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ABSTRACT 
 

A long-standing goal of Artificial Intelligence is to program computers that understand 

natural language. A basic obstacle is that computers lack the common sense that even small 

children acquire simply by experiencing life, and no one has devised a way to program this 

experience into a computer. This dissertation presents a methodology and proof-of-concept 

software system that enables non-experts, with some training, to create simple experiences. For 

the purposes of this dissertation, an experience is a series of time-ordered comic frames, 

annotated with the changing intentional and physical states of the characters and objects in each 

frame.  Each frame represents a small action and the effects of that action. To create an annotated 

experience, the software interface guides non-experts in identifying facts about experiences that 

humans normally take for granted. As part of this process, it uses the Socratic Method to help 

users notice difficult-to-articulate commonsense data. The resulting data is in two forms: specific 

narrative statements and general commonsense rules. Other researchers have proposed similar 

narrative data for commonsense modeling, but this project opens up the possibility of non-

experts creating these data types. A test on ten subjects suggests that non-experts are able to use 

this methodology to produce high quality experiential data.  The system’s inference capability, 

using forward chaining, demonstrates that the collected data is suitable for automated processing.  
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INTRODUCTION 
 

In the early days of artificial intelligence, AI researchers were optimistic about being able 

to create robots or intelligent agents that could engage in human-level conversation. But, as AI 

critic and philosopher Hubert Dreyfus points out, they soon realized that the problem was much 

more difficult than they had imagined: 

The trouble started with the failure of attempts to program an understanding of 

children’s stories. The programs lacked the common sense of a four-year-old, and 

no one knew how to give them the background knowledge necessary for 

understanding even the simplest stories (Dreyfus, 1992). 

 

A significant problem blocking progress in story understanding is that virtually all natural 

language communication, and especially stories, contain gaps between what is stated and what is 

understood.  Consider this simple story:  

1) Max was on the sofa, bored, all by himself. There was a pretty vase on a little side 

table. He went there and picked it up. He dropped it. Crash! This was fun! 

This story has a lot of missing information that even the youngest readers could fill in from their 

own life experiences, but a computer cannot: 

 Max is probably a little boy 

 Max is probably in a room  

 At the start of the story, Max is probably in a sitting position
1
 

 Max sees the vase before going to it 

 In order to pick up the vase, Max probably walks to the side table 

 To walk to the vase, Max first stands up 

Children have accumulated a vast bank of life experiences by the time they start reading. They 

may not even know what porridge is, but they know what it is like to be hungry. They may never 

have met a wolf, but they have faced fears. They may never have picked up a vase, but they have 

                                                 
1
 In some cultures, the presence of a sofa might indicate royalty or wealth, and the usual position might be lying 

down rather than sitting. Thus, filling in the gaps depends partially, but significantly, on a presumed shared culture. 
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desired things and have strategized about how to get them. In short, they are able to project their 

own experiences onto plots of stories to understand the goals of characters and to fill in the 

unstated information.  

Recognizing that assumed life experiences are inherent in normal human communication, 

can we program simple experiences into a computer to help it understand children’s stories? 

Progress in this area would benefit many practical natural language processing tasks such as 

language translation, text summarization, information extraction, and general interactions 

between humans and computers. This area of study falls under the category of natural language 

processing (NLP), a subfield of artificial intelligence (AI). 

The technology to record human experiences is already available. More and more people 

are recording their life activities on social media with pictures and videos. Disk space is cheap 

enough that a person could capture every moment of his or her life. But these recordings are 

“analog” information, a term borrowed from the ideas of Dretske (1999) about how humans 

convert ordinary external information into digital information. Straight recordings, even on a 

digital medium, would not be useful for NLP unless the salient aspects of the human experience 

are captured and given a coherent structure.  The goal of a literal digitizing process is to extract 

enough features of the analog signal so that it can be reproduced. It periodically samples the 

signal and converts salient continuous data into time-ordered discrete values. The goal of a 

“digitized” human experience would be to extract features that explain what is happening in an 

everyday experience. The digitizing metaphor here emphasizes the idea that experiential 

narratives would not be traditional literary stories and plots
2
, but a series of situational time-

                                                 
2
 Of course, all actions have some type of plot. The “Max breaks the vase” experience could be analyzed in terms of 

a variation on Lehnert’s “Fleeting Success” plot unit (Lehnert 1981): “Max achieves his quest for amusement; 

however, when Mommy sees what he has done, he will be sorry.” However, the goal in this dissertation is to capture 

experiential details rather than plot. 
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slices annotated with the critical data needed to explain who is doing what, and why they are 

doing it. 

I.1 The Human Experience Project 

Would it be possible to create a project analogous to Wikipedia, where instead of 

encyclopedic articles about human knowledge, people create digitized human experiences that 

would be useful for NLP? There would be many challenges to such a project besides the usual 

ones associated with any large-scale Internet collaboration: 

 When people describe experiences, they naturally leave out the mundane detail that is 

obvious to humans but critical to NLP. How can we get people to articulate 

assumptions that they may not even realize they are making?  

 Depending on the circumstance, every sight and sound could be important, from the 

dust on a window sill to the sound of a person’s footsteps as they cross a room.  A 

random thought or distant memory could turn out to be critical. How do we decide 

what data are important to capture in an experience? 

 Professional philosophers, psychologists, and AI workers are mired in modeling and 

formalizing experiential knowledge. How can we expect non-experts to interpret 

experiences?  

This dissertation proposes to help non-experts create experiential narratives towards 

digitizing the human experience. To help non-experts overcome the challenges of articulating 

experiential data, deciding what is relevant, and interpreting events, the proposed method 

employs three novel techniques: 1) It models experience as a sequence of still frames, like the 

still images of an animation flip book. When animated, the frames help users notice missing 

details about actions; if the movement appears too abrupt, more frames (with more detail) need 
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to be added. 2) It asks users to focus on intention, location, and movement – information that is 

critical to a commonsense understanding of the situation. 3) It asks users to explain the reason 

behind each description. Similar to the Socratic Method, it displays the users’ answers as a 

general rule, which exposes their assumed commonsense information and encourages deeper 

explanations.  

The overall project, called the Human eXperience Project (HXP), is a methodology and 

corresponding software framework that enables non-experts to create detailed narratives of 

simple everyday experiences. Using Singh’s ideas to collect specific experiences rather than 

abstract life scripts (Singh & Barry, 2003, Singh et al. 2004), HXP asks users to describe 

situations at a specific time and place. There is no “right” way to describe an experience; all 

interpretations are welcome. In line with the goals of McCarthy et al. (2002), HXP focuses on 

simple experiences—activities and naïve mental states that one would expect to find in stories at 

the level of kindergarten or first grade. As the McCarthy group suggests, concentrating on the 

knowledge found in children’s stories helps make story understanding more tractable. HXP 

would eventually be part of a wiki web site, which means contributors view, discuss, and edit 

each other’s work. The experiential narratives that contributors create would be open for 

discussion and would undergo many refinements as contributors hash out their meaning. 

I know of no prior work that specifically focuses on collecting highly detailed child-

centered experiences from non-experts. I believe that such a corpus would be a boon to 

statistically-oriented NLP, providing valuable training data and new correlations between 

actions, intention, and location.  It would also help provide the raw data to develop new types of 

architectures for deep semantics and commonsense reasoning algorithms (Aamodt et al., 1994; 

Fahlman, 2011; Laird, 2012; Minsky, 2007; Mueller, 2006; Schubert, 2006; Zarri, 2010).  
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For this dissertation, I have implemented a proof-of-concept software program to explore 

whether non-experts can provide the sort of detailed commonsense data that traditionally has 

been manually encoded by experts. I then conducted a test on ten subjects. The results indicate 

that some non-experts are able to use this method to produce high quality experiential data. 

I.2 Chapter Descriptions 

Chapter 1 presents an overview of the methodology and the types of data to be collected. 

It shows the comic frames of a sample experiential narrative "Max breaks the vase" that will be 

referred to throughout this dissertation. Starting with the background, characters, and props, it 

takes the reader through the entire annotation process. The overview includes a sample screen 

with a series of drop-down selections to guide the user in creating statements that describe the 

frame’s action and results of the action. It also provides two extended examples with sample 

screens showing how HXP converts specific explanations into general If-Then rules. These rules 

are part of a Socratic Method that restates a person's belief as a general rule in order to highlight 

inconsistencies or missing information. When users see their explanations in this form, they 

often add more detailed statements to the narrative. The result of this process is that the user 

creates highly detailed narratives that provide useful commonsense data. The narrative 

statements are also likely to be relevant to the experience because the statements perform a dual 

role: (1) they describe the current key frame, and (2) they provide an explanation for subsequent 

statements.
3
 As an important parallel activity, users also create rules that generalize a specific 

situation to a more general one, crucial for applying the narrative data to a wide variety of 

situations. 

                                                 
3
 In the future, I suspect we may want to notify users when a statement is irrelevant (not needed to explain the 

experience). Similar to a compiler detecting unused variables in a computer program, the system could detect 

unneeded statements by checking if they are part of at least one explanation. 
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Chapter 2 discusses research related to collecting narratives and modeling commonsense 

data, especially narratives. In the early 1990s, large corpora of labeled text and digitized lexical 

resources helped shift NLP research away from deep semantics towards statistical methods. 

However, recent success of IBM’s Watson program (Baker, 2011) shows that statistical methods 

make use of a wide variety of resources, including logical rules. Offering both logical rules and 

structured narrative data, HXP would be a valuable new resource. The idea of collecting 

structured narrative data for NLP is not new, starting with scripts and narrative frames (Schank 

& A belson, 1977; Minsky,1974). More recently, Elson & McKeown (2010) proposed collecting 

a corpus of annotated stories, but their structures and methodology are geared toward 

narratology, not commonsense modeling. HXP directly inherits Singh’s idea to collect everyday 

narratives from untrained users (Singh, 2005), but HXP provides a path to collect the detailed 

narrative statements and commonsense rules that have been previously created only by experts. 

Chapter 3 presents HXP’s underlying model of experience. It first describes specific 

narrative statements and addresses the many design decisions involved in asking non-experts to 

describe an experience. What are the critical components to capture? How much detail is 

necessary and practical? How do we model what is true at any given point of the narrative?  

Unlike a story or newspaper article that focuses on what is interesting, HXP targets the mundane. 

However, rather than collect objective data that could be obtained from a 3D visual model, HXP 

seeks subjective data that, while imprecise, nevertheless drives the actions in the narrative. A 

community of users will have different points of view about a situation, but rather than try to get 

a consensus, HXP allows the same actions to have multiple interpretations. Redundant data from 

the community are also valuable because they help strength associations between words and their 

most common usage.   
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The second part of the chapter describes the structure of HXP rules. The rules are 

defeasible Horn clauses qualified with a level of confidence.  To demonstrate that the rules are 

suitable for automatic processing, the HXP implementation includes a simple inference process 

that predicts what else might be true from a given statement. This process brings out issues about 

how to match specific statements with general rules, and how to assign priorities when there is 

more than one candidate rule. In order to match statements, HXP defines a partial order, based 

on the hypernym relation. Using this partial order, HXP computes the closest match, taking into 

account the rules’ confidence levels. 

Chapter 4 describes the design of the HXP user interface, with the goal of making it easy 

for users to describe experiences through a series of drop-down selections. For this purpose, 

HXP uses a controlled natural language with a limited number of predicates and argument 

structures. In an effort to help the user find the appropriate predicate, HXP has several categories 

and subcategories of predicates. However, the users unanimously preferred to simply type in a 

word rather than drill down through a series of choices. The chapter shows screen shots of 

different input screens and discusses how HXP prompts for different information depending on 

the type of object or the type of predicate. To make the user interface able to handle a wide 

variety of predicates, as well as new ones that will be added, the software is designed around 

modular structures called value templates that can be combined to issue the appropriate input 

prompt at the appropriate time. The top-level value templates are presented. 

Chapter 5 describes a ten person user test to evaluate the methodology. After about two 

hours of training and about 1.5 hours of independent annotation, two subjects were not able to 

contribute quality data, four were able to contribute but found the process very tedious, and four 

were able contribute and found the process challenging and fun. A panel of three judges (two of 
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the test subjects and myself) evaluated the quality of the 96 total commonsense rules that the 

subjects had qualified with probably or definitely, and found that 83 (86%) were acceptable and 

could be applied to other situations. Furthermore, the HXP methodology appeared to help 

subjects capture mundane detail about location, movement, and intention. Supporting the idea 

that the HXP data is understandable by non-experts, subjects could easily understand the 

annotations of others and the two judges found it enjoyable to identify the problems in the other 

subjects’ rules (as well as in their own rules). Within the constraints of this limited test, the 

results are encouraging and indicate that some non-experts, with training, are able to use the 

HXP methodology to create detailed narratives explained with general rules of common sense. 

Although a larger test in the future would produce interesting data about different types of users’ 

capabilities, this small-scale experiment is adequate for demonstrating the methodology’s 

potential to collect data from non-experts. 

Chapter 6 covers future work, discussing several improvements to HXP and follow-up 

projects. In the short-term, the HXP user interface would be improved by having more explicit 

prompts and offering a way for users to add new predicates to the system. Later, the HXP 

controlled natural language should be expanded to provide more expressive annotations via 

adverbs, simple dialog, social relationships, comparisons, representations of abstract concepts, 

time durations, and repetitive actions. The inference capability should also be expanded to cover 

backward chaining, and multi-step inference. Finally, to take the project from proof-of-concept 

to fully functioning wiki collaboration, the software should be implemented as a thin client (i.e., 

the program should run from an Internet browser) with a host of features to make it more like a 

social networking site. To make the project more enjoyable for users, it could be integrated with 

a 3D model. Over the long term, the HXP methodology could be integrated with other NLP 
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projects to make use of experiential data. Going beyond NLP, the HXP methodology could be an 

exciting tool of inquiry for event semantics and cognitive psychology. 

 HXP addresses the open research question of how to program common sense into 

computers. I seek the middle ground between formal commonsense rules built by experts on the 

one hand and loosely structured commonsense relationships collected from untrained volunteers 

on the other. I have developed a methodology and proof-of-concept software system that enables 

non-experts, with some training, to create simple, yet highly structured experiential narratives. 

The methodology shows promise in solving the inherent difficulties of having non-experts create 

data that traditionally has been the product of expert analysis. The resulting narratives and rules 

would be a valuable resource for both statistical and deep semantic analysis. 
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CHAPTER 1: OVERVIEW OF HXP USER INTERACTIONS 
 

This chapter presents an overview of how a user creates an experience in HXP. It begins 

with a description of key frames, sequential slices in time. Then it describes the annotation 

process. This process starts by having the user add a background, character, and props. Then the 

user adds statements by following a series of drop-down menu selections. After adding each 

statement, the user explains the statement with a generalized commonsense rule.  

1.1 Creating an Experience 

 

Figure 1: The “Max Breaks the Vase” experience 
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To create an HXP experience, a user first creates a series of comic strip frames, where 

each frame represents some small slice in time (e.g. one second or less). Figure 1 shows the 

frames of an experience, entitled “Max Breaks the Vase.” The frames depict a little boy named 

Max sitting in the living room with nothing to do. He notices a vase, picks it up, and drops it on 

the floor with a crash.  

Each frame depicts an outwardly visible action. They are called key frames in HXP to 

distinguish them from other AI and linguistic uses of frame. (Minsky 1974, Fillmore 2003). 

Taken from the field of animation, key frames are images that define the movement and provide 

the anchor points between smooth transitions. Narratives using key frames offer an intuitive 

visual reminder to keep the actions small. The format of the images is not important at this point 

in the project; they can be drawings (either 2-D or 3-D), a series of photographs, or even a series 

of stills from a video. The images are not currently tagged; they have no inherent meaning. When 

shown one after the other, the images should give the illusion of animation. That is, if the images 

between key frames do not flow smoothly, the user knows more key frames need to be added, 

which will add more narrative detail. For example, an image of a boy on a sofa, followed by one 

of a boy next to a table, would be too abrupt; it would leave out the commonsense knowledge 

about how the boy stands up and walks to the table. Each frame also has an informal phrase that 

describes it, shown above each image in Figure 1. This phrase is not currently parsed, but it helps 

users create a structured caption, as described later. 

For the experience showing in Figure 1, I used Pixton, a free comic editing/sharing web 

site with reportedly hundreds of thousands of participants.
4
 The Pixton web site allows users to 

create comic frames and download them as JPEG files. Creating comic narratives suitable for 

                                                 
4
 http://pixton.com 
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HXP is a task manageable by non-experts, as evidenced by the fact that many hobbyists create 

comics for fun. Furthermore, I asked two undergraduates to use Pixton to create some simple 

experiences along the style of Figure 1. After a few minutes of training, they were able to create 

a ten-frame narrative in about an hour.   

In this dissertation, all comic frames are assumed to be created in Pixton, or some other 

system, and manually imported into HXP. The focus of this dissertation is on annotating each 

frame, the most challenging aspect of the data collection. 

1.2 The Annotation Process 

The key frame images by themselves, like an animation or movie, are not useful for 

advancing NLP.  It is quite difficult to extract situational data from unstructured data; otherwise, 

we would simply mine existing videos and text to model the human experience.
5
  Therefore, 

HXP guides the user to convert the raw key frames into structured data. That is, the user first 

identifies the background settings, characters and props. Then the user creates statements to 

describe the action in each key frame and the effects of those actions. Finally, the user provides 

commonsense rules that explain each statement.  

1.2.1 Background, Characters, and Props 

Similar to comics or movie editing software, the HXP software interface provides a set of 

stock background settings, characters, and props from which a contributor can populate a comic 

frame. Example backgrounds are a living room, kitchen, classroom, or park. Example props are a 

ball or vase, and example characters are a boy, a woman, and a dog. There are currently a 

handful of stock backgrounds, characters, and props. The stock choices are pre-configured, but 

                                                 
5
 Pangburn (2002), however, shows the possibility of acquiring objects and actions from constrained video 

sequences. 
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they can be edited by advanced users. (Capabilities for advanced users are currently not 

implemented.) 

In our example experience, a user would select living room as the background setting to 

match the background in Figure 1. This setting comes pre-configured with many objects such as 

a floor, ceiling, four walls, and some furniture such as a coffee table. Similarly, the user adds a 

vase to the frame by selecting from a list of stock props and then adds a boy from the stock 

characters, naming the boy Max.  

 

Figure 2: The screen for annotating key frame 1 “Opening setting.” The right side of the screen 

shows the annotations for Max. 

1.2.2 Statements 

At this point, the user is prompted to input key commonsense information about the 

background, characters and props. The user chooses a time of day, identifies Max’s room 

location, his body pose, and his mental state. Then the user identifies the room location of the 
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vase. Figure 2 shows the screen after the user has selected daytime for the time of day, on the 

sofa for the location of Max, sitting for the body position, bored for his mental state, and on top 

of the side table for the room location of the vase. 

When the user adds a statement like “It is daytime” or “Max is on the sofa,” HXP does 

not parse free text, but rather structures the user input by using drop-downs and selections from 

controlled vocabularies. It provides feedback in natural language to show the meaning of the 

user’s choices. This type of interface is called WYSIWYM for “What You See Is What You 

Mean” (Power et al., 1998). It controls the input so that all statements are unambiguous. All 

words in a statement are linked either to the WordNet standard ontology (Fellbaum, 1998) or to  

the HXP database (for words and concepts not found in WordNet). 

 
 

Figure 3: The user interface presents a series of drop-down selections to help the user enter the 

statement "Max thinks the vase looks pretty." 
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As an example of how this input works for a fairly complex sentence, Figure 3 shows a 

screen to input “Max thinks the vase is pretty.” Each of the six inputs is a drop-down choice 

based on the current state of the input. 

In step 1, the user chooses from a list of mental states, including emotions such as angry 

and glad as well as complex states such as belief and desire. There are about 60 mental states 

currently in the system. Once the user has chosen think, the system displays “Max thinks some 

object has some state or action” and prompts the user to choose an object from this key frame. 

In step 2, the user chooses among all the objects that are in the key frame, including all 

the props, parts of props, and characters. In this example, the user chooses vase, and the system 

displays “Max thinks the vase has some state or action.” 

In step 3 the user is prompted to specify whether the vase is in some state or is doing 

some action. The user chooses the vase is in some state and continues on with the rest of the 

steps to drill down to pretty. Note, as a short cut, the user can simply type in pretty at any of the 

steps, starting at 3. 

The underlying data structure representing each statement is a clause, containing a 

subject, predicate, optional arguments, and an optional subclause. In this example,  

 Clause (subject=“Max”, predicate=“think”) 

 Subclause (subject=“vase”, predicate=“visual attribute”, argument=“pretty”)
6
 

Different predicates require different input screens and argument structures. HXP has 

about a dozen general-purpose templates that control the structure of the predicate, and each 

predicate maps to a template. For example, there is a template for enumerated types like colors 

and shapes, and another template for relative location predicates like next to. In this example, 

                                                 
6
 HXP considers single-argument predicate adjectives such as pretty to be semantic field values, as discussed in 

Chapter 4. 



16 

 

think is mapped to a template that requires a subclause. Of course, there are many synonyms for 

think, such as believe, and consider. Users choose the most appropriate synonym, and different 

synonyms could map to different templates. The templates and statement structure are described 

in more detail in Chapter 4. 

1.2.3 Commonsense Rules 

We have seen how a user creates statements that describe the objects in a frame. Now we 

will see how a user creates generalized commonsense rules that explain each statement. Going 

back to Figure 2, we see that the user has created seven statements, starting at the top of the 

Narrative section with “It is daytime.” The Tell Me Why tab at the top of the figure is red, 

indicating that the user has not explained the reason behind these statements.  Figure 4 shows the 

corresponding Tell Me Why screen. 

 
 

Figure 4: The Tell Me Why screen asks the user to explain each statement. The first three 

statements have been answered as simply “one of many possibilities.” The other statements are 

as yet unexplained. 
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As with any “Tell me why…” question, sometimes the answer is simply, “Just because I said 

so!” That is, the reason is too difficult to explain. In this example, there really is no good reason 

as to why daytime was chosen as the time of day. Therefore, the user chooses This is just one of 

many possibilities – the polite equivalent of “Just because!” Users always have the options of 

answering in this way, and this is perfectly fine, especially in the opening scene where the 

characters and setting are just being introduced. 

However, even in the opening scene it is possible to provide a more informative answer 

to some questions. Let us look at the fourth question, “Why is Max sitting?” This statement can 

be explained in terms of the previous statement “Max is on the sofa.” The relationship between 

being on a sofa and being in a sitting position is an unstated, but understood, rule of common 

sense. The HXP user interface guides the user through a series of screens to create this rule.  

 

 

Figure 5: The user explains that we know that Max is sitting because Max is on the sofa. This 

explanation is then displayed as a general rule of common sense. 

 

First the user selects which of the previous statements allow us to assume that Max is sitting. In 

this case, the user chooses the statement “Max is on the sofa.” The system now restates this 
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explanation as a general If-Then rule, as shown in Figure 5. The user has the option of editing the 

rule to make it more general. In this case, the user edits “a boy is on a sofa” and generalizes by 

choosing from the hypernyms for each noun. Boy has many hypernyms, including male, child, 

person, living thing, and object.
7
 Likewise, sofa has many hypernyms, including seat, piece of 

furniture, furnishing, man-made object, and object. The hypernyms are taken from WordNet, 

with a few modifications.
8
 In this example, the user’s best generalization would be from boy to 

person and from sofa to seat. 

 

Figure 6: The user chooses hypernyms to generalize a boy is on a sofa. The user has already 

generalized boy to person and is now generalizing sofa to seat. 

 

                                                 
7
 The hypernyms are shown as a sequence, but they would more appropriately be displayed as a tree or lattice. That 

is, boy→male→person is one branch. The other branch as boy→child→person. The current HXP user interface 

shows a single sequence in order not to overwhelm users with detail. 
8
 Modifications include changing WordNet’s artifact to be man-made object to make it accessible to non-technical 

audiences. Similarly, I removed technical WordNet terms like physical entity and entity from the hypernym tree. 

Finally, when necessary, I added hypernyms. For example, I added child to the hypernym tree of boy. 
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Figure 6 shows the input screen for generalizing the statement. After generalization, the rule 

would be displayed as: 

1) IF a person is on a seat 

      THEN probably the person is sitting 

 

To recap, a user first answered the question “Why is Max sitting?” by choosing a previous 

statement “Max is on the sofa.” HXP then restated this explanation in terms of the general If-

Then rule, shown in Figure 5. Restating the explanation in this form exposes gaps in 

commonsense information and encourages users to add more detail. Once satisfied that the rule 

seems to answer the question, the user proceeded to generalize it further, arriving at rule (1) 

above. At this point, not only has the user explained how we know that Max is sitting in this 

specific situation, but also the user has generated a useful rule for NLP, qualified by probably. In 

other words, given a situation where a person is on a seat, an NLP application could infer that the 

person is sitting, and the qualification of probably could be used to prioritize this rule over other 

possible rules. The example illustrates the gap between what is stated and what is understood. In 

typical narratives, most people would assume that someone is in a state of sitting if the narrative 

simply says that the person is on a sofa and no other postures are specified. 

It is instructive to look at another example to show the efficacy of this method. In Frame 

2 of Figure 1, Max looks around for something to do. During the training portion of the user test, 

when asked why Max looks around, every one of the test subjects easily answered, ”Max is 

bored,” which is Max’s mental state from Frame 1. This answer leads to rule (2), which seems 

correct.
9
 

 

 

                                                 
9
 This rule assumes the boy is able to see. Chapter 3 discusses the issue of deciding what assumptions to make when 

formulating rules. 
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2) IF a boy is bored 

      THEN probably the boy looks around 

 

Moving on to Frame 3 of Figure 1, the question is much more difficult: Why does Max stand up? 

At first, each test subject tried to answer again that Max is bored, generating rule (3).
10

 

3) *IF a boy is bored 

 THEN probably the boy stands up 

 

The subjects were generally unhappy about this rule because the mere fact that a boy is bored 

does not generally lead to the boy standing up. In fact, we know that Max is standing up to go to 

the vase. To capture this intention, one subject added the statement to Frame 2: “Max is curious 

about the vase” and gave this new statement as the reason for why Max gets up, generating rule 

(4) below. 

