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Abstract

As data-centric computing becomes the trend in science and engineering, more and more hardware

systems, as well as middleware frameworks, are emerging to handle the intensive computations as-

sociated with big data. At the programming level, it is crucial to have corresponding programming

paradigms for dealing with big data. Although MapReduce is now a known programming model for

data-centric computing where parallelization is completely replaced by partitioning the computing

task through data, not all programs particularly those using statistical computing and data mining

algorithms with interdependence can be re-factorized in such a fashion. On the other hand, many

traditional automatic parallelization methods put an emphasis on formalism and may not achieve

optimal performance with the given limited computing resources.

In this work we propose a cross-platform programming paradigm, called “on-the-fly data tracing”, to

provide source-to-source transformation where the same framework also provides the functionality of

workflow optimization on larger applications. Using a “big-data approximation” computations related

to large-scale data input are identified in the code and workflow and a simplified core dependence

graph is built based on the computational load taking in to account big data. The code can then be

partitioned into sections for efficient parallelization; and at the workflow level, optimization can be

performed by adjusting the scheduling for big-data considerations, including the I/O performance

of the machine. Regarding each unit in both source code and workflow as a model, this framework

enables model-based parallel programming that matches the available computing resources.

The techniques used in model-based parallel programming as well as the design of the software

framework for both parallelization and workflow optimization as well as its implementations with

multiple programming languages are presented in the dissertation. Then, the following experiments

are performed to validate the framework: i) the benchmarking of parallelization speed-up using

typical examples in data analysis and machine learning (e.g. naive Bayes, k-means) and ii) three real-

world applications in data-centric computing with the framework are also described to illustrate the

efficiency: pattern detection from hurricane and storm surge simulations, road traffic flow prediction

viii



and text mining from social media data. In the applications, it illustrates how to build scalable

workflows with the framework along with performance enhancements.

ix



Chapter 1

Introduction

The prevalence of data-centric computing, as well as the emerging field of data-enabled science and

engineering, is leading to a wide range of sophisticated computational models for high-level knowledge

discovery in large-scale data requiring more advanced computing resources. MapReduce [1], as a

relatively new programming model, means that canonical parallelism can be imposed to data-centric

computing via a straightforward way of task partitioning: a part of the input data can be mapped to a

processing unit and the final result is then collected from all the processing units running in parallel.

Now, the new parallel architecture, along with Hadoop [2], the implementation of MapReduce with

efficient hardware integration, is being widely used in many fields. In particular, the interoperability

of Hadoop enables cross-platform data processing and makes parallel computing easier for data

scientists who are not familiar with low-level system programming. Now many real-world applications

are involved with big data and this prompts the deployment of the new programming model especially

for data-intensive computing. As it significantly enhances the efficiency of large-scale data processing,

the new programming paradigm enables users to work under a new platform and can directly map

their data-centric tasks to the framework in a convenient manner. Ideally, considering that there

is always a non-high-performance solution that users just run it on a single PC, it would be the

best for them to transplant the model and data to a new high-performance platform with the least

additional work – in an automatic way. So, the following scenario is assumed as the target throughout

the dissertation, and is indeed common for many researchers and data analysts: there are already

models or codes that can be successfully executed as a small-scale solution, and it is desired to

accommodate large-scale data and high-performance computational resources for the existing models

whose effectiveness has been proven. Intuitively, an accelerator is needed to parallelize the model. It

is actually not enough as platform support is also important at the workflow level. To illustrate the

vision, we would start from giving some general comments MapReduce, and then propose the idea

of a new solution.
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As an advanced programming model, one advantage of MapReduce is that the parallelism is almost

independent from the original data processing algorithm, or the slow sequential code itself: the same

routine can be applied for each partition of data sets, the user code is like an argument that is

simply passed to the higher-level parallel architecture through its APIs and then scaled up. In other

words, MapReduce maintains the original model and only imposes parallelism on data. It works in a

straightforward manner for data analysis that doesn’t require data dependence within its procedure.

For example:

A large text data set includes very many essays (more than 1 million) and each essay typically

consists of more than 1000 words. In order to efficiently calculate the average length of each essay

throughout the entire data set, it would be advantageous to use MapReduce model in the following

way: i) partitioning the data set and mapping each portion of it to a processor (or a node of a cluster.

hence ”processor” is used to represent both); ii) obtaining the average length for those on the same

processor while counting the number of essays here (map) ; iii) collecting the results across all the

processors and calculate the total result (reduce) by using a weighted average.

The above example suits MapReduce very well as the same model (calculate the average length

of a given data set of essays) can work on each processor and all the user needs to provide is a

reduce function (or combination function) that computes the weighted average. That is, the model

itself can be regarded as a black box and can be repeatedly called no matter whether MapReduce is

needed or not. However, this leaves one issue behind: the parallelism fails to exploit multiple levels of

parallelism in a piece of user code [3] and isn’t designed to encourage data exchanging or dependence

in the middle of computation [4], while in many machine learning algorithms, the iterative solver

would consistently require the result trained from the last data record. To make it more explicit, the

following instance illustrates the situation:

A large text data set is given again but now we want to find the variance of the length of the es-

says. When performing the computation using MapReduce, it has to be divided into three steps: i)

2



counting the length for each essay and then getting the average for all the essays using MapReduce

(as in the above example); ii) taking the average as an argument and then calculate the sum of square

for the deviation to average using MapReduce and iii) Collecting the result and divide the sum of

square by the number of essays, whose output will be the variance.

So, the MapReduce routine has to be adopted twice here because of data dependency, and the

single model, which is to get the variance of length for any given text data set, can’t be iteratively

called in this case. While this is considered as a circumstance that the parallelism can’t only be

imposed on data, a model can contain numerous subroutines, where some are well compatible with

MapReduce, some even involve hierarchical parallelism [5] and some have to bear with sequential

execution.

On the other hand, automatic parallelization for code generation [10, 11, 12], which aims to perform

source-to-source transformation to directly make user programs parallelizable, has been a popular

research topic for over twenty years. Traditional parallelization approaches focus more on the for-

malism, especially for the optimization of loop nest [13]. With [12] as an example, normal form

and separable normal form are defined in the code and can be extracted. Thereby, nested loops are

reduced in the newly generated code so it is easily configured with loop-based accelerators such as

OpenMP. By this means, while the generated code essentially optimizes the compilation performance,

data dependency can’t be substantially altered.

More specifically, tiling [14, 15, 16], as a key technique used in automatic parallelization, are exerted

on nested loops and can achieve better practical performance for reducing loop irregularities and

utilizing data locality. As the output is still source code and doesn’t take the available computational

resource into account, it mostly perform ad-hoc processing in programs. For the same example of

calculating the average and variance of text length on a big data set, it would not give a better

solution than the aforementioned as long as the actual code is nicely written. Moreover, compiler-

level parallelization is also an option in the context of multi-core computing [17, 18]. Dependency-free

3



iterations of a for-loop can be extracted and assigned to processors so the construction of dependency

graph still becomes the precondition.

In sum, for parallelizing a given piece of code, extracting the concurrency is a primary task as

it determines what can be executed in parallel and what can’t; afterwards, matching the level of

parallelism to the availability of high-performance computing resources is also important to ensure

the actual execution sequence is optimal. At a higher level of parallelization, MapReduce doesn’t

limit the form of user code at all (but it is users’ responsibility to impose it properly) and allows high

interoperability between the user program and parallel architecture, while the majority of automatic

parallelization methods for code generation have requirements on user program and the resultant

code usually doesn’t dynamically interact with the system side. Thus, they represent two directions

in the development of parallel programming.

In this dissertation, we propose a new approach for data-centric computing which lies at the middle of

the two directions: with the concept of a big-data approximation, which means that the parallelization

algorithm only focuses on the routines with regard to the input data set of the program and all other

computations are considered trivial, the problem of automatic parallelization is simplified. Then, our

approach consists of two major stages at the code-parallelization level: big-data tracing and dynamic

task scheduling: i) mid-level codes are generated from user program, including the scan of code

for parallelism exploitation and ii) a task scheduler arranges the execution routine before runtime

based on the available computing resources, the core data dependence graph and the parallelization

granularity in between. Fig. 1.1 depicts the relationship of our work to existing techniques in several

aspects.

So, after introducing related work in Chapter 2, the approach of on-the-fly tracing (OTF-T) is

described in Chapter 3 as the way to exploit the parallelism from code based on big-data approxi-

mation, followed by the corresponding parallelization mechanism: the structure of core dependence

graph, with the assumption of big-data approximation that considers all the computation beyond

the large-scale data input trivial, is defined as a simplification to the traditional directed acyclic

graph. Then, parallelization is performed through the operations on the core dependence graph: a
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FIGURE 1.1: High-level comparison between existing techniques for parallel data-centric computing
and the work in this dissertation

cut on the graph can partition the code into sections and such operations can be recursively adopted;

after codes are transformed into sections, it then becomes a scheduling problem for arranging all

the sections in a proper sequence with the available computing resources. Then, in Chapter ??, the

concept is extended to workflow level that includes multiple modules or programs that are related to

the same big data. A general task descriptor is defined and the criteria with regard to big data are

involved in workflow optimization on large computers. No matter a task descriptor actually refers to a

code section, or a sophisticated module in scientific computing, the scheduling fits both the scenarios

with a goal of minimizing the delay time while considering the non-trivial large data transmission in

synchronization.

Compared to traditional methods in workflow optimization (or optimal resource selection) [19, 20],

the time for data transmission is an important factor in impacting performance. The larger the data

size is, the more expensive the cost of moving data (for task execution) is. To solve this problem,

the big-data approximation helps to identify the critical path as the focus tasks of the workflow and

others can be branches, based on the level of big-data involvement (although the information may

not be given for each task). Focus tasks have higher priority and data moving should be minimized
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between them. Then, while there is more freedom for each branch task, they can be handled using

a greedy approach. Thereby, by using the same concept in two different levels in high-performance

computing, such a software framework, presented in Chapter 4, can be designed and implemented.

To verify the performance of the framework in real-world applications, a series of experiments are

performed: first, parallelization speed-up is measured using typical data analysis routine such as

naive Bayes and k-means algorithm on multicore and cluster architectures; then, three typical data-

intensive computing tasks using the framework are illustrated as well: i) pattern detection from

hurricane and storm surge simulations; ii) road traffic flow prediction and iii) text mining from social

media web (mainly Twitter). Each application is described in Chapter 5, Chapter 6 and Chapter 7

with details for its purpose, problem setting, the original computational model(s) and the use of the

OTF-T framework to accelerate them on large computers. Lastly, we conclude this dissertation in

Chapter 8.
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Chapter 2

Related Work

Related work falls into the three areas: i) MapReduce and related frameworks (Section 2.1); ii)

parallelization techniques ( Section 2.2) and iii) workflow optimization and scheduling (Section 3.4).

Each part is related to the core of this dissertation in a different way: i) is a programming model

for its ease of applicability and relatedness to data-intensive computing; the techniques in ii) are

also relevant or used in the on-the-fly tracing framework; and iii) is the extension of the concept of

big-data approximation at a higher level for workflow on high-performance computing resources or

grid/cloud computing.

2.1 MapReduce and Related Frameworks

MapReduce [1] was first designed and implemented at Google Inc. for processing large amounts of raw

data, especially for crawled documents on the web. It has become increasingly popular over the years

as such a procedure of data processing is general in many applications, including some significant one

in influenza epidemics detection [21] and genome analysis [22]. While it was first deployed on large

clusters, scalability is not an issue as it doesn’t require communication between processors or nodes of

clusters until the final result is to be collected. Such generality extends the outreach of MapReduce:

Pig Latin [23] makes MapReduce even easier to use in SQL-based database queries so users can

maintain their code at the high level without additional scripting: a data flow language is defined

on top of SQL in order to accommodate nested data model, such as ”FILTER”, ”FOREACH” and

”COGROUP”. Such an integration with a database leads to a new environment for data processing

and Pig is now a popular tool as a top-level Apache project [24].

A scheduling scheme, longest approximate time to end (LATE) is then designed to improve the

MapReduce performance on heterogeneous environments[25] in comparison to the Hadoop task sched-

uler: while Hadoop holds a homogeneous assumption in scheduling tasks, the LATE scheduler per-

forms speculative execution by prioritizing, selecting fast nodes and capping to prevent thrashing.
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This scheduler can be run on Amazon EC2 (Amazon Elastic Compute Cloud) [26] to extend the

MapReduce paradigm in cloud computing.

Moreover, with the computing capability being also convenient for graphics processing units (GPU),

the corresponding MapReduce-based framework is available: Mars [27] becomes such by bridging

the parallelism to CUDA, NVIDIA’s parallel computing architecture mainly used for GPU. Several

applications are tested for performance comparison, and according to the authors, by utilizing char4

data type in GPU as optimization, the Mars framework achieves less computational time than using

CPU.

