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ABSTRACT

Stability, protection, and operational restrictions are important factors to be taken into
account in a proper integration of distributed energy. The objective of this research is presenting
advanced controllers for small-scale power systems with penetration of renewable energy
sources resources to ensure stable operation after the network disturbances.

Power systems with distributed energy resources are modeled and controlled through
applying nonlinear control methods to their power electronic interfaces in this research. The
stability and control of both ac and dc systems have been studied in a multi-source framework.

The dc distribution system is represented as a class of interconnected, nonlinear discrete-
time systems with unknown dynamics. It comprises several dc sources, here called subsystems,
along with resistive and constant-power loads (which exhibit negative resistance characteristics
and reduce the system stability margins.) Each subsystem includes a dc-dc converter (DDC) and
exploits distributed energy resources (DERSs) such as photovoltaic, wind, etc. Due to the power
system frequent disturbances this system is prone to instability in the presence of the DDC
dynamical components and constant-power loads. On the other hand, designing a centralized
controller may not be viable due to the distance between the subsystems (dc sources.) In this
research it is shown that the stability of an interconnected dc distribution system is enhanced
through decentralized discrete-time adaptive nonlinear controller design that employs neural
networks (NNs) to mitigate voltage and power oscillations after disturbances have occurred.

The ac power system model is comprised of conventional synchronous generators (SGs)
and renewable energy sources, here, called renewable generators (RGs,) via grid-tie inverters
(GTL) A novel decentralized adaptive neural network (NN) controller is proposed for the GTI

that makes the device behave as a conventional synchronous generator. The advantage of this
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modeling is that all available damping controllers for synchronous generator, such as AVR
(Automatic Voltage Regulator) + PSS (Power System Stabilizer), can be applied to the
renewable generator.

Simulation results on both types of grids show that the proposed nonlinear controllers are
able to mitigate the oscillations in the presence of disturbances and adjust the renewable source
power to maintain the grid voltage close to its reference value. The stability of the interconnected

grids has been enhanced in comparison to the conventional methods.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

There has been an increasing trend towards the integration of renewable energy resources
into the power networks in recent years, in order to address increasing electricity demands and
reduce environmental pollution due to the widespread utilization of fossil fuels. The power grid
components interaction and the impact of renewable energy sources including solar, hydro,
biogas, biomass and wind, have been of the most important and challenging subjects of the
power industry during the past few years, especially in micro grids [1]-[6]. Important factors to
be taken into account in a proper integration of distributed energy resources include stability,
protection, and operational restrictions to ensure stable operation after faults, load changes, and
other network disturbances. High penetration levels of wind and solar energy can change power
system dynamic characteristics, significantly affecting the stability of the system [2]-[4].
Excitation control, FACTS devices, and other power system controllers can play important roles
in improving dynamic performance and maintaining the power system stability and reliability
[4].

Many distributed energy resources (DERs) such as photovoltaic (PV,) variable-speed
wind turbines, and storage devices can be connected to the dc grid through dc-dc converters
(DDCs.) Therefore, the dc distribution system has attracted much attention as there is only one
voltage conversion mechanism (i.e., dc-dc converter) between the power generators and the grid.
This reduces system costs, as opposed to ac grids that require an additional dc-ac conversion.
However, the dc distribution system employs constant power loads, which reduce grid stability

margins by exhibiting negative resistance characteristics in the system.
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Both ac and dc grids take advantage of power electronic interfaces that interface the
renewable energy sources to the grid.

Each subsystem in dc distribution system, represents a distributed energy resource (such
as photovoltaic source) connected to the grid through a dc-dc buck converter as shown in Fig.

1.1.
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Fig. 1.1 photovoltaic source connected to dc grid through dc-dc buck converter.