4) *IF a boy is curious about a vase 

 THEN probably the boy stands up 

 

When the subject saw rule (4), the subject realized that curiosity was not enough to explain why 

Max stands up. Other subjects added statements about Max’s intention, such as “Max desires to 

play with the vase” or “Max desires to examine the vase.” But even these statements were judged 

to be insufficient as soon as they were presented as, shown in rule (5). 

5) *IF a boy desires to examine a vase 

 THEN probably the boy stands up 

 

In order for a rule to make sense, the subjects had to add a statement to the narrative about Max’s 

relative location. He is not near the vase.  With this newly uncovered detail, along with the 

already existing statement about Max’s sitting position, users created rule (6).
11

 

6) IF a boy is sitting 

AND the boy desires to examine a vase 

AND the boy is not near the vase 

THEN probably the boy stands up 

                                                 
10

 The asterisk (*) in rule (4) indicates the subjects found the rule unacceptable and subsequently changed it. 
11

 One test subject added a separate mental state “Max desires to walk to the vase” with a similar explanation.  
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When the subjects viewed rule (6), it seemed right; it seemed to reasonably explain why Max 

stands up before walking to the vase. Once the subjects felt that the rule reasonably explains why 

Max stands up, they generalized it to rule (7). 

7) IF a person is sitting 

AND the person desires to examine an object 

AND the person is not near the object 

THEN probably the person stands up 

 

Generalized rules like (7) allow specific situations to be compared to a class of situations – very 

useful for commonsense modeling. But the process of creating the rules itself is also useful for 

commonsense modeling because it leads users to add more details. In this case, it prompted the 

detail about Max’s desire to examine the vase and the detail about Max’s location. Of course, 

these additional details spawn even more statements. Why does Max desire to examine the vase? 

It is because Max sees the vase and perhaps Max thinks the vase is pretty. It is important to note, 

however, that the user can stop the Tell Me Why cycle at any time by choosing This is just one of 

many possibilities. 

The confidence levels of possibly, probably, and definitely are deliberately non-precise. 

They represent the user’s assessment of what most people would assume if they were to fill in 

the gap between what is stated and what is understood in the context of a typical narrative.  

To motivate users to add detail and general rules, we established a simple point system on 

each explanation. If a user takes the easy way out with the “Just because” answer, they receive 

the minimum points. But if they can explain a statement in terms of a previous statement, they 

receive more points. And if they can generalize the statement from, say, boy to person, they get 

even more points. Finally, the most points are obtained by increasing the confidence level from 

possibly to probably or to the highest level of definitely. 
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1.3 Summary 

This chapter has presented an overview of the HXP methodology, showing the main 

elements of an experiential narrative and how the HXP interface guides the user to create 

structured and detailed data about simple experiences. Narratives are organized around a 

sequence of key frames, where each key frame represents a small action and the effects of that 

action. Users add background settings, characters, and props, and then describe these elements as 

the narrative progresses with each key frame. Narrative statements are simple predicate-

argument structures, which the user creates from a series of drop-down menu selections, so that 

the resulting statements are unambiguous, with vocabulary linked to a standard ontology. The 

HXP interface guides the users to explain each narrative statement with a general commonsense 

rule. Users build these rules inductively, by first selecting previous specific statements and then 

selecting hypernyms of the objects or predicates to make them apply to more general situations.  

Quite often there are changes in mental states, body positions, or object locations that 

would naturally go unstated because they are so obvious to a human. However, when HXP asks 

users to explain each statement, they notice missing details and add them to the narrative. Thus, 

the HXP methodology, which prompts users to explain each narrative statement with a general 

commonsense rule, serves two purposes. It not only creates data that abstracts from specific 

situations to more general ones, but it also results in a more detailed and coherent narrative.   



23 

 

CHAPTER 2: RELATED WORK 
 

Having presented an overview of HXP, we now can compare this project to others 

concerned with story understanding and NLP. There have been several projects engaged in deep 

semantics and story understanding (Charniak,1972;  Lehnert,1978;  Dyer,1983;  Lenat et al., 

1990; Mueller,1998). However, the problem has remained intractable, and attempts to create 

rules based on simplified, artificial worlds or stereotypical situations have proven to not scale up 

to more realistic situations. By the 1990s, the creation of large corpora of tagged sentences such 

as PropBank (Palmer et al., 2005) and the Penn Treebank (Marcus et al., 1993), in combination 

with lexical resources, especially WordNet (Fellbaum, 1998), provided more promising results 

through statistical methods. As a result, most NLP research has shifted away from deep 

semantics and moved towards statistically oriented approaches, and we have seen impressive 

advances in parsing, data extraction, machine translation, and question answering, as 

demonstrated recently when IBM’s Watson program beat human champions at Jeopardy (Baker, 

2011). Yet Watson draws upon many resources, including the logical rules of Cyc’s OpenCyc 

database, PropBank, as well as a variety of knowledge banks formed from simple word 

associations. The successes of Watson’s statistical approach suggest that NLP can benefit from 

many types of knowledge sources, and I would like to add HXP’s structured experiential 

narratives to this mix.  

Comparing HXP to previous work, this chapter first discusses projects that collect logical 

rules (Cyc, AceWiki, various case-based reasoning systems). Among these projects, HXP is most 

similar to the case-based reasoning systems because HXP statements and rules could be viewed 

as cases for experiential reasoning.  Next, the chapter briefly touches on projects that collect 

lexically-oriented data (Penn Treebank, PropBank, WordNet, VerbNet, FrameNet) and projects 
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that deal with discourse and rhetorical structure (Penn Discourse Treebank, TimeBank).  This 

will bring us to the projects most closely related to HXP because they collect narratives 

(Scheherezade, OMCS narrative projects). Being able to collect chunks of commonsense 

knowledge in narrative form has long been a goal of NLP, and HXP offers a new approach. After 

looking at the data collection projects, we will see that projects that model story understanding 

and commonsense reasoning use data types that are very similar to HXP’s, except that HXP 

allows non-experts to create the data. Finally, the chapter ends with a discussion of how HXP 

synergizes with projects that deal with visual representations of commonsense data (EBLA, 

WordsEye).  

2.1 Logical Rules 

2.1.1 Cyc 

Probably the most famous attempt to build a program for deep semantic processing is the 

Cyc project. Started in 1984, its original ten-year goal was to “span human consensus reality 

knowledge: the facts and concepts that you and I know and which we each assume the other 

knows” (Lenat et al.,1990). Over two decades, the project employed a small team of AI 

researchers to carefully craft millions of logical assertions, predicates, and concepts, as well as 

an integrated logic system for understanding natural language. Unfortunately, this grand 

experiment has not accomplished its original ambition. In the late 2000s, Cyc’s focus shifted to 

more reachable goals such as natural language queries into specific data domains like medicine 

or counterterrorism.  

Cyc was designed to work with abstract, logical rules, independent of any particular 

situation.  It partitions knowledge into microtheories, where each microtheory is locally 

consistent. It takes a great deal of expertise to create these abstract rules and keep them 
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consistent. In contrast, HXP is to be a collection of specific narratives and rules built by non-

experts. Unlike Cyc rules, the HXP rules are not intended to be consistent with one another, and 

they are defeasible. The HXP knowledge is informal and inconsistent, but still relates details of 

actions, agents, objects, and intentions in a structure suitable for NLP. 

2.1.2 AceWiki and Attempto Controlled English (ACE) 

The AceWiki (Kuhn, 2008) enables users to collaborate online to build ontologies and 

make logical assertions. Unlike the first-order logic language of Cyc, AceWiki uses a subset of 

English, making it easier for non-experts to understand. This language, Attempto Controlled 

English (ACE), provides user-friendly translation between natural language and formal logic 

(Fuchs & Schwitter, 1996).  Version 6.6 of ACE (Fuchs et al., 2010) defines many formalisms 

for describing experiences, including verb constructions (active, indicative, third person), noun 

constructions (count, mass, plural), adverbs, and generalized quantifiers. It also represents 

modality and intentionality with subordinate clauses. However, as far as I am aware, ACE 6.6 is 

not designed for reasoning about narratives, and it does not provide a methodology for eliciting 

commonsense details from users. Furthermore, there are a few constructions that ACE does not 

represent, such as “Max is curious about the weight of the vase” and “Max is curious about why 

the vase falls.” Nevertheless, AceWiki is an excellent example of a website that allows users to 

create structured knowledge using a natural language interface, and ACE is a powerful and user-

friendly controlled natural language that has many constructions that HXP needs in the future. 

HXP would do well to incorporate many of its formalisms.  

2.1.3 Case-Based Reasoning Systems 

Case-based reasoning (CBR) is a type of machine learning based on the idea that new 

problems can be solved by re-using solutions to previous problems. As such, CBR systems are a 
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good model for collecting specific experiences and generalizing them to new situations. In CBR 

terminology, a previous problem and its solution, in the form of a logical rule, are referred to as a 

case. Thus HXP specific situations and explanations in the form of general rules could be viewed 

as CBR cases, cases to reason about similar experiences. A critical component in any CBR 

system is how to compare cases to find the closest match. HXP’s hypernym-based partial order, 

discussed in Chapter 3, provides this capability.  

The idea of collecting If-Then rules from non-experts through an interactive user 

interface is somewhat related to Protos, a CBR system for classifying audiology cases (Porter et 

al., 1990).  Protos holds training sessions with a human expert to learn how to classify new cases. 

During these sessions, it first attempts to classify a case using its current set of rules and 

relationships. Then it questions the human expert to get more information. Protos interactively 

guides the human towards a better audiology classification, and in the process, extracts useful 

information for reasoning about new cases. Protos displays to the users information in the form 

of If-Then rules. However, Protos is specifically geared towards the audiology domain, whereas 

HXP is a more general purpose system. Furthermore, Protos does not generalize the explanation 

to go much beyond the current audiology case.  

Another system that acquires rules through interactive dialog is the Disciple system 

(Tecuci & Hieb, 1996), with many domain-specific implementations (Tecuci et al., 2005; Tecuci 

et al., 2008). Disciple is a tool for rapid development of learning agents for expert systems. A 

subject matter expert (SME), with help from a knowledge engineer, enumerates different cases 

of how to solve a specific problem, including alternative scenarios. In the process, the SME 

creates the ontology for the problem by defining the important concepts and relationships among 

those concepts. With this base of information, Disciple analyzes the data and automatically 



27 

 

creates If-Then rules from example problems and solutions. It then refines the rules by 

interactively prompting the user to specify which other examples apply to the given rule. 

Interestingly, Disciple makes rules more general or specific via the hypernymy relationships of 

the SME’s ontology. HXP inherits this idea of generalizing If-Then rules from hypernyms. 

However, since HXP models the problem domain of simple experience, it can re-use the 

hypernym relationships of WordNet. Unlike HXP, Disciple automatically generates the initial If-

Then rules from the user’s examples. Disciple’s automatic rule generation is appropriate when 

the user is willing to do an initial deep analysis of a problem domain to identify important 

alternative paths and example solutions. But in HXP, it would be asking too much for non-

experts to do this analysis. However, HXP could borrow Disciple’s approach in the future to 

refine existing rules after more experiences have been collected.   

2.2 Lexically-Oriented Data 

Having examined related rule-based NLP and AI projects, we now turn to popular 

lexically-oriented data used by statistical NLP. Statistical NLP became feasible with the creation 

of tagged corpora, large collections of texts whose words are manually labeled with part of 

speech and other information. The Penn Treebank (Marcus et al., 1993), with tagged Wall Street 

Journal articles, is a popular resource for statistical parsers.  PropBank (Palmer et al., 2005) tags 

verbs and their argument structure.  

Besides part-of-speech tagging, a variety of NLP resources capture lexical relationships and 

verb argument structure.  Many of these knowledge bases contain binary relations among words 

and phrases, such as the following: 

 sofa is a subclass of furniture 

 milk is used for drinking 

 scientists publish papers 
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Others contain more complex relations, describing predicates and their argument structure. For 

example, the verb eat may be described as having an agent that performs the action and patient 

that is affected by the action. The patient is further described as comestible and solid.  

The resources involving lexical structure can also be categorized according to how they 

are built: through manual labor or through automatic information extraction. In the manual labor 

class, crafted by experts, are WordNet (Fellbaum, 1998), VerbNet (Kipper et al., 2006), and 

FrameNet (Fillmore et al., 2003). WordNet is probably the most popular NLP resource in the 

world. Analogous to a machine-readable thesaurus, it contains hundreds of thousands of words 

with their lexical relationships. Words that are synonyms (e.g. arise, get up, stand up), are part of 

the same synset, and these are linked by lexical relationships such as hyponyms (e.g. dog and 

animal), and meronyms (e.g. wheel and car). VerbNet, as the name indicates, deals with verbs 

and their relations. For each verb, it defines general argument structure and thematic roles such 

as agent and patient. At the semantic frame level, FrameNet deal with standard situations and 

roles: Stealing a car fits into the Theft frame, which is a type of Committing Crime frame with 

core elements Crime and Perpetrator.  

A slightly different class of manually built resource is ConceptNet (Liu & Singh, 2004). 

While it is constructed by manual labor, ConceptNet is not built by AI experts or highly trained 

graduate students, but rather it is a product of thousands of casual users online playing various 

simple games as part of the Open Mind Common Sense (OMCS) project at MIT (Singh et al. 

2002). A pioneer of crowdsourcing methodology several years before the word crowdsourcing 

was coined, OMCS has shown that untrained participants can provide large quantities of 

commonsense data about words and phrases. More recently, the Games with a Purpose project 

(Von Ahn et al., 2006) has become a source for ConceptNet.   
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In the automatically extracted category are TextRunner, DIRT, Never-Ending Language 

Learner, Background Knowledge Base, and PRISMATIC, all described in (Fan et al., 2011). In 

general, these resources are created from programs that extract semantic information from 

millions of web pages. The programs parse texts, searching for repeated syntactic patterns from 

which to infer semantic relations. Their results are enhanced by leveraging the knowledge in the 

manually created resources.  

In brief, resources of word relations are the backbone of statistical NLP. The manually 

built resources came first and allowed more accurate parsing, identification of verb arguments, 

named entity recognition, and other sub tasks, which in turn enabled advances in automatic 

information extraction. Like other manually built resources, HXP narratives will be expensive 

and time-consuming to produce. But I believe creating data of this sort is a necessary first step 

for identifying higher-level patterns that can later be applied to automated methods. 

2.3 Discourse/Rhetorical Structure 

Some tagged corpora go beyond syntactic tagging within a sentence. They label 

discourse relationships, how one sentence relates to another, such as causation, conjunction, and 

event ordering. The Penn Discourse Treebank (Prasad et al., 2008) labels intersentential relations 

and their rhetorical purpose, but as noted by (Elson, 2012), it is geared towards expository prose 

rather than narrative. The TIMEBANK Corpus (Pustejovsky et al., 2003) codes events and 

temporal relationships. However, there are no resources for narrative data (except for Elson’s 

proposal based on Scheherezade, discussed below). In particular, there are no current projects 

geared towards collecting commonsense details in narrative form. 

Would it be possible to construct discourse relationships, including narrative data, 

automatically? Chambers & Jurafsky (2011) automatically learn some semantic roles from raw 
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text based on related verb patterns. In their automated learning system, verbs are considered 

related if they occur near each other more often than expected by chance. Also, verbs are part of 

a related event sequence if they have coreferring arguments. This work builds from their 

previous work learning narrative event chains from raw text (Chambers & Jurafsky, 2009). This 

type of work shows the potential for building NLP resources automatically containing valuable 

narrative data. The resulting data could construct templates about events such as kidnapping or 

elections and induce the order of events. These systems depend on manually built resources, in 

particular WordNet, treebanks, and the TIMEBANK Corpus. However, Li et al. (2012) describe 

the limitations to automatically extracting narrative-like knowledge from unlabeled news corpora 

and other online texts. In particular, there is the difficulty of unsupervised machine learning 

without a priori knowledge of the topic. There would have to be a large number of narratives on 

the same topic for a program to determine which events are relevant. I believe that a resource of 

detailed experiential data such as HXP that relates events and intentions would be make it easier 

for automated systems to recognize relevant information. 

2.4 Narrative Data 

Less constrained than formal logical rules, yet more extensive than lexical associations, 

narratives provide “contextualized knowledge” – chunks of coherent relationships among states 

and events (Singh & Barry, 2003). There have been several attempts to use narrative structures 

for commonsense reasoning. Schank, Minsky, and colleagues introduced the concept of scripts 

and frames in the 1970s (Schank & Abelson, 1977; Minsky,1974). Scripts are abstractions of 

event sequences based on many concrete experiences. For instance, a script for eating at a 

restaurant has roles such as the cook, waiter, and customer, and activities such as ordering food, 

eating, and paying the bill (Mueller, 2006). Mueller (1998) created a database of abstract scripts 
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specifically for story understanding but noted the difficulty and tedium involved in this work. 

Creating a master script to generalize an activity is extremely difficult. Indeed, it requires a great 

deal of expertise to find the quintessential sequence of events and roles that make up a 

generalized type of activity such as going to a restaurant.  

 On the other hand, almost anyone can describe what happens in a particular experience at 

a particular time and place. As Singh and colleagues point out in their motivation for OMCS’s 

StoryNet, “it may be easier to tell and explain a specific story, which focuses the user on a 

specific set of characters, objects, and events, and their relationships, then to ask them to make a 

general rule-based theory in the abstract of some domain”(2004).   

 This brings us to projects closely related to HXP that collect narrative data. First we 

present Scheherazade, a software system for annotating stories. Then we present several projects 

related to the OMCS that collect narrative data from untrained people via the Internet.   

2.4.1 Scheherazade 

Scheherazade (Elson & McKeown, 2010) seeks to create a bank of annotated stories to 

advance text understanding and narratology. HXP shares many attributes with the Scheherazade 

system (henceforth SCH). Both systems represent narrative statements as predicate-argument 

structures, represent intentions and goals with causal links, and specifically identify actors, 

locations, props, and narrative time slices (called story points in SCH). Finally, they both use a 

WYSIWYM user interface to guide the user input with minimum parsing. Nevertheless, SCH 

does not seek a reduced vocabulary as much as HXP. SCH allows users to paraphrase relatively 

complex statements and dialog from the story, whereas HXP seeks to represent experiential data 

as simply as possible. SCH focuses more on analyzing the structure of existing stories than on 

collecting commonsense data, while HXP seeks difficult-to-articulate commonsense data. These 
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differences affect the visual representation of the narrative, the overall user interface, and the 

underlying data structures. 

Although both systems visually represent a narrative in terms of time slices, the 

granularity of the time slices differ. The SCH user paraphrases a story in order to analyze the 

story’s narrative structure. The user takes logically separate actions from the story and identifies 

them as separate story points. If the story says “there were three pigs living in a house, and a 

wolf came knocking on the door,” there would logically be two story points: pigs living in a 

house and a wolf knocking on the door.  The granularity of the story points may be large or small 

depending on the original author’s rhetorical purpose. In this case, we don’t know how the wolf 

gets to the door, and we really don’t care. Perhaps the wolf walked from his own home, down 

some sort of woodland walk to the pigs’ front yard, walked up the yard to the front porch, up the 

steps, and to the pigs’ front door. This level of granularity is rather ridiculous for a fairy tale, but 

it is quite valuable for commonsense reasoning.  

HXP asks users to provide this type of detail about a tiny scene from everyday life. To 

encourage this, HXP has a comic strip panel representation of time slices, specific prompts to 

annotate mental states, and a “Tell me why” interface to help users provide even more detail. 

 HXP has a two-tiered approach to the user interface. Novice users choose from stock 

backgrounds, characters, props, and vocabulary, and advanced users are able to create new stock 

data. The novice user has to choose from what is available, which is far less expressive than SCH 

but is simpler to use. I believe this trade-off in simplicity versus expressivity makes sense given 

that HXP is more concerned with commonsense details of simple situations than with 

translations of existing stories which may be arbitrarily complex. Finally, HXP users are asked to 
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explain every statement in order to keep the narrative as coherent as possible and to elicit 

relevant commonsense detail whereas SCH seeks annotations that describe larger narrative goals. 

In both systems, the underlying data structure is a set of predicate-argument structures 

linked by time, cause, and other relationships. Despite the similarities, SCH is designed to 

capture narratalogical structure, not mundane commonsense details. Also, the SCH interpretation 

layer links major plot points with complex causal graphs, but there is no structure for converting 

these into general commonsense rules. 

As a final note, SCH is not merely a proof of concept; it is a mature, ready-to-use 

product. As HXP develops, some of the SCH formalisms for representing time, groups, and 

comparisons could be incorporated into HXP.  

2.4.2 OMCS Narrative Projects 

OMEX (Singh & Barry, 2003), StoryNet (Singh et al., 2004) and ComicKit (Williams et 

al., 2005) were all associated with MIT’s OMCS project (Singh et al., 2002). All three attempted 

to collect stories specifically for commonsense reasoning. Similar in spirit to the OMCS project, 

but not part of the MIT initiative, (Li et al., 2012) uses crowdsourcing to collect narratives, and 

then parses the narratives to get a script of events for common activities. The next three 

subsections discuss these projects in detail. 

OMEX and StoryNet 

Singh & Barry (2003) created the Open Mind Experiences (OMEX) project to gather 

everyday experiences for commonsense reasoning. To structure the input, OMEX provides 

several very short story templates based on Lehnert’s plot units (1981), which describe relations 

among stereotypic narrative situations.  For example, the “Fleeting-Success” plot unit is about a 

situation that first seems to have a positive outcome but later has a negative outcome. Users 
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select different plot units, and the OMEX system displays fill-in-the blank templates. For 

example, selecting “Fleeting-Success” displays the following propositions with empty blanks: 

Iris has a problem.  

Her _____  won’t _______ . 

She _____  and it works perfectly until ________ . 

 

The user fills in the blanks with free-format text. For example: 

 

Iris has a problem.  

Her pen won’t write. 

She shakes it and it works perfectly until it explodes. 

 

Using several pre-defined templates, OMEX prompts users with yes-no questions to explain the 

story. For example, OMEX might generate the following questions:  

Did the event shake the pen cause the event the pen explodes ? 

Can Iris see the pen? 

 

According to Singh and colleagues, the OMEX data was too abstract to engage users and 

was not constrained enough for knowledge extraction. The lessons learned were incorporated 

into the follow-up StoryNet project (Singh et al., 2004).  StoryNet makes use of existing OMCS 

data to offer an easy-to-use interface for creating structured stories. It uses a simple drag and 

drop interface to take statements from the OMCS database and put them together into a narrative. 

For example, from statements in the OMCS database involving airplanes, a StoryNet contributor 

could create this story:  

“I travel to an airport. I board a plane. I fly in an airplane. I put on safety equipment. I open 

a door. I see a cloud. I jump out of an airplane.”  

 

The StoryNet approach to structured input means users create very little free-format content. In 

the example above, the story statements are simply OMCS sentences arranged in ordered 

sequences. However, in exchange for this easy interface, the stories were not very engaging and 
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therefore were probably less attractive for others to read. Singh et al. discussed ideas to add more 

interesting detail to the stories, but they were apparently not implemented. 

In these projects, Singh and colleagues articulate the need for commonsense data in 

narrative form. HXP inherits their ideas to collect specific narratives and explanations. Like 

OMEX, HXP is envisioned as a wiki web site. However, HXP is not for casual users. The HXP 

annotation process requires training, and it is geared toward a smaller audience, hobbyists and 

people interested in advancing AI. 

ComicKit 

Another OMCS-associated experimental project was called ComicKit. It offered a comic 

strip interface for telling stories. Figure 7 shows an excerpt from a ComicKit. It is a story about 

Alice, who wakes up depressed and decides to go on a walk. The comic strip idea is a good way 

to engage users, as indicated by ComicKit’s user test, where users reportedly reported a high 

degree of enjoyment. But ComicKit does not address one of the basic problems inherent with 

understanding comics: the stories require a lot of common sense to understand what happens in 

between the panels.
12

 Although the comic strip format reportedly was fun for users, the lack of 

constraints on content and captions resulted in stories that were difficult for automated analysis. 

Unlike HXP, there was no mechanism for eliciting more details from users in order to make the 

narrative more detailed and coherent. 

 

                                                 
12

 The commonsense needed to interpret implied action in comics is called closure by McCloud (1994). 
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  Figure 7: ComicKit story about Alice. The content is unstructured text. 

 

HXP focuses on child experiences, which narrows the experiences to actions closely tied 

to simple activities. And actions are limited in time and space because contributors select 

detailed settings and show how objects change from one panel to the next. Finally, events in one 

panel are explicitly tied to those of the previous panel.  In short, the HXP methodology helps 

contributors create highly structured scenes, yet there is a lot of freedom for specifying content. 

Crowdsourced Event Scripts 

Not related to the OMCS project, but similar in spirit, Li et al. (2012) collect everyday 

narratives in natural language from workers on Amazon’s Mechanical Turk.
13

 Rather than using 

drop-down menus for structured input, contributors write free narrative sentences. However, to 

make parsing easier, the contributors are provided a fixed set of character roles (e.g. customer, 

cashier) with proper names, and are instructed to use simple one-verb sentences with one activity 

per sentence. These constraints make it relatively easy to parse sentences and resolve noun 
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references. However, the activities are not constrained to small actions and are not causally 

explained. Therefore, the narratives tend to leave out a great deal of detail.  

Li et al.’s example narrative about a restaurant is a case in point. It begins with two 

activities: a) John drives to the restaurant and b) John stands in line. This level of granularity 

omits the detail of John's getting in the car, traveling along a road, parking the car, getting out, or 

going in the restaurant. It also leaves out commonsense information about why someone would 

go to a restaurant, use the car, stand in line, etc. In sum, Li's narrative data are valuable data 

about events that make up common activities and event ordering, but, unlike HXP, they do not 

attempt to represent the contextual details. As Li’s paper points out, the crowd workers 

habitually omit details they consider to be obvious.  

The same problem was noted in another OMCS-related project called Open Mind Indoor 

Common Sense, which uses free-form text to describe common household activities such as 

sweeping the floor or bringing in the mail (Smith & Arnold, 2009). As with Li et al., contributors 

leave out obvious details when describing the activities. Also, different contributors use different 

levels of granularity to describe an activity, which makes it difficult to detect similarities among 

narratives.  The HXP format that encourages smooth actions between frames helps solve this 

problem because all narratives are at about the same level of detail.  