Typical applications of the MapReduce-based framework, which can be directly used by machine

learning and data mining specialists, also emerged in recent years. As a representation, NIMBLE [7]

provides such services towards ”parallelization with limited effort”. Abstract tasks are defined and two

kinds of such differentiate the computations with data involved or not. Then, tasks can be spawned

across processors and form DAGs (directed acyclic graphs) to indicate the chain of execution. While

the framework prompts the level of parallelism to explicit tasks to give the execution more flexibility, it

still requires the users themselves to define ”tasks” although the primary concern for machine learning

and data mining specialists is ”where to find a dispensable task”. Other recent application-specific

framework includes [28, 29] (with MapReduce) and Pregel [30] for large-scale graph processing.

On the other hand, an alternative of MapReduce, which provides similar functionality at a different

level, can be Dryad [31]. Dryad is designed as a general-purpose execution engine and allows users to

set up ”vertices” and ”edges” in the Dryad graph as a job schedule. Dryad operates at a higher level

and as such has its own scripting language ”Nebula” for developers. With more interoperability, Dryad

supports more applications including SQL query and data mining. However, while it is not designed

for data-centric computing, it would still be practically difficult or labor-intensive to harness a specific

application to such a platform that is more standalone. It is then improved to DryadLINQ [32], which

is capable of compiling a set of queries as constructs to make the execution more straightforward.

Though not very often, the disadvantage of MapReduce has also been discussed in multiple as-

pects. [3] points out that the MapReduce-style parallelism only supports one-way scalability, which
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means it only targets large-scale data and there is no necessary flexibility in middle of data pro-

cessing. [4] also mentions the difficulty of handling data processing/analytics models that include

synchronization in between such as online learning and Monte Carlo simulations. Such worries are at

an early stages before a replacement emerges. However, it indicates that combining system-level pro-

gramming model with compilation-level pre-processing (or code transformation) would be a plausible

solution.

2.2 Parallelization Techniques

Compared to system-level programming frameworks for large-scale computing, parallelization has a

relatively longer history. It has been a target for the source code itself that sequential code can be be

transformed into a multi-threaded or vectorized code in order to utilize advanced computing resources,

including multi-core processors, commodity clusters, commercial clouds or GPUs. In fact, automatic

parallelization has been recognized as a difficult problem [33]. Currently, multi-core architecture based

on shared memory is always referred to for automatic parallelization for its platform independence

and neatness of the form of code, but it also limits the power of automatic parallelization at the

concept level, although automatic code generation is also feasible for other platforms. The techniques

required is also different: parallelization always put an emphasis on ad hoc analysis on code, especially

on loops (while loops usually take the majority of execution time).

At the compilation level, many parallelization techniques are platform dependent but some general

schemes still work as almost all the programming languages share the same features. As a tradition,

polytope model [13, 34] is introduced in the dissertation as the main non-trivial method. Polytope

model has been invented for decades and is still a primary method in current parallelization tools, it

is a mathematical model that can be specified by two polynomials and the inequations can be listed

for the dependence in nested loops. Solving it means tiling the loops in a proper way that a set of

iterations are rearranged to be concurrent. At the same time, the limitation of the polytope model

exists in the fact that it is hard to handle irregular control in programs. And some approximation

methods have to be used while polytope model is ”absolute” for in standard settings of programs.

Nevertheless, its formality still resulted in many later works [16, 35, 36].
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In essence, the aforementioned method also indicates that there would be a canonical solution

for given forms of code, so application-specific parallelization techniques are the other part of the

work. [37] specifies the parallelism for tree reductions in dynamic programming: the parallelism can

be extrated from the tree contraction algorithm and then a code generator can be designed to follow

the pre-defined concurrency along tree nodes with optimization mechanism. [12] analyzes the form

of code for matrix multiplication and uses a normal form to represent it, and then the parallelization

algorithm converts the actual code into such a form; the parallelizer is practically implemented on

top of a series of analyzers and its performance is illustrated via testing multiple numerical solvers

with multi-threading.

Thread-level speculation (TLS) is another direction that facilitates automatic parallelization [11]. It

allows the parallelism to be seen and arranged by compilers solely, instead of just transforming the

code to another style. So, codes can be pre-fetched and assigned to processors without any change.

Then, necessary run-time checks of variable values are necessary to ensure the parallelism is really

adoptable. The mainstream implementations rely heavily on the support of hardware or compilers:

speculative regions are set up and buffered in cache, or speculative pipelining is applied by multi-

scalar [39]. So, thread-level speculation essentially simplifies manual parallelization by establishing

additional structures directly on hardware and its performance is closed bound to the machine config-

urations in terms of dynamic thread length and number of speculative regions [40]. The sophistication

of its deployment thereby doesn’t make the technique itself lead to a general standard of automatic

parallelization. In more recent work, it was elaborated to nested thread-level speculative parallelism

by adding the in-thread mechanism based on conditional probability [41].

2.3 Workflow Optimization and Scheduling

In comparison to MapReduce-related frameworks and parallelization techniques, workflow is at a

higher level in the system so the actual computational model in a workflow is more difficult to

be described but can only be abstracted. Middleware, in grid/cloud computing or any distributed

environment, can operate on workflows. Also, it makes the concept of ”workflow” become a generic

term that can be applied in many processes or applications.
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In the context of this dissertation, workflow refers to ”scientific workflow” [42], which consists of

execution components, resources for computation, the mapping between resource to workflows, and

other models on top of the core flow (e.g. control flow model and data flow model). A well-defined

workflow should be fault-tolerant. In order to optimize a workflow, the mapping and scheduling

algorithms and other related mechanisms would be taken into account: Pegasus [43], a known workflow

management system, could partition the original workflow into any number of sub-workflows and

cluster the tasks for fine granularity in execution. In grid or cloud computing, the resources may not be

immediately available and dynamically change over time, so it prompts the workflow to be capable of

performing optimization adaptively. [19] designs a discovery service in workflow so that the resources,

represented by web services, can be dynamically selected through active discovery using service name,

metadata or ontology; and then an optimization service exerts additional criteria to select the best

one from a pre-selected list. In grid computing, a blackboard approach [44] from artificial intelligence

allows an agent to actively search for optimal QoS (Quality of Service) parameters to ensure the

estimated cost is minimized at each step. Then, regarding resource scheduling in a situation that

the load of tasks is larger than the capacity of real-time processing, a set of heuristic algorithms

are proposed in [45] based on the formalization of mapping, communication model and latency for

linear workflow optimization, and a ”longest first” scheme is shown to be the optimal in the authors’

experimental setting, indicating that it is preferable to choose the currently longest operation as the

next schedule in the queue.

Admittedly, some work in workflow optimization is based on hypothetical circumstances while real

conditions and restrictions may not be fully considered. For data-centric computing, the time for

moving data is non-trivial and I/O performance would play a significant role in workflow as well. While

it already becomes the trend and real challenges in many applications, [46] mentions the challenge

in scientific workflow modeling with respect to the complication of data size and the increasing

procedures in the workflow, and points out that data would important in the process of workflow

construction and should be individually treated on top of other components.
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Chapter 3

On-the-fly tracing for parallelization

While MapReduce is easy to deploy and compatible with different platforms or programming lan-

guages, it lacks the capability in handling a sophisticated piece of code for data analysis that requires

synchronization or data dependence in between. On the other hand, current parallelization techniques

usually target a certain form of code and the elaboration of details in coding style limits its generality.

In this chapter, a new approach, considered as a blending of the advantages of both MapReduce and

parallelization, is presented. At the system level, the same view as MapReduce is adopted here: the

data-centric task comes with a large-scale data input, and in the course of execution, it can do more

than MapReduce as the on-the-fly tracing is exerted on the source code itself, which is the same

as the aforementioned parallelization techniques, to exploit parallelism and assign the partitioned

sections to available computing resources. ”On-the-fly” means that the parallelization is not rigid

and can adjust itself accordingly (e.g. users’ knowledge in some time-consuming functions can help

with the parallelization at a higher level). As mentioned in Chapter 1, the on-the-fly tracing still

requires scanning the source code but doesn’t require the formality of the code itself. It does give

parallelization more flexibility though the approach itself can lead good parallelization results.

3.1 Concept

In data-centric computing, it is considered that there is logically one input data set for a task,

which can be very large. So, the parallelism is then to be exploited over data: in MapReduce, the

parallelism of the whole task is equivalent to that of data, assuming that there is no dependency at

all between each partition. The parallelism that we address throughout the paper doesn’t hold the

same assumption but requires the scanning of user code for parallelism exploitation.

Thus, we consider parallelism with big-data approximation. In many circumstances, a function is

regarded as a unit of user code input. Then, a couple of definitions can be made.
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Definition 1. Big-Data Approximation: for parallelizing a function f(D, ...), where D is the only

logical data input of f , only the parallelization of routines that contain D or its mappings is needed,

while the time for other computations is considered as a negligible part in the total.

With big-data approximation, the parallelization is simplified for the reduction of data dependence

as well as formality. That is, in order to parallelize the code, we only need to check and process

variables that are related to the large-scale input, namely tracing, and no additional processing is

necessary for other parts of the code. The purpose of tracing, in short, is to find out all the variables

in the program that are a copy of, or depend on any part of the big-data input, which are called a

mapping of that part of input. It can also be written in a function:

Definition 2. Mapping: in a piece of source code, if there are two defined variables (or symbols,

objects etc.) s and d, where s is a copy or a part of d through assignment (e.g. s = d, s = d[1],

s = d[2][3]), then s is a mapping of d). Also, taking index into account for a large-scale variable, s is

an argument of the mapping function of d, whose return value is the index or component (for sim-

plicity, both are denoted as ind with a subscription of the original variable) inds that s is dependent

on.

M(d, s) = inds

Obviously, any variable is a mapping of itself and the mapping relationship is transitive: if s is

mapping of d and t is a mapping of s, then t is also a mapping of d. In this sense, a series of mappings

can be found throughout the program and form a directed acyclic graph to indicate dependency as

in many parallelization works [47, 48]. The piece of code in Figure 3.1, which performs principle

component analysis in R [49], is used to illustrate the basic idea of tracing.

3.2 Parallelism with big-data approximation

In data-centric computing, it is usually reasonable to consider that there is one logical input data set

for a task, which can be very large. In MapReduce, parallelism is only imposed on data: the original
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code is assumed to be equivalent to running the same code multiple times with a small portion of data

and combining their results. While the assumption may not hold for many programs in statistical

analysis and data mining, the scanning of code is required. Thus, a couple of definitions are made as

follows:

Definition 1. Big-Data Approximation: for parallelizing a function f(D, ...), where D is the only

logical data input of f , only the parallelization of routines that contain D or its mappings is needed,

while the time for other computations is considered as a negligible part in the total.

program as a data-centric task, the processing times of the two types of routines can be retrieved

respectively. 7.1 shows such statistics based on three well-defined algorithms for data-centric tasks:

K-means,

With big-data approximation, the parallelization is simplified for the reduction of data dependence

as well as formality. That is, in order to parallelize the code, we only need to check and process

variables that are related to the large-scale input, namely mapping, and no additional processing is

necessary for other parts of the code. The purpose of tracing, in short, is to find out all the variables

in the program that are a copy of, or depend on any part of the big-data input, which are called a

mapping of that part of input. In other words, the negligible part of computation can be copied over

computing units without considerably hurdling the overall performance.

Definition 2. Mapping: in a piece of source code, if there are two defined variables (or symbols,

objects etc.) s and d, where s is a copy or a part of d through assignment (e.g. s = d, s = d[1],

s = d[2][3]), then s is a mapping of d). Also, taking index into account for a large-scale variable, s is

an argument of the mapping function of d, whose return value is the index or component (for sim-

plicity, both are denoted as ind with a subscription of the original variable) inds that s is dependent

on.

M(d, s) = inds
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Obviously, any variable is a mapping of itself and the mapping relationship is transitive: if s is

mapping of d and t is a mapping of s, then t is also a mapping of d. In this sense, a series of mappings

can be found throughout the program and form a directed acyclic graph to indicate dependency as

in many parallelization works [47, 48].

Then, to establish the dependence graph based on the big-data input and its mappings, it has one

starting node while the result of the program correspondingly becomes the only ending node. That

is, the dependence graph would be a flow network with a source and a sink, namely core dependence

graph.

Using a typical routine in machine learning as an example, the difference between the conventional

dependence graph (as a directed acyclic graph (DAG) ) and core dependence graph is shown in

Figure 3.1

FIGURE 3.1: Code example and core dependence graph

From the core dependence graph, we eliminate all the unrelated variable from the routine as they can

be either pre-evaluated or trivial to be duplicate the computation over processors. The convenience
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brought by core dependence graph exists in two aspects: i) As all the dependencies in the flow network

origins from the source, the level of dependency is identifiable at any position in the code, which means

the graph can be horizontally partitioned into cross-sections and each vertex in the cross-section has

a definite dependency set; ii) For those vertices who dependency sets have no intersection, they can

be executed in parallel. Thereby, the dependency set is also uniquely identifiable from the source. So,

in order to parallelize the piece of code, a systematic way of extracting the dependency set from each

vertex and scheduling the execution sequence is desired, where the execution sequence must follow

the dependency restriction while matching the number of computing resources.

