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Abstract 

Psychological analysis related to voluntary reciprocal trust games were obtained 

using functional magnetic resonance imaging (fMRI) hyperscanning for 44 pairs of 

strangers throughout 36 trust games (TG) and 16 control games (CG). Hidden Markov 

models (HMMs) are proposed to train and classify the fMRI data acquired from these brain 

regions and extract the essential features of the initial decision of the first player to trust or 

not trust the second player. These results are evaluated using the different versions of the 

multifold cross-validation technique and compared to other speech data and other advanced 

signal processing techniques including linear classification, support vector machines 

(SVMs), and HMMs. With above 80% classification accuracy for HMM as compared to 

no more than 66% classification accuracy of a linear classifier and SVM, the corresponding 

experimental results demonstrate that the HMMs can be adopted as an outstanding 

paradigm to predict the psychological financial (trust/non-trust) activities reflected by the 

neural responses recorded using fMRI. Additionally, extracting the specific decision period 

and clustering the continuous time series proved to increase the classification accuracy by 

almost 20%.
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1. Motivation 

“A social instinct is implanted in all men by nature …” – Aristotle, Politics, Book 

I [3] The human sciences such as sociology, anthropology, psychology and others have 

long studied intelligent behavior [4]. Humans have a unique, innate capacity to perceive, 

learn and adapt to their surroundings [5]. Because of shared space between people, 

cooperative and interdependent relationships tended to develop as a means to navigate 

society. Consistent with the Merriam-Webster, Incorporated dictionary, these relationships 

are social in nature. According to Fortune Magazine almost a decade ago, “alliances have 

become an integral part of contemporary strategic thinking” [6]. Partnerships, when formed 

carefully and methodically, make individuals and entire entities more efficient and thus, 

more competitive. This collaboration is beneficial because of the alternative perspectives 

offered and the reduced demand for resources. 

1.1 Social Intelligence 

Social interactions are critical to how we see the world. Social rules help to 

recognize probable behavioral patterns and respond accordingly. To effectively handle 

these often complex social situations, one must be able to observe, understand and react to 

social cues manifested in subtle expressions and body language as well as prolonged 

behaviors. This may be termed as social intelligence [5, 7]. Social intelligence can be more 

specifically defined as the ability to manage, express and recognize turn-taking, agreement, 

politeness, empathy, cooperation and other social signals, behaviors and situations [5]. The 

goal of social intelligence is to perceive, interpret and display appropriate social signals 

and behavior [4].  
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True feelings and attitudes towards social interactions and situations are often 

expressed in social signals, though sometimes unconsciously [4]. These signals include 

interest, friendliness, determination, boredom, activity, engagement, emphasis, emulating 

and other attitudes toward a particular social situation. Effective teachers and speakers 

often use these signals such as posture to gauge the attentiveness of the audience. As 

Pentland phrased it, “signaling functions as a subconscious discussion about relationships, 

resources, risks, and rewards” [8], and oftentimes, the unspoken signals are just as 

important as the spoken words. One could venture to say that the unspoken signals are 

more important because of their involuntary nature.  

Pentland also writes about the importance of social signals in predicting human 

behavior. Social psychologists employ this expertise in school, business, government, and 

family situations. Expert psychologists can quite accurately forecast important life events 

such as divorce, student performance or criminal conduct after a short period of observation 

although these events may not occur in the immediate future [8, 9]. Another benefit to 

monitoring social signals may be in improving group function. Facilitators or moderators 

can provide real-time intervention based on behavioral signals and social cues such as 

physical appearance, gestures, posture, face and eye behavior, vocal behavior and space 

and environment [8]. Given the subconscious nature of many social signals, all behaviors 

are not robustly detectable using conventional methods like audio-visual recording. There 

is a greater need to view the subconscious in more depth on a neurological level. 

Neuroscience offers a balance between biological and psychological approaches to 

social behavior. The idea is that neural regulation reflects a simple contrast. On the one 

hand, there are innate, automatic processes that are not affected by perception or reasoning. 
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On the other hand, we have learned behaviors that are more controlled and methodical and 

depend upon contexts or situations. Certain physiological components have even been 

identified to improve the awareness of others or to process and influence even the most 

complex judgments such as whether or not to trust other people [4, 10]. 

1.2 Social Signal Processing 

In a society that is becoming more mobile and globally interactive with increasing 

human-technology interfacing and computer-mediated communication, systems that detect 

and measure social signals and behavioral cues will prove to be advantageous.  These 

signals can be detected through verbal, facial, body, physiological or other characteristics. 

Such “socially aware” systems could even detect attitudes during negotiation for example. 

In the case of group function, social scientists have researched how groups of people make 

decisions and the effects of social environments on these group relations. Impressions of 

dominance, authority, respect or affinity can impact social interactions. By understanding 

the relationship between social signaling and behavior, outcomes can be predicted. In order 

to do so, the goal must be to detect, interpret and classify signals and how they affect 

behavior [8, 9, 11, 12]. 

To address this crucial issue, there is growing interest in the multidisciplinary 

research field of social signal processing (SSP, also associated with behavioral or cognitive 

signal processing) [4, 5, 7, 8, 11-17]. This field is defined by Vinciarelli et al. as “machine 

analysis of human social signals” [5] and related to behaviors obtained from physical 

appearance, gestures and posture, face and eye behavior, vocal behavior, space and 

environment. It is an intriguing method of automating the human-intelligent process of 

perceiving, learning and adapting to social situations. It is a product of artificial intelligence 
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and socially aware computing. Social signal processing applications range from 

psychological coaching or diagnosis to more engaging games or technology. Most often, 

these behavioral signals and social cues are detected with audio and/or video equipment. 

However, recent developments have utilized neurological “hyperscanning” to detect this 

information although it is more invasive [5, 11]. This hyperscanning will be discussed in 

more detail in Section 1.3 

Social signal processing has also gained notoriety for its use in context-dependent 

human-computer interactions [5]. The major components of SSP are modeling, analysis 

and syntheses of nonverbal behaviors in social interactions. The modeling component 

observes underlying rules that govern social interaction and the effects of nonverbal 

behaviors. The analysis component examines the automatic techniques used to extract and 

interpret data recorded during social interaction from appropriate sensors usually 

microphones for audio signals and cameras for nonverbal behavioral cues. The synthesis 

Sythesis

Automatic generation of appropriate response.

Analysis

Develop automatic extraction and interpretation.

Modeling

Study underlying laws and principles.

Figure 1. Graphical representation of social signal processing components. 
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component explores the process of automatically generating a suitable response as deemed 

by social laws and principles and in proper context. A summary of these components is 

represented graphically in Figure 1 [4]. The analysis component, which is most relevant to 

the scope of this research, can further be divided as in Figure 2. The first phase of analysis 

is recording of the social scene like meetings and other interactions in which the social 

signals and behaviors may be extracted. In order to extract these social cues using various 

techniques appropriate to the signal of interest, the people involved in the interaction must 

first be detected. Finally, it is equally important to sense the context of the scene in order 

to properly classify signals [4]. 

1.3 Hyperscanning with fMRI 

Using functional magnetic resonance imaging (fMRI), some neuroeconomics 

research has studied social decision making. The interest is how decisions are influenced 

when others are also making decisions and/or are affected by the result [18]. This research 

employs von Neuman’s game theory [19, 20] to develop experiments and interpret results. 

Specifically, researchers are interested in the neural sequences that correspond to particular 

outcomes. To further investigate what occurs physiologically as two people attempt to 

sense and influence what each other is doing, it is best to record or measure this activity 

simultaneously. This “hyperscanning” is a method of measuring brain activity during social 

Recording

• of the scene

Detecting

• of people in 
the scene

Extracting

• behavioral 
cues

Sensing

• context and 
classification

Figure 2. Graphical representation of Analysis component of social signal processing. 
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interaction. Although social behavior can be subtle, neuroscientists have made some 

advancement in identifying parts of the brain that are the basis for these social interactions. 

However, specific patterns and implications of neural activation are still being explored [2, 

10, 18, 21]. 

Functional magnetic resonance imaging has become a prevalent technique used 

across multidisciplinary research to investigate brain activity in response to a stimulus or 

task. Its growing popularity is partly attributable to its accessibility, non-invasive nature, 

and high spatial and temporal resolutions [22]. It can provide insight into the functioning 

of sensory, motor and cognitive systems through detailed images of the human brain that 

reflect local changes in blood dynamics [1]. The three main components of fMRI, namely 

data acquisition, data processing and analysis, and interpretation, relate to specific 

conceptual and technical developments as well as scientific disciplines [23]. 

In the fMRI acquisition component, the scan type or pulse sequence is sensitive to 

blood dynamics. The measurements of these changes in blood dynamics such as blood 

flow, volume and oxygenation state, indicate changes in neural activity [22]. The most 

common method, blood-oxygenation-level-dependent (BOLD) contrast, measures a 

decrease in the local  concentration of deoxyhemoglobin caused by the presence of more 

oxygenated blood needed in the area of the brain responsible for reacting to a specific 

stimulus or task. This decrease in deoxyhemoglobin reduces the magnetic field distortions, 

which slightly intensifies the magnetic resonance (MR) signal [24, 25].  De Yoe et al. 

illustrated this process with the detailed flowchart shown in Figure 3 (see [1]). 
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Figure 3. Reused from [1]. See permissions in Appendix A. 

