.4

SVM 1.3 5.7 115.3 7.1 3.1 69.1
ANN 6.9 1.2 30.9 9.7 0.9 27.7

Synthetic
Geographical
Data Set(GA)

J48 0.6 1.0 20.6 11.2 2.2 55.2
SVM 2.0 2.4 50.0 9.3 4.0 89.3
ANN 7.8 14.6 299.8 37.4 1.3 63.4

6.3.3 Statistical Comparisons between CNCS-OPT and
Base Classifiers

The computational test results of CNCS-OPT and the standalone or base classifiers

(72 experimental results) were compared using the non-parametric statistical test,
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TABLE 6.10. Results For TC0 = min(1× FP + 100× FN)

Base Classifier With CNCS-OPT
Dataset

Classifier
FP FN TC0 FP FN TC0

Pima
J48 11.4 14.4 1451.4 57.4 4.9 547.4

SVM 7.8 15.7 1577.8 55.6 5.3 585.6
ANN 11.0 13.9 1401.0 53.9 4.6 513.9

Liver Disorders
J48 20.1 14.2 1440.1 34.2 13.0 1334.2

SVM 23.5 6.6 683.5 31.0 11.9 1221.0
ANN 18.6 12.7 1288.6 38.8 6.1 648.8

Cardiotocography2
J48 2.6 3.6 362.6 7.9 1.4 147.9

SVM 1.9 4.7 471.9 8.2 1.4 148.2
ANN 2.9 3.5 352.9 7.4 1.9 197.4

German
J48 15.5 11.4 1155.5 23.6 4.4 463.6

SVM 26.9 1.5 176.9 28.8 0.4 68.8
ANN 15.1 13.6 1375.1 24.6 4.7 494.6

Ionosphere
J48 6.6 3.6 366.6 11.4 1.7 181.4

SVM 1.4 5.6 561.4 6.8 2.8 286.8
ANN 7.4 1.7 177.4 10.0 0.6 70.0

Synthetic
Geographical
Data Set(GA)

J48 0.6 1.0 100.6 5.8 1.8 185.8
SVM 2.0 2.4 242.0 25.5 2.7 295.5
ANN 6.6 15.7 1576.6 71.4 0.5 121.4

TABLE 6.11. Results For TC0 = min(20× FP + 1× FN)

Base Classifier With CNCS-OPT
Dataset

Classifier
FP FN TC0 FP FN TC0

Pima
J48 11.8 14.1 250.1 8.7 20.1 194.1

SVM 8.1 15.6 177.6 5.6 22.1 134.1
ANN 11.5 13.7 243.7 11.2 14.7 238.7

Liver Disorders
J48 20.6 13.7 425.7 5.5 28.4 138.4

SVM 23.2 6.7 470.7 3.2 29.9 93.9
ANN 17.7 13.5 367.5 7.8 22.3 178.3

Cardiotocography2
J48 2.6 3.7 55.7 3.3 2.6 68.6

SVM 1.9 4.7 42.7 4.7 2.1 96.1
ANN 2.7 3.4 57.4 2.5 12.2 62.2

German
J48 16.0 12.0 332.0 4.1 60.9 142.9

SVM 27 1.6 541.6 5.0 65.8 165.8
ANN 15.6 13.1 325.1 2.1 68.1 110.1

Ionosphere
J48 6.8 4.3 140.3 6.6 4.3 136.3

SVM 1.4 5.7 33.7 1.4 5.1 33.1
ANN 7.0 1.8 141.8 6.0 10.3 130.3

Synthetic
Geographical
Data Set(GA)

J48 1.0 1.0 21.0 2.6 11.9 63.9
SVM 2.0 2.0 42.0 2.7 12.2 66.2
ANN 7.3 15.0 161.0 4.9 19.3 117.3
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TABLE 6.12. Results For TC0 = min(100 × FP + 1× FN)