Compared to the conventional directed acyclic graph, the dependency set is easier to be defined

when a single source is given. Without the single source from big-data approximation, the cost of

evaluating dependency is much higher and the routines of parallelization then become complicated.

The exact partitioning mechanism of core dependency graph will be fomalized in ??.

3.3 On-the-fly Tracing for Parallelism Exploitation on

Demand

While the parallelization problem has been converted to building/partitioning the core dependence

graph and scheduling the execution sequence, the entire parallelization pipeline includes the following

stages: i) Big-data tracking (building the graph structure); ii) Weight estimation (estimating the

running time of each vertex of the graph) and iii) Dynamic partitioning and scheduling. Stage i is in

the same style of traditional parallelization which is actually a parser of code and whose implemen-

tation is certainly programming-language-specific. Then Stage ii only deals with the abstract graph

structure where the representation of each vertex and edge is generalized: an estimate of execution

time, based on the level of involvement of big data or other knolwedge, is obtained throughout the

graph. Based on ii), the weighted graph is then partitioned and an execution sequence can be then

generated to be compatible with the amount of available computing resources.

3.3.1 Big-data tracking

As most parallelization techniques involve scanning the code line by line, big-data tracking also means

scanning through the code and encloses the abstracion onto a connected data structure (abstract
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syntax tree for many parsers). So, the core dependence graph should be complete to cover all the

contents of the code while simplifying the way of abstraction to make parallelization efficient.

The scan is performed line by line and for each line: each line is evaluated for whether or how much

it depends on the user-specified big data input.The procedures is described as follows:

Algorithm 1 Core dependence graph construction

Denote A unit of the code as a line or a block (if-block or for-block) as ui
where a single line ui can be in the form of ui−b = ui−a (ui−a and ui−b are expressions)
Initialize the successor set S as an empty set
where i is in the same order of the original code
add the big data input D into S, with the index object “all” and an update list {0}
for each ui at line number li
if ui is in the form of ui−1 = ui−b
if ui−a involves reading/calling any sj in S
denote the name of referenced variables as si1 ...sik
extract the corresponding index object(s) {indi1 ...indik} from ui−a for any reference
of successors
if ui−b includes an index itself
create a self-index object inds−i for ui−b

else
create a null self-index object (inds−i = null)

end if
if ui−b is not in S
add the variable name in ui−b to S as a new sucessor with an empty attribute list

end if
define a tuple ti = (li, {(si−1, indi1)...(si−k, indik)}, inds−i) as an attribute object
add ti to ui−b’s attribute list in S

end if
end if

end for
for each element si in S (in the same sequence as they were added)
for each member lj in the attribute list of si (identified by the line number)

create a vertex in the graph as V (si, lj)

for each element (sik , indik in the index object
find the largest line number lmax−j in the successor attribute list, whose self-index object covers indk
create an edge from vertex V (sik , lmax−j) to V (si, lj)

end for
end for

end for

In Algorithm 1, the term of index object or self-index object is repeatedly used as the portion of array

data that is represented in a line (for the assignment of the variable itself or used in the assignment
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of another variable). While index representation is uniform in a certain programming language (e.g.

many use ”[ ]”), the index extraction here is straightforward and generic. Considering in the actual

code, an index can be an arbitrary number within the size of data or irregularly distributed. We

define the data structure of index object (including self-index) for minimum description length.

An index object is a set of index elements of a certain format. An index element can be either a single

index or a range, where a range can represent any number of indices as long as they can be arranged

in a sequence with a fixed interval. Then, the “merge” operation is defined over the data structure

to combine ranges (or single indices included in the range) from one variable. For multi-dimensional

array, it makes each dimension independent from others and the “merge” operation is only availble

at one dimension if all others are exactly the same.

Thus, the core dependence graph is built and the next task is to properly partition it to exploit

parallelism.

3.3.2 Weight estimation

In the core dependence graph, each vertex comes with a weight which indicates the time estimation

of the corresponding code section. Following the big-data approximation, the code outside the core

dependence graph, which doesn’t involve computations regarding the big data input at all, would be

estimated as very low (negligible) weight so it won’t affect the efficiency of parallelization. Meanwhile,

the code can include a function call whose time complexity may not be known to users. So, as a generic

case without the other knowledge about the function calls, it is assumed that the weight of one vertex

in the core dependence graph is in proportion to the frequency of the use of big data input and its

successors.

In practice, the parallelization tool attempts to get the exact time complexity of each function call

by taking additional information from an external source. If such information is not available, the

parallelization program would give an empirical guess. In our experiments, we will show how different

guesses affect the system performance.
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3.3.3 Partitioning and scheduling on demand

In the previous two subsections, the parallelization task has been transformed to a structured problem:

Given a flow network, where each vertex has a weight that indicates the execution time, and the

amount of resources, it is needed to find an optimal schedule such that the total time of executing the

routines in all the vertices, without breaking the interdependence, is the shortest. The computation

time of one vertex, as the product of execution time and usable resources, is in proportion to its weight.

To address the scheduling problem, graph partition is to be performed in order to create execution

sections that pass an exact set of codes with their desired resources to the processor. Considering sys-

tem implementation, the code needs to be partitioned into sections that a synchronization is needed

after the execution of each code section. Then, for a single section, the shortest execution time is

desired for non-interdependent tasks. The rest of this subsection is mainly the algorithms with regard

to finding the optimal mechanism of dividing code to sections (namely horizontal partition) and the

corresponding in-section parallelization approach (namely vertical partition).

3.3.3.1 Horizontal partition

A code section can include multiple vertices from the core dependence graph but they must be

interdependence-free from each other. So,the fewer sections, the better for scheduling. In other words,

a section should cover as many vertices as possible, as long as there is no interdependence between

any vertex in the section. Algorithm 2 details the partitioning mechanism, which is in a similar man-

ner to critical path method.
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Algorithm 2 Horizontal partitioning

Denote A vertex of core dependence graph as vi
where a vertex includes the successor set (with their attribute lists) along with
starting and ending line numbers in the code
Initialize an empty set of subgraphs
perform a breadth-first traversal to retrieve a prefix list lpre−vi
after source to each vertex vi generate a vertex list lv in the
ascending order of the number of prefixes
while lv is not empty

find all the vertices that has no prefix in lpre−vi through lv as a set vspre
for any vertex vj in vspre

add vj into the current subgraph Subk
remove vj from any other vertices out of vspre from their prefix list

end for
k = k + 1

end while

The time complexity of the algorithm is O(V + E) as it requires a scan of all the vertices and

also traverses all the edges in the course of removing a certain vertex from the prefix lists of others.

3.3.3.2 Vertical partition

An individual code section, whose vertices don’t depend on each other, is executable with the results

from the last section throughout the code. So, scheduling a section across computing units becomes a

standalone task without considering the context. So, vertical partition, based on the vertice in a sec-

tion, means the generation of executable parallel code with the given computing resources. While one

vertex represents a single task that can be parallelized where the weight indicates its execution time,

the in-section parallelization can be straightforward that different tasks can be scheduled one by one

with each task executed by the maximum available computing resources. Meanwhile, many sections

include loops with a considerable number of iterations. Mapping the code section to processors in

iteration level is the focus of vertical partition.

In this step, the bidirectional tracing is required in order to exploit the relationship between “result”

and “data”. While conventional parallelization usually doesn’t differentiate the two concepts in scan-

ning the code and tries to process all the variables appearing throughout the code. The separation

scheme still puts parallelism on data and take effect at a high level to avoid the complex processing.
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So, in the spirit of MapReduce, the focus is still to find how data can be placed to multiple processing

units. It starts with some real-world code segments:

FIGURE 3.2: A piece of example code for naive Bayes model (binary classification) with training data
and test data

The naive Bayes model training for binary classification includes two for-loops, which form the core

part of the function. The function takes three inputs: training data set, the number of discrete values

for each field (domainnum) and the test data set and outputs an array as the classification result

of the test data. Regarding ”traindata” in the argument as the big data, the function itself can’t

directly work with MapReduce but the same idea can apply as shown in Figure 3.3.
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FIGURE 3.3: The core dependence graph of naive Bayes model training: left: graph before partitioning;
right: data partitioning on graph

The left graph of Figure 3.3 shows the core dependency with horizontal partitioning, while the area

within the dotted framebox is identified as the time-consuming part. Then, the vertical partitioning

would detect the parallelism inside the for loop: in this example of naive Bayes training, the for-loop

can be partitioned by mapping any chunk of data to a processor unit and combining all the results

by summing them up.

On the contrary, conventional parallelization would mark the variables ”priorprob” (prior probabil-

ity) and ”priorcount” as dependent on ”traindata”. While the indices of ”priorprob” and ”priorcount”

applied in the value assignment completely depends on the value of a certain element of ”traindata”,

it would be considered irregularity and hard to be recognized as a pattern of parallelization. In the

spirit of big-data approximation, only ”traindata” is identified for read and there is no actual conflict

inside the loop: ”priorprob” and ”priorcount” can be duplicated across processors and the use of
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”traindata” in the for loop follows a regular sequence: in the order of its first dimension (1-n) and

for each 1st-dimension element, its fields is iterated.

Although this example turns out to be applicable for MapReduce-style on the for-loop, a series of

code scan operations are adopted to the for-loop for parallelism detection without human knowledge.

That is, lower-level processing on loops are then performed on vertices. While lots of related work in

parallelization puts an emphasis on loop parallelization, we take advantage of big-data approximation

that the size of the big data is known, which means that the value of indices over the big data input

and its successors are accessible: the ”cycle” is exploited to indicate the dependence inside the loop

so it comes down to the level that we know which other iterations each iteration is dependent on. So,

an assignment, based on the dependence in cycle, can be then delivered to each computing unit. This

”ad-hoc” analysis asks for almost no assumption in the form of loop (e.g. do-all loop) so becomes

more generic.

Definition 3 A cycle in a loop is the non-separable pattern that the inter-dependence within a cycle

from index i1 + km to i1 + (k + 1)m, where k is any non-negative integer (within the execution of

loop), is the same. m is the length of the cycle if the condition is satisfied.

Cycle detection is actually about building a sub-structure like building a core dependence graph

within the loop. The loop iterator appears as a virtual variable that is used to identify pattern and

collector, which only appears as the outlets of data and whose content is never used in the loop, is

also identified to be distinct with ordinary data input and successors.

Then, the task of vertical partition is turned into finding separable paths over the cycle. In other

words, a cycle is the real iteration with irregularity removed and it would make the latter operations

valid. One cycle, as an atomic unit in the parallelization, can acquire all the data it needs from itself

or previous cycles.
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Algorithm 3 Cycle detection in the loop

Initialize find the index of the first iteration of the loop ind; set iteration range Riter = 1; and also find the loop variant
Set two empty sets Sr0 and Sw0 for tracing data indices for read and write respectively
for each line in the first iteration

Parse the current line of code
if the line includes any read or write of the big data input

add the index of data to Sr or Sw
end for
Update the current iteration and index in sequence
while true

Parse the next Riter iteration and get two similar index sets Sr1 and Sw1
if Sr1 − Sr0 is not empty and Sw1 − Sw0 is not empty and Sr1 − Sw0 is not empty

return Riter

else
Sr0 = Sr0 + Sr1
Sw0 = Sw0 + Sw1
Riter = Riter + 1

end if
end while

The set subtraction as in Sr1 − Sr0 is to verify whether one index set includes all the indices in

the last iterations. If it does, then the result is not an empty set. Implicitly, it sets a default that

every index in the big data is to be either read or written so that the consecutive indices can be always

found throughout the scan. However, even if the condition doesn’t hold, it would not result in any

conflict as any missing index would be simply skipped and doesn’t affect the algorithm. So, to make

the program capable of data parallelism, a straightforward way of partitioning is to cut the data into

chunks according to consecutive indices. Actually, as long as the a chunk of data can be expressed

with a pattern, it can be all handled in our platform. Moreover, the scan establishes the relationship

between data indices and result, and constructs the parallelism that maps a subroutine to the result

to the corresponding portion of data and recognizes the operator in combining sub-results, namely

data-result parallelism, which provides more flexibility than MapReduce. The combination function

is extracted from the operation list.

In the same way, for nested loops, the concept of cycle can work on any level of loop as long as such

a loop iterates with the progression of big data indices, where all lower-level loops can be regarded as

a whole. Also, a hierarchical cycle built from multiple levels of loops is feasible with data dimension

reduction. More details will be provided in Chapter 4.
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While conventional dependency usually doesn’t separate ”result” from ”data”, we elaborate the

concept of data-result parallelism and differentiate it from the conventional parallelization. As it is

also assumed that only one result at the end of program as well as the termination of a for loop, the

data can be partitioned under certain conditions that is verifiable from the source code.

The two checks are performed in the code scan: mutability check and associativity detection: in

mutability check, it checks whether two cycles are swappable by inspecting the operator from data to

result; the associativity test, if immutability is detected, then identifies whether operations in cycles

can be combined with associative property. These two checks will define the data parallelism in such

a new paradigm.

FIGURE 3.4: The illustration of mutability and associativity in executing a routine on data: left:
mutability; right: associativity

The two tests, to a large extent, is about the nature of the operator from data to result in each cycle.

