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ABSTRACT 

Stability, protection, and operational restrictions are important factors to be taken into 

account in a proper integration of distributed energy. The objective of this research is presenting 

advanced controllers for small-scale power systems with penetration of renewable energy 

sources resources to ensure stable operation after the network disturbances. 

Power systems with distributed energy resources are modeled and controlled through 

applying nonlinear control methods to their power electronic interfaces in this research. The 

stability and control of both ac and dc systems have been studied in a multi-source framework.  

The dc distribution system is represented as a class of interconnected, nonlinear discrete-

time systems with unknown dynamics. It comprises several dc sources, here called subsystems, 

along with resistive and constant-power loads (which exhibit negative resistance characteristics 

and reduce the system stability margins.)  Each subsystem includes a dc-dc converter (DDC) and 

exploits distributed energy resources (DERs) such as photovoltaic, wind, etc. Due to the power 

system frequent disturbances this system is prone to instability in the presence of the DDC 

dynamical components and constant-power loads. On the other hand, designing a centralized 

controller may not be viable due to the distance between the subsystems (dc sources.)  In this 

research it is shown that the stability of an interconnected dc distribution system is enhanced 

through decentralized discrete-time adaptive nonlinear controller design that employs neural 

networks (NNs) to mitigate voltage and power oscillations after disturbances have occurred.  

The ac power system model is comprised of conventional synchronous generators (SGs) 

and renewable energy sources, here, called renewable generators (RGs,) via grid-tie inverters 

(GTI.) A novel decentralized adaptive neural network (NN) controller is proposed for the GTI 

that makes the device behave as a conventional synchronous generator. The advantage of this 
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modeling is that all available damping controllers for synchronous generator, such as AVR 

(Automatic Voltage Regulator) + PSS (Power System Stabilizer), can be applied to the 

renewable generator.  

Simulation results on both types of grids show that the proposed nonlinear controllers are 

able to mitigate the oscillations in the presence of disturbances and adjust the renewable source 

power to maintain the grid voltage close to its reference value. The stability of the interconnected 

grids has been enhanced in comparison to the conventional methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

There has been an increasing trend towards the integration of renewable energy resources 

into the power networks in recent years, in order to address increasing electricity demands and 

reduce environmental pollution due to the widespread utilization of fossil fuels. The power grid 

components interaction and the impact of renewable energy sources including solar, hydro, 

biogas, biomass and wind, have been of the most important and challenging subjects of the 

power industry during the past few years, especially in micro grids [1]-[6]. Important factors to 

be taken into account in a proper integration of distributed energy resources include stability, 

protection, and operational restrictions to ensure stable operation after faults, load changes, and 

other network disturbances. High penetration levels of wind and solar energy can change power 

system dynamic characteristics, significantly affecting the stability of the system [2]-[4]. 

Excitation control, FACTS devices, and other power system controllers can play important roles 

in improving dynamic performance and maintaining the power system stability and reliability 

[4].   

Many distributed energy resources (DERs) such as photovoltaic (PV,) variable-speed 

wind turbines, and storage devices can be connected to the dc grid through dc-dc converters 

(DDCs.) Therefore, the dc distribution system has attracted much attention as there is only one 

voltage conversion mechanism (i.e., dc-dc converter) between the power generators and the grid. 

This reduces system costs, as opposed to ac grids that require an additional dc-ac conversion. 

However, the dc distribution system employs constant power loads, which reduce grid stability 

margins by exhibiting negative resistance characteristics in the system. 
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Both ac and dc grids take advantage of power electronic interfaces that interface the 

renewable energy sources to the grid.  

Each subsystem in dc distribution system, represents a distributed energy resource (such 

as photovoltaic source) connected to the grid through a dc-dc buck converter as shown in Fig. 

1.1. 

 

Fig. 1.1 photovoltaic source connected to dc grid through dc-dc buck converter. 

Ac grids include distributed energy resources including conventional synchronous 

generators and renewable energy sources, here called renewable generators. Each renewable 

generator comprises a photovoltaic source connected to an inverter via a dc-dc converter as 

represented in Fig. 1.2.  

 

Fig. 1.2 Grid-connected renewable generator. 

The existence of dynamic elements in DDC, such as capacitor and inductor as well as 

low-inertia power resources, such as photovoltaic (PV) systems, can cause undesired oscillatory 
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behaviors when disturbances occur in both ac and dc power systems. Particularly, in micro grids, 

faults, load changes, and other network disturbances affect the entire system more severely than 

in larger grids. Moreover, the frequent changes in the renewable power and loads can potentially 

aggravate the grid’s stability.  

On the other hand, a variety of control mechanisms may be applied to the grids with 

penetration of renewable energy sources to improve the stability of the grid. In order to design a 

linear controller the small signal model should be driven by linearization around an operating 

point. Linear controllers are easier to design and realize while nonlinear controllers are more 

advanced and can potentially lead to better performance and accuracy. These mechanisms can be 

implemented in centralized or decentralized forms. A centralized controller requires the 

information of the entire system while in decentralized controller only the local information in 

each subsystem is needed. In an interconnected system, a decentralized controller is usually 

preferred because it permits reduced amount of information exchange between subsystems, 

which leads to less time delays and computational burden. In addition, the controllers can be 

discrete-time or continuous-time. In discrete-time control, the controller is applied in certain time 

steps, which is usually equal to the sampling time while in continuous-time domain the controller 

is assumed to be applied continuously. The discrete-time controller is preferred for computer 

implementation because it considers the discrete-time natures of the hardware.   

 Advanced controllers can take advantage of adaptive mechanisms as opposed to fixed 

controller designs. In fixed controllers, the operational range is limited and relies on system’s 

nature and operator expertise. In adaptive controllers, the controller adjusts automatically as 

needed during operation and can accommodate a wider range of operational conditions without 

much human interference.  
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1.2 Past Work  

Several methods have been proposed aiming at a stabilized grid and often rely on small 

signal analysis [7]-[11] using linear systems control approaches; that is, they are only valid 

around a small neighborhood of an operating point. Also, they have not considered the 

interconnected nature of general dc grids where several loads and generations interact. The cases 

of a multi-load system have been studied in [5]-[6] and a large-signal stability method is 

proposed to ensure the entire system’s stability. However, these methods rely on a constant 

voltage dc bus (Fig. 1.1), an assumption that may not be realized in many grids such as micro 

grids. The main drawback of the method presented in [5] is its centralized controller that requires 

obtaining the information from all subsystems.  

Most of decentralized control schemes have been developed for nonlinear continuous-

time systems [12]-[14] with less work in discrete-time systems [15]-[16] while the latter is 

preferred for computer implementation. For example, it is well-known that a stabilizing 

proportional controller for strictly proper plants can be unstable if discretized for the computer 

implementation [17]. Hence, the discrete-time natures of the system and the controller are 

explicitly taken into account in dc grid modeling and control design. 

1.3 Research Objective and Contributions 

This work aims at addressing aforementioned issues presenting novel decentralized 

nonlinear controllers for both interconnected ac and dc grids. In contrast with the conventional 

approaches, the proposed method considers the nonlinear nature of the entire grid. The proposed 

controllers are designed in decentralized forms and thus require minimal data acquisition. 

Specifically, component interactions and nonlinearities of the interconnected grid and low-inertia 

distributed energy resources (such as solar arrays) have been considered in the control design. 
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For all the proposed control methods, the stability of the entire grid is proven through thorough 

math.  

Fig 1.3 explains this research that comprises two major parts; modeling and control. In 

modeling, the grid components including renewable sources (photovoltaic cells,) loads, and 

network are modeled in both ac and dc systems. Nonlinear nature of the components is 

considered in the modeling. Next, decentralized adaptive neural network controllers are designed 

for both continuous- and discrete-time systems. State and output feedback controller designs in 

decentralized framework are proposed to stabilize the grids. 

 

Fig 1.3 Research aspects flowchart 

Each dc-dc converter in dc grid is modeled as a dynamical subsystem and the stability of 

the entire grid is investigated. The decentralized controller achieves transient stability and 

steady-state requirements based only on local information and measurements and the adaptive 

neural networks (NNs) are employed to approximate the unknown nonlinearities.   
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The renewable generator (RG) in the ac grid is modeled to behave as a synchronous 

generator (SG) with similar dynamics where the dc-link capacitor acts as the energy storage 

similar to the rotor of a SG. With the proposed modeling, the GTI resembles a synchronous 

generator with excitation control. The advantage of this modeling is that all available excitation 

control methods for synchronous generator can be applied to the renewable generator equipped 

with the proposed GTI excitation-like mechanism. Thus, the GTI can be controlled by excitation-

like mechanisms such as AVR (Automatic Voltage Regulator) and PSS (Power System 

Stabilizer), as well as their nonlinear counterparts.  

The contributions of this dissertation are: 

- Nonlinear modeling and decentralized control of dc grids through adaptive neural 

network state feedback controller in discrete-time with proven stability 

- Nonlinear modeling and decentralized control of dc grids through adaptive neural 

network output feedback controller in discrete-time with proven stability 

- Nonlinear modeling and decentralized control of ac grids through adaptive neural 

network state feedback controller in continuous-time with proven stability 

The rest of the dissertation is arranged in the following sequence. In Chapter 2 a dc 

interconnected network has been modeled in discrete-time domain and a decentralized neural 

network controller with state feedback method is proposed. This kind of controller can utilize 

output feedback method as proposed in Chapter 3. In Chapter 4 an ac network has been 

considered in continues-time domain and has been stabilized by a decentralized neural network 

controller using state feedback method. Chapter 5 includes the conclusion and suggestions for 

the future work. 
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1.4 Definitions 

Neural network (NN) approximation [18]  

A general function )(xf  where 
mx   can be written as 

)()()( xxVWxf TT   [14-15] in the compact set m  (neural network approximation 

domain) with )(x  denotes neural network functional reconstruction error vector, 
1 NRW  

and 
NmRV   represent target neural network weight matrices. 

Mean-value theorem [19] 

Given an arc (differentiable) between two endpoints, there is at least one point at which 

the tangent to the arc is parallel to the secant through its endpoints: 
ab

afbf
cf






)()(
)(  

 

Fig 1.4 Arc and secant between two endpoints a and b 

Uniform ultimate bounded (UUB) [18] 

Consider the dynamical system )()1( xfkx   with nx   being a state vector. Let the 

initial time step be 0k  and initial condition be )( 00 kxx  . Then, the equilibrium point ex  is said 
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to be UUB if there exists a compact set 
nS   so that for all Sx 0  there exists a bound B 

and a time step ),( 0xBK  such that Bxtx e )(  for Kkk  0 .  

Constant power loads (CPLs) [7] 

Power electronic converters when tightly regulated, behave as constant power loads (CPLs), 

which exhibit negative impedance characteristics and consequently reduce the grid stability 

margins. 
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CHAPTER 2 

DECENTRALIZED DISCRETE-TIME ADAPTIVE NEURAL 

NETWORK CONTROL OF INTERCONNECTED DC DISTRIBUTION 

SYSTEM 
 

2.1 Introduction 

Many distributed energy resources (DERs) such as photovoltaic (PV,) variable-speed 

wind turbines, and storage devices can be connected to the dc grid through dc-dc converters 

(DDCs.) Therefore, the dc distribution system has attracted much attention [1]-[7], as there is 

only one voltage conversion mechanism (i.e., dc-dc converter) required between the power 

generators and the grid. This reduces system costs, as opposed to ac grids that require an 

additional dc-ac conversion. However, the dc distribution system employs constant power loads, 

which reduce grid stability margins [2]-[9]. Also, the existence of dynamic elements in DDC, 

such as capacitor and inductor as well as low-inertia power resources, such as photovoltaic (PV) 

systems, can produce undesired oscillatory behaviors when disturbances occur. Particularly, in 

micro grids, faults, load changes, and other network disturbances affect the entire system more 

severely than larger grids. Moreover, the frequent changes in the renewable power and loads can 

potentially aggravate the grid’s stability. The main idea in [2]-[6] is to stabilize the system by 

“reshaping” the load impedance or the source impedance to improve the stability margins. These 

studies often rely on small signal analysis; that is, they are only valid around a small 

neighborhood of an operating point. Some other studies have looked into system stability using 

large signal analysis [7]-[11] and proposed nonlinear stabilization techniques. In [7], loop 

cancellation technique is applied to all converters loaded by CPLs to cancel the nonlinearity and 

obtain a stable system. However, the method relies on the existence of resistive loads. Also, 

synergetic and sliding-mode control techniques have been proposed in [12].  
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The aforementioned techniques present approaches to overcome the system instability; 

however, they have not considered the interconnected nature of general dc grids where several 

loads and generators interact. Examples of such systems include medium-size dc distributed 

generation systems and micro grids that employ multiple DERs.  

The cases of a multi-load system have been studied in [13]-[14] and a large-signal 

stability method is proposed to ensure the entire system’s stability. In these methods, a 

stabilizing power, which is determined by the relevant controller, must be absorbed by each load. 

However, the method relies on a constant voltage dc bus, an assumption that may not be realized 

in many dc power systems. The main drawback of the method presented in [13] is its centralized 

controller that requires obtaining the information from all subsystems. In an interconnected 

system, a decentralized control is usually preferred because it permits reduced amount of 

information exchange between subsystems, which leads to less time delays and reduces 

computational burden.  

In recent years, there has been a continuous trend towards the decentralized control of 

interconnected nonlinear systems [15]-[19] for their increased reliability over the centralized 

control structure as mentioned earlier. The decentralized control schemes have been developed 

primarily for nonlinear continuous-time systems [15]-[17] with less work in discrete-time 

systems [18]-[19]. In discrete-time control, the controller is applied in certain time steps, which 

is usually equal to the sampling time while in continuous-time domain the controller is assumed 

to be applied continuously. The discrete-time controller is preferred for computer 

implementation [20] because it considers the discrete-time natures of the hardware.  For 

example, it is well-known that a stabilizing proportional controller for strictly proper plants can 
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be unstable if discretized for the computer implementation [21]. Hence, the discrete-time natures 

of the system and the controller have to be explicitly taken into account in the design.  

