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Abstract

Analysis of Big data to gain better insights has been the focus of researchers in the re-

cent past. Traditional desktop computers or database management systems may not be

suitable for efficient and timely analysis, due to the requirement of massive parallel pro-

cessing. Distributed computing frameworks are being explored as a viable solution. For

example, Google proposed MapReduce, which is becoming a de facto computing archi-

tecture for Big data solutions. However, scheduling in MapReduce is coarse grained and

remains as a challenge for improvement.

Related with MapReduce scheduler when configured over distributed clusters, we

identify two issues: data locality disruption and random assignment of non-local map

tasks. We propose a network aware scheduler to extend the existing rack awareness.

The tasks are scheduled in the order of node, rack and any other rack within the same

cluster to achieve cluster level data locality. The issue of random assignment non-local

map tasks is handled by enhancing the scheduler to consider the network parameters,

such as delay, bandwidth and packet loss between remote clusters.

As part of Big data analysis at computational biology, we consider two major data

intensive applications: indexing genome sequences and de Novo assembly. Both of

these applications deal with the massive amount data generated from DNA sequencers.

We developed a scalable algorithm to construct sub-trees of a suffix tree in parallel to

address huge memory requirements needed for indexing the human genome.

For the de Novo assembly, we propose Parallel Giraph based Assembler (PGA)

to address the challenges associated with the assembly of large genomes over com-

xi



modity hardware. PGA uses the de Bruijn graph to represent the data generated from

sequencers. Huge memory demands and performance expectations are addressed by

developing parallel algorithms based on the distributed graph-processing framework,

Apache Giraph.
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Chapter 1
Introduction

1.1 Big Data

The volume of data produced from both academic research and industry is growing at

an enormous rate. The term ”Big data” is widely used to characterize the complexity

and volumes of data sets generated from scientific research, social networks, internet

search indexing, high throughput sequence data from a genome, and many other appli-

cation domains. Researchers have focussed on developing computational frameworks

to address the compute and data-intensive computations. In the next several sections I

introduce existing distributed computing frameworks widely used for Big data analytics.

1.2 Compute Intensive Computing

High performance computing (HPC) clusters and computational grids [18] [10] target

compute-intensive applications. HPC clusters have been in use for large scale scientific

computing for years. The primary goal of HPC is to use more processors to reduce the

end to end computation time. Each node in the cluster can be a single-processor or multi-

processor equipped with large memory, I/O devices and local storage. Furthermore, each

node has access to shared file system interconnected with high speed interconnects such

as 10GbE or infiniband.

Batch computing is the simplest form of applications executed over HPC, in which, a

large job is split into multiple batches, which are independently processed over multiple

2



processors. For example, Autodock [6] is a widely used software for molecular docking

to predict the binding orientation of small molecule to their protein targets in order to

predict the affinity and activity of the small molecule. In the parallel version, the protein

targets are batched into subsets and executed in parallel over multiple nodes. In this case

the batch computing is suitable since docking does not require communication between

processors.

However, not all parallel computations can be expressed as batch processing. Many

of the parallel algorithms require coordination between the computing processors and

the communication between processors is achieved through message passing interface

(MPI). Although, MPI gives great flexibility to the programmer, but requires explicit

handling of the data flow and fault tolerance. Furthermore, scalability of HPC systems

is an issue and shown to be poor with linear speedup. Many of the compute intensive

problems can be solved with HPC, however data intensive applications require an effi-

cient, easily scalable and fault tolerant distributed computing framework.

1.3 Data Intensive Computing

Cloud computing provides a unique solution to storage and computing power for big

data analysis. Emerging infrastructure as a service clouds such as Amazon EC2 [2],

Openstack [15], Rackspace [17], OpenCirrus Eucalyptus [34] and IBMs Blue Cloud [11]

are big leap towards providing computing power over the internet. On demand pro-

visioning, ease of use, seamless computing, storage and the fact that the computing

power is provided through low cost commodity clusters draws huge attention both from

academia and industry. Many of these commercial clouds provide unlimited computing

power. In addition to those commercial clouds, many universities and research lab-

oratories have deployed their own private clouds for research and education. Cloud

computing services can be classified into three major categories: 1) Infrastructure as a

service (IaaS) 2) Software as a service (Saas) and 3) Platform as a service (Paas).

3



Iaas

It is a model for providing hardware resources as service, the resources can be

computing units in the form of virtual machines, storage, servers and networking

components. Any request is serviced on demand, users can set up any software

of their choice on the provisioned resources. The characteristics and components

of IaaS include i) Utility computing service and billing model ii) Automation of

administrative tasks, and iii) Dynamic scaling and Policy-based services.

Saas

In this model software hosted by a vender is provided as service to the users. This

model is gaining importance as a common delivery model for providing software.

SaaS has number of benefits such as, easier administration, automatic updates and

software version management.

Paas

It is a service model of cloud computing which provides computing platform and

solution stack as a service. In this model the vendor not only provides the un-

derlying infrastructure resources but also the application development platform.

This platform includes the automation to deploy, test and iterate applications. Op-

erating systems, databases, middleware and up-to-date tools and services are all

provided by the PaaS vendor, so that the tasks requiring manual tasks such as con-

figuring, optimizing and continuously updating your environment are handled on

users behalf.

MapReduce [27] paradigm is a distributed computing framework for data intensive ap-

plications. It is inspired by the Map and Reduce constructs of the functional program-

ming model. The program is expressed as Map and Reduce constructs. Input and output

are expressed in terms of (key,value) pairs. Map takes (key, value) as input and produces

intermediate (key1 value1) output pairs. Reducer takes (key1,value1) as input and pro-

4



duces (key2,value2) as output. All the Map functions run in concurrent. The output

of Map is sent to the Reduce function as input. Reducer will sort the input key-value

pairs according to the key and combine the value of key-value pairs into a list which

have the same key, at last, the reducers which are also run in parallel generate the output

key-value pairs.

The MapReduce framework abstracts programmers from the complexities of input

data distribution, parallelization, fault tolerance and synchronization the framework in-

herently handles these functionalities. The open source implementation of MapReduce

framework consists of computing environment called Hadoop and distributed filesystem

called Hadoop distributed filesystem (HDFS). Hadoop acts like runtime environment for

the Map and Reduce functions provided by programmers. HDFS is designed to provide

replication, integrity of the data and fault tolerance. The architecture of Hadoop has

master services namely Jobtracker and Namenode and client services namely Tasktrack-

ers and Datanodes. The Jobtracker receives the job submitted by the user and splits it

into map and reduce tasks. It assigns tasks to Tasktrackers, monitor the status and when

all the tasks are complete it reports back to the user. Tasktrackers are configured with

fixed number of map and reduce slots which determine the number of tasks to run con-

currently. Cloud computing coupled with MapReduce programming model have made

huge strides in big data analysis. MapReduce is extensively used on compute clouds

at Amazon, Facebook and Yahoo. This has led many of the organizations to set up

MapReduce based private cluster for internal data processing.

1.4 Scientific Big Data Analysis: Genome Assembly

Mainly there are two types of genome assembly applications (1) Read mapping or Se-

quence alignment (2) De Novo Genome Assembly. Both involve processing huge data

sets produced from genome sequencers.

DNA sequencing is the basis for many of bioinformatics applications such as SNP

5
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Figure 1.1: MapReduce programming model

discovery, comparative genomics, metagenomics and personal medicine. Large collec-

tion of short reads produced by sequencing technologies form a genomic dataset needed

for these applications. Recent technological breakthroughs in Next Generation Se-

quencing (NGS) have resulted in affordable, low running costs and high throughput se-

quencers. However, these methods produce short sequences, for example, the Illumina-

Solexa system can generate 50 million sequences of length 30-50 nucleotides [35]. The

Roche-454 system can generate 400, 000 sequences of length 250-500 nucleotides in a

7.5 hour run [47]. NGS is a evolving technology and it is speculated that the sequencing

costs will be reduced to as low as $1000 [50]. Low cost of producing short sequencing

will trigger the use of such systems even in small laboratories. The computational de-

mands for processing NGS data are tremendous and far exceed current capabilities. In

fact, without substantial advances in high-performance, scalable algorithms, very little

progress would be made to extract knowledge from such a rich set of data. Therefore,

there is a need to design powerful algorithms and systems which can efficiently handle

the computational challenges posed by NGSs.

1.4.1 Read Mapping

Read mapping also referred as sequence alignment an important aspect of DNA anal-

ysis. DNA is a sequence of four possible nucleotides or base pairs (bp): Adenine (A),
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Cytosine (C), Guanine (G) and Thymine (T). The subset of this sequence which deter-

mines the functionality of protein molecules is called genes. Even a single nucleotide

difference in a gene alters the protein molecule functionality between the individuals.

The purpose of sequence alignment is to compare the genes between the individuals and

determine the difference in characteristics. The earliest of alignment tools is Basic Lo-

cal Alignment Search Tool (BLAST), It makes use of an algorithmic technique called

seed-and-extend. BLAST first indexes the short sequence to be searched in the reference

genome. These short sequences are called query sequences and the resulting strings, af-

ter indexing, are called words. BLAST then scans the reference genome sequence to

find the similar match of the indexed words. Tools which are based on indexing meth-

ods are SOAP [39] and BowTie [37]. These alignment tools specifically designed for

reads generated from illumina-solexa machines. Not many tools are available for map-

ping 454 reads, because of the volumes of short reads generated, thus there is need to

develop faster sequence mapping tools which can match the speed of NGS sequencers.

1.4.2 De Novo Genome Assembly

Construction of DNA sequence of an organism from short sequences produced from

sequencing technique is referred as de novo genome assembly.

Sequecing

Extracting the DNA from an organism and generating fragments of the DNA is

called sequencing. The sequencing field is dominated by Sanger sequencing meth-

ods until recently, in which the length of short sequences is around 500-1000bp.

The modern sequencing methods known as next generation sequencing technolo-

gies produce smaller length sequence of length 30-100bp.

Short Reads

The collection of short sequence which are produced after subjecting the DNA to
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sequencing method. Genome sequencing projects commonly use whole genome

shotgun sequencing (WGSS) approach to sequence an entire genome.

Assembly

Assembly of shot reads, in other words putting together the fragments randomly

extracted from the sample to form a set of contiguous sequences called contigs,

which represent the DNA in the sample. Figure 1.2 shows the overview of assem-

bly process1

!"

#" $"

%"

&"

Figure 1.2: Overview of genome assembly process (A) Genomic data (B) Short reads
produced from next generation sequencing methods (C) De Bruin graph representation
of the unique k-mers from short reads (D) Series of graph simplification process which
are applied repetitively (E) After the scaffolding phase, relatively longer sequences are
produced these are called contigs

1Part of the image is reproduced from Contrail [8]
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Chapter 2
Network-Aware MapReduce Scheduler

2.1 Introduction

Large scale scientific and engineering applications generate vast amount of data. For

example, the Large Hadron Collider project generates peta bytes of data which need

to be processed, analyzed and stored. Cloud computing coupled with MapReduce pro-

gramming paradigm has made huge strides in big data analysis. Hadoop, which is an

open source implementation of MapReduce is extensively used on compute clouds at

Amazon, Yahoo and Rackspace. Many of these commercial clouds provide unlimited

computing power. In addition to those commercial clouds, many universities and re-

search laboratories have deployed their own private clouds for research and education.

To maximize the utilization of heterogenous public and private clouds, researchers

want to launch their jobs over federated clouds at the same time. For example at

Louisiana State University, researchers can make use of different cloud resources: LONI [13],

Futuregrid [10] and Xsede [18]. We focus on how to aggregate cloud resources from

private and public clusters and run MapReduce jobs more efficiently.

Conventional MapReduce(Hadoop) schedulers are optimized to operate over single

cluster which connects computing nodes within local networks. However with consider-

able administrative efforts MapReduce can be deployed over distributed clusters. There

are several issues on performance of MapReduce over distributed clusters. For example,

network latency and bandwidth between a master node and slave nodes reduce the per-
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formance of MapReduce because MapReduce configuration requires a direct commu-

nication between a master node and slave nodes. Additionally, scheduling tasks among

slave nodes which are scattered over remote clusters becomes an important factor on

performance because of data locality.

There are several ways of deploying MapReduce Hadoop over distributed clusters.

First approach is to set up independent Hadoop clusters at each site having a central-

ized job scheduler to manage job submission. The second approach is to aggregate the

underlying physical clusters as a single virtual cluster and run MapReduce tasks on top

of this virtual cluster. And the third approach is to make MapReduce framework work

directly with multiple clusters without additional virtual clusters. We deployed global

MapReduce over federated clusters to utilize the computing resources effectively. How-

ever, deploying MapReduce framework directly on multiple cluster degrades the per-

formance because of failing to exploit data locality. Our research provides a method to

add network awareness to global MapReduce so that a scheduler has the information

about data locations to launch map tasks on nodes with the data. We refer this feature as

network aware scheduler.