So, the following algorithm illustrates how the operator is identified from code scan. The operator,
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as a concept in the loop, consists of multiple basic type-specific operators with regard to each write

to the result or its mappings. The following routine illustrates how to collect all the basic operators

for later identification.

Algorithm 4 Operator collection in the loop

Prestep: find the previous node(s) Vpre right before entering the loop and the node(s) Vnext after the loop.
Initialize an empty operator list Lo and an empty set Smap for storing mappings
add all the mappings in Vpre to Smap
for each line of one iteration

if a mapping is found and Smap doesn’t contain it
add the new mapping to Smap

end for
textbffor each line of one iteration

if this line includes a ”write” to one of the mappings
add the rule into Lo in the format: mapping name, type, operator

for

Having the operator list Lo, the next step is to identify the nature from elements of the list and

their relationship to the final result. Hence, the following two algorithms are derived. In order to

make the nature of operation list preserved, it requires all the basic operations maintain the same

throughout the loop.

Algorithm 5 Mutability check

for each operation in the list
if the target variable of this operation is an output node of the loop

if the operation is not order-free
return: mutability detection fails

end if
end if

end for
return: mutability detection succeeds

Mutability check can lead to MapReduce-style parallelism in a smaller scale: the data corresponding

to a mutable cycle can be assigned to a processor and then the result can be collected from processors

and combined with a reducer function. On the other hand, associativity can bring parallelism with

only one restriction on the reducer function: the reducer function must maintain the same order as

26



mapping when collecting results from different processing units. For associativity detection, a simple

check based on data type may still work, but a direct test can be performed based on its definition:

all the basic operations can re-organized as chains without rolling back, then associative rules can

apply.

Algorithm 6 Associativity detection

Initialize an array of linked lists Lop where the entry of each element is initialized by each basic
operation in the list
for each operation in the list

if the basic operation is not associative
return: associativity detection fails

end for
for each line in the cycle

parse the line
if the target of writing is also an entry of Lop

if the read list includes an entry of Lop
merge two entries as a linked list and mark the original entry as empty

else if the read list includes an empty entry of Lop
return: associativity detection fails

end if
end if

end for
return: associativity detection succeeds

Passing such two tests ensures that the data involved in the loop can be partitioned by index without

affecting the result. Between the two tests, mutability is preferred, if passed, over associativity: mu-

tability means the nature of the task enables order-free partitioning over data and the combination

function is thereby order-free too. Although the flexibility in data partitioning may not bring an

advantage of time gain (for given resources), an order-free combination function can reduce the time

in collecting results if an ordered operation takes more than constant time. An even more sophisti-

cated case is that the combination function is mutable while the the entire operation set can only

pass associativity test. In this case, an additional mutability test can be performed on the subset of

operation list: those which directly write values to the mappings that appear as the node after the

loop.
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Using horizontal and vertical partitioning, a piece of given source code can be preprocessed and

transformed in a new version that can be executed in parallel on large computers. Up to this point,

the on-the-fly tracing mechanism can scan a piece of code, which may represent a series of complex

routine with a big data input, for parallelization. While the main effort is usually exerted on loops,

the on-the-fly tracing maps the loop iteration to data index and tries to separates the dependency

on the big data input (while all other computations are duplicable over processors). The mechanism

works on a higher level than conventional parallelization techniques and avoids the formality brought

by exploiting the full range of dependency or converting the code to another form in an abstract

level.

At the level of code parallelization, the exploited ”data-result” parallelism, based on mutability and

associativity check, ensures that the data involved in a loop can be grouped without affecting the

legibility of results. In practical implementation, there is also lots of attention paid to lower-level

processing of code. Prior to discussing some of the details in Chapter 4, the next section is about

optimizing the parallelization performance for the given computing resources.

3.4 Resource-Aware Workflow Optimization

The parallelization works on the compiler side to generate efficient code. On top of that, the scheduling

problem, which represent the

3.4.1 Scheduling with Big-Data Approximation

Provided the aforementioned approach, it already converts the parallelization problem to the workflow

level: a piece of code is partitioned to sections that can be independently executed on any processing

unit and its result is to be passed and combined. So, a task descriptor becomes a generic abstract

unit for a code section or a sophisticated module in scientific computing. So, the scheduling problem

can then be defined as follows:

There are a set of tasks that need to be executed. All of them directly or indirectly depend on a

large-scale data set. Given limited computing resources on multiple clusters and the execution of each

task is subject to the availability on the machine, the optimal operational sequence of execution is
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desired in order to minimize the delay time, which includes waiting in queue and the non-trivial I/O

transmission for data.

While linear scheduling [45] is an option for this problem, the time for data transmission is also non-

trivial and needed to be minimized, which means data synchronization could add significant cost.

Then, the first principle becomes maintaining the data locality for time-consuming routines. The

following greedy-based scheduling algorithm is proposed, which matches the result in [45]: longest

task comes first.

• Pre-step 1: Set up a current scheduling queue and initialize it as an empty set. Estimate the

time (computational cost) and requested number of resources (no more than the amount of

available resources) for each task and add such two attributes to the task. Also, an insertion

range is defined associated with the task too, which means the available range for inserting it to

the current scheduling list, bearing the constraints brought by data dependency. The insertion

range is initialized as the entire scheduling queue.

• Pre-step 2: All the tasks are in the candidate list at the beginning. Maintain a variable-resource

list that records the location (which processor) of each mapping with the size of the mapping.

• Step 1: Find the task with the highest weight, denoted as wmax, schedule it at the first available

place with all the requested resources. As for the exact processors it should be assigned to, an

embedded greedy algorithm is adopted to select those processors which have the largest size of

data that it is dependent on.

• Step 2: Add the currently highest-weight task Ti into the scheduling queue. Update the insertion

range of all other tasks. Remove Ti in the candidate list while returning a dependency list of

Ti to indicate which tasks its data depends on.

• Step 3: Update the weight of all the tasks in the dependency list of Ti by adding wmax to their

weights

• Step 4: Go to Step 1 until the candidate list is empty.
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This scheduling algorithm assumes that the time-consuming task also indicates the generation of the

largest data. So, while the in-task synchronization is not considered as a factor, assigning the most

time-consuming tasks with the most resources implicitly reduces the data synchronization between

tasks.

3.4.2 I/O Performance and Its Estimation

In the real-world scheduling, which usually occurs in grid or cloud computing, a task may not be

immediately scheduled because of the public queue that includes tasks from other users is not avail-

able. Waiting is then necessary. However, in this setting, there are usually multiple resources, such as

different clusters, available for job submission. It leads to dynamic resource selection. To utilize the

resources while still reducing the cost of large data transmission, it would be desired to measure the

actual I/O performance in the specific machines. The measurement would also alleviate the possible

failure of scalability due to excessive communication time between processors (usually on a cluster).

In this scenario, a pre-evaluation of the task is necessary to anticipate the possible bottleneck. As

long as the code is accessible, it would be desirable to explore all the functions and get information out

of it: e.g. disk I/O frequency with respect to the size/dimension of data, the need of data transmission

if the resource includes multiple nodes on a cluster. In real-world large applications, there are a lot

of factors that have an effect in actual performance. So, it would be desirable to use the on-the-fly

tracing approach as a helper to find where to parallelize the task, and then come up with a practically

best non-trivial scalable solution using human intelligence, which may contain lots of trade-off in an

engineering setting.

3.5 Performance Benchmarking

In this section, the experiment results are presented. The experiments include the scaling test that

measures parallelization performance on both multicore and commodity cluster architectures. Four

typical algorithms in machine learning, with multiple data sets, are selected.
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3.5.1 Test cases and data sets

To illustrate the effectiveness of the framework, four typical examples of machine learning algorithms

are selected: naive Bayes classifier, k-means algorithm, expectation maximization (EM) and logistic

regression.

Naive Bayes classifier: naive Bayes classifier is a probabilistic model that applies Bayes theorem

with a strong assumption of the independence between fields in a data set. Naive Bayes is a parametric

model but all the parameters are directly estimated based on data frequencies from the training data

set, and then calculate the posterior probability for each possible class for a test data record. The

parallelization is mainly exerted on the part of iteratively retrieving frequencies for all the field values

from the training data.

k-means algorithm: k-means algorithm is a common method for clustering in which the number of

centroids is specified in its input as k. While the two major steps of the iterative algorithm require a

synchronization for the entry of next iteration, the parallelism only exerts on the stage of finding the

set that every data record belongs to (namely, assignment step) of each iteration. It is an order-free

operation.

Expectation Maximization (EM): EM is also a parametric method that aims to estimate the

parameters with maximum likelihood in Bayesian inference. Similar to k-mean algorithm, the par-

allelism falls into the E-step only, which obtains updated state estimates by iterating the current

parameters through data. The M step again requires an update to all the parameters used in the

next step.

Logistic regression: Logistic regression is commonly used to make predictions for a binary of multi-

category label. The training of model can pass the associativity test, so the increment calculated from

a portion of data can be added to the model itself. Also, the combination function is an order-free

one.

The data sets used in the experiment are from UCI Machine Learning Repository2 . Several datasets,

such as Adult, 1990 US Census, and Census Income are selected. In order to examine the relationship
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between performance with increasing size of data, the data records are duplicated for constructing a

new larger data set without essentially changing the computing task.

The algorithms are re-written in R to be in a format that is friendly for the ”on-the-fly tracing”

framework: the data input is identifiable as one of the arguments, and there is another input that

suggested the available computing resources (e.g. 8 cores, 4 nodes with 8 cores on each).

3.5.2 Experimental results

First, the examples are parallelized and executed on a multicore architecture of two Quad Core Intel

Xeon 2.33GHz 64-bit processors and 8 GB of memory. Figure 3.3 shows the scaling performance:

the solid line shows the average speed-up compared to the time executed with a single core; the two

dotted lines give the worst and best speed-up in around 5 tests in a row.

Figure 3.5 shows that the parallelization works well on multicore with a considerable amount of

speed-up: all the cases got around 7 times faster with 8 cores than running on a single core. The

fewer the cores are, the more it approches an optimal speed-up. The variance in different runs doesn’t

becomes a major factor.

Then, the effect of data size is examined. By constructing larger data sets with proportional sizes of

2, 4, 8, 16 and 32 times greater than the original, the execution time with multicore is again compared

with a serial version with the same input data set.

Moving from multicore to a cluster with many nodes, the data transport between nodes can takes

time. From the perspective of parallelization, the time doesn’t count into the experiment but is

considered preprocessing: the data is replicated across different nodes before the program starts.

Throughout its execution, no data is explicitly exchanged between nodes but the intermediate results

can be synchronized with it is necessary.

In Figure 3.7, the speed-up in a cluster is illustrated with up to 8 nodes (64 cores in total). Overhead

can be identified when the number of cores increases. In this setting, inter-node communication is

2http://archive.ics.uci.edu/ml/
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handled with MPI (Message Passing Interface) while there are options for parallelization within a

node such as multiprocessing (via system call), multithreading and OpenMP.

The above scaling tests illustrates the effectiveness of parallelization, so it can then be moved to

larger-scale data-centric applications.
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FIGURE 3.5: Scaling test for parallelization on multicore: topleft: naive Bayes; topright: k-means;
bottomleft: EM; bottomright: logistic regression
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FIGURE 3.6: Scaling test over data size on multicore: topleft: naive Bayes; topright: k-means; bot-
tomleft: EM; bottomright: logistic regression
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FIGURE 3.7: Scaling test on cluster: topleft: naive Bayes; topright: k-means; bottomleft: EM; bot-
tomright: logistic regression
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Chapter 4

Framework Implementation

To implement the framework as mentioned in Chapter 3, it includes much feature on the compiler

side for parallelization, while it also requires scheduling on a higher level.

4.1 Design and Platform-Specific Issues

The structure of core dependence graph is universal for all the programming languages with regard

to the data flow. Its implementation, however, varies. Considering R [49] becomes a very popular

domain-specific programming language for statistical computing, data analysis and data mining, the

implementation starts from R. In order to impose higher-level data structure to R, low-level functions

must be implemented before hand, including scanning the source code to identify an expression, a

line of code (as R doesn’t require a semicolon as line separator), and a block (e.g. for loop). These

language-specific functions are not yet complete in R so the implementation starts from making R

capable of recognizing a specific variable and its status in a line (e.g. whether read-after-write/write-

after-write conflict is in the line).

More specifically, a parser is first needed for identifying a line, where all the read and write operations

can be recognized. Meanwhile, all the variables need to be recorded. Then, an additional scan is

performed to establish the data structure of core dependence graph.

4.2 Parser

Then a self-defined parser is needed in the framework. Every single line of code is to be identified by

the legibility of syntax. Three parts can be included in a line: input expression, output expression

and the assignment symbol. In R, a single line with only one element is also allowed. So, a stack is

used to trace the status of scanning and the piece of code is then segmented by lines.