Base Classifier With CNCS-OPT
Dataset

Classifier
FP FN TC0 FP FN TC0

Pima
J48 11.3 14.2 1144.2 10.2 16.5 1036.5

SVM 7.8 15.6 795.6 7.0 17.3 717.3
ANN 10.5 14.3 1064.3 11.5 13.2 1163.2

Liver Disorders
J48 20.6 14.0 2074.0 4.1 30.1 440.1

SVM 23.1 6.9 2316.9 2.9 29.3 319.3
ANN 18.4 11.9 1851.9 6.1 26.1 636.1

Cardiotocography2
J48 2.6 3.7 263.7 2.5 69.7 319.7

SVM 1.9 4.7 194.7 2.0 73.1 273.1
ANN 2.9 3.5 293.5 2.1 69.1 279.1

German
J48 15.9 11.3 1601.3 4.6 60.3 520.3

SVM 26.9 1.4 2691.4 5.2 65.6 585.6
ANN 14.9 13.6 1503.6 1.7 67.5 237.5

Ionosphere
J48 7.0 3.8 703.8 6.3 4.0 634.0

SVM 1.4 5.8 145.8 1.4 6.3 146.3
ANN 7.3 1.6 731.6 5.1 22.5 532.5

Synthetic
Geographical
Data Set(GA)

J48 0.6 1.0 61.0 1.7 12.2 182.2
SVM 2 2.4 202.4 2.7 12.2 282.2
ANN 8.4 14.1 854.1 5.3 19.5 549.5

Wilcoxon test [49] (as recommended for comparing two classifiers by studies such

as [10] and [11]). The results of the test are tabulated in Table 6.13. One can

observe from Table 6.13 that CNCS-OPT’s reductions in misclassification cost are

statistically significant at 99% confidence level when used in conjunction with J48

and ANN and significant at 90% confidence level when used in conjunction with

SVM.

6.4 Summary

As a summary for this chapter, two new approaches - CNCS (Critical Nuggets

With a Candidate Set) and CNGA (Critical Nuggets and a Genetic Algorithm)

have been proposed to minimize misclassification cost, TC. Two misclassification

cost functions were considered - one was the standard misclassification cost (TC0)

that included only false positive and false negative costs while the other was a
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TABLE 6.13. Significance of Misclassification Cost Reductions

Comparison p-value Significance

J48
vs.

CNCS-OPT with J48 0.0027
Significant

(at α = 0.01)

SVM
vs.

CNCS-OPT with SVM 0.0787
Significant
(at α = 0.1)

ANN
vs.

CNCS-OPT with ANN 0.0000
Significant

(at α = 0.01)

modified cost function that included the undecided case. Using the modified TC

cost function which accounts for the undecided case, a total of 66 experiments (33

for CNCS and 33 for CNGA) were conducted to analyze the performance of CNCS

and CNGA. This analysis was conducted using various cost functions, different

base classifiers and various real-world and synthetic data sets. Summarizing the

results, overall the performance of CNCS and CNGA is on par with each other. In

other words, given the randomized input data (due to a 10-fold cross-validation),

the performance of CNCS and CNGA in terms of output TC scores was relatively

similar and statistically not different. However, the time to compute CNCS is

far shorter than CNGA. This makes the algorithm CNCS a better choice when

compared to CNGA for the minimization of TC (a TC function that factors in the

undecided cost).

The CNCS algorithm was optimized further by the proposing of CNCS-OPT

- an optimized version of CNCS. This reduced the complexity of CNCS by an

order of magnitude and helped speed up the computations further. The CNCS-

OPT was compared with CNCS by running the same set of 66 experiments using

CNCS-OPT. CNCS-OPT was on average 3 times faster than CNCS.
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Using CNCS-OPT, 72 additional experiments were conducted using the non-

modified TC function, TC0 that factors in only false positive and false negative

rates. The TC0 values produced by CNCS-OPT and standard classification algo-

rithms were compared and CNCS-OPT performed better than the standard clas-

sification algorithms in 56 out of 72 experiments. The 16 cases where CNCS-OPT

failed to reduce misclassification costs maybe attributed to the highly representa-

tive nature of the data sets such as the Cardiotocography2 and the Synthetic Geo-

graphical data set (GA). Higher the representation of the training data set, better

will be the accuracy of data sets such as Cardiotocography2 and GA (as indicated

in Table 4.6). Higher the accuracy, lower are the misclassification costs. In such a

case, running CNCS-OPT, where areas near the boundary expand and grow, may

nullify the pre-existing low misclassification costs (prior to running CNCS-OPT).

Overall, the reductions in misclassification costs by CNCS-OPT in comparison to

the base classifiers is statistically significant and CNCS-OPT outperforms the base

classifiers. This is confirmed by the Wilcoxon test results illustrated in Table 6.13.
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Chapter 7
Additional Computational Analysis

Additional computational analysis was conducted to study the relationship be-

tween the effect of false positive rates and false negative rates when their respective

penalties or costs are varied. Two such relationships were evaluated:

• one in which the false negative rate (FN) was kept constant and the impact

of false positive rate FP was studied by varying the false positive cost cFP .

