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ABSTRACT 

Structural health monitoring (SHM) is a very important field for many engineering 

disciplines. SHM deals with the monitoring of material structures periodically for assessing the 

lifetimes of the structures. There are various techniques for SHM. Non-destructive testing (NDT) 

is one of the most popular SHM tools to monitor structures. It demonstrates the indispensable 

advantage of providing structural health assessment without the need of intrusion. In this thesis, a 

new NDT tool for yield detection using ultrasonic signal processing is investigated. 

 In this work, for the study of yield detection, steel specimen samples have been acquired, 

which were obtained from the laboratory of Department of Civil and Environmental engineering 

at Louisiana State University (LSU). An ultrasonic transducer then collected the signal data 

when these samples were tested. The data were preprocessed and segmented. For each acquired 

ultrasonic signal waveform, a total of three dominant echoes were extracted for the yield 

detection. A total of nine different signal features were extracted from these echoes for each 

ultrasonic signal. These nine features include time-domain features (signal amplitude, signal 

energy) and transform-domain features (wavelets, discrete Fourier transform, chirp Z-transform, 

discrete cosine transform, and discrete sine transform). Based on these aforementioned features, 

the linear discriminant analysis (LDA) technique is proposed to classify two situations (no-yield 

and yield). The proposed LDA-based classifier is compared with the conventional classifiers 

using individual features. The classifiers’ performances are evaluated using the receiver 

operating characteristics (ROC) plots.  

According to our experiments, it is discovered that the LDA-based classifier for yield 

detection is superior to all conventional classifiers using individual features, in terms of high 

detection rates subject to the fixed false detection rates. 
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CHAPTER 1: INTRODUCTION 

 
This chapter provides the overview of structural health monitoring (SHM). A crucial 

SHM approach, namely non-destructive testing (NDT), together with its applications will be 

introduced here. Subsequently, digital signal processing methods for NDT applications will also 

be presented. 

1.1 Structural Health Monitoring (SHM) 

 
Structural health monitoring is a very important field as it poses direct impacts on our 

daily life.    According to [1], structural health monitoring is defined as a process where damage 

identification strategies for various mechanical, civil, and aerospace infrastructures are 

implemented to monitor the quality of the structures or the materials. Damage is defined as any 

change induced in the system (due to aging, fatigue, or external force), which causes long-lasting 

effects on the infrastructures [1]. Many structures are being continually used despite their aging 

and wear resulting in the accumulation of damages and a potential cause of danger. Therefore, 

people had better monitor the structures for their safety.  

Structural health monitoring has long been researched and studied. During the 19
th

 

century, a technique using hammer sound was invented where the sound from striking was 

investigated to determine if any internal damage existed in the material structure [1].  In recent 

years, people have shown a vast interest in SHM technologies due to the awareness of public 

safety [1]. Generally speaking, structural health monitoring is carried out in the way that a 

structure or a system is observed in a periodic manner where damage-related features are 

extracted from the periodically acquired measurements and then a statistical analysis is 
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conducted to assess the damage status of the structure or the system. The primary goal of SHM is 

to characterize the material properties and identify defects and deficiencies in the structures. 

There are various techniques in use to monitor the status of the structure during its lifetime. 

These techniques range from the conventional mechanisms such as visual test to the modern 

scientific approaches involving complex embedded systems, which help to attain high accuracy 

and robustness. 

The structural health condition can be monitored using the systems connected with 

optical sensors and wireless transceivers [2] to collect data about the structure. This is feasible 

during the construction phase of the structure. Nevertheless, the existing structures that have 

already been constructed also need to be evaluated regarding its lifetime as the ill-condition 

might jeopardize lives (such as bridges, dams, reactors, etc.). Structural health monitoring has a 

wide range of applications. It has been used in different industries including semiconductor 

manufacturing [1], aerospace-vehicle/aircraft manufacturing/maintenance, building construction, 

railroad monitoring, etc.  

1.2 Non-Destructive Testing (NDT) 

 
Non-destructive testing (NDT) or non-destructive evaluation and testing (NDE&T) is a 

kind of SHM technique/tool. NDT relies on the interdisciplinary efforts (see [3]), which assures 

the integrity of the structural components and systems so that they can perform in an economical 

and efficient way. 

NDT involves various tools and methodologies for inspecting and assessing the condition of a 

structure/system without intrusion so as to retain their future usefulness [3]. Thus NDT can 

perform SHM without causing any damage to the material structures or systems. Non-destructive 
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testing has been broadly used in assessing many modern structures such as bridges, dams, 

pipelines, aircrafts, and other complex structures due to the aforementioned advantage. There are 

various classical NDT techniques addressed in literature such as the tap test and the visual 

inspection (visual test). In the former technique, the material is inspected by people who tap on it 

and listen to the sound changes indicating defects in the material; in the latter technique, the 

material is inspected visually so that the cracks and the dislocations in the material can be 

identified by experts. These classical tests, obviously, cannot explore the internal failures within 

the structures/systems. This deficiency in early NDT techniques was later overcome with the 

help of rapid advancements in computer technologies, embedded hardware, and scientific growth 

in various engineering disciplines. Disciplines including computer science and engineering, 

digital signal processing, telecommunications, etc. enable the development of new robust and 

efficient NDT techniques and methodologies. The commonly-used NDT methods include  

 Liquid Penetrant Test 

 Magnetic Particle Test 

 Microwave/Ground Penetrating Radar 

 Eddy Current Testing 

 Radiography (X-Ray/Gamma Ray) 

 Impact-Echo Method 

 Acoustic Emission 

 Visual/Optical Method 

 Sonic/Resonance 

 Ultrasonic Inspection. 
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In this thesis study, we focus on NDT using ultrasonic signal processing (or ultrasonic 

inspection). The overviews on NDT using digital signal processing and the ultrasonic inspection 

will be presented in Sections 1.3 and 1.4. In Chapter 2, the detailed description of our method 

and the corresponding experiment setup will be provided. 

1.3 Digital Signal Processing in NDT 

 
Digital signal processing (DSP) has improved and advanced the state-of-the-art of 

NDE&T techniques [4]. The increasing demands and expectations of industries involved in 

productivity and safety have triggered new technologies such as robotics, computer design, and 

instrumentation and led to automation. Thus, one can perceive the extensive use of NDT in 

automated defect detection and characterization nowadays. Signal processing has played a 

pivotal role for NDT in making it an automated and a reliable structural health monitoring 

tool/technique by providing it with granular inspection, reliable decision-making, and 

discriminative information. 

In recent years, much research emphasis has been made on the development of the new 

procedures and processes that enhance the reliability of the conventional NDT techniques. Thus 

The advanced signal processing concepts which have already been used in other applications 

such as sonar, radar, etc. are being adopted for NDT [4]. DSP is an engineering field that 

involves acquiring signal data and transforming the obtained data into useful 

information/features by digital means. A simple block diagram of signal processing and its 

application for NDT is illustrated in Figure 1. 

