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Abstract 

In this thesis, a novel analysis framework is presented in order to automate testing response of an 

image-feature descriptor algorithm for face recognition under different illumination conditions and 

white balance calibration over intra- and inter-color space. The method initially analyzes the robustness 

of keypoints that will be used to form image features. This analysis is conducted by exploring 

sensitivity of each channel of a color space against variation in illumination, white balance, and the 

both. In the second part, a robustness analysis is performed for the image features utilizing principal 

component analysis. Finally, we explore sensitivity of hybrid channels. The SIFT image descriptor is 

used in our experiments. The experimental results on the OPFD database show that our analysis 

framework finds the least sensitive channel of a color space for recognizing a face under unknown 

illumination, unknown white balance, and the both unknown illumination and white balance 

conditions. The results also show the combination of channels in a color space which are best suited 

face recognition. 
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Chapter 1 : Introduction and Motivation 

1.1 Introduction 

Face recognition is one of the primary research areas in image analysis and has applications not limited 

to the field of public security, military, personal mobile devices. The research on face recognition has 

made significant progress in recent years with a number of emerging accurate face recognition 

algorithms [1]. Despite the advancement in face recognition algorithms, many issues are yet to be 

addressed.  There are challenges in face recognition when conditions like illumination, pose, and 

expression vary. We narrow down our scope in this research to explore the effect of illumination 

variation on detection of keypoints and image descriptors for face recognition. 

1.2 Problem Statement 

Practical applications for illumination invariant face recognition systems can be ranging from mobile 

phones to security cameras. For instance, if a law enforcement agency is trying to track a person 

travelling from one airport to another, how can they recognize the facial images of a person from the 

surveillance camera footages of two airports, taken during different times of the day? There is constant 

need for illumination invariant face recognition systems in real world. 

1.3 Motivation and Objectives 

In this thesis, we aim to present implementation results of the framework proposed to test robustness 

of color-space channels under varying illumination and white balance conditions for face recognition. 

The objectives of this thesis are 

1. Automation of sensitivity-testing of an image-feature descriptor, 

2. Measuring sensitivity of hybrid color spaces 
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We analyzed the robustness of keypoints and features of an image descriptor under different 

illumination and white balance conditions for three color spaces. The method of analysis is organized 

into three sections. First, the analysis is conducted for exploring the robustness of the keypoints. 

Secondly, we analyze the robustness of features. And, finally we propose the method of analyzing the 

salient keypoints in combination of color channels. 

The robustness analysis of the keypoints and features rendered by an image descriptor are conducted 

to explore the stability of each channel of a color space against varying illumination, white balance, 

and the both together. For each varying condition, stability at local, global and most global perspectives 

are analyzed. The robustness of image features are analyzed using principal component analysis by 

examining the redundancy in feature dimensions. 

The salient keypoints between two channels are analyzed by a ranking method which rates the degree 

of matching keypoints in a combination of channels. We utilized the proposed framework to test the 

SIFT image descriptor algorithm over the face images. The results are analyzed to find the stability of 

each channel in a color space. The images from the OPFD database show the performance of our 

framework. The results present the least sensitive channel in a color space for recognizing the face in 

unknown illumination conditions, unknown white balance conditions and both unknown illumination 

and white balance conditions. The combination of channels in a color space best suited for face 

recognition are also shown in our results. The algorithms presented in this thesis are proposed by Dr. 

Omer M. Soysal. 
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Chapter 2 : Related Work 

Human face is one of the most complex three-dimensional structure due to its non-rigidity. The facial 

appearance is affected by many factors like illumination, pose, expression, age, occlusions and facial 

hair. The numerous face recognition algorithms are striving to deal with all these challenges. We will 

focus on the previous studies relating to illumination effects for face recognition. 

The change in illumination variation has very complex effects on the image of an object. The effect of 

illumination on face has been studied by early psychobiologists [2]. They have observed that change 

in the direction of illumination on a familiar face leads to shifts in the location and shape of shadows, 

highlights and reversal of contrast gradients. The study emphasized that face recognitions is 

illumination dependent and the face recognition systems are sensitive to either direction of lighting or 

resultant pattern of shading [2]. A report of Face Recognition Vendor Test (FRVT 2006) [3] shows 

that varying illumination will greatly affect the performance of face recognition. 

Many methods have been proposed to deal with the illumination variation problem, which can be 

roughly classified into three categories [4].  

1. Illumination normalization, which use image processing techniques, such as histogram 

equalization (HE), Gamma correction, and homomorphic filtering [5], to normalize human face 

image in order to obtain face image’s stability under illumination changes. However, these 

methods have limited success in handling arbitrary illumination changes.  

2. Extraction illumination invariant, which attempts to extract robust facial features insensitive to 

illumination variations, such as Edge maps, Gabor-like filters methods, quotient image, 

Gradientfaces[4]. These methods are known to achieve good results. 

3. Face modeling method, try to construct a generative 3-D face model that can be used to render 

face images with different poses and under varying illumination. 
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Further, [8] discusses method to restore a face image captured under arbitrary lighting conditions to 

one with frontal illumination by using a ratio-image between the face image and a reference face image. 

This study did not need to estimate the face surface normals and the light source directions and 

eliminates the need for many images captured under different lighting conditions for each person. 

Using color information in face recognition has been studied in [7]. It was shown in [7] that color 

information was helpful in improving the recognition and explored the discriminating power of 

different color spaces to perform reliable classification. 

To our knowledge, an extensive analysis on illumination and white balance conditions on facial images 

has not yet been rigorously investigated. Also, there hasn’t been a lot of study in exploring the effect 

of face recognition with a hybrid color channels in a color space and across color spaces. In this thesis, 

we carry out an extensive systematic analysis to explore the response of an image-feature descriptor 

for face recognition under effect of illumination, white balance and both illumination and white balance 

on frontal pose facial images. We automate the testing of the sensitivity for an image-feature descriptor. 

We also study the hybrid channels by examining the saliency of image-features between two channels 

of the same and different color spaces. 
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Chapter 3 : Background 

3.1 Overview 

In this chapter, we wish to convey brief information about some of the essential concepts used in this 

thesis. We will discuss the following concepts: 

1. White balance 

2. Scale Invariant Feature Transform 

3. Principal Component Analysis 

4. Color Spaces 

3.2 White Balance 

The various sources of light produce light differently. Ideally, we expect the white light to contain an 

uniform distribution across the visible spectrum. But the light which appears white does not usually 

contain even distribution of colors [6]. Our eyes are quick to compensate for the change in lighting 

conditions, like moving from indoor room to bright sunlight. The cameras, on the other hand, produce 

some unrealistic color casts [6]. In order to eliminate these artificial casts and get good image, we need 

to set the white balance of the camera to match the source temperature. Figure 3.1 shows two images, 

one with a blue color cast and the other with the color cast eliminated using the right white balance 

calibration settings for the camera. The objective of white balance is to calibrate the white balance 

settings of the camera to make white objects look white. Digital cameras usually have automatic white 

balance estimation to correct color casts. But, most camera manufacturers provide options for setting 

the white balance of the camera manually by setting the color temperature.  

Color temperature, perceptually, is the warmness or coolness of the source light. Candle light, sunset 

are typical examples of the warm or reddish light and clear skies is an example of cool or bluish light. 
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Figure 3.1: Camera compensating for color casts [6] 

In digital cameras, we can set the white balance of the camera by using the K or the Kelvin setting. 

This setting allows the user to input the color temperature of the image to be captured. Setting the color 

temperature precisely will produce an image without any color casts. In this work, it is important for 

us to understand the importance of color temperature and white balance. We will see the use of the 

terms color temperature, white balance and illumination in Section 5.3 while describing the creation 

of the database. 

3.3 Scale Invariant Feature Transform (SIFT) 

Image matching has become one of the most rudimentary parts of computer vision. The process of 

extracting invariant features is often sought as the quintessential aspect in recent research to facilitate 

image matching. The method for extracting distinctive image features through SIFT was proposed by 

David Lowe [9]. The features in this method are invariant to change in image scaling and rotation, 

partially invariant to change in illumination and 3D camera viewpoint [9]. The ability of SIFT features 

being highly distinctive has  

3.3.1 Overview of finding the Scale Invariant Features 

The steps in finding the SIFT features are as shown in Figure 3.2. We will now skim through each 

stage of the SIFT algorithm as described in [9]. 
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(a) Creating a scale space and finding the scale space extrema: The process of progressively generating 

blurred out images results in a scale space. The locations invariant to scale change can be 

accomplished by searching for stable features across all possible scales [9]. The locations and 

scales are then repeatedly assigned to differing views of the same object. For instance, we first 

progressively generate blurred out images from the original image, then create scale space to resize 

the original image to 50% of its size and generate another set of progressively blurred images for 

the resized image. This process is repeated to create successive octaves of scale space. [9] suggests 

the use of four octaves and five blur levels for ideal performance of the SIFT.  

 

Figure 3.2: Steps in finding features of SIFT features 

The function describing the scale space of an image 𝐿(𝑥, 𝑦, 𝜎) is defined as the convolution of two 

elements. It can be written as 

 𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) 
(3.1) 

 

Where 𝐼(𝑥, 𝑦) is the image with the location coordinates as x and y and 𝐺(𝑥, 𝑦, 𝜎) is the variable 

scale Gaussian defined as 

Features for 
further use 
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 𝐺(𝑥, 𝑦, 𝜎) =  
1

2𝜋𝜎2
𝑒

−(𝑥2+𝑦2)
2𝜎2  

(3.2) 

 

[9] showed that the difference of Gaussian function provides a close approximation to the 

normalization of the Laplacian, 𝜎2∇2𝐺, with the factor 𝜎2 required for true scale invariance. The 

Laplacian of Gaussian is computationally intensive and sensitive to noise too. Hence difference of 

Gaussian is used as an approximation for Laplacian of Gaussian. The process of obtaining 

difference of Gaussian for several scales is shown in Figure 3.3. 

 

Figure 3.3: Finding the Difference of Gaussian from the scale spaces [9] 

[16] showed that maxima and the minima of 𝜎2∇2𝐺 produce the most stable image features 

compared to the other image functions. The maxima and minima are initially located in an image 

by iterating through each pixel and comparing it with all its neighbors and also with the same image 

in upper and lower scale spaces. After locating the gross maxima or minima, the sub-pixel maxima 

or minima is found mathematically by solving for the Taylor series as shown in [17]. 

 
𝐷(𝑥) = 𝐷 +  

𝜕𝐷𝑇

𝜕𝑥
+ 

1

2
 𝑥𝑇

𝜕2𝐷

𝜕𝑥2
𝑥 (3.3) 
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(b) Filtering the edge and low contrast points: Finding the sub-pixel maxima or minima generates a lot 

of keypoints even along the edges and in the regions of low contrast. These keypoints cannot be 

rendered useful and are eliminated. The magnitude of intensity at each candidate point in 𝐿(𝑥, 𝑦, 𝜎) 

is compared against a threshold, which sets the bound for low contrast, noise susceptible keypoints. 

If the keypoint is below the threshold, it is eliminated. For edges, the poor peaks points depicting 

the difference of Gaussian function can be evaluated using their principal curvatures. [6] borrows 

the concept of finding edge responses from [18] who introduced finding of gradients to estimate a 

corner, edge and a flat region. An unsuitable keypoint will have a large principal curvature along 

the edge and a smaller value in the perpendicular direction. The ratio of both these principal 

curvatures serves as the threshold to eliminate poor edges. If the ratio is high then the principal 

curvature perpendicular to the edge is larger than the principal curvature along the edge. If that 

ratio for a keypoint is below the threshold, then it is retained, else eliminated. 

(c) Assigning keypoints with orientation: Assignment of orientation makes the keypoints invariant 

against rotation. The local image gradient directions and magnitudes around each keypoint are 

collected and the direction of gradient for a certain keypoint is assigned to be the most prominent 

orientations in that region. 

(d) Generating the SIFT features: After the assignment of keypoint orientation, a 16 × 16 window is 

created around the keypoint. The window is further disintegrated into sixteen 4 × 4 windows and 

local gradients magnitudes and orientations are computed and stored in an eight bin histogram. The 

amounts added to the bin are not only dependent on the magnitude of the gradient, but also 

dependent on the distance from the keypoint computed using weighted Gaussian function. The end 

result for 16 pixels will be 16 random orientations in eight predetermined bins. The feature vector 

for each keypoint will be the product of 4 × 4 array of histograms × 8 bins resulting in 128 

dimension vector. 
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We will use A.Vedaldi [19] implementation of SIFT in Chapter 4. This implementation produces 

keypoints and descriptors as similar to [9]. 

3.4 Principal Component Analysis (PCA) 

Principal Component Analysis is the way of identifying patterns of data to find the similarities and 

differences. The objective of PCA is to reduce dimensionality by extracting the smallest number of 

components that represent most variation [10]. PCA summarizes the variation in a correlated multi-

attribute to a set of uncorrelated components, each of which is a particular linear combination of the 

original variables. The extracted uncorrelated components are called principal components. These are 

estimated from the eigenvectors of the covariance or the correlation matrix of the original variables. 

PCA is commonly used to represent data in high dimensional space where graphical representation of 

data is not feasible. PCA also facilitates in compressing of high dimensional data into a lower 

dimensional space with minimum loss in information [10]. The application of PCA is widespread in 

computer vision and image processing. Image reconstruction and image compression are some of the 

applications in image processing. 

3.4.1 PCA Terminology 

In our work, eigenvalues play an important role in carrying out analysis on the SIFT features. Here we 

illustrate more about eigenvalues and eigenvectors from the perspective of PCA [10]. 

1. Eigenvalues: Measure the amount of variation given by each principal component. These will 

be the largest for the first principal component which indicates a lot of variation in the data 

points projected on it. Subsequent principal components will have lesser eigenvalues. 

2. Eigenvectors: These values provide the weights to compute the uncorrelated principal 

components. They are linear combination of center standardized or center non standardized 

original variables. 
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3.5 Color Spaces 

Light is reduced to three color components by the eye. These values are called tristimulus values [11]. 

The set of all possible tristimulus values determines the human color space. It is estimated that humans 

can distinguish around 10 million colors (See Figure 3.4). 

 

Figure 3.4: Color components as perceived by human retina [11] 

The mechanisms of color vision within the retina are explained well in terms of tristimulus values. A 

dominant theory says that color is sent out of the eye in three opponent channels: a red-green channel, 

a blue-yellow channel and a black-white "luminance" channel. These channels are constructed from 

the tristimulus values. 

Colors consisting of a single wavelength are called pure spectral or monochromatic colors. Most light 

sources are mixtures of various wavelengths of light. If they produce a similar stimulus in the eye, a 

non-monochromatic light source can be perceived as a monochromatic light. For a non-monochromatic 

light source there exists a dominant wavelength (or color) which identifies the single wavelength of 

light that produces the most similar sensation [11]. There are many color perceptions that cannot be 

identified by pure spectral colors, such as pink, tan, magenta, achromatic colors (black, gray, white). 

Two different light spectra that have the same effect on the three color receptors will be perceived as 
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the same color. Most human color perceptions can be generated by a mixture of three colors, called 

primaries. This is used to reproduce color in photography, printing, TV, etc. 

The purpose of the color space is to retain the intricacies of an image such as shadow and lighting when 

an image is reproduced in another device other than the one with which the image was captured. For 

instance, the amount of color information compromised when an image is printed on the printer which 

clips the colors outside its color space. Figure 3.5 represents the color space conversions. 

 

Figure 3.5: Color space conversion [12] 

Each direction in a color space represents aspect of the color, such as lightness, saturation or hue, 

depending on the type of color space. A color gamut represents the most extreme colors which are 

reproducable within a particular color space [12]. 

3.5.1 Types of Color Space 

There are three types of color spaces [12]: 

a. Device dependent spaces: These color spaces can express color relative to some other 

reference space. It can define the subset of colors which can be displayed or captured 

on a particular device. 

b. Device independent spaces: These color spaces express color in terms of absolute 

terms. These are mostly useful in comparing the devices. 

c. Working spaces: These color spaces are usually confined to image editing programs 

and file formats. These follow a defined color palette. 
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We use three color spaces in our work. 