Limited work has been reported in the literature for decentralized control of dc systems to 

enhance a grid’s stability. In [22] a decentralized predictive controller in discrete-time is 

developed and applied to dc-dc converters connected in parallel branches; however, interactions 

and nonlinearities of the interconnected dc grid and low-inertia DERs (such as solar arrays) are 

not considered in the control design. In [23] a decentralized controller approach is proposed for 

coordinated supplementary control of active and reactive power in high-voltage dc links in ac 

grids using linear controller design techniques. Finally, voltage droop control is proposed based 

on load sharing and linear system theory to stabilize the dc voltage [24]-[25]. 

A novel decentralized nonlinear neural network controller is proposed in this chapter for 

the interconnected dc grid in discrete-time. The dc grid is modeled as an interconnection of 

DERs connected to constant-power and resistive loads through DDCs. Then, adaptive NN 

controllers with online learning capabilities are employed to overcome uncertainties in the 

DDCs’ dynamics and stabilize the output voltages in the event disturbances occur in the grid. 

Each DDC is modeled as a discrete-time dynamical subsystem and the stability of the entire dc 

grid is investigated. Though the proposed modeling and controller design can be applied to a 

variety of DERs, specific attention is paid to solar arrays to address low-inertia distribution 

systems and micro grids. Through the Lyapunov stability method the stability of all the DDCs’ 

output voltages in the interconnected dc grid is proven using local states measurement.  

In this chapter, first, the dc distribution grid topology is presented in section 2.2 followed 

by the developed DDC discrete-time model. In section 2.3, dynamic model of the buck converter 

is derived in canonical form. The dc network is then presented in the form of a nonlinear 
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interconnected discrete-time system in section 2.4, while it’s associated decentralized NN 

controller development using state feedback is proposed in section 2.5. Simulation results on a 

low-voltage distribution grid and concluding remarks are presented in sections 2.6 and 2.7, 

respectively. 

2.2 DC Grid Model 

The N-bus interconnected dc grid comprising n subsystems (dc-dc converters) and “N - 

n” load buses is depicted in Fig. 2.1. Each subsystem represents a distributed energy resource 

connected to the grid through a dc-dc converter that is modeled by dynamical equations. The 

subsystems interconnect through the dc network that is governed by algebraic load-flow 

equations. Thus, the dc grid can be represented by, generally nonlinear, differential-algebraic 

equations. When converted to discrete-time model, the dc grid is modeled by difference-

algebraic equations. In this section, the buck converter in continuous-current mode (CCM) 

operation is considered; however, other types of DDCs can be utilized and modeled in a similar 

way.  

It is important to mention that boost converters are more attractive due to their ability to 

increase the output voltage that requires lower solar array voltage leading to fewer panels; 

however, their operating range is very limited [26],[27]. The advantage of the buck converter is 

its greater stability since unlike in the boost converter, output voltage in the buck converter is 

proportional to the duty cycle and does not grow exponentially, and thus, the duty cycle has a 

greater control range. In low-voltage applications, solar voltage connected through a step-down 

buck converter is conventional. Also, solar voltages up to 600V [28] are feasible through 

stacking the solar panels which in turn reduces the wiring connection losses in the panels due to 

lower currents [26]. On the other hand, if needed, voltage magnification can be provided by 
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using the forward converter that takes advantage of both transformer action and buck converter 

voltage adjustment. The forward converter can be modeled in a similar manner to the buck 

converter where the output voltage/current is multiplied/divided by the forward transformer’s 

turns ratio. 

 

Fig. 2.1 N-bus dc distribution system, n generator buses and N-n non-generator buses, with load 

PL,i on bus ‘i’. 

 

A typical buck converter topology that can interface a DER with the dc grid is 

represented in Fig. 2.2. Consider the converter’s input and output capacitors’ voltages, iinv ,  and 

ioutv , , and the inductor’s current iLi ,  (Fig. 2.2) as the subsystem’s state variables. Then, the 

dynamical equations describing the i-th subsystem (i.e., the i-th DDC) at time step kT 

(discretized in the switching period T ) can be shown by 

)(])()([))1(( ,

)(

,

)1(

,
1
,, kTvdttidttiCTkv iin

Tdk

kT iL

Tk

kT iiniiniin
i

 
  

)(])()([))1(( ,

)1(

,

)(

,
1

, kTidttvdttvLTki iL

Tk

kT iout

Tdk

kT iiniiL
i

 
             

)())()(())1(( ,

)1(

,,
1
,, kTvdttitiCTkv iout

Tk

kT ioutiLioutiout  
                                                                     (1)                                 
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where index ni 1  represents the subsystem (DDC) number, n  is the total number of 

subsystems , T and id  are the converter switching period and duty cycle, respectively, and iL , 

iinC ,  and ioutC , , are the converter’s inductor, input capacitor, and output capacitor values, 

respectively. In addition, iini ,  is the input current provided by the DER, and k is the discrete step 

( k .)  

Remark 1. Note that in the conventional DDC modeling the effects of the voltage and current 

variations during each switching cycle are ignored leading to the simplified equations  

)()]()([))1(( ,,,,, kTvkTidkTiCTTkv iiniLiiiniiniin                  

)()]()([))1(( ,,,, kTikTvkTvdLTTki iLioutiiniiiL                   

)()]()([))1(( ,,,,, kTvkTikTiCTTkv ioutioutiLioutiout  .                                                                  (2) 

From now on, the switching time T is removed from the time index for simplicity; for instance, 

)(, kTv iin  is shown by )(, kv iin . 

 

Fig. 2.2 Dc-dc buck converter. 

Remark 2. Output current )(, ki iout  in (1) generally depends on the grid’s bus voltage vector 

T
Nnoutout vvvvv ],,,,,,[ 21,1,  . However, grid voltages T

Nvvv ],,,[ 21   can be obtained from 
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DDC output voltage vector T
noutoutout vvv ],,,[ ,2,1,   by solving the load-flow equations for 

T
Nvvv ],,,[ 21  .  

In the next section, the discrete-time interconnected dc grid model will be obtained. 

2.3 Buck Converter Discrete-Time Model 

In this section, the buck converter discrete-time model (1) is represented in Brunovsky 

canonical form [29]. The presented modeling and proposed controller aim at stabilizing the buck 

converter output voltage in an interconnected dc network and in the presence of PV power 

generators as the source of electric power. Thus, no storage is considered in the system model to 

avoid extra costs to the network. Also, no high-power constant dc source, such as rectified ac-dc 

power, is assumed in the grid to include isolated micro grids. As the network undergo faults and 

disturbances, the dc voltage fluctuates in the network affecting the solar power generation in a 

nonlinear fashion which could potentially lead to the entire network instability and voltage 

collapse. Thus, in this work the goal is to stabilize the converter output voltages through an 

adaptive control scheme by using the learning capability of the NNs leading to an enhanced 

stability of such interconnected dc grids. The proposed controller alters the converter’s duty 

cycle to attain the stability through an adaptive scheme while taking the converter input and 

output voltages and currents as the only measurable states to the selected converter; thus, no 

communications are assumed between the converters to simplify the controller structure. 

In this section, several steps are carried out to convert dynamics (1) to a standard 

controllable representation. First, error dynamics are derived around the steady-state operating 

points. Next, the unknown functions in the error dynamics are expanded and elaborated. 

Subsequently, new converter dynamic representation is presented by assigning the converter 
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output voltage as the controlled variable and a supplementary duty cycle as the control input. 

Finally, a discussion on the stability of the converter unobservable state is carried out. 

Recall that each DDC, which connects a DER to the dc grid, is considered as a 

subsystem. Equations (1) model buck converter ‘i’ dynamics as functions of subsystem state 

variables T
ioutiLiini kvkikvkx )](),(,)([)( ,,,  (values defined at the beginning of the switching 

interval.) Subtracting the steady-state values oix  T
ioutoiLoiino viv ],,[ ,,,  from the actual values, 

the state error vector can be calculated as T
ioutiLiinoiii kvkikvxkxkx )](ˆ),(ˆ,)(ˆ[)()(ˆ ,,, . Also, 

)(ˆ
, ki iin  iinoiin iki ,, )(   and ioutoioutiout ikiki ,,, )()(ˆ    are the converter input and output current errors, 

respectively.  

In this work, the errors are aimed to be made zero that in turn makes the converter output 

voltage approach its steady-state value. This procedure is conducted through synthesizing an 

additional duty cycle id̂  (defined later) to be added to the steady-state duty cycle iod ,  mitigating 

the errors. The scheme stabilizes the network around the nominal converter output voltage in the 

presence of the grid disturbances. 

Dynamics ))1((ˆ , Tkv iin  , ))1((ˆ
, Tki iL  , and )))1((ˆ , Tkv iout   in (1) are in general functions 

of the state error vector )(ˆ kxi  and output current error )(ˆ
, ki iout ; however, it is difficult to obtain 

closed-form representations of these dynamics, and thus, these functions are unknown. 

Subsequently, the error dynamics are represented as unknown functions of the errors  

)),(ˆ())1((ˆ 1, iiiin dkxhkv   

)),(ˆ())1((ˆ
2, iiiL dkxhki   
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))(ˆ())(ˆ())1((ˆ ,3, kikxhkv ioutiiiout  .                                                                            (3) 

As mentioned earlier, since the integrals in (1) cannot be easily converted to closed-form 

functions of the states without simplification mentioned in Remark 1, functions (.),1 ih , (.),2 ih , 

(.),3 ih , and (.)i are unknown. While, (.),1 ih , (.),2 ih  and (.),3 ih  are functions of the converter 

state errors )(ˆ kxi  (available at converter ‘i’ location,) (.)i  is a function of the entire grid state 

errors since )(ˆ
, ki iout  depends on the other converters states, as explained in Remark 2. These 

states are not available at converter ‘i’ location due to the controllers’ decentralized structure. 

Next, for the convenience of control design, dynamics (3) are presented in canonical 

form. One can take )(ˆ , kv iout  along with its next step value as new state variables 
T

iii ],[ ,2,1    

for converter ‘i’ and perform input-output feedback linearization [29] as follows  

)(ˆ)( ,,1 kvk iouti   

)()1(ˆ)1( ,2,,1 kkvk iiouti     

)2(ˆ)1( ,,2  kvk iouti .                                                                                                        (4) 

According to (1) (and (2),) in obtaining )2(ˆ , kv iout  it is noted that the future step of 

output current ( )1(ˆ
, ki iout ) is needed that cannot be measured. As explained earlier (Remark 2,) 

the output current can be obtained as a function of all subsystems’ output voltages; i.e., 

 )1(ˆ
, ki iout ))1(ˆ,),1(ˆ( ,1,  kvkv noutouti  . Thus, )1(ˆ

, ki iout  is a function of 

)(k T
n kk )](,),([ 1    according to (4). Consequently, )1(,2 ki  in (4) can be expressed as 
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))(()),(ˆ()1( ,4,2 kdkxhk iiiii    where )),(ˆ(,4 iii dkxh  ))1(ˆ(,3 kxh ii  is obtained from 

the last equation in (3).  

Output current )1(ˆ
, ki iout  (and thus, function ))(( ki  ) cannot be computed since 

other DDCs’ states are not available at subsystem ‘i’ location. Function ))(( ki   depends on the 

entire system state vector )(k and is called the interconnection term [30] that is a function of all 

the converters’ states, some of which are unavailable. 

Next, by utilizing mean-value theorem [31] around ioi dd , , function )),(ˆ(,4 iii dkxh  

can be rewritten as  

))(ˆ())(ˆ())(ˆ()),(ˆ(,4 kxukxgkxfdkxh iiiiiiiii                                                                           (5) 

where iod ,  is the steady-state duty cycle, ii du ˆ  is the state feedback control input, ioii ddd ,
ˆ  , 

))(ˆ( kxf ii  )),(ˆ( ,,4 ioii dkxh , and ))(ˆ( kxg ii
)ˆ(

,4
, iiio ddd

ii dh


  with id  being an appropriate 

function of id̂ . Therefore, according to (4) and (5), converter state-space equations can be 

rewritten in canonical form as  

)()1( ,2,1 kk ii         

))(()())(ˆ())(ˆ()1(,2 kkukxgkxfk iiiiiii                                                                        (6) 

with ii du ˆ  as the subsystem’s input and unknown nonlinear functions ))(ˆ( kxf ii , ))(ˆ( kxg ii , 

and )(i . 

In summary, new representation (6) is presented that involves local states )(,1 ki , 

)(,2 ki , and state error vector )(ˆ kxi  as well as generally unavailable grid states )(,2 kj  for 
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ijnj  ;,,1 . Also, due to unknown functions involved in dynamic representation (1), 

))(ˆ( kxf ii , ))(ˆ( kxg ii , and )(i  are unknown. 

Dynamics represented in (4) are only of order two while the converter original dynamics 

(1) are of order three. That is, one of the dynamics has been neglected in this procedure. With 

respect to the design variable )(ˆ , kv iout , the additional dynamic is unobservable and is known as 

internal dynamics [29]. The internal dynamics constitute the zero dynamics when the designed 

observable states (here 
T

iii ],[ ,2,1   ) tend to zero and must be stable to assure the overall 

network stability (minimum-phase system [29].) In the proposed design, )(ˆ , kv iin  is taken as the 

subsystem zero dynamic, that is, 

))(ˆ())1((ˆ 1, kxhkv iiin  .                                                                                                       (7) 

Input current iini ,  is fed to the converter from a DER and can be considered as a function 

of converter input voltage )( ,, iiniiin vi  . The characteristics of function (.)i  play an important 

role in attaining stable internal dynamic, which will be discussed in section V. In order to 

achieve stable internal dynamic, the DER requires certain design considerations, as will be 

explained.  

Remark 3. In order to assure system stability, the following DDC properties are elaborated and 

utilized. First, it is worthwhile to mention that )(, kv iin  (DER interface voltage) has a maximum. 

Also, as this work investigates the voltage and power fluctuations, it is reasonable to assume that 

)(, kv iin  stays away from zero. These result in max,min, ))(ˆ(0 iiii gkxgg  . For convenience, 

if the simplified model of Remark 1 is considered, ))(ˆ( kxg ii  is bounded between 



 

22 

 

min,,,
2

min, )( iinioutii vCLTg   and max,ig  max,,,
2 )( iiniouti vCLT  . Second, according to (3) in 

all subsystems the interconnection terms )(i  are functions of output current errors and 

consequently have small values as long as the step time (or equivalently DDC switching time) is 

small. For example, using the simplified model, a switching frequency of 10 kHz and output 

capacitor of 10 mF introduces a factor of 0.01 to the output current error. Further reduction in the 

step time T and/or an increase in the output capacitor size reduces )(i . 