As depicted in Figure 1, a signal processing system involves signal acquisition, signal 

enhancement, and signal information retrieval. 
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                                Raw Signal                 NDT Signal     (Processed Signal)  

 

 

 

Figure 1. NDT signal processing (duplicate from [4]). 

DSP has been widely used in various engineering fields/industries including medical imaging 

(electrocardiogram or ECG, ultrasound scan, etc.), navigation technologies such as radar and 

sonar, telecommunications, pattern recognition, and NDE&T, etc.  

The general objectives of employing DSP in NDT include but are not limited to (see [4]): 

 Improving reliability in inspection 

 Improving defect detection accuracy 

 Improving defect classification accuracy 

 Developing new NDT tools to characterize material properties 

 Monitoring structural processes such as welding, cutting, grinding, etc. 

DSP can also be used to automate data acquisition and data analysis and thus greatly reduce the 

chance for any occurrence of human error during the process. Fundamental DSP techniques such 

as averaging, filtering, and other signal enhancement schemes have shown phenomenal 

improvements in system detection capabilities. With the help of DSP, the detailed defect 

information can be explored and assessed to prolong or accurately predict a structure’s lifetime. 

The crucial information includes the type, shape, and size of the flaws/defects in the structures. 

Conventional DSP tools such as discrete Fourier transform (DFT) and discrete wavelet 

Signal 

Processing 
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Acquisition 

Signal 

Enhancement 

Information 

Retrieval NDT     
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transform (DWT) have been widely used for investigating signals. The ultrasonic wave velocity 

was estimated using the fast Fourier transform (FFT) (efficient implementation of DFT) [5]. 

On the other hand, DWT has also been employed for the NDT applications in the past few 

decades. Some advantages of DWT over DFT/FFT include its superior time-frequency 

localization property and adaptability to different signal characteristics. 

In summary, DSP has been playing a pivotal role in the NDT for structural health assessment. 

Therefore, we focus on the advanced DSP techniques for NDT in this thesis work. Among 

various DSP methodologies for NDT, we will investigate the ultrasonic signal processing based 

NDT or ultrasonic NDT. In the next section, the introduction of ultrasonic inspection will be 

provided. 

1.4 Ultrasonic NDT (Ultrasonic Inspection) 

Ultrasonic inspection is one of the most popular NDT methods. The ultrasonic testing 

technology uses high-frequency sound signal called ultrasound. The basic principle of ultrasonic 

testing is that an ultrasound is transmitted to the material being inspected and the multiple back 

surface echoes are reflected from the material defects or the fault locations. Ultrasonic inspection 

has been broadly used for testing a variety of materials including metals, ceramics, and polymers 

[6]. Ultrasonic signal processing techniques are employed therein to detect the defects confined 

in materials, which include cracks, voids, and other structural deficiencies [7]. The signal 

processing techniques enabling ultrasonic inspection have also assisted in finding the material 

properties (ex. modulus and strength) [8]. 

An illustration of ultrasonic testing for material characterization in practice is shown in Figure 2. 
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Figure 2. Ultrasonic testing illustration (this picture was acquired from [3] and the written 

permission to use this picture here has been authorized). 

The details of ultrasonic signal processing and its applications for NDT will be discussed in 

Chapter 2. 

1.5 Applications of Non-Destructive Testing (NDT) 

 
  NDT is often used if the material/structure/system being tested needs to be evaluated 

without damaging the specimen/structure under test. NDT has many practical applications, 

which involve industrial activities such as automotive, aviation/aerospace, civil/construction 

engineering, and petroleum/chemical production, etc. As most industries require the constant 

evaluation on the facility safety and the reliability of the structures/systems, NDT plays a major 

role in providing the necessary monitoring techniques/tools. Some modern NDT applications 

used by manufacturers include (see [8]): 

 Ensuring product integrity and reliability 

 Avoiding failures and saving human lives from accidents occurring 

 Ensuring customers’ satisfaction and manufacturer’s reputation 

 Facilitating better product design 
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 Maintaining operational readiness 

 Controlling manufacturing process 

 Lowering manufacturing costs 

 Maintaining uniform quality level 

1.6 Thesis Outline 

 
This thesis is mainly focused on the yield detection using signal features and transforms. 

A comparative study is conducted to find a reliable yield detection technique. A linear 

discriminant analysis (LDA) based yield detection technique is proposed in this study and the 

performances of different classifiers are compared. 

The rest of this thesis is organized as follows. Chapter 2 presents a brief discussion on the 

ultrasonic NDT in SHM. It also provides some insights into the experimental setup used in this 

study for obtaining the test signals for yield detection. In Chapter 3, how to extract various signal 

features in the time-domain and transform-domain and the LDA based classification technique 

are both discussed in detail. In Chapter 4, a thorough comparative study is made for the yield 

detection techniques using the aforementioned ultrasonic signal features stated in Chapter 3. The 

performance in comparison is via the receiver operating characteristics (ROC) curves. Finally, 

conclusion will be drawn in Chapter 5. 
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CHAPTER 2: ULTRASONIC NON-DESTRUCTIVE EVALUATION AND TESTING 

2.1 Ultrasonic Non-Destructive Testing for Structural health monitoring 

 
Ultrasonic inspection (UI) techniques have been playing a vital role in the applications 

such as sound navigation and ranging (sonar). Meanwhile, they have also been utilized for 

medical diagnosis [9] as well as SHM. Ultrasound has been used to characterize submerged 

objects by sonar and to detect the moving objects inside a human body by medical 

instrumentation. NDT was early introduced during the World War II due to the prosperity in 

technological developments especially for military purposes. In early days, NDT was mostly 

used in detecting material defects [9]. Back then, new sophisticated techniques such as ultrasonic 

testing, eddy currents, x-rays, etc. were proposed to boost the effectiveness of NDT. Apart from 

detecting defects, NDT can often be used to quantify the material and mechanical properties.  

Ultrasonic signal processing techniques are widely used in quantitative non-destructive 

evaluation and testing (QNDE&T). QNDE&T applications include determination of the 

mechanical and structural properties, the dimensionality measurement of various complex 

structures and materials, etc. Figure 3 below demonstrates an often-encountered example for 

monitoring the body development of a fetus using the Doppler ultrasound. 

2.1.1 Basic Principles of Ultrasonic Inspection 

Ultrasounds are signals, which oscillate at very high frequencies beyond the audible 

frequency range of human ears. A typical UI system is capable of generating and collecting this 

kind of signals. Therefore, it should have various functional units, namely a pulser/receiver, a 

transducer, and some display devices. The function of a pulser/receiver is to generate high-

voltage electrical pulses. Then the transducer transforms these electrical pulses to high-frequency 

ultrasonic signals. 
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Figure 3. Monitoring the fetus development using Doppler ultrasound (this figure was duplicated 

from [9] and the permission to use this graph has been granted). 