2.5 Story Understanding 

Having considered projects closely related to HXP that collect narrative data, we now 

consider two projects relevant to HXP because they use narrative data to model story 

understanding. By the 1990s, AI researchers had largely abandoned deep semantics approaches 

to NLP in favor of statistical ones.  However, Erik Mueller (2000) called for the AI community 

to once again tackle the very difficult problem of story understanding. He outlined new NLP 
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tools and AI architectures and recommended a set of basic questions that understanding agents 

should be able to answer. McCarthy et al. (2002) answered the call, and they proposed a new 

research initiative in story understanding. They would focus on early reader texts designed for 

preschool and kindergarten in order to make the research more tractable. They would identify a 

small corpus of children’s texts, manually annotate them, and then attempt to develop methods to 

understand the domains that occur most frequently.  

As a first step, Mueller (2003) annotated one of these texts and modeled how a human 

would understand the story.  The model has two main types of narrative data: story statements 

and commonsense axioms.  With these data represented by formulas in event calculus, Mueller 

runs an efficient satisfiability solver that models the mental and physical states that occur during 

the narrative. Although his logical formulas were re-used and extended in later work (2004, 

2007), the initiative towards children’s stories seems to have run out of steam. 

In a different approach to natural language processing, (Singh, 2005) envisioned a library 

of commonsense narratives to enable case-based reasoning (CBR). Singh’s example narratives 

are highly detailed and manually created by Singh himself. Statements are predicate argument 

structures, and Singh explicitly represents different types of dependencies between statements 

such as causes and implies. Because the statements are so detailed, they contain a wealth of 

commonsense knowledge. For example, if the situation has a character that desires to hold a stick 

and then immediately grasps the stick, we could conclude that “If you want to be holding an 

object then you should try to grasp it” (p.38). Singh creates a CBR system where software agents 

called critics use hand-crafted rules to reason about an agent’s situation. Singh believed it would 

be eventually possible to construct at least part of this knowledge from the general public. 
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Both Mueller and Singh use the two data types of data that HXP collects: specific 

narrative statements and generalized rules. However, their formalisms are expertly coded and 

cannot be generated from non-experts. Neither Mueller nor Singh explicitly mention defeasibility 

in their rules. HXP uses defeasible rules because they are easier for non-experts to construct from 

specific situations without considering all possible exception cases. Mueller’s narrative 

statements are far less detailed, but his goal is to computationally add detail through a 

satisfiability solver and commonsense axioms. Singh’s statements have much of the 

commonsense detail already, and his goal is to use the rules and statements as part of a CBR 

system to generalize to new situations.  In this respect, the highly detailed statements collected 

by HXP are more similar to Singh’s system. Furthermore, the HXP demonstration of forward 

chaining, discussed in Chapter 3, could be viewed as a CBR system that matches antecedents 

from specific cases and generalizes them to new situations. However, the HXP goal is not to 

build a CBR system, but rather to collect detailed experiential data suitable for both statistical 

and deep semantic analysis.  

2.6 Experiential Data from Images 

Images are an efficient way to represent commonsense data. For HXP, 2D images 

provide visual cues to help users detect missing actions, but they are not tagged or structured for 

analysis. The two projects in this subsection deal with visually-oriented representations of 

structured data. 

2.6.1 EBLA 

The goal of the Experience-Based Language Acquisition (EBLA) project is to acquire a 

childlike protolanguage based on the objects and actions detected in experiential videos 

(Pangburn, 2002). An EBLA experience is a short video of a simple action such as a hand 
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picking up a ball.  The project uses machine vision to detect objects and their relationships. Each 

EBLA video has a short natural language description like “hand picks up ball.” The words of the 

description take on meaning as the system correlates the content and descriptions of many 

different videos.  

EBLA’s goals are to model language learning based on experience, whereas HXP seeks 

to collect experiential data. Therefore, there is a synergy between the two projects. The data 

collected by HXP could help EBLA and future machine vision projects by providing a context 

for the possible objects, intentions, and actions that might be detected. Conversely, advances in 

machine vision could improve the HXP annotation process, particularly in a future where users 

annotate actual video frames. If machine vision could detect objects and the starts of new 

actions, the system could automatically fill in some of the annotation information.  

2.6.2 WordsEye and VigNet 

WordsEye automatically converts natural language descriptions of objects and simple 

spatial relations into 3D scenes (Coyne & Sproat, 2001). WordsEye needs a lot of default 

information about how to place objects, and VigNet (Coyne et al., 2011) is a proposed resource 

to provide this type of data. VigNet extends the semantic information of FrameNet by adding 

visually-oriented information called vignettes. For example, the At Counter vignette represents a 

situation where two parties interact over a counter. The underlying vignette construction has a 

role for two actors, the counter, and items on or near it.  

The purpose of VigNet is to provide data for text-to-scene generation, whereas HXP’s 

purpose is to provide data for NLP. However, VigNet needs common sense in order to choose 

backgrounds for described objects and provide reasonable locations and body positions, so it 

share’s HXP’s goal to collect commonsense data. Rouhizadeh et al. (2011) describe a VigNet 
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collection experiment where untrained workers were able to provide lists of objects typically 

found at a location and typical object parts. However, VigNet does not seem to be attempting to 

collect the type of detailed narrative data that HXP seeks about intentions and actions. 

 HXP could benefit from WordsEye and VigNet because users would enjoy constructing 

key frame data by using natural language descriptions. Conversely, VigNet would benefit from 

the details about actions and intentions provided through the HXP methodology.   

2.7 Summary 

This chapter discussed previous research related to collecting commonsense data for 

NLP. Several widely used manually-constructed resources are available that have enabled 

significant advances in statistical machine translation, question answering, and information 

extraction. However, most of the knowledge in these resources is based on tagged corpora and 

simple word associations. Larger chunks of knowledge, which link events and intentions, would 

both enable more complex reasoning and improve statistical processing. Singh (2005) envisioned 

a database of narratives that would serve this purpose. He believed that simple narratives would 

be easier to acquire from the general public than logical rules or abstract scripts. However, 

narratives collected from untrained people over the Internet, even when structured as simple 

event sequences, do not contain the sort of mundane details needed for commonsense reasoning. 

HXP addresses these issues with a methodology to enable non-experts, with some training, to 

create highly structured narratives.  
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CHAPTER 3: MODELING SIMPLE EXPERIENCES 
 

While Chapter 1 presented an outline of how to collect the data, this chapter provides 

more detail about how these data types are modeled.  First, it gives an overview of the 

experiential narrative structure. Then it presents the design of narrative statements. Finally, it 

describes the structure HXP commonsense rules and how they are used during inference.  

3.1 Overview of the Narrative Structure 

 

Figure 8: The first six frames of “Max breaks the vase” from Chapter 1 

   

  As discussed in Chapter 1, HXP displays an experiential narrative as a sequence of action 

pictures, like the still images of an animation flip book. Figure 8 shows a fragment of “Max 

breaks the vase,” taken from Figure 1 of Chapter 1 and repeated here for convenience. Each key 

frame represents a completed action over a small interval of time. For example, in the third key 



43 

 

frame, Max has just stood up. In the fourth key frame, Max has completed walking to the vase. 

The user annotates each key frame with the effects of the action.
14

 

 

Figure 9: Annotations for key frame 3: “Max stands up” 

 

Figure 9 shows annotations for key frame 3. The statements set in regular type are statements 

that still hold true from previous key frames. The statements set in boldface are new information 

for this key frame. In this figure, the first seven statements, starting with “Max is in the living 

room” are in regular type, indicating they were originally stated in a previous key frame, but are 

still true in key frame 3. The eighth statement, “Max stands up,” is new in key frame 3. It is an 

action, and its effects are that “Max is standing” and “Max is next to the sofa.” (In the previous 

key frame, Max had been in a sitting position and his location was on the sofa.) Because they are 

new to this key frame, all three statements about action, position, and relative location appear in 

boldface. The key frames, with their actions and effects, comprise a specific narrative 

experience, one that occurs at a particular time and place and with specific objects. 

 In addition to creating specific narratives, the user also creates general commonsense 

rules to explain each specific statement.  Chapter 1 describes how the HXP user interface guides 
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 Although the key frames represent completed actions, the key frame captions are presented in present tense, in the 

style of journalism photographic captions. 
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the user to create these rules. First, HXP asks the user to explain each statement, either in terms 

of previous statements, or with a “Just because!” answer that means the explanation is too 

difficult. If a user explains a statement in terms of previous statements, the user can generalize 

the explanation in terms of the hypernyms of the statements’ predicates and arguments. Thus, a 

statement such as “Max drops the vase” can be generalized in many ways, such as “A boy drops 

a man-made object” or “A person moves an object” because hypernyms of Max include boy and 

person; hypernyms of drop include move; and hypernyms of vase include man-made object and 

object. 

 

Figure 10: Three statements and If-Then rules that explain them 

 

As a larger example, Figure 10 shows annotations for key frame 3, with three narrative 

statements and their corresponding commonsense rules. 
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3.2 Narrative Statements 

Having reviewed the dynamic relationship between narrative statements and 

commonsense rules, we now present the elements used to model specific narratives. As 

discussed above, narratives contain a series of annotated key frames.  Using the digitization 

metaphor, a key frame is a discretized sample of experiential data, a snapshot of experience. But 

what should be in this snapshot? First we discuss what data are most important, how much detail 

is practical, and how HXP captures the data. Then we focus on the structure of the HXP 

statement, which represents a single action or state. Next, we discuss how to handle different 

interpretations and redundant data that arise when a community of users collaborates to create 

narratives. Finally, we present the HXP frame problem – how to determine what statements are 

true at any given point in the narrative. 

3.2.1 Key Frame Data 

Key frames correspond to small physical changes in the narrative. If the key frame 

images do not flow smoothly when displayed in rapid sequence, the user has a visual clue that 

more key frames need to be added, which will result in more action detail. However, images are 

not labeled; they have no inherent meaning. They provide no help in describing agents, actions, 

goals, and other situational data. Like an animation or movie, the unlabeled images are not useful 

for advancing NLP. The situational data must be explicitly identified, so we must decide what 

situational data to model. 

  Since the goal is to advance story understanding, the data in each key frame should be 

geared towards helping AI programs answer questions about narratives. Mueller (2000) proposed 

a list of questions that understanding agents should be able to answer. Not surprisingly, these 
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questions cover the Five Ws of journalism: who, what, when, where, why. In addition, they also 

specifically target commonsense data: intention, locations, and movements.  

 To get at most of the Five W data, HXP leverages what users already know about the 

conventions of telling stories through pictures. Where refers to the background setting, what to 

the objects in the scene, who to the characters, when to the time setting. 

The why question is somewhat different. In journalism and narratology, why focuses on 

salient events – events that make the story interesting. But HXP seeks commonsense, mundane 

data that is often not salient. To get at this detail, users are prompted to explain every action and 

effect. Users can either choose to explain in terms of previous statements, or they can fall back 

on generic explanations such as This is just one of many possibilities when it becomes too 

difficult to find an explanation. Other narrative systems distinguish between different types of 

explanations, such as cause, partial cause, implication, dependency, or motivation (Singh & 

Minsky, 2005, Elson, 2012, Zarri, 2010). In contrast, HXP does not explicitly distinguish among 

causal types because these differences are subtle and difficult for non-experts to work with. 

 HXP explicitly prompts users to annotate mental states, goals, and intentions. This 

information is among the most difficult for non-experts to articulate, but the process of 

explaining every action guides the user into searching for intentions and desires that would 

motivate these actions.
15

 

To capture information about location and movement, several issues arise. Should the 

system mark the location of every object in the room, and if so, should it use a commonsense 

grid like (Mueller, 1998), or possibly an absolute coordinate system? And when Max picks up 

the vase, should the system capture the fact that his fingers are curled, his arms are raised, his 
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 The original HXP design asked users to explicitly organize actions into hierarchies of subactions and subgoals, 

but early tests indicated this was too abstract and difficult. As discussed in Chapter 6, in the future I hope to 

automatically capture action/subaction relationships from intentional annotations. 
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legs are slightly bent and his feet are apart? In sum, how much detail on location and movement 

should be captured? 

 In considering these issues, it became clear that many of the body position and object 

topology questions would be best represented by an objective 3D model, as suggested by 

(Weltman, 2009). In contrast, even the most detailed 3D model will not have information about 

the subjective aspects of locations and positions. For example, whether or not Max is near the 

vase depends on the objects involved and agent intention. If Max wants to see the vase, “near” 

could mean several feet. If he wants to touch it, “near” could mean one foot. Therefore, the 

current HXP focus is on subjective annotations that have causal or motivational effects. Rather 

than specifying that Max is 3.5 meters from the vase or that the vase is at 3D coordinate (4,3,5), 

HXP simply models subjective room-scale locations like “Max is not near the vase” or “the vase 

is above the side table.” While imprecise, these expressions are valuable because they can 

explain the causes and effects of actions.  

 The HXP model ties all specific objects to a background location. That is, when a user 

adds an object to a key frame, the containing background must be specified. A key frame can 

have more than one background setting. For example, there might be a scene where Max is in the 

living room, the dog is outside, and Mommy is in the bedroom. Each of these is backgrounds 

contains separate objects. Within a background location, HXP has specific prompts to remind the 

user to specify at least one relative location for each object contained and at least one body pose 

(e.g. sitting, standing) or functional state (e.g. off, on, broken). 

Unlike (Mueller, 2003), which categorizes representations into different spaces such as 

room-scale and object-scale, HXP does not have separate predicates for different scales. Users 

would use identical next to predicates to express “Max is next to the table” and “The school is 
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next to the park” even though the objective meaning of next to is different. The subtleties of 

these distinctions would be a burden to non-experts. On the other hand, when the scale is 

important, users will naturally create rules with different levels of generalizations. That is, there 

would probably be different consequences depending on whether Max is next to a piece of 

furniture, versus next to a building. In the future, HXP could be combined with a 3D model to 

provide easy-to-use mappings between precise, objective data and context-dependent subjective 

expressions.  

 Regarding the question about how much movement precision to represent, HXP seeks to 

depict actions with enough detail so that the movement appears somewhat smooth when the key 

frames are shown one after the other. Discussion with users indicates that this guideline is clear.  

Furthermore, keeping the transitions smooth between key frames helps capture the mundane 

details about an experience that people typically leave out of normal narratives. Finally, this 

guideline will help ground all narratives to a common level of granularity. 

3.2.2 Structure of Statements 

The previous section discussed what sort of data should be captured in each key frame 

and the desired level of granularity. There are still representational issues. How much freedom 

do users have to express actions and effects? The goal here is to balance structured input with 

enough expressivity to represent users’ intuitions about naïve child experiences.   

 Each data item in a key frame is in the form of a simple subject-predicate statement. 

Users create statements via a series of drop-down selections so that there is little or no parsing 

and thus no ambiguities. As described in Chapter 1, a user first populates a key frame with 

objects – background settings, props, and characters. Then the user is able to select predicates to 

annotate the objects. This structured input allows all objects and predicates to be linked either to 
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entries in the standard WordNet ontology, or to the HXP database (for words and concepts not 

found in WordNet). Internally, a statement is a clause, containing a subject, predicate, optional 

arguments, and an optional recursive subclause. 

 There is a conflict in the goals regarding freedom of expression. Natural language can be 

wonderfully nuanced, but fine shades of meaning and nearly synonymous expressions make it 

difficult to find patterns in data. Although users should be able to freely express what is 

happening in the narrative, a child-like, naïve vocabulary would be easier to analyze. Toward 

this end, I populated the HXP database with a limited number (about 150) stative predicates that 

I believe are important to story understanding: mental states, relative location, body positions, 

weather, time of day, etc. However, in the near future, users will be able to add new predicates to 

the HXP database if there is no way to approximate what they wish to express. In contrast to 

stative predicates, I do not see a good way to reduce the types of actions that users can select. 

Therefore, virtually every WordNet verb is available for selection. This freedom is problematic 

because WordNet has many fine shades of verb meanings. As discussed in Chapter 6, in the near 

future versions of HXP, I will explore options to have coarser verb meanings. 

Another way in which HXP reduces the vocabulary of narratives is by defining a primary 

sense for each concept. All concepts, including predicates, map to WordNet synsets, which 

represents a group of synonymous word senses. The HXP primary sense for each synset is either 

the word with the highest frequency in the WordNet source texts, or it is the word that I believe 

is the simplest to understand. HXP displays all statements using the primary sense, even if the 

user had selected a different sense for that synset.   

 HXP displays the statements as simply as possible, with no conjunctions, a limited use of 

pronouns, and limited use of subclauses.  Having independent, simple statements makes it easier 
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to prompt the user to explain the reason for the statement. The child-centered experiences make 

it more acceptable to see this stilted writing style which may be familiar to users from their own 

memory of primary-level reading material. Indeed, in the HXP user test, users were to imagine 

they are communicating at a child’s level when they make annotations, which helped them adjust 

to expressing themselves as simply as possible.   

3.2.3 Different Interpretations and Redundant Data 

 Even in a simple narrative, people have different points of views about how to interpret 

an action. In a community of users, one person may think that Max drops the vase because he is 

naughty; another may think that it is an accident. Some users might think Max is thrilled by the 

sound of the crash and some might think he is frightened by the sound. Rather than try to get a 

community of users to agree on a correct interpretation, HXP welcomes all interpretations as 

long as users can justify the their statements with acceptable commonsense rules. 

 A community of users will also create redundant data or data that differ only slightly 

from one interpretation to the next. Redundant data is not necessarily bad. Since our goal is to 

collect data that link words and situations, redundancy will strengthen the associations that occur 

most frequently. On the other hand, it is not beneficial to have redundant rules, so future versions 

of HXP will automatically check for similar rules and suggest to users that they be merged. 

3.2.4 The HXP Frame Problem 

If Max is near the table in key frame 5 and picks up the vase in key frame 6, is he still 

picking up the vase in key frame 7? Is he still near the table? The HXP frame problem, related to 

the epistemological frame problem and other related frame problems (Shanahan, 2009) is to 

know what is true in any given key frame. One way to do this would be to allow users to mark 
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each statement with the time when it is true and when it stops being true, similar to (Elson, 

2012).  

Making a trade-off for simplicity rather than power of expressivity, HXP assumes actions 

are true only in the current key frame, and states (fluents in AI terminology) are true until the 

user explicitly changes them. Furthermore, HXP associates each key frame with exactly one 

outwardly manifested action.
16

 This action, represented by the key frame’s caption, is assumed to 

begin and end inside the key frame, and the key frame’s picture is assumed to depict the state of 

affairs immediately after the action occurs. For example the caption, “Max stands up” has a 

picture of Max standing because Max has just stood up. “Max walks to the side table” has a 

picture of Max standing at the side table because Max has just completed walking to the side 

table.  

 All the other annotation statements of the key frame are interpreted as effects of this 

completed action. HXP considers these effect statements to be fluents which remain true in 

subsequent key frames unless the user specifically changes them. To remind users to check for 

changes, HXP explicitly prompts the user to verify whether previous states still hold any time a 

character or object is an argument of the caption’s predicate. For example the caption, “Max lifts 

up the vase” would cause HXP to prompt the user to check both Max and the vase to verify that 

their previous states still holds.
17

 

3.3 Commonsense Rules 

Besides specific narratives, the other basic HXP data type is the general commonsense 

rule.  As summarized above, users construct these rules from specific statements, and then 

                                                 
16

 The opening setting key frame is an exception to this rule because the opening of a story is conventionally an 

ongoing state. 
17

 These prompts are not yet fully implemented in the HXP software 
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generalize them by selecting hypernyms of the objects or predicates. To demonstrate how HXP 

rules and statements could be used for NLP, I have implemented a simple inference system. It 

uses single step forward chaining to suggest what else might be true after the user adds a new 

statement. This section presents the structure and interpretation of the rules and how they are 

used during inference. Of course, an inference system with a large number of rules is not 

computationally tractable. The goal here is strictly to demonstrate that HXP rules are well 

enough structured for automatic analysis. A large number of structured rules would be an 

excellent test bed for developing new algorithms for deep semantics as well as a valuable 

training corpus for statistically oriented NLP. 

3.3.1 Structure and Interpretation of Rules 

Rules are simply Horn clauses displayed as If-Then statements. However unlike Horn 

clauses, rules are modally qualified by either definitely, probably, or possibly. The confidence 

level helps prioritize which rule to match during inference.  

 When users try to create a general rule of common sense, they can become bogged down 

if they try to consider all the possible situations and exceptions to the rule. For example, if a user 

creates a rule to explain why a boy walks to a table, it is not productive to note rare exceptions 

that would keep the boy from using the normal means of travel – the room is under water, the 

boy is wearing skates, etc. Therefore, HXP users are instructed to employ only what they 

consider to be “normal” situations when they formulate rules. Of course, this is highly subjective 

and relies on a shared cultural context. However, as stated before, the system is intended to be 

wiki-based where users share and discuss each other’s work, so there is a means to reach 

consensus on what is normal. Furthermore, HXP rules are defeasible, which means a more 
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specific rule has priority over a more general one. This allows exceptional situations to be 

covered by more specific rules. 

3.3.2 Partial Order on Statements 

During forward chaining, the statements in the current situation are paired with the 

antecedent statements of each rule to see if there is match. I define a partial order on statements 

that allows specific statements of the narrative to be matched with more general statements of a 

rule. That is, given two statements s1 and s2, we want to determine if s1 is a more specific 

version of s2. The HXP partial order on statements is based on the hypernym relationship among 

concepts. Formally, for concepts c and d: 

c ≼ d IFF c = d  or d  h: h is a hypernym of c 
 

Building from the partial order of concepts, there is partial order among clauses. Recall 

that an HXP clause contains a subject, predicate, and optional predicate arguments, each linked 

to a WordNet synset  or an HXP concept. Therefore, clause m is more specific than clause n if 

each of the elements in m are generalized in n. More formally: 

m ≼ n  IFF    m.subject ≼ n.subject   AND 

          m.predicate ≼ n.predicate  AND 

                      m.predicate.arg[i] ≼ n.predicate.arg[i],  (i ≤ m.predicate.arg.Count) 

 

Having defined the partial order on clauses, we can do so for statements, which consist of at least 

one clause. Statement s is more specific than statement t if all of the clauses in s are generalized 

in t: 

s ≼ t  IFF    s.clause[i] ≼ t.clause[i],  i ≤ s.clause.Count 
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3.3.3 Partial Order vs. Entailment 

It might seem that the partial order of statements implies entailment. For example, in the 

statements below (1) ≼ (2), and also (1) entails (2), or (1) ⊃ (2).  

1) A boy is next to a chair 

2) A boy is next to an object 

However, statement ordering implies entailment only in the case of upward entailment. The 

negation of the statement causes downward entailment, which means that if a statement is true, 

its more specific statement must be true. Thus, (3) ⊃ (4) because ‘easy chair’ is more specific 

than ‘chair’. But (3) ⊅ (5). Just because a boy is not next to a chair does not mean that the boy 

cannot be next to some other object. 

3) A boy is not next to a chair 

4) A boy is not next to an easy chair 

5) A boy is not next to an object 

However (3) ⊀ (4). Furthermore, (3) ≺ (5) even though the entailment relation does not hold. 

Nevertheless, it is the partial order that best serves the purpose for inference. Consider Rule (1) 

below: 

1. IF a person is not next to an object 

AND the person desires to touch the object 

THEN Probably the person goes to the object 

 

This rule correctly matches situations where a person is not next to a vase, not next to a table, 

etc., and wishes to touch the object. If entailment were used instead of statement order, the rule 

would not match. 
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3.3.4 Rule Prioritization 

A system that implements defeasible logic must have a way to prioritize the rules. HXP 

defines the priority of a rule based on its confidence and specificity:  The higher specificity takes 

priority. In case of a tie, the higher confidence takes priority. The intuitive notion of specificity is 

similar to (Nute, 1993), but rather than using rule derivations, HXP makes use of existing 

hypernym relationships to determine specificity. The intuitive idea is that a statement that uses a 

broad hypernym like object is less specific than a statement that uses more narrow hypernyms 

like person and piece of furniture. This specificity is based on the Hypernym Distance (HDist), 

defined as the number of intervening concepts between the base concept and the hypernym. 

Given a hypernym chain like boy → male → person → living thing → object, the 

distance from boy to person is 2; the distance from boy to object is 4. The total distance for a rule 

is simply the sum of all the HDist values in the rule, where the number of HDist values is 

computed from the unique concepts contained in the rule’s set of statements. 

          ∑ ∑         

        

 (1) 

 

where S are the statements of the rule’s antecedent and consequence, and C are the unique 

concepts in S. 

A large total distance value from Eq. 1 represents a very general rule; therefore, as a first 

approximation, we take the inverse of the total distance to represent specificity.  

The total distance in Eq. 1 does not take into account the fact that a higher number of 

statements in a rule decrease its generality, which makes it more specific. For example, a rule 

with three antecedents is usually more specific than a rule with two.  (A ˄ B ˄ C) → D is more 

specific than (A ˄ E) → F. HXP approximates this relationship by modifying Eq. 1 to compute 
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the average distance, which generally decreases with more statements. The decrease is due to the 

fact that there will be fewer unique concepts introduced with each additional antecedent. 

          
 

   
∑ ∑         

        

 (2) 

Specificity is defined as the inverse of average distance. Thus, rules that use fewer hypernyms or 

more antecedent statements will have a higher specificity value.
18

 

3.4 Summary 

This chapter discussed several issues raised by using non-experts to collect narrative 

statements and commonsense rules, data that currently is available only by using expert labor. 

The overriding requirement of the HXP data structures is that they be easy to read, write, update, 

and share by non-experts, as well as be suitable for automated NLP. With the goal of making the 

task as concrete as possible, HXP divides the task into key frames, each visually depicting one 

specific action. During annotation, the user describes the effects on the objects and characters in 

the key frame. Rather than asking users to annotate objective data such as specific locations and 

detailed positions, HXP prompts users for subjective data that has an impact on the subsequent 

actions. Users describe the experiences with a reduced vocabulary, with single subject-predicate 

statements, reminiscent of books for beginning readers. The goal is to capture a coarse 

approximation of the action and effects rather than to describe fine details with nuanced 

meanings. There is no “correct” interpretation of an experience. Any interpretation is valuable as 

long as it can be justified with an acceptable commonsense rule. Redundant data are also 

acceptable because they help strengthen the association between words and situations that occur 

most frequently. 