“Hypothesized mechanism of BOLD contrast underlying common fMRI 

approaches (Hb ≡ hemoglobin)”. 
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The data processing and analysis component attempts to detect the changes in 

signal intensities. The objectives are (i) to quantify relationships between task 

characteristics, MR signals and regions and/or identify which brain regions are included in 

the function of interest (FOI), and (ii) to extract the function-related signal changes 

optimally by minimizing noise and variability [23]. Generally, there are two types of 

approaches: confirmatory (hypothesis- or model-driven) and exploratory (data-driven) [24-

27], but more recently, clustering methods such as hierarchical clustering have emerged as 

yet another valid category of fMRI analysis methods [25]. The confirmatory approaches 

are classified according to the necessity of a priori knowledge about the experimental 

paradigm. Some of the most popular analysis programs currently available, e.g. SPM 

(www.fil.ion.ucl.ac.uk/spm), Brain Voyager (www.brainvoyager.de) and AFNI 

(afni.nimh.nih.gov/afni), use multiple regression analysis to assign statistical significance 

to changes in the fMRI signal associated with the task. Some other programs employ 

connectivity analysis, which test for correlations between regions while others employ 

independent or principal component analysis, which extract main factors in the data time 

series [23]. 

The experimental paradigm, i.e., design of the task or stimulus, presented during 

scanning influences how the results should be interpreted. Carefully chosen experimental 

paradigms facilitate the search for and identification of regions involved in the FOI. This 

allows for testing of the regional effects of variations in the experiment [23]. An 

exceptional graphical layout of the aforementioned fMRI components is shown in Figure 

4 (obtained from [1, 28]). 

. 
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Figure 4 (next page). Reused from [1]. See permissions in Appendix A. “Example of 

results of post-processing of responses in visual cortex to alternations of baseline and 

experimental tasks. (A) multigraph display of the time course of the fMRI signal from 

25 voxels located near the occipital pole in the primary visual cortex. The 200-second 

scan duration is represented by the width of each square in the multigraph display. 

Note the cyclic responses to 5 alternations of a uniform blank field (stimulus off) with 

a counterphase flickered (8Hz), checkered annulus of 6° diameter centered on a small 

fixation point. (B) Average reference wave form computed from 10 selected pixels. 

(C) Correlation image (axial view) showing the degree of correlation between the 

reference wave and the response from each voxel in the slice. Color scale represents 

positive correlations in red/yellow, negative correlations by blues.  (D) Distribution 

of correlation coefficients from a blank series (control task only, no alternation). Red 

curve shows Gaussian function fitted to data. (E) Distribution of correlation 

coefficients taken from experimental scan represented by image C. Valid response 

criteria for both positive and negatively correlated responses shown by red arrows. (F) 

Sagittal view of brain showing plane of functional images (POS: parieto-occipital 

sulcus). (G) Composite functional images (axial view) for different correlation criteria 

shown by the number next to each image. Color scale for functional data codes the 

magnitude of the reference wave form represented by the original data from each 

voxel. As correlation threshold increases, confidence in the validity of the displayed 

foci increases. For this case, a threshold of 0.65 yielded a probability of false-positive 

response of P < 0.001 (case CT).” 
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Chapter 2 will state the problem followed by an exploration of the current status of 

knowledge on the subject matter in Chapter 3. Then, we will present our approach and 

experimental results in Chapters 4 and 5, respectively. Finally, the conclusion will be 

drawn in Chapter 6. 
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2. Problem Statement 

Neuroeconomics researchers have determined that trust and cooperation are vital 

in human social behavior. Moreover, recent studies have concluded that these sentiments 

are essential to economic decision-making [2, 18-20]. Using the aforementioned 

hyperscanning, Krueger et al. has studied neural connections involved with the trust and 

cooperation of personal economic exchange by simultaneously scanning the brains of two 

players active in a voluntary reciprocal trust game. After analysis of the results, they 

concluded that the brain activity involved in developing a trusting relationship is 

concentrated primarily in the paracingulate cortex (PcC). More specifically, the ventral 

tegmental area (VTA, linked to the evaluation of expected and attained reward) and the 

septal area (SA, related to social attachment behavior) are selectively activated by 

conditional and unconditional trust, respectively [2]. The objective of the proposed 

research is to automatically classify the raw signals extracted from these areas of the brain 

using signal processing techniques commonly applied to classify speech signals.  

The data used in this research was obtained during a neuroeconomics study by 

Krueger et al. [2]. Forty-four “healthy” participants were partnered with one stranger of 

the same gender having a similar age and education (11 male pairs and 11 female pairs). 

To measure the event-related neural activity, the partners interacted with each other 

throughout a reciprocal Trust Game (TG) while their brains were hyperscanned in standard 

3-Tesla magnetic resonance imaging (MRI) whole-body scanners. Without anonymity, the 

partners played 36 TGs and 16 control games (CGs) while alternating roles. Figure 5 

provides a pictorial representation of the experimental setup [2, 18]. 



  

13 

The TG as applied in this study is a two-player cooperative game for financial gain 

at low, medium and high amounts (in cents) presented in extensive form. In extensive form, 

each player must make a binary decision in sequence. At the first decision node, the player 

who moves first (M1) must decide to either end the game, resulting in a small yet equal 

payoff amount for both players or send a preset amount to the player who moves second 

(M2) thus trusting that M2 will choose a larger payoff for both players. Then, M2 must 

Figure 5. Reused from [2]. See permissions in Appendix B. © 2013 by the National Academy 

of Sciences of the United States of America. “Setup for hyperfMRI experiment. Stimuli 

presentation and behavioral interaction were controlled by two client computers and one server 

computer connected over the network. Client computers controlled the presentation of stimuli, 

communicating with one another through a server. The hyperfMRI experiment was started 

simultaneously by sending the trigger pulses from both scanners to the server, which 

automatically started the stimulation presentation on the clients. With a magnetically shielded 

LCD video projector, stimuli were back-projected onto a translucent screen. Participants viewed 

the screen by a mirror system attached to the head coil and made their decisions with a response 

pad.” 

  nhgyhj 
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decide to either reciprocate M1’s trust by sending a portion of the increased amount back 

to M1 or defect by keeping entire amount. For a depiction of this voluntary trust game, see 

Figure 6.  In the CGs, the pairs did not interact. Each player was simply presented with the 

same binary decisions along the same timeline [2, 18]. 
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Figure 6 (next page). Reused from [2] See permissions in Appendix B. © 2013 by the National 

Academy of Sciences of the United States of America. “Experimental design. (a) Voluntary trust 

game. Partners made sequential decisions as first mover (M1) and second mover (M2) for payoffs 

in cents [c: (cM1,cM2)] presented in a binary decision tree. M1 can choose left (nontrust) and 

quit the game with a small payoff for M1 and M2 (e.g., [5,5]) or can choose right (trust) to 

continue the game. M2 can then choose left (reciprocate), giving them both a higher payoff (e.g., 

[10,15]) or choose right (defect), resulting in an even larger payoff to M2 and a payoff of zero to 

M1 (e.g., [0,25]). Payoffs (p1–p6) were split into three types: low (p1–p2), medium (p3–p4), and 

high (p5–p6). (b) Time line for a single trust game. Partners were introduced by seeing each other 

by webcam, and digital photographs were taken to be used for game trials. A 2-s introductory 

screen informed partners of the role that they were playing (M1 or M2). M1 saw the game tree, 

had to make a decision (nontrust or trust) within 6 s, and waited 6s for M2's decision while seeing 

a blank screen. M2 saw a blank screen for 6 s, saw the game tree with M1's decision, and had to 

make a decision (reciprocate or defect) within 6 s. If M1 had chosen not to trust M2, the game 

was over, and M2 saw M1's decision for 6 s. Partners saw the outcome of the game for 4 s 

followed by a blank screen with a jittered interstimulus interval of 2–6 s.” 
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 The study results reveal that the M1 decided to trust M2 eighty-four percent of the 

time while M2 decided to reciprocate seventy-seven percent of the time compared to seven 

percent defect. Moreover, these decisions were made in about 2.5 seconds on average. 

After the experiment, participants felt closer to and more of a partner to one another  
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according to pre- and post-experiment questionnaire results. The percentiles provided 

Figure 7. Reused from [2] See permissions in Appendix B. © 2013 by the National 

Academy of Sciences of the United States of America. “Behavioral results for decisions to 

trust. (a) Behavioral choices (multisubject level ±SEM). First movers decided to trust more 

often than not to trust, and second movers reciprocated more often than they defected (note 

that decisions not to trust, reciprocate, and defect add up to 100%). (b) Pre- and 

postexperiment ratings (multisubject level ± SEM). Before and after scanning, partners 

were asked to rate their closeness and partnership to one another on 11-point Likert scales. 

After the experiment, participants felt closer to each other and ranked themselves more as 

a partner to the other person. (c) Behavioral choices (group level ±SEM). Partners in the 

nondefector trusted more and reciprocated more compared with the defector group. (d) Pre- 

and postexperiment ratings (±SEM). Before and after scanning, partners were asked to rate 

their closeness and partnership to one another on Likert scales. Partners in the nondefector 

group felt closer to each other and ranked themselves as more of a partner to the other 

person after the experiment. (e) Earnings (group level ±SEM). The defector group earned 

less money than the nondefector group. Earnings decreased for the defector group but 

increased for the nondefector group across stages.” 
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above are approximations of averages. The actual amounts with standard deviation are 

provided in Figure 7 [2]. 

During analysis, this partnership was divided into two phases: partnership building 

and partnership maintenance. Then, pairs of participants were further divided into groups 

based on whether or not M2 ever decided to defect. Remarkably, this split resulted in an 

equal number of pairs having comparable age ranges and education levels. The only slight 

imbalance was the gender distribution. The “non-defector” group, in which none of the 

players ever defected their partner’s decision to trust, comprised 6 female pairs and 5 male 

pairs whereas the “defector” group, in which M2 chose to defect at times, contained 6 male 

pairs and 5 female pairs [2]. 