 

During the test, an ultrasonic signal propagates through the structure of the specimen; 

when there exists a discontinuity in its traveling path, part of the signal will be reflected back 

from the discontinuity and part of the signal will still proceed. The received signal is then 

collected by the transducer and displayed on the monitor screen. From the signal waveform 

displayed on the monitor, the information about the location, size, and other features of the 

discontinuities can be acquired. Thus, one may use UI to spot flaws, cracks, voids, inclusions, 

etc. inside any material [7]. Figure 4 illustrates a basic schematic diagram containing the 

functional units of a typical UI system. 

Ultrasonic inspection is very popular and versatile among all NDT technologies. The 

advantages of UI can be found as follows (see [9]): 

 It is quite sensitive to the surface and the subsurface discontinuities. 

 The depth level for detecting flaws is much higher compared to other NDT methods. 
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Figure 4. Block diagram of a typical ultrasonic testing system. 

 
 During the test, the instrument needs to contact only a single side of the structure while 

maintaining very accurate test results. 

 The advanced functional units can facilitate real-time evaluation and display. 

On the other hand, UI has some limitations or drawbacks as follows: 

 The internal surface being tested should be able to reflect ultrasonic signals. 

 The structure (specimen) being tested cannot be irregular in shape, small, or rough. 

 More skills are required for a UI operator compared to other NDT operators. 

In general, UI has been broadly used for many applications in avionic/aerospace, spacecraft, and 

construction industries. 

2.2 Ultrasonic NDT for Stress Analysis 

 
In this thesis work, the experimental setup used for the stress analysis of steel was 

established by Professor Ayman Okeil and Dr. Yilmaz Bingol in the Department of Civil and 

Environmental Engineering of LSU. The UI facility consists of five major functional units [10]. 

They are  

 An Ultrasonic Pulser/Receiver, 

Pulser/Receiver 

Computer/Display 

Device 

 
Transducers 

 
 

Test Specimen 

(Steel/Concrete 

etc.) 
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 Two Transducers, 

 A PCI digitizer, 

 A MTS Hydraulic Unit, 

 A Personal Computer. 

Figure 5 depicts the system diagram for this UI facility, where “P” indicates the test specimen, 

“A/D” means the analog-to-digital converter (PCI digitizer), “T/R” specifies the transmitting 

transducer, “R” specifies the receiving transducer, and “P/R” is the pulser and receiver. A brief 

description of the functional units in Figure 5 used for this study and the selected system 

parameters are provided in the subsequent context [10].  

 
Figure 5. Experimental setup used for stress analysis [10]. 

 

2.2.1 Ultrasonic Pulser/Receiver  

 
The ultrasonic pulser/receiver is the most important component in the UI system. It is 

critical to choose the appropriate operating frequency range. For the metals being tested in this 
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work, ultrasound with a high frequency greater than 1 MHz is used. Thus, a pulser/receiver, 

which can cover a wide frequency range, was adopted. A Panametrics Model 5900PR 

pulser/receiver was equipped with a maximum bandwidth of 1 kHz-200 MHz in the UI system as 

depicted in Figure 5.  

2.2.2 Transducers  

 
The ultrasonic transducers are also crucial components in the UI system. There are two 

types of waves that can be used for testing the specimens, namely the longitudinal and shear 

waves. Different ultrasonic transducers can be built upon the ways they generate the signals (ex., 

piezoelectric transducers, electromagnetic-acoustic transducer, etc.). In this thesis study, the 

piezoelectric transducers with both longitudinal- and shear-wave contacts are equipped. The 

transducers are connected to the pulser/receiver through a doubly shielded cable causing low 

cable noise and better performance. The transducers are placed on the test specimen with the 

help of a coupling medium. The coupling medium used in this study is an Ultragel II couplant 

from Sonotech Inc. [10]. 

2.2.3 PCI Digitizer 

 
The main function of the PCI digitizer is to convert the analog signals obtained from the 

pulser/receiver to the digital domain. The sampling rate plays a critical role in data analysis. 

Generally speaking, the higher the sampling rate, the better resolution the discrete-time signal 

can demonstrate.  

            In this work, an Acqiris PCI digitizer Model DP310 was connected to the pulser/receiver 

and the computer. This digitizer has two operational modes, namely the oscilloscope mode and 

the transient recorder mode. The oscilloscope mode is a semi-automatic mode. The transient 
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recorder mode is a manual mode where the user has to prompt the sampling rate for the signal to 

be sampled. 

2.2.4 MTS Hydraulic Unit 

 
The hydraulic unit was used to apply desired stress on the tested specimen when the 

ultrasonic measurements were taken. In this work, the MTS 810 hydraulic unit was used and it 

was also connected to a personal computer where the user can specify the desired stress levels to 

be applied for testing the specimen. 

2.2.5 Personal Computer 

 
A personal computer was used to control the above-mentioned functional units. The 

output of the pulser/receiver is connected to the digitizer. The output of the digitizer is connected 

to the RS-232 serial port in the computer. The acquired signal samples are then stored so that 

various signal processing techniques can be employed. 

2.3 Data Acquisition for Ultrasonic NDT 

 
The signal data will be acquired using the experimental setup stated in Section 2.2. The 

ultrasonic data for stress analysis was acquired from the tested steel specimens. In this study, a 

total of four different steel specimens were considered, which possessed various thicknesses, 

mechanical properties, and chemical properties as listed in Table 1. We used the ultrasonic data 

obtained from the Type-I specimen for feature extraction.  

Table 1. The properties of Type-I specimen 

Specimen Thickness Mechanical Properties 

Tensile Stress Yield Stress 

        Type -I ¼ inches 63.1ksi 46.3ksi 
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The ultrasonic signals were obtained from the specimen via two ultrasonic test modes, 

namely through transmission (TT) and pulse- echo (PE) modes. A total of 183 ultrasonic signal 

waveforms were collected for the stress analysis from the Type-I specimen. The signal 

waveforms were sampled at the rate of 400 mega-samples/second. We fixed this sampling rate to 

collect all data.  

 Different stress levels were applied during the collection of the aforementioned signal 

data. These stress level conditions can be categorized into two groups, namely no-yield stress 

levels and yield stress levels as below. Note that the unit “ksi” means kilo-pounds per square 

inch. 

Stress Levels Applied on the Steel Specimen 

10ksi, 20ksi, 30ksi, 40ksi, 42.5ksi, 42ksi, 44ksi, 45ksi             No-Yield Stress Levels 

 

47.5ksi, 48ksi, 50ksi, 52.5ksi, 55ksi, 57.5ksi, 60ksi, 62.5ksi, 62ksi, 65ksi, 67.5ksi, 68ksi  

 

Yield Stress Levels 

2.4 Yield Detection Using Ultrasonic Signal Processing 

 
Ultrasonic signal processing has been playing a critical role in NDT applications. Stress 

analysis using ultrasonic signals has long been studied since the 1970’s [11]. The employment of 

ultrasonic signals for stress analysis is based on the principle of acousto-elasticity, or 

acoustoelastic effect. The acousto-elasticity is described as the influence of the stress or strain 

states on the propagation velocities of the ultrasonic waves. This principle is similar to that of the 
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photoelasticity. Thus, the ultrasonic technology would allow use to monitor the state-of-the-art 

structures without impairing their integrity and functionality [12].  