                                                 
18

 The computation of specificity has not yet been implemented in the current HXP system. 
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 The HXP rules are Horn clauses. The rules are defeasible to make it easier for non-

experts to focus on typical situations and to ignore exceptional cases until they arise naturally in 

a less typical experience. Users assign confidence levels of possibly, probably, and definitely to 

indicate a rules priority. As a demonstration of the future application of HXP data to real NLP 

tasks, the HXP single-step forward-chaining inference process predicts what else may be true 

from a given statement. Using the hypernymy relation, already present in WordNet, we can 

define a partial order on statements. Basically, when matching narrative statements against the 

more general statements in rules, HXP compares the distance between their corresponding 

hypernyms, also taking account the rules confidence level. This demonstration addresses a key 

issue in commonsense modeling, particularly for CBR systems: how to compare one situation 

with another in order to find the closest match.   
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CHAPTER 4: DESIGN OF THE USER INTERFACE 
 

This chapter discusses the design of the HXP user interface software.  The goal is to 

interact with users via a subset of English that is both unambiguous and easy to understand. To 

do so, HXP defines a controlled natural language (CNL) that is specifically geared towards 

simple physical states, simple actions, and intentional states. As discussed in Chapter 2, HXP 

shares many ideas from Elson’s Scheherezade system (Elson, 2010). They both use a 

WYSIWYM interface, which means that the system restricts the user’s input to simple fill-in-

the-blank or drop-down selections but displays the data as natural language statements. 

Nevertheless, Elson’s CNL is designed for paraphrasing of descriptions and dialog in existing 

stories, whereas HXP’s goal is to capture experiential details as simply as possible. Also 

discussed in Chapter 2, HXP and ACE (Fuchs, 1996) both use simple predicate argument 

structures, but ACE is geared toward representing logic problems, whereas HXP is geared 

toward representing simple experiential narratives. 

As with designing a programming language or communication protocol, a significant 

challenge to designing the HXP input language is choosing vocabulary that will provide the most 

expressivity for the smallest number of choices, giving them intuitive names, and organizing 

them for easy access. Another challenge is designing the software such that a small number of 

components can be combined to support a large number of predicates.  

This chapter describes the predicate organization and corresponding software data 

structures. Dividing predicates into statives
19

  and actions, this chapter describes several issues 

with the stative predicates, followed by a short section on action verbs. Then it describes several 

                                                 
19

 Stative predicates express static physical properties such as color, size, location, as well as mental states. 



59 

 

HXP value templates, which are HXP’s reusable software structures that specify when and how 

to prompt for a predicate’s arguments.   

4.1 Stative Predicates 

There are currently about 150 stative predicates usable in HXP, categorized according to mental 

state or physical state, with many subcategories.  

 

Figure 11: Partial hierarchy of HXP stative predicates 

 

Figure 11 shows a partial hierarchy of HXP stative predicates. Words in square boxes are 

predicates, and words in ovals are values of semantic fields, which are discussed below. The top 

predicate on this diagram is simply attribute, which is divided into mental state and physical 

state. Under mental state are simple mental states like amused and bored, as well as complex 

mental states like ability and awareness. (The difference between simple and complex is also 

discussed below.)  On the other side of the diagram are the physical states, which include visual 

property, tactile property, location, structurally related to, health state, and many others not 
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shown, but which are discussed below. A specific predicate can be classified in multiple 

categories. As the figure shows, shape is both a visual property and tactile property.   

In the subsections that follow, I describe several design issues with the stative predicates. 

The first describes predicates that have special user interface prompts to articulate important 

commonsense data. The second subsection describes special handling of predicate adjectives like 

green and predicate nouns like daytime. It treats them as one of several values of a semantic 

field.
20

 The third subsection describes my categorization of physical states into various 

subcategories to make it easier for users to find predicates. The fourth describes several issues 

with the HXP treatment of mental states. 

4.1.1 Predicate Categories with Special Prompts 

There are four types of key frame objects in HXP: key frame, background, character, and 

prop. Depending on the object, the HXP user interface outputs different prompts. Figure 12 

shows the prompt for key frames. The user must enter a time period (e.g. daytime) and must 

choose a background (e.g. living room).   

 

Figure 12: The key frame requires a time period and a background 

 

Figure 13 shows the prompt for a background object such as a living room. As the figure shows, 

the living room has some parts (floor, walls) and props (sofa, coffee table, etc.) but no characters. 

                                                 
20

 In linguistics, a semantic field describes a set of words related to a specific domain. For instance, blue, green, and 

red are in the color semantic field. 
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Although it might seem odd to have an experience without a character, characters are not 

mandatory so that users could create a scene where, for example, a rock rolls down a hill. Note 

that in the figure, the parts and props for the living room are part of the stock living room in the 

system. However, the user has the option of adding more parts or props. For example, in the 

“Max Breaks the Vase” experience, the user will be adding a vase. 

 
 

Figure 13: A background has prompts to remind users to fill in the parts, characters, and props. 

However, there is no mandatory data. For example, this background has no character in it. 

 

Figure 14 shows the prompts for objects like Max that are the characters of the narrative. 

Since the user has not yet specified Max’s relative location, position or state,
21

 and mental state, 

the user interface highlights these predicates as having missing values.  As the user creates a 

value for one of these special predicate categories, the user interface changes. Figure 15 shows 

                                                 
21

 The position or state predicate is a composite consisting of body positions or functional states; the goal is for 

users to specify the position of a character or object, for example sitting or standing. However some objects, like a 

lamp, might be better described with a functional state like broken or off. 
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that the user has provided a value for a relative location and position or state, but not a mental 

state.  

 

Figure 14: Because Max is a character, the user interface prompts for relative location, position 

or state, and mental state. 

 

 

Figure 15: The user has entered a value for relative location and position or state, but not yet for 

mental state. 

 

The prompts for props are similar to Figure 14 except that there is no prompt for a prop’s mental 

state.   

4.1.2 Semantic Field Values 

HXP treats single-argument static predicates like green, cold, or good as continuous 

values in semantic field, similar to Jackendoff’s focal values in a continuous domain 
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(Jackendoff, 1990, p. 34). For example, green is a possible argument value for the semantic field 

predicate color. Similarly, cold is a possible value for temperature. Good is a possible value for 

several predicates such as visual property and sound property.  Appendix C lists the HXP 

semantic field predicates and their possible values. 

One of the advantages of organizing single-argument predicates by semantic field is that 

the user interface can present a range of related values and let users select an intermediate value. 

For example, the interface could show a temperature scale with cold at one end and hot at the 

other. Another advantage to this organization is that qualitative terms like good are explicitly 

disambiguated with respect to the semantic field they are modifying. In “Max listens to the 

violin; Max thinks the violin is pretty,” pretty probably refers to the sound of the violin, but it is 

a source of ambiguity. By requiring users to choose the semantic field (visual property or sound 

property) when choosing pretty, the meaning is disambiguated. Furthermore, most of these 

single-argument predicates are adjectives, and unlike verbs and nouns in WordNet, adjectives 

have no hypernym links. Thus, it makes sense to mark them for special handling.
22

  

4.1.3 Physical States 

Appendix D lists all of the approximately 100 current HXP physical states and their 

categories. I created many non-traditional categories and subcategories because I believed it 

would help users find the concepts to describe an object. For example, I created consistency to 

group predicates like breakable and hard, even though WordNet does not categorize them in this 

way. I created the structurally related to category to group predicates of structure and 

composition such as part of, attached to, contain, provide access to, support, and touch.  I 

                                                 
22

 Despite the advantages listed here, there may still not be enough to warrant the separate treatment of single-

argument stative predicates as semantic field values. As the HXP system evolves, I may change this organization. 
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created the health state category to group values like sick, well, and injured, as well as the 

sustenance subgroup which relates predicates such as nourishment and hydration.  

However from the user test, it was clear that users do not care about categories, and they 

much prefer to simply type in a word like breakable, or its synonym, rather than start at the top 

by selecting physical state and drill down to the desired predicate.  Thus, the categories are of 

minimal value for helping users choose predicates. 

On the other hand, categories are important for generalizing situations in which a 

character attends to an attribute of something. In one situation, a little boy could be curious about 

the color of a vase. In another, little girl could be curious about the shape of a cake.  In both 

cases, the situation can be generalized to a child being curious about a visual property of an 

object. For this reason, there are clear advantages to keeping a hierarchy of categories. But rather 

than rely on my intuition or even the judgment of group of experts, perhaps the categories should 

grow organically as users need to make generalizations. That is, when a user wishes to make a 

generalization, the input screen could allow him or her to type a new category. 

The states in Appendix D are just a starting set of physical state predicates. Users need to 

be able to add new ones when there is a situation that requires it. In the next version of HXP, 

users will have an input screen for adding a new physical state either by choosing a word from 

WordNet that has not yet been included in HXP or by typing it directly.  

4.1.4 Mental States 

Representing and reasoning about mental states is an important aspect of AI (Bacon, 

1995). For example, the BORIS system (Dyer, 1983) created a small number of fundamental 

mental states which could be combined to form more complex states. BDI frameworks (Rao and 

Georgeff, 1995) model belief, desire, and intention to build agents that formulate plans based on 
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dynamic conditions. Unlike these projects, which seek to formalize the components of mental 

state and build intelligent agents, HXP does not create an agent model or define mental state 

primitives. The primary goal for HXP is to collect annotated information, not to build a 

simulation or to create a theory of meaning. I believe that complex mental states like curiosity 

will eventually take on meaning based on how they are used in a corpus of digitized scenes.  

While the precise meaning of a mental state is not an issue with HXP, deciding which 

predicates map to mental states and designing the structure of the arguments is a necessary part 

of the user interface.  It is not always clear in WordNet which concepts can be values for mental 

states and what their predicate arguments should be. As an illustration, this subsection describes 

an analysis of hungry, which many researchers might say is a physical state. It then presents an 

analysis for feel, which is one of the few cases where WordNet’s definition is too broad for HXP.   

Finally, it discusses simple versus complex mental states.  

Analysis of Hungry  

WordNet defines two senses of hunger. One is a physiological need for food, a physical 

state. The other is a metaphorical non-food desire, which would be a mental state, perhaps with a 

connotation that it is a desire so strong that feels like a physical need. However, WorldNet’s 

definition of the adjective hungry, as it applies to food, is somewhat inconsistent with the 

nominal form because it is defined as a desire and a need to eat, that is, both a mental and 

physical state. But it should be possible to annotate experiences where a character does not have 

a physical need for food but nevertheless feels hungry, and vice versa, where a character is 

focusing on something else and forgets to eat even though he needs food. To deal with this 

separation of concerns, I categorize hungry as a mental state, not physical. And I provide the 

physical state of need food to indicate that a character is physically in need of food.  The same 
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separation of physical and mental applies to many states: thirst, tiredness, pain, etc. It is 

important to note that this classification  matters only because a state like hungry is allowed to 

stand in as a mental state, which is important because at least one mental state is required of 

characters.  

Analysis of Feel 

WordNet’s feel synset is one of the few cases where a WordNet sense is too coarse for 

HXP. WordNet has this definition for feel: (perceive by a physical sensation, e.g., coming from 

the skin or muscles) "He felt the wind"; "She felt an object brushing her arm"; "He felt his flesh 

crawl"; "She felt the heat when she got out of the car." This definition does not distinguish 

between feeling an internal sensation, like a pain, from an external object, like the wind. 

However, HXP makes this distinction because the two senses require different argument types. 

 

Figure 16: Users select between feeling an external object or feeling an internal sensation. 

 

Figure 16 shows that when users select feel, they have two choices: 1) feeling the touch of an 

external object, such as the wall, the chair, or the wind; and 2) feeling an internal sensation such 
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as pain or a tingle. Figure 17 is an example of the first choice, where Max feels pain. Figure 18 

shows an example of the second choice, where Max feels the coffee table, perhaps after bumping 

into it. 

 
 

Figure 17: To show that Max feels pain, the user would select "feeling an internal sensation such 

as pain or a tingle." 
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Figure 18: To show that Max brushes up against the coffee table, the user selects “feeling the 

touch of an external object.” 

Mental States: Simple versus Complex  

Appendix E lists the roughly 50 simple and complex HXP mental states. The value for a 

simple mental state is a single term like bored or amused, with a subject and no other 

arguments.
23

 That is, “Max is bored” and “Max is amused” have no further description. In 

contrast, the value for a complex mental state like curiosity has several arguments. For example, 

in “Max is curious about the weight of the vase,” the argument to curiosity includes weight and 

vase.  In “Max desires to break the vase,” desire has a clausal complement “to break the vase.” 

Of course, we could have examples of supposed simple mental states with arguments, such as the 

following: 

8) Max is angry that the vase broke.  

9) Max is bored with kicking the ball. 

 

We could also use the complex predicate curious without an argument: 

10) Max is curious. 

However, my goal is to reduce the vocabulary and predicate structure as much as possible and 

still provide users a way to express themselves. A user could express (8) with two statements: 

11) The vase breaks  

12) Max is angry 

 

Similarly for (9): 

13) Max kicks the ball 

14) Max is bored 

 

While not perfect paraphrases, they are sufficiently descriptive for modeling simple experiences. 

On the other hand, it would be difficult to express the “Max is curious about the weight of the 
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 Simple mental states are a subset of affect states in psychology. However, some affect states such as love and 

hope are complex mental states because they take other arguments.  
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vase” with a (10) and another sentence. Likewise, it would be difficult express a desire with a 

separate simple sentence.  

4.2 Action Verbs 

Whereas I tried to add to the system basic mental states and important physical states 

needed to capture an experience, actions are much more open ended. Ideally, users would be able 

to describe virtually any action; therefore, almost all of the WordNet verbs are available to be 

used for actions. The exceptions are verbs which WordNet marks with the lexical domain 

cognition, emotion, perception, and stative. In these domains, the verbs are mostly stative, not 

actions.  In the remaining WordNet lexical domains, there are currently more than 11,000 action 

verbs. Many of these verbs have fine shades of meaning that make it difficult for users to choose 

an action. For example, one sense of walk means to “use one’s feet to advance.” Another sense 

means “traverse or cover by walking.”
24

 Since HXP does not seek such nuances, a future version 

of HXP will have fewer choices of verbs, as discussed in Chapter 6.  

4.3 Value Templates 

HXP’s uses a small number of structures, called value templates (VTs), which can be 

combined in various ways to prompt users for the appropriate argument at the appropriate time. 

For example, there are many semantic field predicates such as color, texture, and shape where 

the user selects from a collection of values.  For such predicates, a VT called VtEnum 

enumerates the possible choices. For more complex predicates such as desire or belief, which 

require several input values, there are complex VT hierarchies. The parent VT (i.e. top level VT) 

                                                 
24

 Of course there are several other walk verbs, such as “accompany or escort” and “obtain a base on balls,” but 

these are easy for users to distinguish. 
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contains a sequence of child VTs that walk the user through the choices. In turn, a child VT can 

have its own children, and so on.    

The HXP database associates one top-level VT with each predicate. For example, the 

predicate color is associated with VtEnum, which enumerates all of the semantic field values of 

color and presents them to the user in a drop-down list. The predicate next to is associated with a 

VT called VtSpecificObject, which gets a list of every object in the key frame and lets users 

choose one of them.  

VTs are somewhat related to FrameNet (Fillmore, 2003) because they encode the type of 

arguments that a predicate can have. However, VTs are simpler than Fillmore’s frames. They do 

not mark semantic roles like buyer or currency. Rather, they mark the type of HXP item that the 

user can select (e.g. an object in the room, a semantic field value, etc). Their purpose is simply to 

make user input easier. Furthermore, with the goal of a reduced vocabulary and sentence 

structure, a VT allows a very limited choice for a predicate’s argument structure. The next 

section presents the different types of VTs and how they are used.  

4.3.1 VtEnum 

 

Figure 19: VtEnum displays a drop-down list of items to select, based on an enum semantic link. 
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VtEnum is the top-level VT associated with the semantic field predicates: color, shape, 

time of day, simple mental state, etc. It is implemented by reusing WordNet semantic links. 

These links have predefined relationships among concepts such as hypernyms and meronyms.  In 

the HXP database, I defined a new semantic link, which I called enum. I manually populated the 

HXP database with appropriate enum links for the various semantic fields. For example, the 

concepts afternoon, daytime, evening, lunchtime, morning, and night are all linked to the 

predicate time of day. Figure 19 shows an input screen to choose a value for time of day. To 

populate the drop-down list, VtEnum simply retrieves all of the enum links from the HXP data 

for the given predicate and displays them to the user. A future version of HXP will 

 

Figure 20: VtSpecificObject displays a list of objects from the current key frame. 
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have an input screen that allows users to add new enum semantic links so that more choices can 

be offered.  

4.3.2 VtSpecificObject 

VtSpecificObject is used whenever the user should choose an object from the current key 

frame. Figure 20 shows an input screen to select the object of a relative location, and the user can 

select any object in the key frame, such as arms, coffee table, and easy chair. VtSpecificObject is 

the top-level VT associated with all relative location predicates. It is also used as a lower-level 

VT in any situation where an object must be selected.  

4.3.3 VtActionVerb 

 
 

Figure 21: The action verb template allows the user to choose from four verb argument 

structures. 

 

 

VtActionVerb is used to fill in the arguments for action verbs. Users can choose from four 

argument structures:  

1. verb only – no object (intransitive) 

2. verb + direct object  (transitive) 

3. verb + prepositional phrase (one adjunct) 

4. verb + direct object + prepositional phrase (ditransitive) 

 



73 

 

These choices seem to be adequate for most verbs. Depending on which form is selected, 

VtActionVerb creates the corresponding child VT, either VtIntran, VtTrans, VtAdjunct, and 

VtDitrans. Figure 21 shows the screen where the user selects choice 2, verb + direct object. To 

handle selection of an object, VtActionVerb transfer control to its child VtTrans, which allows 

the user to select the direct object.  

 
 

Figure 22: The user has selected verb + direct object, so now the user is prompted to select an 

object. The user is going to select vase, which will result in “Max breaks the vase.”  
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As Figure 22 shows, if the user selects vase, the resulting sentence that combines the verb and 

direct object would be “Max breaks the vase.” VtTrans reuses VtSpecificObject to handle this 

logic. To illustrate this reuse, we can see that the drop-down list in Figure 22 above is identical to 

the list displayed above when selecting a relative location in Figure 20 above. 

4.3.4 VtSubordinate 

 
 

Figure 23: VtSubordinate allows users to specify the arguments of a subordinate clause. It is used 

with mental states like desire and believe. 

 

VtSubordinate is used for mental state predicates that require a subordinate clause, such 

as able to, desire, believe, decide to, and expect. As shown in Figure 23, VtSubordinate first 

prompts for the subject of the subordinate clause. (It reuses the previously selected 
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VtSpecificObject for this task.) The user has selected Max, which is the same as the matrix 

subject. Rather than displaying “Max desires that Max do some action,” the software removes 

the redundant subject in the subordinate clause and outputs “Max desires to do some action.” 

After prompting for the subject of the clause, VtSubordinate then prompts the user to choose an 

action or state. If the user chooses action, VtSubordinate switches control to a 

VtActionStatement, which prompts for a verb and its arguments, reusing VtActionVerb, 

described above. If the user chooses state, VtSubordinate switches control toVtStateSentence, 

which prompts for the state predicate and its arguments.  

4.3.5 VtAttention 

 

Figure 24: VtAttention is used for predicates that express propositional attitudes and attention. 

The user first chooses the target of the attitude/attention. 

 

VtAttention is used for predicates that express propositional attitudes and attention like 

curiosity, know, see, and love. The user is prompted to choose the target of the propositional 

attitude. As shown in Figure 24, the target can be one of four types: 
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1. object: any object in the key frame  

2. attribute of an object: any stative predicate 

3. something involving a previous statement: the user will construct a question about a 

previous statement;  

4. what would happen if something else were to happen: the user will construct a what-if 

statement 

 

 

Figure 25: The user is curious about an attribute of an object. In this case, it is weight. 
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These choices allow the user to say things like “Max is curious about the vase,” “Max is curious 

about the texture of the vase,” “Max is curious about why the vase is on the side table,” and 

“Max is curious about what would happen if Max drops the vase.” 

Figure 25 shows a screen where the user has selected attribute of the object. In the figure 

the user is prompted to choose the attribute. In this case, it is weight. After selecting the attribute, 

the user is prompted to select an object, as shown in Figure 26. In this case the user selects vase, 

arriving at the statement “Max is curious about the weight of the vase.” As another example of 

VtAttention, Figure 27 shows how a user constructs “Max is curious about why the vase is on 

top of the side table.” In the middle of the figure, the user has responded to “What is Max 

curious about?” with something involving a previous statement. Following this selection, HXP 

prompts the user to select an item from the previous statements (not shown). The user selected 

“The vase is on top of the side table.” After this selection, HXP constructs a series of choices 

from the statement, prepending it with the fact that, why, how, where, what, and what happened 

as a result of. HXP also creates a filler-gap construction for each argument of the statement’s 

predicate (except for the subject). In this case, the predicate on top of has one argument: side 

table. Therefore, HXP creates one filler-gap construction: “what the vase is on top of ___.” As 

another example, suppose, the previous statement had been “Max brings the vase to the side 

table,” which has two arguments. HXP would generate “Max is curious about what Max brings      

to the side table” as well as “Max is curious about what Max brings the vase to ___.” 
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Figure 26: After selecting the weight attribute, the user now selects the object. 
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Figure 27: The user is constructing "Max is curious about why the vase is on top of the side 

table." First the user chooses the previous statement, "The vase is on top of the side table." Then 

HXP constructs different subordinate clauses from which the user may choose. 

 

4.4 Summary 

HXP uses a controlled natural language and a structured user interface to help non-

experts enter unambiguous natural language statements. HXP divides predicates into two main 

classes: statives and actions. Stative predicates are further divided into mental states and physical 

states, and physical states are further organized into several subcategories such as health states, 

locations, and structural relations. The user test revealed that the various subcategories are not 
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very useful to help non-experts find the vocabulary they want. Users prefer simply to type in a 

word and have the system search for a synonym.  

 After presenting the various categories of predicates, this chapter describes modular data 

structures called value templates. There are several different types of these structures, and the 

HXP database associates each predicate with a top-level value template. The value templates 

provide a general mechanism for guiding the user through a multi-step process to choose input 

values.  
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CHAPTER 5: EVALUATION OF THE METHODOLOGY 
 

This chapter presents an evaluation of the HXP methodology via a ten person user test. 

First, it describes the data collection process for this test. Then it gives an overview of the 

collected data. After the overview, it presents the data analysis, which includes an evaluation of 

the data quality as well as the data coverage with respect to what I had previously proposed to 

collect. Finally, it describes some points of confusion encountered during the user test and their 

resolution. 

5.1 Data Collection Process 

There were ten participants for the user test. The test was approved by the Institutional 

Review Board of LSU, as shown in Appendix F. All of the test subjects were acquaintances, or 

associated with acquaintances. There were five LSU undergraduates, with one majoring in 

music, one in English literature, one undecided, and two from biology. There were four 

professionals with at least a bachelor’s degree in accounting, psychology, business computing, 

and linguistics.  Finally, there was one high school student in ninth grade. Using the system 

requires an understanding of eighth-grade grammar, so the minimum age to participate was 13. 

For this test, ages ranged from 15 to 54, with half of the subjects below age 25. Half were 

female, half were male. Although native English ability is not necessary, all of the subjects were 

native English speakers. Those of student age were paid minimum wage for two hours’ work.  

The evaluation consisted of a one-on-one training session for about two hours, followed by a 

second session where I asked subjects to annotate on their own a minimum of two key frames.  

In the training session, I introduced the subjects to automated NLP and the HXP goal of 

collecting simple life experiences. Then I went through the first three frames of “Max breaks the 

vase,” creating statements and explaining them with general rules. In each case, the subjects 
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breezed through the first two frames, but as soon as they encountered “Why does Max stand 

up?” in the third frame, they were stuck. I spent the majority of the training talking them through 

the process of filling in missing information and generating relevant rules. Consequently, all of 

the subjects were interactively guided to produce a rule similar to Rule (7) from Chapter 1 during 

the training.  

In the second session, I asked subjects to drive the input, specifying the statements and 

rules. These sessions were always with individual subjects with no collaboration. Since this was 

an evaluation of the methodology, not the software per se, I handled the mouse and keyboard to 

relieve the subjects of worrying about screen navigation. However, one subject preferred to do 

the navigation.  

Two of the ten subjects were able to create statements, but were confused about how to 

create general rules and did not complete the test.  The remaining eight created an average of 12 

statements and explained them with general rules. It took about 1-1.5 hours to produce these 

statements, as subjects were still getting used to the methodology. Four of these eight found the 

process doable, but tedious and difficult. They were happy to do the minimum and finish, each 

creating about five statements.  However, the other four subjects said that the program was cool 

and “nerdy fun.” They produced an average of 20 statements, with the maximum of 25. All four 

voluntarily continued until all frames were annotated. Two of them were motivated by the points 

awarded to each statement, and one in particular asked what others had done and made sure to 

double it. 

5.2 Overview of the Collected Data 

Figure 28 shows the statements from the first six frames created by User#4, one of the 

more prolific subjects. The statements are rich in detail, capturing intention, emotion, location, 
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Figure 28: User annotations from the first six frames. The numbered statements are key frame 

captions, representing actions. The statements below each caption are the stative effects of the 

action. 

 

and movement. Each of the numbered statements is a key frame caption. Except for the opening 

setting, the captions are actions and the statements below them are states that result from those 

actions.  



84 

 

 

All of the captions and statements were created by the user. During training on the first 

three key frames, I gave hints on what to do. Figure 29, which shows the explanations for the 

statements in key frame 4, represents the type of rules that users created on their own. 

The first line in Figure 29 begins an explanation of the caption of key frame 4: “Why 

does Max walk to the side table?”  The explanation comprises three previous statements: The 

vase is on the side table, Max desires to walk to the vase, and Max is standing. In the rule, these 

three statements are generalized.  That is, object is a generalization of vase, person stands for 

Max, and table stands for side table. 

 

Figure 29: Rules created to explain the statements in key frame 4 

 

The second block in Figure 29 answers the question, “Why is Max is near the side table?” 