To the next level, each variable mapped from the big data input is to be recognized too: provided

the expression-level identification, a tree structure can be built from the second scan. While no type

37



is needed to be declared at variable initialization, the tree structure, and thereby the core dependence

graph doesn’t have any associated type either. At this moment, all the loops are considered blocks

and the if-statements are scanned to include the most time-consuming part.

Then, for the convenience of adopting the algorithms in Chapter 3, some of the data types are desired

at the stage of cycle detection and mutability/associativity tests: in particular, the big data input

is identified as a multi-dimensional array and its index is considered to be known to the program

in order to identify the dependency inside a loop. However, the possible irregularity of the code can

elaborate this task: as index is an important part of the parallelism, there are two settings for its

special handling.

range object is used to express a range efficiently. The level of irregularity of a range indices would

determine the expression length of such an object. A basic range expression is a series of numbers

with a fixed interval in between. The combination of multiple intervals, including a single value, can

form any range of indices.

index tracking is for handling irregularity in the code where an index is not directly available as an

integer. While it can be represented by a variable and indirectly mapped to a specific value, a tracking

would be helpful in this case. Furthermore, there is one situation that the value of index can’t be

tracked: an index is dependent on the value of input data. While such a case requires the value of

data input to be bounded, related information would be desirable from input. However, on the other

hand, it can be substituted by the index of the data input, which won’t affect the parallelism on data

at all.

4.3 Nested loops and embedded function calls

Nested loops are challenging in conventional parallelization as it complicates the dependency from

iteration to iteration. In on-the-fly tracing, only one single data input is to be traced, so the complexity

would not increase with iteration or level of loops. In multicore architecture, the program chooses

one level of loop for parallelization (usually with the one going through the most indices). So, it is

still a matter of index tracking that defines the parallelism.
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Embedded function calls become another issue but it is common in practical programming. Then,

the macro level and weight estimation can be taken advantage of: once the code of the embedded

function call is accessible, it can be regarded as a block. and then the processing would be similar

to horizontal and vertical partitioning: it is treated as a possibly time-consuming for loop at first

for horizontal partitioning, and then the parallelization of scanning itself can be added back to the

upper-level function with a weight.

4.4 Code generation

After parallelism exploitation, the execution of the source code would be transformed to another

way: the original code is partitioned to sections where each section is capable of being independently

executed. For instance, a for loop itself can become a function with the data and indices as the input.

While only the computation related to the big data input is considered non-trivial, all other subrou-

tines is duplicable over processors: in a multicore architecture, it is preferred to have a preprocessing

function for all those ”trivial” calculations without worrying about excessive details.

A section is then called by the pre-generated code template. The code template differs from parallel

platforms: multithreading and MPI templates are included in the framework. The advantage of R’s

interoperability enables the call of an arbitrary function using multithreading. For MPI, it includes

the routine of sending results across processors for synchronization in a type-specific manner. Then,

with the position for synchronization identified by on-the-fly tracing, the synchronization routines

can be inserted into the template.

The modulization of function also gives some flexibility to hybrid parallel programming with both

MPI and multithreading. In a cluster, such a template is applied for fully utilizing the computing

resource. Figure 4.1 is an example of the code template for multithreading.

4.5 Put It All Together

Based on the above description, the entire workflow for parallelization can be established as shown

in Figure 4.2. The solid frameboxes represent the steps in parallelization and the other boxes with a

dotted-line suggests the status of source code at each stage.
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While parse functions on the source code as a rough level of scan, symbol processing means tracing

all the big-data-related variables including necessary preprocessing regarding data indices. While the

core dependence graph is built upon symbol processing, horizontal partitioning can convert code

into sections along with weight estimation. At this level, weight estimation is first based on the level

of involvement of big data. Then, a detailed check, especially on for-loops is then adopted: vertical

partitioning finds the way that a loop is parallelized and this completes the weight estimation.

Based on the available resources, a schedule of the code sections is generated and can fit in the

corresponding code template. Finally, the code templates embed all the code sections and become

ready for parallel execution.

Although the implementation in this work is mainly in R (including parser, symbol processing, and

partitioning) and C/C++(code templates as backend), the same workflow can be implemented in

other programming languages too. A generic framework would include most of the language-specific

syntax and coding styles for variable tracking and type-specific handling.
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FIGURE 4.1: A code template for multithreading with R
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FIGURE 4.2: The modules with source code status in on-the-fly tracing
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Chapter 5

Application I: Pattern Detection from Hurricane
and Storm Surge Simulations

The tremendous impact of hurricanes in the Gulf of Mexico, represented by Katrina and Rita in

2005, and Gustav and Ike in 2008, makes it important to develop effective methods for making

hurricane-related predictions, especially for the storm surge heights from location to location. Due

to the large scale and complexity, physics-based simulations now become the primary approach as

used for official forecasting while more than 2000 CPU hours is needed for a 6-day hurricane run on

a computational mesh with millions of nodes. To enhance the efficiency, we develop a data-centric

approach to constructing surrogate models from a range of simulations, which exploit the correlation

hidden in simulation data and use functional data analysis to model the storm surge response to

multiple factors such as hurricane track and the level of wind velocity. After preprocessing the large

data, the scale of the problem is then down to data mining on surge and wind profiles at multiple

locations along the coast. So, spatio-temporal patterns can be discovered using a set of R packages

and the results would be useful for predictions in the hurricane season.

As a complex problem with its multi-physics nature in science [50], numerical simulation [51] is the

conventional method for governmental decision support, which essentially models the relationship

between horizontal currents and the vertical surge height by solving the depth-integrated Navier-

Stokes equation driven by the hurricane generated wind field. However, such a deterministic approach

is prone to uncertainty from multiple sources: the predicted hurricane track could be different from

the actual one and the wind model may not be very accurate, while the two factors serve as the

precondition of the surge model. Thus, a data-centric method would better address the issue of

uncertainty with a framework with probability and confidence interval in statistics. By running a

large number of hurricane and storm surge simulations and archive them, such data are useful in

performing real-time predictions.

While recent work concerning the uncertainty in hurricane-related applications [52, 53] is mainly

focused on the hurricane track trajectory and wind intensity, we propose a general framework that
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aims to detect patterns between track trajectory, wind intensity and surge profile at multiple points

of interest (e.g. tide gauges), whose results can potentially provide direct guidance for evacuate

planning. With a simulation data archive available [54], the following methods are developed and

implemented for pattern detection from hurricane and storm surge simulations: response function

model [55], correlation-involved surrogate modeling, where granger test is extensively performed to

find correlation between a set of attributes [65] as well as spatial points, and the combination of

multiple patterns with statistical inference.

This application can fit the on-the-fly tracing for parallelization because it is a typical example

of data-intensive computing: each storm surge simulation, run on parallel computers, can generate

more than 30GB raw data. Preprocessing always takes a long time and after that it also includes

statistical methods and data mining algorithms for parallelization. Scaling the data mining to multiple

simulation runs for continuous knowledge discovery is challenging.

5.1 Modeling Simulation Response using Basis Functions

A response function can represent the output variation in response to the parameter space of simu-

lation input. Functional data analysis [66] is used to construct such models. That is, multiple sets of

basic functions are chosen as universal approximators for regression and each element in the param-

eter space contribute to one set. We denote y as the target variable, extracted from the simulation

as y = F(x, pi)

yi = α +
n∑
j=1

xjβj + εi (5.1)

where α is the intercept, βj(t) represents a basis coefficient expansion and εi is the residual. Then,

xj is one element from the parameter space, while n is the total number of parameters.

To fit this model, it would be converted to a form that least-square regression can be finally used.

The optimization criterion become

{α̃, β̃}λ = arg min
α,β

{
M∑
i=1

[yi − α−
n∑
j=1

xjβj] + λ
n∑
j=1

(β′j)
2} (5.2)
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where λ is the regularization parameter that restricts the value range of βj and thus avoids excessive

local fluctuation in the estimated function, and M is the number of data points, equivalent to the

number of simulations.

From the perspective of regression analysis, the basis function system has the following differences

in comparison with ordinary curve fitting (e.g. using a polynomial): i) to perform curve fitting for

a given function, the solution procedures always include least-squares regression in the end, which

requires to solve a linear system. As for the linear system, it is desired that the number of equations

should be no less than the number of known variables; and ii) It is computationally expensive to treat

every independent variable equally in the design function. For example, when using a second-order

polynomial to fit a function y = f(x1, x2), it is not known a priori that which of x1 and x2 affect y

in the first order or second order. Then, the design function is

yi = a1x
2
i1 + a2x

2
i2 + a3xi1 + a4xi2 + a5

Thus, at least 5 sampling points of {(xi1, xi2, yi)} are needed although there are only 2 independent

variables.

In the surrogate model, the application can be described as: Suppose that it is needed to find

a surrogate model to fit the scalar response. The input of the simulation model includes n scalar

variables {x1, x2, ..., xn} and the simulation output is just a scalar value y for the given input set.

Each simulation is regarded as a record, so to use ordinary least-square fitting, it is required to have at

least n+ 1 records for a linear model and much more for higher-oder models. Otherwise, no solution

can be found.

Therefore, with the limitation in representational power and computation using ordinary models,

basis function system has the advantage of using a hierarchical structure to embed the coefficients

to the model, while in essence it is still a linear model: in Eq. 5.1, both xj and βj are represented

using basis functions. And here xj itself can be independently represented as a function by the basis

function system. So, it substantially addresses the issue of model expressiveness as long as the input

is functional. And this is real in many applications or can always be designed to be functional.
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In the above description, the response function is compared with ordinary least-square regression

while both are supposed in the form of y = f(Xn), where both y and each xk ∈ Xn are scalar values.

This category of surrogate model is targeted to a single simulation output as (e.g. the maximum

value at a specific location in the storm surge simulation) as the scalar response to the input. On the

other hand, many simulations are performed with time evolution, meaning that the output at a POI

is time series instead of a single value. While time series provide more information and the analysis of

time series become more sophisticated, response functions can be more advantageous here. Thereby,

surrogate models that reflect functional response are desired.

To illustrate the use of basis function system for modeling functional response, the form of surrogate

model is re-defined as

yi(t) =
n∑
j=1

xijβj(tj) + εi (5.3)

With the target variable y becoming a function of time t, the corresponding problem setting is

slightly different. While in Eq. 5.1 the goal is to find out the coefficients that well fit the scalar

response, Eq. 5.3 embeds such coefficients in term βj as the representational power determines that

there much be such solutions. However, with regard to any of y1, y2, ...yM , optimal coefficients are

the target of this type of model given the simulation input. While these input parameters x1, x2, ...xn

are pre-defined and don’t vary with time in the setting of simulation models, they are not functional

at this stage, although in the a general model it can also be a function of time t as xj(t).

Similar to scalar response, the solution of the surrogate model for functional response can also be

converted into the form of an optimization problem:

β̃ = arg min
β
{
M∑
i=1

∫
[yi(t)−

n∑
j=1

xijβj(t)]
2 dt} (5.4)

Although response functions demonstrate their representational power as universal approximators,

domain knowledge is helpful to make sure that the model doesn’t include misleading relationships,

in order to avoid data dredging.
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5.2 Correlation-Involved Surrogate Model

While response function can directly explore the response to simulation input, it is also interesting

to discover the spatio-temporal correlation from a point of interest to another. In domain science,

there also exists the theoretical foundation of the correlation: as discussed in [?], the coastal-basin

geometry has a profound effect to the storm surge. While a simulation output doesn’t include only a

single value of the target variable, such correlation relationships between locations or variables can

be helpful as a new type or a component of surrogate models.

In the context of surrogate model for simulations, while the correlated links between variables or

locations may not be known a priori, the target is to find such causal links that tend to be invari-

ants, with the examination of the variance across different simulations. Thus, statistical hypothesis

testing is important to find out the links with a certain confidence level before proceeding to model

construction. To specify the correlation across locations in the simulation output, y is again denoted

as time series extracted from the simulation at location pi: y(pi, t) = F(x, pi, t).

5.2.1 Granger Testing for Correlation Detection

Granger causality test [63] is performed to find out the specific links in the given data. The POIs

p1, p2, ...ps in one simulation form the search space, while any directional pair {pi → pj} can be a

link using a bivariate test and a multivariate test involves more points such as {pi1 , pi2 , ...pik → pj}.

The result of the test, F-ratio and the corresponding P-value, is calculated based on the comparison

between predicting the time series at pj using only its own values and using time series from auxiliary

locations pi1 , pi2 ...pik along with its own. Then,

SSQER =
t∑
i=l

[y(pj, i)− f(y(pj, i− l), ..., y(pj, i− 1)]2 (5.5)

SSQEU =
t∑
i=l

[y(pj, i)− f(y(pj, i− l)...y(pj, i− 1), y(pi1 , i− l), y(pi1 , i− l + 1)...y(pik , i− 1)]2 (5.6)

Fgranger =
(SSQER − SSQEU)/l

SSQE/[t− l(1 + k)− 1]
(5.7)
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In the above three equations, SSQER is the sum of square error using the restricted method, which

only involves the values at the same location and SSQEU is that using the unrestricted method,

which is elaborated using values from locations pi1 , ...pik . Thus, the F-ratio is calculated based on the

sum of square error with the specified degree of freedom in the problem setting. l represents the lag

in prediction. The P-value is then easily obtained according to the value of Fgranger, suggesting the

probability that the null hypothesis (the values of the given auxiliary locations can improve the time

series prediction) can hold.