The application of acousto-elasticity helps to analyze the magnitude changes in the 

applied stresses on the tested materials using the velocity changes of the waves propagating 

through the tested materials. In recent years, ultrasonic NDT has been found vastly for the 

measurement of residual and applied stresses in materials such as wood, steel, and aluminum, 

etc. 

In this thesis study, we adopt the ultrasonic signal processing to carry out the yield stress 

detection. In structural engineering, yield is a very important parameter for evaluating the 

structural strength and functionality. Yield is defined as a point where a structure loses its elastic 

property and tends to deform plastically. Thus, yield detection is a very important study in the 

structural health monitoring. Thus, analyzing the signal characteristics at various stress levels 

was presented in [13]. In this thesis, the ultrasonic signals obtained from the steel specimens at 

the pre- and post-yield states are investigated in the time- and transform-domains using advanced 

signal processing techniques. We also propose to integrate all existing signal features for yield 

detection, hopefully, to build an “optimal” framework in this work. 
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CHAPTER 3: AUTOMATIC FEATURE EXTRACTION FOR YIELD DETECTION 

This chapter focuses on the ultrasonic signal processing for yield detection. The 

ultrasonic signal data samples will be segmented the signal features will be extracted for the 

yield analysis. The underlying signal features in the time domain and the transform domain will 

be manifested in detail. The concept of linear discriminant analysis (LDA) and its application 

for yield detection will be presented. 

3.1 Automatic Feature Extraction for Ultrasonic Signals 

The ultrasonic signals were obtained from the test specimen (steel) using the system as 

stated in Chapter 2. Each signal waveform was sampled at 400 MHz in a period of 20  sec and 

hence the total number of samples was 8,000. Different stress levels were applied to generate 

different ultrasonic signals. Figure 6 illustrates a typical ultrasonic signal obtained from the test 

specimen when the applied stress is 10 ksi (kilo-pounds per square inch). 

 
Figure 6. A typical ultrasonic signal waveform sampled at 400 MHz for 20  sec when 10 ksi of 

stress is applied on the test specimen. 

In the previous work [10], the signal echoes (ex., dominant amplitudes in Figure 6) were 

manually extracted from the raw signals, which consist the commonly-believed essential features 
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for yield detection. Nevertheless, the manual operation would often draw human errors. 

Therefore, in this thesis study, the automatic segmentation technique is employed to obtain the 

signal echoes completely based on the computer algorithms. Once these echoes are spotted by 

the computer, the time- and transform-domain features can be readily extracted for the further 

signal analysis. Recently, our research group devised a new algorithm to blindly identify the 

echoes of the ultrasonic signals traveling within the composite materials [7]. We adopt this 

algorithm with modifications for the application of the echo identification in the ultrasonic 

signals obtained from the steel specimens during the yield analysis. With the employment of this 

algorithm, it can be found that each signal echo consists of a starting point, a terminal point, and 

a peak. Figure 7 depicts the results from the blind echo identification algorithm in [7] when the 

raw signal demonstrated in Figure 6 is used.  

 
Figure 7. Determination of echoes with their starting points, terminal points, and peaks using the 

algorithm in [7]. The raw signal data is the same as used in Figure 6. 
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3.2 Signal Features Used for Ultrasonic NDT 

For the yield analysis, one must discover the essential feature(s) to achieve the highest 

accuracy in evaluating the material properties. Although many preceding research works have 

paved quite some foundations, it is still an open problem. In this subsection, we will investigate 

some features in both time and frequency domain. It has been demonstrated that three dominant 

signal echoes could be used for effective and robust yield detection [13]. After the echoes are 

segmented, a moving-average filter can be applied for noise reduction. Then, features can be 

acquired from these filtered echoes.  

3.2.1 Time-Domain Features 

The first categories of features are time-domain features. These features are extracted 

directly from the signal time-series (raw waveforms). The time-domain features investigated in 

this thesis include 

 Peak Amplitude  

 Signal Energy 

The details of the time-domain feature extraction are presented as follows. 

3.2.1.1 Peak Amplitude  

For a time-domain signal waveform, the peak amplitude is simply the maximum among 

all signal sample values. In the Figure 8 a signal echo is taken and the time domain signal 

amplitude is determined. For example, if x(t) denotes a signal waveform, its peak amplitude is 

given by 

peak amplitude of x(t) =     |    | 
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Obviously, the peak amplitude is sensitive to any scaling factor. Hence, the extracted peak 

amplitudes should be normalized by both the first echo’s peak amplitude obtained at the same 

stress level and the respective echo’s amplitudes obtained from the zero-stress specimen [13].  

 

Figure 8. Illustration of the peak amplitude in a dominant ultrasonic echo. 

 

3.2.1.2 Signal Energy 

The signal energy of a signal is given as follows. For a discrete-time signal x[i] with the 

sample size N, the signal energy is given by  

signal energy of x[i]= ∑ |  [ ]| 
   

2
 

Similar to the peak amplitude, the signal energy is quite sensitive to any scaling factor and hence 

it has to be normalized by the respective signal energy obtained from the zero-stress specimen 

[13]. 
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3.2.2 Transform-Domain Features 

One may apply any sort of transformation to transform the raw signal time-series to 

another domain, called transform-domain. Sometimes, the signal features are more useful when 

they are extracted from these transform-domains. The most popular transform for this use is 

surely the Fourier transform, which facilitates the spectral and frequency characteristics for any 

signal. Including the Fourier transform, we investigate a total of five transforms for the yield 

analysis in this thesis, namely discrete wavelet transform (DWT), discrete Fourier transform 

(DFT), chirp-Z Transform (CZT), discrete cosine transform (DCT), and discrete sine transform 

(DST). The discussion on these five transforms will be provided as follows. 

3.2.2.1 Wavelet Transform 

The continuous wavelet transform is a correlation between the signal and the wavelet 

basis functions. A mother wavelet      is chosen and a set of sub-wavelets are constructed 

subject to a dilation factor a and a translation factor b. Thus the continuous wavelet coefficients 

of a continuous-time function      are given by 

         ∫         
    

 

  
  , 

where         is defined as  

         
 

√ 
 (

   

 
) 

and the superscript “*” denotes the conjugate operator. In order to obtain large values of 

correlation, the mother wavelet      has to be chosen in such a way that it should match the 

shape of the signal. Thus, after the careful study of many wavelet families, bi-orthogonal 1.3 

wavelet was chosen for the needed transform. Figure 9 illustrates the shape of the mother 

wavelet “bi-orthogonal 1.3”.  
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Figure 9. Bi-orthogonal 1.3 wavelet. 