In the non-defector group, trust increased from the partnership building phase to the 

maintenance phase and was higher than the defector group overall. The decision times 

decreased by 20%. The pre- and post-experiment questionnaire results of closeness and 

stronger partnership more accurately described the non-defector group. Overall, the non-

defector group earned more and these earnings increased across phases. Conversely, trust 

decreased from building to maintenance phases in the defector group. They trusted more 

often in the lower payoff games than the medium-to-high payoff games, and the decision 

times only decreased by 10%. In the defector group, the overall earnings decreased and 

they were lower than the non-defector group. A graphical summary of the trust-reciprocate 

history and the decision speed is illustrated in Figure 8 (see [2]). 

Results from general linear model (GLM) analysis suggest that activated brain 

regions in the PcC is critical in trust development corresponding to assumptions made 

about intentions in order to anticipate behaviors. For the first movers, the PcC yielded 
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higher activation during different phases for each group according to these mental 

calculations performed about their partners. The consequences of various mental 

calculations were conveyed in decision times and payoffs. Specifically, for the non-

defector group, PcC activation was higher during the partnership building phase while the 

higher activation in the PcC occurred during the partnership maintenance phase for the 

defector group. 

In comparison, the trust-reciprocate decision related to higher activation in the SA 

along with the adjoining hypothalamus for the non-defector group during the building 

phase and the higher activation in the VTA for the defector group during the maintenance 

phase as shown in Figure 9. The authors of [2] attributed these behaviors to unconditional 

trust and conditional trust. Unconditional trust, associated with the non-defector group, 

presumes trustworthiness while conditional trust, associated with the defector group, 

presumes self-interest [2]. 

Because the biomedical research of Krueger et al. acquired sizeable amounts of data, 

which resulted in costly computation and analysis time, there is high demand for robust, 

model-based automatic processing [29]. In compliance with the sensing component of SSP, 

the objective of this research is to explore event-related hyper-fMRI obtained during non-

anonymous, interchanging multi-round volunteer trust games to be used for prediction of 

behavior during social economic exchange [2]. Hyper-fMRI data will be the direct input 

for an algorithm employing advanced signal processing techniques, namely hidden Markov 

models (HMM) and support vector machines (SVM), to classify signals associated with 

the decisions to trust or not trust.
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Figure 8. Reused from [2] See permissions in Appendix B.  © 2013 by the National Academy of Sciences of the 

United States of America.. “Behavioral results for trust development. (a) Behavioral choices (±SEM). Trust in the 

nondefector group was higher than in the defector group and increased across stages. Trust in the defector group 

decreased across stages and depended on the payoff type. In the maintenance stage, trust in this group occurred more 

often in the low-payoff games compared with the medium- and high-payoff games and in the medium- compared with 

the high-payoff games. (b) Decision times (±SEM). Decision times for trust games became faster for the nondefector 

group across stages, and decision times accelerated by 20% for first movers and by 10% for second movers. Behavioral 

results for trust development.” 



  

21 

 

 

Figure 9 (next page). Reused from [2] See permissions in Appendix B. © 2013 by the 

National Academy of Sciences of the United States of America. “Brain responses for trust 

maintenance. (a) Unconditional trust. In the nondefector group, decisions to trust contrasted 

with decisions to reciprocate revealed a higher activation in the SA compared with the 

defector group. Pairs who showed the highest trust-reciprocate history (frequency) in their 

decisions also showed the highest activation (parameter estimates) in the SA. (b) 

Conditional trust. In the defector group, decisions to trust contrasted with decisions to 

reciprocate revealed a higher activation in the VTA compared with the nondefector group. 

Pairs who showed the lowest trust-reciprocate history (frequency) in their decisions also 

showed the highest activation (parameter estimates) in the VTA. (c) Brain-to-brain 

correlation (±SEM). In the nondefector group, brain-to-brain correlations increased in the 

SA across stages. In the maintenance stage, partners in the nondefector group became 

synchronized in their SA BOLD amplitudes as first movers in adjacent trials of trust games.” 
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3. Current Status of Knowledge 

  To date, two of the most popular signal processing algorithms for classification are 

Hidden Markov Models (HMM) and Support Vector Machines (SVM). Both schemes are 

embraced in a wide variety of applications, and in fact, many researchers are combining 

the advantages of both to form a yet more robust algorithm. [29-42]. Altun et al. were one 

of the first to hypothesize that incorporating SVM with HMM will relax the limitations of 

HMMs while still retaining their advantages [32]. Various applications can also be found 

for this type of hybrid algorithms [30-43]. 

3.1 Other Applications Using Hidden Markov Models 

HMMs generally represent time-dependent stochastic processes and have been used 

broadly and effectively in speech processing [44, 45]. Cohen surveyed potential methods 

and applications of HMM in processing biomedical signals such as bioelectric signals (e.g. 

electroencephalography, EEG and electromyography, EMG), bioacoustics (e.g. 

phonocardiograms and ultrasonography) signals and imaging signals (e.g. magnetic 

resonance imaging, radiography and tomography). He proposed to use the discrete-density 

hidden Markov models (DD-HMMs) in which the signal samples (observations) were 

discrete so that they were quantized scalar or vector symbols. Cohen also proposed to use 

the continuous-density HMMs (CD-HMMs), which allowed continuous (not quantized) 

observations. Because DD-HMMs depend on a quantizer and thus by nature are inherited 

with quantization errors, they are not ideal. Although these disadvantages are not found in 

CD-HMMs (thus making CD-HMMs more accurate than DD-HMMs), the training 

algorithm for CD-HMMs would be more complicated and the corresponding training 

database must be much larger. The CD-HMMs definitely require more computational 
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space and time than the DD-HMMs. HMM based methods have successfully been used in 

automatic speech recognition for persons with cerebral palsy. DD-HMMs used in EEGs 

obtained from sleep studies achieved a recognition rate around 95% in patient-dependent 

(the models were trained with a training database taken from the same patient as the test 

database) experiments and a recognition accuracy of 72% in patient-independent studies. 

In protein sequence analysis, HMMs successfully identified conserved regions called 

“motifs” that may be functionally important. Cohen further mentioned the need to use 

HMMs for more biomedical signal processing applications as improvements are made and 

as more literature becomes available from similar applications. The biomedical signal 

processing applications are ever increasing and ideal for EEG and EMG data but quite few 

works have been reported for fMRI data [46]. 

Yong Li et al. applied HMM to EEG signals for classification between left and right 

voluntary finger movements. Recorded signals were analyzed with a leave-one-out training 

and testing procedure [47]. The signal classification procedure began with pre-processing 

of EEG signals, i.e., reference selection, reduced sampling rate, segmentation into 

individual trials. For independent feature extraction, HMM was applied to the enhanced 

series signals after filtering the multi-channel EEG in both spatial and frequency domains 

for each trial. Later, the authors of [47] used a perceptron neural network, a simple linear 

classifier, with two inputs and one output to differentiate between left or right finger 

movements. The average classification accuracy of 93.2% (with a standard deviation of 

2.08%) is about 5 to 10% higher when the two combined independent features are used. It 

was concluded that the noise insensitivity and the high classification accuracy were 

advantageous. Based on their classification accuracy, the trial was successful for the five 
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healthy, right-handed male subjects used. An extension from offline to online analysis was 

also stated in [47]. 

Jin He et al. proposed a real-time activity classification algorithm for a wearable 

sensor network with accelerometers to monitor physical activity, which could be used in 

medical care [48]. The authors of [48] considered a three-sensor network with sensors 

placed at the chest and outer thighs of a subject. To reduce the data transmission rate and 

volume, Jin He et al. applied the window processing method to discern significant 

information. To classify whether subjects were sitting, standing, falling or transitioning 

between these “stable” states, they  

1. used HMMs to build a framework,  

2. trained the HMMs using the Baum-Welch algorithm,  

and  

3. estimated most probable hidden states with the Viterbi algorithm.  

Jin He et al. achieved an accuracy of greater than 95% in the classification of their 550 

samples obtained from 5 subjects doing 11 different activity series 10 times each. Given 

the results, the proposed algorithm proved to be fairly successful, but the authors offered 

no explanation for the few errors present [48]. It appears that binary activity such as sitting 

or standing with single transition in between states yielded 100% accuracy. However, more 

complicated activity with multiple stable states and transitions slightly reduced the level of 

accuracy. Next, Jin He et al. proposed to increase the number of sensors, subjects and 

activities to the model. This variety will likely significantly reduce the accuracy but may 

allow for more robust classification of more complex activity [48]. 
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 Georgoulas et al. presented a method to automatically classify fetuses as normal 

and hypoxic based on the value of their umbilical cord pH value extracted from the fetal 

heart rate [49]. Fetal heart-rate recordings were obtained from the cardiotocograms 

acquired using scalp electrodes from 36 women during the later weeks of pregnancy. For 

pre-processing, “stable” segments, as defined by the relatively small difference in beats per 

minute in adjacent segments, of the signal were identified. Using the segmental k-means 

training algorithm, the two HMMs estimated the two different situations (normal and 

hypoxic). To evaluate the performance of the classification, the authors of [49] applied the 

multifold cross-validation technique. The average overall classification rate was more than 

81% with the number of hidden states varying from 3 to 8. The maximum classification 

rate was 90% for the normal case using 6 hidden states and 88% for the abnormal (hypoxic) 

case using either 5 or 8 hidden states. The most balanced classification performance 

occurred using 3 or 7 hidden states but varied greatly using other numbers of hidden states. 