The explanation comprises just one previous statement, the caption itself: Max walks to the side 

table. It is generalized so that living thing now stands for Max, goes stands for walks, and object 

stands for side table. 
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The third block in Figure 29 answers the question “Why does Max desire to pick up the 

vase?” The explanation comprises generalizations of three previous statements: Max is near the 

side table, the vase (generalized to jar) is on the side table, and Max desires to pick up the vase.  

Each of the three rules in Figure 29 is excellent; they adequately explain the 

corresponding frame statement, and they are nicely generalized so that they may apply to many 

situations. The first and third rules are justified in having a confidence of probably, because they 

assert what usually one would expect, given the statements in the antecedent. In contrast, the 

second rule has a confidence of definitely, which is appropriate because in the context of a 

typical narrative directly after a living thing goes to some object, then an NLP application would 

almost always be correct in subsequently placing the living thing near that object.  

5.3 Data Analysis 

Appendix B lists all the data for the 8 test subjects that completed the evaluation.  The 

subjects are labeled User#1 thru User#8. The two subjects that did not complete the test have no 

data and are not listed. The data shows the user label followed by data for each of the key 

frames, including those used for training, which are marked as such. Except for User#7, the first 

three key frames were for training purposes. User#7 requested two additional key frames of 

individual training. Although the data produced during training are not included in the overall 

statistics, these data are nevertheless listed in Appendix B because users were allowed to create 

their own interpretations as they trained, and these interpretations affected the subsequent data. 

5.3.1 Differences in Interpretations 

HXP welcomes different interpretations of the actions.  For this test, most of the users’ 

interpretations assume that Max simply wants to have fun when he drops the vase. However, in 

the interpretation of User#5, Max drops the vase because it is too heavy and uncomfortable to 
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hold. In contrast, according to User#3 and User#4, Max’s actions are because he is a naughty 

boy.  User#3 even added additional details that Mommy is standing in the back yard and angry; 

Max is also angry and desires to break the vase because he thinks Mommy likes the vase. None 

of these different interpretations should be considered the most accurate. As long as there are 

good explanations, it is all valuable data.  

5.3.2 Data Quality (Precision) 

The users had been asked to produce rules with a confidence of at least probably if they 

could come up with a justified explanation, and all the subjects tried hard to do so. Of the 106 

total rules, 96 (90%) have a confidence of either probably or definitely.
25

   

To test the quality of the rules, I used a panel of three judges, consisting of myself and 

two of the more enthusiastic test subjects (User#2 and User#4). Each judge independently rated 

all the rules as either Acceptable or Unacceptable. An acceptable rule was one that judges felt 

was a generally true statement, independent of a specific story. An unacceptable rule had the 

confidence level too high or was missing at least one critical explanation. Rule(15) below is 

unacceptable because the object could be something that does not normally break when dropped. 

The rule would be acceptable with an additional condition that the object is breakable.
26

 Rule 

(16) is unacceptable because, just because a person desires to do something, we cannot say that 

the person will definitely do it.
27

The rule would be acceptable if the confidence was changed to 

probably.  

 

                                                 
25

 There are many rules with possibly in the first key frame to establish the opening setting, but these occurred 

during the training session and are not counted here.  
26

 The rule would also be acceptable if the confidence was changed to possibly, but the goal is to create rules with a 

confidence of at least probably. 
27

 One of the test subjects suggested this sensible guideline: an agent’s intentions or desires are never enough to 

warrant a confidence level of definitely because goals can be blocked in many ways.  
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15) IF a person picks up an object 

AND the object falls  

THEN probably the object breaks 

 

16) IF a person desires to walk to an object 

AND the object is on top of a table  

THEN definitely the person walks to the table 

 

The judges found 83 (86%) of the 96 rules to be acceptable. The opinions were unanimous on 

75% of the rules, and we took the majority opinion on the remaining 25%.  

In a few cases, there was a strong dissent to the majority opinion. However, the judges 

discussed the different opinions and came to a decision. For example, in Rule 7b of User#10, 

there was a difference of opinion about what it means to “turn oneself.” Paraphrasing the rule, a 

person who turns himself definitely ends up facing a different direction. Two judges felt that 

definitely was too strong because a person could turn his torso and not turn his head; therefore, 

he could continue facing the same direction. The other judge felt that turning oneself always 

means turning to face a different direction. After some discussion, the majority ruled. As another 

example of dissent, rule 7b of User#2 says that if an object is made of ceramic, it is probably 

heavy. One judge disagreed, bringing up the possibility of a tiny ceramic figurine. Nevertheless, 

the other two judges overruled on the grounds that, in the normal case a ceramic object is 

probably relatively heavy. The decision turns on whether tiny ceramic figurines are “normal” 

when one thinks of ceramic objects, and this is highly subjective. As mentioned earlier, HXP is 

intended to be a wiki project, which means there is a good way to arrive at a consensus on such 

matters. Since users will be viewing and discussing the rules, it is important that the rules be easy 

to read and understand. The fact that non-expert judges were able to discuss the rules without 

having to decipher them first suggests that the rules are easy enough to understand.   
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In the field of information extraction, precision measures the relevancy of extracted 

data.
28

 The 86% acceptability rating here could be viewed as analogous to precision. The 

companion measurement of recall is considered in the next section.  

5.3.3 Data Coverage (Recall) 

Parallel to information data precision is recall,
29

 which in this case, would evaluate 

whether I captured all the data that I intended to capture. One way to measure this objectively is 

to compare the collected data with the sample annotations that I proposed to collect before 

implementing this project. Appendix A shows the data that I original proposed to collect. It 

shows my interpretation of “Max breaks the vase” annotated with details about intention, sensory 

perception, location, and movement.  A significant change between this proposed data and the 

data actually collected is the presentation of key frames. Originally, I had proposed to show a 

hierarchy of panels instead of the flat, non-hierarchical presentation of key frames. The next 

subsection describes this change in presentation. Having explained the correspondence between 

the panels of Appendix A and key frames, I will compute a recall score for each user by 

comparing the user’s data against the data in Appendix A.  

Flat Organization of Key Frames 

Figure 1 in Chapter 1 displays the key frames of the sample scene laid out like a film 

strip. This flat representation is excellent for showing how the action unfolds, and HXP users can 

“animate” an experience simply by quickly clicking between key frames. Unfortunately, the flat 

view does not capture commonsense intuitions about how people linguistically conceptualize 

events. For example, if a narrative has an action, there is often an implied hierarchy of actions 

                                                 
28

 The meaning of precision used here should not be confused with the scientific or engineering sense that applies to 

accuracy of a measurement. 
29

 The meaning of recall used here should not be confused with the psychological sense that involves memory 

retrieval. 
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rather than just the single action. For example as we will see, people could use the same 

statement “Max picks up the vase” to refer to different levels of the hierarchy. 

 

Figure 30: Hierarchical view of “Max Breaks the Vase.” Originally, users were to create this 

hierarchy, but they found this task too difficult and abstract.    

 

Figure 30 shows an example of this type of hierarchy. At the top of this hierarchy is “1.3 

Max picks up the vase,” which has two implied subactions. The first is “1.3.1 Max goes to the 

side table,” and the second is “1.3.2 Max picks up the vase.”  In other words, if a person is next 

to a couch and desires to pick up a vase, we assume that the person will walk to the vase first as a 
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precondition for picking it up. In a normal narrative or day-to-day conversation, this assumption 

is not articulated; nevertheless, it is an important precondition to the action. 

At the second level of Figure 30, we see “1.3.2 Max picks up the vase.” In this 

conception of the action, there are two very granular actions, one of which is also captioned 

“Max picks up the vase” but marked with “1.3.2.2.” It is this most granular conception of the 

action that matches the semantics of the verb phrase pick up – “to take and lift upward.”  Of 

course there are probably infinite ways to conceptualize an action into a hierarchy, and the goal 

was to collect as many reasonable commonsense intuitions as possible about implied 

action/subaction relationships.  

However, early user tests indicated that the hierarchical view was too abstract and 

difficult to work with. The multiple levels of key frames shown in Appendix B were confusing to 

users. They did not understand that only “leaf” key frames, the ones at the lowest level, were to 

have state annotations. For example, only 1.3.2.1 Max picks up the vase has annotations other 

than a caption, but users had a difficult time understanding what type of annotations belong at 

which level. To remove this understanding barrier, I removed the hierarchical view altogether. 

However, I believe it may be possible to infer hierarchies of actions from the data, as discussed 

in 6.4 Action/Subaction Relationships and Event Semantics.  

Measurement of Recall 

To measure how well users performed against the statements proposed in Appendix A, 

the statements were first grouped according to whether they represent intention, location, 

movement or position, or sensory perception.  The Appendix A statements, arranged by key 

frames and statement categories, are shown in Table 1. Next, the data provided by each user 

were compared against the data in this table. Since the first three key frames of “Max breaks the 
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vase” were for training, only key frames 4-10 are considered. These seven key frames 

correspond to Appendix A, panels 1.3.1.2, 1.3.2.1, 1.3.2.2, 1.4.1, 1.4.2, 1.4.3, and 1.4.4. 

Table 1: Appendix A statements, arranged by key frame and statement category. Since the first 

three key frames were for training, only key frames 4-10 are considered. Each column lists the 

key frame number with its corresponding hierarchical panel number from Appendix A. Each row 

shows the category of the key frame’s statement. 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks 

to the side 

table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps the 

vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 
 

The vase 

breaks 

Intention 
Max intends 
to pick up 
the vase 

  
Max decides 
to break the 
vase 

Max expects the vase 
to fall, Max is excited 

    
Max is having 
fun 

Location 

Max is at the 
side table; 
The side 
table is in 
front of Max 

  
The vase is 
above the 
table 

The vase is above the 
floor 

Then vase is 
not 
supported 

The vase is 
lower 

The vase is on 
the floor; The 
pieces are on 
the floor 

Movement 

or 

Position 

Max is 
standing 

Max is holding 
the vase 

Max's arms 
are raised.                        

Max is facing away 
from the side table; 
The vase is above the 
floor; Max's torso is 
twisted 

Max's hands 
are open   

The vase is 
broken 

Sensory 
  

Max thinks the 
vase feels 
smooth. Max 
thinks the vase 
feels cool 

Max thinks 
the vase is 
heavy 

  
 

  
The vase 
makes a loud 
crash 

 

In Table 1, the key frame headings are shown with the hierarchical numbering from Appendix A, 

as well as the key frame caption. For example, the first column is labeled as key frame 4, which 

corresponds to panel 1.3.1.2 in Appendix A. The caption is “Max walks to the side table.” The 

Intention category has the statement “Max intends to pick up the vase.”
30

 The Location category 

has two statements, “Max is at the side table” and “The side table is in front of Max.” The 

Movement or Position category has “Max is standing.”
31

 The final category of Sensory has no 

statements for this key frame.  

The next column of Table 1 is from key frame 5, which corresponds to Appendix A panel 

1.3.2.1 “Max grasps the vase.” Appendix A shows no changes in the categories of Intention or 

                                                 
30

 This statement actually occurs in a previous key frame of Appendix A, but the statement still holds. 
31

 Ibid. 
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Location, so these are left blank in the table. However, in the Movement or Position category, it 

has a statement about Max holding the vase. Also, in the Sensory category, it captures Max’s 

perception of feeling the smooth, cool ceramic. It is important to note that the relevance of Max’s 

sensory perception depends on the Appendix A interpretation of why Max desires to pick up the 

vase. Max is curious about its texture and weight, and so the smoothness and weight are noted. 

However, for other interpretations, it would not be necessary to capture this information. 

Therefore, when comparing the user data to the data in Table 1, we must take into account 

whether the data is necessary for the user’s interpretation. On the other hand, I believe some 

sensory perceptions, such as seeing the vase or hearing the crash, are more critical than others 

because they are part of the general experience of dropping a breakable vase. The user must see 

the vase to notice it; the word “CRASH” is specifically shown in the key frame’s image. Also, 

changes in location or position are almost always considered necessary since these are critical to 

commonsense understanding. 

Table 2: Statements taken from User #1 in Appendix B. Key frame 4 has an intentional statement 

and positional statement, but it has no annotation about Max’s location. Key frame 5 has 

statement about movement/position, but it is missing a statement about sensory perception. 

However, the user’s interpretation did not need to annotate this perception, so the data is marked 

Not necessary. Key frame 6 is missing statements in all four categories, but two are not 

necessary. Since the user stopped after key frame 6, the rest of the key frame comparisons are 

NA – Not applicable. 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks 

to the side 

table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps the 

vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 
 

The vase 

breaks 

Intention 
Max desires 
to disturb 
the vase 

  Not necessary NA     NA 

Location 
MISSING   MISSING NA NA NA NA 

Movement 

or 

Position 

Max is 
standing 

Max is in contact 
with the vase 

MISSING NA NA   NA 

Sensory 
  Not necessary Not necessary   

 
  NA 
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We will consider the data in Table 1 to be the gold standard by which user performance 

will be measured. We compute a recall score by categorizing user statements in the same way 

and then comparing them against Table 1. The categorized user data are shown in the tables at 

the end of Appendix B. As an example of how recall was measured, let us examine the data for 

User#1, taken from Appendix B and shown above as Table 2 for convenience.  

In key frame 4 of Table 2, the user has statements in two of the three expected categories. 

That is, for Intention the statement is “Max desires to disturb the vase.” For Location the 

statement is MISSING. For Movement or Position, the statement is “Max is standing.”
32

 

However, as Table 1 shows, the user was expected to annotate Max’s location after having 

walked to the vase. Since the user did not annotate a new location, this information is marked as 

MISSING for the recall measurement.  

In key frame 5 of Table 2, the user has a statement in the Movement or Position category, 

but the user is missing a statement in the Sensory category that would describe what Max feels 

when he grasps the vase. However, since the user had no special interpretation involving the 

texture of the vase, this was marked Not necessary, which means the category will not be 

counted for this key frame. 

In key frame 6, the user is missing statements in all four categories. That is, the user has 

failed to capture Max’s excitement or any intentional data after having picked up the vase. Also, 

the user has not captured the fact that the vase’s location has changed, nor the fact that Max’s 

position has changed, nor the sensory data about the weight of the vase. However, in this case, 

Max was not experiencing any new intentional data, and the weight of the vase is irrelevant. 

Therefore the Intention and Sensory categories are marked Not necessary. In contrast, the 

                                                 
32

 The data for User#1 in Appendix B actually shows that “Max desires to disturb the vase” is in a previous key 

frame. Nevertheless, this intention continues to hold in key frame 4, so it was not necessary to repeat it. 
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Location and Movement or Position categories are considered critical, and they are marked 

MISSING. Finally, in key frames 7 – 10, all of the data is marked NA – Not Applicable because 

the user did not attempt to annotate these key frames.  

Having compared Table 2 against Table 1, we can now measure the recall for User#1. 

User#1 provided 3 out of the 6 critical types of statements expected in key frames 4-6, for a 

recall score of 50%. The data for key frames 7-10 are not counted since the user did not attempt 

to annotate these frames. Thus, User#1’s recall score is 50%. 

The recall data for the rest of the users are shown in the tables at the end of Appendix B. 

The average recall score is 60/90 (67%), with half the users clustering at 50% and the other half 

clustering at 80%.  

5.4 Confusion With Actions Vs. States 

The HXP interface allows users to choose either actions or states when creating a caption. 

This leads to confusion about whether a caption describes an action or state.   For example, the 

user may choose vase for the object and then choose the verb fall. HXP displays this as an action 

“The vase falls.” But the user may understand it as a state, equivalent to “The vase is falling.” It 

was difficult to explain the difference between states and actions to users. Indeed, during the user 

test, key frame 9 “The vase falls” was ambiguous because it was not clear whether the vase 

completes the falling action during the key frame or whether it was in a state where it was 

continuing the fall.  The sample in Appendix A shows that the vase is continuing to fall; User #2 

assumed this to be the case. However, other users were confused, and thought the vase should 

have completed the action. 

To clarify the interpretation of actions and states, I will change the structure of key 

frames so that HXP assumes the statement in the caption is an action that begins and ends in the 
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key frame. Furthermore, it will assume all other statements are somehow related to the action. So 

if the user is creating the caption, fall would be displayed as “The vase falls.” If the user is 

creating a statement in the body of the key frame to describe the vase, it would be displayed as 

“The vase is falling.” During the user test, I proposed that users interpret the statements in this 

way (even though I had not implemented the change in HXP), and they were able to interpret 

statements more easily.  

 Another point of confusion for users was how to break up a narrative into key frames. In 

the original version of “Max breaks the vase” as presented in Appendix A, there is a key frame 

for “Max looks around for something to do” and a separate key frame for “Max notices the 

vase.” However, it is not clear whether noticing the vase is a state or action. By adding the 

constraint that the key frame represents an outwardly observable action, we eliminate confusion 

about when to create key frames, and we provide a clear relationship between a frame image and 

its caption. 
33

  

 The well-defined structure that places actions only in the key frame’s caption and effects 

only in the key frame’s body is less confusing to users, but it also has other benefits.  First, 

whenever an object is part of a caption, the system can automatically remind the user to check if 

the object has changed. Second, when a user provides an explanation for a statement, the system 

can verify that the statement is an effect, either directly or indirectly, of the key frame’s caption. 

These reminders and constraints will help the user decide what to do next and make it easier to 

choose sensible explanations. 

                                                 
33

 If the action must be observable, then we will have to figure out how to represent actions that are normally not 

observable, like swallowing food.  



96 

 

5.6 Summary 

In a ten person user evaluation, eight people were able to contribute high quality, detailed 

data using this methodology. Of those eight, half found the process tedious and difficult, but half 

found it to be challenging and fun. Within the limitations of such a small number of subjects, and 

of the inherent biases associated with using acquaintances, I am encouraged by the results that 

86% of the user-built rules were acceptable, particularly because I purposely did not choose 

computer science majors or AI fans. I am also very pleased that, of the eight that contributed, 

four were able to provide more than 80% of the types of data that I had proposed to collect, 

especially since my proposed data is arguably an upper limit on what a non-expert could be 

expected to provide. Finally and crucially, users could easily understand the annotations of 

others and found it enjoyable to identify others’ problems. Thus in the future, users should be 

able to build on each other’s ideas. 

It took from one to two hours to train the users in the first three key frames, and about 1.5 

hours to complete the annotations of the remaining 7 key frames. However, the users got faster 

as they gained more experience. Clearly it is unrealistic to think that we can recruit armies of 

casual volunteers to use this framework for collecting experiential data. But with improvements 

in training and a wiki format where annotators view and discuss each other’s work, I believe we 

may be able to tap into that small percentage of the vast web population that would enjoy 

collaborating on this important, but difficult, task. 
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CHAPTER 6: FUTURE WORK 
 

HXP can be extended in many directions for NLP and other related research areas. This 

chapter first outlines a series of tasks, starting with those with the highest priority, that will take 

the current work from a proof-of-concept to fully functioning wiki collaboration. Then it 

discusses several possible follow-up research projects. These involve implementing a question-

answering module, integrating HXP with other NLP projects, exploring action/subaction 

relationships with event semantics, and applying the HXP data and methodology to other areas, 

including models of cognition. 

6.1 Planned Tasks  

6.1.1 Improvements to the User Interface 

As a result of the user test, several places where the user interface could be improved were 

noted. The system should explicitly prompt for the intentions or goals of each character. The 

system should also remind the user to check what states have changed from one key frame to the 

next. Finally, the system should prompt for sensory states such as seeing the vase, touching the 

surface of the vase, and hearing the loud crash. Finally, as discussed in Chapter 4, the system 

should allow users to add new predicates and predicate categories.  

Also discussed in Chapter 4, to make it easier for users to choose action words and to identify 

patterns in the data, we want to reduce the verb vocabulary. One way to reduce the verbs is to 

use Elson’s strategy (2012) of selecting from the pool of verbs in VerbNet. Another would 

simply be to manually filter out verb meanings in WordNet that are so similar that users would 

be expected to have difficulty choosing between them. I estimate this filtering effort would take 

me about two weeks.  
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6.1.2 More Expressive Input 

I have successfully implemented a proof-of-concept system to represent simple 

experiences. However, many more structures are needed to represent more complex scenarios. 

At minimum, HXP needs adverb representation because even simple situations need to express 

the degree of an action. Likewise, it needs simple dialog so that there can be some 

communication among characters. Later, it needs predicates about social relationships, 

comparisons and time durations. It also needs to be able represent abstract concepts, group 

behavior and simple quantification. Furthermore, to work with larger narratives, there needs to 

be a representation for repetitive actions. 

6.1.3 More User Experiments 

Once the software is more fully implemented with the changes discussed above, there 

should be more extensive user tests taking into account user background, education level, age, 

and interests. The goal is to predict the population of users that would most likely use the system. 

Non-native English speakers should be included in the test since English fluency is not a 

requirement to use the system.  

6.1.4 Cultural Biases  

Since we want to be able to annotate children’s stories, at minimum HXP should add 

more annotation categories to identify objects and situations that are magical. Thus, the general 

rules can have qualifications like: “If a snowman is magical, possibly it can fly” or “If a rabbit is 

magical, possibly it can talk.” To address inherent cultural biases, we might want to include 

predicates for culture or geographic location.  



99 

 

6.1.5 Inference  

As discussed in Chapter 3, I have implemented a simple single-step forward chaining 

inference mechanism to predict what else might be true from a given statement. The next logical 

addition would be to add backward chaining to fill in the gap between what is stated and what 

might have been the reason behind the statement.  This would make the system less tedious to 

use since it could fill in explanations automatically if there is already a relevant rule. 

 In the longer term, more work is needed, even with single step inference, to make rule 

handling match user intuitions. For example, consider the following two rules about eating cake:   

17) IF a person eats cake 

AND the person is full 

THEN Probably the person is happy 

 

18) IF a person is full 

AND the person eats cake 

THEN Probably the person is unhappy 

 

The natural language interpretation of these statements has an implicit order. In (1), the person 

first eats cake and then is full. In (2), the person is already full before eating the cake, causing 

unhappiness. Currently, the inference procedure does not take into account the implicit order of 

the statements, so both rules would match if Max eats cake on a full stomach. Neither does the 

inference procedure take into account intervening steps. We can imagine a rule about playing 

with the lights: 

19) IF a child turns on a light 

And the child turns off the light 

And the child turns on the light 

Possibly the child is playing 

 

However, in a longer scene where Max turns on the light, reads for a while, turns off the light to 

go to bed, and then turns it on when he gets up in the middle of the night, he is not playing. 

When users create rules with multiple actions like (19), there may be an implicit natural language 
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interpretation that the actions occur in sequence.  Once we have longer scenes, we will have to 

address this issue and probably others that involve unintended inferences.  

6.1.6 Data Format 

HXP narratives are currently exportable to a standard extensible mark-up language 

(XML) file. Nevertheless, the data format is not portable because HXP elements refer to internal 

database entries which are not standard. There needs to be a portable format for HXP-defined 

concepts and a versioning system so that XML narrative files either have self-contained data or 

references to standard data. It will also be desirable to provide a mapping between the statements 

of HXP and the XML elements in a standard language like ISO-Space (Pustejovsky et al., 2011). 

6.1.7 Web Implementation 

To take the project from proof-of-concept to fully functioning wiki collaboration, the 

software should be implemented as a thin client (i.e., accessible via an Internet server) with a 

host of features to make it more like a social networking or education web site where people 

comment on each other’s work and make suggestions.  Similar to a software development 

environment, there are issues with keeping track of modifications. That is, users may refer to 

rules in their narratives, and other users may make modifications to those rules, and the system 

needs to be able to verify that the modified rules still apply to existing references in other 

narratives. 

6.1.8 Motivating Users 

  A significant future challenge will be to motivate workers to participate in this project. In 

the small user test, some users were definitely motivated by the competition to get more points 
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by adding more detail. They also had fun looking at other people's work and making comments 

and refinements.  

I suspect users would be motivated by a series of small, reachable goals. We could start 

with an annotated corpus of experiences that correspond to the children’s stories from the 

initiative of (McCarthy et al., 2002). We could also create a challenge to annotate a set of 

experiences related to a common theme like getting something off a high shelf, similar to the 

sample commonsense scenario suggested by (Minsky et al., 2004). 

6.1.9 Integration with a 3D system 

In the more distant future, I envision integration with a 3D environment like Story-

Understanding Alice (Kelleher & Pausch, 2007) or WordsEye (Coyne & Sproat, 2001).  As 

discussed in (Weltman, 2009), 3D environments implicitly represent commonsense knowledge 

about objective locations and movement. Integrating HXP with a 3D system would offer a 

valuable mapping between objective data grounded in a virtual environment and subjective 

intentional descriptions.  

6.2 A Question-Answering Module  

The HXP methodology produces detailed, coherent narratives, but it captures only 

commonsense detail that is relevant to the specific experience. It does not capture detail that is 

important for understanding the experience but not needed to explain an action. For instance, 

users may not be inclined to annotate the fact that Max faces forward, not backward, when he 

walks to the vase; that Max is supported by the floor; that the vase is immobile, not spinning, etc. 

These states are true by default, but an NLP system would not necessarily know the default rules. 

One way to get at default information would be to add a Question Answering module to HXP 

that allows users to ask off-topic, arbitrary questions about an experience: Is Max floating in the 
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room? Is Max wearing goggles? If the answer is wrong or unavailable, users could answer the 

question and then create a rule to explain the answer.  

Fortunately, once rules are in place to answer arbitrary questions about one experience, 

they can be used to answer similar questions in the future. Thus, gradually, HXP would be able 

to provide reasonable answers to many arbitrary questions about an experience, as we would 

hope from a story-understanding program.  

 Related to the problem of default rules is the problem of dealing with what-if questions: 

What if Max drops the vase on the couch instead of the floor? What if Max drops a wooden 

ashtray rather than the vase? What if Mommy comes into the room before Max is able to pick up 

the vase? These alternative scenarios would provide a lot of commonsense information.  