2.1.1 Related Works

Cardos et al. [25] suggest different architectures to set up MapReduce framework when

source data and computation are distributed. They recommend three architectures, Local

MapReduce where in data is moved to centralized cluster to perform computations.

Global MapReduce where MapReduce cluster is established with nodes from all the

clusters and Distributed MapReduce where in small independent MapReduce clusters

similar to architectural overlay over the distributed computing nodes. However, their

suggestions are different configurations and fail to address data locality concerns.

Yuano Luo et al. [40] introduce hierarchical MapReduce by organizing the re-

sources into two layers: a top layer consisting of job scheduler and workload manager,
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and a bottom layer consisting of distributed clusters running local MapReduce. When

a job is submitted, it is split into sub jobs, which are assigned to distributed clusters.

A Jobtracker at each of the clusters reports the job progress and sends result back to a

global controller where reduce tasks take place. The disadvantage of this approach is

that it is suitable for map-intensive or map-mostly type of applications. If intermediate

data generated from the map phase are huge and need to be transferred to a reducer then

data transfer becomes bottleneck for the performance of Hadoop. Majority of the data

intensive applications involve significant reduce phase computations. Also users need to

add additional programming construct to perform global reduce at the global controller.

2.2 Scheduling in Hadoop

There exist different job schedulers for Hadoop. The mainly used job schedulers are

FIFO and FAIR schedulers. We discuss each in the below sections.

2.2.1 FIFO Scheduler

Default scheduling in Hadoop is through FIFO scheduler. When a slave node with an

empty map slot sends a heartbeat packet to the Jobtracker, scheduler checks the head of

the job queue to get the unassigned map tasks. If the job has tasks whose input split is

located on the slave node then task is assigned to the Tasktracker. If scheduler does not

find local map task then it assigns only one non local map task to this Tasktracker.

2.2.2 FAIR Scheduler

FAIR scheduling ensures that every job gets an equal share of resources over time. If

there is single job running then entire cluster is allocated for the job. If new jobs are

submitted then task slots which free up are allocated to the newly submitted jobs, so that

each job gets roughly equal share of cpu time. Small jobs get finished within reasonable

time and long jobs are not starved. FAIR scheduler organizes jobs into pools and inside
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pool FIFO or FAIR queuing of the jobs can be configured.

2.2.3 Global MapReduce over Federated Clusters

MapReduce Hadoop cannot be easily deployed over distributed clusters of different ad-

ministrative domains to form single MapReduce cluster, since master node services re-

quire direct communication between slave node services. If the clusters belonging to

different administrative domains need to be federated, then a considerable amount of

administrative effort is needed to make internal nodes of clusters to communicate with

each other. We address this issue of internal nodes accessible from outside by intro-

ducing a virtualization on top of all the physical clusters. Cloud computing software

like Eucalyptus [34] or Openstack [15] is installed on each of the underlying physical

clusters. Computing units are provided as virtual machines from any of the distributed

clusters. A virtual layer unifies the resources provided by all the distributed clusters into

single infrastructure layer of virtual machines. MapReduce cluster is set up on top of

these virtual machines where in a single Jobtracker takes the responsibility of scheduling

the jobs and managing the Tasktrackers as shown in figure 2.2. The advantage of this

approach is that, it is easy to manage distributed clusters through cloud computing soft-

ware. However, the critical aspect in this approach is to make a scheduler be topology-

aware in order to accomplish data local computation of map tasks. The proposed work

focuses on improving data locality while scheduling map tasks for global MapReduce

so that all types of data intensive applications such as, map-only, map-mostly and map-

reduce application types are supported. In the below sections, we describe data locality

issue and propose network aware scheduling to make global MapReduce scheduler data

aware.
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Figure 2.1: Federated Clusters

2.2.4 Case for Data Locality over Federated Clusters

Unlike HPC systems where computation and file system are decoupled, in MapReduce

Hadoop filesystem (Datanode) and computation (Tasktracker) are co-located on a node.

When data is transferred to HDFS it is replicated to datanodes so that Tasktracker run-

ning on that node will have data blocks prior to execution of a task. In the current

implementation of MapReduce Hadooop, data locality is achieved by replicating the

data at three levels of cache. At the first level, a data split is stored on a node. At the

second level, a data split is saved on a node in the same rack and at the third level, a

data split is stored off-rack. To achieve data locality, map tasks are scheduled on nodes

which already have the data blocks (this constitutes node local). If scheduler cannot find

such a node then tasks are scheduled on nodes which can fetch data blocks from any

node in the same rack (this constitutes rack local). If both situations are not met then

the map task is scheduled on any tasktracker requesting for a task. Thus MapReduce

scheduling algorithms exploiting data locality are based on the assumption of multiple

nodes in a rack, which are connected by an aggregate switch. Figure 2.1 shows the

typical architecture for federated clusters which may be connected by regular internet

or by dedicated link. Furthermore, if virtualization is added on top of these federated

clusters to provide virtual machines as computing units, then Hadoop’s assumption of
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racks connected through aggregate switch cannot be extended to achieve data locality.

To get maximum performance of Hadoop, it is critical to configure Hadoop so that it

knows the topology of the entire network while making scheduling decisions.

2.3 Network Aware Scheduling

The goal of task scheduling in Hadoop is move computation towards data. If it can

not meet this objective then a task is scheduled on a node which is requesting for a

task, this causes data to be transferred to compute node for processing. When resources

are provisioned by distributed clusters, moving the data across the network causes the

degradation in Hadoop’s performance.

In case of distributed clusters, the Tasktrackers from any of underlying cluster might

request for a map task. The technique to make Hadoop scheduler aware of network

topology is to extend the rack aware feature of the existing Hadoop scheduler to provide

one more level of caching. An administrator controlled script will hold the informa-

tion about which cluster the tasktracker is associated with. In our implementation of

global MapReduce architecture, network topology script has information about virtual

machines and physical location of the cluster from which they are provisioned. We use

Neuca [34] enabled Eucalyptus cloud computing software to provide virtual resources

from the distributed clusters. The locations of the virtual machines are organized as

/clusterN /rackN /vmN . Where clusterN denotes the physical which cluster, rackN de-

notes the rackid and the vmN indicates the hostname for the virtual machine.

We enable delay scheduling [20] to take maximum use of data locality while schedul-

ing a task. When head of the queue task doesn’t find a compute node with data then

scheduling of the task is delayed for specified delay. If any of the compute nodes be-

come free with a data split corresponding the job being processed then scheduler assigns

a map task to requesting Tasktracker. Duration for which a head of the queue map task

is to be delayed is based on the average length of the map tasks for a job hence requires
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Figure 2.2: Experimental Setup

careful tuning.

2.4 Experimental Setup

In this section we describe the environment used for our experiments. We perform

experiments over cyberinfrastructure of reconfigurable optical networking environment

(CRON) [19], an Emulab based testbed that provides multiple virtual testbeds operat-

ing up to 10Gbps bandwidth. It consists of two main components: (i) hardware (H/W)

components, including a switch, optical fibers, network emulators, and the workstations

required to physicallycompose optical paths or function at the ends of these paths; and

(ii) software (S/W) components, creating an automatic configuration server that will in-

tegrate all the H/W components to create virtual network environments based on the

users requirements. All components are connected with 100/1000 Mbps Ethernet links

for control. Each workstation is connected with 10 Gbps optical fibers for data move-

ment.

We use Eucalyptus as cloud computing software, we setup two NEuca-patched [14]

Eucalyptus Clouds to construct the distributed cloud scenario. The NEuca patch attaches

additional exclusive virtual NICs to a VM for application data transmission. We have

two computing nodes in each Cloud and each computing node accommodates three
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Table 2.1: Jobs with Varying Task Lengths

Task Average Execution Time
Map 5 sec
Map 8 sec
Map 14 sec

VMs. Then, all VMs connect to each other through the additional NICs to form a virtual

cluster. We deploy network aware Hadoop over this virtual cluster as shown in figure 2.2

We avoid multiplexing VMs on a physical machine for the better and stabler execution.

Each VM is allocated with 2 physical CPU cores, 2 GB of physical memory, and 10 GB

of local hard disk space. Regarding the NIC, the VirtIO interface is adopted to serve the

virtual NIC so that the transmission rate is as high as the Hypervisor can provide.

2.4.1 Experiments

2.4.1.1 Experiments with Native Hadoop

In this set of experiments we run Hadoop over distributed cluster without network aware-

ness. One of the node will be a master node running Jobtracker and Namenode services.

Remaining nodes from both clusters run slave services namely Tasktrackers and Datan-

odes. We use the word count application for evaluation. Input file size for word count

application is varied so that average execution time for map task differs. Multiple jobs

consisting of tasks with different execution times as shown in the table 2.1 are submitted.

2.4.1.2 Experiments with Network Aware Hadoop

In this set of experiments, Hadoop with network awareness is configured over the feder-

ated cluster. Hadoop jobs are created by using files of different sizes. A single instance

of Jobtracker will manage the scheduling over all the clusters. Tasktrackers from dif-

ferent clusters request for map tasks as and when they get map slots freed. Jobtracker
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Table 2.2: Evaluation Environment

Nodes Quantity Hardware and Hadoop
Master Node 1 2 CPU core,

2 GB RAM,
10Gbps NIC
Jobtracker and Namenode

Slave Nodes 12 2 CPU core,
2 GB RAM
10Gbps NIC
Tasktracker and Datanode
Hadoop-0.20.203.0
2 Map and 2 Reduce Tasks

uses the cluster awareness to schedule tasks on these Tasktrackers there by improving

the data locality. We perform experiments with varying inter-cloud bandwidth and delay

and measure the performance of Hadoop with network awareness.

2.5 Results
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Figure 2.3: Execution times for Different schedulers for 1Gbps, 30ms inter cloud band-
width and delay

We compare the execution times of Hadoop native scheduling with network-aware

Hadoop for varying delay values. Figure 2.3 shows the execution times for varying num-

ber map tasks, FIFO scheduler with network awareness identified as FIFO+NA, shows
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the reduction in execution time of about 12 % on average and maximum reduction of 15

% when number of map tasks is higher compared to Hadoop Naive scheduler identified

as FIFO Naive. FAIR scheduler with network awareness identified as FAIR+NA also

shows the similar results, FAIR scheduler in general takes less execution time compared

to FIFO, The reason being effective utilization of the cluster. Network aware Hadoop

shows maximum performance improvement for map tasks between 500 to 1000. As the

map task number increases, the data splits associated with the map tasks will be spread

over the distributed clusters. When Jobtracker has to schedule a map task over a task-

tracker, it check if the tasktracker is located in the same cluster as the datanode having

the data to process. If this condition is met then only task will be assigned to the task-

tracker otherwise it will be delayed for certain delay in seconds specified for the delay

scheduling.
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Figure 2.4: Execution times for varying inter-cloud bandwidth

Bandwidth is a significant factor for federated clusters. The performance of Hadoop

greatly depends on the bandwidth between the clusters . Figure 2.4 is for varying in-

tercloud bandwidth with fixed delay. We emulate the varying bandwidth cases on our

experimental set up using dummynet [9]. At 100Mbps bandwidth between the clouds,

there is significant difference in execution times for processing 10GB data. If the tasks

are not executed either with node local or rack local then large amounts of data will
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be moved from one cluster to another cluster for map task execution. With 100Mbps

of bandwidth there will be less available bandwidth between nodes. As the bandwidth

provisioned between the clusters is increased overall execution time decreases. How-

ever, for processing tera bytes of data there should be sufficient bandwidth provisioned

between the clusters. We performed experiments with different network conditions, in

all the cases significant reduction in execution time is observed between native Hadoop

scheduler and network-aware scheduler as the number of map tasks increased. It is ev-

ident that for higher inter cloud bandwidth the performance of Hadoop with network

aware is greatly increased compared to native Hadoop scheduling.
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Figure 2.5: Increase in local map tasks with Network-aware

Figure 2.5 shows percentage increase in the local map tasks. As explained in the

earlier sections, Hadoop scheduling follows the philosophy of moving the computation

to data. All the tasks which have the data on the same node as the one requesting for

the tasks are scheduled first, this is referred as node local. If scheduler cannot find such

tasks then all the tasks whose data is located in the same rack as the node requesting for

the task are scheduled, this is referred as rack local. Network awareness is applied to

non local map tasks which require to fetch data from some other data nodes. Network

aware Hadoop minimizes the data movement from one cluster to another while execut-

ing map task by adding cluster level locality. We enable delay scheduling to optimize
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the data locality. Delay scheduling ensures that the task is scheduled on a tasktracker

which does not have the data to process will be skipped for configured amount of time.