1. RGB 

2. YCbCr  

3. HSV 

3.5.1.1 RGB color space 

The colors in this color space are obtained by the additive combination of three primary chromaticities. 

The primary chromaticities are red, green and blue. The three primary chromaticities can be visualized 

as shown in Figure 3.6 when they are mapped onto a 3-D Cartesian coordinate system. The RGB color 

space can be either device dependent or independent. 

 

Figure 3.6: Visualization of the RGB color space on a 3-D Cartesian coordinate system [12] 

 

3.5.1.2 YCbCr color space 

This is a part of the family of color spaces used in the color image pipeline in video and digital 

photography systems. The Y represents the luminance information and the chrominance information 

is stored as Cb and Cr which are the blue difference and the red difference chroma components 

respectively.  
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Figure 3.7: The components of YCbCr color space. (a) Original image (b) Y component (c) Cb 

component (d) Cr component [13] 

YCbCr is a device dependent color space. An example of the original image and the Y, Cb and Cr 

components are shown in Figure 3.7. 

3.5.1.3 HSV color space 

HSV as shown in Figure 3.8 is one of the cylindrical coordinate representations of the RGB color 

model. This color space is said to be the most intuitive and perceptually relevant. It is often used by 

artists.  

 

Figure 3.8: The HSV color space 

The ‘H’ in the HSV represents the hue which is often referred to as the attribute of visual sensation 

and is used to definitively name a color such as ‘blue’ or ‘red’.  The ‘V’ in the HSV represents the 

value, which can be described as the lightness attribute of color. The value represents any color 

equivalent to some shade of gray between black and white. Saturation is a measure of how different a 

color appears from a gray of the same lightness. Saturation can be defined as the ratio of colorfulness 

to brightness.   

(a) (b) (c) (d) 
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Chapter 4 : Method 

4.1 Overview 

In this chapter we will discuss our method of implementation and also the intuition behind each 

experiment. There are four primary experiments done on the keypoints and features. All these 

experiments are based on a set of rationale which will provide the foundation to design a face 

recognition system under varying illumination and white balance conditions. Following are the set of 

four rationales on which we model our experiments: 

1. If we know the white balance condition of the camera from which an image was captured, and 

we do not know the illumination condition, then which color channel in a color space can we 

use for face recognition? For example: Let’s say that we know the white balance settings of 

two cameras and we want to recognize if two facial images from these cameras correspond to 

the same person. We do not have any information about the time during which the image was 

captured and hence the illumination conditions. We can apply our analysis to find an 

appropriate channel which is best suited for recognizing the face in unknown illumination 

conditions. 

2. If we know the illumination condition of a certain image, but we do not know the white balance 

condition of the camera used to capture the image, then which color channel in a color space 

can we use for face recognition? For example: If we have two images of a person captured at 

almost the same time of a day from two different cameras, and  let us say that we know the 

illumination condition from the time of the day, but we do not have information about the type 

of camera and its white balance settings. If we want to recognize the person’s face in this 

situation, we can apply our analysis to find a channel in the color space which is best suited for 

recognizing the face. 
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3. If we have no information about the white balance and illumination conditions of an image, 

then which color channel can we use for face recognition? 

4. Which combination of channels in a color space is best suited for face recognition. 

We will compare our results of all these four experiments with classification. 

The following four terminologies will be referred frequently in this chapter. 

1. Object: The person in an image is referred as an object. There are 16 images for each object 

and there are 35 objects. 

2. White Balance: The preset white balance of the camera used as given by the specifications of 

the database. 

3. Illumination condition: The set illumination condition for a certain image as given by the 

specifications of the database. 

4. Channel: A certain channel which is a subset of a color space. 

4.2 Keypoint Based Robustness Analysis 

In this section we present the keypoint based stability analysis framework. As mentioned earlier, we 

use SIFT to obtain the number of keypoints for each image. The SIFT output for the each keypoint 

gives us the (x, y) location coordinates, scale and rotation quadruplets. For each image there will be 

several keypoints as detected by SIFT. The total count of the number of quadruplets is the number of 

keypoints in an image. This count will be used repeatedly throughout the following three experiments. 

4.2.1 Effect of Illumination 

In this experiment, we study the effect of change in illumination on the keypoint detection keeping the 

white balance of the image constant. Let c represents the channel, w represents the white balance, o 

represents the object and i represents the illumination condition; the total effect of channel, white 

balance, object and illumination can be represented by the variable 𝑁(𝑐,𝑤,𝑜,𝑖) as: 
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 𝑁(𝑐,𝑤,𝑜,𝑖) =  𝑁(𝑐,𝑤,𝑜) + ∈(𝑐,𝑤,𝑜,𝑖) (4.1) 

   

 
𝑁(𝑐,𝑤,𝑜) =

∑ 𝑁(𝑐,𝑤,𝑜,𝑖)
𝑁I
𝑖=1

𝑁I

 
(4.2) 

where 𝑁(𝑐,𝑤,𝑜) reflects the effect of facial structure and ∈(𝑐,𝑤,𝑜,𝑖) represents the effect of illumination 

on the number of keypoints given a channel and white balance. In this experiment we utilize ∈(𝑐,𝑤,𝑜,𝑖) 

to observe the effect of illumination. 

Table 4.1 shows an example for an object in the H white balance condition. The illumination is changed 

from H through D and 𝑁(𝑐,𝑤,𝑜,𝑖) is the number of keypoints as detected by SIFT. The average of detected 

number of keypoints under all the illumination conditions is represented by 𝑁(𝑐,𝑤,𝑜). The value of 

𝑁(𝑐,𝑤,𝑜) in this example is computed to be 101. We are interested in exploring ∈(𝑐,𝑤,𝑜,𝑖) which represents 

the effect of illumination alone. Figure 4.1 elucidates the example shown in Table 4.1. Notice that 

𝑁(𝑐,𝑤,𝑜,𝑖) reflects the total effect of channel, white balance, object and illumination. We are primarily 

interested in ∈(𝑐,𝑤,𝑜,𝑖) to experiment the effect of illumination.  

Table 4.1: Effect of illumination on keypoint detection 

Channel WB OBJ ILLUM

R H 1 H 100 101

R H 1 A 110 101

R H 1 T 90 101

R H 1 D 105 101

𝑁(𝑐,𝑤,𝑜,𝑖) 𝑁(𝑐,𝑤,𝑜)

 

Let 𝑁I represent the number of illumination conditions; the value of 𝑁I is four in our experiments. The 

Intra-object Stability Index, 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) of the variable 𝑁(𝑐,𝑤,𝑜,𝑖) that varies due to the illumination i, 

for a channel c, white balance condition w, and object o can be represented as: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) = 𝑆𝑇𝐷{𝑁(𝑐,𝑤,𝑜,𝑖)} =  √
1

𝑁I − 1
 ∑(𝑁(𝑐,𝑤,𝑜,𝑖) − 𝑁(𝑐,𝑤,𝑜))

2

𝑁I

𝑖=1

 

(4.3) 
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Figure 4.1: Illustration of number of keypoints and the effect of illumination 

The equation (4.3) can be rewritten after substituting the value of 𝑁I as follows: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) =  √
1

3
 ∑(∈(𝑐,𝑤,𝑜,𝑖))

2
4

𝑖=1

 

(4.4) 

 

The equation (4.4) measures the effect of illumination change. Exploring variation in 𝑁(𝑐,𝑤,𝑜,𝑖) will 

show us the effect of illumination change on the number of keypoints detected when the white balance 

is kept constant. By analyzing the variation in 𝑁(𝑐,𝑤,𝑜,𝑖) for each channel, we can find the most robust 

channel in a color space. 

In the sequel, we present our framework to analyze effect of illumination on the keypoint detection. 

The analysis will be conducted on 3 stages: 1) Analysis of intra-object variation by measuring the 

effect of the illumination for a facial structure given a channel and a white balance, 2) Analysis of 

inter-object variation by the inter-object stability index (IOSI) as described below, 3) Overall analysis 

by means of the overall stability index (OSI) as given below. At the stage 2, we can decide which color 

channel to use for detection of keypoints for a specific type of camera system whose white balance 
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calibration is known. The stage 3 leads us to the most suited channel for the cases where the white 

balance calibration is not known. Figure 4.2 illustrates the proposed analysis stages of the framework. 

 

Figure 4.2: Framework for exploring the stability of keypoints against illumination for intra-object 

and inter-object variations 

4.2.1.1 The algorithm to measure the effect of illumination variation 

1. Set the color space to, say, RGB, YCbCr and HSV. 

2. For a single channel, set the white balance of the input image from the database to one of H 

(2300K), A (2856K), T (4000-5000K) or D (6500K). 

3. Obtain the input image from the database with the illumination condition set to one of H 

(2300K), A (2856K), T (4000-5000K) and D (6500K). 

4. Apply the keypoint detector to the image rendered by each channel of the same object captured 

under a set white balance and illumination condition. 

Obj1 

R 

H A T D 

H A T D             

            

      IOSI(R,H)                               

 

Obj N 

R 

H 

OSI(R) 

Objects 
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Illumination 
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IaOSI(R,H,1) 

 
IaOSI(R,A,1) 

 
IaOSI(R,T,1) 

 
IaOSI(R,D,1) 

 

                  IOSI(R,T)                         

                   IOSI(R,D)                         

Stage 1 

Stage 2 

Stage 3 

                    IOSI(R,A)                            
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5. Repeat step 4 for all the four illumination conditions and obtain the detected keypoints. For 

each object calculate the standard deviation of the number of keypoints under the four 

illumination conditions keeping white balance and channel constant. 

6. Repeat steps 2 – 5 for all the objects. 

7. The inter-object stability index 𝐼𝑂𝑆𝐼(𝑐,𝑤) is computed as average standard deviation of all 

objects in a certain color channel and white balance condition. 

 
𝐼𝑂𝑆𝐼(𝑐,𝑤) =  

∑ 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜)
𝑁𝑂
𝑜=1

𝑁𝑂

 
(4.5) 

where 𝑁𝑂 is the number of objects and 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) is the intra-object stability index for each 

object under four illumination conditions defined above. 

8. Repeat step 7 for all the channels in the color space. 

9. Tabulate the results for further analysis. 

10.  Repeat steps 1 – 9 for all the color spaces. 

We can compare the stability of a channel under varying illuminations for different white balance 

conditions by observing the inter-object stability indices .If the inter-object stability index varies little 

from one white balance to the other, we can say that illumination change does not significantly affect 

the detection of keypoints for a particular channel. Also, we can say that the keypoints rendered by the 

channel are more stable across variation in illumination.  

We can analyze the stability of a channel across the white balance conditions by finding the variation 

in the stability index 𝐼𝑂𝑆𝐼(𝑐,𝑤) for the four white balance conditions. The overall stability index for 

illumination change (OSII) of a channel c is given by: 

 
𝑂𝑆𝐼𝐼𝑐  ≜ 𝑆𝑇𝐷{𝐼𝑂𝑆𝐼(𝑐,𝑤)} =   

∑ (𝐼𝑂𝑆𝐼(𝑐,𝑤) − 𝐼𝑂𝑆𝐼𝑐
̅̅ ̅̅ ̅̅ ̅)𝑤

2

𝑁W − 1
 

(4.6) 
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The overall stability index across white balance conditions leads us to the channel which is the least 

sensitive to illumination variation irrespective of the white balance conditions. Figure 4.2 is a 

representation of the process of computing inter-object stability index and the overall stability index 

across white balance conditions for the red channel. 

At stage 1, we explore the effect of illumination by equation (4.3) for each object under a fixed white 

balance condition for the red channel. At stage 2, we explore the inter-object stability index of all 

objects under a white balance condition as in equation (4.5). Comparing the inter-object stability 

indices from different white balance conditions in Stage 2 can show the effect of illumination variation 

from one white balance to another. At this stage we can analyze the effect of image structures under 

different white balance conditions to illumination variation. At stage 3, we can analyze the overall 

sensitivity of a particular channel to the variation in illumination considering all the white balance 

conditions as in equation (4.6). This stage shows us the overall stability of each channel to illumination 

variation. Hence, we will be comment on the most stable channel under illumination variation in a 

color space. 

We look at the effect of illumination from a comparatively global perspective by analyzing the inter-

object variation grouped according to the white balance conditions.  

For a channel c and a white balance w condition, the normalized total number channel 𝑁𝑇(𝑐,𝑤) 

keypoints, is computed as follows: 

 𝑁𝑇(𝑐,𝑤)  ≜  
∑ 𝑁(𝑜,𝑖)

𝑁I 𝑁O

 
(4.7) 

where 𝑁(𝑜,𝑖) is the total of number of keypoints for all objects and illuminations for a particular white 

balance condition. The normalization factors in the denominator represent the number of illumination 

conditions 𝑁I and the number of objects 𝑁O. The overall standard deviation and normalized total will 
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be used in 6.1 to compare the different results to analyze the performance of various channels in a color 

space. 

4.2.2 Effect of White Balance 

In this experiment, we study the effect of change in white balance on the keypoint detection keeping 

the illumination of the image constant. Let c represents the channel, w represents the white balance, o 

represents the object and i represents the illumination condition; the total effect of channel, white 

balance, object and illumination similar to equation (4.1) can be represented by the variable 𝑁(𝑐,𝑖,𝑜,𝑤) 

as: 

 𝑁(𝑐,𝑖,𝑜,𝑤) =  𝑁(𝑐,𝑖,𝑜) + ∈(𝑐,𝑖,𝑜,𝑤) (4.7) 

   

 
𝑁(𝑐,𝑖,𝑜) =

∑ 𝑁(𝑐,𝑖,𝑜,𝑤)
𝑁W
𝑤=1

𝑁W

 
(4.8) 

where 𝑁(𝑐,𝑖,𝑜) reflects the effect of facial structure and ∈(𝑐,𝑖,𝑜,𝑤) represents the effect of white balance 

on the number of keypoints given a channel and illumination. In this experiment we utilize ∈(𝑐,𝑖,𝑜,𝑤) to 

observe the effect of white balance. 

We can use the equations (4.3) and (4.4) to explore ∈(𝑐,𝑖,𝑜,𝑤), the effect of white balance on the number 

of keypoints under fixed illumination condition. The intra-object Stability Index, 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) of the 

variable 𝑁(𝑐,𝑖,𝑜,𝑤) that varies due to the illumination i, for a channel c, white balance condition w, and 

object o can be represented as: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) = 𝑆𝑇𝐷{𝑁(𝑐,𝑖,𝑜,𝑤)} =  √
1

𝑁W − 1
 ∑(𝑁(𝑐,𝑖,𝑜,𝑤) − 𝑁(𝑐,𝑖,𝑜))

2

𝑁W

𝑤=1

 

(4.9) 

The equation (4.9) can be rewritten after substituting the value of 𝑁W as: 
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𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) =  √
1

3
 ∑(∈(𝑐,𝑖,𝑜,𝑤))

2
4

𝑤=1

 

(4.10) 

 

The equation (4.10) measures the effect of white balance change. Exploring variation in 𝑁(𝑐,𝑖,𝑜,𝑤) will 

show us the effect of white balance change on the number of keypoints detected when the illumination 

is kept constant. By analyzing the variation in 𝑁(𝑐,𝑖,𝑜,𝑤) for each channel, we can find the most robust 

channel in a color space. 

We present our framework to analyze effect of white balance on the key point detection. The analysis 

will be conducted on 3 stages: 1) Analysis of intra-object variation by measuring the effect of the white 

balance for a facial structure given a channel and an illumination, 2) Analysis of inter-object variation 

by the inter-object stability index (IOSI) as described below, 3) Overall analysis by means of the 

overall stability index (OSI) as given below. At the stage 2, we can decide which color channel to use 

for detection of key points for a circumstance where illumination condition is known. The stage 3 leads 

us to the most suited channel for the cases where the illumination condition is not known. Figure 4.3 

illustrated the proposed analysis stages of the framework. 