6.3 HXP and Other NLP projects 

I believe the HXP methodology would integrate with deep semantic architectures such as 

Scone (Fahlman, 2011). The Scone project models how cognition grows with gradually available 

knowledge. It represents mental states as descriptions within contexts, somewhat similar to how 

HXP represents states within a context of a key frame. One of the open problems in Scone is 

how to make it easier for users to add new knowledge, so the HXP methodology could feed 

directly into Scone’s knowledge bank. (Schubert, 2006) outlines several architectures and 

strategies to achieve human-level reasoning. All of these systems would benefit from the type of 

experiential data proposed for HXP. Finally, once HXP has collected a very large number of 

experiences, perhaps on the order of ten thousand, statistical NLP applications and tools could 

make use of the associations between actions, intentions and locations.  
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6.4 Action/Subaction Relationships and Event Semantics 

As described in Chapter 5, my original proposal was to collect information on actions and 

subactions by having users arrange key frames into a hierarchy of actions, but users found it too 

difficult to understand and interpret the different levels of annotations.  

My plan now is for the system to infer action/subaction relationships from key frames 

whose captions have similar explanations. For example, suppose key frame 3 “Max stands up” 

and key frame 4 “Max walks to the side table” both include the explanation, “Max desires to 

touch the vase.”  HXP could infer that the two key frames are subactions of a larger goal to touch 

the vase. Thus, the system could automatically construct a key frame hierarchy, with “Max 

touches the vase” at the top, and with two sub items, “Max stands up” and “Max walks to the 

side table.”  

This type of hierarchical analysis of events may shed new light on event semantics. For 

example, according to the classic event typology of (Vendler, 1957), an accomplishment is an 

event that unfolds gradually before it ends (e.g. bake a cake, pick up a vase), while an 

achievement is an event that happens instantaneously (e.g. notice, explode). In a situation where 

Max is not at a vase’s location and has to walk to it, the event described by “Max touches the 

vase” is clearly an accomplishment. We could refer to the ongoing process of Max’s getting up 

to go to the vase and reaching out to touch it as “Max is touching the vase.”  However, in the 

situation where Max’s finger is right next to the vase and then touches it, Max makes contact in 

an instance, which is an achievement. As is common with achievements, the instantaneous act of 

touching, as a process, evokes repeated touching movements,
34

 as in “Stop touching that vase!” 

Thus, the same action statement “Max touches the vase” could denote either the gradually 

                                                 
34

 Touch could also be interpreted statively, as in “The bookcase touches the ceiling,” but we are referring here to the 

touching action here. 
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unfolding event or the instantaneous event, even though the action touch means “make contact 

with” in both cases. In other words, the accomplishment lexicalized as “Max touches the vase” 

has a subevent which is an achievement that can be expressed lexically with the very same 

phrase, “Max touches the vase.” It may be helpful to consider a contrasting example. An 

accomplishment like “Max bakes the cake” does not seem to have a culminating achievement 

subevent that could be lexicalized as “Max bakes a cake.” Rather, subevents that indicate the 

culmination of the baking event might be “Max closes the oven door” or “Max removes the cake 

from the oven.” In fact, it is quite difficult to pin down a single culminating endpoint for the 

baking accomplishment. These differences suggest that the two events, although both 

accomplishments, could be in different classes. In sum, using the HXP methodology, we could 

examine the lexicalization of events with respect to their implied actions and subactions. 

6.5 Specialized Knowledge Domains 

HXP currently aims to collect common sense that we learn from simple childhood 

experiences, so it does not target the type of knowledge found in specialized knowledge 

domains. However, I believe that the same software and methodology could have special topics. 

For example, there could be a special section aimed at health care professionals that focuses on 

gathering knowledge about simple health care experiences. For specialized domains, users would 

need to create new predicates, similar to the Disciple’s domain-specific implementations (Tecuci 

et al. 2005; Tecuci et al., 2008), as discussed in the case-based reasoning systems of Chapter 2. It 

would be interesting to see if the HXP methodology could be applied to a complex domain like 

military center of gravity analysis, and if so, would the resulting data be different from the type 

produced by the Disciple process (Tecuci et al., 2008). Clearly, to work with global warfare, the 

scale of the experiential model would have to be adapted. Instead of a living room for a 
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background, perhaps it would be a map. Instead of individual characters, perhaps there would be 

army tokens, like a board game.  

6.6 Models of Cognition 

Hxp scenes consist of agents, actions, objects, mental states, and background setting – the 

same properties that cognitive scientists use to model cognition in the human brain (Krueger et 

al., 2009). In these models, the brain abstracts from concrete experiences as it performs essential 

cognitive tasks such as planning and interpreting actions. If concrete experiences and 

abstractions of experiences are critical to cognitive processing, then HXP could be a 

fundamentally new type of resource for general models of human cognition. 
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CONCLUSION 
 

The goal of the Human Experience Project is to collect highly structured life experiences 

in order to help programs associate words and phrases with a larger situational context. AI 

researchers have long recognized the importance of using narrative structures for natural 

language processing. However, attempts to narrow the problem to artificial worlds or specific 

domains (e.g. eating at a restaurant) do not lead to more general AI capabilities. Furthermore, 

attempts to use non-experts to provide simple stories from which commonsense can be extracted 

have also failed because it is difficult for non-experts to articulate knowledge that is obvious to 

people but not to machines. HXP structures scenes into small time slices, guiding annotators to 

describe each frame, with particular focus on intent, location, and movement. Furthermore, it 

applies an automated Socratic Method to draw out hidden assumptions that humans make about 

common situations.  I implemented a proof of concept and conducted a small user evaluation of 

this HXP methodology. The results suggest that non-experts are able to create the high quality 

experiential data that I proposed. 

HXP users create two types of narrative data:  narrative statements model an experience 

at a particular time and place; commonsense rules model how people explain the narrative and 

generalize situations. Other researchers have proposed similar narrative data, but HXP’s 

formalisms open up the possibility of non-experts creating these data, a key first step in creating 

a large-scale effort to collect experiential narratives for both statistically-oriented applications 

and deep semantic processing.   
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APPENDIX A: SAMPLE SCENE 
 

These annotations show the type of data I proposed to collect for HXP before implementing the 

project. It begins with a fragment of non-contextual, general knowledge, mostly taken from 

WordNet. Then it shows some examples of stock props and stock background settings. Finally, it 

presents the fully annotated scene “Max breaks the vase.” The collected data in the user test is 

compared to the data in the “Max breaks the vase” scene.  

 

General Knowledge 

Red is bright 

Ceramic is used for making a vase 

A vase is vessel. 

A vessel is a container. 

A container is a man-made object 

A man-made object is an object 

… 

A Stock Vase 

The vase is red 

It is made of ceramic 

It is smooth 

It is hard 

It is breakable 

It is reflective  

It weighs a few pounds 

It is medium sized 

 

Q: Why is the vase red?   

A: One of many possibilities 

A vase is possibly red 

 

Q: Why is the vase made of ceramic?  

A: Ceramic is used for making a vase  

IF a material is used for making an object 

THEN the object is possibly made of the material 

 

Q: Why is the vase smooth? 

A: The vase is made of ceramic 

IF an object is on made from ceramic 

THEN the object probably is smooth 

 

Q: Why is the vase hard? 

Stock Prop: 

vase 
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A: The vase is made of ceramic 

IF an object is made of ceramic 

THEN the object is definitely hard 

 

Q: Why is the vase breakable? 

A: The vase is made of ceramic 

IF an object is made of ceramic 

THEN the object is definitely breakable 

 

Q: Why is the vase reflective? 

A: The vase is made of ceramic 

IF an object is made of ceramic 

THEN the object is probably reflective 

 

Q: Why does the vase weigh a few pounds? 

A: One of many possibilities 

A vase is possibly weighs a few pounds 

 

Q: Why is the vase medium sized? 

A: The vase weighs a few pounds 

IF a vase weighs a few pounds  

THEN the vase is probably medium sized 

 

A Stock Living Room 

The living room is medium temperature. 

Four walls are part of the living room. 

Wall#1 is part of the walls. 

Wall#2 is part of the walls. 

Wall#3 is part of the walls. 

Wall#4 is part of the walls. 

The living room contains a couch. 

The couch is against wall#1 

The living room contains a coffee table. 

The coffee table is in front of the couch. 

The living room contains a chair. 

The chair is next to the couch. 

The living room contains a side table. 

The side table is next to the chair.  

The living room contains a picture. 

The picture is on wall#2. 

It is a few feet above the floor. 

It is hanging.  

Wall#2 supports the picture. 

 

Q: Why is the living room medium temperature?   

Stock background: living room 
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A: This is typical 

A living room is probably medium temperature 

 

Q: Why are there four walls of the living room?  

A: This is typical  

A living room probably has four walls 

 

Q: Why does the living room have a couch?  

A: This is typical  

A living room probably has a couch 

 

Q: Why is the couch against wall#1?  

A: One of many possibilities  

A couch is probably against a wall 

 

Q: Why does the living room have a coffee table?  

A: This is typical  

A living room probably has a coffee table 

 

Q: Why is the coffee table in front of the couch?  

A: This is typical  

A coffee table is probably in front of a couch 

 

Q: Why does the living room have a side table?  

A: This is typical  

A living room possibly has a side table 

 

Q: Why does the living room have a chair?  

A: This is typical  

A living room possibly has a chair 

 

Q: Why is the chair beside the couch?  

A: The living room contains the chair 

      AND the living room contains the couch  

IF a living room contains a chair 

AND the living room contains a couch 

THEN the chair is possibly beside the couch 

 

Q: Why is the side table next to the chair?  

A: This is typical  

A side table is probably next to a seat 

 

Q: Why does the living room have a picture?  

A: This is typical  

A living room probably has a picture 
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Q: Why is the picture on wall#2?  

A: One of many possibilities  

A picture is probably on a wall 

 

Q: Why is the picture a few feet above the floor?  

A: This is typical  

A picture is probably a few feet above a floor 

 

Q: Why is the picture hanging?  

A: This is typical  

A picture is probably hanging 

 

Q: Why does wall#2 support the picture?  

A: The picture is on wall#2  

IF a picture is on a wall  

THEN the wall probably supports the picture 

 

Scene: Max breaks the vase 

Panel 1.0 Max has nothing to do 

It is daytime. 

The living room is light. 

The living room is at medium temperature. 

The living room contains Max.  

Max is on the center of the couch. 

He is sitting. 

The living room contains a vase. 

The vase is on top of the side table. 

Max is bored. 

He wants to do something fun. 

He does not know what to do. 

 

Q: Why is it daytime? 

A: This is assumed in the opening scene 

It is possibly daytime 

 

Q: Why is the living room light? 

A: It is daytime 

IF it is daytime 

THEN a room is probably light 

 

Q: Why does the living room have medium temperature? 

A: It is typical 

A living room probably has medium temperature 

1.0 Max has nothing to do 
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Q: Why does the living room contain Max? 

A: This is assumed in the opening scene 

A person is possibly in a living room 

 

Q: Why is Max on the center of the couch? 

A: This is assumed in the opening scene 

A person is possibly on the center of a couch 

 

Q: Why is Max sitting? 

A: Max is on the couch 

IF a person is on a seat  

THEN the person is probably sitting 

 

Q: Why does the living room contain the vase? 

A: This is typical 

A living possibly contains a vase 

 

Q: Why is the vase on top of the side table? 

A: This is typical 

A vase is probably on top of a table 

 

Q: Why is Max bored? 

A: Max has nothing to do 

IF a kid has nothing to do  

THEN the kid probably is bored 

 

Q: Why does Max want to do something fun? 

A: Max bored 

IF a kid is bored  

THEN the kid probably wants to do something fun 

 

Q: Why does Max not know what to do? 

A: Max has nothing to do 

IF a kid has nothing to do  

THEN the kid probably does not know what to do 

 

Panel 1.1 Max looks around for something to do 

Max is facing the vase. 

The vase is bright. 

The vase is shiny. 

 

Q: Why does look around for something to do? 

A: Max wants to do something fun, 

     AND Max does not know what to do. 
1.1 Max looks around for 

something to do 
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IF a person wants to do something fun 

AND the person does not know what to do  

THEN the person possibly looks around for something to do. 

 

Q: Why is Max facing the vase? 

A: Max looks around for something to do, 

    AND the living room contains Max, 

    AND the living room contains the vase. 

IF a person looks around for something to do 

AND a background contains the person 

AND the back ground contains an object  

THEN the person possibly is facing the object 

 

Q: Why is the vase bright? 

A: The vase is red,  

     AND red is bright, 

     AND the living room contains the vase,  

     AND the living room is light.  

IF an object is a color 

AND the color is bright 

AND a background contains the object  

AND the background is light  

THEN the object is probably bright 

 

Q: Why is the vase shiny? 

A: The vase is reflective  

     AND the living room contains the vase  

     AND the living room is light  

IF an object is reflective 

AND a background contains the object  

AND the background is light  

THEN the object is probably shiny 

 

 

Panel 1.2 Max notices the vase 

Max thinks the vase is pretty. 

He is curious about the texture of the vase. 

He is curious about the weight of the vase. 

 

Q: Why does Max notice the vase?  

A: Max is looking around for something to do, 

     AND Max is facing a vase, 

     AND the vase is shiny, 

     AND the vase is bright. 

IF a kid is looking around for something to do 1.2 Max notices the vase 
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AND the kid is facing an object 

AND the object is shiny 

AND the object is bright 

THEN the kid possibly notices the object 

                

Q: Why does Max think the vase is pretty? 

A: The vase is shiny 

     AND the vase is bright 

IF an object is shiny 

AND the object is bright 

THEN a kid might think the object is pretty 

 

Q: Why is Max curious about the texture of the vase? 

A: Max thinks the vase is pretty 

IF a kid thinks an object is pretty  

THEN the kid possibly is curious about the texture of the object 

 

Q: Why is Max curious about the weight of the vase? 

A: Max thinks the vase is pretty 

IF a kid thinks an object is pretty  

THEN the kid possibly is curious about the weight  of the object 

 

Panel 1.3 Max picks up the vase 

The vase is on the side table. 

1.3.1 Max goes to the side table 

1.3.2 Max picks up the vase  

 

 

Q: Why does Max pick up the vase?  

A: Max is curious about the texture of the vase 

     AND Max is curious about the weight of the vase 

IF a kid is curious about the texture of an object  

AND the kid is curious about the weight of an object  

THEN the kid possibly picks up the object 

 

Q: Why is the vase on the side table? 

A: This is a restatement from a previous panel 

 

 

Panel 1.3.1 Max goes to the side table 

Max is a few feet from side table.  

1.3.1.1 Max gets up 

1.3.1.2 Max walks to the side table 

1.3 Max picks up the vase 
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Q: Why does Max go to the side table?  

A: Max intends to pick up the vase 

     AND the vase is on the side table 

IF a person intends to do something to an object 

AND the object is on top of a second object  

THEN the person probably goes to the second object 

 

Q: Why is Max a few feet from the side table? 

A: Max is on the center of the couch 

     AND the side table is next to the couch 

IF a person is on the center of a couch 

AND an object is next to the couch  

THEN the person is probably a few feet from the object 

 

 

Q: Why does Max walk to the side table? 

A: Max intends to go to the side table  

     AND Max is a few feet from the side table 

IF a person intends to go to an object 

AND the person is a few feet from the object 

THEN the person probably walks to the object 

 

Panel 1.3.1.1 Max gets up 

Max is standing 

 

Q: Why does Max get up? 

A: Max intends to go to the side table 

     AND Max is sitting 

IF a person intends to go to an object 

AND the person is sitting 

THEN the person probably gets up 

 

Q: Why is Max standing? 

A: Max gets up. 

IF a person gets up 

THEN the person is definitely standing 

 

 

Panel 1.3.1.2 Max walks to the side table 

Max is at the side table. 

The side table is in front of Max. 

 

1.3.1.1 Max gets up 

1.3.1.2 Max walks to the 

side table 
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Q: Why is Max at the side table? 

A: Max walks to the side table. 

IF a person walks to an object 

THEN the person is probably at the object 

 

Q: Why is the side table in front of Max?  

A: Max walks to the side table. 

IF a person walks to an object 

THEN the object is probably in front of the person 

 

Panel 1.3.2 Max picks up the vase 

1.3.2.1 Max grasps the vase 

1.3.2.2 Max picks up the vase 

 

Q: Why does Max pick up the vase?  

A: This is the main subaction of the larger action of picking up the vase.  

 

Panel 1.3.2.1 Max grasps the vase 

Max’s hands are in a position of holding a medium-sized object. 

Max notices that the vase is smooth. 

He thinks the vase feels cool. 

He thinks the vase feels nice. 

 

Q: Why does Max grasp the vase? 

A: Max intends to pick up the vase.  

IF a person intends to pick up an object 

THEN the person probably grasps the object 

 

Q: Why are Max’s hands in a position of holding a medium-sized  

object? 

A: Max grasps the vase 

     AND the vase is medium sized 

IF a person grasps a vase 

AND the vase is medium sized 

THEN the person’s hands probably are in a position of holding a medium-sized object 

 

Q: Why does Max notice that the vase is smooth? 

A: Max is curious about the texture of the vase 

    AND Max’s grasps the vase 

    AND the vase is smooth 

IF a person is curious about what an object feels like 

AND the person grasps the object 

1.3.2 Max picks up 

the vase 

1.3.2.1 Max grasps the vase 
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AND the object is smooth 

THEN the person probably notices that the object is smooth 

 

Q: Why does Max think the vase feels cool? 

A: Max’s grasps the vase 

     AND the vase is made of ceramic 

     AND the living room contains the vase  

    AND the living room is medium temperature 

IF a person grasps an object 

AND the object is made of ceramic  

AND a background contains the object 

AND the background is medium temperature 

THEN a person possibly thinks that the object feels cool 

 

 

Q: Why does Max think the vase feels nice? 

A: Max grasps the vase 

    AND Max notices that the vase is smooth 

    AND Max thinks the vase feels cool 

IF a person grasps an object 

AND the person notices that the object is smooth 

AND the person thinks that the object feels cool  

THEN the person possibly thinks that the object feels nice 

 

Panel 1.3.2.2 Max picks up the vase 

Max’s arms are raised. 

The vase is a view inches above the table. 

Max’s arms support the vase.  

Max thinks the vase is heavy.  

He thinks the vase is breakable. 

He decides to break the vase. 

 

Q: Why does Max pick up the vase? 

A: This is the main subaction of the larger action of picking up the vase.  

 

Q: Why are Max’s arms raised? 

A: Max picks up the vase 

IF a kid picks up a vase 

THEN the kid’s arms are probably raised 

 

Q: Why do Max’s arms support the vase? 

A: Max picks up the vase 

     AND Max’s arms are raised 

IF a person picks up an object 

AND the person’s arms are raised 

1.3.2.2 Max picks up the vase 
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THEN the person’s arms probably support the object 

 

Q: Why does Max think the vase is heavy? 

A: Max’s arms support the vase  

    AND the vase weighs a few pounds 

IF a kid’s arms support an object 

AND the object weighs a few pounds 

THEN the kid probably thinks the object feels heavy 

 

Q: Why is the vase a few inches above the table? 

A: The vase is on the table 

     AND Max picks up the vase  

IF an object is on the table 

AND a person picks up the object 

THEN the object is possibly a few inches above the table 

 

Q: Why does Max think the vase is breakable? 

A: The vase is pretty 

     AND the vase is heavy 

     AND the living room contains the object 

IF an object pretty 

AND the object is heavy 

AND a living room contains the object 

THEN a kid possibly thinks the object is breakable 

 

Q: Why does Max decide to break the vase? 

A: Max wants to do something fun 

     AND Max thinks the vase is heavy 

     AND Max thinks the vase is breakable 

IF a kid wants to do something fun 

AND kid thinks an object is heavy 

AND kid thinks an object is breakable 

THEN kid possibly decides to break the object 

 

Panel 1.4 Max drops the vase 

Max wants the vase to make a loud crash. 

Max wants the vase to be high above the floor. 

1.4.1 Max turns his body. 

1.4.2 Max lets go of the vase. 

1.4.3 The vase falls. 

1.4.4 The vase breaks.  

 

Q: Why does Max drop the vase? 

A: Max decides to break the vase 

IF a person decides to break an object 1.4 Max drops the 

vase 
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THEN the person possibly decides to drop the object 

 

 

Q: Why does Max want the vase to make a loud crash? 

A: Max wants to do something fun 

     AND Max intends to drop the vase 

IF a kid wants to do something fun 

AND the kid intends to drop an object 

THEN the kid possibly wants the object to make a loud crash 

 

 

Q: Why does Max want the vase to be high above the floor?  

A: Max intends to drop the vase 

     AND Max wants the vase to make a loud crash 

IF a person wants to drop an object 

AND the person wants the object to make a loud crash 

THEN the person probably wants the object to be high above the floor 

 

Panel 1.4.1 Max turns his body 

Max's torso is twisted. 

He is facing away from the side table. 

He is facing the floor. 

The vase is a few feet above the floor. 

Its edge is a few inches from Max’s side. 

The table is beside Max. 

He expects the vase to fall. 

He expects to have fun.  

He is excited. 

 

Q: Why does Max turn his body? 

A:  Max intends to drop the vase 

      AND Max grasps the vase 

      AND Max’s hands are in a position of holding a medium-sized object 

      AND the vase is a few inches above the table 

      AND Max wants the vase to be high above the floor        

IF a person intends to drop an object 

AND the person grasps the object 

AND the person’s hands are in a position of holding a medium-sized object 

AND the object is a few inches above a table  

AND the person desires that the object be high above the floor 

THEN the person probably turns the person’s body 

Q: Why is Max’s torso twisted? 

A: Max turns his body 

IF a person turns the person’s body 

THEN the person’s torso is probably twisted  

1.4.1 Max turns his body 
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Q: Why is Max facing away from the table? 

A: The vase is a few inches above the table 

     AND Max is holding the vase with both hands 

     AND Max twists his body 

IF an object is a few inches above a table 

AND a kid’s hands are in a position of holding a medium-sized object 

AND the kid twists the kid’s body 

THEN the kid is probably facing away from the table 

 

Q: Why is Max facing the floor? 

A: Max intends to drop the vase 

IF a person intends to drop an object 

THEN the person is possibly facing the floor 

 

Q: Why is the vase a few feet above the floor? 

A: The vase is a few inches above the table 

     AND Max’s hands are in a position of holding a medium-sized object 

     AND Max turns his body 

IF an object is a few inches above a table 

AND a kid’s hands are in a position of holding a medium-sized object 

AND the kid twists his body 

THEN the object is probably a few feet above the floor 

 

Q: Why is the table’s edge a few inches from Max’s side? 

A: The table’s edge is a few inches from Max’s chest 

     AND Max turns his body 

IF an object’s edge is a few inches from a person’s chest 

AND the person turns the person’s body 

THEN the object’s edge is probably a few inches from a person’s side 

 

Q: Why is the table beside Max? 

A: The table is in front of Max 

     AND Max turns his body 

IF an object is in front of a person 

AND the person turns the person’s body 

THEN the object is probably beside the person 

 

Q: Why does Max expect the vase to fall? 

A: Max intends to drop the vase 

IF an person intends to drop an object 

THEN the person probably expects the object to fall 

 

Q: Why does Max expect to hear a loud crash? 

A: Max intends to drop the vase 

     AND the vase is high above the floor 
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     AND the vase is breakable 

     AND the vase is hard 

IF a person expects an object to fall 

AND the object is high above the floor 

AND the object is breakable 

AND the object is hard 

THEN the person probably expects to hear a loud crash 

 

 

Q: Why is Max excited? 

A: Max expects to hear a loud crash 

     AND Max wants to hear a loud crash 

IF a kid expects to hear a loud crash 

AND the kid wants to hear a loud crash 

THEN the kid is probably excited 

 

Panel 1.4.2 Max lets go of the vase 

Max's hands are open. 

The vase is not supported. 

 

Q: Why does Max let go of the vase 

A: This is the main subaction of the larger action of dropping  

the vase.  

        

Q: Why are Max’s hands open 

A: Max grasps the vase 

     AND Max lets go of the vase 

IF a person grasps an object 

AND the person lets go of the object 

THEN the person’s hands are probably open. 

 

Q: Why is the vase not supported? 

A: Max’s hands support the vase 

     AND Max lets go of the vase 

IF a person’s hands support an object 

AND the person lets go of the object 

THEN the object is not supported 

 

Panel 1.4.3 The vase falls 

The vase is moving down. 

It is lower than before. 

 

Q: Why does the vase fall? 

1.4.2 Max lets go of the vase 

1.4.3 The vase falls 
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A: The vase is high above the floor  

     AND the vase is not supported 

IF an object is above the floor 

AND the object is not supported 

THEN the object probably falls 

 

Q: Why is the vase moving down? 

A: The vase falls  

IF an object falls 

THEN the object is definite moving down. 

  

Q: Why is the vase lower than before?  

A: The vase is moving down 

IF an object is moving down 

THEN the object is lower than before  

 

Panel 1.4.4 The vase breaks 

The vase makes a crash. 

The crash is very loud 

The vase is broken. 

The vase’s pieces are on the floor. 

They are scattered. 

Max hears the crash. 

Max sees the vase’s pieces. 

Max thinks the crash is cool. 

Max feels powerful (thinks he is powerful) 

He is having fun. 

 

Q: Why does the vase break?  

A: The vase falls  

     AND the vase is high above the floor 

     AND the vase is breakable  

IF an object falls 

AND the object is high above the floor 

AND the object is breakable 

THEN the object probably breaks 

 

Q: Why does the vase make a crash? 

A: The vase falls 

     AND the vase is high above the floor 

     AND the vase is breakable 

     AND the vase is hard 

IF a an object to fall 

AND the object is high above the floor 

AND the object is breakable 

1.4.4 The vase breaks 
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AND the object is hard 

THEN the object makes a crash 

 

Q: Why is the crash very loud? 

A: This is typical 

A crash is probably very loud 

 

Q: Why is the vase broken? 

A: The vase breaks 

IF an object breaks 

THEN the object is definitely broken 

 

Q: Why are the vase’s pieces on the floor? 

A: The vase is high above the floor 

     AND the vase falls 

     AND the vase breaks 

IF an object is high above the floor 

AND the vase falls 

AND the vase breaks 

THEN the object’s pieces are probably on the floor 

 

Q: Why are the vase’s pieces scattered? 

A: The vase is high above the floor 

     AND the vase falls 

     AND the vase breaks 

IF an object is high above the floor 

AND the vase falls 

AND the vase breaks 

THEN the object’s pieces are probably scattered 

 

Q: Why does Max hear the crash? 