If any of the tasktracker becomes free in that duration which as the data to process then,

task is scheduled on the second tasktracker. For data intensive applications, data split

movement takes more time than processing of the data split. Delay parameter is a sen-

sitive parameter and should be carefully configured. In the Figure 2.5, delay of 0 sec

refers scheduling without enabling the delay scheduler. With 2 Sec delay, non local map

tasks will be delayed for 2 sec to check if any of the other tasktrackers request for a

task. Since the length of each task is small, it is observed that tasktrackers get freed very

frequently and request for a task. It is for this reason the delay parameter depends of the

length of the task execution. These results show that network awareness coupled with

delay scheduling could be used to minimize the transfer of the data between the clouds.
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Figure 2.6: Execution times for 30ms inter-cloud delay

Figure 2.6 shows the results for 30ms inter cloud delay for varying bandwidths of

100Mbps and 1 Gbps. For the same number of map tasks, the execution times for a Job

is less for 1Gbps bandwidth. In case of 100Mbps bandwidth the gap between curves for
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different scheduling schemes is less significant. Reduced available bandwidth between

the clusters causes bottleneck for data split movement for tasks scheduled on distributed

clusters. In figure 2.6(b), for tasks ranging from 500 to 1000 the execution times for

native Hadoop and different variants for Network aware Hadoop, significant difference

is observed though the inter cluster bandwidth is less.

Figure 2.6(a) shows experimental results for 1Gbps inter cloud bandwidth and 30 ms

delay. Since higher bandwidth is provisioned between the clusters the overall execution

times for the jobs compared to figure 2.6(b) is less. Further for jobs with higher number

of tasks i.e tasks ranging from 500 to 1000 map tasks, the performance of network aware

Hadoop is significantly improved. This shows that the performance Hadoop could be in-

creased with provisioning higher bandwidth, less delay coupled with locality awareness.

Similar results were observed for experiments conducted with fair scheduler.

Figure 2.7 shows 60ms inter cloud delay and bandwidths of 100 Mbps and 1 Gbps.

There is significant reduction in the overall job execution times between 100 Mbps and

1 Gbps scenarios. However, figure 2.7(a) shows results for 100 Mbps and 60 ms inter

cloud network parameters. Because of the higher delay between the clusters, there is

not significant improvement between the native Hadoop and the different variants of

network aware Hadoop. Figure 2.7(b) is for 1 Gbps inter cloud bandwidth and 60

ms delay. In this case also because of higher delay between the federated clusters,

less performance improvement is observed. However, it is better compared with the

100Mbps scenario.

2.5.1 Further Discussion

Figure 2.8 shows results for 10Gbps bandwidth and 30 ms delay between clusters. We

observe that for higher bandwidth and low latency, overall execution times are greatly

reduced for both native Hadoop and network aware Hadoop. However it is expected

that network aware Hadoop to perform significantly better for higher bandwidth and low
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Figure 2.7: Execution times for 60ms inter-cloud delay

latency but significant difference is not seen from the results shown in the graph. The

cause of this behavior is that the virtual interfaces of VM’s cannot provide throughput

more than 1.2 Gbps. Even though available bandwidth is 10Gbps, the utilization from

each of VM does not exceed 1.2 Gbps.
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Figure 2.8: Execution times for 10Gbps and 30ms between clusters
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2.6 Conclusions and Future Work

Placement of the map task on a node which has the data to process is critical for the

performance of Hadoop over federated clusters. Single-cluster MapReduce architecture

may not be suitable for situations when data and compute resources are widely dis-

tributed. We provide network awareness to the FIFO and FAIR schedulers in Hadoop.

We evaluate our implementation on resources provided by CRON testbed. Performance

improvement of 12 % to 15 % is observed in both FIFO and Fair schedulers. We plan

to extend the network awareness while placing the reduce task since Reduce phase in

MapReduce adds up significantly to the overall execution time.
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Chapter 3
Distributed Task Scheduler

3.1 Introduction

MapReduce [27] framework is becoming a giant distributed computing framework for

large scale data intensive computations. Enormous attention is given to Hadoop [5]

from industry and academia. The significance of this framework is acknowledged with

the emergence of commercial cloud computing such as Amazon EC2, Cloudera [7]

Amazon Elastic MapReduce [3], Rackspace [17] and many other industry variants.

Current MapReduce/Hadoop deployments are over single data center, where in all

the components of the framework run within the same data center. In fact Hadoop is

developed assuming tree based organization of computing nodes within a single cluster

and existing task schedulers are optimized to work well in this computing infrastructure.

However, there is growing demand to operate MapReduce over federated clusters.

Many of the large scale scientific, Bioinformatics, Social and computational biology ap-

plications generate data from geographically dispersed data sources. Numerous applica-

tions such as scientific simulations, Web crawling, Social networking generate terabytes

of data which needs to be processed and analyzed across distributed clusters. Current

MapReduce setups process such a huge data by transferring it to a centralized computing

cluster. Transferring large volumes of data is time consuming, inefficient and increases

threat for loss of data. Another approach is to configure global MapReduce over all the

distributed clusters in which the scheduling decisions are made at single site and all the
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other sites work as computing clusters. The challenging aspect of global MapReduce is

how to set up such clusters and optimize existing single cluster MapReduce scheduler

to work well over distributed clusters.

Global MapReduce provides increased computing power, at the same time poses

new challenges to the MapReduce scheduler. Existing scheduler follows the pull model

of task assignment to a Tasktracker which is free and requesting for a task. Schedul-

ing involves assigning of map tasks on machines which already have stored the data

block corresponding to the map task. However, if Tasktracker gets assigned a map task

for which it does not have the data block locally, in this case data block needs to be

downloaded from another datanode. If the datanode is located at a remote cluster then

fetching the data block gets costlier and degrades the performance of Hadoop. Thus

assignment of tasks randomly without considering the network characteristics between

clusters becomes bottleneck for the performance of Hadoop over distributed clusters.

The objective of the distributed task scheduler it to enhance MapReduce to consider

network characteristics while scheduling non-local map tasks.

3.2 Background

Hadoop follows pull model of scheduling tasks rather than push model. Client services

are referred as Tasktrackers(TT) and master service is referred as Jobtracker. Each TT

is configured with fixed number of map and reduce slots to run map or reduce tasks in

parallel. TT requests for new map task from Jobtracker(JT) through heartbeat packets.

We explain scheduling in Hadoop over single cluster with an example as shown in Fig-

ure 3.1. TT0 sends heartbeat packet to JT when its map slot gets freed. JT responds

with map task M0, since data block D0 is located on TT0. As we can see there is no data

movement and this conforms a data local map task. When TT1 sends a request for map

task, it gets assigned any of the map tasks from the unassigned set {M1..M4}. Since

none of these tasks have data blocks located on TT1, there is transfer of data blocks to
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Figure 3.1: An example of scheduling in Hadoop over single cluster set up

TT1, this constitutes non-local map tasks. However, since all the TT’s are located in the

same data center there isn’t significant delay or network traffic generated for transferring

data blocks for processing non-local map tasks. Scheduling of reduce tasks also follows

the pull method but without considering the locality.

3.3 Motivation

Figure 3.2 shows the deployment of single instance of Hadoop over remote clusters.

One of the nodes from any of the remote cluster runs JT and all the remaining nodes

from every remote cluster run TTs. We have only shown delay and bandwidth however,

other impairments such as packet loss, jitter etc. exist between the remote clusters. T0,

T7 and T50 are the TTs requesting for map tasks at the moment. T0 gets assigned map

task M0, since data block D0 to process M0 is located on T0 to achieve data locality. T7

gets assigned task M6 since data block D7 to process M6 is located on T7. JT needs to as-

sign T50 with any of the unassigned tasks from the set {M1,M2,M3,M4,M5,M7,M8,M9},

these tasks are referred as non-local map tasks since none of these map tasks have data

blocks stored on T50. Assigning any of these unassigned map tasks results in moving
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Figure 3.2: An example of task scheduling in MapReduce configured over distributed
clusters. Remote clusters are geographically dispersed with significant network impair-
ments between them.

corresponding data block from remote cluster to T7.

Clearly, if JT assigns non-local map tasks randomly to requesting Tasktrackers with-

out considering the underlying network impairments, then moving data block from re-

mote cluster to the Tasktraker results in significant delay of processing of that map task

and degrades the over all performance of Hadoop. We enabled JT to select a non-local

map task so that the data block associated with that map task takes less time for trans-

ferring to requesting Tasktracker.

Furthermore, stability of network is critical for efficient functioning MapReduce

over distributed clusters. Characteristics such as bandwidth, RTT (latencies), packet loss

and Jitter (reliability of the network) illustrate the state and quality of the network which

are vital for the data intensive scheduling decisions. This lead us to the development of

network monitoring service(NMS) which can fetch the network status and aid scheduler

to make efficient decisions.

3.4 System Overview

This section presents the goals, main challenges and basic approach underlying the de-

sign of MapReduce for distributed clusters.
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3.4.1 Goal

Our goal is to make MapReduce work efficiently over geographically dispersed clusters

with minimum deployment complexity. The design must be simple enough to integrate

easily with the existing task schedulers and also with any of the future job schedulers

for MapReduce.

3.4.2 Challenges

Data Locality : Unlike HPC systems where computation and file system are decoupled,

in Hadoop, filesystem (Datanode) and computation (Tasktracker) are co-located on a

node. When data is transferred to HDFS it is replicated to Datanodes so that Tasktracker

running on that node will have data blocks prior to execution of a task. In the current

implementation of MapReduce Hadoop, data locality is achieved by replicating the data

at three levels of cache. At the first level, a data split is stored on a node. At the

second level, a data split is saved on a node in the same rack and at the third level,

a data split is stored off-rack. To achieve data locality, map tasks are scheduled on

nodes which already have the data blocks (this constitutes node local). Once the data

local map tasks assigned, tasks for which data block needs to be fetched from any other

datanode within the same rack are scheduled(this constitutes rack local). If neither of

node local or rack local tasks are found then the map tasks are scheduled randomly on

any of the tasktrackers requesting for a task. Thus MapReduce scheduling algorithms

exploiting data locality are based on the assumption of multiple nodes in a rack, which

are connected by an aggregate switch. Figure 3.2 shows the typical architecture for

federated clusters which may be connected by regular internet or by dedicated link. In

this case the critical assumption needed for data locality is disrupted.

Network Status : Current task schedulers work well at data-center level; where in

Hadoop is deployed over nodes within racks and racks connected by switches. However,
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if Hadoop is deployed over remote clusters connected by high speed networks, task

scheduler does not respond to changing network characteristics between the clusters.

MapReduce based data intensive applications process terabytes of data and pro-

duce enormous of processed data based on type of application. Furthermore, huge

amounts of data is transferred between different stages of job execution, for example

data movement from map phase to reduce phase. All these operations happen over re-

mote clusters which are interconnected by various edge network elements and links;

some of which are stable and others are unreliable and often congested. The conse-

quence of not responding to the changing network characteristics severely affects the

performance of these applications. It is essential for data intensive computations to re-

spond to these changes and change the scheduling policy.

3.4.3 Network Aware Task Scheduler

The proposed network aware scheduler can be viewed as an assignment of n non-local

map tasks to a set of m tasktrackers, in order to minimize the task execution time, there

by minimizing overall job execution time. We introduce a split transfer time (STT)

matrix to estimate the data split transfer time associated with non-local map task. STT

is a two dimensional matrix of size i x t where i is the remote datanode and t is the split

transfer time. Each entry in STT(i)(t) indicates the estimated time to transfer data block

from datanode i to tasktracker t. Model requires to compute the data split transfer time

from remote datanodes to computing tasktrackers.

Data split transfer time is greatly influenced by the network parameters, which also

determine the quality of the network links. Since we intend to calculate the data trans-

fer capacity, the most important network parameter is TCP throughput. Mathis [42]

formulate TCP throughput calculation using,
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Rate <= (
MSS

RTT
)× 1
√
p

(3.1)

Rate is the TCP transfer rate, MSS is the maximum segment size, RTT is the round

trip time and p is the packets loss. Given the measurement of these parameters we can

compute the transfer rate or bandwidth of data split from datanodes to tasktrackers. It is

evident from the above formula that all these network parameters should be made part

of our scheduling decisions. Thus network cost (NC) for data split from datanode i to

tasktracker t is,

NC(i)(t) =
RTT (i)(t)× Loss(i)(t)

Bandwidth(i)(t)
(3.2)

We can deduce the data split transfer time from NC and the data split size with the below

equation,

STT (i)(t) = NC(i)(t)×DataSplitSize (3.3)

Hadoop uses heartbeart packet mechanism to send the status information from TT’s

to JT, this information is sent periodically to the jobtracker. STT is sent along with

heartbeat packet periodically to the Jobtracker.

3.4.4 Task Scheduling over Distributed Clusters

In this section, we describe how scheduling of non-local map tasks is accomplished over

distributed clusters with the distributed task scheduler. We consider the same example

that we took while describing the motivation for our work. In the example, JT needs to

assign T50 with any of the unassigned tasks from the set {M1,M2,M3,M4,M5,M7,M8,M9}.
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Random selection of unassigned map task results in data split movement from data

nodes on which splits corresponding to these tasks are located to T50. In this situation

JT has to make an efficient decision to choose a task which results in lesser split transfer

time. JT makes use of STT entries to make an optimized task selection.