It is noteworthy that the buck converter model in discontinuous-current mode (DCM) can 

be represented in a similar manner to dynamics (1) as 

)(])()([))1(( ,

)(

,

)1(

,
1
,, kTvdttidttiCTkv iin

Tdk

kT iL

Tk

kT iiniiniin
i

 
  

)())()(())1(( ,

)1(

,,
1
,, kTvdttitiCTkv iout

Tk

kT ioutiLioutiout  
 . 

Note that the discrete inductor current is zero at all sampling times (beginning of 

switching cycle) and can be removed from the states since one may solve for the current using 

input and output voltages at discrete steps. Also, the unknown dynamics from the DCM 

operation can be represented in the form of equations (6). Though the focus is only on the 

converter CCM operation, the NN controller developed in the next section may be applied to 

both continuous and discontinuous system representations since the utilized approximation 

property of the NN holds for both types of systems [29] as will be  

2.4 Discrete-Time Interconnected System Background 

A class of discrete-time interconnected systems consisting of n subsystems (DDCs) can 

be represented in canonical form as 

)11);()1( ,1,   lpkk ipip      
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))(()())(ˆ())(ˆ()1(, kkukxgkxfk iiiiiiil    

)()( ,1 kky ii                                                                                                                      (8) 

for ni 1  where T
ilii ],,[ ,,1    is the state error vector of subsystem ‘i’ after conducting 

input-output feedback linearization, l is the order of the subsystem ( 2l  according to model 

(4),) ))(ˆ( kxf ii  denotes internal dynamics, ))(ˆ( kxg ii  is the input gain and ))(( ki   represents 

the interconnection effects with TT
n

T
],,[ 1    and ix̂  is the original subsystem states errors 

from which the input-output feedback linearization was derived as explained in (4) and (6). 

Functions ))(ˆ( kxf ii  and ))(ˆ( kxg ii  can in general be nonlinear functions of states. It is desired 

to design a controller that stabilizes   at the origin ( 0 .) Thus, filtered error is defined as 

)(]1[)( kkr i
T

ii                                                                                     (9) 

where T
ilii ],,[ ,1,1     and i,1  through il ,1  are chosen in such a way that place the poles 

of the characteristic equation 12
,1,2,1)( 

  ll
ilii ssss    inside the unit disc. In 

constructing filtered error )(kri  in (9) for the DDC an estimate of state )(,2 ki  maybe used by 

employing simplified model of Remark 1 as illustrated in Fig. 2.3. This doesn’t affect the 

convergence of the DDC output voltage since filtered error utilizes state )(,1 ki  as well. The 

design proceeds by two assumptions and one definition.  

Assumption 1- Functions ))(( kxg ii  are bounded and away from zero for ni 1 . That is,  

max,min, ))(ˆ(0 iiii gkxgg                                                                                  (10) 



 

24 

 

where min,ig  and max,ig  are positive real constants. This is a valid assumption for the dc grid as 

discussed in Remark 3 and is less restrictive than unity control gain ( 1))(ˆ( kxg ii ) in the past 

literature [18]. 

Assumption 2 [29]- The interconnection terms are bounded by a function of the states such that 

 


N

j jijii 1 20)(   where i0  and ij  are positive constants for ni 1 . The filtered 

error )(kr j  converges to zero whenever states )(kj  converge to zero. Similar to continuous-

time systems [30] this further implies that 

 


n

j jiji
n

j jiji rr
101

)()(                                                                      (11) 

where ij  is a positive function while i0  and ij  are positive constants for ni 1  and 

lj 1 . In addition, the effects of the interconnection terms are assumed weak compared to the 

subsystem dynamics. That is, i0  and ij  are small values, which is valid in the dc grid as 

explained in Remark 3. This assumption is less stringent than that of [18] with constant bounds 

on the interconnection terms. 

Definition. (Uniform Ultimate Bounded (UUB)) [29]. Consider the dynamical system 

)()1( xfkx   with nx   being a state vector. Let the initial time step be 0k  and initial 

condition be )( 00 kxx  . Then, the equilibrium point ex  is said to be UUB if there exists a 

compact set 
nS   so that for all Sx 0  there exists a bound B and a time step ),( 0xBK  

such that Bxkx e )(  for Kkk  0 . 
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2.5 Nonlinear Discrete-Time Controller Design and Stability Analysis 

In this section, a state feedback controller for the discrete-time interconnected system (1) 

is presented and NN function approximation [29] is employed to overcome the unknown 

dynamics of each subsystem. The NN controller utilizes an adaptive NN weight tuning scheme 

which is conducted online with no need to utilize large data sets as in offline training schemes.   

A. Nonlinear Controller Design 

The filtered error dynamic in (9) can be derived using (8) as  

)1(]1[)1(  kkr i
T

ii       

.
))(ˆ(

))((

))(ˆ(

]0[))(ˆ(
))(ˆ(













 





kxg

k
u

kxg

kxf
kxg

ii

ii
i

ii

i
T

iii
ii


                                                          (12) 

The goal is to achieve asymptotically stable filtered error dynamics in the form of 

)())(()1( krkxgKkr iiiii   (with max,10 ii gK  ) in the absence of the interconnection terms. 

Thus, one can define the stabilizing control as  

)(krKuuu iiidii 


                                                                                                                 (13) 

where                                                                        

 )(]0[))(ˆ())(ˆ( 1 kkxfkxgu i
T

iiiiiid   .                                                                  (14) 

In practice, the internal dynamics ))(ˆ( kxf ii  and input gain ))(ˆ( kxg ii  may be uncertain 

or difficult to obtain as explained in Section 2.3, and thus, idu  is unavailable. Thus, NN function 

approximation property is employed to approximate idu  [29] using the available states as 

 )(]0[))(ˆ())(ˆ( 1 kkxfkxgu i
T

iiiiiid  
))(),(ˆ())(),(ˆ( kkxkkx iiiiii

T
i         (15)  
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where i  is the target NN weight matrix, (.)i  is the activation function and a basis function 

[31], and (.)i  is the NN function approximation error that satisfies max,(.) ii    [29] in a 

compact set   comprising all possible variations of variables ]ˆ,ˆ,ˆ[ˆ ,,, ioutiLiini vivx  . In practice, 

only an estimation of the target NN weights i  is available.  

From now on, for simplicity, i  and i  are utilized to represent ))(ˆ( kxii  and 

))(ˆ( kxii , respectively. Thus, idu  is approximated as idû , which renders controller iu  in (13) as  

)()(ˆ)(ˆ krKkkrKuu iii
T
iiiidi                                                                                    (16) 

where )(ˆ kT
i  is the NN weight estimation matrix. The block diagram of the converter’s NN 

controller is depicted in Fig. 2.3. In the figure all the input variables are discretized at the sample 

time kT. 

 

Fig. 2.3 Converter NN controller. 
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B. Stability Analysis 

By replacing iu  from (16) in (12), the filtered error dynamic becomes 

)(]0[))(ˆ()1(]1[)1( kkxfkkr i
T

iiii
T

ii    

  ))(()()(ˆ))(ˆ( kkrKkkxg iiii
T
iii   .                                                                          (17) 

The weight estimation error is defined as iii   ˆ~
, and thus, by adding and subtracting 

idu , (17) can be rewritten as 

  )(()(
~

))(()1( kkrKkxgkr iiiii
T

iiii   .                                                                      (18) 

Next, define the NN weight update law [32] as 

)1()(ˆ)1(ˆ  krkk iiii
T

i                                                                                  (19) 

where 10  i  is a positive design constant. Subtracting the target weights from (19), one has 

)1()(
~

)1(
~

 krkk iiii
T

i  .                                                                                (20) 

Provided that the NN weight update is obtained by (19) and control gains iK  and i  in 

(16) and (19) are chosen properly, the states ip,  approach zero for all ni 1  and lp 1  in 

UUB fashion; i.e, they stay in close proximity of the origin. Unknown nonlinearities in the 

subsystems are approximated by NNs whose weights are calculated using (19). 

The stability of the nonlinear discrete-time interconnected system (1) in the presence of 

unknown dynamics ))(ˆ( kxf ii  and input gain ))(ˆ( kxg ii , and unknown interconnection terms 

))(( ki   for ni 1  is proven by showing the stability of weight estimation errors )(
~

ki  and 

the filtered errors )(kri  for all ni 1  and is given in Appendix A. The filtered error )(kri , and 

consequently )(ki , converge to zero for all ni 1  as explained.  
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Next, one should assure that zero dynamics )(ˆ , kv iin  (as described in Section 2.3) are 

stable for ni 1  when the observable states 
T

iii ],[ ,2,1  
 
are zero. In order to prove the 

stability of the zero dynamic, here the simplified model of Remark 1 is used for convenience. 

According to Remark 1, the zero dynamic is driven by 

)(ˆ])())(([)1(ˆ ,,,,, kvkidkvCTkv iiniLiiiniiiniin  .                                                                         (21) 

When the output variable )(ˆ , kv iout  is zero, the controlled system (4) is at the equilibrium; that is, 

ioutoiout vkv ,, )(  , iLoiL iki ,, )(  , and ioi dkd ,)(  , and thus, observable states 0)( ki . 

Consequently, at equilibrium, (21) becomes 

)(ˆ]))(([)1(ˆ ,,,,,, kvidkvCTkv iiniLoioiiniiiniin  .                                                                         (22) 

Consider the Lyapunov function candidate )(ˆ 2
, kv iin . Then, the first difference of the 

Lyapunov function is  

)(ˆ)1(ˆ 2
,

2
, kvkv iiniin  .                                                                                                           (23) 

By using (22), (23) can be calculated as 

)(ˆ]))(([)(
2

,
2

,,,
2

, kvidkvCT iiniLoioiiniiin 

)(ˆ)(ˆ]))(([2
2

,,,,,, kvkvidkvCT iiniiniLoioiiniiin                                                                          (24) 

which results in 

2
,,,

2
, ]))(([)( iLoioiiniiin idkvCT        

)(ˆ]))(([2 ,,,,, kvidkvCT iiniLoioiiniiin  .                                                                                     (25) 

For photovoltaic source considered here, )(, ki iin  is a nonlinear function of )(, kv iin  in the form 

of 
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))1(())(()(
)/()(

,,
,  siTiin nVkv

rsscpiiiniin eIInkvki                                                                 (26) 

where pin  and sin  are the numbers of the parallel strings and series panels forming the PV 

generator [33], respectively, TV  is thermal voltage, scI  is the short circuit current and rsI  

denotes the reverse saturation current [28].  

The derivative of the solar current with respect to the panel voltage is negative. That 

means, for an increase in the voltage the current decreases. In other words, one has  

iLoioiinoiiini idvkv ,,,, )())((           for    0)(ˆ , kv iin , 

iLoioiinoiiini idvkv ,,,, )())((               for    0)(ˆ , kv iin  

where iinov ,  is the input capacitor steady state voltage. Therefore, the second term in (25) is 

negative. In order to prove 0  in (25), it is enough to show that 

)(ˆ2))(( ,,,,, kvTCidkv iiniiniLoioiini  .                                                                                    (27) 

The term on the left hand side of (27) is the solar current derivative with respect to )(ˆ kvin  that 

satisfies  

)(ˆ))(( ,
max

,,,, kvvidkv iiniiniiLoioiini  .                                                                              (28)  

As (26) suggests, iini v ,  has its maximum value at opin Vv   (solar open circuit voltage,) and 

thus, from (27) and (28), stability criterion becomes 

TCv iin
Vv

iini
opiin

,, 2
,




.                                                                                                       (29) 

Finally, using (26) and (29), one concludes that 

TCenVIn iin
nVV

siTrspi
siTop

,
)(

2)(  .                                                                                            (30) 
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By assuring (30) in the solar and dc-dc converter system design, 0 L  and stability of )(ˆ kvin  

are obtained. 

2.6 Simulation Results 

In order to confirm the theoretical analysis and the proposed adaptive NN controller 

design, the interconnected dc grid shown in Fig. 2.4 is tested using the Matlab/Simulink 

environment. The dc grid comprises four DDCs fed by PV sources and connected to the dc 

network comprising CPLs and resistive loads whose data are given in Table 2.1. The total load in 

the grid is 23.1 kW, of which %74  is CPL. Each DDC is a step-down buck converter of Fig. 2.2, 

equipped with NN controller (16) accompanied by NN weight update law (19). The goal is to 

stabilize the all DDC output voltages despite grid disturbances. The simulations are performed in 

multiple cases in order to evaluate the transient response and robustness of the controller.  

 

Fig. 2.4. Test interconnected dc network. 

In the first three scenarios, load changes are applied to the system at t=0.9 s and removed 

at t=1 s in 3 locations. Also, the transient response of the system to the intermittent solar 

generation is evaluated.  

Case 1. A disturbance occurs at bus 1 as a result of a load change from 2 kW to 5 kW 

causing a sudden increase in the grid power consumption.   

Case 2. Load 6,LP  on bus 6 increases from 4.2 kW to 8.2 kW. 
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Case 3. Load 8,LP  on bus 8 is disconnected which causes a sudden reduction of 3.5 kW 

in power consumption.  

Table 2.1. Grid parameters 

DDC Parameters DDC Parameters 

- PV series and parallel cells & arrays 

                                 ns=1000    ;     np=20 

- PV short circuit current   Isc =1 A           

- PV maximum power       Pmax =8.7 kW   

- DDC capacitors               Cin=Cout=10 mF 

- DDC inductance              L=150 mH  

- Switching frequency        fs=10 kHz 

- Line resistances (Fig. 2.4)   

                                         RLine= 0.01 Ohm 

PL,1                                          2kW- 

              (Resistive:1kW;CPL:1kW) 

PL,2                           2 kW-Resistive 

PL,3                          1 kW- Resistive 

PL,4                          2 kW- Resistive 

PL,5                                3.4kW-CPL 

PL,6                                4.2kW-CPL 

PL,7                                  5 kW-CPL 

PL,8                                3.5kW-CPL 

 

Figures 2.5 to 2.8 show that the DDC output and grid voltages are controlled and 

maintained close to the reference value while the input solar power and voltage undergo transient 

changes and are finally stabilized as predicted. Voltages and powers are shown in volts and 

watts, respectively. As the photovoltaic system operates in voltage higher than maximum power 

point voltage ( mppin Vv  ,) an increase in input power inp  necessitates a reduction in the DDC 

input voltage inv , as Figs. 2.6 and 2.7 confirm. Selected grid voltages are depicted in Fig. 2.8 and 

imply stable voltages in the entire dc grid. 