4.2.2.1 The algorithm to measure the effect of white balance variation 

1. Set the color space to, say, RGB, YCbCr and HSV. 

2. For a single channel, set the illumination condition of the input image from the database to one 

of H (2300K), A (2856K), T (4000-5000K) or D (6500K). 

3. Obtain the input image from the database with the white balance condition set to one of H 

(2300K), A (2856K), T (4000-5000K) and D (6500K). 

4. Apply the keypoint detector to the image rendered by each channel of the same object captured 

under a set illumination and white balance condition. 

5. Repeat step 4 for all the four white balance conditions and obtain the detected keypoints. 
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Figure 4.3: Framework for exploring the stability of keypoints against white balance variation for 

intra-object and inter-object variations 

For each object calculate the standard deviation of the number of keypoints under the four 

white balance conditions keeping illumination condition and channel constant. 

6. Repeat steps 2 – 5 for all the objects. 

7. The inter-object stability index 𝐼𝑂𝑆𝐼(𝑐,𝑖) is computed as average standard deviation of all 

objects in a certain color channel and illumination condition. 

 
𝐼𝑂𝑆𝐼(𝑐,𝑖) =  

∑ 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜)
𝑁𝑂
𝑜=1

𝑁𝑂

 
(4.11) 

where 𝑁𝑂 is the number of objects and 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) is the intra-object stability index for each 

object under four white balance conditions. 

8. Repeat step 7 for all the channels in the color space. 
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9. Tabulate the results for further analysis 

10.  Repeat steps 1 – 9 for all the color spaces. 

The stability of a channel under varying white balance conditions can be analyzed by comparing the 

inter-object stability index. If the inter-object stability index varies little from one illumination to the 

other, we can say that white balance change does not significantly affect the detection of keypoints for 

a particular channel. Also, we can say that the keypoints rendered by the channel are more stable across 

variation in white balances. 

We can analyze the stability of a channel across the illumination conditions by exploring the variation 

in the inter-object stability index 𝐼𝑂𝑆𝐼(𝑐,𝑖) for the four illumination conditions. The standard deviation 

for illumination change is given by: 

 
𝑂𝑆𝐼𝑊𝑐  ≜ 𝑆𝑇𝐷{𝐼𝑂𝑆𝐼(𝑐,𝑖)} =   

∑ (𝐼𝑂𝑆𝐼(𝑐,𝑖) − 𝐼𝑂𝑆𝐼𝑐
̅̅ ̅̅ ̅̅ ̅)𝑖

2

𝑁I − 1
 

(4.12) 

At stage 1, we explore the effect of white balance by equation (4.9) for each object under a fixed 

illumination condition for the red channel. At stage 2, we explore the inter-object stability index of all 

objects under an illumination condition as in equation (4.11). Comparing the inter-object stability 

indices from different illumination conditions in Stage 2 can show the effect of white balance variation 

from one illumination to another. At this stage we can analyze the effect of image structures under 

different illumination conditions to white balance variation. At stage 3, we can analyze the overall 

sensitivity of a particular channel to the variation in white balance considering all the illumination 

conditions as in equation (4.12). This stage shows us the overall stability of each channel to white 

balance variation. Hence, we will be comment on the most stable channel under white balance variation 

in a color space. 
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We look at the effect of white balance from a comparatively global perspective by analyzing the inter-

object variation grouped according to the illumination conditions. For each channel and white balance 

condition, the normalized total number of keypoints 𝑁𝑇(𝑐,𝑤), is computed as follows: 

 
𝑁𝑇(𝑐,𝑤)  ≜  

∑ 𝑁(𝑜,𝑤)

𝑁𝑊 𝑁O

 
(4.13) 

where 𝑁(𝑜,𝑤) is the total of number of keypoints for all objects and white balance conditions for a 

particular illumination. The normalization factors in the denominator represent the number of white 

balance conditions 𝑁W and the number of objects 𝑁O. 

4.2.3 Effect of Illumination and white balance 

In this experiment, we study the effect of change in white balance and illumination on the keypoint 

detection. Let c represents the channel, w represents the white balance, o represents the object and i 

represents the illumination condition; the total effect of channel, white balance, object and illumination 

can be represented similar to the equation (4.1) by the variable 𝑁(𝑐,𝑤,𝑜,𝑖): 

 𝑁(𝑐,𝑜,𝑤,𝑖) =  𝑁(𝑐,𝑜) + ∈(𝑐,𝑜,w,𝑖) (4.14) 

 
𝑁(𝑐,𝑜) =

∑ ∑ 𝑁(𝑐,𝑜,𝑤,𝑖)
𝑁I
𝑖=1

𝑁W
𝑤=1

𝑁W𝑁I

 
(4.15) 

where 𝑁(𝑐,𝑜) reflects the effect of facial structure in addition to the channel and white balance under 

different illumination conditions and ∈(𝑐,𝑜,w,𝑖) represents the effect of variation due to white balance 

and illumination conditions on the number of keypoints. 

We can use the equations (4.3) and (4.4) to explore ∈(𝑐,𝑜,w,𝑖), the effect of white balance and 

illumination on the number of keypoints for a given channel and object. The intra-object stability index, 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) of the variable 𝑁(𝑐,𝑜,𝑤,𝑖) that varies due to the illumination i, for a channel c, white balance 

condition w, and object o as: 
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𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) = 𝑆𝑇𝐷{𝑁(𝑐,𝑜,𝑤,𝑖)} =  √
1

𝑁W𝑁I − 1
 ∑ ∑(𝑁(𝑐,𝑜,𝑤,𝑖) − 𝑁(𝑐,𝑜))

2

𝑁I

𝑖=1

𝑁W

𝑤=1

 

(4.16) 

Having 𝑁W =  𝑁I = 4, 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) = √
1

15
 ∑ ∑(∈(𝑐,𝑜,w,𝑖))

2
4

𝑖=1

4

𝑤=1

 

(4.17) 

The equation (4.16) measures the effect of white balance and illumination change. Exploring variation 

in 𝑁(𝑐,𝑜,𝑤,𝑖) will show us the effect of white balance and illumination change on the number of keypoints 

detected. 

4.2.3.1 Algorithm to compute the effect of illumination and white balance variation 

1. Set the color space to, say, RGB, YCbCr and HSV. 

2. Choose an object. 

3. For a single channel in the color space, apply keypoint detector to the image rendered by each 

channel of the same object captured under all the illumination and white balance conditions. 

4. Given the color channel, for each object calculate the standard deviation of keypoints under all 

the four white balance and illumination conditions. Repeat step 3 and 4 for other channels in 

the color space. 

5. Repeat steps 2 – 4 for all the objects. 

6. The inter-object stability index 𝐼𝑂𝑆𝐼𝑊𝐼𝑐 is computed as average standard deviation of all 

objects for a certain color channel 𝑐 under the change of white balance and illumination 

conditions. 

 
𝐼𝑂𝑆𝐼𝑊𝐼𝑐 =  

∑ 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜)
𝑁𝑂
𝑜=1

𝑁𝑂

 
(4.18) 
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where 𝑁𝑂 is the number of objects and 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) is the intra-object stability index of an object 

under all four white balance and illumination conditions. There will be 16 images per object in 

this case. 

7. Repeat step 6 for all the channels in the color space. 

8. Tabulate the results for further analysis. 

9.  Repeat steps 1 – 8 for all the color spaces. 

Since this experiment does not compute the variations one object at a time, we expect inter-object 

stability index to be more unstable than the other two previous experiments. We will find the channel 

which is most robust to both illumination and white balance variations from this analysis. 

We look at the effect of white balance and illumination from a comparatively global perspective by 

analyzing the inter-object variation. For each channel and object, the normalized total number of 

keypoints 𝑁𝑇(𝑐) is computed as follows: 

 
𝑁𝑇(𝑐)  ≜  

∑ 𝑁(𝑜,𝑤,𝑖)

𝑁𝑊𝑁𝐼 𝑁𝑂

 
(4.19) 

where 𝑁(𝑜,𝑤,𝑖) is the total of number of keypoints for all objects, white balance and illumination 

conditions. The normalization factors in the denominator represent the number of white balance 

conditions 𝑁W, illumination conditions 𝑁I and the number of objects 𝑁O. 

4.2.3.2 Overall Analysis 

In the previous sections, we looked at the effect of illumination and white balance considering one 

object at a time for the number of keypoints. It was a localized way to look at all the objects. This 

experiment accounts for the inter-object variation and gives us the most global perspective of 

illumination and white balance variation considering all the objects at a time. Our objective of this 



29 

 

experiment is to explore the overall sensitivity of a channel to change in illumination, white balance 

and facial structure. 

The overall inter-object stability index 𝑂𝑆𝐼𝑐 of a channel is given by:  

 
𝑂𝑆𝐼𝑐  ≜ 𝑆𝑇𝐷{𝑁(𝑐,𝑤,𝑜,𝑖)} =   

∑(𝑁(𝑐,𝑤,𝑜,𝑖) − 𝑁(𝑐))
2

𝑁O𝑁W𝑁I

 
(4.20) 

where 𝑁(𝑐,𝑤,𝑜,𝑖) represents the number of keypoints for all objects in the database under all the 

illumination and white balance conditions for a given channel. 

4.3 Feature Based Robustness Analysis 

The SIFT feature vector for each keypoint has 128 dimensions. The number of dimensions of a feature 

vector is the most significant and a unique description of a keypoint. In order to measure the variation 

in the sensitivity of the features rendered by a channel, we look into its redundancy of dimensions. If 

there are more distinguishing feature dimensions in a channel, they can describe the keypoints very 

effectively. But, if the feature dimensions are redundant, they do not help in describing the keypoints 

uniquely. We use normalized number of dimensions as the redundancy index to measure the amount 

of redundancy in the feature vectors. We will elucidate more about normalized number of dimensions 

in the coming sections. By the end of this section, we will establish methodologies for the following 

objectives: 

1. To measure the effect of change in illumination on the feature vectors when the white balance 

is kept constant. 

2. To measure the effect of change in white balance on the feature vectors when the illumination 

is constant. 

3. To measure the effect of change in illumination and white balance on the feature vectors. 
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4.3.1 Normalized number of dimensions 

PCA finds a linear projection of high dimensional data into lower dimensional subspace.  We will use 

PCA to analyze the redundancy in dimensions of the feature vectors. When PCA is applied to the a 

feature vector, the eigenvalues measure the amount of variation described by each principal component 

and the number of eigenvalues represent the number of principal components or in other words, the 

number of dimensions in the resultant feature vector. 

We will illustrate the significance of number of dimensions and their reduction with an example. Let 

us consider two channels, blue and red of the RGB color space. The results after application of PCA 

to the blue and red channels of an image are as shown in  

Table 4.2. The table also shows the number of feature points as detected by SIFT before applying PCA. 

Table 4.2: Number of dimensions after PCA 

Number of Dimensions 

After applying PCA 

Number of feature 

points 

Blue channel 3 10 

Red channel 2 10 

 

Figure 4.4 shows a pictorial representation of the data in Table 4.2. We can see the projection of the 

key features on the dimensions after they have been reduced by PCA. The 10 feature points in the red 

channel can only be projected on 2 dimensions, whereas the blue channel is more effective in 

describing the features of 10 feature points on 3 dimensions. From this example we can infer that 

features from the blue channel have more distinguishing capability than the ones in the red channel for 

the same image.  

Our objective throughout this experiment is to look for more distinguishing dimensions exhibited by 

the feature vectors.  

Two important hypotheses can be drawn from the example described earlier: 
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1. More dimensions exist if feature vectors of the keypoints are dissimilar as they are sparsely 

scattered.  

 

Figure 4.4: Illustration of number of dimensions 

 

2. When keypoints are similar we can express the feature vectors associated with the keypoints 

in a space which has less number of dimensions. So, the features of these keypoints are densely 

populated on fewer dimensions indicating the presence of many similar, non-unique feature 

descriptions. 

We have seen how the reduction in number of dimensions of feature vectors can be an important 

measure to help us find a channel with salient features. But, can we just compare the reduction in 

number of dimensions before and after PCA in all the cases?  After further analysis, we proposed two 

redundancy indices to compare the reduction in the number of dimensions: 

1. The ratio of the number of dimensions after applying PCA to the number of dimensions before 

the applying PCA, called the reduction ratio. 

2. The normalized number of dimensions. 

The reduction ratio as described earlier is a straightforward method of analyzing the reduction in 

number of dimensions post application of PCA. But, in some cases we cannot decide the efficiency of 
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the features in a channel by merely looking at the reduction ratio. We will illustrate the problem with 

an example shown in Figure 4.5. In Figure 4.5(a), the red channel has two dimensions with nine feature 

points and in Figure 4.5(b) the blue channel has three dimensions with 14 feature points. Both of these 

channels look efficient in expressing their key features if the reduction ratio is used; notice that the 

reduction ratio is 9/128 versus 14/128, respectively. To find the most efficient channel we propose to 

normalize number of dimensions obtained by PCA with the number of keypoints. The normalized 

number of dimensions can be expressed as follows: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑝𝑜𝑠𝑡 𝑃𝐶𝐴)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠
 

(4.21) 

 

Figure 4.5: (a) Red channel with two dimensions and nine key features (b) Blue channel with three 

dimensions and 14 key features 

Reduction ratio and normalized number of dimensions (NND) are the two redundancy indices 

proposed. We need to identify the ideal redundancy index to efficiently analyze the features in a 

channel. Table 4.3 shows an example of data from two channels. The last two columns show the results 

of NND and reduction ratio. From the data in Table 4.3 we can see that the reduction ratio for both the 

channels give the same results. Hence we cannot use reduction ratio as the redundancy index. But, 

when we normalize the PCA reduced dimensions with the number of feature points, we can clearly see 

that the channel 1 is more efficient in expressing its feature points than channel 2. Hence, the NND 

turns out to be a better method for measuring the redundancy index. 
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Further, let us say that there are million feature points for a channel and they are projected onto 10 

Table 4.3: Normalized number of dimensions vs. Reduction Ratio 

Channel 
PCA reduced 

dimensions 

Number of 

feature points 

detected 

Normalized 

number of 

dimensions 

Reduction Ratio 

1 10 100 10% 
10

128
 

2 10 200 5% 
10

128
 

dimensions and compare it to another channel with 10 feature points projected onto 10 dimensions. 

For SIFT we know that each point in the feature space has 128 dimensions. When a million key features 

are projected onto just 10 dimensions, then we can say that there is some way to group the million data 

into clusters and project them to just 10 dimensions. Even though the dataset is large, the projection of 

dataset is in just few dimensions. It means that there are too many points in the dataset giving 

information about each dimension. In the second case, we have 10 points and there are 10 dimensions. 

Here, we can say that clustering was not possible with the points and each point defined a unique 

dimension. We are indeed looking for dataset which express the feature points of a channel uniquely 

as much as possible. From all the previous examples, we can conclude that NND suits for our purpose 

of measuring redundancy of the dataset. We will use it for the following experiments in this section. 

4.3.2 Obtaining the cut values and setting a threshold on eigenvalues 

In general, the number of non-zero eigenvalues are the same for all channels. On the other hand, when 

the eigenvalues get smaller, their significance to represent data also is reduced. The question “what 

would be the minimum best eigenvalue such that the dimensions up to this eigenvalue can be used to 

represent data?” In the sequel, we present a method to find this ‘minimum best’ eigenvalue. 

We will use the eigenvalues which are arranged in descending order to compute the NND. As discussed 

earlier, the eigenvalues represent the number of principal components. To compute the number of 
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dimensions, we need to have a reference count. From each channel we create a column matrix of 

reference counts known as cut values from the eigenvalues as follows: 

1. We will choose the first cut value to be half of the minimum value of the first and most 

significant eigenvalues from all the channels. For instance, Figure 4.6 shows the eigenvalues 

of R, G and B channels arranged in descending order. The first eigenvalues in all the channels 

represent the most significant principal component. The minimum eigenvalue of all the three 

channels is B channel with a value of 1.29. We will choose our first cut value to be half of 1.29. 