Georgoulas et al. concluded that there can be pre-set criteria to distinguish normal from 

abnormal cases successfully. Next, they proposed the use of additional index components 

for more objective classification [49]. 

 Shimokawa et al. aimed to predict human investment behavior using functional near-

infrared spectroscopy (fNIRS) to measure changes in cerebral blood flow and thus brain 

activation [50, 51]. Subjects’ brains were scanned using fNIRS as they participated in 

single-subject sequential investment task (SIT). For a predictive model, they used a three-

layered perceptron to depict the complex relationship between these changes in cerebral 

blood flow and the investment behavior. To increase the robustness of estimation precision, 

they further employed the Bayesian estimator involving parameters and hyperparameters 
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using the Markov chain Monte Carlo (MCMC) algorithm. They also applied a moving-

average smoother to remove noise from the investment-rate time-series data. Using their 

method, one could predict the investment rate with relatively high precision. For most 

periods, the real investment rate fell within the 50% prediction interval. Based on the mean-

squared deviation results with and without blood flow data, the authors of [50, 51] achieved 

a 59.8% improvement by adding blood flow data to the investment rate from the previous 

period. Shimokawa et al. suggested a need for additional experiments to reach conclusions. 

They acknowledged that although fNIRS is less restrictive and more economical than 

fMRI, it has low spatial resolution and shallow observation capability resulting in “limited 

range of analysis and precision”. They suggested to combine the strengths of both fMRI 

and fNIRS for brain-computer interfaces [50, 51]. 

3.2 Other Applications Using Support Vector Machines 

Support Vector Machines (SVMs) have recently grown in popularity for pattern 

recognition and classification applications in neuroscience and medicine. They could lead 

to high classification accuracy but are constrained by the number of classes, kernel 

selection and method [29, 52-57]. Many more applications, however, rely on hybrid 

methods as opposed to a standalone SVM [29-42]. 

De Martino et al. explored a generalized approach to fMRI independent component 

analysis and classification [52]. In contrast to univariate statistical analyses, spatial maps 

were found by the intrinsic structure of the data instead of the identification of a priori 

region of interest. This blind, data-driven approach allows for the feature extraction from 

the whole brain to avoid missing any pertinent information that might be found outside of 

the regions of interest. The researchers are able to explore the significant spatiotemporal 
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patterns such as “networks of functionally connected brain regions and structured artifacts” 

at any location and advance beyond the insignificant portions, thus, obtaining a more 

meaningful subset of the components [52]. 

Taking advantage of the benefits of each, De Martino et al. incorporated an SVM 

with univariate and multivariate feature selection strategies to discriminate patterns in 

fMRI. Using an iterative, data-driven computer procedure, their method offered blind 

detection of patterns in the spatio-temporal domain and hence reduced the need for a priori 

information about dimensions and locations.  Their approach, further reduced the need for 

whole-brain analyses and was more sensitive to these discriminative patterns. They also 

recursively eliminated least discriminative patterns [53] [55]. 

Mahmoud and Olatunji proposed a method for training and testing handwritten 

Arabic numbers using combinations of multi-span features [43]. They identified the 

combinations that presented the best classification rates for SVM and compared them to 

the published results of HMM and Nearest Mean (NM) classifiers. The authors of [43] 

extracted the angular, ring, horizontal, and vertical span features and concluded that the 

angular and horizontal span features achieved the highest recognition rates when compared 

to other combinations. The average classification rates for SVM, HMM, and NM were 

99.4%, 97.99%, and 94.35%, respectively. The authors would like to their work using 

statistical and syntactical features [43]. 

Tsochantaridis et al. proposed a generalized multiclass SVM learning algorithm for 

supervised learning, which extracted features from both inputs and outputs [58]. The 

authors took advantage of sparseness and structural decomposition with a cutting plane 

algorithm and applied their method to several different types of classification problems 
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including classification with taxonomies, label sequence learning, sequence alignment, and 

natural language parsing[58]. 

 For classification with taxonomies, they indexed title and claim tags from an 

International Patent Classification (IPC) scheme and subsampled the training data to study 

the effects of the size of the training set [58]. For this dataset, they found that the 

hierarchical SVM learning algorithm had a higher training accuracy and a lower tree loss 

than the standard multiclass SVM. For label sequence learning, HMM, CRF and 

perceptrons led to a higher error rate than that of SVM. In sequence alignment, SVM had 

a better performance than the generative model with a lower number of training sets but 

comparable with a larger number of training data sets. Finally, the authors compared 

different forms of SVM to the generative PCFG model in natural language parsing with 

context-free grammar from which they concluded that all of the models performed 

comparably with less CPU time used by the generative PCFG model [58]. 

Boyle et al. evaluated the performance of SVMs for the classification of medical 

tasks. The researchers used SVM to diagnose certain conditions within the Breast Cancer, 

Parkinson and urological databases. As with all signals, the information from the databases 

had to be preprocessed by normalization and missing treatment data. Then, the datasets 

were supplied to the SVM to determine whether there was a condition or not. Although the 

data preprocessing costs more time, the benefit is a 15% increase in the system accuracy. 

Missing treatment is more common for the urological database than for the Breast Cancer 

and Parkinson databases. Therefore, preprocessing is needed for less refined datasets [57]. 

In classifying whether or not a condition existed, the correct classification rates for 

Breast Cancer, Parkinson and urological databases were 97.89%, 91.79% and 84.25%.  
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However, the authors of [57] claimed that the lower precision did not always reflect the 

truth because of the skewed distribution of the output classes, which was the reason for the 

high need of the preprocessing to build an even distribution. Because of the high correct 

classification rates, Boyle et al. proposed to use their technique to classify more common 

conditions by adding multiple classes [57].
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4. Our Approach 

4.1 Feature Extraction for fMRI in Psychological Study 

For the raw fMRI data, the intensity values over time (times series) of the functional 

data are extracted as a four-dimensional array representing each voxel location (x, y, z) and 

time course in a VTC file (generated by BrainVoyager QX © 2010 Brain Innovation). 

Additional information including resolution, space and directional conventions, directional 

start and end values, version number, data type, number of volumes and other header 

information are momentarily disregarded for the scope of this research [59, 60]. Further 

extracted from this four-dimensional array are time series at very specific locations. Based 

on previous studies [61-63], a priori regions of interest (ROIs) were pre-defined and 

Figure 10. Full functional timecourses for Subject 15, Run 3 (maintenance phase) extracted 

from four Talaraich regions of interest: Paracingulate Cortex (PcC), Ventral Tegmental 

Area (VTA), Septal Area (SA) and Striatum. 
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analyzed for the voluntary reciprocal trust experiment. These regions include paracingulate 

cortex (PcC), septal area (SA), ventral tegmental area (VTA) and striatum. Within each 

ROI’s activated clusters, the most significant voxel was used to define Talairach 

coordinates of (1, 46, 20), (6, 11, 4), (0, -10, -10) and (17, 4, 11), respectively [2]. A sample 

of a time series for one subject is shown in Figure 10. 

For visual reference, a graphical representation of the game sequence mentioned in 

Section 0 is shown in Figure 11.  Each pair of players played 36 reciprocal trust games and 

16 control games with the latter CGs unreported. Because these games were sequential in 

that each player alternated as the first mover, data for only 18 games was analyzed for each 

player, which were further divided into two phases (or runs): trust building and trust 

maintenance. Thus, corresponding information about each subject number, run number, 

game outcome (decision to trust or not trust) and game timing for 9 games was matched 

with times series information for each of the four ROIs. According to the game design, the 

Figure 11. Reused from [2]. © 2013 by the National Academy of Sciences of the United 

States of America. Arrangement of games during the experiment. The experiment was split 

into two stages (building and maintenance), each including 18 VTGs and 8 CGs. Each 

stage lasted 12 minutes and consisted of three blocks of voluntary trust games (six games 

per block) and two blocks of control games (four games per block). 
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first mover’s decision was made in the 6 seconds following a 2 second introductory screen. 

Therefore, if the game timing for any subject s at run r be tsr, then the relevant time series 

can be extracted from 𝑡𝑠𝑟  +  3 to 𝑡𝑠𝑟  +  8  as shown in Figure 12. In this dissertation, these 

fMRI data will be automatically classified into two groups (trust or non-trust) according to 

game outcomes. In the next sections, advanced classification techniques, namely linear 

classifier, support vector machine and hidden Markov model, will be investigated to 

establish a robust scheme on this matter.  

Figure 12. (Top) Observation Sequence: Intensities from a functional time course during 

the 6-second decision period extracted from a full timecourse of Septal Area of Subject 15, 

Run 3. (Bottom) Hidden States: Corresponding outcomes (decisions) at each decision 

period, i.e., 1 for trust-defect, 2 for trust-reciprocate and 3 for not trust. 
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4.2 Classification Using Linear Classifier 

In linear classification, the aim is to divide a set of features into two classes that the 

data is linearly separable. A linear classifier mathematically separates data with a line based 

on features extracted from each data point. Given a set of training data, each point (x, y) 

can be classified by the response  𝑙 = 𝑠𝑖𝑔𝑛(𝑎𝑥 + 𝑏𝑦 + 𝑐), where a, b and c are constants 

that define a line. Thus, each point is projected onto a line as in Figure 13, and the sign, 

positive or negative, of each point indicates its classification. To determine the equation of 

this discriminant line, solve ax + by + c = 0. Training data is used to optimize the 

parameters of the line. 