Case 4. In this case, solar arrays 1 (i.e., connected to bus 1) undergo a drop in the power 

production due to a moving object passing over the PV panels. As a result, some of the parallel 

arrays are disconnected and the solar power reduces by 80%. Figure 2.9 shows that the DDC 
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input voltage and solar power of bus 1 drop, significantly; however, the proposed adaptive 

controller is able to maintain the output voltage and stabilize the DDC both when the obstacle 

blocks the arrays and when it is removed. Note that, the other solar panels compensate for the 

load-generation power mismatch through maintained nominal output voltage.   

Case 5. In order to further demonstrate the ability of the controller to automatically adjust 

to different operating points, in this case the load level of bus 7 has been altered. Load 7,LP  (bus 

7, in Fig. 2.4) increases from 5 kW to 8 kW at t=0.9 s and goes back to 5 kW at t=1.2 s. Then, it 

decreases to 3 kW at t=1.5 s and reaches to 6 kW at t=1.8 s. The results are depicted in Figs. 2.10 

to 2.12 where good tracking performance of the controller is observed. 
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Fig. 2.5 DDC output voltages after the load changes in cases 1, 2, and 3. 
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Fig. 2.6 DDC input voltages after the load changes in cases 1, 2, and 3. 

0.9 0.95 1 1.05

5000

6000

7000

p
in

1

0.9 0.95 1 1.05

4500

5500

6500

p
in

2

0.9 0.95 1 1.05

5500

6500

8000

p
in

3

0.85 0.9 0.95 1 1.05 1.1

4000

5000

6300

p
in

4

Time (s)

 

 

Case 1

Case 2

Case 3

 

Fig. 2.7 DDC input powers after the load changes in cases 1, 2, and 3. 
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Fig. 2.8 Bus voltages after the load changes in cases 1, 2, and 3. 
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Fig. 2.9 Proposed controller’s performance in the presence of intermittent solar power in case 4. 
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Fig. 2.10 DDC output voltages in load changes of case 5. 
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Fig. 2.11 DDC input voltages in load changes of case 5. 
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Fig. 2.12 DDC input powers in load changes of case 5. 

Case 6. The performance of the proposed controller is evaluated under a line-break 

scenario where the line connecting busses 1 and 5 is subject to a fault and disconnects at t=0.9 s. 

The results are illustrated in Figs. 2.13 through 2.15 showing that the voltages are kept in 

acceptable ranges while the solar generators experience changes in their delivered power. 

Case 7. The performance of the proposed controller is compared against the droop-based 

decentralized controller proposed in [25]. The droop controller is designed and tuned to track the 
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converter nominal output voltage with 30PK  and 1IK . In this scenario, load 7,LP  

decreases from 5 kW to 3 kW at t=0.9 s and then to 1 kW at t=1 s. As Fig. 2.16 implies, as 

opposed to the proposed controller’s precise voltage tracking, the droop controller has an overall 

steady state error. The droop controller’s transients are slightly shorter and have smaller voltage 

variations than that of the proposed adaptive controller; however, it leads to larger steady-state 

errors in the output voltage. Next, in order to evaluate both controllers robustness, a sinusoidal 

measurement noise of 1 kHz frequency and 2 V (peak-peak) amplitude is added to all the output 

voltage measurements. Results of Fig. 2.17 show an improved performance and better noise 

rejection of the proposed adaptive controller over the droop controller. 

Overall, the simulation results show a good control performance provided by the 

proposed adaptive NN controller in stabilizing the interconnected dc grid. 

4200

5000

6000

p
in

1

6000

6300

p
in

2

7200

7500

7800

p
in

3

0.86 0.88 0.9 0.92 0.94 0.96
4500

5000

p
in

4

Time (s)  
Fig. 2.13 Line disconnect scenario; DDCs’ input powers, in case 6. 
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Fig. 2.16 Comparison of the proposed NN and droop controllers under the load change of case 7.  
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Fig. 2.17 Comparison of the proposed NN and droop controllers in response to measurement 

noise in case 7. 

 

2.7 Conclusions 

In this chapter, a nonlinear discrete-time model of the interconnected dc grid is presented 

in controllable form and grid stability is achieved through an adaptive state feedback neural 

network controller design. The neural networks with online learning are utilized to approximate 
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unknown nonlinear functions in the grid’s dynamic representation. Through Lyapunov stability 

criterion, stability of the interconnected dc grid is proven in the presence of unknown dynamics 

of the dc-dc converters. Simulation results show the effectiveness of the proposed adaptive 

discrete-time NN controller in the presence of the power system disturbances. The theoretical 

conjectures and simulation results of the proposed NN controller imply that the converter input 

voltages and powers as well as the output voltages are stabilized desirably in the entire dc grid 

using local data in a decentralized control scheme.  
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CHAPTER 3 

DECENTRALIZED DISCRETE-TIME OUTPUT FEEDBACK 

CONTROL OF INTERCONNECTED DC DISTRIBUTION SYSTEM 
 

3.1 Introduction 

A novel decentralized nonlinear controller is proposed in this chapter, for the 

interconnected dc grid in discrete-time using output feedback mechanism. The dc grid is an 

interconnection of DERs connected to resistive and constant-power loads through DDCs. The 

adaptive NN-based controller is employed to overcome the unknown dynamics of each 

subsystem’s converter and stabilize the entire grid, assuming that only part of the local 

measurements are available to each converter. Here the photovoltaic arrays are employed as 

DERs and their nonlinear characteristics is taken into account. Through the Lyapunov stability 

method the stability of all the DDCs’ output voltages in the interconnected dc grid is proven 

using some local states measurement. In Chapter 2 a decentralized nonlinear controller for the 

interconnected dc grid was proposed. In that method a state feedback controller is utilized in 

each subsystem which requires obtaining all state variables of each subsystem. However all state 

variables might not be available or measurable in some systems. In this chapter an output 

feedback controller is utilized instead of state feedback. As the output feedback controller needs 

only partial knowledge of subsystem states, the controller is viable even if some of the states are 

not available and also the number of measure points is reduced [1]. 

The rest of the chapter is organized as follows. In the next section the dc distribution grid 

topology is presented. In Section 3.3, the DDC discrete-time model is developed and presented 

in the form of a nonlinear interconnected discrete-time system. The decentralized NN controller 

is developed in Section 3.4 using output. Simulation results on a low-voltage distribution grid are 

shown in Section 3.5 followed by the concluding remarks in Section 3.6.  
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3.2 Interconnected DC Microgrid 

In this section, the dynamical model along with the control mechanism of the DERs is 

represented. Though the proposed modeling and controller design can be applied to a variety of 

DERs, specific attention is paid to photovoltaic source here to address the low-inertia distribution 

systems and micro grids. Fig. 3.1 shows the interconnected dc grid comprising N buses with n 

DER buses and N-n load buses.  

 
Fig. 3.1 N-bus dc distribution system, n distributed generation sources and N-n non-generator 

buses, with load PL, i on bus ‘i’. 

 

Each DER is a photovoltaic source connected to a dc-dc converter as depicted in Fig. 3.2. 

Each dc-dc converter is modeled as a discrete-time dynamical subsystem and the stability of the 

entire dc grid is investigated. In this chapter, the buck converter in continuous-current mode 

(CCM) operation is considered. As explained in Chapter 2 boost converters are more commonly 

used in photovoltaic systems due to their ability to increase the output voltage that requires lower 

solar array voltage leading to fewer panels; however, the boost converter output voltage grows 

exponentially and therefore its operating range is very limited [2]. Unlike the boost converter, 

output voltage in the buck converter is proportional to the duty cycle and thus, the duty cycle has 
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a greater control range and stability [2]. In photovoltaic energy applications if voltage 

magnification is needed, forward converter can be utilized that takes advantage of both 

transformer action and buck converter voltage adjustment.  

 
Fig. 3.2 dc-dc buck converter. 

As any fault and disturbance occurs in the network, the dc voltage fluctuates affecting the 

photovoltaic power generation in which could potentially lead to the entire network instability. 

The goal is modeling and designing an adaptive controller to stabilize the buck converter output 

voltage in an interconnected dc network. The proposed controller in [2] adjusts the converter’s 

duty cycle to attain the stability through a decentralized scheme while taking the converter input 

and output voltages and currents as the only measurable states to the selected converter. 

3.3 Buck Converter Model 

A discrete-time model for the buck converter Fig. 3.2 is represented in this section in 

Brunovsky canonical form [2],[3]. The converter output voltage and duty cycle are assigned as 

the controlled variable and the control input, respectively. 

Figure 3.2 represents the ith subsystem of the dc microgrid of Fig. 3.1 which is a buck 

converter interfacing a DER with the dc grid. This subsystem state variables are the converter’s 

input and output capacitors’ voltages, iinv ,  and ioutv , , and the inductor’s current iLi ,  (Fig. 3.2).  
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Subtracting the states steady-state values oix  from the actual values, the state error vector 

can be considered as T
ioutiLiinoiii kvkikvxkxkx )](),(,)([)()( ,,, . Also, )(, ki iin iinoiin iki ,, )(   

and ioutoioutiout ikiki ,,, )()(   are the converter input and output current errors, respectively.  

The controller aims to make the errors zero and equivalently (making the converter 

output voltage approach its steady-state value) by synthesizing an additional duty cycle id̂  to be 

added to the steady-state duty cycle iod , . The scheme stabilizes the network around the 

converter output voltage reference value in the presence of the grid disturbances 

According to [2] the error dynamics are represented as unknown functions of the errors  

)),(())1(( 1, iiiin dkxhkv   

)),(())1(( 2, iiiL dkxhki   

))(())(())1(( ,3, kikxhkv ioutiiiout  .                                                                                     (1) 

Since the integrals in (1) cannot be easily converted to closed-form functions of the states, 

functions (.),1 ih , (.),2 ih , (.),3 ih , and (.)i  are unknown. As )(, ki iout  depends on the other 

converters states, (.)i  is a function of the entire grid state errors which are not available at 

converter ‘i’ location due to the controllers’ decentralized structure. 

In order to present dynamics (1) in canonical form define new state variables 

T
iii ],[ ,2,1   . Take )(, kv iout  along with its next step as follows 

)()( ,,1 kvk iouti   

)()1()1( ,2,,1 kkvk iiouti     

)2()1( ,,2  kvk iouti .                                                                                                        (2) 
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As explained in [2] the converter state-space equations can be rewritten in canonical form as  

)()1( ,2,1 kk ii         

))(()())(())(()1(,2 kkukxgkxfk iiiiiii                                                                                       (3) 

with ii du ˆ  as the subsystem’s input and unknown nonlinear functions ))(( kxf ii , ))(( kxg ii , 

and )(i . Function ))(( ki   depends on the entire system state vector )(k  and is called the 

interconnection term [4] that is a function of all the converters’ states, some of which are 

unavailable. 

Dynamics represented in (4) are of order two while the converter original dynamics (1) 

are of order three. That is, one of the dynamics known as internal dynamics [2] has been shown 

to be stable when the observable states (here T
iii ],[ ,2,1   ) tend to zero. 

In the next section the proposed discrete-time control design is discussed. 

3.4 Output Feedback Controller Design 

In this section, the decentralized output feedback controller proposed in [1] is applied to 

system (3) using partial knowledge of subsystem states.  

A. Discrete-Time Interconnected System Background 

A class of discrete-time interconnected systems consisting of n subsystems (DDCs) is 

represented in canonical form as 

11);()1( ,1,   mpkk ipip      

))(()())(())(()1(, kkukxgkxfk iiiiiiim                                                                   (4) 

)()( ,1 kky ii                                                                                          
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for ni 1  where T
imii ],,[ ,,1    is the state error vector of subsystem ‘i’ , m  is the order of 

the subsystem ( 2m according to model (3)), ))(( ki   denotes the interconnection effects 

with 
TT

n
T

],,[ 1    and ix  is the original subsystem states errors from which the feedback 

linearization was derived. The internal dynamics ))(( kxf ii  and the input gain ))(( kxg ii  in 

general are nonlinear functions of states. It is desired to design a controller that stabilizes   at 

the origin ( 0 .)  

Define the tracking error as 

)()()( ,,, kkkz ipdipip                                                                                                           (5) 

for ni 1  and mp 1 , where )(, kipd is the desired trajectory for the state )(, kip  , and 

)1()( ,,,1  kk ipdidp   for 11  mp .  

Only the subsystems outputs ( i,1  for all ni 1 ) are considered available and so an 

observer is required to estimated the rest of the states. Two assumptions and one definition are 

presented before beginning the controller design.  

Assumption 1- Functions ))(( kxg ii  are bounded and away from zero. That is,  

max,min, ))((0 iiii gkxgg                                                                                    (6) 

where min,ig  and max,ig  are positive constants. This is a valid assumption for the dc grid as 

discussed in [2]. 

Assumption 2 [3]- The interconnection terms are bounded by a function of the states such that 

 


N

j jijii 1 20)(   where i0  and ij  are positive constants for ni 1 . The tracking 
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error )(kz j  converges to zero whenever states )(kj  converge to zero. Similar to continuous-time 

systems [4] this further implies that 

 


n

j jiji
n

j jiji zz
101

)()(                                                                                 (7) 

where ij  is a positive function while i0  and ij  are positive constants for ni 1  and 

mj 1  [2]. 

Definition. (Uniform Ultimate Bounded (UUB)) [3]. Consider the dynamical system 

)()1( xfkx   with nx   being a state vector. Let the initial time step be 0k  and initial 

condition be )( 00 kxx  . Then, the equilibrium point ex  is said to be UUB if there exists a 

compact set 
nS   so that for all Sx 0  there exists a bound B and a time step ),( 0xBK  

such that Bxkx e )(  for Kkk  0 . 