• the other in which the false positive rate (FP ) was kept constant and the

impact of false negative rate (FN) was studied by varying the false negative

cost (cFN).

7.1 Analyzing FP vs cFP by keeping cFN

constant

To conduct this analysis, the CNCS-OPT algorithm was applied on the modified

TC function that includes the undecided case. The false positive cost was varied

and the false negative cost was kept constant. The goal was to study the relation-

ship between false positive rate and the false positive cost by keeping the false

negative cost constant.

Figure 7.1 depicts the results of one such experiment using SVM as the base

classifier on the German Credit Data Set. Note that as the false positive cost rises,

initially the false positive rate hold steady at 0.7 and then it falls to 0 as one

continues to increase the cost. A step-wise pattern in the graph is an interesting

observation as well as there exist levels where false positive rates hold steady and
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after a certain cost threshold is crossed, then the false positive rate falls. Also as

cost increases, the false positive rate falls.

FIGURE 7.1: Analyzing cFP vs FP using SVM on German Credit Data Set.

7.2 Analyzing FN vs cFN by keeping cFP

constant

In this section, CNCS − OPT is again applied using the modified TC equation.

This time, however, the false negative rate is studied in relationship to increasing

false negative cost. One such experiment in this category is outlined as Figure 7.2.

One can again observe a step-wise pattern in the graph. As one increases the cost,

the false negative rate decreases in a step-wise pattern.
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FIGURE 7.2: Analyzing cFP vs FP using J48 on the Cardiotocography2 Data Set.
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Chapter 8
Conclusions

This research work presents the notion of critical nuggets. A new metric, the

CRscore, was introduced for measuring criticality of a subset or nugget. A sim-

ple rotation test was proposed to resolve conflicting scores when they occur. The

proposed score was used to identify critical nuggets. The tests on a number of 2-

dimensional synthetic data sets provided a visual validation that such nuggets are

more likely to lie near class boundaries and in close proximity to the complex fea-

tures along the class boundaries. Reducing the search to near the class boundaries

saves computation time in identifying such nuggets. The FindCriticalNuggets al-

gorithm was outlined that used the boundary estimation method and the CRscore

to identify critical nuggets. Some important properties such as the dual nature

of critical nuggets were discussed and the properties were validated through some

sets of experiments. The proposed ideas were tested on some multi-dimensional real

world data sets. Results from the experiments on the real world data sets revealed

that only a very small number of subsets qualified as critical nuggets. Experimental

results from the real world data sets also indicated the importance of finding such

subsets in large databases. The knowledge of critical nuggets also helped to reduce

the number of false positives and false negatives and thus significantly improving

the overall accuracy of classification tasks.

A detailed study was undertaken to study the application of critical nuggets in

lowering the classification costs. Two definitions of classification costs were con-

sidered. A modified classification cost (TC) accounted for the unclassifiable case

and another cost definition (TC0) included only the false positive and false neg-
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ative rates. 2 algorithms, CNCS and CNGA, were introduced and applied on

the modified definition TC. Both algorithms helped lower the total classification

cost. Empirical studies were carried out for various cost scenarios and for a given

search space, the optimal minimum classification cost was obtained (this minimum

cost also provided for the best combination of the sizes of positive and negative

critical nuggets). The CNCS algorithm was further improved and optimized as

CNCS − OPT algorithm. CNCS − OPT was then applied on the original cost

definition TC0 and empirical studies proved that the critical nuggets approach

fares better (statistically significant) than the stand-alone algorithms in reducing

misclassification costs.

This work concentrated on finding a subset of data records that are critical. In

combination with critical data records, there maybe some attributes that may be

more important that the others. Critical nuggets with critical attributes has im-

mense applications (for instance, finding undecided voters (critical data records)

in an election data set and the specific, core issues (critical attributes) that mark

their undecidedness). Future work can be done towards improving the O(n2) com-

plexity of the boundary approximation algorithm used in this research work. The

work was limited to data sets with 2 classes and to data sets that have numerical

attributes. Future work can be directed towards extending these ideas to data sets

with multiple classes (greater than 2) and data sets with mixed attributes(numeric

and categorical). The post-processing methodology of improving classification ac-

curacy proposed in this work can also be compared with other techniques (includ-

ing resampling techniques and other cost-sensitive classification methods) in the

field of classification algorithms. Ideas used in reducing misclassification costs us-

ing critical nuggets can also be extended towards designing critical nuggets based

cost-sensitive classifiers.
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