 

Figure 13. Illustration of points projected onto a line for linear classification. 

To transform the response into a probability of correct classification, use the logistic 

function such that 

𝑃[𝑙 =  ±1|𝑥]  =
1

1 +  exp(∓(𝑎𝑥 +  𝑏𝑦 +  𝑐))
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where l can take values +1 or -1. Given any set of line constants, the likelihood of a correct 

classification, i.e. the probability of correctly classifying each item in the training set is 

given by 

∏𝑃[𝑙𝑖|𝑥𝑖] 

𝑁

𝑖

= ∏
1

1 +  exp(−𝑙𝑖(𝑎𝑥𝑖  +  𝑏𝑦𝑖  +  𝑐))

𝑁

𝑖

. 

Then, the goal is to find the line parameters that minimize the loss (or cost) function in 

Equation 3 (or maximize Equation 2) by finding  −∇𝐿, where 

𝐿 = ∑log (1 +  exp(−𝑙𝑖(𝑎𝑥𝑖  +  𝑏𝑦𝑖  +  𝑐))) .

𝑁

𝑖=1

 

 

4.3 Classification Using Support Vector Machines (SVMs) 

Support Vector Machine (SVM) is a particular classifier using sparse training 

samples, (𝑥𝑖,  𝑦𝑖), where 𝑥𝑖 is a set of points (vectors) and 𝑦𝑖 constitutes the corresponding 

class assignments. Its complexity is expressed by the classification data set. Because 

Support Vectors 

Figure 14. Illustration of basic support vector machine for separable data. 

(3) 

(2) 
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kernel-based transformations allow for computation of the dot product in higher 

dimensions, 𝑑 , SVMs apply kernel-based transformations as in Equation (4) for 

optimization on the input dataset where 𝑥𝑖  ∊  ℝ𝑑, where   

 𝐾(𝑥𝑖, 𝑦𝑖) = 〈Φ(𝑥𝑖), Φ(𝑥𝑗)〉  (4) 

and yi = ±1. The form of the kernel-based decision function is expressed by 

 𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑦𝑖) + 𝑏𝑁
𝑖=1  (5) 

Two of the common kernel functions, polynomial and radial basis, are described by 

  𝐾(𝑥𝑖, 𝑦𝑖) = (〈𝑥𝑖, 𝑦𝑖〉 + 1)𝑑      (polynomial), (6)

 𝐾(𝑥𝑖, 𝑦𝑖) = exp{−Ψ(|𝑥𝑖 − 𝑦𝑖|
2)}    (radial basis), (7) 

respectively. Although they are highly data-dependent and the corresponding convergence 

is slower, radial basis functions (RBFs) have better performance. By definition, the 

classification task scales linearly with the number of support vectors, N  [29]. Suppose x is 

the d-dimensional coordinate. The hyperplane for a SVM is characterized by 

 〈𝑤, 𝑥〉 + 𝑏 = 0, (8) 

where w is the “weight vector”. The additional constraint on w should also be imposed 

such that 

 𝑦𝑖(〈𝑤, 𝑥𝑖〉 + 𝑏) ≥ 1. (9) 

Like a linear classifier, an SVM classifies data by finding a d-dimensional hyperplane as 

described by Equation (8) with the largest margin between two classes to separate the data 

points from each class into different groups as shown in Figure 14. If the data is separable, 

all data points will lie on either side of the hyperplane as described by Equation (9) where 

the support vectors are those data points xi that lie on the boundary for which 

𝑦𝑖(〈𝑤, 𝑥𝑖〉 + 𝑏) = 1. Equation (10) provides the optimal SVM classification solution:  
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 class(𝑧) = sign(〈𝑤, 𝑥〉 + 𝑏). (10) 

However, a soft-margin hyperplane is necessary if the data is non-separable, which is 

actually the case with the fMRI data in this study. 

For non-separable data, several algorithms are common for optimizing the 

aforementioned hyperplane. In this study, the standard Sequential Minimum Optimization 

(SMO), Least-Square (LS) and Quadratic Programming (QP) methods were explored 

where SMO algorithm minimizes the L1-norm and the latter two methods minimize the L2-

norm with added slack variables si and a penalty parameter C. To solve the L1-norm 

minimization problem, one needs to carry out 

 min
𝑤,𝑏,𝑠

(
1

2
〈𝑤,𝑤〉 + 𝐶 ∑ 𝑠𝑖𝑖 ), (11) 

subject to 

 𝑦𝑖(〈𝑤, 𝑥𝑖〉 + 𝑏) ≥ 1 − 𝑠𝑖, (12) 

 𝑠𝑖 ≥ 0. 

To solve the L2-norm minimization problem, one has to undertake 

 min
𝑤,𝑏,𝑠

(
1

2
〈𝑤,𝑤〉 + 𝐶 ∑ 𝑠𝑖

2
𝑖 ), (13) 

subject to the same constraints given by Equation (12). It is apparent that adjusting C up or 

down will change the sensitivity to the slack variables so misclassification becomes more 

or less important, respectively [64-66]. In this research, the kernel and algorithm were 

chosen according to the preliminary classification results depicted in Figure 15. 
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Figure 15. Classification rates for various kernel methods (linear, quadratic, polynomial, 

RBF, and MLP) and various methods (QP, LS, and SMO). Note that “quadratic” means a 

quadratic polynomial kernel, “polynomial” means a third-degree polynomial kernel, and 

MLP means “multilayer perceptron”. 

4.4 Classification Using Hidden Markov Models (HMMs) 

To facilitate our analysis, the theory of HMM (see [44]) is briefly introduced here. 

First, we define the following parameters according to [67]. Based on a player's reaction, 

the outcomes of this game can be grouped into three sets, namely Non-Trust (NT), Trust-

Defect (TD) and Trust-Reciprocate (TR). Since we only analyze the data from the first 

player/mover in Figure 7, the outcomes labeled as TD and TR represent trust, while the 

outcomes labeled as NT represent non-trust. We use the abridged notation trust Septal, 

trust Ventral, non-trust Septal and non-trust Ventral to specify the data acquired from 

different brain regions for different classes of outcomes. The first word indicates the type 

of outcome, namely trust or non-trust while the second word indicates the brain region, 

namely “Septal” for septal area and “Ventral” for ventral tegmental area. The HMMs for 

this fMRI application are established as follows. 
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1. 𝜏𝑂  ≝  {1, 2, . . . , 𝑇}, where 𝑇 is the sample size. 𝜏𝑂 is the set of observing times 

(sampling time indices) for acquiring the fMRI time series. 

2. �̃�  ≝  [�⃗�1 �⃗�2  ⋯ �⃗�𝑇] denotes the set of fMRI observations corresponding to 𝜏𝑂, 

where 

�⃗�𝑚  ≝ [𝑠𝑚, 𝑣𝑚]𝑇 , 1 ≤  𝑚 ≤  𝑇; (14) 

𝑠𝑚  and 𝑣𝑚  are the observations acquired from the septal area and the ventral 

tegmental area at time 𝑚 , respectively. We cluster the two-dimensional fMRI 

observations �̃� into ℵ groups using K-means method (see [68]). Then, we establish 

a new data matrix 

 �̃�  ≝  [�⃗�1 �⃗�2  ⋯ �⃗�𝑇] (15) 

where �⃗�𝑚  ≝  [�̅�𝑚, �̅�𝑚]𝑇  such that [�̅�𝑚, �̅�𝑚]𝑇  denotes the cluster mean vector to 

which [𝑠𝑚 ,  𝑣𝑚]𝑇 is closest. 

3. 𝜏𝐸  ≝  {𝑡1, 𝑡2, … , 𝑡𝐿 = 𝑇} denotes the event detection time, where 𝑡1 < 𝑡2 < ⋯ <

𝑡𝐿 ,  𝜏𝐸  ⊂  𝜏𝑂. An event detection means that the first player decides to trust or 

distrust the second player in the game. 𝐿 is the total number of event detections. 

4. 𝐸 ≝ {𝑒1, 𝑒2, … , 𝑒𝐿} is the sequence of the 𝐿 detected events corresponding to 𝜏𝐸, 

where 𝑒𝑘, 0 ≤  𝑘 ≤  𝐿 can be either “trust” or “non-trust”. Therefore, the clustered 

fMRI time series �⃗�
𝑡𝑙
  , �⃗�𝑡𝑙+1, … , �⃗�𝑡𝑙+1

 with respect to detection events 𝑒𝑙+1 can be 

classified into either trust or non-trust, where (𝑡𝑙, 𝑡𝑙+1)  ⊂ 𝜏𝐸 , for 0 ≤ 𝑙 ≤ 𝐿 −  1. 

5. 𝑆 ≝  {𝜉1, 𝜉2, … , 𝜉𝑁} represents the state space of HMMs, where 𝑁 is the number 

of states. 

6. The HMM is denoted by 

 𝛾 ≝  (Π, �̃�, �̃�), (16) 
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where the initial state distribution is given by 

 Π ≝  {𝜋1, 𝜋2, … , 𝜋𝑁}  (17) 

and the state transition probability matrix is �̃�  ∈  ℛ𝑁×𝑁. The (𝑝, 𝑞)-entry in �̃� is 

 𝑎𝑝𝑞  ≝  𝑝(𝜉𝑞|𝜉𝑝) (18) 

where 𝑝(𝜉𝑞|𝜉𝑝) denotes the transition probability from state 𝜉𝑝 to state 𝜉𝑞 . �̃�  ∈

 𝑅𝑁×ℵ is the emission matrix. The (𝑝, 𝑞)-entry in �̃� is 

 𝑏𝑝𝑞  ≝  𝑝(�̂�𝑞|𝜉𝑝) (19) 

where 𝑝(�̂�𝑞|𝜉𝑝) denotes the emission probability from state 𝜉𝑝 to output �̂�𝑞. Note 

that �̂�𝑞 indicates any entry in a cluster mean vector, such as �̅�𝑚 or �̅�𝑚.  