B. Observer Design 

Consider the observer 

))1(ˆ()1(ˆ)(ˆ

11;)1(ˆ)(ˆ

,1,1,

,1,



 

kMVkWk

mpkk

i
T

iiiim

ipip




                                                                     (8) 

where 
T

imii ]ˆ,,ˆ[ˆ
,,1    is estimation of i  and 

T
iimiii kukkkkM )]1(),1(ˆ,...),1(ˆ),1(ˆ[)1(ˆ

,,2,1    with state estimation error defined as 

iii   ˆ~
, for all ni 1 . 

1
,1

,1ˆ 
 iL

i RW  is the target NN weight matrix estimation, (.)i  is the 

activation function and iL ,1  is the number of the hidden layer neurons. The hidden layer weight 
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matrix iV ,1  is chosen initially at random and kept constant. In fact, the NN in observer (8) 

approximates the nonlinear function )1())1(())1((  kukxgkxf iiiii  which can be written as  

))1(()1())1(())1(( ,1,1  kMVWkukxgkxf i
T

ii
T

iiiiii  ))1((,1  kM ii                                          (9) 

where T
iimiii kukkkkM )]1(),1(,),...1(),1([)1( ,,2,1   , 

1
,1

,1 
 iL

i RW  is the target NN weight 

matrix. For simplicity ))1(( kM ii  and ))1(ˆ( kM ii  are used to show ))1(( ,1 kMV i
T

ii  and 

))1(ˆ( ,1 kMV i
T

ii  respectively. 

Next, define the observer NN weight update law as 

 ))1(ˆ()1(ˆ))[1(ˆ()1(ˆ)(ˆ
,1,1,1,1 kMkWkMkWkW ii

T
iiiii

T
i  )]1(

~
,1,1 kl ii                                      (10) 

where 10 ,1  i  and 1,1 il  are user defined positive constants.  

By subtracting the target weights )1()( 11  kWkW ii  from (10), one obtains 

 ))1(ˆ()1(
~

))[1(ˆ()1(
~

)(
~

,1,1,1 kMkWkMkWkW ii
T

iiiiii  ))1(ˆ(,1 kMW ii
T

i   )]1(
~

,1,1  kl ii       (11) 

Next, the decentralized controller development is developed. 

C. Controller Design  

In this section a NN-based controller is introduced to stabilize system (4) employing the 

estimated states calculated from the observer (8). The NN function approximates the control 

input.   

The tracking error dynamics can be written by using (5) as 

 )())(())(()1()1( ,,, kukxgkxfkkz iiiiiimdimim  imdi k ,))((   , where imd,  

is the desired value of im, . In order to achieve asymptotically stable dynamics for the tracking 
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error )())(()1( ,, kzkxgKkz imiiiim   with 1))(( kxgK iii , the ideal stabilizing control input 

for system (4) can be defined as  

))((())(( 1
, kxfkxgu iiiiid

 )(,, kzK imiimd   

where iK is a positive design constant. However, in practice the internal dynamics ))(( kxf ii  

and control gain ))(( kxg ii  and consequently idu ,  are not available. Thus, the NN function 

approximation property is employed to approximate idu ,  as 

)())(())(( ,,,2,2,2,2, kzKkYVkYVWu imii
T

iii
T

ii
T

iid                                                                (12) 

 where iW ,2  is the target NN weight matrix, T
imdimiii kkkkkY )](),(,...),(),([)( ,,,2,1   and 

(.),2 i  is the function approximation error which satisfies max22 (.) ii    for all ni 1 . Since 

the target NN weights iW ,2 , approximation error i,2 , and the full subsystem state vector )(ki  

are not available, idu ,  is calculated using an approximation of the NN weights together with the 

estimated subsystem states via the nonlinear observer (8)   

)(ˆ))(ˆ(ˆˆ ,,2,2, kzKkYVWuu imii
T

ii
T

iidi                                                                                 (13) 

where iW ,2
ˆ  is the NN weight estimation matrix and T

imdimiii kkkkkY )](ˆ),(ˆ,...),(ˆ),(ˆ[)(ˆ
,,,2,1  . 

Similar to the previous case, the hidden layer weight matrix iV ,2  is chosen initially at random 

and kept constant.  For simplicity ))(ˆ( kYii  is used to show ))(ˆ( ,2 kYV i
T

ii .  

Consequently, by using (13) and adding and subtracting idu , the tracking error dynamic 

becomes 

 ididimiii
T

iiiimdiiiim uukzKkYWkxgkkxfkz ,,,,2,, )(ˆ))(ˆ(ˆ))(()1()())(()1(         
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imiiiimiiiiii
T

iii zKkxgKkxgSkYWkxg ,,,2 ))((
~

))(())(ˆ(
~

))((                                                 (14) 

where iK  is the expected error damping coefficient,  ))((~))(( ,2,2 kYWkxgS iii
T

iiii    and 

)(())(ˆ(~ kYkY iiiii   . 

Define the controller NN weight update law as 

]))(ˆ()(ˆ))[(ˆ()(ˆ)1(ˆ
12222 iiii

T
iiiiii zlkYkWkYkWkW                                                                     (15) 

where 1,0 2  i  and 1,2 il  are user defined positive constants.  

By subtracting the target weights )1(,)(, 22  kiWkiW  from (15), the weight estimation error 

iii WWW ,2,2,2
ˆ~

  is obtained  

)(ˆ())(ˆ()(,
~

))[(ˆ()(,
~

)1(,
~

2222 kYWkYkiWkYkiWkiW ii
T

iii
T

iii   ],, 12 izil                   (16) 

Using (4) and (8) the state estimation error iii   ˆ~
 dynamics can be obtained by as 

)())(ˆ()(
~

)1(
~

11;)(
~

)1(
~

,1,

,1,

xAkMkWk

mpkk

iiiiiim

ipip



 




                                                                  (17) 

where ))((~
11 kMWA iii

T
ii    and ))(ˆ())(ˆ(~ kMkM iiiii   . The stability of the nonlinear 

discrete-time interconnected system (4) is proven and given in Appendix B. The tracking errors 

)(kzi , the state estimations errors )(
~

ki , and NN weight estimation errors )(
~

1 kWi  and 

)(
~

2 kWi of the individual subsystems are bounded in the presence of unknown internal 

dynamics ))(( kxf ii , control gain matrix ))(( kxg ii , and interconnection terms )(i  for 

ni 1 .  
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3.5 Simulation Results 

In order to demonstrate the effectiveness of the proposed adaptive NN controller design, 

the interconnected dc grid in the IEEE 14-bus power system configuration shown in Fig. 3.3 is 

tested using the Matlab/Simulink environment. The dc grid comprises five DDCs fed by PV 

sources and connected to the dc network. The specifications are given in Table 3.1. The total 

load in the grid is 24 kW, of which %42  is CPL. The goal is to stabilize all of the DDC output 

voltages despite grid disturbances. The simulations are performed in several scenarios in order to 

demonstrate the effectiveness and robustness of the controller and evaluate its transient response. 

In all cases, the photovoltaic system operates in voltage higher than maximum power point 

voltage ( mppin Vv  ,) and thus an increase in the DDC input power inp  necessitates a reduction in 

input voltage inv . 

 
Fig. 3.3 Test interconnected dc network with 5 distributed generations (DGs) in IEEE 14-bus 

configuration. 

 

In the first two scenarios, load changes are applied to the system at t=0.6 s and removed 

at t=0.7 s in 2 locations.  

Case 1. A disturbance occurs at bus 6 as a result of a load change from 3 kW to 5 kW 

causing a sudden increase in the grid power consumption.   
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Case 2. Load 7,LP  on bus 7 is disconnected which causes a sudden reduction of CPL for 

4 kW.  

Table 3.1. Grid parameters 

DDC Parameters DDC Parameters 

- PV series cells                           ns=970 

- PV parallel arrays 

                    np = 17 for PVs 1, 2, 3 and 5 

                    np = 33 for PV 4 

- PV short circuit current            Isc =1 A           

- PV maximum power       

           Pmax =7.2 kW for PVs 1, 2, 3 and 5 

          Pmax =14 kW for PV 4  

- DDC capacitors      Cin=5 mF, Cout=1 mF 

- DDC inductance              L=150 mH  

- Switching frequency        fs=10 kHz 

- Line resistances (Fig. 3.3)  

                                        RLine= 0.01 Ohm 

PL,1              2kW- Resistive 

PL,2             2 kW- Resistive 

PL,3             2 kW- Resistive 

PL,4             2 kW- Resistive 

PL,5             2 kW- Resistive 

PL,6                    3 kW- CPL 

PL,7                    4 kW- CPL 

PL,8                    1 kW- CPL 

PL,9                 0.5 kW- CPL  

PL,10           2 kW- Resistive 

PL,11                  1 kW- CPL 

PL,12               0.5 kW- CPL 

PL,13           1 kW- Resistive 

PL,14           1 kW- Resistive 

 

Figures 3.4 shows the DDCs output voltages response to the load changes in scenarios 1 

and 2. Also the selected grid voltages are depicted in Fig. 3.5. These voltages undergo transient 

changes and are finally stabilized. The controller adjusts the solar power and voltage (Figs. 3.6 

and 3.7) to stabilize the DDCs output voltage. This controller utilizes less information of the 

local system rather than the state feedback controller and estimates the unknown variables. As 

result, the output has more fluctuations in steady state and transient conditions in comparison to 

state feedback controller.  

Case 3. In this case, the solar arrays connected to bus 3 undergo a %70  drop in the power 

production. In this scenario a moving object passing over the PV panels causes some of the 

parallel arrays to be disconnected. Figure 3.8 shows that the output voltage of the DDC on bus 3 
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is stable in the presence of intermittent solar power. The proposed controller adjusts the 

generated power in each DDC when the obstacle blocks the arrays and when it is removed. That 

is, other solar panels compensate for the power mismatch. 
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Fig. 3.4 DDC output voltages after the load changes in cases 1 and 2. 
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Fig. 3.5 Bus voltages after the load changes in cases 1 and 2. 
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Fig. 3.6 DDC input voltages after the load changes in cases 1 and 2. 
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Fig. 3.7 DDC input powers after the load changes in cases 1 and 2. 
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Fig. 3.8 Proposed controller’s performance in the presence of intermittent solar power in case 3. 

 

Case 4. The robustness of the controller is tested under a low impedance ground fault 

1faultR  condition. The fault is applied on bus 10 at t=0.6 s and removed after 5 ms at 

t=0.605 s. The results are depicted in Fig. 3.9 where good damping of the DDCs voltages and 

powers is observed. 
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Fig. 3.9 Low impedance ground fault in case 4. 
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Case 5. The droop-based controller proposed in [5] with parameters 30PK  and 

1IK  is applied to DDCs to be compared against the proposed controller. In this scenario, load 

11,LP  increases from 1 kW to 2 kW at t=0.6 s and gets disconnected at t=1 s. As Fig. 3.10 

implies, as opposed to the proposed controller’s precise voltage tracking, the droop controller has 

a significant voltage fluctuations in steady state condition. 

Case 6. Figure 3.11 compares the proposed controller with droop controller in another 

scenario in which there is a sinusoidal measurement noise of 1 kHz frequency and 2 V (peak-

peak) in all the output voltage measurements. As the results show the proposed controller has 

better noise rejection over the droop controller. 

In general, the proposed adaptive neural network decentralized controller makes a decent 

control performance in stabilizing the interconnected dc grid. 
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Fig. 3.10 The proposed NN and droop controllers under the load change of case 5.  
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Fig. 3.11 The proposed NN and droop controllers in response to measurement noise in case 6. 

 

3.6 Conclusion 

In this chapter, a decentralized discrete-time model of the interconnected dc distribution 

system is stabilized through an adaptive output feedback neural network controller. The dc 

distribution system consists resistive and constant-power loads (CPLs.) and multiple dc sources 

which are photovoltaic sources connected to the grid via dc-dc converters. A decentralized 

output feedback controller design is introduced to mitigate voltage and power oscillations after 

disturbances. The neural networks with online learning are utilized to approximate unknown 

nonlinear functions in the grid’s dynamic. As the output feedback controller is able to estimate 

some of the systems states in case they are not available. Simulation results imply that the entire 

dc grid is stabilized suitably through the proposed controller.  
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CHAPTER 4 

NOVEL DECENTRALIZED CONTROL OF POWER SYSTEMS WITH 

PENETRATION OF RENEWABLE ENERGY SOURCES IN SMALL-

SCALE POWER SYSTEMS 

4.1 Introduction 

Conventional synchronous generators have large inertia and can store a significant 

amount of energy in their rotating mass. When a fault or disturbance occurs in the power grid, 

the generators provide power balance in the network by storing or injecting power 

instantaneously. Therefore, the system naturally possesses some robustness against disturbances. 

By contrast, available distributed energy resources that are connected to the grid via grid-tie 

inverters (GTIs) rely only on a small amount of energy stored in their dc-link capacitor, and thus, 

lack these large kinetic buffers unless costly battery storage or large capacitors are employed. In 

order to involve the renewable generator in grid stability enhancement, the idea of modeling GTI 

similar to a synchronous generator has been used in many literatures [6]-[11], proposing the 

concept of “virtual synchronous generator” (VSG) [6] and “synchronverter” [7]. However, 

majority of the research in this area does not consider the dynamics of the dc-link capacitor and 

the stability of the overall system. In [6], the concept of “Virtual Synchronous Machine” (VSM) 

is presented where the power electronic interface can have virtual inertia equivalent to the rotor’s 

inertia of a synchronous generator. Then, the inverter’s reference currents are calculated from the 

grid voltage. However, it is assumed that the inverter has access to abundant energy and the dc-

link dynamics are not considered. In [7]-[10] the inverter connecting the renewable energy 

source to the large grid is controlled to respond to the frequency variations while the dc-link 

voltage variations in small and micro grid and the stability of the entire grid are not considered. 

In [7], the inverter is modeled similar to a synchronous generator by considering imaginary rotor 
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angle and field current to provide desired active and reactive powers. In this model, the GTI 

phase angle mimics rotor angle. However, the dc-link dynamic has no relation to the inverter 

operation. In [8] and [11], a virtual inertia is attained by adding short-term energy-storage to the 

inverter and the required damping power proportional to the derivative of the grid frequency is 

supplied by the storage resulting in an increased integration cost due to storage rather than the 

dc-link capacitor.  