 

Figure 4.6: Choosing the first cut value 

2. The consecutive cut values to form the column matrix are calculated by dividing the first cut 

value by 2. This division is carried on until the current cut value is greater than 0.000001. Table 

4.4 shows an example of forming the column matrix of cut values and their indices. We know 

that the eigenvalues in our experiment are arranged in descending order from the most to the 

least significant ones. The cut value threshold was decided upon close examination of the range 

of the eigenvalues which are significant after applying PCA to the images. The eigenvalues 

lesser than 10−8 are considered to be insignificant.  

Table 4.4: Cut values  

Cut value index 0.6450 

1 0.6450

2
 =0.3225 

2 0.3225

2
 =0.1613 

3 0.1613

2
 =0.0806 

4 0.0806

2
 =0.0403 

5 0.0403

2
 =0.0202 

6 0.0202

2
 =0.0101 
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nth cut value index ……. Greater or equal 

to 0.000001 

4.3.3 Finding the Normalized Number of Dimensions 

The data in the cut value column matrix is compared against the eigenvalues of all the channels in an 

image as follows: 

1. We begin from the first cut value in the matrix. Let us consider it as the current cut value. 

2. Count the number of eigenvalues or the cut value indices in each channel which are greater 

than or equal to the current cut value. Store the count in the resultant matrix. This count is 

called the number of dimensions. 

3. Repeat step 2 for all the cut values in the cut value column matrix. 

The normalized number of dimensions is computed by normalizing each value of the number of 

dimensions by the number of keypoints of the corresponding channel. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑝𝑜𝑠𝑡 𝑃𝐶𝐴)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠
 

(4.22) 

 

4.3.4 Finding the Maximum Normalized Number of Dimensions 

Our core objective throughout this section is to find a channel which can express the feature points in 

maximum possible unique dimensions. The NND values are stored in a column matrix. We set an 

upper threshold to the NNDs by finding its maximum value. The maximum NND of each channel is a 

point at which two consecutive NNDs stop varying or in other words, it is the point at which the 

difference between consecutive NNDs is zero. Table 4.5 shows the computation of maximum NND’s 

for sample data from the RGB channel. It should be noted that all the entries in Table 4.5 are NNDs 

Figure 4.7 shows the values of maximum NNDs for a RGB channel. The point at which the NND value 

stops varying is shown for G and B channels. 
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If we do not find the two consecutive non varying values, then the end value of NND is considered to 

be the maximum NND. In Figure 4.7, the end value of the R channel is taken as the maximum NND. 

Table 4.5: Computing the maximum normalized number of dimensions 

R G B 

15 13 14 

20 15 25 

22 18 25 

 

Figure 4.7: The maximum NND for RGB channel 

4.3.5 Effect of illumination 

In this experiment, we analyze the effect of illumination on the features rendered by an image. Our 

objective is to find a channel which produces the maximum dimensions to express the feature points 

despite the illumination change. We have seen how many dimensions are favorable for us as it 

describes the features uniquely. Maximum NND is the measure used to inspect the redundancy of the 

features in a channel. We study the effect of change in illumination on the maximum NNDs keeping 

the white balance of the image constant. The analysis is similar to effect of illumination on the number 

of keypoints. Here we use the maximum NND instead of the number of keypoints. Let c represents the 

channel, w represents the white balance, o represents the object and i represents the illumination 
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condition; the total effect of channel, white balance, object and illumination can be represented similar 

to equations (4.1) and (4.2) by the variable 𝑁(𝑐,𝑤,𝑜,𝑖) as: 

 𝑁(𝑐,𝑤,𝑜,𝑖) =  𝑁(𝑐,𝑤,𝑜) + ∈(𝑐,𝑤,𝑜,𝑖) (4.23) 

   

 
𝑁(𝑐,𝑤,𝑜) =

∑ 𝑁(𝑐,𝑤,𝑜,𝑖)
𝑁I
𝑖=1

𝑁I

 
(4.24) 

where 𝑁(𝑐,𝑤,𝑜) reflects the effect of facial structure and ∈(𝑐,𝑤,𝑜,𝑖) represents the effect of illumination 

change on the maximum NND given a channel and white balance. In this experiment we utilize 

∈(𝑐,𝑤,𝑜,𝑖) to observe the effect of illumination. Let 𝑁I represent the number of illumination conditions; 

the value of 𝑁I is four in our experiments. The intra-object stability index, 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) of the variable 

𝑁(𝑐,𝑤,𝑜,𝑖) that varies due to the illumination i, for a channel c, white balance condition w, and object o    

can be represented similar to equations (4.3) and (4.4) as: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) = 𝑆𝑇𝐷{𝑁(𝑐,𝑤,𝑜,𝑖)} =  √
1

𝑁I − 1
 ∑(𝑁(𝑐,𝑤,𝑜,𝑖) − 𝑁(𝑐,𝑤,𝑜))

2

𝑁I

𝑖=1

 

(4.25) 

The equation (4.25) can be rewritten after substituting the value of 𝑁I as follows: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) =  √
1

3
 ∑(∈(𝑐,𝑤,𝑜,𝑖))

2
4

𝑖=1

 

(4.26) 

Exploring variation in 𝑁(𝑐,𝑤,𝑜,𝑖) as seen in equation (4.25), will show us the effect of illumination 

change on the maximum dimensions detected when the white balance is kept constant. By analyzing 

the variation in 𝑁(𝑐,𝑤,𝑜,𝑖) for each channel, we can find the most robust channel in a color space. 

The framework to analyze the effect of illumination was discussed in section 4.2.1. We follow this 

framework for effect of illumination on the features. 
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4.3.5.1 Algorithm to measure the effect of illumination variation 

5. Set the color space to, say RGB, YCbCr and HSV. 

6. For a single channel, set the white balance of the input image from the database to one of 

H (2300K), A (2856K), T (4000-5000K) or D (6500K). 

7. Obtain the input image from the database with the illumination condition set to one of H 

(2300K), A (2856K), T (4000-5000K) and D (6500K). 

8. Apply the feature detector to the image rendered by each channel of the same object captured 

under a set white balance and illumination condition. 

9. Apply Principal Component Analysis (PCA) to feature vectors of all the channels of an image 

and obtain the eigenvalues. 

10. Compute the cut value matrix with the starting cut value to be the half of the minimum value 

of the first eigenvalues from all channels. 

11. Find the NNDs corresponding to each cut value as follows: 

12. We will begin from the first cut value in the matrix and consider it as the current cut value. 

13. Count the number of eigenvalues in each channel which are greater than or equal to the current 

cut value for all the channels and store the count in the resultant matrix.  

14. Repeat step (b) for all the cut values in the cut value matrix. 

15. Each value in the resultant matrix is normalized with the corresponding number of keypoints 

to get the value of NND 

16. Find the maximum NND for each channel by locating a value of NND beyond which the NNDs 

remain constant. 

17. Repeat steps 4 – 8 for all the four illumination conditions and obtain the maximum NNDs. For 

each object calculate the standard deviation of maximum NNDs under the four illumination 

conditions keeping white balance and channel constant. 
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18. Repeat steps 1 – 9 for all objects. 

19. The inter-object stability index 𝐼𝑂𝑆𝐼(𝑐,𝑤) is computed as average standard deviation of all 

objects in a certain color channel and white balance condition. 

 
𝐼𝑂𝑆𝐼(𝑐,𝑤) =  

∑ 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜)
𝑁𝑂
𝑜=1

𝑁𝑂

 
(4.27) 

where 𝑁𝑂 is the number of objects and 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑤,𝑜) is the intra-object stability index for each 

object under four illumination conditions. 

20. Repeat step 11 for all the channels in the color space. 

21. Tabulate the results for further analysis. 

22.  Repeat steps 1 – 13 for all the color spaces. 

We can analyze the stability of a channel under varying illuminations for different white balance 

conditions by looking at the average standard deviation for maximum NNDs. If the average standard 

deviation does not change from one white balance to other, we can say that illumination change does 

not affect the number of dimensions in a feature vector for a particular channel. We can also say that 

the maximum NNDs rendered by a channel are more stable across variation in illumination. 

We can analyze the stability of a channel across the white balance conditions by finding the variation 

in the stability index 𝐼𝑂𝑆𝐼(𝑐,𝑤) for the four white balance conditions as seen in equation (4.6). The 

standard deviation 𝑂𝑆𝐼𝐼𝑐 for illumination change is given by: 

 
𝑂𝑆𝐼𝐼𝑐  ≜ 𝑆𝑇𝐷{𝐼𝑂𝑆𝐼(𝑐,𝑤)} =   

∑ (𝐼𝑂𝑆𝐼(𝑐,𝑤) − 𝐼𝑂𝑆𝐼𝑐
̅̅ ̅̅ ̅̅ ̅)𝑤

2

𝑁W − 1
 

(4.28) 

The overall stability index leads us to the channel which is the least sensitive to illumination variation 

irrespective of the white balance conditions. Comparing the stability index across white balance 

conditions shows the overall stability of each channel to illumination variation. We will be able to find 
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the channel in a color space whose features are stable against illumination variation across all white 

balance conditions.  

We look at the effect of illumination from a comparatively global perspective by analyzing the inter-

object variation grouped according to the white balance conditions. For each channel and white balance 

condition, the normalized total of maximum NNDs 𝑁𝑇(𝑐,𝑤) is computed as follows:  

 
𝑁𝑇(𝑐,𝑤)  ≜  

∑ 𝑁(𝑜,𝑖)

𝑁I 𝑁O

 
(4.29) 

where 𝑁(𝑜,𝑖) is the total of number of the maximum NNDs for all objects in a particular white balance 

condition. The normalization factors in the denominator are the product of  𝑁𝐼 and 𝑁𝑂 which represent 

the number of illumination conditions and the number of objects respectively. 

4.3.6 Effect of White Balance 

In this experiment, we study the effect of change in white balance on the maximum NNDs keeping the 

illumination of the image constant. Let c represents the channel, w represents the white balance, o 

represents the object and i represents the illumination condition; the total effect of channel, white 

balance, object and illumination similar to equation (4.1) can be represented by the variable 𝑁(𝑐,𝑖,𝑜,𝑤) 

as: 

 𝑁(𝑐,𝑖,𝑜,𝑤) =  𝑁(𝑐,𝑖,𝑜) + ∈(𝑐,𝑖,𝑜,𝑤) (4.30) 

   

 
𝑁(𝑐,𝑖,𝑜) =

∑ 𝑁(𝑐,𝑖,𝑜,𝑤)
𝑁W
𝑤=1

𝑁W

 
(4.31) 

where 𝑁(𝑐,𝑖,𝑜) reflects the effect of facial structure and ∈(𝑐,𝑖,𝑜,𝑤) represents the effect of white balance 

on the number of keypoints given a channel and illumination. In this experiment we utilize ∈(𝑐,𝑖,𝑜,𝑤) to 

observe the effect of white balance. 
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We can apply the equations (4.3) and (4.4) to explore ∈(𝑐,𝑖,𝑜,𝑤), the effect of white balance variation on 

the maximum NNDs when illumination is kept constant. The intra-object Stability Index, 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) 

of the variable 𝑁(𝑐,𝑖,𝑜,𝑤) that varies due to the illumination i, for a channel c, white balance condition 

w, and object o can be represented similar to equation (4.9) as: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) = 𝑆𝑇𝐷{𝑁(𝑐,𝑖,𝑜,𝑤)} =  √
1

𝑁W − 1
 ∑(𝑁(𝑐,𝑖,𝑜,𝑤) − 𝑁(𝑐,𝑖,𝑜))

2

𝑁W

𝑤=1

 

(4.32) 

The equation (4.32) can be rewritten after substituting the value of 𝑁W as: 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) =  √
1

3
 ∑(∈(𝑐,𝑖,𝑜,𝑤))

2
4

𝑤=1

 

(4.33) 

The equation (4.33) measures the effect of white balance change. Exploring variation in 𝑁(𝑐,𝑖,𝑜,𝑤) will 

show us the effect of white balance change on the number of feature dimensions when illumination is 

kept constant. By analyzing the variation in 𝑁(𝑐,𝑖,𝑜,𝑤) for each channel, we can find the most robust 

channel in a color space. 

The framework to analyze the effect of white balance variation was presented in section 4.2.2. We 

follow a similar analysis in this section too. 

4.3.6.1 Algorithm to measure the effect of white balance variation 

1. Set the color space to, say, RGB, YCbCr and HSV. 

2. For a single channel, set the illumination condition of the input image from the database to one 

of H (2300K), A (2856K), T (4000-5000K) or D (6500K). 

3. Obtain the input image from the database with the white balance condition set to one of H 

(2300K), A (2856K), T (4000-5000K) and D (6500K). 
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4. Apply the feature detector to the image rendered by each channel of the same object captured 

under a set illumination and white balance condition. 

5. Apply Principal Component Analysis (PCA) to feature vectors of all the channels of an image 

and obtain the eigenvalues. 

6. Compute the cut value matrix with the starting cut value to be the half of the minimum value 

of the first eigenvalues from all channels. 

7. Find the NNDs corresponding to each cut value. 

8. Find the maximum NND for each channel by locating a value of NND beyond which the NNDs 

remain constant. 

9. Repeat steps 4 – 8 for all the four white balance conditions and obtain the maximum NNDs. 

For each object calculate the standard deviation of maximum NNDs under the four white 

balance conditions keeping illumination and channel constant. 

10. Repeat steps 1 – 9 for all objects. 

11. The inter-object stability index 𝐼𝑂𝑆𝐼(𝑐,𝑖) is computed as average standard deviation of all 

objects in a certain color channel and illumination condition. 

 
𝐼𝑂𝑆𝐼(𝑐,𝑖) =  

∑ 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜)
𝑁𝑂
𝑜=1

𝑁𝑂

 
(4.34) 

where 𝑁𝑂 is the number of objects and 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑖,𝑜) is the intra-object stability index for each 

object under four white balance conditions. 

12. Repeat step 11 for all the channels in the color space. 

13. Tabulate the results for further analysis. 

14.  Repeat steps 1 – 13 for all the color spaces. 

The stability of the features rendered by the channel under varying white balance conditions can be 

analyzed by comparing the inter-object stability index for each illumination condition. If the inter-
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object stability index varies little from one illumination to the other, we can say that white balance 

change does not significantly affect the detection of features for a particular channel. Also, we can say 

that the features rendered by the channel are more stable across variation in white balances. 

We can analyze the stability of a channel across the illumination conditions by exploring the variation 

in the inter-object stability index 𝐼𝑂𝑆𝐼(𝑐,𝑖) for the four illumination conditions. The standard deviation 

for illumination change is similar to (4.12) and is given by: 

 
𝑂𝑆𝐼𝑊𝑐  ≜ 𝑆𝑇𝐷{𝐼𝑂𝑆𝐼(𝑐,𝑖)} =   

∑ (𝐼𝑂𝑆𝐼(𝑐,𝑖) −  𝐼𝑂𝑆𝐼𝑐
̅̅ ̅̅ ̅̅ ̅)𝑖

2

𝑁I − 1
 

(4.35) 

We analyze the inter-object variation by grouping according to the illumination conditions. The 

analysis is similar to the experiment described in section 4.2.1.1. For each channel and white balance 

condition, the normalized total of maximum NNDs 𝑁𝑇(𝑐,𝑤) is computed as follows:  

 
𝑁𝑇(𝑐,𝑤)  ≜  

∑ 𝑁(𝑜,𝑤)

𝑁𝑊 𝑁O

 
(4.36) 

where 𝑁(𝑜,𝑤) is the total number of maximum NNDs for all objects in a particular illumination 

condition. The normalization factors in the denominator represent the number of white balance 

conditions 𝑁W and the number of objects 𝑁O. 