Given the clustered fMRI observations �̃�, the detected events 𝐸, and the initial state 

distributions Π, the procedure of data analysis can be illustrated by Figure 16, as follows. 

Step 1: Classify the clustered fMRI time series, �⃗�
𝑡𝑙
  , �⃗�𝑡𝑙+1, … , �⃗�𝑡𝑙+1

, for 

(𝑡𝑙, 𝑡𝑙+1)  ⊂ 𝜏𝐸, into trust group 

 ⋀ ≝ {�⃗�𝐼
𝑡𝑙
  , �⃗�𝐼

𝑡𝑙+1
, … , �⃗�𝐼

𝑡𝑙+1
} (20) 

or non-trust group 

 ⋁ ≝ {�⃗�𝐼𝐼
𝑡𝑙
  , �⃗�𝐼𝐼

𝑡𝑙+1
, … , �⃗�𝐼𝐼

𝑡𝑙+1
} (21) 

according to 𝑒𝑙+1, 𝑙 = 0, 1, … , 𝐿 − 1, where 

 �⃗�𝐼
𝑡𝑙
 ≝  [�̅�𝐼

𝑡𝑙 , �̅�
𝐼
𝑡𝑙]

𝑇,  

 �⃗�𝐼𝐼
𝑡𝑙
 ≝  [�̅�𝐼𝐼

𝑡𝑙 , �̅�
𝐼𝐼

𝑡𝑙]
𝑇. (22) 
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Step 2:  Randomly divide ⋀ and ⋁ into training data set one, training data set two 

(equally extracted from ⋀ and ⋁), and the test data set, where these three data sets 

are mutually exclusive. 

Figure 16. Block diagram of the proposed fMRI data analysis scheme. Three major components 

of this scheme, namely HMM training mechanism, feature library generator, and HMM based 

classifier, are all illustrated. Note that, “Sep” stands for the septal area, while “Ven” stands for the 

ventral tegmental area. fMRI training data1 and fMRI training data2 are randomly chosen among 

the three subset groups 𝓓𝑰, 𝓓𝑰𝑰 and 𝓓𝑰𝑰𝑰. 
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Step 3: Select the state number 𝑁  and the cluster number ℵ  and train HMMs, 

namely 

the HMM for trust Septal (𝛾𝑠
𝐼), 

the HMM for trust Ventral (𝛾𝑣
𝐼), 

the HMM for non-trust Septal (𝛾𝑠
𝐼𝐼), 

the HMM for non-trust Ventral (𝛾𝑣
𝐼), 

using training data set one. For example, 𝛾𝑠
𝐼  is trained by the data sequence 

�̅�𝐼
𝑡𝑙   , �̅�

𝐼
𝑡𝑙+1, … , �̅�𝐼

𝑡𝑙+1
, (𝑡𝑙, 𝑡𝑙+1)  ⊂ 𝜏𝐸, for 𝑙 = 0, 1, … , 𝐿 − 1. 

Step 4: By employing the obtained HMMs in Step 3, establish the feature library 

based on training data set two. The feature library consists of the state sequences 

for the above-mentioned four classes of data. For details regarding state sequences, 

refer to Section 4.4.2. 

Step 5: Test the HMMs obtained from Step 3 using the test data. Employ Viterbi 

algorithm (see [69]) to find the optimal hidden state sequences. Then, the optimal 

hidden state sequences are compared with the feature library obtained from Step 4 

and then classified into trust or non-trust categories by invoking dynamic time-

warping (DTW) algorithm [65]. 

4.4.1 HMMs Training 

To make the training of HMMs converge fast with satisfactory results, proper 

initialization of the HMMs’ parameters using the training data is necessary before the 

actual training process starts. The most common method for initializing an HMM model is 

setting (Π, �̃�, �̃�)  randomly. Usually, random initialization is computationally-efficient. 

However, since the convergence speed of the training process highly depends on the initial 
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generator seed, which facilitates the initial point on the likelihood surface, random 

initialization could not always guarantee convergence. Because our focused problem is not 

necessary to be on-line (it cannot be on-line in practice), the equal-occupancy state method 

[70] can be employed here. The occupancy of state 𝜈 is computed and used as the stop 

criterion in this scheme, which is 

 𝜈 ≝
max

𝚤
𝜖𝚤

min
𝚤

𝜖𝚤
 , 1 ≤ 𝚤 ≤ 𝑁 (23) 

where 𝜖𝚤  is the number of times (occupancy) each state 𝚤  is visited using the Viterbi 

algorithm over all training data. In the initialization process, different initial generator 

seeds are employed and the one which minimizes 𝜈 defined by Equation (23) is actually 

selected finally. 

Then, the four hidden Markov models here are trained independently using Baum-

Welch expectation maximization algorithm [65]. To train these four models, one hundred 

detection events for each model, namely the HMM 𝛾𝑠
𝐼 for the trust Septal data, the HMM 

𝛾𝑣
𝐼 for the trust Ventral data, the HMM 𝛾𝑠

𝐼𝐼 for the non-trust Septal data, and the HMM 𝛾𝑣
𝐼𝐼 

for the non-trust Ventral data, are randomly selected from the experiments. The 

corresponding clustered fMRI time series (training data set one �̃�) are used as training data 

for each HMM. The auxiliary functions (see [44]) employed in the training process shown 

in Figure 16 are given by 

 Υ(𝛾𝑠
𝐼 , 𝛾𝑠

𝐼)  ≝  ∑ {Ρ(℘𝑠
𝐼(𝑡𝑙)|Ο𝑠

𝐼(𝑡𝑙), 𝛾𝑠
𝐼) × log[Ρ(Ο𝑠

𝐼(𝑡𝑙), ℘𝑠
𝐼(𝑡𝑙)|𝛾𝑠

𝐼)]}℘𝑠
𝐼(𝑡𝑙)

 , 

 Υ(𝛾𝑠
𝐼𝐼 , 𝛾𝑠

𝐼𝐼)  ≝  ∑ {Ρ(℘𝑠
𝐼𝐼(𝑡𝑙)|Ο𝑠

𝐼𝐼(𝑡𝑙), 𝛾𝑠
𝐼𝐼) × log[Ρ(Ο𝑠

𝐼𝐼(𝑡𝑙), ℘𝑠
𝐼𝐼(𝑡𝑙)|𝛾𝑠

𝐼𝐼)]}℘𝑠
𝐼𝐼(𝑡𝑙)

 , 

 Υ(𝛾𝑣
𝐼 , 𝛾𝑣

𝐼)  ≝  ∑ {Ρ(℘𝑣
𝐼 (𝑡𝑙)|Ο𝑣

𝐼 (𝑡𝑙), 𝛾𝑣
𝐼) × log[Ρ(Ο𝑣

𝐼 (𝑡𝑙), ℘𝑣
𝐼 (𝑡𝑙)|𝛾𝑣

𝐼)]}℘𝑣
𝐼 (𝑡𝑙)

  , 

 Υ(𝛾𝑣
𝐼𝐼 , 𝛾𝑣

𝐼𝐼) ≝  ∑ {Ρ(℘𝑣
𝐼𝐼(𝑡𝑙)|Ο𝑣

𝐼𝐼(𝑡𝑙), 𝛾𝑣
𝐼𝐼) × log[Ρ(Ο𝑣

𝐼𝐼(𝑡𝑙), ℘𝑣
𝐼𝐼(𝑡𝑙)|𝛾𝑣

𝐼𝐼)]}℘𝑣
𝐼𝐼(𝑡𝑙)

 , (24) 
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where 

 Ο𝑠
𝐼(𝑡𝑙) ≝ [�̅�𝐼

𝑡𝑙   , �̅�
𝐼
𝑡𝑙+1, … , �̅�𝐼

𝑡𝑙+1
] , 

 Ο𝑠
𝐼𝐼(𝑡𝑙) ≝ [�̅�𝐼𝐼

𝑡𝑙   , �̅�
𝐼𝐼

𝑡𝑙+1, … , �̅�𝐼𝐼
𝑡𝑙+1

] , 

 Ο𝑣
𝐼 (𝑡𝑙) ≝ [�̅�𝐼

𝑡𝑙   , �̅�
𝐼
𝑡𝑙+1, … , �̅�𝐼

𝑡𝑙+1
] , 

 Ο𝑣
𝐼𝐼(𝑡𝑙) ≝ [�̅�𝐼𝐼

𝑡𝑙   , �̅�
𝐼𝐼

𝑡𝑙+1, … , �̅�𝐼𝐼
𝑡𝑙+1

] . (25) 