On the other hand, recent advances in decentralized controllers [12]-[17] has made them 

attractive in power system stabilizer designs. Due to the requirement of a large amount of 

information exchanges between subsystems, increased need for computing capacity [12]-[14], 

and significant time delays [15], [16] in the centralized controllers, decentralized control is 

preferred to ensure the performance and stability of the power grid. Decentralized control 

strategies achieve transient stability and steady-state requirements based only on local 

information and measurements. In the past few years, much research work has been conducted 

on adaptive neural networks (NNs) decentralized control of nonlinear interconnected systems 

[17]-[19] including multi-generator power systems [12]-[16], [20]. Several authors in [16] and 

[18], [19] propose adaptive neural network decentralized controllers for interconnected systems 

and provide asymptotic stability; however, extra filters are required besides the neural network 

controller to provide the stability. In addition, in multi-generator transient stability the variations 

of the generators’ input powers are neglected [12]-[16], [20]; an assumption that is not valid 

considering renewable energy sources such as solar arrays whose powers fluctuate with voltage.   

Thus, this chapter aims at a) developing dynamical model of a renewable generator that 

behaves like a synchronous generator and includes both dc-dc and dc-ac conversion dynamics 

with a focus on the dc link energy fluctuations and stability and b) developing an adaptive 
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nonlinear decentralized stabilizer in continuous-time that is applied to all grid generators, 

regardless of their type, and assures the entire grid’s stability through Lyapunov stability method.  

In this chapter, the power system with penetration of renewable generators is considered 

where GTIs and dc-dc converters are used to interface the device to the grid in order to control 

the delivered power. A lot of attention has been paid to solar power in this chapter; however, the 

proposed approach can be used with other renewable energy sources that connect to the grid 

through GTI. Here, we refer to renewable energy source as the source of renewable energy such 

as wind, solar, etc., and renewable generator as the renewable energy system interacting with 

power grid that includes the source of energy as well as the pertinent power electronic and 

storage. In the proposed GTI model with dynamic gain and phase angle control, the renewable 

generator is modeled to possess similar dynamics to those of synchronous generator and the dc-

link capacitor acts as the energy storage similar to the rotor of a synchronous generator. As 

opposed to existing VSG and synchronverter [6]-[11] models in which an imaginary inertia is 

considered, the energy stored in the dc-link capacitor plays the role of kinetic energy storage and 

appears as a dynamical state. In the proposed approach, the GTI can be controlled by excitation-

like mechanisms such as AVR and PSS as well as their nonlinear counterparts. Next, the 

renewable generator dynamical model is extended to include the dynamics of the dc-dc converter 

interfacing the renewable energy source and the inverter.  

Subsequently, proper nonlinear decentralized controllers are developed to stabilize the 

individual GTIs and the dc-dc converters. The assumption on constant input power used in the 

past literature is not considered. This helps integrate low-inertia renewable generators such as PV 

arrays into the small and micro grids. Also, much attention has been given to the multi-generator 

and nonlinear natures of the interconnected power grid as opposed to the past work that 
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considers single-machine-infinite-bus type of system [6]-[11]. Subsequently, the asymptotic 

stability of the overall system comprising synchronous generators and renewable generators is 

ensured by employing the proposed GTI and converter controllers through Lyapunov stability 

method. Finally, the decentralized controller is simplified. The simplified controller is easier to 

synthesize; however, it only assures that the states errors only stay bounded. In order to achieve 

this, neural networks (NNs) with quadratic neural network update law are utilized to approximate 

unknown interconnection effects of the grid on the synchronous generators and renewable 

generators and to avoid additional filters used in the previous approaches [16], [18], [19]. The 

proposed decentralized neural network controller is applied to both the synchronous generators 

excitations and the GTI excitation-like mechanisms. 

The rest of the chapter is organized as follows. In the next section the model for 

renewable generator consisting the GTI and solar dc-dc converter is presented. Section 4.3 

proposes the nonlinear decentralized controller for GTI and feedback controller for solar 

converter. Simulation results are shown in Section 4.4 followed by the concluding remarks in 

Section 4.5.  

4.2 Renewable Generator Model 

In this section, the dynamical model along with the control mechanism of the renewable 

generator, shown in Fig. 4.1, comprising a photovoltaic source connected to a grid-tie inverter 

via a dc-dc converter is represented. The entire grid comprises n subsystems including 1n  

renewable generators and 1nn   synchronous generators. Figure 4.1 represents one of the grid 

subsystems where index 11 ni   indicates the subsystem number and 1n  is the total number of 

renewable generators.  
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Fig. 4.1 The i-th renewable generator. 

 

A. Grid-tie inverter model 

The dynamic of the dc-link stored energy can be represented by the capacitor voltage driven by 

the power balance equation at the dc link as 

ieiinCiCii PPVVC ,,               1,,1 ni                                                                                              (1) 

where 1n  is the number of renewable generators, CiV  is the dc-link voltage of the i-th renewable 

generator, iinP ,  is the injected power to the dc-link from the dc-dc converter, and ieP ,  is the 

delivered power to the grid by the i-th renewable generator as depicted in Fig. 4.1. The delivered 

power from the i-th GTI to the grid is given by 

)sin(, iiiriiie VVBP               ,          1,,1 ni                                                                      (2) 

where riV  and i  denote the GTI output voltage magnitude and phase angle, and iV  and i  

represent the voltage magnitude and phase angle of the grid bus connected to the GTI through 

admittance iB . 

Angle i  can be altered to adjust the renewable generator output power and consequently 

acts similar to the rotor angle   in the synchronous generator [21]. An auxiliary variable i  is 

used to control i  in the renewable generator as 

ii   .                                                                                                                             (3) 
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Variable i  mimics the rotor speed in the synchronous generator. In synchronous generators, the 

speed relates to the kinetic energy stored in the rotor. In order to give imaginary speed i  a 

meaningful relationship to the stored energy in the dc-link capacitor, it is defined as 

))(1( ,, ieiiniCiCii PPCVV   .                                                                                                             (4) 

In order to preserve the similarity to the synchronous generator, per unit values of CiV , 

i , and iC  are utilized in (4). From (4) it yields  

2)(
22

CioCii VV                                                                                                                              (5) 

representing the scaled changes in the dc-link stored energy with CioV  as the steady-state value 

of CiV . In the renewable generator, capacitance iC  plays the role of machine inertia; that is, its 

higher size reduces the oscillations and contributes to an enhanced dynamic stability. 

Next, in order to attain excitation-like control to the renewable generator, two new 

auxiliary parameters are defined as qriE   and fdriE , similar to the rotor flux and field voltage in 

the synchronous generator, introducing a third dynamic to the renewable generator; i.e.,  

 fdriiiidridridriqridridri
idr

qri EVxxxExx
T

E  )cos())(()(
1

0

                                                               (6) 

where parameters drix  , drix  and idrT 0  are design parameters that need to be chosen for each 

renewable generator as opposed to those of synchronous generator that are machine parameters 

and fixed. fdriE  is the applied field-voltage-like input to the GTI imaginary excitation system 

and can be controlled by any of the known synchronous generator excitation control methods. 

Equations (3), (4), and (6) represent a one-axis-like model for the renewable generator. In the 

one-axis model the device output power satisfies [21]  
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)sin([)1( iiqriidriei EVxP   ))](2sin())2()(( iiiqridriqri Vxxx                                            (7) 

with parameter qrix  to be a renewable generator design parameter, as opposed to synchronous 

generator q-axis reactance, that is a fixed machine parameter.  

Remark 1. As mentioned earlier, angle i  is a state variable that acts in a manner similar to rotor 

angle in the synchronous generator; that is, it varies with changes in the capacitor’s stored 

energy. In the synchronous generator the rotor angle is not equivalent to the output voltage phase 

angle. Rather, the relationship between the rotor angle and the output voltage phase angle in the 

synchronous generator is more involved and depends on the selected synchronous generator 

model [22] (i.e., one-axis, two-axis, etc.) By contrast, in this work it is aimed to represent the 

GTI output voltage phase angle by i  (unlike in the synchronous generator [7]) since it provides 

an easier implementation in the GTI where a phase angle and an amplitude modulation index 

[22] is directly generated and applied to the GTI. In order to achieve this goal it is necessary that 

the power from (7) (i.e., synchronous-generator-like power) is equal to the GTI power obtained 

from (2); thus, ieie PP ,,  . This in turn requires inverter voltage riV  to be 

)sin(

))(2sin(
2

)sin(

iiidri

iii
qri

driqri
iiqri

ri
Bx

V
x

xx
E

V











 .                                                                    (8)  

Inverter amplitude modulation index iink ,  can be tuned to adjust the GTI output voltage obtained 

in Remark 1 as 

Ciriiin VVk , .                                                                                                           (9) 

Adjusting amplitude modulation index iink ,  according to (9) allows the GTI to deliver the 

synchronous-generator-like power governed by (7). Inverter gain iink ,  and phase angle i  are 
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control parameters and could be altered to adjust the renewable generator output power and 

enhance the individual GTI and grid stability. 

Now, equations (3), (4), and (6) represent a one-axis model of the renewable generator as 

ii   ;  ))(1( ,, ieiinii PPC                                                                       (10) 

 fdriiiidridridriqridridri
idr

qri EVxxxExx
T

E  )cos())(()(
1

0

  . 

The inputs to the model are bus voltage magnitude iV , angle i , capacitor voltage CiV , and 

control voltage fdriE , which are all local measurements, while the outputs are inverter amplitude 

modulation index iink ,  and phase angle i  that are sent to the GTI power electronic switches. By 

using the proposed modeling and GTI control mechanism, the renewable generator can be 

considered as an imaginary synchronous generator and behaves similarly. 

Remark 2. Phase angle   can be adjusted under constant or variable frequency. In the latter case, 

one can use )(2 0ffinv    to find the inverter frequency invf  while 0f  is the grid (desired) 

frequency. 

Remark 3. Through the synthesized states, an AVR-like mechanism can take the GTI’s capacitor 

voltage error as input and be applied for steady-state and transient performance. 

B. Solar DC-DC Converter 

The renewable energy sources are often interfaced to the GTI through a dc-dc converter. 

The transmitted power by these PV arrays can vary dramatically with changes in the GTI dc-link 

voltage during grid transients. Non-linear characteristics of the renewable energy source and 

dynamics of the dc-dc converter must then be taken into account in the stability analysis. In this 

work, the buck converter is considered to interface the solar source to GTI. Although the boost 
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converter is more attractive for solar systems steady-state operation due to higher output voltage, 

its output voltage can grow exponentially with duty cycle as opposed to that of the buck 

converter. Thus, the operating range in the boost converter is very limited [23], [24] and it is less 

stable than the buck converter. Moreover, topologies such as forward converters [25] that utilize 

transformers can be implemented to boost the voltage while taking advantage of the buck 

converter performance. 

For the PV system, usually the maximum power point tracking (MPPT) is carried out at 

the PV terminals by adjusting the duty cycle of the converter that connects the PV array to the 

GTI. During the transients, changes in the GTI dc-link voltage affect the harvested power since 

the PV array power depends on its terminal voltage. Thus, a control mechanism should be 

utilized to stabilize the PV array terminal voltage by dynamically adjusting the converter duty 

cycle when the GTI dc-link voltage fluctuates. A topology to achieve this goal is demonstrated in 

Fig. 4.2. Capacitor ipvC ,  between the PV array and the GTI helps decouple the GTI’s dynamics 

from that of the PV array and provide more stability. 

 
Fig. 4.2 PPT and dc/dc buck converter control system. 

 

The set point for ipvV ,  is indicated by the MPPT block. The MPPT block command 

changes with the sun irradiation level. Although the maximum power point is usually the goal, 
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stability can be maintained around any power point. At each moment, any change in the GTI dc-

link voltage ( CiV ) changes the PV array output power (capacitor input power iinP , ) and requires 

the converter duty cycle to adjust such that iinP ,  tracks the reference power through maintaining a 

constant voltage at the PV array terminals. Thus, a proper model and controller for buck 

converter in the presence of the PV array characteristics is developed in this section. 

By adding the dynamics of a dc-dc buck converter in discontinuous-current mode (DCM) 

operation to the GTI dynamics, the renewable generator dynamical model is represented as 

ii   ;  ))(1( ,, ieiinii PPC       

 fdriiiidridridriqridridri
idr

qri EVxxxExx
T

E  )cos())(()(
1

0

  

)(1 , CiipviiLi VVdLI                                                                                                                      (11) 

)(1 ,,, Liipvipvipv IdICV   

where Li is the dc-dc converter inductance, di is the converter duty cycle, and Vpv,i and LiI   are the 

converter input voltage and inductor current, respectively. ipvI ,  is the photovoltaic array output 

current (shown in Fig. 4.2) which is a function of PV array output voltage ipvV ,  in the following 

form [26] 

)1()( ,
,,  ipvi V

rspiphpiipvipv eInInVI


                                                                                             (12) 

where )/( KTnq sii    with the Boltzmann’s constant KJK /103805.1 23 , electronic charge 

Cq 19106.1  , cell temperature T, and the p-n junction characteristic factor   (between 1 to 5.) 

In addition, pin  and sin  are the numbers of the parallel branches and branch series solar cells, 
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respectively, phI  is the solar cell generated current, and rsI  denotes the reverse saturation 

current. 

4.3 Decentralized Controller Design 

So far, a control mechanism is presented that is capable of mimicking a synchronous 

generator with excitation control through appropriate GTI amplitude modulation index and phase 

angle control. Also, the developed renewable generator model incorporates the dc-dc converter 

that connects the dc source to the GTI. To this end, any excitation-like controller may be 

employed with the proposed control mechanism to achieve subsystem (renewable generator) and 

overall grid stability. An example is given in Remark 3. It is desired that the controller/stabilizer 

provide the entire grid stability through individual subsystem control using only local 

measurements with assured performance. In addition, considerations on the dc-dc converter must 

be taken into account to address internal stability of the renewable generator in contrast with 

synchronous generators that have full state observability. These considerations are discussed in 

the following sections. 

In this section, a decentralized representation of the renewable generator is obtained. The 

GTI dynamics are represented in Brunovsky canonical form and an adaptive state feedback 

controller is utilized to stabilize the inverter dc-link voltage through adjusting the inverter 

amplitude modulation factor and phase angle. The adaptive neural networks (NNs) [27] are 

employed to approximate the unknown nonlinearities. In addition, feedback linearization is 

utilized to mitigate the oscillations of the solar power caused by the grid disturbances. 