4.3.7 Effect of Illumination and White Balance 

In this experiment, we study the effect of change in white balance and illumination on the feature 

dimensions. Let c represents the channel, w represents the white balance, o represents the object and i 

represents the illumination condition; the total effect of channel, white balance, object and illumination 

can be represented as in equation (4.1) by the variable 𝑁(𝑐,𝑤,𝑜,𝑖): 

 𝑁(𝑐,𝑜,𝑤,𝑖) =  𝑁(𝑐,𝑜) + ∈(𝑐,𝑜,w,𝑖) (4.37) 

   

 
𝑁(𝑐,𝑜) =

∑ ∑ 𝑁(𝑐,𝑜,𝑤,𝑖)
𝑁I
𝑖=1

𝑁W
𝑤=1

𝑁W𝑁I

 
(4.38) 
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where 𝑁(𝑐,𝑜) reflects the effect of facial structure in addition to the channel and white balance under 

different illumination conditions and ∈(𝑐,𝑜,w,𝑖) represents the effect of variation due to white balance 

and illumination conditions on the number of dimensions. 

Using the equations (4.3) and (4.4) to explore ∈(𝑐,𝑜,w,𝑖), the effect of white balance and illumination on 

the number of keypoints for a given channel and object . The intra-object stability index, 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) of 

the variable 𝑁(𝑐,𝑜,𝑤,𝑖) that varies due to the illumination i, for a channel c, white balance condition w, 

and object o as: 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) = 𝑆𝑇𝐷{𝑁(𝑐,𝑜,𝑤,𝑖)} =  √
1

𝑁W𝑁I − 1
 ∑ ∑(𝑁(𝑐,𝑜,𝑤,𝑖) − 𝑁(𝑐,𝑜))

2

𝑁I

𝑖=1

𝑁W

𝑤=1

 

(4.39) 

We have 𝑁W =  𝑁I = 4, 

 

𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) = √
1

15
 ∑ ∑(∈(𝑐,𝑜,w,𝑖))

2
4

𝑖=1

4

𝑤=1

 

(4.40) 

The equation (4.39) measures the effect of white balance and illumination change. Exploring variation 

in 𝑁(𝑐,𝑜,𝑤,𝑖) will show us the effect of white balance and illumination change on the number of feature 

dimensions when channel and object are kept constant. 

4.3.7.1 Algorithm to compute the effect of illumination and white balance variation 

1. Set the color space to, say, RGB, YCbCr and HSV. 

2. Choose an object. 

3. For a single channel in the color space, apply feature detector to the image rendered by each 

channel of the same object captured under all the illumination and white balance conditions. 
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4. Given the color channel, for each object calculate the standard deviation of NNDs under all the 

four white balance and illumination conditions. Repeat step 3 and 4 for other channels in the 

color space. 

5. Repeat steps 2 – 4 for all the objects. 

6. The inter-object stability index 𝐼𝑂𝑆𝐼𝑊𝐼𝑐 is computed as average standard deviation of all 

objects in a certain color channel. This computation is similar to equation (4.18). 

 
𝐼𝑂𝑆𝐼𝑊𝐼𝑐 =  

∑ 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜)
𝑁𝑂
𝑜=1

𝑁𝑂

 
(4.41) 

where 𝑁𝑂 is the number of objects and 𝐼𝑎𝑂𝑆𝐼(𝑐,𝑜) is the intra-object stability index of an object 

under all four white balance and illumination conditions.There will be 16 images per object. 

7. Repeat step 6 for all the channels in the color space. 

8. Tabulate the results for further analysis. 

9.  Repeat steps 1 – 8 for all the color spaces. 

This experiment does not compute the variations one object at a time, we expect the inter-object 

stability index for the number of dimensions to be more unstable than the other two previous 

experiments. We will explore the channel with the features which are most robust to both illumination 

and white balance variations from this analysis. 

We look at the effect of white balance from a comparatively global perspective by analyzing the inter-

object variation. For each channel and object, the normalized total of maximum NNDs is computed as 

follows: 

 
𝑁𝑇(𝑐) ≜  

∑ 𝑁(𝑜,𝑤,𝑖)

𝑁𝑊 × 𝑁𝐼  × 𝑁𝑂

 
(4.42) 
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where 𝑁(𝑜,𝑤,𝑖) is the summation of the NNDs for all objects, white balance and illumination conditions. 

The normalization factors in the denominator represent the number of white balance conditions 𝑁W, 

illumination conditions 𝑁I and the number of objects 𝑁O. 

4.3.7.2 Overall Analysis 

In the previous sections, we looked at the effect of illumination and white balance considering one 

object at a time for the feature dimensions. It was a localized way to look at all the objects. This 

experiment accounts for the inter-object variation and gives us the most global perspective of 

illumination and white balance variation considering all the objects at a time. Our objective of this 

experiment is to explore overall sensitivity of a channel to change in illumination, white balance and 

facial structure. 

The overall inter-object stability index 𝑂𝑆𝐼𝑐 of a channel is given by:  

 
𝑂𝑆𝐼𝑐  ≜ 𝑆𝑇𝐷{𝑁(𝑐,𝑤,𝑜,𝑖)} =   

∑(𝑁(𝑐,𝑤,𝑜,𝑖) − 𝑁(𝑐))
2

𝑁O𝑁W𝑁I

 
(4.43) 

where 𝑁(𝑐,𝑤,𝑜,𝑖) represents the number of feature dimensions for all objects in the database under all 

the illumination and white balance conditions for a given channel.  

4.4 Finding the Salient Keypoints in Combination of Color Channels 

After the analysis of the channels individually, we will analyze the combination of color channels in a 

color space and also across color spaces. Our objective for this experiment is to explore the keypoints 

which are not common in a pair of channels. In order to explore the least or non-redundant keypoints 

between two channels, our approach was to first find the keypoints which are common. 

We know that the SIFT output for the each keypoint gives us the (x, y) location coordinates, scale and 

rotation quadruplets. We will use the (x, y) coordinates in the SIFT quadruplet to find the Euclidian 

distance and determine the common keypoints between two channels. 
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4.4.1 Overview of finding the common points 

In order to find the common points, we have to compare all the keypoints of one channel to other. We 

will illustrate the process of finding the common points with an example. Consider two color channels 

of RGB color space as shown in Figure 4.8. Let us say that we are trying to find the common keypoints 

between the Red and Blue channel. At first, we make the R channel to be the reference channel and 

the B channel to be the test channel. We then start from the first keypoint location in the R channel and 

find the Euclidean distance to all the keypoint locations in the B channel. The keypoint location in the 

B channel which has the least Euclidean distance will be the one closest to the reference channel 

keypoint. The process is repeated for all the other keypoints in the R or the reference channel. At the 

end we will have a set of keypoints in the test channel which are closest to each of the keypoints in the 

reference channel. 

 

Figure 4.8: Finding the closest match for a keypoint in red channel to all the keypoints in blue 

channel 

4.4.2 Setting Threshold and optimizing for speed and efficiency 

Finding Euclidean distance is computationally intensive. Suppose we have 1000 keypoints each in the 

reference and the test channel, the Euclidean distance must be computed 1000 times for each keypoint 

in the reference channel. 

We propose a better and computationally efficient way obtain the keypoints from the test channel 

which are in close range to any reference channel keypoint. We do this by setting a square threshold 

Red channel (Reference Channel) 

Blue channel (Test Channel) 
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window of 2 pixels around each reference channel keypoint. The 2 pixel window was chosen to be the 

ideal window to narrow down a set of prospective keypoints in the test channel close to the reference 

channel keypoint. We then apply Euclidean distance between a reference channel keypoint and a small 

set of keypoints in the test channel. This method of reducing the number of computations in the 

Euclidean distance has drastically improved the speed of execution of the program. 

4.4.2.1 Illustration of threshold window  

We have seen how threshold window can reduce the number of iterations in computing the Euclidean 

distance. Let us illustrate the working of threshold window for a pair of channels. Let red or R channel 

be the reference channel and green or G channel be the test channel. We are trying to find points which 

are closer to the keypoint R1 as shown in Figure 4.9.  

 

Figure 4.9: Two pixel threshold window 

 
 

2τ = 2 pixels 

∆𝑥 > τ 

x 

y 

∆𝑦 < τ 

∆𝑥 < τ 

∆𝑦 < τ 

2τ  R1 

G1 G2 
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We first establish a 2 pixel threshold around R1. Let 2τ represent the 2 pixel threshold. We want to 

check if the keypoints G1 and G2 in the G channel are in proximity to R1. We do this by finding the x 

and y distances from R1 to the two test channel keypoints. 

In general we can express the distances between the reference channel and test channel  keypoints as 

follows: 

 ∆𝑥 = |𝑥(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡) − 𝑥(𝑡𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡)| (4.44) 

   

 ∆𝑦 = |𝑦(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡) − 𝑦(𝑡𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡)| (4.45) 

If both ∆𝑥 and ∆𝑦 are less than or equal to τ, then it can be readily concluded that the test channel 

keypoint is in the vicinity of the reference channel keypoint. When this rule is applied to the points G1 

and G2, we can see from Table 4.6 that only G1 satisfies our condition and becomes the point inside 

the 2 pixel threshold. 

Table 4.6: Examining vicinity of test channel keypoints to the reference channel keypoint 

 ∆𝑥 ∆𝑦 Result 

G1 ∆𝑥 < τ ∆𝑦 < τ Inside 2 pixel window 

G2 ∆𝑥 > τ ∆𝑦 < τ Outside 2 pixel window 

We will apply the threshold to each keypoint in the reference channel. Since, finding the distance is a 

simple subtraction, the program runs much faster than the method described earlier. 

4.4.2.2 Marking the used keypoints in the test channel 

We employ marking to further optimize the program to find the matching keypoints. In this method 

we gradually reduce the number of available test channel keypoints for matching with the reference 

channel keypoints. Once a test channel keypoint has been identified as being closest to a reference 

channel keypoint, we mark it and make it unavailable for matching with the remaining reference 

channel keypoints. When a keypoint in the test channel is marked, the program will skip computing 

threshold window and Euclidean distance for it. This greatly improves the efficiency of the program 

and avoids unwanted iterations. 
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4.4.2.3 Ranking the number of matches 

The objective of this experiment is to find the salient keypoints between a pair of channels. We need 

to compare the number of matches obtained by each channel pair combinations. The raw count values 

which indicate the number of matches could not be used for comparison as there were no common 

grounds from one channel combination to another. To overcome this, we devised a ranking method to 

rank the matching keypoints rendered by the combination of channels.  

The criterion for ranking was to assign the rank 1 for combination of channels which yield the lowest 

number of keypoint matches and rank 3 to the channels with the highest number of keypoints. By using 

this method for ranking, we give priority to the channel combination which has least number of matches 

or in other words the non-redundant salient keypoints. The ranking is done for all the channels and the 

overall ranking percentage can be easily computed for all the objects and also for objects categorized 

by illumination condition. This method of ranking will help us analyze the objective of finding the 

salient keypoints in the combination of channels. 

4.4.3 Steps in finding the salient keypoints for combination of channels 

Most of the steps in finding the salient keypoints are to find the matching keypoints between two 

channels. Ranking is employed at the end to derive conclusions from the percentages. 

1. Set the color space to, say, RGB, YCbCr and HSV. We set two color spaces if salient keypoints 

between two channels of different color spaces are to be analyzed. 

2. Set the white balance of the input image from the database to one of H (2300K), A (2856K), T 

(4000-5000K) and D (6500K). 

3. Obtain the input image from the database with the illumination condition set to one of H 

(2300K), A (2856K), T (4000-5000K) and D (6500K). 
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4. Apply the keypoint detector to the image rendered by each channel of the same object captured 

under the white balance and the illumination condition set. 

5. For a combination of two channels, SIFT gives the (x,y) location of the keypoints. The steps 

to find the matching keypoints are as follows: 

a. Create a threshold window of 2 pixels.  

b. Out of the two channels taken, one is regarded as reference channel and the second as 

the test channel. 

c. We then compare the keypoints in the reference channel with the ones in the test 

channel. The process of comparison is summarized below: 

i. First, we try to narrow down the prospective matching points using the 

threshold window (See Figure 4.9). 

∆𝑥 = |𝑥(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡) − 𝑥(𝑡𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡)| 

∆𝑦 = |𝑦(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡) − 𝑦(𝑡𝑒𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡)| 

If both ∆x and ∆y are less than or equal to τ, then it can be readily concluded 

that the test channel keypoint being considered is in the vicinity of the reference 

channel keypoint. We increment the counter which keeps track of the matching 

points. 

ii. Step (i) is repeated for all the keypoints in test channel keeping the reference 

channel keypoint constant. The location of all the keypoints in vicinity of the 

reference channel keypoint marked by the threshold window is stored in a 

matrix called the matching matrix. 
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iii. Out of all the test channel keypoints in the matching matrix, the closest one to 

the reference channel keypoint should be found and marked. The closest 

keypoint is found by computing the Euclidian distance between each of points 

in the matching matrix with the reference channel keypoint. The test channel 

keypoint with the least Euclidian distance is considered to be the closest with 

the reference channel keypoint. This keypoint in the test channel is marked and 

made unavailable to the other keypoints in the reference channel. 

d. Steps (b) and (c) are repeated for all the keypoints in the reference channel. 

6. Step 4 is repeated for all channel combinations as required. 

7. Steps 1 – 5 is repeated for all the objects. 

8. Rank each channel combination based on the degree of matching. Channel combination which 

has the least matching count receives a ‘rank 1’ and the channel combination with the most 

matching points receives a ‘rank 3’.  

9. Results are tabulated and analyzed. 

In this experiment we find the salient keypoints using the concept of matching keypoints between two 

channels. By assigning higher rank to the channel combination which has the least match, we find the 

measure of saliency between two channels. From this analysis we can find if two channels have 

keypoints which are completely different from each other. In conclusion, we will be able to find the 

channel combination in a color space which yields the most salient keypoints. 
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Chapter 5 : Data Preparation 

5.1 Requirements of the database 

The primary requirement for our dataset was to have color face images with frontal pose in different 

illumination conditions. We further looked for consistency in the frontal pose across all the 

illumination conditions. We also expected the face images to have uncluttered plain background. 

5.2 Face databases explored  

Several available face databases were surveyed based on the described requirements. The following 

list enumerates some of the face databases which were explored during the process of selecting the 

right dataset for our experiment: 

1. AR Face Database 

2. CMU Face Detection Database 

3. CMU Face Expression Database 

4. CMU Face Pose, Illumination, and Expression (PIE) Database 

5. FERET Color Database 

6. Georgia Tech Face Database 

7. MIT-CBCL Face Recognition Database 

8. MIT-CBCL Face Databases 

9. ORL Database of Faces 

10. The University of Oulu Physics-Based Face Database 

11. UMIST Face Database 

12. UCD Color Face Image (UCFI) Database for Face Detection 

13. Yale Face Database 

14. Yale Face Database B 
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15. Indian Face Database 

16. CVL Face Database 

17. GTAV Face Database 

We decided to use The University of Oulu Physics-Based Face Database as it met all our requirements. 

5.3 The University of Oulu Physics-Based Face Database (OPFD) 

This database contains 125 different faces each in 16 different camera calibration and illumination 

condition, an additional 16 if the person has glasses. The camera used to capture the images was a 3 

charge coupled device (CCD) Sony DXC-755P [14]. Four types of illumination conditions used were 

provided by a commercially available Macbeth SpectraLight II Luminaire source [14]:  

1. Horizon sunlight (incandescent, 2300 K; marked ‘H’). 

2. Incandescent A (CIE A, 2856 K; marked ‘A’),  

3. Fluorescent TL84 (4000 K; marked ‘T’), and 

4.  A daylight source (CIE D65, 6500 K; marked ‘D’).  

The illuminants used in the dataset are comparable to the illumination conditions in the real world [14]. 