In practice, fifteen to more than two hundred locations are selected as in different data sets, including

tide gages in Louisiana, Mississippi and Alamaba [64] as well as buoy stations.Therefore, the search

for the correlation relationships between locations would not result in costly computation.

5.2.2 Spatiol-Temporal Causal Modeling

Spatio-temporal causal modeling method [65], proposed by Lozano et al., is used for applying Granger

causality to modeling the climate change attribution. The spatio-temporal causal link, which repre-

sents the causality between s set of time series, is defined by the following regression with regard to

the time series at one location and its neighbors:

y(pi, t) =
u∑
k=1

s∑
l=1

αk,ly(pk, t− l) (5.8)

Also if more variables other than y are also involved in the model, then

y(pi, t) =
u∑
k=1

s∑
l=1

αk,ly(pk, t− l) +
u∑
k=1

s∑
l=1

βk,lx(pk, t− l) (5.9)

where k represents a relative locations while l is the lag; the above αk,l and βk,l are coefficients to be

solved. The residual term is omitted here.

The solution of the coefficients in correlation-involved models is straightforward using least-square

regression. However, a careful selection of the auxiliary locations is important. If the links can’t result

in stable helpfulness in prediction, it would be better to discard the link in the model.

48



5.3 Hybrid Surrogate Model

To consider a general model that works for more than one applications, it is worth incorporating

the factors as mentioned in previous sections into one resultant model that can better represent the

characteristics of the simulation data. Thereby, a hybrid surrogate model is taken in to account.

5.3.1 Procedural Surrogate Modeling

While large-scale simulations mimic the behavior of complex systems, it is assumed that both the

response function and correlation-involved model can reflect a part of the characteristics of data.

Then, it is necessary to revisit the problem setting. One simulation subject to surrogate modeling is

considered to be a function

{y(p1, t), y(p2, t), ..., y(ps, t)} ← F(Xn) (5.10)

When we only focus on one single point of interest pj, the response function model can be constructed

with a basis function system,

y(pj, t) = f(Xn, C, φ) + ε0 (5.11)

As a simulation model is considered to be noise free and thereby can be representable by a specific

form of function system, ε0 is not regarded as random effects but can be further interpreted. Thus,

it is thereby assumed that ε0 results from: i) insufficient information is obtained from the selected

point of interest pj; and ii) the error from selected basis function system (error in computation or

coefficients). While ii) is solely attributed to the response function modeling, i) can be alleviated by

adding more information to the same model. So it is necessary to embed both the response function

and correlation-involved effects into the same model. Because the response function is constructed

independently from point to point, it is regarded as the primary effect and the spatio-temporal

correlation between points of interest becomes the secondary effect.
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Then, according to 5.2, spatio-temporal causal modeling can be applied on ε0

ε0(pj, t) =
u∑
k=1

s∑
l=1

ε0(pk, t− l) (5.12)

or

ε0(pj, t) =
u∑
k=1

ε0(pk, t) (5.13)

Eq. 5.12 suggests a typical model in the form of time series prediction as no concurrent values are

used in the predictors, while Eq. 5.13 sets the lag l as 0 as concurrent values. Eq. 5.12 extends the

capability of surrogate model as it can use real-time values from neighbors to improve the quality of

prediction. Different from response functions, the model that Eq. 5.13 suggests would utilize historical

data as a part of the model input, as offline simulations must be archived and remain available for

the surrogate model. In contrast, for response functions, the model coefficients are obtained through

training with historical data and in the scenario of prediction, the surrogate can function with the

model itself without any additional data.

Putting the two procedures together, the resultant model is

yi(pj) = Fi(Xn, pj) = f1(X
n) + f2(y(p1), ..., y(pu)) + ε′ (5.14)

where f1 and f2 are referred to as the response function and correlation-involved model, respectively.

The denotation of time, t, as discussed with different cases, is omitted to keep the generality of the

model.

This method is called procedural surrogate modeling as it involves primary and secondary stages and

models the effects in such an order.

5.3.2 Combining multiple results

The hybrid surrogate model is constructed with the two steps as described above, by differentiating

response function from correlation-involved model as primary and secondary effects. However, there

always exist multiple results based on the type of model, the model parameter setting, and the data

used for model training. In this subsection, a general approach is presented.

50



Suppose that there is multiple models m1, m2, ... ,mr (mk = fk(X
n, yp1...j), for k ∈ 1, 2, ..., r) are

trained using data sets from a pool of training data DT . Another set of validation data DV is available

then for combination these results. The training and validation data sets are substantially the same

using the same simulation model (statistically, they come from the same distribution), but may be

localized to different regions of the general distribution. While the test data, as the real prediction

task, may have more similarity with the validation data, it would lead to a combination in Eq. 5.15

f̄(Xn, yp1...u) =
r∑

k=1

bkmk (5.15)

where bk is the combining coefficient associated with the model mk. So, the optimal b1, ..., br can be

obtained using least-square regression:

{b1, ..., br}DV = arg min
b1...br

{
MV∑
k=1

[f̄(Xn, yp1...u)−F(Xn)]2} (5.16)

where MV is the size of validation data set (the number of simulations for validation)

When multiple models, especially for both response and correlation models are in use, domain

knowledge is desired for combining them with a sound reason. While the validation model can lead

to a full-range exploration with simulations over a high-resolution grid, an applicable scenario is: i)

surge response model is used for points of interest which has a higher confidence level; ii) Patterns

with spatio-temporal correlation are then applied for predicting other locations. In this way, the

surge profiles of multiple locations can be acquired with statistical metrics. The reasonability of this

scenario exists in the geometry of the target region would largely determine the predictability. A set of

locations would emerge (e.g. Grand Isle, LA in the experiments of the dissertation) first. Then, rather

than a surge response with high nonlinearity or dynamics, correlation model can better estimate the

values at other locations. In other words, the nature of geometry significantly affects the nature of

patterns: some patterns are globally stable, while restriction is usually exerted on local patterns. In

order to find more local patterns with spatio-temporal correlation, hurricane tracks can be clustered

based on its landfall location or direction.
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5.4 Surrogate Detection with Statistical Inference

The approach to surrogate model construction from simulations is applicable for almost all the simu-

lations that output time series in a domain. However, a good surrogate model, defined by the fitness

and the variance across simulation samples, may not be found for every simulation model, especially

for those chaotic or the models that comprise random effects themselves. In the statistical context,

the task is to detect all the possible surrogate models with a certain confidence level. Statistical

inference based on surrogate modeling is discussed in the section.

5.4.0.1 Model Validation

A set of criteria and methods are described in order to validate the model. Other than root mean

square error or mean absolute error, coefficient of determination(R2) is used as a measure of how

well future outcomes are likely to be predicted the model, represented by

R2 = 1−
∑M

i (yi − fi)2∑M
i (yi − ȳ)2

(5.17)

Another factor that can impact model performance is model input representation. The representation

of parameter space {x1, x2, ...xn} is converted from the original input of the simulation model, and it

is worth noting that domain knowledge can help with setting up a better representation to capture

the characteristics of simulations. It would be important in experiments that the designed simulations

can cover a problem domain, although it may not be clear a priori.

One way to test whether the designed simulations, as the training data of surrogate models, cover

the problem domain is to use cross-validation: randomly dividing the data into several equivalent

sets, and use most of them for training while leaving the rest for testing. A good design, as well as

a good model, should not be expected to have much variance among different combinations of the

data sets.

5.5 A Scalable Workflow for High-Performance Execution

While this is relatively a complicated application with data from multiple sources: a hurricane track

generator that outputs a range of hurricane tracks used for storm surge simulation; the storm surge
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simulation outputs, including wind data. Preprocessing from the raw simulation data becomes a signif-

icant time-consuming part out of this application: considering the size of raw data, the preprocessing

is written in C programming language and the parallelization is exerted on directly partitioning the

data or tasks (of extracting data at multiple locations) and passing them to different processors.

Figure 7.2 describes the high-level workflow.

FIGURE 5.1: Workflow for pattern detection from hurricane and storm surge simulations

After preprocessing, the location-specific data shrink a lot in size and then model training becomes

more straightforward. However, the challenge of this application exists in the data-driven nature: the

hurricane generator can continuous produce new tracks and thereby new simulations will be arriving
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FIGURE 5.2: Scaling test for raw simulation data preprocessing

on demand. Then, the same workflow can be performed in an incremental manner: the addition of

new data can bring changes to existing models. Moreover, combining data with parameters (e.g.

different track angles on different regions) can also lead to new results. The parallelization framework

can then be utilized: once new data become ready after preprocessing, a new set of model training is

initialized with parallel architecture and thereby new models are produced. Such a workflow is then

executed in a scalable and automated manner.

Then, when using the on-the-fly tracing framework to parallelize the application, it requires a little

re-formatting of the code: i) the user code, from data preprocessing to the core analytical algorithm,

should be written as functions. Then, the framework can recognize each function and scan it, including

finding the embedded function as long as the source code is provided. ii) For those functions which

are used but the source code is not included (e.g. it is included in another R library), it is desirable to

give the function name and a weight as an input of the framework for better horizontal partitioning.

However, such functions essentially can’t be parallelized by the framework unless the source code

is available. This same way in source code format in parallelization also applies to the other two

applications in the dissertation.

In Figure 5.2 and 5.3, the scaling test of preprocessing raw simulations data and the number of

spatio-temporal links over an increasing number of simulations as in 5.2.2 are shown. The continuous
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FIGURE 5.3: The number of spatio-temporal links found from an increasing number of simulations
(with two data sets)

workflow would become an integral part of a data-driven system, where the outcome always reacts

with the injection of new data.
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Chapter 6

Application II: Road Traffic Flow Prediction

The real-time conditions of urban transportation play an essential role in city logistics, especially in

determining the delivery time for businesses. A precise understanding of the traffic situation is helpful

in scheduling and optimizing vehicle routing. Urban traffic flow, recorded or measured by sensors at

road cross sections, well represents the level of road congestion. Thus, the prediction of traffic flow is

important and directly leads to the estimation of travel time.

Since the last decade, soft computing techniques, including artificial neural networks, genetic algo-

rithm, fuzzy models and simulated annealing, have been widely used for the prediction of short-term

traffic flow [67, 68, 69], as well as travel time estimation [70, 71]. With autocorrelation in the traffic

flow data (e.g. the current road condition depends on that of 10 minutes ago), ARIMA (Autoregres-

sive Integrated Moving Average) and neural networks are commonly used to detect implicit pattern

over a short period. The representational power is shown by training error in the process of model

construction. However, the error over test data, which means the traffic volume series from another

time slot or a new day, can be very large due to the inconsistency of pattern. That is, the temporal

dynamics brings uncertainty to this prediction task. In order to handle the dynamics, an individual

predictor would be insufficient to describe the entire data domain but can still take effect in the

selected time slot.

Therefore, a straightforward method is to add the number of predictors and accordingly call a part

of them in the specific period. The combination of the predictive models can lead to the increase of

prediction accuracy: e.g. in [72], the traffic flow regimes are identified and each pattern corresponds

to a predictor, and thereby the pattern-based prediction results in a better performance; [73] uses

seasonal support vector regression with chaotic simulated annealing to deal with cyclic trend of the

traffic volume time series. In this way, it brings the prediction task from “how to train a single model”

to “how to train a single model” to “how to select appropriate models to use and combine them”.
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In this section, we present a high-performance dynamic framework for predicting short-term traffic

flow: first, we compare the recurrent patterns in traffic flow between days and propose drifting traffic

regimes as extracted from data; and an ensemble learning approach to concept drift is then described

to make online predictions. That is, we always maintain a pool of predictor candidates and make

selection in accordance to the current traffic regime; also, to comply with the unexpected changes

(e.g. brought by weather effect or road emergency), new predictors are trained in a real-time manner

to make up the model deviation brought by the temporal dynamics. Such a dynamic framework

takes the ever-changing nature of data into account and can effectively select or create predictors as

a response to the change in traffic situation.

6.1 Predictive Models with Drifting Regimes

In this section, we propose the concept of drifting traffic regime, which better describes the char-

acteristics of traffic flow data, and then present the ensemble learning method for predicting with

concept drift.

6.1.1 Drifting Traffic Regime

Following the trend of previous research, the traffic volume of a day can be clustered based on a set of

criteria: road occupancy, traffic pattern recurrence, and the temporal evolution of the deterministic

structure [68]. Such statistics can detect the common and recurrent pattern in traffic flow very well,

but it is worth denoting that the phase-state pattern, as well as its starting and ending times, varies

from day to day in data. We illustrate the variation in Figure 1.1.