As the obtained ultrasonic signals are all discrete-time signals, the signals are decomposed using 

the discrete wavelet transform instead. 

The discrete wavelet transform (DWT) is the transform facilitating the projections of a 

signal onto the underlying wavelet basis functions. The DWT framework consists of two main 

system blocks, namely decomposition and reconstruction blocks. In the decomposition phase, the 

discrete-time signal x[n] is passed through a highpass filter represented by H(z) (its transfer 

function) and then downsampled such that the obtained outcomes are called the detail 

coefficients. Meanwhile, the signal x[n] is also passed through a lowpass filter represented by 

L(z) and then downsampled such that the obtained outcomes are called the approximate 

coefficients. Actually, the approximate coefficients correspond to the low-frequency high-scale 

components of the signal whereas the detail coefficients are the high-frequency and low-scale 

components instead. Figure 10 shows the basic one-level DWT decomposition where A1(n) and 

D1(n) denote the approximate and detail coefficient sequences, respectively and the subscript “1” 

denotes the level index.  
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Figure 10. Illustration of one-level DWT decomposition. 

 

The features extracted from the wavelet transform in this thesis are obtained through the 

three-level DWT decomposition. The three signal features extracted from the three-level 

decomposition are wavelet peak amplitude, wavelet peak-to-peak amplitude, and wavelet root 

mean square (RMS) amplitude. This three-level signal decomposition is illustrated in Figure 11. 

In Figure 11, A1(n) and D1(n) are the level-one approximate and detail coefficients resulting from 

the signal x[n] convolved with the lowpass and highpass filters, respectively.  

Then the level-one approximate coefficients are convolved with a lowpass filter and a 

highpass filter again; then A2(n) and D2(n) are the level-two approximate and detail coefficients, 

respectively. Similarly the level-two approximate coefficients are convolved with a lowpass filter 

and a highpass filter such that A3(n) and D3(n) are obtained as the level-three approximate and 

detail coefficients of the signal. 

The DWT of a signal x[n] is calculated by passing the samples through a series of filters. 
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        2 

 

A1(n) D1(n) 

        2 
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Figure 11. Illustration of the three-level DWT decomposition of a signal x[n]. 

For a one-level DWT, the signal x[n] is convolved with a lowpass filter and the output is 

given by 

A1     [ ]   [ ]   ∑  [ ] [   ] 
    , 

where  [ ] is the impulse response of lowpass filter. Meanwhile, the signal x[n] is also 

convolved with a highpass filter resulting in the following output sequence: 

D1     ∑  [ ] [   ] 
    , 

where h[n] is the impulse response of the highpass filter.  

As half of the signal spectrum is removed, thus half of the signal samples can be removed 

according to Nyquist’s rule. Thus, the outputs after downsampling by a factor of 2 are given by 

A1     ∑  [ ] [    ] 
    , 

Signal x[n] 

A1(n) 

A2(n) 

 

D2(n) 

 

A3(n) 

 
D3(n) 

 

D1(n) 
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D1     ∑  [ ] [    ] 
    . 

For a three-level decomposition, the output coefficients are obtained after performing the 

convolution on the signal with the lowpass and the highpass filters once and then on the 

respective approximate coefficients two more times. 

The following features are extracted from the ultrasonic signal echoes using the wavelet 

transform. 

 Wavelet Peak Amplitude 

When the level-three approximate coefficients A3(n) are obtained, the peak amplitudes of the 

wavelet approximate coefficients are calculated for all the signal echoes acquired from each 

stress level during the yield detection analysis. Figure 12 shows the maximum peak amplitude as 

calculated from the approximate coefficients A3(n) for a signal echo. 

 Wavelet Peak-to-Peak Amplitude 

We also calculate the wavelet peak-to-peak amplitudes from the approximate coefficients A3(n) 

as the essential features. The wavelet peak-to-peak amplitude is defined as the distance between 

the positive peak and the negative peak of the level-three approximate coefficients A3(n).  

 Wavelet Root-Mean-Square (RMS) Amplitude 

In addition, we also use the wavelet RMS amplitudes as the features. The RMS amplitude is 

defined as the square root of the sample mean of   
 [ ]. The RMS value for a discrete sequence 

x[n] is given by  

RMS (of a discrete sequence x[n]) =√
 

 
∑    

   
   , 

where n is the number of samples of the signal x[n]. 
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Figure 12. Wavelet peak amplitude and peak-to-peak amplitude. 

 
Similar to the time-domain features, the wavelet transform features are quite sensitive to any 

scaling factor and hence it has to be normalized by the respective feature(s) obtained from the 

zero-stress specimen [13]. 

3.2.2.2 Discrete Fourier Transform (DFT)  

We may use the discrete Fourier transform (DFT) peak amplitudes as the features for the 

yield analysis as well. In reality the DFT can be efficiently computed using the fast Fourier 

transform (FFT) instead. It is well known that DFT transforms a time-domain sequence into a 

frequency-domain representation as illustrated by Figure 13. The DFT of a discrete-time signal 

x[n] is defined as 
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where N is the sample size and   √  . Similar to all the aforementioned extracted signal 

features, the DFT peak amplitude features are quite sensitive to any scaling factor and hence they 

have to be normalized by the respective feature obtained from the zero-stress specimen [13]. 

 

Figure 13. Illustration of the frequency analysis using DFT (duplicated from [14] with the 

permission from the authors). 

3.2.2.3 Chirp-Z Transform (CZT) 

CZT is a frequency transform similar to DFT and is a generic case for the Z-transform 

[15]. It is also called Bluestein’s FFT Algorithm. CZT is an algorithm that evaluates the Z-

transform of a signal sequence [16]. CZT establishes the Z-transform along the spiral contours in 

the z-plane for an arbitrary signal sequence x[n] [17]. The Z-transform of a sequence x[n] is 

defined as 

            ∑  [ ]   
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The Z-transform is usually sampled along the unit circle (|z|=1) and it will be reduced to 

the discrete-time Fourier transform (DTFT). The DTFT has a lot of applications for spectral 

estimation, filtering, interpolation, and correlation [16]. The Z-transform of a finite-support 

sequences is defined as  

      ∑  [ ]      
   , 

where N is the sequence length.
 
Thus, one may sample the Z-transform on a finite set of points zk 

as given by 
 

       ∑  [ ]  
  

   

   

 

Obviously, DFT is a special case where the set of points are equally spaced along the unit circle 

such that 

              ⁄  , k = 0, 1,……, N-1. 

In a similar manner, the CZT can be defined by sampling the Z-transform along a general 

contour where        , k = 0, 1,.., M-1 and M is an arbitrary positive integer. The 

parameters A and W are two arbitrary complex numbers such that 

     
     , 

          
     , 

where           are the initial angular frequency and angular frequency increment values, 

respectively. 