JT needs to assign T50 with any of the unassigned tasks from the set {M1,M2,M3,M4,M5,M7,M8,M9},

these tasks are referred as non-local map tasks since none of these map tasks have data

blocks stored on T50. Assigning any of these unassigned map tasks results in moving

corresponding data block from remote cluster to T7.

3.5 Implementation Details

Although Hadoop supports pluggable job scheduler design extension, same flexibility is

not provided for task scheduling. This implementation has changes to jobtracker, task-

tracker modules of Hadoop and developing an independent network monitoring service

based on PingER [16] tool.

3.5.1 Network Measurement Service (NMS)

We have developed a network metrics measurement service to collect comprehensive

up-to-date status of the network parameters. Three parameters which aptly describe a

network are delay, bandwidth and throughput are periodically measured to determine

the dynamic status of the network. The basis for this service is PingER tool, which

allows to send packets of a user selected length to a remote node and to have it echoed

back. PingER tool is ideal for our situation since it has minimal network bandwidth

requirement as well as modest cpu time. Furthermore, we can modify number of con-

figuration parameters of PingER to suit our cluster set up. PingER uses the Internet

Control Message Protocol (ICMP) echo mechanism also known as ping facility. NMS

is integrated into tasktracker as child process and executed periodically to collect the

network statistics. At every call of NMS a sorted list of datanodes is constructed which
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gives the minimum split transfer time from a tasktracker to others datanodes. This sorted

list is sent to jobtracker along with heartbeat packet.

3.5.2 Tasktracker

The changes to tasktracker include, call to NMS periodically, analyze the values re-

turned and embed sorted list of datanodes into the heartbeat message. Since NMS is

launched as a separate thread from tasktracker, it needs to be synchronous with task-

tracker. In order to avoid blocking of tasktracker till NMS returns results, we implement

the communication between tasktracker and NMS through a file. NMS writes statistics

to a file and tasktracker reads that file during every heartbeat message transmit. This

approach is efficient since it does not involve longer waiting for tasktracker to collect

data from NMS and avoids thread blocking.

3.5.3 Jobtracker

It is here the task scheduling decisions are made to allocate non-local map tasks. For ev-

ery request from a tasktracker if Jobtracker finds that, there are no local map tasks, then

it checks the sorted list of datanodes sent by the tasktracker. It picks up first datanode

from the list and checks if any of the map task’s data split is located on that tasktracker’s

datanode. If it finds such task then tasktracker gets assigned corresponding non-local

map task. This process is followed for every requesting tasktracker.

3.5.4 Population of STT matrix

TT and NMS to gather accomplish the task of populating STT matrix. NMS is started by

TT during cluster initialization and runs periodically with period specified by the cluster

administrator. At every run it collects parameters such as throughput, delay and packet

loss between TT and datanodes. These values are used as parameters for equations 3.2

and 3.3 to populate STT entries, based on these a sorted list of datanodes is created. This

list is written to a file which is accessed by the TT during heartbeat packet construction
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Figure 3.3: Experimental set up for distributed clusters

and sorted data list is sent to JT along with heartbeat packet.

3.6 Experiments

We used CRON [19] testbed to evaluate the performance of distributed task scheduler.

The cluster consists of 4 groups of machines. Each group has 2 machines. The 4 groups

inter-connect through a software router. Figure 3.3 illustrates the topology of the dis-

tributed cluster. We manipulate the bandwidth, propagation delay, and packet loss rate

of the links between the 4 groups to emulate 3 categories of network conditions, 1)

Worst network, 2) Average network, and 3) Best network. Tables 3.2 , 3.3 and 3.4 in-

dicate the detailed network parameters of the 3 conditions respectively. All machines

used in our experiment including the software router are Sun Fire X4240 workstations

with 2 AMD Opteron 4-core 2.7GHz processor, 8GB of main memory, 500GB of disk

space in a RAID 0, and multiple 10Gbps network interface cards. All machines run the

Ubuntu Linux 10.04 LTS. In the links between the 4 groups of machines, we insert an

Anue Network Emulator to each of them. With an emulator, the bandwidth, propagation

delay, packet loss rate, and many other parameters of a link can be precisely configured.

In order to compare the performance of distributed hadoop and native hadoop, we con-

duct several experiments under different networking conditions as stated before. Three

network conditions worst network, average network and best network conditions are

chosen to be closer to the realistic network scenarios in a commodity cluster. Table 3.1
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Table 3.1: Execution Workload

Workload Input data (GB) Output data (GB)

Wordcount

512 8.6
256 5.2
128 2.8
64 1.52

Sort

512 512
256 512
128 512
64 512

Table 3.2: Parameter configurations for worst network condition

Network Bandwidth(Mbps) Delay (ms) Packet Loss
Link1 100 90 10-2

Link2 1000 60 10-3

Link3 1000 70 10-2

Link4 1000 70 10-3

shows the type of application and data size used for our experiments. Table also shows

the output data size produced.

3.7 Results and Analysis

Figure 3.4 is for comparing performance between native hadoop and distributed hadoop

for different network conditions. We used block size of 128MB for this experiment.

Block size is logical unit of splitting data into files. For example if block size is 128MB

and overall data size is 512GB then number of map tasks would be data size/block size,

Table 3.3: Parameter configurations for Average network condition

Network Bandwidth(Mbps) Delay (ms) Packet Loss
Link1 1000 40 10-4

Link2 5000 30 10-5

Link3 1000 25 10-3

Link4 10000 35 10-4

34



Table 3.4: Parameter configurations for Best network condition

Network Bandwidth(Mbps) Delay (ms) Packet Loss
Link1 10000 10 10-7

Link2 5000 15 10-4

Link3 1000 10 10-6

Link4 10000 5 10-7
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Figure 3.4: Comparison of performance between native task scheduler and distributed
task scheduler for 512GB dataset and 120MB blocksize

in this case it is 4000. In worst network condition, the overall job execution time is

higher for both native hadoop and distributed hadoop, indicating that network param-

eters need to be considered for scheduling decisions. We conducted experiments for

different input data size, higher improvement was observed for 512GB case indicating

that, as the input data size grows much more performance improvement can be achieved

by using distributed hadoop. We used wordcount application for this experiment, we

also experimented with sort benchmark application and we observed similar results in

both the cases. Figure 3.5 shows the results for varying hdfs blocksize. Block size

decides the number of map tasks for a job. Though smaller block size increases the par-

allelism, however framework may introduce overhead for launching those tasks. With

distributed clusters block size should be carefully chosen so that, increase in block size
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Figure 3.5: Performance comparison for 512GB data for worst network situation for
varying hdfs blocksize

should not keep some of the nodes idle, which happens as more data is given to single

task and load is not equally distributed amongst all the nodes. It is observed from the

figure 3.5, when block size is increased from 256MB to 512 MB, though the overall job

execution time is reduced but the drop factor is not same as when we decrease the block

size from 128MB to 256MB. We compare the performances between native hadoop and

distributed hadoop for fixed block size and varying the input data size. Figure 3.6 in-

dicate that increasing the block size, increases the overall job execution time for both

native hadoop and distributed hadoop which happens because, number of map tasks are

reduced significantly and framework overhead is greatly reduced to launch less number

of tasks.

3.8 Related Works

Researchers have significantly investigated on job scheduling over clusters, grids and

clouds. Many of the distributed job schedulers [24] [28] deal with allocation of job

based on the availability of computing power, memory and storage at participating clus-

ter without considering the data locality. These schedulers are suitable for compute

intensive applications where data movement between remote clusters is not significant.
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Cardos et al. [25] showed different architectures to set up MapReduce framework

when source data and computation are distributed. They proposed three architectures,

Local MapReduce where in data is moved to centralized cluster to perform computa-

tion. Global MapReduce where cluster is established with nodes from all the clusters

and Distributed MapReduce where in small independent MapReduce clusters similar to

architectural overlay. However, their suggestions are different configurations and fail to

address data locality concerns as well optimization needed to better the task scheduler

over distributed clusters.

In our approach we consider Global MapReduce, that is single Jobtracker handles

scheduling of tasks over all the distributed clusters. and provide network parameters as

the input to task scheduler.

3.9 Conclusion

As the demand for computing power is ever increasing there is a need to aggregate

resources from geographical dispersed clusters. Hadoop task scheduler is optimized

to operate over single cluster which connects computing nodes within local networks.

Hadoop can be configured over remote clusters, however the scheduling of the tasks
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is not as efficient as on a single cluster since underlying networking parameters such

as bandwidth, delay and packet loss play significant role for data movement. As far

as we know not much of research has been done to include network parameters to

make scheduling decisions. We proposed distributed task scheduler for optimizing task

scheduling in hadoop over distributed clusters. The implementation has minimal frame-

work overhead and can be easily integrated with existing job schedulers.
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Chapter 4
Parallel Construction of Suffix Tree

4.1 Introduction

In the last decade the efficiency and throughput of DNA sequencing is greatly increased,

a typical sequencer produces billions of short reads per execution. One of the important

bioinformatics application which is based on short reads is read mapping, where in

reads are mapped against a reference genome to find similar or dissimilar regions, or to

align the short reads to form the genome. Many alignment tools have been proposed

to date [43, 39, 37, 45] which invariably rely on a precomputed index structure thus

allowing rapid matching and searching. As a result of enormous sequence data produced

and growing number of organisms considered for sequencing, an effective data structure

is essential for indexing these sequences. There are number of data structures available

for indexing a string. We consider suffix tree for indexing the human genome.

Suffix tree is a widely used indexing data structure for many of the sequence based

problems, such as pattern matching, finding the substrings etc. Since suffix trees greatly

improve the performance of searching on the indexed string, they are ideal for indexing

the human genome. In fact, many of existing sequence alignment tools use suffix tree to

find matching patterns over the indexed genomic data. Due to the significance of suffix

tree data structure, many sequential construction algorithms have been proposed [54, 44,

29, 32, 23, 26, 49] for the same. However, these algorithms face difficulties to scale up

as the size of genome increases due to high memory requirements (≈ 20 to 30 times the
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size of the genome). This necessitates the ability to construct and store the suffix tree in

distributed manner.

With emergence of MapReduce programming model as a prominent distributed

computing framework, many domains of science are turning to MapReduce to effi-

ciently parallelize their computation. The MapReduce framework offers flexibility by

expressing the computation in the form of key and value pairs and enables automatic

parallelization, distribution of work. Fault tolerance is also managed intrinsically by the

framework. We investigate the feasibility of parallel construction of suffix tree using

MapReduce framework. Intuitively, our approach is to partition the suffix tree “verti-

cally” and then construct each of these subtrees independently at a computing node. We

note that the vertical partitioning takes into account the availability of primary mem-

ory at computing nodes as well as the number of computing nodes to be used. We use

Hadoop, an open source implementation of MapReduce over 32 node cluster to analyze

the performance of the proposed parallel suffix tree construction technique. We con-

struct suffix tree for different genomes of varying sizes from 500MB to human genome

of 3.5 GB.

4.2 Background on Suffix Tree

Given a string S[1...n] drawn from an alphabet set Σ, a substring S[i...n] with 1 ≤ i ≤ n

is called a suffix of S. The lexicographic arrangement of all n suffixes of T in a compact

trie is known as the suffix tree of S [56], where the ith leftmost leaf represents the ith

lexicographically smallest suffix. Some of the key properties of the suffix tree are listed

below:

• Except for the root, every internal node has at least two children.

• Each edge in the suffix tree is labeled by a (non-empty) character string and for
any node u, path(u) is the string formed by concatenating the edge labels from
root to u.

• For any leaf v, path(v) is exactly the suffix corresponding to v.
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Figure 4.1: Input string S, where Σ = {A,C,G, T}, and corresponding suffix tree

• No two edges starting out of a node can have string-labels beginning with the
same character in set Σ.

For a given pattern P , a node u is defined as the locus node of P if it is the node u

closest to the root such that P is a prefix of path(u). Then all leaves in the subtree of the

locus node represent the occurrences of the pattern P in string S. Such a node can be de-

termined in time linear to the length of P and this optimal search time is a primary reason

for the popularity of suffix tree in string searching and other related research areas. Fig-

ure 4.1 shows the suffix tree for string S = TGCTGGTGCTGCGGTGGTGCATGC$

with Σ = {A,C,G, T} that we use in a running example throughout this chapter. Note

that we assume the input string S[1...n] to be appended with a termination character $

not present anywhere else in the string i.e., $ /∈ Σ. The termination character is needed

since the construction algorithm is online and every substring considered while adding

each character needs to be unique.