A: Max drops the vase 

     AND the vase makes a crash 

IF a person drops an object 

AND the object makes a crash 

THEN the person probably hears the crash 

 

Q: Why does Max see the vase’s pieces? 

A: Max is facing the floor 

    AND Max drops the vase 

    AND the vase breaks 

    AND the vase’s pieces are on the floor 

IF person is facing the floor 

AND the person drops an object 

AND the object breaks 

AND the object’s pieces are on the floor 
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THEN the person probably sees the object’s pieces 

 

Q: Why does Max think the crash is cool? 

A: This is typical 

A kid possibly thinks a crash is cool 

  

Q: Why does Max feel powerful? 

A: Max decides to break the vase 

     AND Max drops the vase 

     AND the vase breaks 

IF person decides to damage an object 

AND the person does something to the object 

AND the object is damaged 

THEN the person probably feels powerful 

 

Q: Why is Max having fun? 

A: Max feels powerful 

IF person feels powerful 

THEN the person probably is having fun 
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APPENDIX B: USER TEST RESULTS 
 

As discussed in 5.3 Data Analysis, this appendix lists the data collected in the user test. First we 

see the statements and rules from the eight test subjects that completed the user evaluation. Then 

we see a comparison of the expected data from Appendix A against the collected data. 

User#1 

1. Opening Setting  (Training) 

a. It is daytime 

Possibly it is daytime 

b. The ashtray is in the living room (Note, the user put in the ashtray as an 

            experiment in adding objects ) 

Possibly an ashtray is in the living room (NA – Training) 

c. The vase is in the living room 

Possibly a vase is in a living room (NA – Training) 

d. The ashtray is on top of the coffee table 

Possibly an ashtray is on top of a coffee table (NA – Training) 

e. The vase is on top of the side table 

Possibly a vase is on top of a side table (NA – Training) 

f. Max is in the living room 

Possibly a boy is in a living room (NA – Training) 

g. Max is on the sofa 

Possibly a boy is on a sofa (NA – Training) 

h. Max is sitting 

If a person is on a seat 

Probably the person is sitting (NA – Training) 

i. Max is bored 

Possibly a boy is bored (NA – Training) 

2. Max looks around for something to do (Training) 

a. Caption: Max looks around 

If a person is bored 

Probably the person looks around (NA – Training) 

b. Max sees the vase 

If an object is in a living room 

AND a person is in the living room 

AND the person looks around 

Possibly the person sees the object (NA – Training) 

c. Max desires to disturb the vase 

If a boy is bored 

AND the boy sees a vase 

Possibly the boy desires to disturb the vase (NA – Training) 

d. Max desires to be near the vase 

If a person desires to do an action involving a vase 

Probably the person desires to be near the vase (NA – Training) 

e. Max is not close to the vase 
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Possibly a boy is not close to a vase (NA – Training) 

3. Max gets up (Training) 

a. Caption: Max stand up  

If a person is sitting 

AND the person desires to be near an object 

AND the person is not close to the object 

Probably the person stands up (NA – Training) 

4. Max walks to the side table 

a. Caption: Max walks to the side table 

If an object is on top of a second object  

AND a boy desires to disturb the first object 

AND the boy is not close to the first object 

Probably the boy walks to the second object (Acceptable) 

b. Max is standing 

If a person walks to an object 

Definitely the person is standing (Acceptable) 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a person desires to do an action involving an object  

Probably the person grasps the object (NOT Acceptable – person could do  

       other things besides grasp) 

b. Max is in contact with the vase 

If a person desires to disturb an object 

AND the person grasps the object 

Definitely the person is in contact with the object  (Acceptable but the first  

      antecedent is not 

      necessary) 

6. Max picks up the vase 

a. Caption: Max picks up the vase 

If a person desires to disturb an object 

Probably the person picks up the object (NOT Acceptable – person could do 

  things besides pick up the object) 

 

User#2 

1. Opening Setting  (Training) 

    (Same as User #1 except no ashtray, which is inconsequential) 

2. Max looks around  for something to do (Training) 

a. Caption: Max looks around 

If a boy is bored 

Probably the boy looks around (NA – Training) 

b. Max is curious about the texture of the vase 

If an object looks reflective 

And it is daytime 

And a juvenile person is in a living room 

And the juvenile person is bored 
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And the juvenile person looks around 

Probably the juvenile person is curious about the texture of the object (NA – 

Training) 

c. Max desires to play with the vase 

If a child is bored 

And the child is curious about the physical state of an object 

Probably the child desires to play with the object (NA – Training) 

d. Max desires to be holding the vase 

If person is curious about the texture of an object 

Probably the person desires to be holding the object (NA – Training) 

e. Max is not near the vase 

Possibly a boy is not near a vase (NA – Training) 

f. Max desires to walk to the vase 

If a person desires to be holding an object 

And the person is not near the object 

Probably the person desires to walk to the object (NA – Training) 

3. Max gets up (Training) 

a. Caption: Max stand up  

If a person desires to walk to an object 

Definitely the person stands up (Not an acceptable rule, but this occurred 

        during training and was left unchanged) 

4. Max walks to the side table 

a. Caption: Max comes to the side table 

If an object is on top of a second object  

And a person desires to walk to the first object 

Probably the person comes to the second object (Acceptable) 

b. Max is near the vase 

If an object is on top of a second object 

And a person comes to the second object 

Definitely the person is near the first object (Acceptable) 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a person is curious about the texture of an object 

And the person desires to be holding the object 

Probably the person grasps the object (Acceptable, but first antecedent is 

       unnecessary) 

b. Max is in curious about the weight of the vase 

If a boy grasps a vase 

Possibly the boy is curious about the weight of the vase (NA – Possibly) 

6. Max picks up the vase 

a. Caption: Max lifts the vase 

If a person is bored 

And the person is curious about the texture of an object 

And the person grasps the object 

Probably the person lifts the object (Acceptable) 

b. The vase is in the right arm 
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If a person grasps an object 

Definitely the vase is in an arm (Acceptable) 

7. Max turns his body 

a. Caption: Max turns 

If a boy desires to play with an object 

And the boy lifts the object 

Probably the boy moves (Acceptable) 

b. The vase is heavy 

If an object is made of ceramic 

Probably the object is heavy (Acceptable, with dissent. One judge brought 

         up the case of a tiny ceramic object.  

         Nevertheless, two judges felt the “normal”  

         case should be Acceptable) 

c. Max does not know the weight of the vase 

Probably a boy does not know the weight of a vase (Acceptable but barely) 

8. Max lets go of the vase 

a. Caption: Max drops the vase 

If a child is curious about the physical state of an object 

And the child lifts the object 

And the object is heavy 

And the child does not know the weight of the object 

Probably the child drops the object (Acceptable) 

9. The vase falls (starts to fall) 

a. Caption: The vase falls (starts to fall) 

If a boy is standing 

And an object is in an arm 

And the boy drops the object 

Definitely the object falls (Acceptable) 

b. The vase is above the floor 

If an object starts to fall 

Definitely the object is above the floor (Acceptable, with dissent. One judge 

 interpreted “floor” as a floor of a 

 man-made structure. The other two  

 judges interpreted “floor” as any  

 bottom-most level) 

 

c. The vase is not on the floor 

If a vase starts to fall 

Definitely the vase is not on a floor (Acceptable) 

10. The vase breaks 

a. Caption: The vase hits the floor  

If an object falls 

Probably the object hits a floor (Acceptable, with dissent – see 9b) 

b. The vase breaks 

If an object if breakable 

And a person drops the object 
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And the object hits the floor 

Definitely the object breaks (Acceptable) 

c. The vase is on the floor 

If an object falls 

And the object hits a floor 

And the object breaks 

Definitely the object is on the floor (Acceptable) 

User#3 

1. Opening Setting  (Training) 

(Same as User #1 with the addition of the following) 

a. Mommy is in the backyard 

 Possibly a woman is in a backyard (NA – Training) 

b. Mommy is near the tree 

 Possibly a woman is near a tree (NA – Training) 

c. Mommy is standing 

 Possibly a woman is standing (NA – Training) 

d. Mommy is angry 

 Possibly a woman is angry (NA – Training) 

e. Max is in punishment 

 Possibly a boy is in punishment (NA – Training) 

f. Max does not desire to be bored 

 Definitely a boy does not desire to be bored (NA – Training) 

g. Max desires to be naughty 

 If a boy is in punishment 

 Probably the boy desires to be naughty (NA – Training) 

h. The floor is hard 

 Possibly a floor is hard (NA – Training) 

2. Max looks around  for something to do (Training) 

a. Caption: Max looks around 

 If a person is bored 

 And the person is in punishment 

 And the person desires to be naughty 

 Definitely the person looks around (NA – Training) 

b. Max is angry 

 Possibly a boy is angry (NA – Training) 

c. Max sees the vase 

 If a person is in a room 

 And the object is in the room 

 And the person looks around 

 Possibly the person sees the object (NA – Training) 

d. Max is not near the vase 

 If an object is next to a piece of furniture 

 And a second piece of furniture is next to the object 

 And a person is on the first piece of furniture 

 And a second object is on top of the second piece of furniture 
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 Probably the person is not near the second object (NA – Training) 

e. Max thinks Mommy likes the vase 

 Possibly a boy thinks a woman likes a vase (NA – Training) 

f. Max is curious about what would happen if the vase were to smash 

 If a boy is angry 

 And the boy sees a vase 

 And the boy thinks a woman likes the vase 

 Probably the boy is curious about what would happen if the vase were to  

                                                                                 smash (NA – Training) 

g. Max intends to walk to the vase 

 If a person is not near an object 

 And the person is curious about what would happen if the object were to 

smash 

 Probably the person intends to walk to the object (NA – Training) 

3. Max gets up (Training) 

a. Caption: Max stands up 

 If a person is sitting 

 And the person intends to walk to an object 

 Probably the person stands up (NA – Training) 

b. Why is Max on the floor 

 If a person is on a seat 

 And the person stands up 

 Definitely the person is on a floor (NA – Training) 

c. Why is Max standing 

 If a living thing stands up 

 Definitely the living thing is standing (NA – Training) 

4. Max walks to the side table 

a. Caption: Max walks  to the side table 

If an object is on top of a second object  

And living thing intends to walk to the first object 

Probably the living thing walks to the second object (Acceptable) 

b. Max is near the vase 

If an object is on top of a second object 

And a living thing walks to the second object 

Definitely the living thing is near the first object (Acceptable) 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a person desires to be naughty 

And the person is curious about what would happen if a vase were to 

smash 

Probably the person grasps the object (Acceptable) 

b. Max is not bored 

If a person grasps an object 

Possibly the person is not bored (NA – Possibly) 

6. Max picks up the vase 

a. Caption: Max picks up the vase 
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If a person desires to be naughty 

And the person is curious about what would happen if an object were to 

smash 

And the person grasps the object 

Definitely the person picks up the object (Acceptable) 

b. The vase is not on top of the side table 

If a person picks up an object 

Probably the object is not on top of a second object (Acceptable) 

c. The vase is in the arms 

If a person grasps an object 

Definitely the object is in some arms (Acceptable) 

User#4 

1. Opening Setting  (Training) 

(Same as User #1 with the addition of the following) 

a. Max is inactive 

 Possibly a boy is inactive (NA – Training) 

b. Max is naughty 

 Probably a boy is naughty (NA – Training) 

c. The side table is on the floor 

 Probably a side table is on a floor (NA – Training) 

2. Max looks around  for something to do (Training) 

a. Caption: Max looks around the living room 

If a child is in a room 

And the child is bored 

Probably the child looks around the room (NA – Training) 

b. Max sees the vase 

If a vase is red 

And a person is in a room 

And the vase is in the room 

And the person looks around the room 

Probably the person sees the vase (NA – Training) 

c. Max desires to be having fun 

If a child is bored 

Probably the child desires to be having fun (NA – Training) 

d. Max desires to break the vase 

If a child is naughty 

And the child sees a jar 

And the child desires to be having fun 

Probably the child desires to break the jar  

e. Max desires to walk to the vase 

If a person desires to break a jar 

Probably the person desires to walk to the jar (Not a good rule but this is 

   training) 

3. Max gets up (Training) 

a. Caption: Max stands up  
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If a person is sitting 

And the person desires to walk to an object 

Probably the person stands up (NA – Training) 

b. Max is standing 

If a living thing stands up 

Definitely the living thing is standing (NA – Training) 

c. Max is next to the sofa 

If a person is on a piece of furniture 

And the person stands up 

Probably the person is next to the piece of furniture (NA – Training) 

4. Max walks to the side table 

a. Caption: Max walks to the side table 

If an object is on a table  

And a person desires to walk to the object 

And the person is standing 

Probably the person walks to the table (Acceptable) 

b. Max is near the side table 

If a living thing goes to an object 

Definitely the living thing is near the object (Acceptable) 

c. Max is near the easy chair  

If an object is next to a second object 

And a living thing walks to the first object 

Definitely the living thing is near the second object (Acceptable) 

d. Max desires to pick up the vase 

If a person is near a side table 

And a jar is on the side table 

And a person desires to drop the jar 

Probably the person desires to pick up the jar (Acceptable) 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a person desires to pick up an object 

   Probably the person grasps the object (Acceptable)   

b. Max is in contact with the vase 

If a person grasps an object 

Definitely the person is in contact with the object (Acceptable) 

c. The arms are in contact with the vase 

If some arms are part of a person 

And the person grasps an object 

Probably the arms are in contact with the object (Acceptable) 

6. Max picks up the vase 

a. Caption: Max picks up the vase 

If a person desires to pick up an object 

And the person grasps the object 

Probably the person picks up the object (Acceptable) 

b. The vase is not on the side table 

If an object is on a piece of furniture 
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And a person picks up the object 

Definitely the object is not on the piece of furniture (Acceptable) 

c. The vase is over the side table 

 If an object is on a piece of furniture 

 And a person picks up the object 

 Definitely the object is over the piece of furniture (Acceptable) 

d. Max desires to turn with the vase 

 If an object is breakable 

 And the person desires to break the object 

 And the person desires to drop the object 

 And the object is over a piece of furniture 

 Probably the person desires to turn with the object 

e. Max desires to turn far (away) from the side table (Acceptable) 

 If an object is breakable 

 And a person desires to break the object 

 And the person desires to drop the object 

 And the object is over a piece of furniture 

 Probably the person desires to turn far (away) from the piece of furniture  

                                                                                                  (Acceptable) 

7. Max turns his body 

a. Caption: Max turns far (away) from the side table 

If a person desires to turn far (away) from the side table 

Probably the person turns far (away) from the side table (Acceptable) 

b. Max turns with the vase 

If person picks up an object 

And the person turns far away from the second object 

Definitely the person turns with the first object (Acceptable) 

c. The vase is not over the side table 

If a person picks up an object 

And the object is over a second object 

And the person turns far (away) from the first object 

Definitely the first object is not over the second object (Acceptable) 

d. Max is facing the coffee table 

If a person turns far from an object 

Possibly the person is facing the second object (NA – Possibly) 

e. The vase is over the floor 

If an object is on a floor 

And a second object is over the first object 

And a person turns with the second object 

Definitely the second object is over the floor (Acceptable) 

8. Max lets go of the vase 

a. Caption: Max releases the vase 

If a person desires to drop an object 

Probably the person releases the object (Acceptable) 

b. Max is not in contact with the vase 

If a person releases an object 
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Definitely the person is not in contact with the object (Acceptable) 

c. The arms are not in contact with the vase 

If some arms are part of a living thing 

And the living thing is not in contact with an object 

Definitely the arms are not in contact with the object (Acceptable) 

9. The vase falls  

a. Caption: The vase falls 

If an object is not on a second object 

And a living thing releases the first object 

Definitely the first object falls (Acceptable) 

10. The vase breaks 

a. Caption: The vase breaks  

If an object is breakable 

And the object is over a floor 

And the object falls 

Probably the object breaks (Acceptable) 

b. Max is having fun 

If a person desires to break an object 

And the object breaks 

Definitely the person is having fun (Not Acceptable – the person may desire 

      to break the object out of a sense of 

     duty) 

c. The vase is on the floor 

If an object is over a floor 

And the object hits a floor 

And the object falls 

Definitely the object is on the floor (Acceptable) 

d. The vase pieces are part of the vase 

If a vase breaks 

Definitely the pieces are part of the vase (Acceptable) 

 

User#5 

1. Opening Setting  (Training) 

(Same as User #1 with the addition of  the following) 

a. Max is inactive 

 Possibly a boy is inactive (NA – Training) 

b. Max desires to move 

 If a child is inactive 

Probably the child desires to move (NA – Training) 

2. Max looks around  for something to do (Training) 

a. Caption: Max explores 

If a person is bored 

Probably the person explores (NA – Training) 

b. Max sees the vase 

If an object is in a living room 
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And a person is in a living room  

And the person explores 

Probably the person sees the object (NA – Training) 

c. The vase is rounded 

Possibly a vase is rounded (NA – Training) 

d. Max notes the vase 

If an object is in a living room 

And the object is on a side table 

And a person is in the living room 

And the person is bored 

Probably person notes the object   (NA – Training) 

e. Max desires to explore the vase 

If a person notes a vase 

Probably the person desires to explore the vase (NA – Training) 

3. Max gets up (Training) 

a. Caption: Max stands up  

If a person is sitting 

And the person desires to explore an object 

Probably the person stands up (NA – Training) 

b. Max is active 

If a person stands up 

Definitely the person is active (NA – Training) 

c. Max is next to the sofa 

If a person is on a seat 

And the person is sitting 

And the person stands up 

Probably the person is next to the seat 

d. Why is Max standing 

If a person stands up 

Definitely the person is standing (NA – Training) 

4. Max walks to the side table 

a. Caption: Max walks to the vase 

If person desires to explore an object  

Probably the person walks to the object (Acceptable with dissent. Two 

  judges felt “explore” involved 

 walking to an object) 

 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a person desires to explore an object 

   Probably the person grasps the object (Acceptable) 

   

b. Max is next to the side table 

If an object is on a side table 

And a person desires to explore the object 

Definitely the person is next to the side table (Not Acceptable – need an 
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          action to get to the side table) 

6. Max picks up the vase 

a. Caption: Max picks up the vase 

If a person desires to explore an object 

Probably the person picks up the object (Not Acceptable – not necessarily 

 pick it up) 

b. The vase is above the side table 

If an object is on a side table 

And a person picks up the object 

Definitely the object is above the side table (Acceptable) 

c. The vase heavy 

 Possibly a vase is heavy (NA – Possibly) 

d. Max is uncomfortable 

 If person picks up an object 

 And the object is heavy 

 Definitely the person is uncomfortable (Not Acceptable – could be strong 

            person) 

e. Max desires to sit on the sofa  

 If a person is uncomfortable 

 Probably the person desires to sit on a seat (Not Acceptable – need more  

                info to conclude the person  

                sits) 

7. Max turns his body 

a. Caption: Max turns with the vase 

If a person is uncomfortable 

And the person desires to sit on a seat 

And an object is heavy 

Definitely the person turns with the object (Not Acceptable – need more 

             info) 

b. The vase is next to the side table 

If person is next to a side table 

And the person picks up an object 

And the person turns with the object 

Definitely the object is next to the side table (Acceptable) 

8. Max lets go of the vase 

a. Caption: Max releases the vase 

If a person picks up an object 

And the object is heavy 

And the person is uncomfortable 

Probably the person releases the object (Not Acceptable – not true for adult) 

9. The vase falls  

a. Caption: The vase falls 

If a person picks up an object 

And the object is heavy 

And the person is uncomfortable 

Probably the person releases the object 
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Definitely the object falls (Acceptable) 

10. The vase breaks 

a. Caption: The vase breaks  

If an object is next to a side table 

And a person picks up the object 

And the object is heavy 

And the person is uncomfortable 

And the person turns with the object 

And the person releases the object 

And the object falls 

Probably the object breaks (Acceptable with dissent. One judge felt object 

     should be explicitly breakable. Other two judges  

     thought “normal” case would be to break) 

b. Max is inactive 

If a person releases an object 

Probably the person is inactive (Acceptable with dissent – One judge felt 

 that releasing an object could be part of an  

 active game. Others felt it depends on 

 meaning of “inactive” ) 

 

 

User#6 

1. Opening Setting  (Training) 

(Same as User #1) 

2. Max looks around  for something to do (Training) 

a. Caption: Max looks around the living room 

If a person in an area 

And the person is bored 

Probably the person looks around the area (NA – Training) 

b. Max does not desire to be bored 

Definitely a boy does not desire to be bored (NA – Training) 

c. Max desires to be having fun 

If a person does not desire to be bored 

Probably a person desires to be having fun (NA – Training) 

d. The vase has (is) novel 

Probably a vase has novel (NA – Training) 

e. Max desires to examine the vase 

If an object is in a room 

And a juvenile person is in a room 

And the juvenile person desires to be having fun 

And the object has novel 

Probably the juvenile person desires to examine the object (NA – Training) 

f. Max is not close to the vase 

Possibly a vase is not close to a boy (NA – Training) 

3. Max gets up (Training) 
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a. Caption: Max stands up  

If a person is sitting 

And the person desires to examine an object 

And the object is not close to the person 

Probably the person stands up (NA – Training) 

b. Max is in front of the sofa 

If a person is on a seat 

And the person stands up 

Definitely the person is in front of the seat (NA – Training) 

c. Why is Max standing 

If a living thing stands up 

Definitely the living thing is standing (NA – Training) 

4. Max walks to the side table 

a. Caption: Max walks to the vase 

If a piece of furniture is in an area 

And an object is on top of the piece of furniture 

And a person is in the area 

And the person desires to examine the object 

And the object is not close to the person 

Probably the person walks to the piece of furniture (Acceptable) 

b. Max is near the side table 

If a living thing goes to an object 

Definitely the living thing is near the object (Acceptable) 

c. Max is near the vase 

If an object is on top of a second object 

And a living thing is near the second object 

Definitely the living thing is near the first object (Acceptable) 

d. The vase is close to Max 

If a living thing is near an object 

Definitely the object is close to the living thing (Acceptable) 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a child desires to examine an object 

And the child is near the object 

   Probably the child grasps the object (Acceptable)   

6. Max picks up the vase 

a. Caption: Max picks up the vase 

If a child desires to examine an object 

And the child grasps the object 

Probably the child picks up the object (Not Acceptable, should be possibly) 

b. The vase is inside the arms 

If some arms are part of a living thing 

And the living thing picks up an object 

Definitely the object is inside the arms (Acceptable) 

c. Max desires to break the vase 

 If an object is breakable 
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 And a child desires to be having fun 

 And the child is near the object 

 Possibly the child desires to break the object (NA – Possibly) 

User#7 

1. Opening Setting  (Training) 

(Same as User #6; Note, Users #6 and #7 were trained together) 

2. Max looks around  for something to do (Training) 

(Same as User #6) 

3. Max gets up (Training) 

(Same as User #6) 

4. Max walks to the side table (Training) 

a. Caption: Max walks to the vase 

If a first object is on top of a second object 

And a person desires to examine the first object 

And the first object is not close to the person 

Probably the person walks to the second object (NA – Training) 

b. Max is next to the side table 

If a person walks to an object 

Definitely the person is next to the object (NA – Training) 

c. The vase is close to Max 

If a first object is on top of a second object 

And a person is next to the second object 

Definitely the first object is close to the person (NA – Training) 

5. Max grasps the vase (Training) 

a. Caption: Max grasps the vase 

If a first object is on top of a second object 

And a person is next to the second object 

And the person desires to examine the first object 

   Definitely the person grasps the first object (NA – Training)   

6. Max picks up the vase 

a. Caption: Max picks up the vase 

If a person desires to examine an object 

Possibly the person picks up the object (NA – Possibly) 

b. The vase is in the arms 

If a person holds a vase 

And the person picks up the vase 

Definitely the vase is inside the arms (Acceptable) 

c. Max is not bored 

If a person does an action involving an object 

Possibly the person is not bored (NA – Possibly) 

d. Max desires to break the vase 

If a person desires to be having fun 

Possibly the person desires to break an object (NA – Possibly) 

e. Max desires to turn away far from the side table 

If a person is next to a first object 
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And the person desires to break a second object 

Possibly the person desires to turn away far from the first object (NA – 

Possibly) 

7. Max turns his torso 

a. Caption: Max turns the torso 

If a boy desires to break a vase 

Probably the boy turns a torso (Not Acceptable) 

 

 

User#8 

1. Opening Setting  (Training) 

(Same as User #1 with the addition of the following) 

a. Max is inactive 

 Possibly a boy is inactive (NA – Training) 

b. The vase is next to the easy chair 

 If a first object is next to a second object 

 And a third object is on top of the first object 

 Definitely the third object is next to the second object (NA – Training) 

2. Max looks around  for something to do (Training) 

a. Caption: Max looks around the living room 

If a person is in a structure 

And the person is bored 

Probably the child looks around the structure (NA – Training) 

b. Max sees the vase 

If a person is in a room 

And an object is in a room 

And the person looks around the room 

Probably the person sees the vase (NA – Training) 

c. Max desires to play 

If a child desires to be having fun 

Probably the person desires to play (NA – Training) 

d. Max desires to play with the vase 

If a child sees a vase 

And the child desires to play 

Possibly the child desires to play with the vase (NA – Training)  

e. Max desires to get the vase 

If a person is on a seat 

And the person desires to play with an object 

And the seat is not by the object 

Probably the person desires to get the object (NA – Training) 

3. Max gets up (Training) 

a. Caption: Max stands up  

If a person is on a seat 

And the person desires to get an object 

And the seat is not by the object 
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Probably the person stands up (NA – Training) 

b. Max is in front of the sofa 

If a person is on a seat 

And the person stands up 

Probably the person is in front of the seat (NA – Training) 

c. Max is standing 

If a object stands up 

Definitely the object is standing (NA – Training) 

d. Max desires to walk to the vase 

If a person is in front of a seat 

And the seat is not by the object 

And the person desires to get the object 

Probably the person desires to walk to the object (NA – Training) 

4. Max walks to the side table 

a. Caption: Max walks to the vase 

If a person desires to walk to an object 

Probably the person walks to the object (Acceptable) 

b. Max is active 

If a person walks to an object 

Definitely the person is active (Acceptable) 

c. Max is by the side table  

If a first object is on top of a second object 

And a person walks to the first object 

Definitely the person is by the second object (Acceptable) 

d. Max is facing the vase 

If a person walks to an object 

Probably the person is facing the object (Acceptable) 

5. Max grasps the vase 

a. Caption: Max grasps the vase 

If a person desires to get a vase 

   Probably the person grasps the vase (Acceptable)   

6. Max picks up the vase 

a. Caption: Max picks up the vase 

If a person desires to play with an object 

And the person grasps the object 

Probably the person picks up the object (Acceptable) 

b. Max desires to throw the vase on the floor 

If a child desires to play with an object 

Possibly the child desires to throw the object on the floor (NA – Possibly) 

c. Max does not desire to throw the vase on the side table 

 If a person does not desire to throw a first object on a floor 

 Probably the person does not desire to throw the first object on a second  

                                                                                       object(Acceptable) 

d. Max is facing the side table 

 If a first object is on top of a second object 

 And a person is facing the first object 
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 Definitely the is facing the second object (Acceptable) 

e. Max desires to turn far (away) from the side table (Acceptable) 

 If a person desires to throw a first object on the floor 

 And the person does not desire to throw the first object on a second object 

 And the person is facing the second object 

 Probably the person desires to turn far (away) from the second object  

 (Acceptable) 

f. The vase is in the arms 

 If a person picks up an object 

 Definitely the object is in some arms (Acceptable) 

g. Max is holding the vase 

 If a person picks up an object 

 Probably the person is holding the object (Acceptable) 

7. Max turns his body 

a. Caption: Max turns Max 

If a person is facing an object 

And the person desires to turn far (away) from the object 

Probably the person turns the person (Acceptable) 

b. Max is not facing the side table 

If person is facing an object 

And the person turns the person 

Definitely the person is not facing the object (Not Acceptable, with dissent.  