Thus, the CZT of a sequence x[n] is given by  

     [ ]   ∑  [ ]   
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The corresponding peak amplitudes are considered as features for yield detection in this thesis 

work. Similarly, the chirp-Z-transform features are quite sensitive to any scaling factor and hence 

they have to be normalized by the respective features obtained from the zero-stress specimen 

[13]. 

3.2.2.4 Discrete Cosine Transform (DCT) 

 
Discrete cosine transform (DCT) [17] is equivalent to the DFT of a periodically extended 

sequence from the original signal, which possesses the even symmetry. It belongs to the family 

of sinusoidal unitary transforms, which are real, orthogonal, and separable with fast computation 

algorithms [18]. The commonly used variant of DCT is the Type-II DCT which we often just call 

as “DCT” [20].  The DCT of a discrete-time signal x[n] is defined as  

         ∑         (
             

  
) 

   ,  k = 1, 2…N, 

 

where w(k) = 
 

√ 
 for k = 1 and w(k) =√

 

 
 for 2      . 

The DCT has applications in signal and image processing because of its property of 

concentrating the energy of the signal in the low DCT bins [20]. According to [21], DCT is also 

used for data compression. The dominant DCT coefficients for signal echoes are considered as 

the features for the yield analysis. Similar to other signal features, the DCT features are quite 

sensitive to any scaling factor and hence they have to be normalized by the respective DCT 

features obtained from the zero-stress specimen [13]. 

3.2.2.5 Discrete Sine Transform (DST)  

Discrete sine transform (DST) is equivalent to the DFT of a periodically extended 

sequence from the original signal, which possesses the odd symmetry. The DST also belongs to 
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the family of unitary sinusoidal transforms [22] and it has orthogonal sine basis functions. The 

commonly used variant of the DST is the Type–I DST which we usually simply call as “DST”. 

The DST of a discrete-time signal x[n] is defined as 

y(k) =  ∑  [ ]    (
    

   
)   

     k = 1, 2…, N, 

where N is the length of x[n]. 

Some of the DST variants are used in applications of the fast implementation of lapped 

orthogonal transform for efficient transform/subband coding [24]. The dominant DST 

coefficients for signal echoes are used as the features for the yield analysis. Similarly, the DST 

features are quite sensitive to any scaling factor and hence they have to be normalized by the 

respective DST features obtained from the zero-stress specimen [13]. 

3.3 Linear Discriminant Analysis   

In this thesis, we propose to adopt the linear discriminant analysis (LDA) technique to 

extract the “optimal” features for yield detection. LDA is a classical multivariate statistical 

technique used in pattern classification and analysis. LDA facilitates a linear combination of 

features in the lower-dimensional subspace and helps classify two or more classes more 

accurately in this subspace [25]. Two important measures are evaluated using all data samples, 

namely the within class scatter matrix and the between class scatter matrix. 

The objective of the LDA technique is to maximize the between class measure while 

minimizing the within class measure. According to [26], the criterion function that has to be 

maximized is called the “Fisher’s Criterion”, which is given by 

J (w) = argmax       
  s. t.       

   , 

where    is the between class scatter matrix and    is the within class scatter matrix as given by 
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SB = ∑ |  |                
   , 

   = ∑ ∑               
 

      

 
   , 

c is the number of classes,    is the mean of the class   , and |  | is the number of samples of 

class   . Thus LDA is to find the projection in the lower-dimensional subspace where the 

Fisher’s Criterion related to the between class scatter matrix and the within class scatter matrix is 

maximized. The corresponding solution is equivalent to the solution to the generalized eigen-

decomposition problem as follows: 

     =       , for k = 1, 2, …, m, 

where    and    are the k
th

 respective eigenvalue and eigenvector. 

In the literature, LDA technique is used as a popular pattern recognition technique for 

defect detection. In [27], LDA was proposed as a pattern recognition technique to extract defect 

features for the magnetic flux leakage NDT. Also in [28], LDA was used to classify the AISI 420 

steel samples subjected to different heat treatments using magnetic Barkhausen noise signals. 

Actually, most research on NDT for SHM using LDA is focused on defect detection and material 

property characterization.  

In this study of yield detection, LDA is adopted to integrate the obtained signal features 

from the two classes (No-Yield data and Yield data) and its performance is evaluated. The data 

set used for this study consists of 183 individual ultrasonic signal waveforms and three dominant 

echoes are spotted for each signal waveform; from each echo, we can extract nine different kinds 

of features. Hence we have a total number of 183 signals     echoes/signal     features/echo = 

549 features. The feature vector extracted from each ultrasonic signal echo is thus given by 
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Note that among 183 original ultrasonic signal waveforms, 89 of them belong to the “No-Yield” 

class and 94 of them belong to the “Yield” class. Therefore, 267 feature vectors are extracted to 

represent the “No-Yield” condition while the other 282 feature vectors are extracted to represent 

the “Yield” condition. We randomly pick 242 feature vectors subject to the “No-Yield” condition 

and 257 feature vectors subject to the “Yield” condition for training and leave 25 feature vectors 

subject to the “No-Yield” condition and 25 feature vectors subject to the “Yield” condition for 

testing.  

 Then we employ the LDA projector onto the training feature vectors to seek the one-

dimensional subspace (m=1) for maximizing the Fisher’s Criterion. Figure 14 depicts the 

projections of the two classes onto this optimal subspace. From Figure 14, it can be inferred that 

there exhibits a quite good distinction between these two classes with the help of LDA. Hence a 

simple threshold can be used to well separate the two classes in this subspace. In this example, 

the threshold can be set to a value between -0.1 and 0 leading to a good separation of the two 

classes. 

We also project the testing feature vectors onto the same subspace. Figure 15 

demonstrates those projections resulting from the training data in the two classes as well as the 

projections resulting from the test data onto the LDA subspace. The threshold established using 
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the training feature vectors is used to classify any test data into either of the “No-Yield” and 

“Yield” classes. We will provide more detailed analysis on the experimental results in next 

chapter. 

 
Figure 14. Illustration of LDA projections for training feature vectors. 

 

 

Figure 15. Illustration of LDA projections for both training and testing feature vectors. 
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CHAPTER 4: COMPARITIVE STUDY ON THE EXTRACTED SIGNAL FEATURES AND 

LINEAR DISCRIMINANT ANALYSIS FOR YIELD DETECTION 

 
This chapter discusses the experimental results obtained from the extracted signal 

features for yield detection. Based on experimental results, graphical and statistical analyses of 

the extracted signal features are investigated. Scatter plots are delineated for graphical analysis 

and the two main statistical descriptors, namely mean and standard deviation, are evaluated for 

the extracted signal features. This chapter also presents the ROC plots regarding every kind of 

features and the proposed LDA technique for yield detection.  