41



4.3 Suffix Tree Construction

We begin this section by first briefly reviewing the well known linear time suffix tree

construction algorithm by Ukkonen [54] and then adopt it for parallel construction of

suffix tree using MapReduce framework.

4.3.1 Ukkonen’s Suffix Tree Construction Algorithm

Ukkonen’s algorithm works in phases where in phase i + 1 it builds implicit suffix tree

of S[1...i+ 1] from that of S[1...i] in an incremental way. Finally, implicit suffix tree for

S[1...n] is then converted to a suffix tree as required. An implicit suffix tree for a given

string P can be thought of as a stripped-off version of a suffix tree for string P$. Given

the suffix tree of P$ every copy of the termination characters i.e., $ is removed and then

all edges with empty string as a label due to such removal are deleted as well. Further,

from the resulting tree all nodes that do not have at least two children are eliminated to

obtain the implicit suffix tree of P .

Ukkonens algorithm processes string S by reading one character at a time and intro-

ducing the consecutive prefixes up to that character. In phase i + 1 algorithm considers

the prefix S[1...i + 1] and insert all its suffixes S[j...i+ 1] for j = 1 to j = i + 1 in the

implicit suffix tree built for S[1...i]. To insert the suffix S[j...i + 1] we need to locate

the end of the path in the current tree that reads as string S[j...i] and then extend it by

character S[i+ 1]. Following three scenarios can arise during the i+ 1 suffix insertions

(extensions) to be performed.

1. There exists a leaf node v such that path(v) = S[j...i]. In this case, we only need

to append S[i+ 1] to the label for edge leading to the node v.

2. Path for S[j...i] does not end at a leaf node and following character on the edge

label is S[i + 1]. Then, suffix S[j...i + 1] is already present in the tree and no

further action is required.
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3. Path for S[j...i] does not end at a leaf node and following character does not match

S[i + 1]. To handle such a scenario, we split the edge and create a node node u

along with a leaf node v such that edge label connecting u to v is given by S[i+1].

Though a naive way of implementing the suffix insertions may result in cubic com-

plexity, Ukkonen’s algorithm achieves linear construction time using Suffix links along

with other techniques. Here we focus only on suffix links as the other techniques are

easily adoptable for the parallel construction described in next subsection. Suffix links

are pointers between internal nodes of the suffix tree. Let c ∈ Σ be a single character

and P be any arbitrary string. Given two internal nodes in the suffix tree u and v such

that path(u) = cP , path(v) = P , suffix link points from u to v. Figure 4.1 shown an

example of a suffix link with path(u) = TGGTGC and path(v) = GGTGC. Using

suffix links insertion of suffix S[j...i + 1] during i + 1th phase can be achieved in con-

stant time. Thus careful maintenance of suffix links leads to improved construction time.

Following lemma is the essence of suffix link creation and maintenance in Ukkonen’s

algorithm.

Lemma 4.1. Any newly created node while inserting a suffix S[j...i+ 1] during i+ 1th

phase will have a suffix link at the end of insertion of suffix S[j + 1...i+ 1].

4.3.2 Parallel Suffix Tree Construction Algorithm

Though Ukkonnen’s algorithm constructs suffix tree for the input string S[1...n] inO(n)

time, it implicitly assumes the availability of the entire suffix tree in primary memory.

With suffix tree occupying ≈ 20-30 times input string size in practice, necessity to hold

the suffix tree in primary memory limits the scalability of the algorithm. Though many

algorithms have been proposed with space-time tradeoff in RAM model they face simi-

lar challenges while dealing with massive data sets. To overcome this difficulty our ap-

proach is to divide the suffix tree into multiple smaller sub-trees and build each of these
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sub-trees parallelly independent of each other using (adopted) Ukkonnen’s algorithm.

Before moving on to the suffix tree partitioning, we introduce the notion of S-prefix. A

non-empty string that appears as a prefix for any suffix of input string S is a S-prefix.

Thus by definition any substring of a string S is a S-prefix. Due to lexicographic sort-

ing of suffixes in the suffix tree, all suffixes beginning with a given S-prefix P form a

sub-tree in the suffix tree rooted at u, u being the locus node of P .

4.3.3 Suffix tree Partitioning

With the goal of decomposing the problem of suffix tree construction, we partition the

suffix tree into a collection of sub-trees (or corresponding S-prefixes) such that each of

them can be accommodated in primary memory and collectively it represents the suf-

fix tree in its entirety. Without loss of generality, we assume all computing nodes to

have primary memory of same size and is a input parameter for our parallel construc-

tion algorithm. Note that in practice, we need to reserve some portion of memory for

scanning the string S as well as working memory for the execution of the program and

only left over can be used to hold the sub-tree for a S-prefix. Moreover, we can easily

estimate the size of sub-tree of a S-prefix as twice its frequency in S using suffix tree

properties. Two common ways to achieving the vertical partitioning of the suffix tree are

fixed length and variable length partitioning [32, 30]. In either case, we being with an

empty output collection and a working collection of S-prefixes such that every symbol

in the alphabet set Σ corresponds to a S-prefix. Both the collections are then refined

iteratively. In each iteration, string S is scanned to compute the frequencies of each S-

prefix in the working collection. For fixed length partitioning, we extend each S-prefix

in working collection by one character with symbols in set Σ after each iteration and we

iterate till sub-tree for each of these S-prefixes can be maintained in available primary

memory. Then, working collection itself becomes the output collection. Whereas for

variable length partitioning, at the end of each iteration, each S-prefix whose sub-tree
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can be accommodated in available memory is moved from working collection to output

collection. The remaining S-prefixes in working collection are then extended by one

symbol as before and the process is repeated until the working collection is empty. It

can be easily seen that fixed length portioning will lead to lower memory utilization as

compared to its counterpart when computing nodes are assigned the task to building the

sub-trees one S-prefix per at a time per node due to unbalanced sub-tree sizes. Hence

we opt for variable length partitioning for our purpose. Though the partitioning can take

quadratic time in worst case, it is known to perform well in practice [30].

Let us assume that we need to partition the suffix tree showing in Figure 4.1 with the

restriction that the main memory can hold the sub-tree for the S-prefix having frequency

at most 8. It can be observed that variable length partitioning would produce a S-prefix

C whereas fixed length portioning is forced to extend it further as S-prefixes G, T have

frequencies more than the desired threshold 8 thus resulting in lower memory utilization.

4.3.4 Adopting Ukkonen’s Algorithm

We now modify the Ukkonen’s algorithm described earlier to build only the sub-tree

for a given S-prefix P of length t. As before algorithm works in phases such that in

phase i + 1 it considers the prefix S[1...bocci+1 + t − 1], where bocci+1 represents the

beginning location of i + 1the occurrence of S-prefix P in string S. For simplicity let

eocci+1 = bocci+1 + t−1 denotes the ending location of i+1the occurrence of P . Since

we are interested only in the sub-tree for P in entire suffix tree of S, we only need to

take into account the suffixes of the prefix S[1...eocci+1] that being with P . Thus we

insert all suffixes S[boccj...eocci+1] for j = 1 to j = i+ 1 in the implicit suffix tree built

so far. To insert the suffix S[boccj...eocci+1] we need to locate the end of the path in the

current tree that reads as string S[boccj...eocci] i.e. suffix added in phase i that begins

at position boccj . We then extend it with string S[eocci + 1...eocci+1]. Once again three

scenarios can arise during the suffix insertions (extensions) as before and are handled in
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a similar way.

1. There exists a leaf node v such that path(v) = S[boccj...eocci]. In this case, we

only need to append S[eocci+1...eocci+1] to the label for edge leading to the node

v.

2. Path for S[boccj...eocci] does not end at a leaf node and following characters on

the edge label match the string S[eocci+1...eocci+1]. Then, suffix S[boccj...eocci+1]

is already present in the tree and no further action is required.

3. Path for S[boccj...eocci] does not end at a leaf node and the same path can not be

continued to spell out the string S[eocci+1...eocci+1] completely. Let k < eocci+1

be the maximal location in S such that we can continue the path of S[boccj...eocci]

and can read S[eocci + 1...k]. To handle such a scenario, we split the edge and

create a node node u along with a leaf node v such that edge label connecting u

to v is given by S[k + 1...eocci+1].

In the event that the S-prefix P has only i+1 occurrences in S, i+1th phase is the last

phase and we consider the entire string S[1...n] instead of just the prefix S[1...eocci+1].

Moreover, we insert suffixes S[boccj...n] for j = 1 to j = i + 1 in the current implicit

tree. These changes can be accommodated by simply replacing eocci+1 by n in three

cases listed above.

Continuing the example under consideration, we focus on the sub-tree for S-prefix

TG. Note that TG will be a part of output S-prefix collection of variable length parti-

tioning as its frequency stratifies the threshold 8. Figure 4.2 shows the implicit suffix

sub-tree built for S-prefix TG before and after phase 4. For simplicity nodes have been

numbered in the order of their creation and we refer to the edge as a pair (u, v) of nodes.

First and second suffix extension in phase 4 simply results in extending the edge labels

for edges (3,2) and (3,4) respectively by string CTG using case 1. Whereas for the third
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Figure 4.2: Constructing sub-tree for S-prefix TG: phase 4
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Figure 4.3: Constructing sub-tree for S-prefix TG: phase 7

extension suffix TGCTG already exists and no action is necessary (case 2). Changes

required in the implicit suffix sub-tree that exists at the end of phase 6, while consider-

ing the prefix S[1...19] in seventh phase of the algorithm are outlined in figure 4.3. In

fifth extension of the phase, we need to insert the suffix S[15...23] = TGGTGCATG.

To achieve this, in the current implicit suffix sub-tree we first locate the end of suffix

S[15...19] = TGGTG that was inserted in the previous phase. We observe that, we

can continue to match only one additional character i.e. S[20] = C from the desired

extension string S[20...23] = CATG. Then, by using case 3 we create a new internal
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node (node 9) and a new leaf node (node 10) as seen in figure 4.3. Similarly, extension

sixth also create a new leaf node (node 11). To be able to execute each of the three cases

efficiently (constant time), we turn our attention to suffix links. Since we would like

to build only the subtree of S-prefix P , we define suffix links to have origin as well as

target within the subtree itself. For any internal node u within the subtree of S-prefix P ,

we can write path(u) = Pα. Lets split α using smallest (possibly empty) string β such

that α = βPγ. Then suffix link points from u to node v having path(v) = Pγ. If such

a string β does not exists we assume suffix link from u points to the root node of the

subtree of P . Lemma 4.2 can now be rewritten as follows which captures the essence of

suffix link maintenance in parallel suffix tree construction.

Lemma 4.2. Any newly created node while inserting a suffix S[boccj...eocci+1] during

i+ 1th phase will have a suffix link at the end of insertion of suffix S[boccj+1...eocci+1].

Proof. A new internal node u is created while inserting a suffix S[boccj...eocci+1] (of

phase i + 1) only when extension rule 3 applies. For any j < i + 1, let us express the

string S[boccj...eocci] = PβPγ′, β being the smallest possible string. If such a β does

not exist then by definition suffix link of u can be established immediately by pointing

it towards the root node of the subtree being built. Otherwise, creation of a new node

u implies that in the current suffix insertion, the path labeled S[boccj...eocci] can be

continued to spell out γ′′ = S[eocci + 1...k] only up to some k < eocci+1, which is

then followed by some character other than S[k + 1], lets say c ∈ Σ. Thus, in extension

j+ 1, there is already a path labeled Pγ′γ′′ in the tree and it certainly has a continuation

with character c possibly along with some other characters as well. Then, there are two

cases to consider: Either the path labeled Pγ′γ′′ continues only with character c or it

continues with some additional character. When Pγ′γ′′ is continued only by c, once

again extension rule 3 will create a node v at the end of path Pγ′γ′′ to which suffix link

of u will point to. When Pγ′γ′′ is continued with two different characters, then there
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exists a desired node v at the end of path Pγ′γ′′ already. Thus, the Lemma is proved in

either case.

TG

C GTGC

21, 25

10, 25

21, 25 25, 25

13, 25 TG

12, 25 6, 25

root node

internal node

leaf node

node unode v

Figure 4.4: Subtree for S-prefix TG and sample suffix link in its context

Following the above lemma, all internal nodes in the changing subtree will have

suffix links from them, except for the most recently added internal node, which will

receive its suffix link by the end of the next suffix insertion/extension. Figure 4.4 shows

the example of a suffix link in the context of a subtree for S-prefix TG. Here path(u) =

PβPγ such that β = G and γ = C and accordingly path(v) = Pγ = TGC. Note that

when node u (node 9 in figure 4.3) is created during fifth extension of phase seven, node

v (node 7 in figure 4.3) already exists in the tree thus verifying the above lemma for the

suffix link under consideration. Therefore using suffix links along with skip and count

trick, edge-label compression, a stopper and once a leaf, always a leaf trick subtree [] for

the given S-prefix can be built by a simple scan the string S. It can be easily be verified

that the all the performance improvement techniques other than the suffix links works

exactly in the same way as they would in the original Ukkonen’s algorithm.
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4.3.5 Hadoop Implementation Details

The basic idea is to provide each map task a S-prefix from the set of S-prefixes generated

using variable length partitioning method. A S-prefix and its starting positions consti-

tutes the key-value input format need for Hadoop. Every map task scans the input string

and group together all of its suffixes. Map tasks run in parallel and produces a S-prefix

subtree. For the completion of suffix tree of input string, we can decide to build the

trie of all generated S-prefixes in reduce phase. In our experiments, construction time

of such a trie was found to be insignificant as compared to the best map task execution

time. Thus, we choose to combine the trie building with S-prefix generation and avoid

overheads associated with shuffle, reduce phase by making them optional.