The conditions in which this dataset was created was a dark room with a large diffusing 80% gray 

screen behind the sitting subject and a white plate was used for setting the white balance of the camera 

[14]. The setup for acquiring the dataset is shown in Figure 5.1. The imaged person was seated such 

that his or her nose coincides with the main axis of the camera. During image acquisition, the person 

was asked to keep his or her face in the same position, with the same facial expression, and to keep 

eyes opened [14]. Our method in all experiments reiterates the conditions in which the dataset was 

created. Hence, it is important for us to understand the steps in constructing this dataset. Before we 

state the steps involved in creating the database, it is necessary to recall importance of white balance 

settings in a camera. Setting white balance of a camera removes pseudo color casts in the captured 

image such that the objects which appear perceptually white are rendered white in the image [6]. 
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Figure 5.1: OPFD dataset creation setup [14] 

The images in the OPFD were obtained in the following manner [14]: 

1. Illuminant H is switched on. 

2. The camera is white balanced for this illuminant. 

3. The person’s image is captured. 

4. With the camera still white balanced for H, illuminants A, T, and D are switched on and the 

face is captured for each illuminant. Only one illuminant is switched on each time the image is 

taken. 

5. Steps 1–4 are repeated using A, T, and D as reference illuminants for calibration thus for each 

person 16 images were captured. 

The illumination source as described earlier is a light booth called the Macbeth SpectraLight II 

Luminaire.  
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The light booth is generally used to capture images of objects under different illumination. Figure 5.2 

shows an image of the light booth used in the OPFD experiment. All the images in the database were 

recorded in the BMP format. 

 

Figure 5.2: Macbeth SpectraLight II photo booth 

5.4 Preprocessing of images 

The images of the OPFD face database have headshots of objects under different illumination 

conditions. Our experiments deal with variation in the number of keypoints and features. We had to 

impose some restrictions and select images which are consistent in appearance. We do this to avoid 

any pseudo values of variation. If we are comparing the images of the same person in two different 

illumination conditions, the analysis on the number of keypoints should account for just the 

illumination variation. If we are trying to compare two images of the same person, one with normal 

pose in one illumination and another with eyes closed and head rotated in another illumination, the 

result of analyzing the variation in illumination is very likely to include the effect of head rotation and 

eye closure. This is not desirable. Hence we have gone through images of 125 people and chosen the 

ones which are consistent in the following aspects: 

1. Head position 

2. Retina position 

3. No intensive occlusion of the face region by facial beard or hairs 
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4. Steady pose for the object in all illumination conditions 

5. Eye is open in all the images for an object 

Figure 5.3 shows 16 images of a person captured under different white balance and illumination 

conditions. If there was inconsistency in any one image out of the 16 images per object (person), the 

whole object was rejected. We use the images of 35 objects in all our experiments. There are 16 images 

per person and we use 140 images per white balance. A total of 560 images are used in total. 

 

Figure 5.3: Images of a person from the OPFD face database. Used with permission from The 

University of Oulu, Center for Machine Vision Research, Finland.[14] 
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Once the suitable images were selected, the gray background and other non-essential aspects of the 

face were cropped using a Viola-Jones face detector.  

 

Figure 5.4: Removing the gray background and other non-essential aspects using Viola-Jones face 

detector 

All the 560 images were renamed. The first part of the name is composed of one or two alphabets 

unique to each object. The second part of the name is a number which indicates the illumination 

condition; (1) H, (2) A, (3) T and (4) D. The illumination conditions were arranged in increasing order 

of temperature. The renaming was done to facilitate easier access of images from Matlab and for 

additional data log preparation for the number of keypoints and features. 

 

 

 

 

 

  

Viola-Jones 

face detector 
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Chapter 6 : Results and Discussion 

6.1 Results for Keypoints Based Robustness Analysis 

6.1.1 Effect of Illumination 

6.1.1.1 RGB Color Space 

The results for inter-object stability index for fixed white balance and the overall stability index across 

white balance conditions in the RGB color space are shown in Table 6.1. Table 6.2 shows the 

normalized total number of keypoints categorized by white balance conditions. 

Table 6.1: Inter-object stability index and the overall stability index (OSII) for RGB color space 
WB R G B

H 90.5 164.7 303.7

A 88.5 137.5 275.1

T 70.2 183.3 419.5

D 69.7 197.4 456.3

OSII 11.3 25.9 87.8  

Table 6.2: Normalized total number of keypoints by white balance for RGB color space 

Normalized Total (WB) H A T D

R 880 882 838 723

G 988 1075 1094 834

B 541 669 720 373  

Figure 6.1(a) shows the results for inter-object stability index which is the average variation in the 

number of keypoints under illumination change for all objects under a particular white balance 

condition categorized by channels of the RGB color space. Each point for a color channel gives the 

average of variations taken from all the objects under the fixed white balance and color channel. For 

each white balance condition, the value of average standard deviation shows the stability of keypoints 

for images belonging to that white balance condition. From Figure 6.1(a), for R channel, we can say 

that the images from the T and D white balance conditions have the least average standard deviation. 

Hence, the keypoints rendered by these images are less sensitive to illumination compared to the 
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images from H and A white balance conditions. Similarly, we can say that the images in the A white 

balance condition are less sensitive to illumination change in both G and B channels. To comment on 

the overall stability of the each channel, we look at the standard deviation across white balance 

conditions as shown in Figure 6.1(b). The R channel has the least variation and is the most stable across 

white balance conditions. The normalized total number of keypoints is shown in Figure 6.1(c). The 

inter-object variation gives a global perspective for multiple objects grouped by white balance 

condition. Higher normalized total number of keypoints show that the images of a channel and a white 

balance condition have higher overall efficiency in rendering the keypoints. From the Figure 6.1(c) we 

can say that the G channel has the highest normalized number of keypoints in all the white balance 

conditions. Hence, when we consider the inter-object variation, G channel is best suited for varying 

illumination and fixed white balance and channel. 

6.1.1.2 YCbCr Color Space 

The results for average standard deviation for fixed white balance and the standard deviation across 

white balance conditions in the YCbCr color space are shown in Table 6.3. Table 6.4 shows the 

normalized total number of keypoints categorized by white balance conditions. 

Table 6.3: Inter-object stability index (IOSI) and the overall stability index (OSII)  for YCbCr color 

space 

WB Y Cb Cr

H 100.2 262.5 292.1

A 149.3 319.5 281.2

T 172.4 195.6 126.7

D 165.7 84.0 68.3

OSII 32.6 101.2 111.9  

Figure 6.2(a) shows the average variation in the number of keypoints under illumination change for all 

objects under a particular white balance condition categorized by channels of the YCbCr color space. 

We recall that the least value standard deviation is best suited given a channel and white balance 

condition. 
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Figure 6.1: Sensitivity of individual color channels to illumination variation when white balance is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSII)  (c) The normalized 

total number of keypoints in RGB channel 
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Table 6.4: Normalized total number of keypoints by white balance for YCbCr color space 

Normalized Total (WB) H A T D

Y 1077 1106 1077 854

Cb 810 789 777 703

Cr 757 677 579 484  

Considering images from particular white balance conditions in Figure 6.2(a), we can observe the 

following: 

1. The images from H white balance condition are most stable in Y channel 

2. The images from D white balance condition are most stable in Cb channel 

3. The images from D white balance condition are most stable in Cr channel 

The normalized total number of keypoints is shown in Figure 6.2(c). The analysis of normalized total 

number keypoints is similar as in 6.1.1.1. From Figure 6.2(c) we see that the Y channel yields the 

highest normalized number of keypoints and is best suited from the perspective of inter-object 

variation. 

6.1.1.3 HSV Color Space 

The results for average standard deviation for fixed white balance and the standard deviation across 

white balance conditions in the HSV color space are shown in Table 6.5. Table 6.6 shows the 

normalized total number of keypoints categorized by white balance conditions. 

Figure 6.3(a) shows the average variation in the number of keypoints under illumination change for all 

objects under a particular white balance condition categorized by channels of the HSV color space. 

When individual white balance conditions are considered, the images from white balance D, H and D 

are least sensitive to channels H, S and V respectively. Across white balances, we can observe from 

Figure 6.3(b) that the S channel is least sensitive to illumination variation. The normalized total number 

of keypoints is shown in Figure 6.3(c).  
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Figure 6.2: Sensitivity of individual color channels to illumination variation when white balance is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSII)  (c) The normalized 

total number of keypoints in YCbCr channel 
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Table 6.5: Inter-object stability index (IOSI) and the overall stability index (OSII) for HSV color 

space 

WB H S V

H 326.3 134.8 228.0

A 299.0 237.9 144.5

T 142.5 277.3 211.2

D 25.1 302.5 54.7

OSII 141.0 73.8 78.7  

Table 6.6: Normalized total number of keypoints by white balance for HSV color space 

Normalized Total (WB) H A T D

H 251 201 83 26

S 500 447 311 197

V 350 343 363 199  

The analysis of normalized total number keypoints is similar as in 6.1.1.1. The S channel has the 

maximum normalized total number of keypoints for images in H and A white balance conditions. The 

V channel performs best for images in T and D white balance conditions. 

6.1.2 Effect of White Balance 

6.1.2.1 RGB Color Space 

Table 6.7 shows the results of average standard deviation for fixed illumination and varying white 

balance conditions. It also shows the standard deviation across white balance conditions in the RGB 

color space. Table 6.8 shows the normalized total number of keypoints categorized by illumination 

conditions. 

Table 6.7: Inter-object stability index (IOSI) and the overall stability index (OSIW)  for RGB color 

space 
Illumination R G B

H 76.4 144.5 255.3

A 85.1 161.2 364.1

T 86.0 153.4 269.7

D 102.9 210.2 471.5

OSIW 11.1 29.4 100.0  

Figure 6.4(a) shows the average variation in the number of keypoints under white balance change for 
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Figure 6.3: Sensitivity of individual color channels to illumination variation when white balance is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSII)  (c) The normalized 

number of keypoints in HSV channel 
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Table 6.8: Normalized total number of keypoints categorized by illumination condition for RGB 

color space 

Normalized Total (ILL) H A T D

R 758 839 806 921

G 824 1000 1088 1079

B 300 585 757 661  

all objects under a particular illumination condition categorized by channels in the RGB color space. 

Here the average standard deviation can show the stability of the keypoints rendered by the images to 

white balance variation. From Figure 6.4(a), we can observe that the images in the H illumination 

condition have the least average standard deviation for all the channels in the RGB color space. From 

this, we can conclude that the keypoints from images of the H illumination condition are least sensitive 

to white balance change for all the channels. Figure 6.4(b) shows us the comparison of different 

channels’ sensitivity to change in white balance across the illumination conditions. We can see that the 

R channel is the least sensitive to white balance change across illumination conditions. The normalized 

total number of keypoints is shown in Figure 6.4(c). The analysis of normalized total number keypoints 

is similar as in 6.1.1.1. The normalized total number of keypoints are categorized for a given 

illumination and varying white balance conditions. The G channel has the highest number of keypoints 

from Figure 6.4(c) for the images in all the illumination conditions. 

6.1.2.2 YCbCr Color Space 

Table 6.9 shows the results of average standard deviation for fixed illumination and varying white 

balance conditions. It also shows the standard deviation across white balance conditions in the YCbCr 

color space. Table 6.10 shows the normalized total number of keypoints categorized by illumination 

conditions. 

Figure 6.5(a) shows the average variation in the number of keypoints under white balance change for 

all objects under a particular illumination condition categorized by channels in the YCbCr color space. 

Figure 6.5(b) shows us the comparison of different channels’ sensitivity to change in white balance 

across the illumination conditions. 
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Figure 6.4: Sensitivity of individual color channels to white balance variation when illumination is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSIW) (c) The normalized 

total number of keypoints in RGB channel 
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Table 6.9: Inter-object stability index (IOSI) and the overall stability index (OSIW) for HSV color 

space 
Illumination Y Cb Cr

H 126.5 104.8 76.5

A 148.8 109.0 87.5

T 158.5 139.7 248.4

D 118.0 281.7 290.1

OSIW 18.8 83.4 109.5  

Table 6.10: Normalized total number of keypoints by white balance for YCbCr color space 

Normalized Total (ILL) H A T D

Y 853 1016 1082 1163

Cb 674 657 741 1006

Cr 479 537 683 798  

We can observe that the Y channel is the least sensitive to white balance change across illumination 

conditions. The normalized total number of keypoints is shown in Figure 6.5(c). By looking at the 

inter-object variation, the Y channel yields the highest normalized total number of keypoints for images 

in all the illumination conditions. 

6.1.2.3 HSV Color Space 

Table 6.11 shows the results of average standard deviation for fixed illumination and varying white 

balance conditions. It also shows the standard deviation across white balance conditions in the HSV 

color space. Table 6.12 shows the normalized total number of keypoints categorized by illumination 

conditions. 

Table 6.11: Inter-object stability index (IOSI) and the overall stability index (OSIW) for HSV color 

space 

Illuminations H S V

H 27.6914 212.827 46.2087

A 359.4958 323.4001 82.6075

T 298.2344 254.94 228.4345

D 113.2428 114.4894 242.7104

OSIW 155.2477 87.4295 100.1026  
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Figure 6.5: Sensitivity of individual color channels to white balance variation when illumination is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSIW) (c) The normalized 

total number of keypoints in YCbCr channel 
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Table 6.12: Normalized total number of keypoints by white balance for HSV color space 

Normalized Total (ILL) H A T D

H 25 197 205 134

S 160 365 425 505

V 218 286 384 367  

Figure 6.6(a) shows the average variation in the number of keypoints under white balance change for 

all objects under a particular illumination condition categorized by channels in the HSV color space. 

Figure 6.6(b) shows us the comparison of different channels’ sensitivity to change in white balance 

across the illumination conditions. We can observe that the S channel is the least sensitive to white 

balance change across illumination conditions. The normalized total number of keypoints is shown in 

Figure 6.6(c). The analysis of normalized total number keypoints is similar as in 6.1.1.1. It can be seen 

from Figure 6.6(c) that the V channel has the maximum total number of keypoints for the images in 

the H illumination condition and the S channel has most total number of keypoints for images in A T 

D illuminations. 

6.1.3 Effect of White Balance and Illumination change 

6.1.3.1 RGB Color Space 

The effect of white balance and illumination change are analyzed in the RGB color space. The average 

standard deviation in this case is the mean variation in the number of keypoints considering all the 

illumination and white balance conditions together for each object, in a channel of the color space. 

From Figure 6.7(a), we can say that the channel R is least sensitive to white balance and illumination 

variation in overall. The most global analysis is given by the overall standard deviation in Figure 6.7(b). 

When the variation in number of keypoints is considered for all illuminations and white balances, we 

see that the overall inter-object stability of R channel is the best compared to other channels. Figure 

6.7(c) shows the global perspective with the normalized total number of keypoints. It can be seen that 

the G channel yields the maximum normalized total number of keypoints. 
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Figure 6.6: Sensitivity of individual color channels to white balance variation when illumination is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSIW) (c) The normalized 

total number of keypoints in HSV channel 
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Figure 6.7: Sensitivity of color channels to change in white balance and illumination variation (a) 

Inter-object stability index (IOSI) (b) The overall stability index (OSI) and (c) The normalized total 

number of keypoints in RGB channel 
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6.1.3.2 YCbCr Channel 

By examining the overall effect of white balance and illumination change, we can say that Y channel 

is least sensitive from Figure 6.8(a). The most global analysis is given by the overall standard deviation 

in Figure 6.8(b). The Cr channel has the most stability when overall inter-object stability is considered. 

Figure 6.8(c) shows the global perspective with the normalized total number of keypoints. It can be 

seen that the Y channel yields the most normalized total number of keypoints. 

6.1.3.3 HSV Channel 

By examining the overall effect of white balance and illumination change, we can say that V channel 

is least sensitive from Figure 6.9(a). The V channel is also least sensitive when the overall inter-object 

stability is considered in Figure 6.9(b). Figure 6.9(c) shows the global perspective with the normalized 

total number of keypoints. It can be seen that the S channel yields the most normalized total number 

of keypoints 

6.2 Results for Feature Based Robustness Analysis 

6.2.1 Effect of Illumination 

6.2.1.1 RGB Color Space 

The results for average standard deviation in the maximum NNDs for fixed white balance and the 

standard deviation across white balance conditions in the RGB color space are shown in Table 6.13.  

Table 6.14 shows the normalized total NNDs categorized by white balance conditions. 