4.1 Experimental Results for Signal Features 

The experimental results are first visualized using the graphical analysis. For the 

graphical analysis, the scatter plots are demonstrated for the aforementioned signal features. In a 

scatter plot, the horizontal axis represents the percentage of stress applied while the vertical axis 

indicates the signal feature value for yield detection. The percentage of stress applied on the 

testing specimen is divided into three stress intervals. In the scatter plots, they are: (i) 0-100% of 

stress applied – red circles, (ii) 100-115% of stress applied – blue triangles, and (iii) more than 

115% of stress applied – yellow squares. 

4.2 Graphical Analysis of Time-Domain Signal Features 

4.2.1 Peak Amplitude  

 
Figure 16 shows the scatter plot for the first time-domain signal feature, i.e., peak 

amplitude. From Figure 16, it can be discovered that the peak amplitude changes as the stress 

level varies. The peak amplitude stays within the range of [0.5, 1.6] when 0-100% of stress is 

applied. When the applied stress gets larger, the peak amplitude has an obvious drop till the 
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stress level reaches 105%. When more than 105% of stress is applied, the peak amplitude stays 

within [0.1, 0.6]. 

 
Figure 16. Scatter plot for peak amplitude. 

4.2.2 Signal Energy 

Figure 17 shows the scatter plot for the second time-domain signal feature, i.e., signal 

energy. From Figure 17, it can be inferred that the signal energy changes as the stress level 

varies. In the stress range of 0-100%, the signal energy values fall within the range of [0.4, 2.2]. 

When the stress level keeps going up within the range of 100-115%, the corresponding signal 

energy very often declines. As the stress levels reach beyond 105%, the signal energy values 

settle within the range of [0, 1.6]. Then the signal energy keeps reducing when the stress level is 

larger than 115%. According to [13], it is due to the fact that errors often arise in the 

measurement for the unstressed specimen. 
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Figure 17. Scatter plot for signal energy. 
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when 0-105% of the stress intervals are applied. As the stress levels increase beyond 105%, the 

wavelet peak-to-peak amplitudes fall within [0.1, 1.6]. When the stress levels go above 115%, 

the wavelet peak-to-peak amplitudes tend to decrease and the values are in range of [0.1, 0.5]. 

Figure 20 depicts the scatter plot for the wavelet RMS amplitude. When 0-100% of the 

stress levels are applied, the wavelet RMS amplitudes lie within the range of [0.6, 1.8]. When the 

stress levels are 100-115%, the wavelet RMS amplitudes slightly reduce and lie in range of [0.2, 

1.6]. As the stress levels reach above 115%, the wavelet RMS amplitudes decrease more and fall 

within the range of [0.1, 0.9]. 

 
Figure 18. Scatter plot for wavelet peak amplitude. 
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Figure 19. Scatter plot for wavelet peak-to-peak amplitude. 

 

 

Figure 20. Scatter plot for wavelet RMS amplitude. 
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4.3.2 FFT Peak Amplitude 

Figure 21 shows the scatter plot for the FFT peak amplitude. From Figure 21, it can be 

discovered that the FFT peak amplitudes lie within the range of [0.45, 2.2] when the stress levels 

are 0-100%. When the stress levels reach up to 100-115%, the FFT peak amplitudes drop and lie 

in the range of [0.2, 1.6]. As more stresses (larger than 115%) are applied, the FFT peak 

amplitudes further decrease and  fall within the range of [0.1, 1.4].  

 

Figure 21. Scatter plot for FFT peak amplitude. 
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.  

Figure 22. Scatter plot for CZT peak amplitude. 
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DST coefficients drop and fall within the range of [0.2, 2.2]. As the stress levels increase above 

115%, the dominant DST coefficients further decrease and lie in the range of [0.1, 0.9]. 

 

 

Figure 23. Scatter plot for dominant DCT coefficient. 

 

Figure 24. Scatter plot for dominant DST coefficient. 
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4.4 Statistical Analysis (Mean and Standard Deviation) of the Signal Features 

Apart from the graphical analysis of the signal features for various stress levels, the basic 

statistical analysis is also carried out here. Two statistical measures investigated for the signal 

features are mean and standard deviation. Table 2 lists the mean and standard deviation (briefed 

as “SD”) values for the signal features calculated from the ultrasound echoes. 

Table 2. Statistical Measures for Signal Features 

 

Features Statistical 

Measures 

0-100% Yield 

Stress 

100-115% Yield 

Stress 

Above 115% 

Stress 

Peak 

Amplitude 

 

Mean 1.0681 0.6732 0.3141 

SD 0.1545 0.3553 0.1447 

Signal 

Energy 

Mean 1.1160 0.5960 0.1225 

SD 0.2883 0.5209 0.1209 

Wavelet 

Peak 

Amplitude 

Mean 1.0771 0.6805 0.3188 

SD 0.1833 0.3656 0.1550 

Wavelet 

Peak-to-

Peak 

Amplitude 

Mean 1.0598 0.6420 0.2749 

SD 0.1627 0.3459 0.1303 

Wavelet              

RMS 

Amplitude 

Mean 1.0527 0.6963 0.3401 

SD 0.1863 0.3523 0.1792 

FFT Peak 

Amplitude 

Mean 1.0731 0.7249 0.3246 

SD 0.3267 0.4531 0.2408 

CZT Peak 

Amplitude 

Mean 1.0350 0.7717 0.3630 

SD 0.1387 0.4071 0.2286 

Dominant 

DCT 

Coefficient 

Mean 

 

1.0645 

 

0.7955 

 

0.3823 

 

SD 0.2357 0.4754 0.2485 

Dominant 

DST 

Coefficient 

Mean 1.0664 0.7741 0.3508 

 

SD 

 

0.2076 

 

0.4220 

 

0.1920 
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4.5 Performance Analysis of Signal Features -Receiver Operating Characteristics (ROC)  

The graphical analysis presented in Section 4.3 shows the good separability between the 

no-yield and yield classes using any of the aforementioned signal features. On the other hand, the 

performances of the aforementioned signal features used for yield detection should be evaluated 

using the receiver operating characteristics (ROC) curves. An ROC curve is a plot of the true 

positive rate versus the false positive rate. The true positive rate (probability of correct detection) 

and the false positive rate (probability of false detection or false alarm) are defined as 

True Positive Rate (TPR) = 
                                        

                   
, 

False Positive Rate (FPR) = 
                                          

                    
, 

respectively. 

In this thesis, the ROC curves are all plotted for using the extracted signal features to 

distinguish between the yield and no-yield conditions. We take two cases to differentiate these 

two conditions. They are 

Case1: No-Yield: 0-100% of stress is applied; Yield: above 100% of stress is applied. The 

corresponding ROC curve is colored blue. 

Case2: No-Yield: 0-115% of stress is applied; Yield: above 115% of stress is applied. The 

corresponding ROC curve is colored red. 