Input String: The algorithm distributes the input string S to every worker machine.

Though a single copy of string can be stored on a shared file system, simultaneous access

to shared file from all the map task would introduce a file access bottleneck and severely

degrade the performance of the algorithm.

InputFormat: A file containing a S-prefix as a key and its frequency in S as the

value. Though the adopted Ukkonnens algorithm does not require the frequency of

S-prefix explicitly it aids in allocating only desired amount of main memory instead

of blocking all the available space. Moreover, since it is not tractable to distribute S-

prefixes explicitly, S-prefix key is formed by a pair (pos, len), where pos represents the

index position in S having first occurrence of given S-prefix and len presents its length.

Map Task: The mapper executes our adopted Ukkonnen’ algorithm to construct the

sub-tree for the S-prefix it received. Starting with an empty tree, it inserts all suffixes

of S beginning with input S-prefix. On successful completion mapper writes S-prefix

sub-tree to the local disk.

We note that the vertical partitioning technique described earlier accepts the the

available primary memory as input. Thus the number of S-prefixes generated may not
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be sufficient to achieve complete parallelization offered by the number of worker nodes

available. To overcome this, we use an empirical technique, which artificially reduces

the main memory required to generate more S-prefixes than the number of available

worker nodes. We can estimate the size of subtree to be produced by each worker

node by dividing the total suffix tree size by number of worker nodes. However, such

an optimal load balancing can not be achieved due to data skewness. Therefore, we

allocate additional 5%-20% of the load balanced share and use this as an input parameter

for generating the S-prefixes. On the other hand, when the number of generated S-

prefixes are more than the number of worker nodes, we can partition them into groups

to achieve load balancing among worker nodes. However, such grouping is difficult as it

needs to balance the number of S-prefixes in group as well as their combined frequency,

both being key to algorithms performance. Therefore, we simply rely on the Hadoop

scheduling and let jobtracker schedule the map tasks to worker nodes.

4.3.6 Evaluation

This section presents the performance evaluation for the parallel suffix tree construction.

Our experiments were conducted on Hadoop configured Supermike (LONI HPC) [13]

cluster. Each computing node is a two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit

processor with 32 GB RAM. However, in each node we used only one core and limited

the memory usage to 8GB. We used real data sets as shown in Table 4.2 for performance

evaluation1.

4.4 Performance Results

We perform experiments to show (a) Strong scalability - Indicates the results for in-

creasing cores and constant genome size (b) Weak scalability - The ratio of input size

and cores is constant. These two types of experiments are commonly used methods for

1http://hgdownload.cse.ucsc.edu/downloads.html
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Table 4.1: Evaluation Environment

Node Types Hardware and Hadoop
2.33 GHz quad core xeon 64-bit processors

Master Node 8 GB RAM
Jobtracker
Namenode
2.33 GHz quad core xeon 64-bit processors

Slave Nodes 8 GB RAM
Tasktracker
Datanode

Table 4.2: Genomes used for Suffix Tree Construction

Genome Name Size (Bytes)
Rice (Oryza sativa ) OS 370,792,118
Chicken (Gallus gallus) GG 1,031,883,471
ZebraFish(Danio rerio) DR 1,412,476,020
Cow (Bos taurus ) BT 2,634,413,324
Human (Homo sapiens ) HG 3,095,677,412

evaluating the construction algorithms. We also conduct experiments to compare the

speed up gained compared to the single core version of Ukkonen’s suffix tree construc-

tion algorithm. However, since Ukkonen’s algorithm does not scale to larger genomes,

we perform speed up experiments only for small sized genomes. The performance re-

sults do not include the overhead of variable length prefix construction since it was

minimal (≈ 2 min at most) compared to the overall suffix tree construction. We follow

the same approach used in the existing construction methods for generating variable

length prefixes.
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Figure 4.5: Overall execution time by number of cores
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Figure 4.5 shows the results for strong scalability. We keep the genome size same

and increase the number of cores. For each of the genome we increase the number of

cores from 4,8,16 and 32. The construction time for human genome over 4 nodes is 79

minutes and comes down to 22 min over 32 nodes. The nature of the curve indicates

that, as the cores are increased the construction time decreases as expected for strong

scalability. However, the results for smaller genomes indicate that the construction time

does not decrease after certain number of cores and remains flat even if we increase
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the number of cores. The reason for this behavior is that, even if input string size is

constant, as the number cores are increased the size of subtree that a core has to build

decreases but it still has to load and scan the entire input string. After certain point the

overhead of loading and scanning the input string dominates the construction of subtree

that a core has to build. Thus every genome as critical point after which the overhead

of loading and scanning dominates the construction of subtree. Figure 4.5 does not

include the single core execution times for genomes BT and HS because of insufficient

main memory to construct suffix tree for these genomes. Figure 4.6 is overall suffix tree

construction time as function genomes size.
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Figure 4.7: Results for weak scalability

Figure 4.7 shows results for week scalability. We vary the genome size from 512MB

on 4 nodes to 4096MB on 32 nodes, keeping 8GB memory per map task, so that the ratio

of genome size to number of cores is constant, which represents typical set up for weak

scalability. In optimal set up the construction time should remain constant. However,

as the genome size increases, the overall number of subtrees to be constructed increases

and each map task has to scan the entire genome to build subtree, which increases the

overhead of constructing subtrees proportional to genome size. We can see from the
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Figure 4.7 that, the curve is not flat rather increases with increase in genome size indi-

cating that optimal weak scalability results are not achieved. We compare the speedup

Table 4.3: Speedup achieved as compared to sequential execution

Genome Speedup
Rice (OS) 0.92

Chicken (GG) 0.81
ZebraFish (DR) 0.56

achieved by parallel execution of program as against its execution on standalone ma-

chine for genomes OS, GG and DR. Table 4.3 shows results for the same with 4 cores

in use. We observed the decline in speedup for each of the tested genome with increase

in parallelism (refer to Figure 4.5).

4.5 Related Works

Suffix tree construction algorithms have evolved into broadly two main classes: In-

memory and Disk-based. In-memory algorithms can be used when both input sting S as

well as its suffix tree can be accommodated in the available main memory. Well known

suffix tree construction algorithms by McCreight [44] and Ukkonen [54] fall in this

category. Though Ukkonen’s algorithm can build the suffix tree in optimal O(n) time,

this class of algorithms is shown to suffer from poor locality of reference [53]. This

issue is highlighted when suffix tree can not be accommodated in relatively faster main

memory resulting in O(n) expensive random disk I/Os on an average. This severally

restricts the use Ukkonen’s algorithm in practice. Suffix tree partitioning technique has

been successfully used to overcome the problem of locality of reference [32, 53, 49, 21,

30]. Hunt et al. [32] proposed one of the fist disk based algorithms. In the preprocessing

step, the method first computes a set of fixed-length S-prefixes of the input string, such

that the suffix subtree for each of the S-prefix fits entirely in main memory. The subtree

for each fixed-length S-prefix is then constructed by inserting all suffixes starting with
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the given S-prefix. As pointed out earlier, suffix tree partitioning using fixed-length

prefixes faces difficulty in handling data skew and produces unbalanced suffix subtrees.

In [49] authors have proposed to partition the input string itself into several substrings

instead of its suffix tree. Suffix tree is then built independently for each of the substring.

Finally merge phase aggregates all suffix subtrees into a final suffix tree. This technique

is useful when input string can be accommodated in the main memory. Otherwise, due

to the problem of locality of reference, merging phase would result in lot of random

disk I/Os. Technique in [21] also relies on input string portioning, however it builds

suffix array along with LCP array for each of the substring. The algorithm proceed

in batches to avoid the costly I/Os during merging phase. Finally, both [32, 30] use

variable length portioning making sure that making sure that each S-prefix subtree fits

in the main memory. To minimize the I/O cost, they access the input string strictly in

sequentially order. Theoretical parallel suffix tree construction algorithms have been

studied in the past [31, 36]. However, no practical implementations of these algorithms

have been reported, to the best of our knowledge.

4.6 Conclusion

We have proposed a novel approach to construct suffix tree in parallel by extending the

well known in-memory Ukkonens algorithm. Since suffix tree is the basis for many

bioinformatic applications, building suffix tree for larger genomes would benefit ge-

nomic research community. As a future work, we would like to improve the proposed

construction algorithm further by taking into account the skewness of the subtrees to be

built resulting due to variable length partitioning.
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Chapter 5
PGA: Parallel Giraph based Assembler

5.1 Introduction

Next generation sequencing (NGS) technnologies produce massive amount of short read

data. Reducing the overall cost and producing high throughput reads are the main goals

of NGS. Sequencing the entire human genome is made possible because of NGS tech-

nologies. 454 Life Sciences [1] and the llumina Genome Analyzer (GA) [12] were the

earliest NGS technologies to enter the market. These methods produce short reads of

length 50 to 500 which is significantly smaller than the overall size of the genomes being

sequenced. Short read approaches come with cost of significant overhead for assembly

as the number of short reads produced is in terms of billions, and short reads within the

repeat regions require complex methods to remove ambiguities.

The earliest of assembly tools used overlap-layout-consensus(OLC) methods. In

this approach each read is compared with every other read to determine overlaps, and

reads with overlap are connected to build the basic assembly graph. In the subsequent

stages the graph is compressed, and the final genome sequence is determined by finding

a path in the overlap graph by visiting every vertex exactly once which is a Hamiltonian

path problem. Although OLC methods proved to be effective for small genomes, it does

not scale to larger genomes because of the quadratic time complexity associated with

overlap computation and Hamilton path finding during consensus stage, which is a NP

hard problem, efficient algorithms to solve this problem are unknown.
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A fundamentally different approach was proposed by Pevzner [48] based on de

Bruijn graph. A de Bruijn graph is constructed by further splitting the reads into small

sequences of length k known as k-mers, if two k-mers differ by single nucleotide base

an edge is added between the vertices. This simple k-mer based graph condenses all the

repeats into single vertex of the DB graph. Since the human genome is highly repetitive

in nature, many of the complexities involved in aligning the repeat regions are inherently

handled in de Bruijn graph. From the algorithmic perspective, the problem of finding

Hamiltonian path in OLC is reduced to a Eulerian path finding problem in de Bruijn

graphs, which can be solved with efficient algorithms.

Although, de Bruijn graphs provide an exceptional advantage over OLC, the huge

computational memory demands present a major practical limitation even for small

sized genomes. Constructing a single DB graph from the billions of short reads is a

complex endeavor. Furthermore sequencing errors from the sequencing technologies

aggravate the memory demand and reduce the accuracy of the assembly. Removing

errors from the data is therefore a necessary step for accurate assembly. Commonly,

sequencing errors are corrected by using several heuristic approaches in the beginning

of the assembly process known as error correction phase. However, current algorithms

used for correcting the errors are not very accurate and highly memory intensive [33].

Huge demands for memory needed for de Novo Assembly can be addressed by using

distributed computing. Recently, a number of distributed computing frameworks, such

as MapReduce, Apache Giraph and many others have been proposed for data intensive

applications. These frameworks provide a programming paradigm which divides the

large datasets into chunks such that these chunks of data are independently processed

over small computing environments. The simplicity and the ability to express the de

Novo assembly as a distributed graph processing endeavor makes these frameworks

more feasible for assembly of large genomes. ABySS [51] and SoapDeNovo [38] are

some of the existing tools which use parallel programming models and have shown to
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be scalable to larger genomes, however these still require substantially larger memory.

We present Parallel Giraph [4] Assembler (PGA) for large scale genomes based

on Apache Giraph and de Bruijn graphs. PGA utilizes the distributed memory across

the cluster to process the de Bruijn graph in parallel. PGA incorporates the general

approach followed in other tools for constructing a distributed DBG and removing of

errors in short reads. We demonstrate the performance of PGA by assembling three

genomes 1) small E.Coli real paired-end dataset, 2) relatively larger, Thellungiella Sal-

suginea paired-end dataset and 3) larger genome with 3.5 billion paired end reads from

the whole genome sequencing Yoruban male. The results show that for smaller genomes

the performance of PGA is comparable to Velvet and significantly better than ABySS,

and Contrail. For large genomes PGA performance is significantly improved compared

to ABySS and Contrail, and at the same time PGA needs small memory per core.