Moreover, ℘𝑠
𝐼(𝑡𝑙) , ℘𝑠

𝐼𝐼(𝑡𝑙) , ℘𝑣
𝐼 (𝑡𝑙)  and ℘𝑣

𝐼𝐼(𝑡𝑙)  represent the state sequences 

corresponding to the aforementioned observations and HMMs. The corresponding a 

posteriori and a priori probabilities are specified as 

 Ρ(℘𝑠
𝐼(𝑡𝑙)|Ο𝑠

𝐼(𝑡𝑙), 𝛾𝑠
𝐼) , 

 Ρ(℘𝑠
𝐼𝐼(𝑡𝑙)|Ο𝑠

𝐼𝐼(𝑡𝑙), 𝛾𝑠
𝐼𝐼) , 

 Ρ(℘𝑣
𝐼 (𝑡𝑙)|Ο𝑣

𝐼 (𝑡𝑙), 𝛾𝑣
𝐼) , 

 Ρ(℘𝑣
𝐼𝐼(𝑡𝑙)|Ο𝑣

𝐼𝐼(𝑡𝑙), 𝛾𝑣
𝐼𝐼) , 

and 

 Ρ(Ο𝑠
𝐼 (𝑡𝑙),℘𝑠

𝐼(𝑡𝑙)|𝛾𝑠
𝐼) , 

 Ρ(Ο𝑠
𝐼𝐼(𝑡𝑙), ℘𝑠

𝐼𝐼(𝑡𝑙)|𝛾𝑠
𝐼𝐼) , 

 Ρ(Ο𝑣
𝐼 (𝑡𝑙),℘𝑣

𝐼 (𝑡𝑙)|𝛾𝑣
𝐼) , 

 Ρ(Ο𝑣
𝐼𝐼(𝑡𝑙), ℘𝑣

𝐼𝐼(𝑡𝑙)|𝛾𝑣
𝐼𝐼) .  (26) 

Note that 𝛾𝑠
𝐼, 𝛾𝑠

𝐼𝐼, 𝛾𝑣
𝐼, 𝛾𝑣

𝐼𝐼 specify the current parameter sets for the four HMMs, while 𝛾𝑠
𝐼, 

𝛾𝑠
𝐼𝐼, 𝛾𝑣

𝐼, 𝛾𝑣
𝐼𝐼 indicate the re-estimated parameters. By maximizing the auxiliary functions in 

Equation (24), the optimal parameter sets of the four HMMs can be obtained. 

4.4.2 Feature Library Generating 

Four feature libraries need to be generated. One hundred clustered fMRI time series 

(training data set two �̃�), namely �⃗�
𝑡𝑙
  , �⃗�𝑡𝑙+1, … , �⃗�𝑡𝑙+1

, 𝑡𝑙 ∈ 𝜏𝐸  are randomly selected from 
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⋀ and ⋁. The septal and ventral components of  �⃗�
𝑡𝑙
  , �⃗�𝑡𝑙+1, … , �⃗�𝑡𝑙+1

 are used as the input to 

the trained HMMs resulting from Section 4.4.1. The most likely state sequences are thus 

estimated by maximizing the probabilities given the current HMM parameters and the 

observations, which are given by 

 𝜅𝑠
𝐼(𝑡𝑙) = max

℘𝑠
𝐼(𝑡𝑙)

(Ρ(℘𝑠
𝐼(𝑡𝑙)|Ο𝑠

𝐼(𝑡𝑙), 𝛾𝑠
𝐼)), 

 𝜅𝑠
𝐼𝐼(𝑡𝑙) = max

℘𝑠
𝐼𝐼(𝑡𝑙)

(Ρ(℘𝑠
𝐼𝐼(𝑡𝑙)|Ο𝑠

𝐼𝐼(𝑡𝑙), 𝛾𝑠
𝐼𝐼)), 

 𝜅𝑣
𝐼 (𝑡𝑙) = max

℘𝑣
𝐼 (𝑡𝑙)

(Ρ(℘𝑣
𝐼 (𝑡𝑙)|Ο𝑣

𝐼 (𝑡𝑙), 𝛾𝑣
𝐼)), 

 𝜅𝑣
𝐼𝐼(𝑡𝑙) = max

℘𝑣
𝐼𝐼(𝑡𝑙)

(Ρ(℘𝑣
𝐼𝐼(𝑡𝑙)|Ο𝑣

𝐼𝐼(𝑡𝑙), 𝛾𝑣
𝐼𝐼)), 

 𝑙 =  0, 1, . . . , 𝐿 –  1. (27) 

The obtained state sequences according to Equation (27) are stored in the four feature 

libraries. 

4.4.3 DTW-Based Classifier 

By employing Viterbi algorithm, one may estimate the most likely state sequences 

given the HMMs obtained from Section 4.4.1 and the test data. The test data’s septal 

components are used to estimate two most likely state sequences which maximize the 

probability for the HMM 𝛾𝑠
𝐼 (trust Septal data) or the HMM 𝛾𝑠

𝐼𝐼 (non-trust Septal data). It 

yields 

 �̂�𝑠
𝐼(𝑡𝑙) = max

℘𝑠
𝐼(𝑡𝑙)

(Ρ(℘𝑠
𝐼(𝑡𝑙)|Ο𝑠

𝐼(𝑡𝑙), 𝛾𝑠
𝐼)), 

 𝑙 =  0, 1, . . . , 𝐿 –  1, 

 �̂�𝑠
𝐼𝐼(𝑡𝑙) = max

℘𝑠
𝐼𝐼(𝑡𝑙)

(Ρ(℘𝑠
𝐼𝐼(𝑡𝑙)|Ο𝑠

𝐼𝐼(𝑡𝑙), 𝛾𝑠
𝐼𝐼)), 

 𝑙 =  0, 1, . . . , 𝐿 –  1, (28) 
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where �̂�𝑠
𝐼(𝑡𝑙) and �̂�𝑠

𝐼𝐼(𝑡𝑙), 𝑙 =  0, 1, . . . , 𝐿 –  1 denote the most likely state sequences given 

the test data 𝑂𝑠(𝑡𝑙)  ≝  [�̅�𝑡𝑙   , �̅�𝑡𝑙+1, … , �̅�𝑡𝑙+1
] with respect to 𝛾𝑠

𝐼 and 𝛾𝑠
𝐼𝐼. On the other hand, 

the test data’s ventral tegmental components are used to estimate two most likely state 

sequences which maximize the probability for the HMM 𝛾𝑣
𝐼  (trust Ventral data) or the 

HMM 𝛾𝑣
𝐼𝐼 (non-trust Ventral data). It yields 

 𝜅𝑣
𝐼 (𝑡𝑙) = max

℘𝑣
𝐼 (𝑡𝑙)

(Ρ(℘𝑣
𝐼 (𝑡𝑙)|Ο𝑣

𝐼 (𝑡𝑙), 𝛾𝑣
𝐼)), 

 𝑙 =  0, 1, . . . , 𝐿 –  1, 

 𝜅𝑣
𝐼𝐼(𝑡𝑙) = max

℘𝑣
𝐼𝐼(𝑡𝑙)

(Ρ(℘𝑣
𝐼𝐼(𝑡𝑙)|Ο𝑣

𝐼𝐼(𝑡𝑙), 𝛾𝑣
𝐼𝐼)), 

 𝑙 =  0, 1, . . . , 𝐿 –  1. (29) 

Similarly, �̂�𝑣
𝐼 (𝑡𝑙) and �̂�𝑣

𝐼𝐼(𝑡𝑙), 𝑙 =  0, 1, . . . , 𝐿 –  1 denote the most likely state sequences 

given the test data 𝑂𝑣(𝑡𝑙)  ≝  [�̅�𝑡𝑙   , �̅�𝑡𝑙+1, … , �̅�𝑡𝑙+1
] with respect to 𝛾𝑣

𝐼 and 𝛾𝑣
𝐼𝐼. 

It is obvious that the lengths of the estimated state sequences are not necessarily 

equal to the lengths of the stored state sequences in the feature libraries. Thus, the DTW 

algorithm [71, 72] should be employed to compute the minimum distances between an 

estimated state sequence and all the stored state sequences in the corresponding feature 

library. For instance, the trust Septal feature library corresponds to the estimated state 

sequence �̂�𝑠
𝐼(𝑡𝑙), 𝑙 =  0, 1, . . . , 𝐿 –  1. 

Given a state sequence �̂�(𝑡𝑙) ∈ {�̂�𝑠
𝐼(𝑡𝑙), �̂�𝑠

𝐼𝐼(𝑡𝑙), �̂�𝑣
𝐼 (𝑡𝑙), �̂�𝑣

𝐼𝐼(𝑡𝑙)} calculated from the 

test data and an arbitrary state sequence 𝜅(𝑡ℎ) ∈ {𝜅𝑠
𝐼(𝑡ℎ), 𝜅𝑠

𝐼𝐼(𝑡ℎ), 𝜅𝑣
𝐼 (𝑡ℎ), 𝜅𝑣

𝐼𝐼(𝑡ℎ)} 

picked from the corresponding feature library, the minimum distance between them is 

defined as 
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 𝜂(�̂�(𝑡𝑙), 𝜅(𝑡ℎ))  ≝  min (
1

ℒ
∑ 𝑤𝜚

ℒ
𝜚=1 ), (30) 

where 

 �̂�(𝑡𝑙) ≝ [�̂�(𝑡𝑙), �̂�(𝑡𝑙 + 1),… , �̂�(𝑡𝑙+1)],  

 �̂�(𝑡ℎ) ≝ [�̂�(𝑡ℎ), �̂�(𝑡ℎ + 1),… , �̂�(𝑡ℎ+1)]. (31)  

Note that 

 �̂�(𝑡𝑘) ∈ 𝑆, 𝜌(𝑡𝑘) ∈ 𝑆, 

 0 ≤ 𝑘 ≤ 𝐿 − 1. (32) 

Moreover, 

 max(𝑡𝑙+1 − 𝑡𝑙 + 1, 𝑡ℎ+1 − 𝑡ℎ + 1) ≤ ℒ ≤ 𝑡𝑙+1 − 𝑡𝑙 + 𝑡ℎ+1 − 𝑡ℎ + 1 (33)  

and ℒ  is an integer; 𝑤𝜚 , 𝜚 = 1, 2, … , ℒ  arise from a set of entries in the matrix 𝒲 ∈

ℛ(𝑡ℎ+1 − 𝑡ℎ + 1) × (𝑡𝑙+1 − 𝑡𝑙 + 1) which is defined as  

𝒲 ≝

[
 
 
 
 √�̂�2(𝑡𝑙) − �̂�2(𝑡ℎ) √�̂�2(𝑡𝑙 + 1) − �̂�2(𝑡ℎ)

√�̂�2(𝑡𝑙) − �̂�2(𝑡ℎ + 1) √�̂�2(𝑡𝑙 + 1) − �̂�2(𝑡ℎ + 1)

⋯ √�̂�2(𝑡𝑙+1) − �̂�2(𝑡ℎ)

⋯ √�̂�2(𝑡𝑙+1) − �̂�2(𝑡ℎ + 1)

⋮ ⋮

√�̂�2(𝑡𝑙) − �̂�2(𝑡ℎ+1) √�̂�2(𝑡𝑙 + 1) − �̂�2(𝑡ℎ+1)

⋱ ⋮

… √�̂�2(𝑡𝑙+1) − �̂�2(𝑡ℎ+1) ]
 
 
 
 

. 