The contrast between two typical days indicates the fact that the boundary between traffic regimes

is transitive and differs by day and site. That is, it is desired to identify regime transition and choose

corresponding predictor(s) in a real-time manner since the traffic flow can unexpectedly drift to

another regime. In this way, the same clustering scheme may not be universally applicable although

regimes can overlap in between. To formally define the drift, we define each traffic regime as a 3-tuple

(Ci, T is , T
i
e) (Ci ∈ {1, 2, ...m}, m is the total number of clusters for each day’s traffic flow, and T is and

T ie represent the starting and ending time for the regime). Then, a series of regimes are defined for
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FIGURE 6.1: The variation of traffic regimes between two typical days
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each day:

Dj = {(C1, T 1
s , T

1
e ), (C2, T 2

s , T
2
e ), ..., (CNj , TNj

s , TNj
e )} (6.1)

Without drift, the following assumption holds:

m1 = m2 = ... = mK

Ck
1 = Ck

2 = ... = Ck
K

T 1
s,k = T 2

s,k = ...TKs,k

T 1
e,k = T 2

e,k = ...TKe,k

N1 = N2 = ... = NK

(6.2)

where k ∈ {1, 2, ..., Nj} and K is the total number of days over all the sampling data.

Drifting traffic regime means the above assumption doesn’t hold. In order to avoid an over-complex

predictive model, we relax the assumption to the following:

m1 = m2 = ... = mK (6.3)

This means that there are a set of global regimes that are applicable to each day’s data but a

different phase-state pattern is assigned with drifting time ranges.

6.1.2 Online Ensemble Method for Predicting with Concept Drift

The global regimes allow us to train universal predictors that can take effect in a specific region and

a learner combination is dynamically assembled for real-time prediction. While the traffic regimes are

inherently drifting, the handling of concept drift, also as an challenging task in machine learning [?],

becomes important. Meanwhile, the ability of incremental processing of neural network learner is

utilized, meaning that the weights of each predictor is changed in real time after each new data

record is passed. Online learning helps each individual learner to adjust its weights to adapt more to

the current situation. We introduce the two schemes respectively.

6.1.2.1 Online neural network learning

Online learning is common for time series prediction. Unlike a classification task, in which all the

records in data set can be regarded as under the same distribution and a generalized learner can
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thereby be trained, time series data don’t guarantee the coherence of model performance. So, the

model itself, or more specifically, the weights associated with the neural network learner, is changing

over time.

The input-output relationship of a multi-layer perceptron (MLP) neural network can be represented

by

V̂ (t+ τ) = g(
∑
i

[w′if(
∑
j

wijXj)]) + b (6.4)

where the predicted value V̂ at time (t + τ) is the output and the input vector X consists of data

points no later than time t; w′i (on hidden-output layer) and wij (on input-hidden layer) are adjustable

weights and b is the bias term; f(.) and g(.) are activation functions on hidden and output layers for

converting the parameter space to a desired range.

In the training process, including on the online mode, each data record is passed to the network

structure and the weights are updated using a back propagation algorithm:

∆wji = ηδjxji (6.5)

where ∆wji is the increment for each weight and δj represent the partial derivative of error over the

layer (e.g. δj = v̂(1− v̂)(v − v̂) for the output layer; v is target value and v̂ is network output), and

xji stands for the layer input. η is a pre-specified constant (e.g. 0.05) as learning rate.

In practice, online neural network training is implemented with the entire network structure reserved

all the time in training and online prediction. That is, the trained neural network structure is not

encapsulated as an object so the weights of each learner can keep being updated.

6.1.2.2 Dynamic weighted ensemble

Online learning can alleviate the bias brought by the temporal dynamics of traffic flow. However,

when the pattern is significantly changed, weight adjustment of an individual learner doesn’t suffice.

The dynamic weighted ensemble (DWE) learning approach, adapted from dynamic weighted majority

developed by Kolter and Maloof [74]1, provides more flexibility by changing the weights of individual

predictors, replacing current members or adding new predictors.
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In handling concept drift, transferability and responsiveness of the predictor ensemble implicitly

become a part of the goal along with accuracy. In a dynamic weighted ensemble E, we denote each

individual predictor as ej (j ∈ 1, 2, ...k), where k is the size of predictor candidate pool. Each predictor

in the pool has a chance to be selected in real-time prediction based on performance. A weight wi is

associated with each selected predictor in the ensemble, while i ∈ 1, 2, ...,m and m is the ensemble

capacity (no more than m predictors are allowed to be involved in prediction) and the current size

of ensemble is mc. The prediction is then made by the ensemble output: V̂E(t+ τ) =
∑

iwiV̂ej(t+ τ)∑
iwi = 1

(6.6)

While all the candidates in the pool are pre-trained with historical data, the scheme also allows the

involvement of new predictors to which only the online stream is feed. It is used for dealing with the

abrupt change in concept, when existing predictors may perform poorly.

In real-time prediction, a simple online weight updating scheme is adopted: wi(t+ 1)← βwi(t) if |v(t)− v̂(t)| > φi

wi(t+ 1)← wi(t) otherwise
(6.7)

where φs is the error threshold for individuals, v(t) and v̂(t) are the real and predicted values at time

t.

Meanwhile, all the weights are always normalized in order to maintain the ability to predict as an

ensemble:

w′i(t+ 1)← wi(t+ 1)∑
iwi(t+ 1)

(6.8)

6.2 A Dynamic Framework for Predicting Traffic Flow

with Drifting Regimes

In this section, we describe the online prediction scheme as a framework. The generic procedures are

detailed step by step. As mentioned in Section 6.1, with pre-trained predictors, a candidate pool is

constructed for online prediction. The procedure, in general, starts from training such regime-specific

predictors, and then the forming and updating of the ensemble are performed.
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Procedure 1 Regime-specific predictors training: the recurrent states and their temporal evolution

make pre-trained learners useful as a preparation for online learning and predicting. Using the same

method for traffic pattern clustering [68], general traffic regimes can be identified and then corre-

sponding predictors can be trained. There can be more than one predictor for each regime, with

different selections in input data as well as the diversity in internal structure and/or weights of pre-

dictors themselves. All these predictors construct the predictor candidate pool. The pool is bounded

by size k but k is expected to be sufficiently large as more candidates can provide more flexibility

against the drift in online prediction.

Procedure 2 Ensemble initialization: Only a few predictors takes effect during online processes

so the criteria of initial selection also come from the traffic regime based on time. Then,a weight

is assigned to each selected predictor, which is all equal at the beginning. We name those selected

predictors as run-time predictors. A new predictor, which only gets trained in the online process

(namely online predictor), is also created in the candidate pool.

Procedure 3 Real-time predicting with weight updating: Each new data record is passed to all the

candidates, with prediction error saved. Weight updating (in Sub-section 6.1.2.2) only applies for

run-time predictors. All the weights are saved within the period and become useful for ensemble

membership control.

Procedure 4 Online training: Online predictors are also maintained by training them with new

data. Such predictors are distinguished from regime-specific predictors but sometimes they show

better adaptability. If the ensemble membership control is the regime-only scheme, this procedure is

not necessary.

Procedure 5 Ensemble membership control: After each p records are passed as a period, it is the

time to check with the ensemble performance and update the membership of each predictor. With

the global error threshold φg as a watershed, a new predictor, either a regime-specific predictor

or an online one, will be added depending on the recorded error in this period. Existing run-time

predictors are also subject to removal, determined by its weight. Those with weights lower than the

given weight qualification threshold wε should be removed. Therefore, unlike ensembles with fixed-
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TABLE 6.1: Overall performance comparison between dynamic weighted ensemble (regime-only) and
Bayesian combined model (8 regime-specific NNs)

Dynamic weighed ensemble Bayesian combined
AARE(%) MAE (v/5m) AARE (%) MAE (v/5m)

Day 1 10.26 6.87 11.03 7.12
Day 2 10.47 6.50 11.93 7.35
Day 3 12.03 7.07 13.00 7.62
Day 4 10.29 7.23 11.25 7.69
Day 5 9.58 6.50 10.64 7.17
Day 6 10.82 7.08 11.94 7.49
Day 7 10.51 6.94 11.56 7.61
Day 8 11.97 6.95 12.99 7.46
Day 9 10.29 6.55 10.89 6.99

Day 10 13.72 7.45 15.16 8.05
Day 11 11.75 7.08 12.41 7.54
Day 12 12.41 6.44 13.81 7.16
Overall 11.18 ± 1.20 6.89 ± 0.32 12.22±1.34 7.44±0.30

sized learners [?], the number of run-time predictors can be variable but also bounded by capacity

m to avoid an over-complex ensemble. Figure ?? shows all the above procedures in a flowchart.

The baseline results, as shown in Table 6.1, illustrates the accuracy of the predictive model in

predicting the short-term traffic flow in 12 consecutive days. As a comparison, another approach,

Bayesian combined model, is also executed and the dynamic weighted ensemble show better accuracy

in most of the days.

6.3 A Scalable Workflow for Parallel Execution

While applying the on-the-fly tracing framework to this application, the high-level workflow is first

constructed with modules specified in Figure 6.2. As in Chapter 3, each module is subject for a scan

and then the optimal parallelization is obtained for scheduling. In this application, it requires the

training model to read data multiple times (as an input stream) and the different training model in

a pool is always subject to selection for a best one at a given time. The sharing pattern determines

multicore architecture would fit this application: all the training models are in the shared memory

without the hassle of inter-node communication and the realtimeliness of this application also asks

for a minimum delay.
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FIGURE 6.2: Workflow for road traffic flow prediction

So, the first level parallelism detected from code is on the training of multiple models (it is the outer-

most loop in the code). While there are always more than 10 models in the pool, a multithreading

solution is adopted mainly on model training. Figure 6.3 gives the speed-up of model training and

overall workflow respectively.
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FIGURE 6.3: Speed-up for road traffic flow prediction
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Chapter 7

Application III: Text Mining from Social Media
Web

Information diffusion is one of the most significant transport phenomena in communications: ”diffu-

sion of innovations” [81, 84], as a theory that explains how new concepts, ideas, technical information

or actual practices propogate among people and spread through cultures, has been widely accepted

for fifty years and useful for enterprise decision making. In general, the diffusion of information,

where the information is regarded as a new element in a connected structure, results in cascade-style

patterns from one social entity to another. Over the past ten years, with the form of information

diffusion becoming much more explicit on the web, more quantitative modeling approaches emerge in

the field [78, 80]: the diffusion process, or its characteristics, can be modeled by a set of factors with

regard to topics, individual sources and social networks. While existing work apparently puts more

emphasis on the global dynamics of information propagation, or the overall distribution of certain top-

ics, we exploit the correlation and similarity between topic trends and user influence in a local scale.

Supported by our experiments, such local patterns are based on the following assumptions: i) topics,

represented by key words in social media streams, are inter-correlated with each other in semantics

as well as its trend of propagation; the closer in semantics, the more similar in its pattern of diffusion;

and ii) Information sources whose online behaviors are similar tend to be more comparable in terms

of online influence. Such rules, without global knowledge, would help with training instance-based

models from online stream data, which is also in accordance with nature global disconnectedness of

Twitter network structure [87].

More specifically for social media streams, where Twitter is a common example, lots of recent work

shows promising discoveries. Information diffusion in Twitter, in which a ”tweet” is the basic user-

generated unit, can be tracked in a way that’s easier. Explicit user interactions, such as ”retweet”

(one quotes another tweet on the timeline of herself via a one-button operation with acknowledging

the original author) and ”mention” (by mentioning another user identification in a tweet, the other

user is notified as someone comments her tweet), provide researchers more convenience for monitoring
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the trend of topics. The features of information diffusion on blogs and microblogs are compared [87]

in terms of distribution of contribution, speed of posting, navigation patterns and network structure;

the tweets network is larger, more decentralized and locally connected, so large scale information

diffusion may have limited efficiency due to the lack of global connectedness. [75] also shows that

”Influencers” in Twitter can also be identified in Twitter through a regression tree. For robustness

consideration in limited tweets that don’t represent the complete microblogspace, an approximation

approach to correcting missing data in information cascades is proposed in [83]. Topics and opinions

on Twitter are also an area of interest: the relationship between ”follow” and ”retweet” is analyzed

in [85] and the social media form of political polarization is shown in [77]. Besides, some sociological

concepts, such as complex contagion, are also validated through information diffusion on Twitter [82].

On the other hand, as the characterization of information diffusion would lead to the predictability

of the level of online influence [75], which can be measured by the topic popularity in media and blogs,

the number of comments and the frequency of user interactions in social media, we propose such a

predictive model in this paper: instead of attempting to simulation the effect of information diffusion,

the correlation between individual online influence and a set of factors such as source credibility, the

online behavior similarity and topicality, is exploited.

7.1 Characterizing Information Diffusion with Topic

Variation

Prior to introducting a predictive model, there are several concepts for characterizing information

diffusion, including the profile of information source and the effect of topic variation.

7.1.1 The level of information exposure

The user interface design of Twitter determines that your followers can see what you post and thereby

tweets from those with more followers have a higher chance of being read, indicating a potentially

higher influence. However, the level of information exposure is apparently not the only factor of

tweet influence, as a high volume of followers doesn’t necessarily mean that people are interested in

what you talk about this topic. Figure 1.1 (a) describes the relationship using two auxiliary lines:

those with really high influence are seemingly logarithmically linear correlated with the number of
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followers, but a large amount of them show that the sufficiency of followers don’t make their tweets

retweeted more.