Figure 6.10(a) shows the average variation in the maximum NNDs under illumination change for all 

objects under a particular white balance condition categorized by channels of the RGB color space. 

Each point for a color channel gives the average of variations in the maximum normalized number of 

dimensions taken from all objects under the fixed white balance and color channel.  
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Figure 6.8: Sensitivity of color channels to change in white balance and illumination variation (a) 

Inter-object stability index (IOSI) (b) The overall stability index (OSI) and (c) The normalized total 

number of keypoints in YCbCr channel 
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Figure 6.9: Sensitivity of color channels to change in white balance and illumination variation (a) 

Inter-object stability index (IOSI) (b) The overall stability index (OSI) and (c) The normalized total 

number of keypoints in HSV channel 
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Table 6.13: Inter-object stability index (IOSI) the overall stability index (OSII) for RGB color space 
WB R G B

H 1.5251 2.4351 33.9898

A 1.4944 1.7146 10.6337

T 1.42 2.2064 34.0034

D 1.7036 3.8842 39.9888

OSII 0.1203 0.9325 12.9909  

Table 6.14: Normalized total NNDs by white balance for RGB color space 

Normalized Total (WB) H A T D

R 15 15 16 18

G 14 12 12 16

B 37 23 32 34  

Figure 6.10(b) gives us the comparison of different channel’s sensitivity to change in illumination 

across the white balance conditions. The average standard deviation indicated the stability of feature 

dimensions rendered by the feature points of the channel. For each channel and white balance 

condition, the value of average standard deviation shows the sensitivity of the number of dimensions 

to change in illumination condition. The normalized total NNDs is shown in Figure 6.10(c). We can 

see that the blue channel has the most normalized total NNDs and is efficient when a global inter-

object perspective is considered. 

6.2.1.2 YCbCr Color Space 

The results for average standard deviation in the maximum NNDs for fixed white balance and the 

standard deviation across white balance conditions in the YCbCr color space are shown in Table 6.15. 

Table 6.16 shows the normalized total NNDs categorized by white balance conditions. 

Table 6.15: Inter-object stability index (IOSI) the overall stability index (OSIW) for the YCbCr color 

space 

WB Y Cb Cr

H 1.2268 5.3552 8.9269

A 1.7434 5.9259 9.1906

T 2.1215 4.0552 4.445

D 2.9555 2.1244 3.8805

OSII 0.7282 1.6865 2.8381  

(b) 
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Figure 6.10: Sensitivity of individual color channels to illumination variation when white balance is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSII) (c) The normalized 

total NNDs in RGB color space 
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Table 6.16: Normalized total NNDs by white balance for YCbCr color space 

Normalized Total (WB) H A T D

Y 12 12 12 16

Cb 17 18 18 19

Cr 20 22 23 27  

Figure 6.11(a) shows the average variation in the maximum NNDs under illumination change for all 

objects under a particular white balance condition categorized by channels of the YCbCr color space. 

Figure 6.11(b) gives us the comparison of different channels’ sensitivity to change in illumination 

across the white balance conditions. We can see that Y channel has the least value of standard deviation 

across white balances. Hence, we can say that the dimensions in the Y channel are less sensitive to 

illumination change across white balance conditions. The normalized total NNDs is shown in Figure 

6.11(c). The Cr channel yields the most normalized total NNDs for images in all the white balance 

conditions. 

6.2.1.3 HSV Color Space 

The results for average standard deviation in the maximum NNDs for fixed white balance and the 

standard deviation across white balance conditions in the HSV color space are shown in Table 6.17. 

Table 6.18 shows the normalized total NNDs categorized by white balance conditions. 

Table 6.17: Inter-object stability index (IOSI) the overall stability index (OSIW) for HSV color space 

WB H S V

H 39.73 7.758 30.8314

A 39.3422 32.5002 17.091

T 30.0732 39.1723 18.2474

D 24.602 39.1218 14.9248

OSII 7.3902 14.9195 7.172  

Table 6.18: Normalized total NNDs by white balance for HSV color space 

Normalized Total (WB) H A T D

H 77 79 81 84

S 28 41 57 78

V 49 44 46 70  

(a) 



79 

 

 

 

 

Figure 6.11: Sensitivity of individual color channels to illumination variation when white balance is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSII) (c) The normalized 

total NNDs in YCbCr color space 
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Figure 6.12(a) shows the average variation in the maximum NNDs under illumination change for all 

objects under a particular white balance condition categorized by channels of the HSV color space. 

Figure 6.12(b) gives us the comparison of different channels’ sensitivity to change in illumination 

across the white balance conditions. Across white balances, we can see that the dimensions from H 

and V channel are least sensitive to change in illumination conditions. The normalized total NNDs is 

shown in Figure 6.12(c). We can see that the H channel has the most normalized total NNDs for images 

from all the white balance conditions. 

6.2.2 Effect of White Balance 

6.2.2.1 RGB Color Space 

Table 6.19 shows the results of average standard deviation in the maximum NNDs for fixed 

illumination and varying white balance conditions. It also shows the standard deviation across white 

balance conditions in the RGB color space. Table 6.20 shows the normalized total NNDs categorized 

by illumination conditions. 

Table 6.19: Inter-object stability index (IOSI) the overall stability index (OSIW) for RGB color space  
Illumination R G B

H 1.8 3.3 35.0

A 1.7 2.5 36.1

T 1.9 1.9 9.4

D 1.6 2.8 35.5

OSIW 0.1 0.6 13.1  

Table 6.20: Normalized total NNDs by white balance for RGB color space 

Normalized Total (ILL) H A T D

R 17 16 16 14

G 16 13 12 13

B 34 35 20 36  

Figure 6.13(a) shows the average variation in the maximum NNDs under white balance change for all 

objects under a particular illumination condition categorized by channels of the RGB color space.  



81 

 

 

 

 

Figure 6.12: Sensitivity of individual color channels to illumination variation when white balance is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSII) (c) The normalized 

total NNDs in HSV channel 
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Figure 6.13(b) shows us the comparison of different channels’ sensitivity to change in white balance 

across the illumination conditions. We observe that the R and G channels have the same standard 

deviation across illumination conditions. The normalized total NNDs is shown in Figure 6.13(c). The 

B channel has the maximum normalized total NNDs for images from all the illumination conditions. 

6.2.2.2 YCbCr Color Space 

Table 6.21 shows the results of average standard deviation in the maximum NNDs for fixed 

illumination and varying white balance conditions. It also shows the standard deviation across white 

balance conditions in the YCbCr color space. Table 6.22 shows the normalized total NNDs categorized 

by illumination conditions. 

Table 6.21: Inter-object stability index (IOSI) the overall stability index (OSIW) for YCbCr color 

space 

Illuminations Y Cb Cr

H 2.5 2.9 4.4

A 2.2 3.2 4.1

T 2.0 3.2 7.8

D 1.2 4.8 8.9

OSIW 0.6 0.9 2.4  

Table 6.22: Normalized total NNDs by white balance for YCbCr color space 

Normalized Total (ILL) H A T D

Y 16 13 12 11

Cb 20 20 18 14

Cr 28 25 21 19  

Figure 6.14(a) shows the average variation in the maximum NNDs under white balance change for all 

objects under a particular illumination condition categorized by channels of the YCbCr color space. 

Figure 6.14(b) shows us the comparison of different channels’ sensitivity to change in white balance 

across the illumination conditions. We observe that the Y channel is least sensitive to change in white 

balance conditions across illuminations. The normalized total NNDs is shown in Figure 6.14(c). The 

Cr channel has the most normalized total NNDs for images from all the illumination conditions. 
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Figure 6.13: Sensitivity of individual color channels to white balance variation when illumination is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSIW) (c) The normalized 

total NNDs in RGB color space 
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Figure 6.14: Sensitivity of individual color channels to white balance variation when illumination is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSIW) (c) The normalized 

total NNDs in YCbCr channel 
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6.2.2.3 HSV Color Space 

Table 6.23 shows the results of average standard deviation in the maximum NNDs for fixed 

illumination and varying white balance conditions. It also shows the standard deviation across white 

balance conditions in the HSV color space. Table 6.24 shows the normalized total NNDs categorized 

by illumination conditions. 

Table 6.23: Inter-object stability index (IOSI) the overall stability index (OSIW) for HSV color space 
Illumination H S V

H 21.305 35.1132 13.5155

A 44.6551 41.7379 15.3135

T 39.3371 36.0671 28.1078

D 25.6331 5.9853 29.9638

OSIW 11.0568 16.0949 8.5073  

Table 6.24: Normalized total NNDs by white balance for HSV color space 

Normalized Total (ILL) H A T D

H 86 72 78 85

S 77 55 44 27

V 64 51 46 48  

Figure 6.15(a) shows the average variation in the maximum NNDs under white balance change for all 

objects under a particular illumination condition categorized by channels of the HSV color space. 

Figure 6.15(b) shows us the comparison of different channels’ sensitivity to change in white balance 

across the illumination conditions. The stability of features in the V channel are seen to be the best for 

variation in white balance across illumination conditions. The normalized total NNDs is shown in 

Figure 6.15(c). The H channel has the highest normalized total for the images from all the illumination 

conditions. 

6.2.3 Effect of White Balance and Illumination 

6.2.3.1 RGB Color Space 

Figure 6.16 (a) shows the overall standard deviation for the maximum NNDs in the RGB channel  
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Figure 6.15: Sensitivity of individual color channels to white balance variation when illumination is 

constant (a) Inter-object stability index (IOSI) (b) Overall stability index (OSIW) (c) The normalized 

total NNDs in HSV channel 
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considering both white balance and illumination change. This shows the most global perspective of 

looking at the variation in the maximum NNDs. It can be seen that both R and G channels have the 

least value of standard deviation and are considered stable when the inter-object perspective is 

considered. The most global analysis is given by the overall standard deviation in Figure 6.16(b). Here 

the variation in the maximum NNDs are considered for all illuminations and white balances, we see 

that the overall inter-object stability of R and G channels are best compared to the B channel. Figure 

6.16(c) shows the global perspective with the normalized total number of keypoints. It can be seen that 

the B channel yields the maximum normalized total maximum NNDs. 

6.2.3.2 YCbCr Channel 

Figure 6.17(a) shows the overall standard deviation for the maximum NNDs in the YCbCr channel 

considering both white balance and illumination change. This shows the most global perspective of 

looking at the variation in the maximum NNDs. It can be seen that Y channel has the least value of 

standard deviation and is considered stable when the inter-object perspective is considered. The most 

global analysis is given by the overall standard deviation in Figure 6.17(b). Here the variation in the 

maximum NNDs are considered for all illuminations and white balances, we see that the overall inter-

object stability of Y channel is the most. Figure 6.17 (c) shows the global perspective with the 

normalized total number of keypoints. It can be seen that the Cr channel yields the maximum 

normalized total maximum NNDs. 

6.2.3.3 HSV Channel 

Figure 6.18(a) shows the overall standard deviation for the maximum NNDs in the HSV channel 

considering both white balance and illumination change. It can be seen that V channel has the least 

value of standard deviation and is considered stable when the inter-object perspective is considered. 

The most global analysis is given by the overall standard deviation in Figure 6.18(b). Figure 6.18(c) 

shows the global perspective with the normalized total number of keypoints. 
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Figure 6.16: Sensitivity of color channels to change in white balance and illumination variation (a) 

Inter-object stability index (IOSI) (b) The overall stability index (OSI) and (c) The normalized total 

number of keypoints in RGB channel 
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Figure 6.17: Sensitivity of color channels to change in white balance and illumination variation (a) 

Inter-object stability index (IOSI) (b) The overall stability index (OSI) and (c) The normalized total 

number of keypoints in YCbCr channel 
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Figure 6.18: Sensitivity of color channels to change in white balance and illumination variation (a) 

Inter-object stability index (IOSI) (b) The overall stability index (OSI) and (c) The normalized total 

number of keypoints in HSV channel 
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Here the variation in the maximum NNDs are considered for all illuminations and white balances, we 

see that the overall inter-object stability of V channel is the most. It can be seen that the H channel 

yields the maximum normalized total maximum NNDs. 

6.3 Results for Salient Keypoints in Combination of Color Channels 

The method of ranking as discussed in section 4.4.2.3 is essence of finding the salient keypoints in a 

combination of color channel. For two channels in a color space, the lowest number of matches 

indicates most salient points and we assign rank 1 to it. The channel combination with highest number 

of matches is assigned rank 3. We will analyze the color spaces on the basis of this ranking method. 

All the images belonging to one white balance conditions are analyzed together to get the overall 

ranking. Further, the images are categorized by illumination conditions and the percentages are 

computed for each illumination condition. 

6.3.1 RGB Color Space 

Table 6.25 shows the ranking for the combination of channels in the RGB color space. For the overall 

analysis. We can see that RB channel has highest percentage of rank in all the white balance conditions. 

This indicates that the RB channel combination has the most salient keypoints. The percentages for 

individual illumination condition for each white balance conditions are shown in Table 6.25. 

6.3.2 YCbCr Color Space 

Table 6.26 shows the ranking for the combination of channels in the YCbCr color space. For the overall 

analysis. We can see that CbCr channel has highest percentage of rank in all the white balance 

conditions. This indicates that the CbCr channel combination has the most salient keypoints. The 

percentages for individual illumination condition for each white balance conditions are shown in Table 

6.26. 
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Table 6.25: Ranking percentages for salient keypoints in the RGB color space channel combinations 

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 3 97 1 0 1 99

2 1 96 3 2 13 86 1

3 99 1 0 3 87 13 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 3 97 1 0 3 97

2 0 97 3 2 0 97 3

3 100 0 0 3 100 0 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 0 100 1 0 0 100

2 3 97 0 2 51 49 0

3 97 3 0 3 49 51 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 9 91 1 0 0 100

2 0 91 9 2 0 100 0

3 100 0 0 3 100 0 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 8 94 1 0 41 93

2 33 59 6 2 21 38 7

3 67 33 0 3 79 21 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 31 74 1 0 94 100

2 0 69 26 2 0 6 0

3 100 0 0 3 100 0 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 0 100 1 0 66 74

2 0 100 0 2 0 34 26

3 100 0 0 3 100 0 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 0 100 1 0 3 97

2 54 46 0 2 0 97 3

3 46 54 0 3 100 0 0

Rank RG(%) GB(%) RB(%) Rank RG(%) GB(%) RB(%)

1 0 0 100 1 0 0 100

2 77 23 0 2 86 14 0

3 23 77 0 3 14 86 0

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

 

  

Table 6.26: Ranking percentages for salient keypoints in the YCbCr color space channel 

combinations 

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 99 1 1 2 99 0

2 41 1 59 2 27 1 71

3 59 0 41 3 71 0 29

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 97 3 1 0 100 0

2 3 3 94 2 0 0 100

3 97 0 3 3 100 0 0

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 100 0 1 0 100 0

2 94 0 6 2 17 0 83

3 6 0 94 3 83 0 17

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 100 0 1 9 94 0

2 66 0 34 2 91 6 0

3 34 0 66 3 0 0 100

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 100 0 1 0 100 0

2 0 0 100 2 0 0 100

3 100 0 0 3 100 0 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 96 4 1 0 87 15

2 1 4 95 2 0 13 85

3 99 0 1 3 100 0 0

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 86 14 1 0 77 31

2 0 14 86 2 0 23 69

3 100 0 0 3 100 0 0

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 100 0 1 0 83 17

2 0 0 100 2 0 17 83

3 100 0 0 3 100 0 0

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 100 0 1 0 89 11

2 6 0 94 2 0 11 89

3 94 0 6 3 100 0 0

Rank YCb CbCr YCr Rank YCb CbCr YCr

1 0 100 0 1 0 100 0

2 0 0 100 2 0 0 100

3 100 0 0 3 100 0 0

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

 

6.3.3 HSV Color Space 

Table 6.27 shows the ranking for the combination of channels in the HSV color space. For the overall 

analysis.  
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We can see that HV channel has highest percentage of rank for images in the H and A white balance 

conditions and the HS channel has the highest saliency ranking percentage for images in the T and D 

white balance conditions. The percentages for individual illumination condition for each white balance 

conditions are shown in Table 6.27. 