5.2 Background

5.2.1 De Bruijn Graph

A generalized DBG of order k denoted by G(k), is a bi-directed graph with dk vertices

labelled by a k-mer string over d alphabets. Although DBGs are used for variety of

purposes our discussion is limited to its usage for de Novo assembly. Pevzner [48] was

the first to introduce DBGs in the context of de Novo genome assembly. In this context,

an edge exists between node N1 and N2 if the suffix of length k-1 of N1 overlaps with

prefix of length k-1 of N2. Edges also carry type label with a string in {FF,FR,RF,RR}.

The first character edge type indicates, if the prefix or suffix of N1 overlaps with suffix

or prefix of N2, represented by the second character. Figure 5.1 shows the standard de

Bruijn graph for k-mers of length three. The possible k-mers in the this example are

GAT, ATT, TTA, TAC, ACA, CAT, ATT, TTA, TAC, ACA and CAA, each of which is

represented by a node. The advantage of such representation is that how the repeated
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regions of the genome are handled. Let R be a long repeated substring of genome and

|R| < k. Each repeated instance of R generates the same sequence of k-mers. As

the de Bruijn graph only contains distinct k-mers, there is a single vertex for each of

these k-mers. Finally, the candidate genome is determined by looking for a Hamiltonian

path which will also be a minimum length string since every node is visited exactly

once. However, this problem again belongs to a class of problems that are called NP-

Complete: Efficient solutions to these problems have not yet been discovered. There is

need to convert this from NP hard to solvable Eulerian method.

5.2.2 De Bruijn Graph to Assembly Graph

Pevzner [48] showed an alternate representation of a k-mer graph. In this representation,

every distinct prefix or suffix of a k-mer is represented as a node and a directed edge

is added between two (k-1)-mers if they share a k-mer. For example, given a k-mer

GCT, form two nodes with GC (prefix) and CT (suffix) and add an edge labelled GCT

between them. The target genome is found by visiting every edge exactly once, which

is equivalent to visiting every k-mer. This method of representing and traversing the

graph translates the Hamiltonian problem into a solvable Eulerian path problem. This

method is employed in most of the assemblers which are based on de Bruijn graphs. An

extended example of this approach is shown in figure 5.2.

0Part of the figure 5.2 is reproduced from [48]
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Figure 5.1: Standard de Bruijn graph representing k-mers as nodes. Target genome is
found with Hamilton cycle
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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Figure 5.2: Illustration of de Bruijn graph for genome assembly. (k-1) mers form the
nodes and assembly is achieved by Eulerian cycle

5.2.3 Apache Giraph

Apache Giraph is an open source implementation of Pregel [41], the graph processing

architecture developed at Google. The framework introduced by Pregel and used by

Apache Giraph is based on the Bulk Synchronous Parallel (BSP) computation model

[55]. The input to a Giraph computation is a graph composed of vertices and directed

edges. At the beginning of the computation, the framework splits the graph into several

partitions and distributes them across compute nodes. The computation proceeds as a

sequence of iterations, called supersteps. In each superstep every vertex executes the

compute method provided by the user. A vertex can modify its own value or its out

going edges or even modify the topology of the graph. The compute method embodies

the graph processing algorithm as specified by the user. At the end of each superstep,

all compute nodes synchronize before starting the next superstep. In every iteration the

compute method performs the below operations:

• Receives messages sent by all the adjacent vertices in the previous superstep,

• Iterates over all the messages, performs the computation and send the messages
to adjacent vertices and,

• Vote to halt if nothing else to compute.
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The issues of parallel processing of graph such as, data race and dead-locks are in-

herently handled by the synchronicity of the Giraph framework. Additionally, the pro-

gramming interface is simple enough to develop complex graph processing algorithms.

Writing Giraph programs involve subclassing the vertex API. Each vertex has a value

type as specified by the user. The compute method is applied to each vertex in every

superstep. All the graph processing computation is embedded in the compute method.

5.3 Related Works

In the past decade, a considerable number of Novo assemblers have been proposed.

Assemblers which are designed specifically for first and second generation sequenc-

ing technologies are based on overlap-consensus-layout method(OLC). The assembly is

carried out by first building the assembly graph, then converting the unambiguous paths

into contigs. In the final stage, the overlap graph is analyzed to find the Hamiltonian

path to arrive at the target genome. Assemblers such as [22, 52, 46] are based on the

OLC approach. The major difficulty with assemblers based on OLC is polynomial time

algorithms for finding the Hamiltonian path in the overlap graph. Accordingly, these

assemblers are not used for large genomes.

NGS technology produces massive amounts of data. Although whole genome se-

quencing is made possible with this technique the length of the reads is small. Conse-

quently OLC approach is not feasible. The class of assemblers which are designed to

match the characteristic of massive amounts of data and short read lengths are based on

de Bruijn graph. Pevzner [48] showed the simpler representation of the inherent repeats

in the large genomes with de Bruijn graph. In this approach, the short reads are further

broken into shorter sequences of uniform length which makes the repeated regions to

condense into single node in the DBG. As such, the assembly problem is cast as finding

a path visiting every edge exactly once, a more feasible Eulerian Path Problem.

The earliest DBG based assemblers is Velvet. It has four stages: finding the unique
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k-mers by hashing the reads, graph construction, error correction, and repeat resolution.

Each step of the assembly has different computational requirements. The bottleneck for

velvet, in terms of time and memory, is the graph construction. The results for the as-

sembly of Streptococcus indicate the need of 2.0 GB RAM. For the larger genomes the

memory requirement would be greater. Consequently, Velvet can not be easily applica-

ble to the assembly of large genome.

Another assembler which has gained significant traction is ABySS which uses MPI

(message passing interface) for parallelization. The assembly is performed in two major

steps. First, contigs are extended by resolving all the unambiguous paths. In the second

step the paired-end information is used to resolve ambiguities and merge contigs. The

general work flow of the assembler is building the de Bruijn graph and storing across

cluster nodes, error correction, which includes cleaning the dead-ends formed by the

reads that are a mixture of correct and incorrect k-mers, and bubbles, which are topo-

logical imperfections formed due to repeated regions. The results showed that assembly

of the human genome was performed in roughly three and half days using 21 nodes,

each having 16GB of RAM and two quad-core Intel Xeon 2.66GHz processors, giving

a total of 168 cores. Although ABySS scales to larger genomes, the time for assembly

is huge. Furthermore, assembly is very fragmented with an N50 length of 1.5 kilo-

bases (kb) which is not long enough for structural variation detection between human

individuals.

Micheal Shwatz introduced Contrail [8] to addresses the problems associated with

the assembly of larger genomes. It uses the power of MapReduce and cloud computing

to parallelize computation across cluster consisting of commodity hardware. The steps

followed by contrail are based on existing assembly algorithms which required to be

embedded in MapReduce framework. Assembly of E. coli K12 substrain MG1655 using

20.8 million paired-end 36 bp of Illumina reads was achieved in about 8 hours using 20

3.2 GHz Intel Xeon cores. However, the assembly of the human genome (HapMap DNA
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identifier NA18507) using 3.5 billion reads (accession no. SRA000271) was completed

till the scaffolding phase in 74 hours with 188 cores.

The main reason for performance bottleneck of Contrail is MapReduce framework

itself. The problem of de Novo assembly using de Bruijn graph is essentially a graph-

mining problem involving many iterative computations. Contrail uses MapReduce as

a parallelization framework, which is designed to process massively parallel dataset in

single iteration. Series of iterative steps in Contrail are represented as separate MapRe-

duce jobs, and a driver program is used to submit necessary MapReduce job at each

iteration. This approach has three main disadvantages,

• For each iteration, data must be read from the underlying file system called the

Hadoop Distributed Filesystem(HDFS) and results must be written back to the

HDFS for next iteration.

• Fault tolerance is usually achieved through data replication which means that

replication of terabytes of data at each iterative step wastes significant amounts

of precious network bandwidth, I/O, and CPU cycles.

• The de Bruijn graph simplification is achieved through Map, Shuffle and Reduce

constructs of MapReduce. The mapper emits the combination of node and edge

information as a key. Shuffler sorts all the keys emitted by each of the Mapper

to collect the connected node information. Sorting is inherent to the framework

and it is a way of identifying interconnected nodes in the graph. This sorted

information is sent to a Reducer. The functionality such compression or removal

of nodes is performed in the Reducer. Expressing graph simplification in terms of

Map, Shuffle and Reduce introduces huge overhead on system resources.

• For example if the graph size is in terms of terabytes then in each iteration Shuffle

phase needs to sort Terabytes of data and if the data does not fit in the memory
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then external sorting algorithms are applied which consumes huge amount of time

to complete the entire assembly process.

Although, MapReduce helps to achieve scalability but the performance is compro-

mised. This is evident from the performance comparison results of Contrail and ABySS.

A scalable solution to overcome the drawbacks of MapReduce can be implemented us-

ing Bulk Synchronous Parallel (BSP) processing model. The overheads of iterative

computing needed for parallel graph processing such as synchronization, fault toler-

ance are automatically handled by the BSP frameworks. Apache Giraph is a BSP based

model and we have developed PGA using this framework to process de Bruijn graph in

parallel as well as all the algorithms needed to arrive at target genome.

5.4 Methods
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Figure 5.3: de Novo assembly pipeline

PGA’s parallel algorithms are built on apache giraph. The primary goal is to reduce

the memory requirements for assembly of larger genomes by making use of distributed

memory. Figure 5.3 shows the PGA’s assembly pipeline. At high level it has five stages

(i) Building distributed de Bruijn graph (ii) Error correction which includes compres-

sion, tip and bubble removal (iii) Removal of low coverage nodes (iv) Error correction

same as stage two and (v) Scaffolding. PGA also follows the same approach used in
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Contrail for building the de Bruijn graph by using MapReduce as the parallelization

framework. The structure of the graph is similar with some additional parameters and

methods. The graph is stored in distributed manner across the cluster of computers.

Each partition of the graph is independently processed by the giraph workers. All the

graph processing algorithms are implemented in the compute API. In every superstep

the workers run the compute method over all the nodes of the partition of the graph

assigned to it from the giraph framework. Each worker is allocated a partition of the

graph, the size of the partition is such that it can fit in the main memory of the machine.

This is the primary reason why PGA requires low memory for assembly.

The next phase after building the de Bruijn graph is error correction. Majority of

the existing assemblers employ error correction as an important step since it reduces the

graph size significantly and also aides in the scaffolding phase. The billions of short

reads resulting from the shotgun sequencing methods consists of errors at certain base

positions. There is no confirmed way of knowing which positions in the short reads have

errors. However, since each nucleotide position is covered in multiple short reads the

incorrect nucleotide results in either tip or bubble in the de Bruijn graph. Error correction

state mainly deals with identifying and eliminating such nodes in the de Bruijn gaph.

The functional flow of error correction is as shown in figure 5.4.
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Figure 5.4: Functional flow of error correction in de Bruijn graph

5.4.1 Compression

The first step that follows after building the graph is compressing the linear chain of

nodes in the graph. As shown in figure 5.5 the non-branching paths of nodes can be

compressed into single node without the risk of misassembly. If there are “p” nodes

in the linear path then in every superstep “p/2” nodes are compressed. The algorithm

compression in Giraph is as shown in algorithm 1. The algorithm is based on on ”Par-

allel Random List Ranking”. In Superstep0 each compressible node is tagged as either

head or tail with equal probability. In Superstep1 the head nodes are compressed with

tail nodes and updated information is sent to adjescant nodes. In the subsequent even

numbered Supersteps, if the nodes to be compressed are remaining then compression

phase is repeated. Since, in every repeat of compression p/2 nodes are compressed the

complexity of algorithm is log(p)/w where w is the number of workers running in par-

allel. Furthermore compression is performed at different stages of assembly pipeline,

first soon after building the graph, second time after removing the low coverage nodes,

third time after tip and bubble removal phases and after every iteration of scaffolding.
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There many advantage of compression, it reduces the overall size of the graph after ev-

ery repeat of compression. This indirectly aides will resolving the ambiguous paths in

the de Bruijn graph.
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Figure 5.5: An example of linear path compression in assembly graph

Compressible← 1
while Compressible > 0 do

if Superstep == 0 then
Mark Nodes to Compress
Send Message to Neighbors

else
switch Superstep%2 == 0 do

case 1:
Merge Nodes
Send Updated Information to Neighbors

endsw
case 0:

Mark Nodes to Compress
Compressible← Remaining

endsw
endsw

end
end

Algorithm 1: COMPRESSION OF DE BRUIJN GRAPH USING GIRAPH
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5.4.2 Topological Error Correction

In this section we describe the two error correction methods which greatly decrease the

size the assembly graph and aid in resolving repeats. Errors are introduced because of

sequence technologies produce incorrect nucleotides certain positions is the short reads.