The work of [18], [19] propose stable adaptive neural network decentralized controllers 

for interconnected systems; however, extra filters are required besides the neural network 

controller. By contrast, [16] utilizes quadratic error terms in the neural network update laws for 
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interconnected systems in backstepping form and achieves asymptotic stability; however, 

additional filters are still required. One of the main contributions of this work is achieving 

asymptotic stability in the grid while avoiding the extra filters introduced in the past literature 

[16] and the simulation results have been compared to this method. Subsequently, the controller 

is simplified. 

A. Grid-Tie Inverter Decentralized Controller  

One can define the individual renewable generator states represented by (11) in vector 

form as  

],,,,[],,,,[ ,54321 Liipvqriiiiiiiii IVE     

where oiii    and oi  is the inverter output voltage phase angle in steady-state 

condition. In order to represent the renewable generator dynamics in Brunovsky canonical form, 

a new set of state variables are defined as  

iiii xx   21 ;                                                                                                                    (13) 
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where 1,,1 ni   is the renewable generator number. With the inclusion of 12 nnn   

synchronous generators that are driven by similar dynamics to (13), the total number of the 

subsystems (generators) is 21 nnn  .  

Terms qiI  and diI  in (13) generally depend on the entire grid state vector that contains 

the states of all synchronous and renewable generators in the grid since the time derivatives 

involve the entire grid states [16]. Thus, they are considered interconnection terms for the i-th 

subsystem (for ni ,,1  .) By substituting CiV  and LiI  from (4) and (11) and conducting input-

output feedback linearization, (13) can be rewritten as  

)()()(

;

3

3221

Xugfx

xxxx

iiiiiii

iiii








                                                                                                    (15) 

where T
iiii xxxx ],,[ 321 , T

nxxX ],,[ 1  , )( iif   is called internal dynamics, )( iig   is the 

input gain, and iu  is the subsystem state feedback control input to be designed for 1,,1 ni  . 

According to renewable generator model (13), )()( 0idriqiii TCIg   and fdrii Eu  . The 

unknown interconnections are   diqiqiqiii xxIECX [1)(  ]diqidiqi IIII    and is a function of 

the entire grid states. A model similar to (15) can be derived for synchronous generators when 

one-axis model is utilized [16]; thus, dynamics (15) are applied to all the subsystems (generators) 

including renewable generators and synchronous generators. 

It is desired to design a controller that stabilizes ix  at the origin ( 0ix ) for ni ,,1  . 

Thus, filtered error is defined as 

i
T

ii xr ]1[                                                                                                                               (16) 
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where ][ 21 iii    is chosen in such a way that polynomial 2
21)( sss ii    is Hurwitz. 

This way, when filtered error goes to zero, it causes the grid errors converge to zero. The 

derivative of the filtered error is 

)()()()(]1[ Xaugfxr iiiiiiiii
T

ii                                                                 (17) 

where i
T

iii xa ]0[)(   .  

Before discussing the control design methodology the following brief introduction and 

assumptions are introduced: 

A general function )(xf  where 
mx   can be written as )()()( xxVWxf TT   

[16], [27] in the compact set m (neural network approximation domain) with )(x  denotes 

neural network functional reconstruction error vector, )( iih   and NmRV   represent target 

neural network weight matrices. 

Assumption 1- Functions )( iig   are away from zero for ni 1 . That is, )(0 min, iii gg  . 

Also, it is assumed that idi gg max, , where igmin,  and idg max,  are positive constants. This is a 

valid assumption for the ac grid since the rate of change in GTI current qiI  is physically limited 

in the electric grid. Also, since the transients occur around a significantly high GTI steady-state 

current, it is reasonable to assume that GTI current qiI  is always away from zero.  

Assumption 2 [19]- The interconnection terms are bounded by a function of the filtered error 

such that  


n

j jiji rX
1 2

)(   where ij  is a positive constant for ni 1 . Since the 

interconnection effects vanish when state errors converge to zero, this assumption is applicable 

to the interconnected power grids. 
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The stabilizing control input iu  should be chosen in such a way that makes the filtered 

error asymptotically stable in the form of 
iii rKr   (with 0iK ) in the absence of the 

interconnection terms. Thus, one can define the stabilizing controller as  

iiidii rKuuu 


                                                                                                                      (18) 
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and (.)ih  is a nonlinear function to be designed to overcome the effects of the interconnection 

terms. The interconnection terms are in general uncertain and difficult to obtain due to 

unavailable grid states. Thus, term )( iih  is an unknown nonlinear function. In order to 

synthetize desired controller idu , the neural network function approximation property [27] is 

employed to approximate idu  using the available states as 
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                                                               (20) 

where 
*

iW  is the target neural network weight matrix, (.)i  is a set of basis functions [27], and 

(.)i  is the neural network function approximation error that satisfies Mii  (.)  [27] in the 

compact set   comprising all possible variations of variables ix . In practice, the target neural 

network weight matrix 
*

iW  is not available and needs to be estimated by iŴ resulting in the 

weight estimation error *ˆ~
iii WWW  . Thus, idu  is approximated as idû , and controller iu  in 

(18) becomes  
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Since the target neural network weights are unknown, an adaptive update mechanism is 

employed to train the neural network online and without any prior training phase. Define the 

neural network weight update law as 

iii
T

iii
T

i rWrW 
22 ˆˆ 

                                                                                 (22) 

where i  is a positive constant. Employing a quadratic term of the error in neural network 

weight update law ensures the locally asymptotic stability of the filtered error dynamic without 

using additional filters in the controller used in the past literature [16], [19]. The block diagram 

of the adaptive neural network controller is depicted in Fig. 4.3. 

The stability of the nonlinear interconnected system in the presence of unknown 

interconnection terms )(Xi  with the proposed adaptive neural network controller for ni 1  

is proven and given in Appendix C by showing the stability of the filtered errors ir  and weight 

estimation errors iW
~

 for all ni 1 .  

Remark 4. In order to simplify the design, controller in the form of iii
T
iii rKWru  ˆ  can also 

be implemented with the neural network update law (22). In this case, the knowledge of the 

renewable generator or synchronous generator dynamics fi(.) and gi(.) is not needed. However, 

asymptotic stability of the errors cannot be proven; that is, only boundedness of the errors can 

only be proven. Thus, the state errors will stabilize but may not reach their original values. By 

selecting proper control gains and neural network adaptation rate this effect can be minimized to 

a reasonable extent. The proof of boundedness in this case is very similar and is not included. 

Remark 5. Dynamics represented in (15) are of order three while renewable generator original 

dynamics (11) are of order five. The two unobservable dynamics in (15) are known as internal 

dynamics [27]. When the observable states T
iiii xxxx ],,[ 321 converge to zero by employing a 
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proper controller, the internal dynamics (zero dynamics,) must be stable to assure the overall grid 

stability resulting in a minimum-phase system [27]. In the proposed design, the dc-dc converter 

dynamics Vpv,i and LiI   are the subsystem zero dynamics and must be stable when the observable 

states T
iiii xxxx ],,[ 321 converge to zero. In order to achieve stable zero dynamics, the dc-dc 

converter must be equipped with an appropriate controller, as will be explained in the following.   

 
Fig. 4.3 GTI neural network controller. 

 

B. Solar Power dc-dc Converter Controller Design 

A dc-dc converter stabilizer is aimed in this part for the PV-connected converter. 

Although the controller employs the solar array specifications, the method is not restricted to 

solar power and can be applied to other dc power sources such as rectified wind power, fuel 

cells, etc.   

In discontinuous-current mode (DCM) operation of a dc-dc buck converter (Fig. 4.4,) the 

relationship between the maximum inductor current 
iLI max,,
 and the duty cycle is 
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iCiipvsiiL LVVTdI )( ,max,,                                                                                                        (23) 

where Ts is the switching period, and Vpv,i and VCi are the input and output voltages of the i-th 

solar converter, respectively.  

 
Fig. 4.4 DCM operation of buck converter. 

 

The switch average current is calculated as  

)2()(2 ,
2

max,,,, iCiipvsiiLiiaves LVVTdIdI  .                                                                               (24) 

Also, the input capacitor (Fig. 4.2) follows dynamic  

)2()()( ,
2

,,,,,, iCiipvsiipviavesipvipvipv LVVTdVIIVC                                                                        (25) 

where ipvI ,  is the photovoltaic array output current which is a function of PV array output voltage 

ipvV ,  in the following form [26] 

)1()( ,
,,  ipvi V

rspiphpiipvipv eInInVI


                                                                                             (26) 

as explained. 

The solar output voltage can be decomposed as 

ipvipvipv vVV ,,,                                                                                                                              (27) 

where ipvV ,  is the solar output voltage steady-state value and ipvv ,  is its error. Thus, (25) can be 

rewritten as  
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ipvi

Ciipvipv
siipvipvipvipv

CL

VvV
TdCvVv

,

,,2
,,,,

2
/)(


                                                                              (28) 

which is in nonlinear form 

iipviipviipv wtvvv ),()( ,,,                                                                                                             (29) 

with ipvipvipvii CvVx ,,, /)()(   , 
2

ii dw   as the control input, and 

)2()(),( ,,,, ipviCiipvipvsipvi CLVvVTtv  . Using feedback linearization and taking the input as  

))((2)]([))((),(1 ,,
1
,,

1
,,,, ipviipvipvipviCiipvsipviipviipvii vkVCCLVVTvkvtvw    (30) 

where, ki is a design positive constant, one can obtain the asymptotically stable system states 

dynamics  

ipviipv vkv ,,  .                                                                                                                          (31) 

By selecting a proper design constant ki, the time constant of the exponentially decaying system 

(31) can be set significantly smaller than that of the GTI and the grid. Thus, the PV array 

terminal voltage Vpv,i can be stabilized quickly resulting in a stable PV array output power.  

4.4 Simulation Results 

As mentioned earlier, all available excitation control methods for synchronous generator 

can be applied to the renewable generator equipped with the proposed GTI excitation-like 

mechanism. Here, the IEEE 14-bus, 5-generator power system shown in Fig. 4.5 is considered to 

demonstrate the effectiveness of the proposed renewable generator model (11) and decentralized 

controller (21). The renewable generator is connected to bus 5 while synchronous generators are 

located at buses 1 to 4. The synchronous generators and renewable generator are stabilized with 

the decentralized controller in Remark 4 as well as converter controller (30). Neural Networks 

are utilized to approximate the unknown functions required in the controller. The proposed 
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approach has been compared to the decentralized controller proposed in [16] as well as to the 

conventional droop control mechanism [1], [2], [28], [29]. 

A three-phase disturbance occurs at bus 6 at st 2.0  and is removed at st 4.0 . Bus 5 is 

connected to a PV generator through a GTI and a dc-dc buck converter as shown in Fig. 4.1. The 

generators data are given in Table 4.1.  

Table 4.1 Synchronous and renewable generators parameters 

Parameters SGs RG 

qdd xxx ,,  0.06 , 0.2 , 0.19   pu 0.06 , 0.2 , 0.19   pu 

Td0 7 sec 7 sec 

Hi= s Mi /2 H=5 for i = 1,4,5;  

H=1 for i =2,3 

- 

Inverters gain - kin=0.8 in steady state 

Capacitor Bank - 026.0C   pu 

 

Two generation and load levels “low” and “high” (given in Table 4.2) are selected for the 

study to observe the robustness of the controllers. 

All four synchronous generators are equipped with speed governors while the renewable 

generator maintains stable input power through the proposed dynamic converter gain (30). By 

employing the proposed modeling and decentralized controllers, the renewable generator’s 

inverter gain ink  and angle  , and converter duty cycle d are tuned using model (11), and 

controllers (21) and (30). The power system loads are considered constants. The control 

objective is to stabilize the synchronous generators speed and the GTI dc-link capacitor voltage 
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and damp their oscillations caused by the disturbances. Simulations are performed using one-axis 

model for all synchronous generators 

Table 4.2 Network loads and generations for low/high load level  

Gen Bus No. P (p.u.) 

Active Power 

Generation 

Low/High 

Q (p.u.) 

Reactive Power 

Generation 

Low/High 

Load 

Bus No. 

P (p.u.) 

Load 

Low/High 

Q (p.u.) 

Load 

Low/High 

1 (SG)  0.7288 

0.7311 

0.0920 

0.1872 

6 0.1750 

0.4780 

-0.0390 

-0.0390 

2 (SG) 0.0472 

0.6830 

-0.1136 

-0.1022 

7 0.0000 

0.0000 

0.0000 

0.0000 

3 (SG) 0.1180 

0.4420 

- 0.420 

-0.420 

8 0.0110 

0.0760 

0.0160 

0.0160 

4 (SG) 0.0540 

0.3120 

0.2957 

0.5243 

9 0.1530 

0.5950 

0.1660 

0.1660 

5 (RG) 0.1280 

0.6120 

0.1830 

0.3134 

10 0.0830 

0.3900 

0.0580 

0.0580 

   11 0.2210 

0.0350 

0.0180 

0.0180 

   12 0.1000 

0.6100 

0.0160 

0.0160 

   13 0.1150 

0.1350 

0.0580 

0.0580 

   14 0.1890 

0.3490 

0.0500 

0.0500 

 

. 
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Fig. 4.5 IEEE 14-bus, 5-generator power system. 

 

In the case of high penetration of the renewable energy sources, the renewable generator 

is a combination of a large number of small renewable energy sources and its dc-link capacitor is 

the equivalent capacitor of all the renewable generators’. 

In Fig. 4.6, rotors speeds are depicted as variables 1  to 4  for four synchronous 

generators. Waveform VC is the renewable generator dc-link voltage. Satisfactory damping is 

observed for a medium size power network by using the proposed GTI and converter controllers. 

In addition, in Fig. 4.6, the damping effect of the decentralized DSC control method [16] is 

compared to that of the proposed controller applied to all the generators where the DCS 

controller design parameters are chosen as given in [16]. As the results demonstrate, the 

proposed controller is as effective as DSC stabilizer in damping the disturbance while it has a 

simpler structure. Figure 4.7 shows the inverter gain (kin) for the renewable generator and the 

duty cycle (d) of the dc-dc buck converter when the proposed stabilizer is applied where the 

stabilizing efforts of the renewable generator controllers are in a reasonable range. 