(31) 

 

Note that 𝑤𝜚 is selected from 𝒲 according to specific criteria (see [43]). Since four kinds 

of minimum distances are computed with respect to trust Septal data, trust Ventral data, 

non-trust Septal data, and non-trust Ventral data, the average of the former two distances 

is undertaken and compared to the average of the latter two distances. Then, the test data 

is classified as either trust or non-trust data subject to the minimum between these two 

averages. 
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5. Experimental Results and Discussion 

5.1 Preliminary Analysis of Hidden Markov Model 

To evaluate our proposed new technique, experiments based on real fMRI data are 

employed to test its effectiveness. The parameters adopted in this experiment are stated as 

follows. All fMRI data used in our experiments were recorded from the first player (see 

Figure 6). 

Four-dimensional volume time series were acquired by resampling the functional 

time series data of the first player. The cubic voxel used in re-sampling is 3 × 3 × 3 mm3. 

The coordinates for septal and ventral tegmental areas (each area corresponds to a voxel) 

in Talairach space are (6, 11, 4) and (0, −10, −10), respectively. For all games, 286 volume 

images per game were recorded. Players made nine decisions (either trust or non-trust) in 

each game. Consequently, there were totally 729 detected events which have been recorded 

(88 players and 9 decisions for each player). Subject to the decision-making time instance, 

the aforementioned images were approximately equally divided into three data subsets, say 

𝒟𝐼, 𝒟𝐼𝐼, and 𝒟𝐼𝐼𝐼. Using the multifold cross-validation technique [73], one among these 

three data sets was used as the test data in turn while the other two data sets were used as 

the training data. For example, when 𝒟𝐼 was employed as the test data, 𝒟𝐼𝐼 and 𝒟𝐼𝐼𝐼 were 

used as the training data set one and the training data set two, respectively (labeled as 

“fMRI training data1” and “fMRI training data2” in Figure 16). 

Different numbers of states 𝑁 in the HMMs (5, 10, 15, 20, 25, 30) were also investigated 

in these experiments. Figure 17 illustrates the classification accuracies for these three 

groups of data (𝒟𝐼, 𝒟𝐼𝐼, and 𝒟𝐼𝐼𝐼). In Figure 18, 𝒟𝐼 was clustered using different numbers 

of clusters (10, 15, and 20). Each class of clustered times series were employed as the input 
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of the classifier. The classification accuracy measure ℏ used to generate Figure 17 and 

Figure 18 is defined as ℏ ≝ Γ𝑐
Γ

, where Γ𝑐 is the number of times when the player’s decision 

is correctly predicted using the fMRI data. Γ  is the total number of detected events 

(decisions). For each data subset 𝒟𝐼, 𝒟𝐼𝐼 and 𝒟𝐼𝐼𝐼, we have Γ = 240. 

5.2 Classification Results for Speech Data in Comparison 

For comparison, audio data files obtained from an open-source class project by 

Professor Lawrence Rabiner’s Digital Signal Processing short course in Summer 2008 (see 

[74]) were classified using linear classification, SVM and HMM. Of these audio files, 43 

contained various male or female voices speaking the number “one” while 46 of the files 

Figure 17. Classification accuracy with respect to the number of states 𝑵 

in HMMs. Three randomly chosen groups of data (𝓓𝑰, 𝓓𝑰𝑰, and 𝓓𝑰𝑰𝑰) are 

employed in  this experiment. 
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contained various male or female voices speaking the number “two”. These files were 

combined in sequence. The signals had previously been sampled to the minimum sound 

period and formatted for MATLAB (© 1994-2013 The MathWorks, Inc.). The files were 

pre-processed to remove the effects of bias and scaled to reduce inter-subject variations in 

amplitude. 

For classification, the audio dataset was trained and tested with each of the 

aforementioned classification methods using the leave-one-out and leave-half-out cross-

validation techniques. To calculate the classification rate, the number of correct 

classifications was divided by the total number of classifications. For the leave-one-out 

Figure 18. Classification accuracy with respect to the number of states 𝑵 

in HMMs. The test data 𝓓𝑰 are clustered using different 𝑲 values when  

the K-means method is implemented. 
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cross-validation method, the linear classifier and the SVM classified the data into the 

correct group (trust or non-trust) 92.13% and 97.75% of the time while the HMM model 

classified the data correctly 92.13% of the time. This exceptional performance by the SVM 

with leave-one-out may be attributed to the setup of the dataset and the nature of SVMs. 

Given the setup of the dataset, the classification rates with the leave-half-out technique was 

much lower, as expected, at 64.30% for the linear classifier, 65.32% for the SVM and 

65.91% for the HMM. Detailed results are provided in Figure 19. 

 

Figure 19. Classification rates with sample speech dataset using leave-one-out and leave-

half-out cross-validation techniques for various classification methods including linear 

classifier, SVM and HMM. 
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5.3 Classification Results for fMRI Data in Comparison 

During feature extraction, prior to extracting ROI-specific time series, for each subject, 

the mean was subtracted from the raw data to reduce the effects of any bias introduced and 

the mean-removed data was further divided by the standard deviation to reduce inter-

subject variations in amplitude. Following pre-processing, the fMRI dataset was trained 

and tested with each method using the leave-one-out and leave-half-out cross-validation 

techniques for each of the four ROIs, i.e. PcC, SA, VTA, striatum, SA and VTA combined, 

and all ROIs. The classification rates for each cross-validation technique and method 

(linear classifier, SVM, and HMM) separated by ROI are listed in detail in Figure 20 and 

Figure 21 with corresponding tables. 

With the leave-one-out technique, a basic linear classifier yielded a classification rate 

between 56% and 61% for individual ROIs and more than 65% for combined ROIs. The 

SVM classifier yielded results slightly better than the linear classifier ranging between 63% 

and 66%. The SVM classification results for combined ROIs were not obtained due to 

ambiguous errors. However, the HMM algorithm consistently achieved a classification rate 

of about 84% for each ROI individually and combined ROIs.  

In contrast, the linear classifier yielded classification rates between 66% and 73% for 

individual ROIs with the leave-half-out technique. Again, the SVM classifier yielded 

results slightly better than the linear classifier with classification rates ranging between 

67% and 77%. Accordingly, the classification rates for HMM were greater than those of 

the linear classifier and SVM, but the rates slightly decreased from the leave-one-out 

technique with individual ROIs (82% to 83%) and slightly increased with an increasing 

number of ROIs (85% to 86%). 
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Figure 20. Classification rates for the fMRI dataset from the voluntary reciprocal trust 

experiment using the leave-one-out cross-validation technique with various classification 

methods including linear classifier, SVM (with RBF kernels and SMO method) and HMM. 
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Figure 21. Classification rates for the fMRI dataset from the voluntary reciprocal trust 

experiment using the leave-half-out cross-validation technique with various classification 

methods including linear classifier, SVM (with RBF kernels and SMO method) and HMM. 
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6. Conclusion 

This dissertation research investigates the off-line psychological analysis related to 

voluntary reciprocal trust games using fMRI time series. The Talairach coordinates for the 

paracingulate cortex, septal area, ventral tegmental area and striatum in the brain are 

specified to be associated with human’s trust behaviors and mentalizing. Hidden Markov 

models are proposed and compared to other advanced signal processing techniques 

including linear classification, SVM (with both polynomial and RBF kernels and both 

SMO and QP methods) to train the fMRI data acquired from these brain regions and extract 

the essential features for the trust/non-trust prediction. In comparison, the experimental 

results demonstrate that the HMMs can be adopted as a better paradigm to predict the 

psychological trust activities reflected by the neural responses recorded by fMRI. 

Additionally, extracting the specific decision period and clustering the continuous time 

series proved to increase the classification accuracy by almost 20%. 

For further investigation, it would be interesting to use the information about partners 

to explore the data more in depth especially within the building and maintenance stages. 

Also, although a similar spatiotemporal response pattern is observed across ROIs, a 

comparison of additional Talaraich coordinates within the ROIs may yield a different 

result. After brief exploration, it may be beneficial to investigate the cost-benefit of the 

leave-half-out cross-validation technique in comparison to the leave-one-out method in that 

it may save computational time but in the tradeoff of classification rate. A step in another 

direction may be to observe the classification rates for different tasks and types of 

acquisition methods. For technology transfer, in the case of a non-invasive measure of 

motor skills, it may be applied in prosthetics.
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