FIGURE 7.1: (a) The relationship between the number of followers and influence total;(b) Tweet
influence by user counts; (c) The variation in topic evolution over time.

7.1.2 Online Behavioral similarity

When comparing the influence of two Twitter users, a higher level of online behavioral similarity

usually suggests receive feedback at an equivalent level. Apparently, users’ new tweets become the

recordable activity in data, denoted as Act(ui) = ∪sti. Thereby, in a given time frame, the following

two factors, the number of tweets and the time of tweet posting, are taken into consideration for

evaluating the behavioral similarity.

Although it is empirical and data-dependent in selecting the boundary of each category, the natural

break points in the statistics of tweet influence becomes an intuitive criterion and the majority

of posting frequency is considered as a single level. Further, to show the time of tweet posting is

important in measuring similarity, an exploratory statistical analysis in Figure 1.1(b) is shown to

the number of users by different levels of tweets influence out of the 5,252 who at least have one

retweet/mention.

7.1.3 Topicality

Apparently, the content of the tweet matters. Although all the tweets are related to a dominating

topic, the opinion, as well as the wording, can implicitly affect the tweet influence. While the format

of tweets makes natural language processing techniques a little harder compared to formal articles,
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we use a unigram model and consider that only those high-profile words in the community help to

boost the tweet influence. Figure 1.1(c) shows the evolution of the top three words as shown under

the dominating topic ”hurricane irene”. The semantic variation does take effect as the word ”die” is

much less frequent after the hurricane made its landfall.

7.2 Local Patterns of Information Diffusion and

Predictability

7.2.1 Problem definition

We define that the task is to predict the level of influence of a tweet as classification (e.g. whether the

number of retweets and mentions is larger than 5), denoted as R(ti), within 1 hour from its posting

in a topic-oriented community with other users’ tweets and their influence available (∪suj, tj, R(tj)),

including the other tweets of the same author. We don’t consider a concurrent setting, so the topic

trending is known and tweets at later time can be used too. Otherwise, the trend of information flow

of the topic is eventually unforeseen without context provided.

The challenge of this problem exists in its long-tailed data distribution. Although those tweets with

no explicit influence are filtered out of our data, most of the selected users still have a relatively low

level of influence. Thereby, the extraction of features that make a tweet more influential could be

subtle.

7.2.2 Neighborhood event detection

While a neighborhood is primarily referred to as a user with her behavior traceable, it is eventually

the influence of a tweet that helps with prediction, namely neighborhood event: i) Firstly, all tweets

that are posted around the time of target tweet are considered as neighborhood event candidates;

ii) The users of such tweets are then checked to eliminate those whose influence is apparently in

a distinct level; iii) Lastly, such tweets are sorted by behavioral similarity. Equation 7.1 shows the

distance function between tweets.

Dist(ti, tj) = L(
Inf(ui)

Inf(uj)
)abs(ti.time− tj.time) (7.1)
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where function Inf indicates the fundamental influence of users and tweets, which is mainly char-

acterized by the tweet influence of known activities and the level of information exposure. L is a

delimiter which returns +∞ to indicate ti and tj are not comparable in terms of tweet influence in

the context.

On the other hand, when topicality is considered, the hot words of the corpus can be extracted and

ranked based on frequency. With each appearance of a word coming with a time stamp, the word

frequency actually forms time series and dynamic time warping is adopted to compute the similarity

between two words in a given time period. Then, the topicality distance becomes

TDist(ti, tj) = abs(
∑
ws∈ti

Tr(ws)−
∑
wt∈tj

Tr(wt)) (7.2)

Function Tr(w) denotes the normalized weight of a word in the tweet. The higher the weight is, the

more frequent the word appears in the entire community (instantly or globally).

7.2.3 Generalized components

Though the global disconnectedness makes the predictive model more ”local”, generalized pattern

could still be exploitted from the data set. The influence of a tweet regarding a specific event is

likely to meet the evolution of event itself. As a baseline, linear trending model just associates the

time-dependent topic popularity, represented by the real-time volume of tweets, with tweet influence.

It is more commonly used as a component or default value in the case of sparsity (e.g. there are few

occurencesof a user in a data set).

R̄(ui, ti) = Inf(ui)
∑
w∈ti

Tr(w) (7.3)

where Inf(ui) defines the influence of user based on the logarithm of its number of followers.

Acquiring more user statistics globally could elaborate the generalized model, though it may not be

feasible in real-time analysis. We also elaborate it to train a linear generalized model (with gradient

descent) to detect the pattern when combining with the level of information exposure and the level

of user involvement of this event (the number of tweets of a user in the event-related data set):

R̄(ui, ti) = w1Inf(ui) + w2ui.tf(t0, tn) + w3

∑
w∈ti

Tr(w) + σ (7.4)
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where tf(t0, tn) is an attribute of ui which denotes the tweet frequency in the given time.

7.2.4 Constructing models

The dynamics of Twitter data prompts the training of a set of basic models using the aformentioned

concepts. Finally, a mixture of the basic models is also included in the same framework with better

accuracy.

7.2.4.1 K-nearest-neighbor combination (kNN)

The neighborhood event detection can help with finding at most k neighborhood events in data,

a combination of them leads to a k-nearest-neighbor prediction. The level of information exposure,

namely the logarithm of the number of user followers, and the distance measurements, both in

behavior and topicality are used as coefficient in the combination.

Using a k-nearest neighbor combination,

R̄(ui, ti) =

∑k
j=1 arg minw1Dist(ti,tj)+w2TDist(ti,tj)

Ruj ,tj

k
(7.5)

7.2.4.2 Model mixture

Unlike a blend of several standalone models, the mixture is constructed based on the feature of tweets

and users (like stepwise regression): quite a few users only posted 1-2 tweets in the topic and some

users did it more frequently. For instance, for those who have more than 3 tweets, a linear trending

model is used. Otherwise, k-nearest-neighbor model is the dominating model unless no qualified

neighbor can be found.

7.3 Results and Discussions

7.3.1 Data sets

We use the Twitter streaming API3 to collect tweet streams sorted by topics, which return tweets

in a k-sorted order across the entire time domain. Without the loss of generality, topics in various

fields are covered in the search, where the key words are usually a short phrase. In our test, we

include topics of different types: ”hurricane irene”(irene), ”steve jobs”(jobs), ”iphone” and ”herman
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TABLE 7.1: Accuracy of prediction with content free models over 5 data sets

irene jobs iphone cain http
Period of Data Collection Aug 27-29 Oct 8-10 Nov 8-10 Nov 8-10 Nov 3-4

Mixture 0.7865 0.6976 0.7209 0.7034 0.6856
LT-only 0.7235 0.6315 0.6348 0.6070 0.4925

kNN-only 0.7483 0.7247 0.6601 0.6841 0.8354

TABLE 7.2: Accuracy of prediction with the content-based component added

irene jobs iphone cain http
Mixture 0.8132 0.7246 0.7098 0.7325 0.6511
LT-only 0.7586 0.6638 0.6849 0.6792 0.4883

kNN-only 0.7712 0.7418 0.6923 0.7231 0.8197

cain”(cain), the number of tweets of which ranges from 166,201 to 1,007,551. We extract relatively

more influential users, whose tweets are retweeted or mentioned at least 5 times, from the data bunch

because most of the users receive no retweets and making predictions with them is not an interest.

Data preprocessing includes extracting the number of retweets and mentions within one hour after

the tweet is posted, while around 85% retweets and mentions occur within this time frame. To show

the comparison, we also crawled a topicless data set using the Twitter key word ”http”, which only

contains tweets with a short url. All the tweets are collected in a non-stopping span of 2-3 days during

August-Novemeber, 2011.

Among the four topics, it is understandable that the result of ”steve jobs” shows relatively weaker

trending while the data is crawled during October 8-10, a few days after this person passed away. On

the contrary, ”hurricane irene” shows stronger trending effect than others.

The involvement of content-based component represents two increments from the topic-free baseline

models: i) The factor of topicality similarity is added as a criterion in neighbor detection: as one

single tweet could have many neighbors in the baseline models, text-based neighbors amplify such a

relationship; and ii) The global trending model based on the volume of tweets is replaced to trends

by topic. So, from the results in Table 7.2, most of the predictions receive a boost in accuracy, which

suggests that topicality, on top of the user popularity, does affect the influence of a single tweet.

3https://dev.twitter.com/docs/streaming-api
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While our kNN model is almost parameter-tuning free, the effects of the number k in neighbor

selection is not that apparent and data-dependent. Our experiments show, as a common rule, that

when k is too large, the accuracy decay while a small k doesn’t exploit enough potential of this

method. Also, the training of generalized model shows that the effect of initial weights is rather

limited as the linear trending component may not be decisive in this context.

7.4 A Scalable Workflow for Parallel Execution

FIGURE 7.2: Workflow for text mining from social media web

This application involves a series of data processing routines: preprocessing for tracking information

diffusion, preprocessing for constructing topic models, model training and prediction. The preprocess-
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ing part is friendly for a simple MapReduce-style parallelization and the model training, especially for

the linear model, can pass the associativity test so is parallelizable too. Another bit of parallelization

is for the training of different models in the same way as in Section 6.3.

0
2

4
6

8

#cores

Sp
ee
d-u
p

1 2 4 8

preproc-1 speed-up
preproc-2 speed-up
training speed-up
overall speed-up

FIGURE 7.3: Speed-up for text mining from social media web

As the flowchart in Figure 7.2 shows, there is an explicit synchronization between the preprocessing

of data and model training, where the preprocessed data must be ready before model training.

Multicore architecture is again used for avoiding the time-consuming data transport between nodes,

while the number of models is no more than 10 in this case. In Figure 7.3, the speed-up is shown for

the different modules: preprocessing for information diffusion extraction (preproc-1), preprocessing

for content information extraction (preproc-2), model training and the entire workflow. While the

synchronization lowers down the overall speedup a bit, considerable performance gain is achieved

with multithreading.
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Chapter 8

Conclusion

This dissertation describes the design and implementation of on-the-fly tracing for parallelization

with its applications for workflow optimization. The on-the-fly tracing is used to find core data

dependencies in source code with an input of large-scale data set. In this way, big-data approximation

is applied where all the computations unrelated to the big data input is considered negligible and

can be duplicated over processing units. While MapReduce simply puts its parallelism on its input

data, where the mapper and reducer functions need human effort for re-programming, the on-the-fly

tracing technique first aims to this question: a given function, with an input of a large-scale data set,

can be parallelized by data or not. So a code scan, with the setting of big-data approximation, is

exerted on code to provide more flexibility.

With this general idea, each step of the approach is formalized in Chapter 3: the source code is to

be transformed in sections with horizontal partitioning; then for loop parallelization, cycle detection

and mutability/associativity tests are adopted to exploit the ”data-result” parallelism that ensures

the input data can be grouped for the execution on a single processor and then the subresults can

be combined without affecting the final results.

The benchmark results in Chapter 3 show the effectiveness of this on-the-fly framework in scaling

performance. Considerable speed-up is gained on both multicore and cluster architectures. Compared

to MapReduce-style parallelism, the framework i) automatically detect the parallelizable part; ii)

elaborates the essence of data parallelism using mutability/associability test in code scan, which

avoids human efforts in thinking about whether a task can be solved using MapReduce and iii)

dynamically scheduling the execution based on available computing resources. The features provided

in the framework can make the ”one-way” MapReduce mechanism more intelligent.

With the validation on benchmark results, the framework brings its application to non-trivial tasks:

pattern detection from hurricane and storm surge simulations, road traffic flow prediction and text
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mining from social media web. Starting from a high-level workflow for each application, each module

of the application is subject to parallelization while the code is written in a friendly style for on-

the-fly tracing. In the same way, such modules are parallelized and the speed-up contributes to the

overall workflow. Moreover, the modulization enables the re-organization of workflow, resulting in an

optimization. Such a mechanism thereby has the potential to be applied in a wider range of real-world

scenarios.

In sum, the on-the-fly approach presented throughout the dissertation enlarges the context of

MapReduce and uses an automatic method for exploiting parallelism from the source code. The

limitation of this approach comes from its practical implementation: the big data input must be de-

fined in a specific programming language and all the processing is based on this. In the discussion of

this work, much emphasis has been put in tracking the indices of data where the big data is treated as

a multi-dimensional array. The framework is implemented in R for its popularity and interoperability

in data analysis and related applications, and most experiments throughout the dissertation are with

this platform too.So, towards a release of the toolkit to public users, more issues regarding genericity,

especially in symbol processing and type-specific handling in code scan, should be considered and

hard coded.

Further, such a framework has the potential of being widely applied in more real-world applications.

While more and more areas are being heavily involved with big data and related operations, a “data-

driven” workflow becomes common in today’s research community and industry. The approach of

on-the-fly tracing is generic so can be extended to multiple programming languages and embedded

into system software: it can help to detect the optimal workflow with given data-centric tasks and

computing resources, as well as automatically conducting parallel execution in a modularized project

environment.
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