In Fig. 4.8 the system is tested under larger disturbances at different locations with high 

load levels of Table 4.2.  
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Figures 4.9 and 4.10 show the performance of dc-dc converter controller (30), which 

aims at delivering a constant power to the inverter. In the results of Figs. 4.6 through 4.8 the 

solar array operates at a voltage higher than the maximum power point (MPP). The solar array 

output voltage and power are shown in Fig. 4.9 where the proposed converter controller (30) 

mitigates the oscillations satisfactorily. Also, the PV system can operate at a lower voltage than 

the MPP voltage and still provide a constant power to the GTI during the transients using the 

proposed dc-dc converter controller. Figure 4.10 represents this case for an operating voltage 

below MPP. The advantage of operating in the latter region is the wider range of voltage 

variation; however, this region is less stable than the former. 
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Fig. 4.6 Proposed stabilizer in comparison to DSC; 1  to 4 are the synchronous generators 

speed (rad/s), VC is the renewable generator capacitor voltage (pu); with fault at bus 6 and low 

load levels. 
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Fig. 4.7 GTI gains kin and buck converter duty cycle (d); proposed stabilizer with fault at bus 6 

and low load levels. 
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Fig. 4.8 Damping effects of the proposed stabilizer; 1  to 4  are the synchronous generators 

speed (rad/s), VC is the renewable generator capacitor voltage (pu); with faults at buses 6, 10, 14, 

high load levels, and severe disturbance. 
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Fig. 4.9 Solar array buck converter input voltage and power (pu), with fault at bus 6 and low load 

levels when the solar voltage is higher than the maximum power point (MPP). 
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Fig. 4.10 Solar array buck converter input voltage and power (pu), with fault at bus 6 and low 

load levels when the solar voltage is lower than the maximum power point (MPP). 

 

Next, the conventional droop control [1], [2], [28], [29] is applied to the GTI connected at 

bus 5 with parameters Kp = 0.3 and KI = 10, while the dc-dc converter is controlled by controller 

(30). The performance of the proposed controller is then compared against the droop-based 

controller which uses P-ω and Q-V droop characteristics to generate frequency and voltage 

references for the inverter. The droop controller adjusts the inverter output voltage and phase 

angle to compensate for both active and reactive powers. According to Fig. 4.11, the droop 

controller has longer transients in stabilizing the generators speeds when compared to the 
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proposed controller. Moreover, in droop controller the dc-link capacitor voltage is not directly 

controlled which can lead to the capacitor voltage drift (when a large capacitor or battery storage 

is not utilized) as shown in Fig. 4.12 utilizing the dc-link capacitor of Table 4.1. Overall, the 

proposed adaptive neural network decentralized controller performs very well when compared to 

the available controllers. 
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Fig. 4.11 Proposed stabilizer in comparison to droop controller; 1  to 4  are the synchronous 

generators speed (rad/s) with fault at bus 6 and low load levels. 

 

0 5 10 15 20 25
1.34

1.36

1.38

1.4

1.42

V
C

t(s)

 

 

Proposed

Droop

 
Fig. 4.12 Proposed stabilizer in comparison to droop controller; VC is the renewable generator 

dc-link capacitor voltage (pu) with fault at bus 6 and low load levels. 

 

4.5 Conclusion 

In this chapter the power system with penetration of renewable energy sources is 

modeled as a multi-generator power system and the inter-area oscillations is studied after a 
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disturbance has occurred. Through a novel modeling and decentralized control strategy for the 

renewable generators that dynamically controls the inverter gain and phase angle, as well as for 

the synchronous generators the overall grid stability is assured and proven in Appendix C. 

Simulation results on the IEEE 5-generator power system shows effectiveness of the proposed 

scheme in damping oscillations in the SG’s frequencies and the GTI’s capacitor voltage, that 

occur after disturbances. The proposed controller is shown to be more efficient compared to DSC 

and droop controllers.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

The interconnected ac/dc distribution system is represented as a class of interconnected, 

nonlinear systems with unknown dynamics.  

The dc distribution system comprises several dc sources, here called subsystems, along 

with resistive and constant-power loads (CPLs.) Each subsystem includes a dc-dc converter 

(DDC) and exploits distributed energy resources (DERs) such as photovoltaic, wind, etc. Due to 

the power system frequent disturbances this system is prone to instability in the presence of the 

DDC dynamical components. On the other hand, designing a centralized controller may not be 

viable due to the distance between the subsystems (dc sources.)  

In Chapter 2 the stability of the interconnected dc distribution system is enhanced 

through discrete-time decentralized adaptive nonlinear controller design that employs neural 

networks (NNs) to mitigate voltage and power oscillations after disturbances have occurred. The 

adaptive NN-based controller is introduced to overcome the unknown dynamics of each 

subsystem’s converter and stabilize the entire grid, assuming that only the local measurements 

are available to each converter. The controller is tested in Matlab-Simulink to be evaluated in 

different load and source change conditions. The controller is able to mitigate the oscillations 

caused by different disturbances by adjusting the renewable sources power and stabilize the 

system in the new operating point. The controller is compared to droop controller and the results 

demonstrate more precise steady state response and significantly more noise rejection in the 

proposed method. In Chapter 3 output feedback controller is proposed which requires less 

information of the system than state feedback controller in which all state variables of the 
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subsystem are required.  This controller is applied to IEEE 14-bus system in Simulink and its 

effectiveness has been evaluated in different conditions. This controller utilizes less information 

of the local system rather than the state feedback controller and estimates the unknown variables. 

As result, the output has more fluctuations in steady state and transient conditions in comparison 

to state feedback controller. The output has less fluctuation in comparison to droop controller.  

In Chapter 4 the ac grid contained synchronous and renewable generators is investigated. 

A GTI is used to interface the renewable energy source to the grid in order to control the 

delivered power. In order to adjust the operating point of the PV generator, a dc-dc converter is 

incorporated to the system as an interface between the solar array and the GTI connecting the 

solar array to the power network. The interaction of the solar array dc-dc converter with the GTI 

is addressed. Simulation results show improved performance and stability of the proposed 

converter discrete-time controller over the conventional methods in the presence of the power 

system disturbance. The theoretical conjectures and simulation results of the controller imply 

that the converter input voltage and power as well as the inductor current are stabilized desirably 

at their initial set points, which verifies the accuracy of the converter discrete-time model and the 

effectiveness of the proposed discrete-time controller. 

5.2 Recommendation of Future Work 

The following recommendations are made for possible future research: 

 Discrete-time adaptive neural network is a relatively new topic in the power system stability 

and control and hence further research be made on the update law and gain adjustment to 

improve its efficiency and effectiveness.  
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  The simulation scenarios be evaluated in the presence of protection equipment which have 

significant influence on the system operation specifically in severe disturbances.  

 The system model be more general and developed to hybrid ac/dc distributed generation 

systems.  

 The proposed controllers in both ac and dc systems be implemented in the lab and verified 

by experimental tests. 
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APPENDIX A 
 

Consider the overall Lyapunov function candidate rLLL   , where 
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Substituting the filtered error (18) into (A2) and expanding the terms, one attains 
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Expanding the first difference of the overall Lyapunov function candidate rLLL    

results in  




 
n

i

ii
T

iiiiiiiiii
T

ii
T

ii kkgkgkkrKkgkgkkkgL
1

1222
)(

~
)(2)()()()()()(

~
)(

~
)([   


















n

i i

i
iiiiiiiiiii

T
iiii

T
ii

kg

kr
kkrKkkrKkgkkrKkkg

1

2

)1(

)(
)]()(2)(2)()(2)(

~
2)()(

~
)(2   

  
  



























n

i iiiii
T

iii
T

i

iiiii
T

iii
T

iii
T

ii

kkrKkkgk

kkrKkkgkk

1

21

)()()(
~

)()(
~

2

)()()(
~

)()(
~

)(
~




.)}(

~
)(

~
{

1

1






n

i

i
T

ii kk          (A4) 

By applying Cauchy-Schwarz inequality [34] 2
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Note that using Assumption 1, one has  
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C Therefore, 0L   in (A6) provided the following conditions hold for all ni 1  

iri CCkr )(  or  .)(
~

 i
T

i CCk                                                                                   (A8) 
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This guaranties the boundedness of weight estimation errors, )(
~

ki , and filtered error )(kri  

which in turn show that states )(ki  are UUB according to the standard Lyapunov extension 

[35] for all ni 1  as explained.                       ■ 

Thus, the proposed NN controller guarantees that the closed-loop signals are UUB with 

the given bounds in (A7) and (A8). In order to have small errors, bound C  must be reduced 

while irC  and iC  (for all ni 1 ) need to be increased. According to (A7), C depends on 

i  and i0  whereas irC  and iC  depend on iK , i , and ji  for all ni 1  and nj 1 . 

Design gains iK  and i  are selected to be small positive constants while the interconnection 

bounds ji  and i0 ( ni 1 ; nj 1 ) can be made small by utilizing high enough sampling 

frequency or adequately large output capacitors. Also, C can be further reduced by utilizing 

more NN hidden-layer neurons to obtain smaller NN function approximation error max,i  [29] 

(for all ni 1 .) The NN approximation error can be made arbitrarily small provided an 

arbitrarily large number of hidden layer neurons are selected. However, to provide computational 

efficiency, here the NN hidden-layer neurons are limited to 10. 
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APPENDIX B 
 

The following theorem guaranties boundedness of the tracking errors, the NN weight 

estimation errors, and the state estimation errors.  

Theorem 2 (Decentralized NN Output Feedback Controller Stability): Consider the nonlinear 

discrete-time interconnected system given by (4). Let the Assumptions 1 and 2 hold and that the 

desired trajectory imd, (for all ni 1 ) and initial conditions for system (4) be bounded in the 

compact set  . Let the subsystem states be estimated by observer (8) and unknown 

nonlinearities in each subsystem be approximated by a NN whose weight update is provided by 

(9). Also, let the control input be provided by a second NN whose update law is given by (15). 

Then, there exist a set of control gains iK , il ,1 , il ,2 , i,1 , and i,2  associated with the given 

NNs such that the tracking error )(kzi , state estimation error )(
~

ki  as well as the NNs weight 

estimation errors iW ,1

~
 and iW ,2

~
 are UUB for all ni 1 . 

Proof. Consider the overall Lyapunov function candidate 
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.  

By using (17) and replacing the interconnection term 2)(i  using (7) in Assumption 1, Cauchy-

Schwartz inequality [6] 2
21 )( naaa   )(

22
2

2
1 naaan   , and the fact that 

     


n

i

n

j iji
n

i

n

j jij zz
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  , the first term can be rewritten as 
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ii    and ))(ˆ())(ˆ(~ kMkM iiiii   . 

Next, by substituting (14), )1()1( ,,  kkz imim  )1(,  kimd , Cauchy-Schwartz 

inequality, and substituting the inter-connection terms the first difference of the Lyapunov 

function due to the second term becomes 
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where  ))((~))(( ,2,2 kYWkxgS iii
T

iiii    and ))(ˆ(~ kYiii   )(( kYii . 

Moreover, by using (11) and Cauchy-Schwartz inequality the first difference of the Lyapunov 

function due to the third term becomes  
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In addition, by using (16) and Cauchy-Schwartz inequality the first difference of the Lyapunov 

function due to the fourth term is given by 
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The overall first difference of the Lyapunov function is 



 

98 

 


21

~ WWz LLLLL
                                                                                              (A1) 

]))(ˆ()(
~

))(ˆ()(
~

)()()(
~

)(
~

[

,

2

,2,

2

,1,

2

,,
2

,
2

,,
~

1

2
,1,

~

21 iCii
T

iiWii
T

iiW

imizmiizimim

n

i

ii

BkYkWBkMkWB

kzBkzBkBkB











 

with 

2
,13

2

max

2
,13,11,

~ 2))(ˆ(3 iiiiii
lkMlB 


      

2
max,

2
21,

~ 5 iiim
gKmB 


  

2

max

2
,2,24

2
,241

2
11

2
2

2
, ))(ˆ(32)1(6)1(5

2
kYllnnmB iiiii

n

j ji
n

j jiiz 


  
 

2
max,

2
2

2
, 5

2
iiizm gKm

m
B 


  

2

max
1313, ))(ˆ(36

1
kMB iiiiW    

2
max,2

2

max
,244, 5))(ˆ(3

2 iiiiiW gmkYB    

2
,24

2

max
,24

2
,13

2

max
,13

2
max,2

2
max,1

2
021,

)2))(ˆ(3()2))(ˆ(3(

56)56)(1(

iiiiiiii

iiiiC

kYkM

SmAmnB








 

where i
T
ii W  ,1,1 max


 , i

T
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 and ii AA


 maxmax, .  

The coefficients in (A1) are defined in the following by selecting 11  , 22   , 73  , and 

2
max,4 10 ing  as 
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Then, 0L   in (A1) provided the following conditions hold for all ni 1  
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where “ ” denotes “or” operator.  

The interconnection terms i0  and ij  (for all ni 1  and mj 1 ) are weak in 

nature and can be made small by utilizing high enough sampling frequency or adequately large 

output capacitors. Consequently, the bound shown in (A2) can be reduced by selecting design 

gains il ,1 , il ,2 , i,1 , i,2 , and iK  appropriately.  
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This guaranties the boundedness of weight estimation errors, )(
~

,)(
~

,2,1 kWkW ii , and tracking error 

)(kzi  as well as the state estimation error )(
~

ki  are UUB [7] with the given bounds in (19).  
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APPENDIX C 
 

By replacing iu  from (21) in (17), the filtered error dynamic becomes 
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By applying Cauchy-Schwarz inequality [30] 2
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The last term can be rewritten as 
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Using the neural network weight update law (25) the derivative of the Lyapunov function due to 

the neural network weights is obtained as 
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Therefore, semi-negative definite V  (lacking the NN weight estimations errors) only guaranties 

boundedness of the states. Next, with the use of Barballat’s lemma [27] the local asymptotic 

stability of the filtered error )(kri  can be proven, which in turn shows that states )(ki  are 

locally asymptotically stable according to the standard Lyapunov extension [27] for all ni 1 . 
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