Tips and bubbles are the two topological imperfections caused by errors in short reads.

5.4.3 Tip Removal
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Figure 5.6: Tip formation in de Bruijn Graph

An example of short reads with errors and resulting in tips is shown in figure 5.6. Tips

are formed because of errors in the end of the short read. In the example shown, Short

reads are produced from the “sequence”. The base “T” is the proper nucleotide at po-

sition indicated by arrow. However in one of the short reads the sequencer interprets

this as “C”. In all other short reads this nucleotide position is interpreted as “T”. This

short read when converted into k-mers forms a tip in the assembly graph. Tips can be a

single node or sequence of nodes which are connected at one end and disconnected at

the other end. They have only incoming edge but no out going edge. The tip removal is

straightforward since dropping edges connecting to tips does not affect the other parts

of the graph, however certain restraint is followed to avoid loosing genuine sequence.

The general approach followed in other assemblers is to keep the tip if the tip length

is greater than 2k. The algorithm to remove tips using Giraph is shown as shown in

algorithm 2. In Superstep 0 nodes having an in-degree of one are identified as po-
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switch Superstep%2 == 0 do
case 0:

Nodes with only incoming edges
Send message to connected node

endsw
case 1:

Mark Nodes to Compress
Compressible← Remaining

endsw
case 1:

Mark Nodes to Compress
Compressible← Remaining

endsw
endsw

Algorithm 2: TIP REMOVAL IN DE BRUIJN GRAPH USING GIRAPH

tential tips. In Superstep 1 if such node has length less than 2k then it is marked for

deletion. In Superstep 2 the parent node which connected to the potential tip updates

is edge and removes the edge which is connected to the tip node. Removal of tips leads

to linear paths in the graph at certain places. After removing the tips, there will be some

linear chain of nodes created. We perform compression after removing the tips as well.

Usually compression is performed after removing the tips, if no tips are removed then

the next phase of the assembly which is bubble removal is performed.
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Figure 5.7: Bubble formation in de Bruijn Graph
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5.4.4 Bubble Removal

Bubbles are introduced in the DBG because of errors in the middle of the short reads.

Figure 5.7 shows formation of bubble. The two nucleotides “AA” indicated by arrows in

the sequence are misinterpreted in read 1 as “CC”, however read 2 and read 3 correctly

interpret the two nucleotide positions. The resulting DBG will have two nodes indicated

as B and B′. The node B′ is created because of k-mers that are produced from the short

read read 1. The nodeB is created from k-mers that are produced from short reads read

2 and read 3. The objective of bubble removal is to identify such nodes in DBG and keep

the nodes which are created by the high frequency k-mers, and remove the nodes which

have low frequency support. The algorithm 3 describes the implementation of bubble

removal in DBG using apache giraph. The algorithm works as follows, the parameter

max bubble len← 5 ∗ kmer length
switch Superstep == 0 do

case 0:
if NodeLength < max bubble len then

Potential bubble
Send Message to tail node

endsw
case 1:

Find the similarity between node strings
Node with maximum coverage is retained

endsw
case 2:

Delete potential bubble
Adjust edge info at head and tail nodes

endsw
endsw

Algorithm 3: BUBBLE REMOVAL IN DE BRUIJN GRAPH USING GIRAPH

max bubble len is set to 5*kmer length. This heuristic is adopted in majority of the

assembler tools. Nodes with length less than max bubble len, which have in-degree

as well as out-degree of one are considered as potential bubbles in the figure 5.7 the
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nodes B and B′ correspond to potential bubbles. In Superstep 0 every node matching

this criteria sends message to their tail node. In the figure 5.7, C corresponds to a tail

node and node A corresponds to a head node. In Superstep 1 tail nodes which received

the messages compute dissimilarity between the node messages, in this case node C

compute dissimilarity between nodes B and B′. The dissimilarity between the nodes

B and B′ is computed using the edit-distance algorithm[GIve reference Here]. This

algorithm checks the number of characters in the strings that can be changed to equalize

the two strings. The complexity of the edit-distance algorithm isO(n2) where n refers to

the length of the 2 strings. If the dissimilarity between the nodes is within the threshold

then one of the node is a bubble. Then, the length of the nodes and, the k-mer frequency

associated with both the nodes are compared. The one with higher k-mer frequency is

considered as valid node and included in the path between the head node and tail node.

In Superstep 2 the node with lower k-mer frequency is purged and edges are adjusted

for head and tail nodes. After removing the bubbles, there will be linear paths node.

We can compress these nodes without loss of information. After every repeat of bubble

removal, compression is performed.

5.4.5 Scaffold Construction

The assembly graph at this stage is error corrected with edges between overlapping

contigs. The ambiguity of over- lapping edges can not be removed without the help of

mate- pair information. Short read position information coupled with insert length forms

the basis for bundling the mate-pair information with assembly graph. The input to the

scaffolding phase mate bundled de Bruijn graph, which has the linking information with

every node. We developed a graph hop method to find the exact path between the linked

nodes. In this method, in superstep 0 each unique node sends message to its neighbor

consisting of its node id, the direction of hop and the estimated distance. If the path

traversed so far is equal to the estimate distance then current path traversed so far is
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used to resolve the ambiguity.

Input←Mate bundled DBG if Superstep == 0 then
msg←node,destination,expected dist, current path
Send Message to Neighbors(msg)

else
if Superstep <MAX HOP then

Process Message to check if message is destined for current node
msg← append current node to incoming message
Send Message to Neighbors(msg)

else
halt computation

end
end
Algorithm 4: HOP METHOD TO FIND THE PATH BETWEEN LINKING NODES

5.5 Results
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Figure 5.8: Comparing the execution times with every phase of Contrial and PGA
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5.5.1 Comparison of PGA with Short Read Assemblers for E.Coli

E.Coli data set consists of 20.8 million paired-end, 36 bp Illumina reads with 200 bp

insert size (NCBI Short Read Archive, accession no. SRX000429). This data has been

assembled by many of the assemblers to evaluate the accuracy and performance. We also

consider this dataset to assess PGA against Velvet, Abyss and Contrail. The evaluation

was done on a cluster with 8 nodes giving a total of 16 cores and 400 GB local disk.

Initial k-mer size of 27 is used for all the evaluations, as the quality of assembly is

shown to be optimal with this k-mer size. Experiments were also conducted by varying

k-mer sizes but report the results only for k-mer size which gave optimum results. The

performance comparisons are shown in the table 5.1. The quality of assembly in terms

of N50 length is better than Abyss and is comparable to Contrail. However, in terms of

memory requirements Contrail and PGA need smaller memory compared to Abyss.

Furthermore, the memory requirement for PGA can be smaller compared to Contrail.

The notion for this inference is that the aggregate memory needed for graph processing

using giraph framework is equal to the size of the graph. However, in table 5.1 we

have specified the memory for PGA as 4GB, since the graph building phase in PGA

is based on MapReduce and this requires more memory for the reduce phase of DGB

construction. In terms of the execution speed, The overall assembly was completed in

40.2 minutes which is a performance gain of 69% compared to Contrail. Compared to

ABySS we get around 27%. Velvet shows better performance compared to other tools

but it has peak memory usage of 32 GB. In general Velvet has better performance for

smaller genomes.

5.5.2 Assembly of Thellungiella Salsuginea

In order to show the scalability of PGA we consider a relatively larger genome Thel-

lungiella Salsuginea [57]. It consists of 215 million paired-end, 101 bp Illumina GA II
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Table 5.1: Performance comparison results for PGA with short read assemblers for
E.Coli data

Velvet ABySS Contrail PGA
No.of Scaffolds 190 251 273 234
N50 73180 96,308 119782 191103
Mean 55400 37,381 39296 37996
Max 112,000 268,283 236834 237843
Memory 32 8 4 4
Cores 1 16 16 16
Time (Minutes) 20 29 133.3 40.2

Table 5.2: Performance comparison of PGA Short Read Assemblers for Thellungiella
Salsuginea dataset

Velvet Abyss Contrail PGA
No.of Scaffolds 351 410 300 287
N50 18000 16500 15000 15500
Mean 3100 2500 1850 1751
Max 21000 20508 18051 18100
Memory (GB) 256 256 8 8
Cores 1 17 16 16
Time (Min) 333 420 840 312

system reads with 180 insert size (GenBank1 database accession no. AHIU00000000;

PID 80723). Assembly of this genome was performed using the same set of resources

that we used for E.Coli dataset. PGA’s performance is comparable to AbySS with just

4GB memory which half the memory needed for AbySS. PGA performance is 3X bet-

ter than Contrail, though both use the same size of memory. Velvet performed better

compared to other tools, however required larger physical memory. The assessment and

performance results are shown in the Table 5.2.

5.5.3 Assembly of Human Genome Accession no. SRX016231

To demonstrate the scalability of PGA to larger genomes we assemble Yoruban male

(NCBI short read archive SRA000271) with accession number SRX016231. This data
1http://www.ncbi.nlm.nih.gov/bioproject/?term=txid72664
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Table 5.3: Performance of PGA for Human Genome

PGA
No.of Scaffolds 723,040
N50 2056
Mean 1384
Max 20563
Memory (GB) 8
Cores 256
Time (Hours) 10.27

set has read length of 101, Insert length of 500 and 47X coverage. We used k-mer

size of 57. The assembly was performed on 128 nodes giving a total of 256 cores

and, 8 GB of RAM was allocated to each core. The complete assembly finished in

10.27 hours. Comparing these results with PASHA and ABySS, which took 21.5 and

50.6 hours respectively over 8-node cluster each having 24GB of RAM. PGA is 2X

and 5X faster than PASHA and ABySS respectively. The number of node requirement

for PGA can also be significantly reduced after the stages of build graph and initial

graph compression. We observed that, the initial DBG was of 1.49 TB and after the

compression the graph size is significantly reduced around 280 GB. The requirement of

128 nodes is specified considering the initial de de Bruijn graph size of 1.49TB.

5.6 Conclusion

We presented PGA to achieve assembly of larger genomes over commodity hardware.

The parallel algorithms are based on apache giraph to take advantage of distributed

memory to address the large memory requirements needed to process the de Bruijn

graph. Our evaluation using three data sets of different size showed that PGA’s perfor-

mance is comparable to existing tools for smaller genomes and significantly better for

larger genomes. Furthermore, PGA’s requires small memory per core compared to any

of the existing tools.

76



Chapter 6
Summary of Contributions and Future
Work

This dissertation is two-fold. We provided a detailed study on MapReduce as distributed

computing framework and overview of ecosystem of tools associated with MapReduce.

It also gave overview of the genome assembly process and how MapReduce based

apache giraph can be used to accomplish large scale genome assembly.

In the first part of the dissertation, we analyzed the task scheduler in Hadoop [5],

which is an open source implementation of MapReduce. Specifically, Hadoop’s perfor-

mance on distributed clusters is evaluated. Though, number of job schedulers exist for

Hadoop, the task scheduling is coarse grained and optimized for single cluster deploy-

ment. We investigate performance of Hadoop over virtual clusters as well as distributed

clusters and proposed methods to optimize task scheduling by including network pa-

rameters such as delay, packet loss and bandwidth while making scheduling decisions.

The chapters 2 and 3 constitute first part of the thesis. In chapter 2, issues affecting

the performance of Hadoop task scheduler are investigated and a method to improve the

performance is provided. In chapter 3, the factors degrading the performance of Hadoop

over distributed cluster are analyzed and a network aware task scheduler implementation

is provided. This work can be extended for optimizing the scheduling of reduce tasks,

since the placement of reduce tasks also significantly influence the overall performance.

In the second part of the dissertation, two fundamental applications in Bioinformat-
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ics namely sequence alignment and de novo assembly are addressed. Both the appli-

cations involve processing of billions of short reads generated from NGS technologies.

The size of short read data sets produced from NGS is ever increasing and requires

a scalable distributed computing framework to store, analyze and process to construct

genomes of the order of human genome. The goal of the second part of the thesis was

to develop scalable algorithms for indexing reference genome and to develop de novo

genome assembly tool by using MapReduce based ecosystem of tools. The chapters 4

and 5 make second part of the thesis. In chapter 4, scalable, distributed algorithms for

constructing the suffix tree to index larger genomes is proposed. In chapter 5 describes

why genome assembly is Big data challenge and why existing assembly methods are

inefficient for assembly of genomes of the order of human are investigated. We pro-

pose parallel giraph based Novo genome assembler (PGA), a tool to achieve assembly

of larger genomes over small computing environment.

PGA can be extended to the assembly of metagenomes. The field of metagenomes

deals with assembly of community of species by sampling the DNA of several organ-

isms. The volumes of the short reads generated from sequencing of metagenomes is in

terms of terabytes. Which makes assembly of metagenomes a more complex challenge

than assembly of single genome. Furthermore, the throughput of NGA sequencing is

increasing fast, indicating that only distributed analysis systems can help bridge the gap

of scalability.
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