Table 6.27: Ranking percentages for salient keypoints in the HSV color space channel combinations 

Rank HS SV HV Rank HS SV HV

1 19 6 78 1 44 4 59

2 44 30 22 2 36 19 36

3 36 64 0 3 21 77 6

Rank HS SV HV Rank HS SV HV

1 49 0 51 1 86 0 26

2 51 0 49 2 14 0 74

3 0 100 0 3 0 100 0

Rank HS SV HV Rank HS SV HV

1 11 11 80 1 37 0 77

2 49 26 20 2 63 0 23

3 40 63 0 3 0 100 0

Rank HS SV HV Rank HS SV HV

1 17 0 86 1 51 17 31

2 77 6 14 2 26 14 46

3 6 94 0 3 23 69 23

Rank HS SV HV Rank HS SV HV

1 0 11 94 1 0 0 100

2 0 89 6 2 40 60 0

3 100 0 0 3 60 40 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank HS SV HV Rank HS SV HV

1 76 9 41 1 65 11 47

2 16 12 38 2 25 6 29

3 8 79 21 3 10 83 24

Rank HS SV HV Rank HS SV HV

1 69 31 46 1 69 17 46

2 0 17 11 2 6 3 23

3 31 51 43 3 26 80 31

Rank HS SV HV Rank HS SV HV

1 91 0 40 1 83 26 37

2 9 0 60 2 3 9 14

3 0 100 0 3 14 66 49

Rank HS SV HV Rank HS SV HV

1 51 0 74 1 86 0 20

2 49 0 26 2 14 14 66

3 0 100 0 3 0 86 14

Rank HS SV HV Rank HS SV HV

1 91 6 6 1 23 0 86

2 9 31 54 2 77 0 14

3 0 63 40 3 0 100 0

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance

 

 

6.3.4 HSV with RGB Color Space 

The results for hybrid color spaces are presented in this section for channels belonging to the 

combination of HSV and RGB color space.  

Using the ranking technique described earlier, we can see that the HB channel combination 

outperforms all other channel combinations in Table 6.28.  

Similarly, SB and VB channels yield most salient keypoints as seen in Table 6.29 and Table 6.30. 

1. H with RGB Color Space 
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Table 6.28: Hybrid channel ranking percentages for salient keypoints in the HSV and RGB color 

space channel combinations 

Rank HR HG HB Rank HR HG HB

1 0 0 100 1 0 0 100

2 88 8 0 2 73 17 0

3 12 92 0 3 27 83 0

Rank HR HG HB Rank HR HG HB

1 0 0 100 1 0 0 100

2 71 17 0 2 46 29 0

3 29 83 0 3 54 71 0

Rank HR HG HB Rank HR HG HB

1 0 0 100 1 0 0 100

2 97 3 0 2 60 29 0

3 3 97 0 3 40 71 0

Rank HR HG HB Rank HR HG HB

1 0 0 100 1 0 0 100

2 86 9 0 2 100 0 0

3 14 91 0 3 0 100 0

Rank HR HG HB Rank HR HG HB

1 0 0 100 1 0 0 100

2 97 3 0 2 86 11 0

3 3 97 0 3 14 89 0

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

 

Rank HR HG HB

1 4 11 86

2 46 10 0

3 50 79 14

Rank HR HG HB

1 3 26 63

2 0 17 0

3 97 57 37

Rank HR HG HB

1 11 20 80

2 17 9 0

3 71 71 20

Rank HR HG HB

1 3 0 100

2 66 14 0

3 31 86 0

Rank HR HG HB

1 0 0 100

2 100 0 0

3 0 100 0

Overall

T Illumination Condition

For images in T white balance

D Illumination Condition

H Illumination Condition

A Illumination Condition

 

 

2. S with RGB Color Space 

Table 6.29: Hybrid channel ranking percentages for salient keypoints in HSV and RGB channels 

Rank SR SG SB Rank SR SG SB

1 0 0 100 1 0 0 100

2 66 33 0 2 69 29 0

3 34 67 0 3 31 71 0

Rank SR SG SB Rank SR SG SB

1 0 0 100 1 0 0 100

2 100 0 0 2 77 14 0

3 0 100 0 3 23 86 0

Rank SR SG SB Rank SR SG SB

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank SR SG SB Rank SR SG SB

1 0 0 100 1 0 0 100

2 66 31 0 2 100 0 0

3 34 69 0 3 0 100 0

Rank SR SG SB Rank SR SG SB

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

 

Rank SR SG SB

1 5 6 88

2 76 4 0

3 19 90 12

Rank SR SG SB

1 20 26 51

2 6 14 0

3 74 60 49

Rank SR SG SB

1 0 0 100

2 100 0 0

3 0 100 0

Rank SR SG SB

1 0 0 100

2 100 0 0

3 0 100 0

Rank SR SG SB

1 0 0 100

2 100 0 0

3 0 100 0

Overall

T Illumination Condition

For images in T white balance

D Illumination Condition

H Illumination Condition

A Illumination Condition

 

 

3. V with RGB Color Space 
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Table 6.30: Hybrid channel ranking percentages for salient keypoints in HSV and RGB channels 

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 56 44 0 2 49 51 0

3 44 56 0 3 51 49 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 31 69 0 2 0 100 0

3 69 31 0 3 100 0 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 100 0 0 2 97 3 0

3 0 100 0 3 3 97 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 91 9 0 2 100 0 0

3 9 91 0 3 0 100 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 24 76 0 2 0 100 0

3 76 24 0 3 100 0 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

Rank VR VG VB Rank VR VG VB

1 0 0 100 1 0 0 100

2 94 6 0 2 0 100 0

3 6 94 0 3 100 0 0

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance

 

6.3.5 YCbCr with RGB 

The results for hybrid color spaces are presented in this section for channels belonging to the 

combination of YCbCr and RGB color space. Using the ranking technique described earlier, we can 

see that the YB channel combination outperforms all other channel combinations in Table 6.31. 

Similarly, CbB and CrB channels yield most salient keypoints as seen in Table 6.32 and Table 6.33. 

1. Y with RGB 

Table 6.31: Hybrid channel ranking percentages for salient keypoints in YCbCr and RGB channels 

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 91 9 0 2 99 1 0

3 9 91 0 3 1 99 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 97 3 0 2 100 0 0

3 3 97 0 3 0 100 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 100 0 0 2 97 3 0

3 0 100 0 3 3 97 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 69 31 0 2 100 0 0

3 31 69 0 3 0 100 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 94 6 0 2 61 39 0

3 6 94 0 3 39 61 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 77 23 0 2 0 100 0

3 23 77 0 3 100 0 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 100 0 0 2 51 49 0

3 0 100 0 3 49 51 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 100 0 0 2 97 3 0

3 0 100 0 3 3 97 0

Rank YR YG YB Rank YR YG YB

1 0 0 100 1 0 0 100

2 100 0 0 2 97 3 0

3 0 100 0 3 3 97 0

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance
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2. Cb with RGB 

Table 6.32: Hybrid channel ranking percentages for salient keypoints in YCbCr and RGB channels 

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 91 8 0 2 99 1 0

3 9 92 0 3 1 99 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 97 0 0 2 97 3 0

3 3 100 0 3 3 97 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 97 3 0 2 97 3 0

3 3 97 0 3 3 97 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 71 29 0 2 100 0 0

3 29 71 0 3 0 100 0

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

 

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 93 7 0 2 61 38 0

3 7 93 0 3 39 62 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 86 14 0 2 0 100 0

3 14 86 0 3 100 0 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 86 14 0 2 49 49 0

3 14 86 0 3 51 51 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank CbR CbG CbB Rank CbR CbG CbB

1 0 0 100 1 0 0 100

2 100 0 0 2 97 3 0

3 0 100 0 3 3 97 0

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

 

 

3. Cr with RGB 

Table 6.33: Hybrid channel ranking percentages for salient keypoints in YCbCr and RGB channels 

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 56 43 0 2 57 41 0

3 44 57 0 3 43 59 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 14 80 0 2 0 100 0

3 86 20 0 3 100 0 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 100 0 0 2 34 57 0

3 0 100 0 3 66 43 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 9 91 0 2 94 6 0

3 91 9 0 3 6 94 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 40 59 0 2 3 96 0

3 60 41 0 3 97 4 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 0 100 0 2 0 100 0

3 100 0 0 3 100 0 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 3 97 0 2 0 100 0

3 97 3 0 3 100 0 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 57 37 0 2 0 100 0

3 43 63 0 3 100 0 0

Rank CrR CrG CrB Rank CrR CrG CrB

1 0 0 100 1 0 0 100

2 100 0 0 2 11 83 0

3 0 100 0 3 89 17 0

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance
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6.3.6 YCbCr with HSV 

The results for hybrid color spaces are presented in this section for channels belonging to the 

combination of YCbCr and HSV color space. Using the ranking technique described earlier, we can 

see that the YV channel combination outperforms all other channel combinations in Table 6.34. 

Similarly, CbV and CrV channels yield most salient keypoints as seen in Table 6.35 and Table 6.36. 

1. Y with HSV 

Table 6.34: Hybrid channel ranking percentages for salient keypoints in YCbCr and HSV channels 

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 98 2 0 2 93 7 0

3 2 98 0 3 7 93 0

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 91 9 0 2 100 0 0

3 9 91 0 3 0 100 0

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 100 0 0 2 71 29 0

3 0 100 0 3 29 71 0

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank YH YS YV Rank YH YS YV

1 18 3 92 1 26 4 94

2 66 5 3 2 57 6 1

3 16 92 5 3 17 89 5

Rank YH YS YV Rank YH YS YV

1 37 11 74 1 60 9 80

2 14 6 6 2 23 3 3

3 49 83 20 3 17 89 17

Rank YH YS YV Rank YH YS YV

1 34 0 94 1 43 9 94

2 66 0 6 2 17 11 3

3 0 100 0 3 40 80 3

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 100 0 0 2 89 11 0

3 0 100 0 3 11 89 0

Rank YH YS YV Rank YH YS YV

1 0 0 100 1 0 0 100

2 86 14 0 2 100 0 0

3 14 86 0 3 0 100 0

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance
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2. Cb with HSV 

Table 6.35: Hybrid channel ranking percentages for salient keypoints in YCbCr and HSV channels 

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 91 9 0 2 91 9 0

3 9 91 0 3 9 91 0

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 66 34 0 2 100 0 0

3 34 66 0 3 0 100 0

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 100 0 0 2 66 34 0

3 0 100 0 3 34 66 0

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

 

Rank CbH CbS CbV Rank CbH CbS CbV

1 14 5 94 1 21 6 90

2 64 8 1 2 49 11 2

3 21 87 5 3 30 83 8

Rank CbH CbS CbV Rank CbH CbS CbV

1 26 20 77 1 46 9 74

2 11 9 3 2 11 6 3

3 63 71 20 3 43 86 23

Rank CbH CbS CbV Rank CbH CbS CbV

1 31 0 97 1 40 17 86

2 69 0 3 2 17 9 6

3 0 100 0 3 43 74 9

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 100 0 0 2 66 29 0

3 0 100 0 3 34 71 0

Rank CbH CbS CbV Rank CbH CbS CbV

1 0 0 100 1 0 0 100

2 77 23 0 2 100 0 0

3 23 77 0 3 0 100 0

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

 

 

3. Cr with HSV 

Table 6.36: Hybrid channel ranking percentages for salient keypoints in YCbCr and HSV channels 

Rank CrH CrS CrV Rank CrH CrS CrV

1 1 0 100 1 1 0 100

2 96 2 0 2 84 14 0

3 3 98 0 3 14 86 0

Rank CrH CrS CrV Rank CrH CrS CrV

1 0 0 100 1 3 0 100

2 100 0 0 2 94 3 0

3 0 100 0 3 3 97 0

Rank CrH CrS CrV Rank CrH CrS CrV

1 3 0 100 1 3 0 100

2 86 9 0 2 97 0 0

3 11 91 0 3 0 100 0

Rank CrH CrS CrV Rank CrH CrS CrV

1 0 0 100 1 0 0 100

2 100 0 0 2 46 54 0

3 0 100 0 3 54 46 0

Rank CrH CrS CrV Rank CrH CrS CrV

1 0 0 100 1 0 0 100

2 100 0 0 2 100 0 0

3 0 100 0 3 0 100 0

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

T Illumination Condition T Illumination Condition

For images in H white balance For images in A white balance

Overall Overall

D Illumination Condition D Illumination Condition

 

Rank CrH CrS CrV Rank CrH CrS CrV

1 13 5 96 1 19 4 94

2 69 9 0 2 60 9 1

3 18 86 4 3 21 87 5

Rank CrH CrS CrV Rank CrH CrS CrV

1 29 20 83 1 49 3 89

2 17 20 0 2 31 6 3

3 54 60 17 3 20 91 9

Rank CrH CrS CrV Rank CrH CrS CrV

1 20 0 100 1 29 11 86

2 80 0 0 2 29 17 3

3 0 100 0 3 43 71 11

Rank CrH CrS CrV Rank CrH CrS CrV

1 3 0 100 1 0 0 100

2 97 0 0 2 80 14 0

3 0 100 0 3 20 86 0

Rank CrH CrS CrV Rank CrH CrS CrV

1 0 0 100 1 0 0 100

2 83 17 0 2 100 0 0

3 17 83 0 3 0 100 0

D Illumination Condition D Illumination Condition

H Illumination Condition H Illumination Condition

A Illumination Condition A Illumination Condition

Overall Overall

T Illumination Condition T Illumination Condition

For images in T white balance For images in D white balance
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Chapter 7 : Future Work 

1. The format of all the images used in our experiment were in bitmap format. This is an 

uncompressed image format. The scope of this framework can be broadened by analyzing the 

images in JPEG and other image formats. 

2. We analyze the robustness of channels in a color space using our framework. However, the 

reason behind the variation in the number of keypoints and features is yet to be explored. 

3. The classification results should be compared with the results of salient keypoints between two 

color channels in a color space.  
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Appendix: Permission Letters 

From University of Oulu, Computer Vison Lab 

From:  Abdenour Hadid <hadidab@hotmail.com> 

To:  Jayesh Mohan <jmohan3@tigers.lsu.edu> 

Dear Jayesh Mohan, 

Yes, you have granted the permission to use the UOPB face database for your thesis research.  

I kindly remind you that, for legal reasons and for the privacy of the database participants, only faces 

1, 3, 14, 25, 94 and 111 may be used for presentation or publication. Also, please cite one our 

publications to refer to the database. 

All best, 

Prof. Abdenour Hadid 

University of Oulu 

Finland 

From Dr.Omer Soysal 

From: Omer Soysal <omsoysal@lsu.edu> 

To:   Jayesh Mohan <jmohan3@tigers.lsu.edu> 

Dear Jayesh Mohan, 

I permit you to use the UOPB face database in accordance with the permissions from Professor 

Abdenour. Please follow the necessary rules and cite the reference paper. 

Dr. Ömer Muhammet Soysal 

Research Assistant Professor, Project Supervisor; Highway Safety Research Group (affiliated with 

Department of Information Systems and Decision Sciences), Adjunct Faculty; School of Electrical 

Engineering and Computer Science 

Louisiana State University 

3535 Nicholson Extension, ISDS Research Lab, Room# 100G, Baton Rouge, LA 70803 

Ph: 225-578-6297    Fx: 225-578-0240    Em: omsoysal@lsu.edu Web: 

http://projects.bus.lsu.edu/omer 

  



103 

 

Vita 

Jayesh was born in Tumkur, India. After graduating from St.Claret College in 2006, he studied 

electronics and communication engineering at Nagarjuna College of Engineering and Technology, 

Visvesvaraya Technological University, India, from 2006 through 2010 toward obtaining his Bachelor 

of Engineering degree. He is currently a Masters student in the Department of Electrical & Computer 

Engineering at Louisiana State University, Baton Rouge, where he has been a graduate student since 

Fall 2011. 