 Two judges felt that head does       

not definitely turn when a  

person turns.) 

           

8. Max lets go of the vase 

a. Caption: Max releases the vase 

If some arms are part of a person 

And an object is in the arms 

And the person desires to throw the object on a floor 

Probably the person releases the object (Acceptable) 

b. The arms are above the floor 

Definitely some arms are above a floor (Acceptable) 

c. The vase is not in the arms 

If some arms are part of a person 

And an object is in the arms 

And the person releases the object 

Definitely the object is not in the arms (Acceptable) 

d. The vase is over the floor 

If some arms are part of a person 

And an object is in the arms 

And the person releases the object 

And the arms are above the a floor 

Definitely the object is above the floor (Acceptable) 

e. Max is not holding the vase 
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If a person releases an object 

Definitely the person is not holding the object (Acceptable) 

 

 

9. The vase falls  

a. Caption: The vase falls 

If a person is holding an object 

And a person releases the object 

Probably the object falls (Acceptable) 

10. The vase breaks 

a. Caption: The vase breaks  

If an object is breakable 

And the object is over a floor 

And the object falls 

Probably the object breaks (Acceptable) 

b. The vase is on the floor 

If an object is over a floor 

And the object falls 

And the object hits a floor 

Definitely the object is on the floor (Not Acceptable – could bounce) 

c. Max plays (is playing) with the vase 

If a person picks up an object 

And the person releases the object 

Probably the person plays with the object (Acceptable) 

d. Max is having fun 

If a person desires to play with an object 

And a person plays (is playing) with the object 

Probably the person is having fun (Acceptable) 

Comparison with Expected Data 

This section shows how the recall measurement was computed. First we see the data that I 

proposed to collect. These data are taken from Appendix A. Then, for each user, we see the 

corresponding collected data and a measurement of how many user statements matched the 

proposed data.  
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Originally Proposed Data 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks 

to the side 

table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps the 

vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 
 

The vase 

breaks 

Intention 
Max intends 
to pick up 
the vase 

  
Max decides 
to break the 
vase 

Max expects the vase 
to fall, Max is excited 

    
Max is having 
fun 

Location Max is at the 
side table 

  
The vase is 
above the 
table 

The vase is above the 
floor 

Then vase is 
not 
supported 

The vase is 
lower 

The vase is on 
the floor; The 
pieces are on 
the floor 

Movement 

or 

Position 

Max is 
standing 

Max's in a 
position of 
holding or in 
contact with the 
vase 

Max's arms 
are raised.                        

Max is facing away 
from the side table; 
The vase is above the 
floor; Max's torso is 
twisted 

Max's hands 
are open   

The vase is 
broken 

Sensory 
  

Max thinks the 
vase feels 
smooth. Max 
thinks the vase 
feels cool 

Max thinks 
the vase is 
heavy 

  
 

  
The vase 
makes a loud 
crash 

 

Results: No results. This table is for comparing with the user tables below. 

 

User#1 vs. Proposed 

 

Key Frame 4 

Panel 1.3.1.2 

 

Max walks 

to the side 

table 

Key Frame 5 

Panel 1.3.2.1 

 

Max grasps the 

vase 

Key Frame 6 

Panel 1.3.2.2 

 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 

 

Max turns is body 

Key Frame 8 

Panel 1.4.2 

 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 

 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 

 

The vase 

breaks 

Intention 
Max desires 
to disturb 
the vase 

  Not necessary NA     NA 

Location 
MISSING   MISSING NA NA NA NA 

Movement 

or 

Position 

Max is 
standing 

Max is in contact 
with the vase 

MISSING NA NA   NA 

Sensory 
  Not necessary Not necessary   

 
  NA 

 

Results: 3/6 (50%) of the data types were collected. 
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User#2 vs. Proposed 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks 

to the side 

table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps the 

vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is 

body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase falls 

Key Frame 4 

Panel 1.4.4 
 

The vase hits 

the floor 

Intention 
Max desires 
to play with 
the vase 

 Max is curious 
about the weight 
of the vase 

(see previous 
key frame) 

Max does not 
know the weight 
of the vase 

    MISSING 

Location Max is near 
the vase 

  
The vase is in 
the right arm 

MISSING MISSING 

The vase is 
above the floor; 
The vase is not 
on the floor 

The vase is on 
the floor  

Movement 

or 

Position 

MISSING 
Max is in contact 
with the vase 

MISSING MISSING MISSING   
The vase 
breaks (is 
broken) 

Sensory 
  Not necessary 

(see next key 
frame) 

 The vase is heavy 
 

  MISSING 

 

Results: 9/17 (53%) of the data types were collected. Note, this user had 17 expected statements 

instead of 16 because the weight of the vase was relevant to this interpretation.  

 

User#3 vs. Proposed 

 

Key Frame 4 

Panel 1.3.1.2 

 

Max walks 

to the side 

table 

Key Frame 5 

Panel 1.3.2.1 

 

Max grasps the 

vase 

Key Frame 6 

Panel 1.3.2.2 

 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 

 

Max turns is body 

Key Frame 8 

Panel 1.4.2 

 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 

 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 

 

The vase 

breaks 

Intention 

Max is 
curious; Max 
intends to 
walk to the 
vase 

 Max is not 
bored 

Not necessary NA     NA 

Location Max is near 
the vase 

  
The vase is on 
top of the side 
table 

NA NA NA NA 

Movement 

or 

Position 

Max is 
standing 

MISSING 
The vase is in 
the arms 

NA NA   NA 

Sensory 
  Not necessary Not necessary   

 
  NA 

 

Results: 5/6 (83%) of the data types were collected 
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User#4 vs. Proposed 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks to 

the side table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps 

the vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 
 

The vase 

breaks 

Intention 

Max desires to 
break the 
vase; Max 
desires to pick 
up the vase 

 
Max desires to 
turn with the 
vase 

(see previous key 
frame) 

    
Max is having 
fun;  

Location Max is near 
the side table 

  

The vase is 
not on the 
side table; The 
vase is over 
the side table 

The vase is not over 
the side table; The 
vase is above the 
floor 

MISSING MISSING The vase is on 
the floor;  

Movement 

or 

Position 

Max is 
standing 

Max is in 
contact with 
the vase; The 
arms are in 
contact 

(see previous 
key frame) 

Max is facing the 
coffee table 

MISSING   
The pieces of 
the vase are 
on the floor 

Sensory 
  Not necessary Not necessary  Not necessary 

 
  MISSING 

 

Results: 13/16 (81%) of the data types were collected 

 

User#5 vs. Proposed 

 

Key Frame 4 
Panel 1.3.1.2 

 

Max walks to 

the side table 

Key Frame 5 
Panel 1.3.2.1 

 

Max grasps 

the vase 

Key Frame 6 
Panel 1.3.2.2 

 

Max picks up 

the vase 

Key Frame 7 
Panel 1.4.1 

 

Max turns is body 

Key Frame 8 
Panel 1.4.2 

 

Max drops 

the vase 

Key Frame 9 
Panel 1.4.3 

 

The vase 

falls 

Key Frame 4 
Panel 1.4.4 

 

The vase 

breaks 

Intention 
Max desires to 
explore the 
vase 

 

Max is 
uncomfortable; 
Max desires to 
sit on the sofa 

(see previous key 
frame) 

    Max is inactive  

Location (see next key 
frame) 

Max is next to 
the side table 

The vase is 
above the side 
table 

The vase is not next 
to the side table 

MISSING MISSING MISSING 

Movement 

or 

Position 

Max is 
standing 

MISSING MISSING MISSING MISSING   MISSING 

Sensory 
  Not necessary 

The vase is 
heavy 

 
 

  MISSING 

 

Results: 9/17 (53%) of the data types were collected. Note, this user had 17 expected statements 

instead of 16 because the weight of the vase was relevant to this interpretation. 

 

 

 

 

 



151 

 

User#6 vs. Proposed 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks to 

the side table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps 

the vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 
 

The vase 

breaks 

Intention 
Max desires to 
examine the 
vase 

 
Max desires to 
break the vase 

NA     NA 

Location 

Max is near 
the side table; 
Max is near 
the vase 

 
The vase is in 
the arms 

NA NA NA NA 

Movement 

or 

Position 

Max is 
standing 

MISSING 
(The vase is in 
the arms) 

NA NA   NA 

Sensory 
  Not necessary Not necessary   

 
  NA 

 

Results: 5/6 (83%) of the data types were collected. Note, the Intention in Key Frame 6 is not 

counted because it was not expected. 

 

User#7 vs. Proposed 

 

Key Frame 4 
Panel 1.3.1.2 

 

Max walks to 

the side table 

Key Frame 5 
Panel 1.3.2.1 

 

Max grasps 

the vase 

Key Frame 6 
Panel 1.3.2.2 

 

Max picks up 

the vase 

Key Frame 7 
Panel 1.4.1 

 

Max turns is body 

Key Frame 8 
Panel 1.4.2 

 

Max drops 

the vase 

Key Frame 9 
Panel 1.4.3 

 

The vase 

falls 

Key Frame 4 
Panel 1.4.4 

 

The vase 

breaks 

Intention 
NA  

Max is not 
bored; Max 
desires to turn 

MISSING     NA 

Location 
NA  

The vase is in 
the arms 

MISSING NA NA NA 

Movement 

or 

Position 

NA NA 
(The vase is in 
the arms) 

MISSING NA   NA 

Sensory 
   Not necessary   

 
  NA 

 

Results: 3/6 (50%) of the data types were collected. Note, this user had training in key frames 4 

and 5, and attempted to annotate only key frames 6 and 7. 
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User#8 vs. Proposed 

 

Key Frame 4 

Panel 1.3.1.2 
 

Max walks to 

the side table 

Key Frame 5 

Panel 1.3.2.1 
 

Max grasps 

the vase 

Key Frame 6 

Panel 1.3.2.2 
 

Max picks up 

the vase 

Key Frame 7 

Panel 1.4.1 
 

Max turns is body 

Key Frame 8 

Panel 1.4.2 
 

Max drops 

the vase 

Key Frame 9 

Panel 1.4.3 
 

The vase 

falls 

Key Frame 4 

Panel 1.4.4 
 

The vase 

breaks 

Intention 
Max desires to 
walk to the 
vase 

 

Max desires to 
throw the vase 
on the floor; 
Max does not 
desire to throw 
the vase on the 
side table 

(see previous key 
frame) 

    
Max is having 
fun 

Location Max is by the 
side table 

 
The vase is in 
the arms 

MISSING 
The vase is 
over the 
floor 

MISSING The vase is on 
the floor 

Movement 

or 

Position 

Max is 
standing; Max 
is facing the 
vase 

MISSING 

Max is facing 
the side table; 
Max is holding 
the vase 

Max is not facing the 
side table 

The arms are 
above the 
floor; Max is 
not hot 
holding the 
vase 

  NA 

Sensory 
  Not necessary Not necessary   

 
  MISSING 

 

Results:13/16 (81%) of the data types were collected. Note, this user had training in key frames 4 

and 5, and attempted to annotate only key frames 6 and 7. 
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APPENDIX C: SEMANTIC FIELD PREDICATES 
 

As discussed in 4.1 Stative Predicates, HXP treats single-argument static predicates like green, 

cold, or good as continuous values in semantic field. Here are the semantic field predicates and 

their possible values.  

 

Semantic Field 

Predicate 

Values 

absorbency absorptive, nonabsorbent 

activity active, exhausted, inactive, rested 

age immature, mature, new, old (having lived long time), old (of long duration), young 

animation alive, dead 

area narrow, wide 

cleanness clean, dirty 

clothing state clothed, naked 

color blue, green, orange, red, yellow 

comfort comfortable, uncomfortable 

consistency breakable, dull, flexible, hard, hollow, sharp, soft, solid, unbreakable 

depth deep, shallow 

domestication tame, wild 

extraordinariness extraordinary, ordinary 

freshness fresh, stale 

fullness empty, full 

functional state broken, off, on, repaired, unbroken 

gender female, male 

health state injured, sick, uninjured, well 

height high, low, short, tall 

hydration dehydrated, hydrated, needs water 

illumination dark, light 

length long, short 

made of ceramic, fabric 

novelty novel, old 

nutrition malnourished, nourished, needs food 

olfactory property bad, good, salty, sour, sweet 

personality disobedient, friendly, loyal, mean, naughty, playful, sober, timid, unfriendly 

pitch high, low 

position 
backward, bent, closed, crouching, curved, flat, forward, hanging, horizontal, loose, 
moving, open, raised, shut, sitting, standing, stationary, straight, tense, tilted, 
upside-down, vertical 

power powerful, powerless 

safety harmful, harmless, in danger, safe 

season fall, spring, summer, winter 

shape crooked, round, rounded, square, straight 

size large, medium, small 

social state accompanied, alone, in punishment, supervised, unsupervised 
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(table cont.) 

sound bad, good 

strength strong, weak 

tactile property bad, good 

tactual sensation bad, cool, good, hot, itchy, pain, painful, pleasing, pleasure, tickling, tingling 

taste property bad, good, salty, sour, sweet 

temperature cold, cool, hot, warm 

texture rough, smooth 

time of day afternoon, daytime, evening, lunchtime, morning, night 

visual property 
bad, bright, colorless, colorful, dull, good, nonreflective, pretty, reflective, shiny, 
ugly, age 

volume loud, soft 

weather clear, cloudy, dry, rainy 

weight fat, heavy, light, thin 

wetness dry, wet 

width narrow, thick, thin, wide 
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APPENDIX D:  PHYSICAL STATES 
 

Here are the current HXP physical states. If the concept is found in WordNet 3.0, the WordNet 

sense key is provided. If it is not available in WordNet, then it is marked as HXP. As discussed 

in 4.1 Stative Predicates, HXP physical states are organized into subcategories according to the 

hypernyms relation. Furthermore, each state is associated with an HXP value template that helps 

the user interface prompt for the correct inputs. Each concept here is listed with its definition, list 

of hypernyms, and top-level value template. 

 

 

Physical 

State 

WordNet 

SenseKey 

or HXP 

Definition Hypernyms Value Template 

above HXP in a higher place than; over relative location VtSpecificObject 

absorbency 1:07:00:: 
the property of being 
absorbent consistency VtEnum 

activity 1:07:00:: 

the trait of being active; 
moving or acting rapidly and 
energetically physical state VtEnum 

against HXP in contact with relative location VtSpecificObject 

age 1:07:00:: 
how long something has 
existed 

visual property, 
measure VtEnum 

along HXP 

through, on, beside, over, or 
parallel to the length or 
direction of relative location VtSpecificObject 

animation 1:07:00:: 
the property of being able 
to survive and grow physical state VtEnum 

area 1:07:00:: 

the extent of a 2-
dimensional surface 
enclosed within a boundary size VtEnum 

at HXP in, on, or near relative location VtSpecificObject 

attached to HXP joined to 
structurally related 
to VtSpecificObject 

authority of HXP 'authority of' relationship social state VtSpecificObject 

background 
location HXP the location of an object location 

VtBackground-
Location 

behind HXP at or toward the rear of relative location VtSpecificObject 

below HXP lower down than relative location VtSpecificObject 

brightness 1:07:00:: 

the location of a visual 
perception along a 
continuum from black to 
white visual property VtEnum 

by HXP near or next to relative location VtSpecificObject 

cleanness 1:26:00:: 
the state of being clean; 
without dirt  physical state VtEnum 
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(table cont.) 

close to HXP near relative location VtSpecificObject 

clothing state HXP clothing state physical state VtEnum 

color 1:07:00:: 

a visual attribute of things that 
results from the light they emit 
or transmit or reflect visual property VtEnum 

comfort 1:26:00:: 
a state of being relaxed and 
feeling no pain physical state VtEnum 

consistency 1:07:00:: 

the property of holding 
together and retaining its 
shape tactile property VtEnum 

contain 2:42:13:: contain or hold; have within 
structurally 
related to VtSpecificObject 

day of the 
week 1:28:00:: 

any one of the seven days in a 
week time period VtEnum 

depth 1:07:00:: 
the extent downward or 
backward or inward 

visual property, 
measure VtEnum 

distance 
above HXP distance above relative location VtDistance 

distance 
below HXP distance below relative location VtDistance 

distance from HXP distance from relative location VtDistance 

domestication 1:07:00:: 
the attribute of having been 
domesticated physical state VtEnum 

environment 1:26:00:: 
the totality of surrounding 
conditions physical state VtEnum 

extraordinary-
iness 1:07:00:: 

the quality of being 
extraordinary and not 
commonly encountered physical state VtEnum 

facing an 
object HXP position of facing something position VtSpecificObject 

family 
member of HXP 'family member of' relationship social state VtSpecificObject 

far from HXP at a distance from relative location VtSpecificObject 

father of HXP 'father of' relationship social state VtSpecificObject 

freshness 1:07:01:: 

the property of being pure and 
fresh (as if newly made); not 
stale or deteriorated physical state VtEnum 

friend of HXP 'friend of' relationship social state VtSpecificObject 

fullness 1:26:00:: 
the condition of being filled to 
capacity physical state VtEnum 

functional 
state HXP functional state position or state VtEnum 

gender 1:07:00:: 

the properties that distinguish 
organisms on the basis of their 
reproductive roles physical state VtEnum 
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(table cont.) 

health state HXP health state physical state VtEnum 

height 1:07:00:: 

the vertical dimension of 
extension; distance from the 
base of something to the 
top size VtEnum 

holding HXP 
be in a position of holding 
something position VtSpecificObject 

hydration 1:22:00:: 

the process of combining 
with water; usually 
reversible sustenance VtEnum 

illumination 1:26:01:: 

a condition of spiritual 
awareness; divine 
illumination environment VtEnum 

in HXP used to indicate location relative location VtSpecificObject 

in front of HXP in front of, not behind relative location VtSpecificObject 

inside HXP on the inner side of relative location VtSpecificObject 

length 1:07:00:: 

the linear extent in space 
from one end to the other; 
the longest dimension of 
something that is fixed in 
place size VtEnum 

location 1:03:00:: a point or extent in space physical state VtEnum 

made of HXP made of physical state VtEnum 

measure 1:03:00:: 

how much there is or how 
many there are of 
something that you can 
quantify  VtEnum 

mother of HXP 'mother of' relationship social state VtSpecificObject 

name 1:10:00:: 
a language unit by which a 
person or thing is known physical state VtSpecificObject 

near HXP in close proximity relative location VtSpecificObject 

next to HXP adjoining relative location VtSpecificObject 

novelty 1:09:00:: 
originality by virtue of being 
new and surprising extraordinariness VtEnum 

olfactory 
property 1:07:00:: 

any property detected by 
the olfactory system physical state VtEnum 

on HXP 

used to indicate position in 
contact with and supported 
by the top or outer surface 
of relative location VtSpecificObject 

on top of HXP over or upon relative location VtSpecificObject 

other physical 
attributes HXP other physical attributes physical state VtEnum 

outside HXP toward the exterior of relative location VtSpecificObject 
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(table cont.) 

over HXP above relative location VtSpecificObject 

parent of HXP 'parent of' relationship social state VtSpecificObject 

part of HXP part of 
structurally related 
to VtSpecificObject 

personality 1:07:00:: 

the complex of all the 
attributes--behavioral, 
temperamental, emotional 
and mental--that 
characterize a unique 
individual physical state VtEnum 

pitch 1:07:00:: 

the property of sound that 
varies with variation in the 
frequency of vibration sound VtEnum 

position 1:07:01:: 
the arrangement of the 
body and its limbs position or state VtEnum 

position or 
state HXP position or state physical state VtEnum 

power 1:07:00:: 
possession of controlling 
influence physical state VtEnum 

produced by HXP 
the action that produces 
this physical state VtSpecificObject 

provide access 
to HXP provides a passage to get to 

structurally related 
to VtSpecificObject 

relative 
location HXP 

a point or place in relation 
to another point or place location VtEnum 

safety 1:26:00:: 

the state of being certain 
that adverse effects will not 
be caused by some agent 
under defined conditions physical state VtEnum 

season 1:28:00:: 

one of the natural periods 
into which the year is 
divided by the equinoxes 
and solstices or atmospheric 
conditions time period VtEnum 

shape 1:07:00:: 

any spatial attributes 
(especially as defined by 
outline) physical state VtEnum 

shininess 1:07:00:: 

the visual property of 
something that shines with 
reflected light visual property VtEnum 

sibling of HXP 'sibling of' relationship social state VtSpecificObject 

size 1:07:00:: 
the physical magnitude of 
something (how big it is) 

visual property, 
tactile property VtEnum 

social state HXP relation to society position or state VtEnum 

sound 1:07:00:: 
the auditory effect 
produced by a given cause physical state VtEnum 
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(table cont.) 

strangeness 1:07:00:: 

unusualness as a 
consequence of not being 
well known extraordinariness VtEnum 

strength 1:07:00:: 
the property of being 
physically or mentally strong physical state VtEnum 

structurally 
related to HXP structurally related to physical state VtEnum 

support 2:35:00:: 
be the physical support of; 
carry the weight of 

structurally related 
to VtSpecificObject 

sustenance 1:13:00:: 
a source of materials to 
nourish the body health state VtEnum 

tactile 
property 1:07:00:: 

a property perceived by 
touch physical state VtEnum 

taste property 1:07:00:: 
a property appreciated via 
the sense of taste physical state VtEnum 

teacher of HXP 'teacher of' relationship social state VtSpecificObject 

temperature 1:07:00:: 

the degree of hotness or 
coldness of a body or 
environment (corresponding 
to its molecular activity) VtState temperature 

texture 1:07:00:: 
the feel of a surface or a 
fabric tactile property VtEnum 

time of day 1:28:00:: clock time time period VtEnum 

time period 1:28:00:: an amount of time physical state VtEnum 

touch 2:35:01:: 
be in direct physical contact 
with; make contact 

structurally related 
to, relative location VtSpecificObject 

towards HXP in the direction of relative location VtSpecificObject 

under HXP not over relative location VtSpecificObject 

visual 
property 1:07:00:: an attribute of vision physical state VtEnum 

volume 1:07:02:: 

the magnitude of sound 
(usually in a specified 
direction) sound VtEnum 

volume 1:23:00:: 

the amount of 3-
dimensional space occupied 
by an object size VtEnum 

weather 1:19:00:: 

the atmospheric conditions 
that comprise the state of 
the atmosphere in terms of 
temperature and wind and 
clouds and precipitation environment VtEnum 

weight 1:07:00:: 
the vertical force exerted by 
a mass as a result of gravity size VtEnum 

wetness 1:26:00:: 

the condition of containing 
or being covered by a liquid 
(especially water) physical state VtEnum 
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APPENDIX E:  MENTAL STATES 
 

As discussed in 4.1 Stative Predicates, HXP divides mental states into simple and complex. We 

list the simple mental states first, followed by the complex ones.  

Simple Mental States 

 afraid 

 amused 

 angry 

 bored 

 calm 

 comfortable 

 discomposed 

 disgusted 

 disloyal 

 frustrated 

 glad 

 humiliated 

 hungry 

 interested 

 pleased 

 proud 

 sad 

 satisfied 

 sleepy 

 thirsty 

 trustful 

 unafraid 

 wary 

 wakeful 

Complex Mental States 

Since complex states can be ambiguous, they are displayed with definitions.  
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Word Definition 

able 
(usually followed by `to') having the necessary means or skill or know-how or 
authority to do something 

aware 
(sometimes followed by `of') having or showing knowledge or understanding or 
realization or perception 

believe accept as true; take to be true 

curiosity a state in which you want to learn more about something 

decide reach, make, or come to a decision about something 

desire feel or have a desire for; want strongly 

examine observe, check out, and look over carefully or inspect 

expect regard something as probable or likely 

feel perceive by a physical sensation, e.g., coming from the skin or muscles 

focus direct one's attention on something 

hear perceive (sound) via the auditory sense 

imagine form a mental image of something that is not present or that is not the case 

intend have in mind as a purpose 

know 
be cognizant or aware of a fact or a specific piece of information; possess 
knowledge or information about 

know know how to do or perform something 

know be familiar or acquainted with a person or an object 

like be fond of 

listen to hear with intention 

love have a great affection or liking for 

notice notice or perceive 

remember recall knowledge from memory; have a recollection 

see perceive by sight or have the power to perceive by sight 

smell inhale the odor of; perceive by the olfactory sense 

surprised surprised by something 

tactual sensation feel the sensation produced by pressure receptors in the skin 

taste perceive by the sense of taste 

think judge or regard; look upon; judge 

touch perceive via the tactile sense 

watch look attentively 
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APPENDIX F: INSTITUTIONAL REVIEW BOARD APPROVAL 
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