In the following subsections, all the extracted signal features for the yield analysis are 

evaluated. Tables 3 and 4 list the true positive rates and the corresponding false positive rates for 

peak amplitude and signal energy, respectively. Figures 25 and 26 delineate the respective ROC 

curves. Tables 5-11 list the true positive rates and the corresponding false positive rates for 

wavelet peak amplitude, wavelet peak-to-peak amplitude, wavelet RMS amplitude, FFT peak 
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amplitude, CZT peak amplitude, dominant DCT coefficient, and dominant DST coefficient, 

respectively. Figures 27-33 exhibit the corresponding ROC curves for these seven features. 

4.5.1 ROC Analysis – Peak Amplitude 

 
Table 3. ROC Table for Peak Amplitude 

      ROC Analysis: Case1       ROC Analysis: Case 2 

 

       

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 25. ROC curves for peak amplitude. 
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4.5.2 ROC Analysis – Signal Energy  

 

Table 4. ROC Table for Signal Energy 

 
                        ROC Analysis: Case1                                ROC Analysis: Case 2 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 26. ROC curves for signal energy. 
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4.5.3 ROC Analysis – Wavelet Peak Amplitude 

 
Table 5. ROC Table for Wavelet Peak Amplitude 

 

      ROC Analysis: Case1        ROC Analysis: Case2 

 

Threshold TPR 

(%) 

FPR (%) 

0.0 0 0 

0.2 21.98 0 

0.4 51.4 0 

0.6 79.07 0.74 

0.8 86.87 5.99 

1.0 93.26 34.83 

1.2 97.16 75.28 

1.4 98.94 94.75 

1.6 
100 99.62 

1.8 100 100 

2.0 100 100 

2.2 100 100 

2.4 100 100 
 

 
Figure 27. ROC curves for wavelet peak amplitude. 
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4.5.4 ROC Analysis – Wavelet Peak-to-Peak Amplitude 

 
Table 6. ROC Table for Wavelet Peak-to-Peak Amplitude 

 
              ROC Analysis: Case1      ROC Analysis: Case 2 

 

 

 

 

 

 

 

 

 

Figure 28. ROC curves for wavelet peak-to-peak amplitude. 
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4.5.5 ROC Analysis – Wavelet RMS Amplitude 

 
Table 7. ROC Table for Wavelet RMS Amplitude 

 
                   ROC Analysis: Case1                   ROC Analysis: Case2 

  

 

 

 

 

 

 

 

 

Figure 29. ROC curves for wavelet RMS amplitude. 
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4.5.6 ROC Analysis – FFT Peak Amplitude 

Table 8. ROC Table for FFT Peak Amplitude 

 
ROC Analysis: Case1            ROC Analysis: Case2 

 

 

 

 

 

 

 

 

 

 

Figure 30. ROC curves for FFT peak amplitude. 
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4.5.7 ROC Analysis – CZT Peak Amplitude 

Table 9. ROC Table for CZT Peak Amplitude 

ROC Analysis: Case1                                                   ROC Analysis: Case2  

 

 

 

 

 

 

 

 

 

Figure 31. ROC curves for CZT peak amplitude. 
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4.5.8 ROC Analysis – Dominant DCT Coefficient 

 
Table 10. ROC Table for Dominant DCT Coefficient 

         ROC Analysis: Case1                             ROC Analysis: Case2 

 

 

 

 

 

 

 

 

 

Figure 32. ROC curves for dominant DCT coefficient. 
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4.5.9 ROC Analysis – Dominant DST Coefficient 

 
Table 11. ROC Table for Dominant DST Coefficient 

             ROC Analysis: Case1                                                               ROC Analysis: Case2 

 

 

 

 

 

 

 

 

Figure 33. ROC curves for dominant DST coefficient. 
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4.6 LDA Performance Analysis for Yield Detection  

The performance of our proposed LDA technique is also evaluated for the 

aforementioned two cases. Table 12 lists the true positive rates and the corresponding false 

positive rates. Figure 34 illustrates the respective ROC curves.   

 

Table 12. ROC Table for LDA 

          ROC Analysis: Case1                   ROC Analysis: Case2  
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Figure 34. ROC curves for the LDA using all the above-mentioned signal features. 

 

4.7 Performance Comparison of the Proposed LDA with Individual Signal Features 
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range of false positive rate within [0, 0.55] instead.  
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Figure 35. ROC curves for Case 1 (the range of false positive rate is [0, 1]). 

 
 

Figure 36. ROC curves for Case 1 (the range of false positive rate is [0, 0.5]). 
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Figure 37. ROC curves for Case 2 (the range of false positive rate is [0, 1]). 

 
Figure 38. ROC curves for Case 2 (the range of false positive rate is [0, 0.55]). 
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Table 13, lists the true positive rates (TPRs) for the nine signal features and the LDA 

technique for Case 1 subject to a fixed false positive rate of 10%, which can be considered a 

practically allowable false alarm rate. 

 

Table 13. True Positive Rate Comparison Subject to 10% of False Positive Rate 

 
 

 

 

 

 

 

 

 

 

 

 

 

According to Table 13, our proposed LDA technique is “optimal” among all. Besides, according 

to Figures 35-38, it can be observed that for almost all false positive rates, our proposed LDA 

achieves the highest true positive rates among all techniques in comparison. 

 
 
 
 
 

Features TPR 

Signal Amplitude 87% 

Signal Energy 88% 

Wavelet Peak Amplitude 86% 

Wavelet Peak-to-Peak 

Amplitude 

88% 

Wavelet RMS Amplitude 87% 

FFT Peak Amplitude 77% 

CZT Peak Amplitude 83% 

Dominant DCT Coefficient 79% 

 Dominant DST Coefficient 84% 

LDA 92% 
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CHAPTER 5: CONCLUSION 

In this thesis, a novel NDT tool for yield detection using ultrasonic signal features is 

proposed and studied. The obtained ultrasonic signal waveforms for the Type-I steel specimens 

are sampled and investigated for the yield analysis. The ultrasonic signals are preprocessed and 

segmented and a total of three dominant echoes from each waveform are extracted.  

 Both time-domain features (peak amplitude, signal energy) and transform-domain 

features (wavelet peak amplitude, wavelet peak-to-peak amplitude, wavelet RMS amplitude, 

FFT peak amplitude, CZT peak amplitude, dominant DCT coefficient, dominant DST 

coefficient) are extracted from the three dominant echoes. After the extraction of the features, the 

graphic analysis and the statistical analysis are carried out for every signal feature to observe the 

corresponding separability to distinguish yield and no-yield conditions. 

We also propose an integrative framework built upon the linear discriminant analysis 

(LDA) to further improve the yield detection method using either of the nine individual signal 

features in the time- and transform-domains. The receiver-operating-characteristics (ROC) 

curves are depicted to compare different features. From our experiments, we have discovered 

that the proposed LDA technique leads to the best ROC results for yield detection. 
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