Ac grids include distributed energy resources including conventional synchronous
generators and renewable energy sources, here called renewable generators. Each renewable
generator comprises a photovoltaic source connected to an inverter via a dc-dc converter as

represented in Fig. 1.2.
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Fig. 1.2 Grid-connected renewable generator.
The existence of dynamic elements in DDC, such as capacitor and inductor as well as

low-inertia power resources, such as photovoltaic (PV) systems, can cause undesired oscillatory



behaviors when disturbances occur in both ac and dc power systems. Particularly, in micro grids,
faults, load changes, and other network disturbances affect the entire system more severely than
in larger grids. Moreover, the frequent changes in the renewable power and loads can potentially
aggravate the grid’s stability.

On the other hand, a variety of control mechanisms may be applied to the grids with
penetration of renewable energy sources to improve the stability of the grid. In order to design a
linear controller the small signal model should be driven by linearization around an operating
point. Linear controllers are easier to design and realize while nonlinear controllers are more
advanced and can potentially lead to better performance and accuracy. These mechanisms can be
implemented in centralized or decentralized forms. A centralized controller requires the
information of the entire system while in decentralized controller only the local information in
each subsystem is needed. In an interconnected system, a decentralized controller is usually
preferred because it permits reduced amount of information exchange between subsystems,
which leads to less time delays and computational burden. In addition, the controllers can be
discrete-time or continuous-time. In discrete-time control, the controller is applied in certain time
steps, which is usually equal to the sampling time while in continuous-time domain the controller
is assumed to be applied continuously. The discrete-time controller is preferred for computer
implementation because it considers the discrete-time natures of the hardware.

Advanced controllers can take advantage of adaptive mechanisms as opposed to fixed
controller designs. In fixed controllers, the operational range is limited and relies on system’s
nature and operator expertise. In adaptive controllers, the controller adjusts automatically as
needed during operation and can accommodate a wider range of operational conditions without

much human interference.



1.2 Past Work

Several methods have been proposed aiming at a stabilized grid and often rely on small
signal analysis [7]-[11] using linear systems control approaches; that is, they are only valid
around a small neighborhood of an operating point. Also, they have not considered the
interconnected nature of general dc grids where several loads and generations interact. The cases
of a multi-load system have been studied in [5]-[6] and a large-signal stability method is
proposed to ensure the entire system’s stability. However, these methods rely on a constant
voltage dc bus (Fig. 1.1), an assumption that may not be realized in many grids such as micro
grids. The main drawback of the method presented in [5] is its centralized controller that requires
obtaining the information from all subsystems.

Most of decentralized control schemes have been developed for nonlinear continuous-
time systems [12]-[14] with less work in discrete-time systems [15]-[16] while the latter is
preferred for computer implementation. For example, it is well-known that a stabilizing
proportional controller for strictly proper plants can be unstable if discretized for the computer
implementation [17]. Hence, the discrete-time natures of the system and the controller are
explicitly taken into account in dc grid modeling and control design.

1.3 Research Objective and Contributions

This work aims at addressing aforementioned issues presenting novel decentralized
nonlinear controllers for both interconnected ac and dc grids. In contrast with the conventional
approaches, the proposed method considers the nonlinear nature of the entire grid. The proposed
controllers are designed in decentralized forms and thus require minimal data acquisition.
Specifically, component interactions and nonlinearities of the interconnected grid and low-inertia

distributed energy resources (such as solar arrays) have been considered in the control design.
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For all the proposed control methods, the stability of the entire grid is proven through thorough
math.

Fig 1.3 explains this research that comprises two major parts; modeling and control. In
modeling, the grid components including renewable sources (photovoltaic cells,) loads, and
network are modeled in both ac and dc systems. Nonlinear nature of the components is
considered in the modeling. Next, decentralized adaptive neural network controllers are designed
for both continuous- and discrete-time systems. State and output feedback controller designs in

decentralized framework are proposed to stabilize the grids.

Advanced control of small-scale power systems with penetration of renewable energy sources

Components modeling Decentralized adaptive neural network control
Sources and loads Network Discrete-time Continuous-time
DC AC State feedback Output feedback State feedback
v A 4 l
[ Chapter 2 ] [ Chapter 3 ] [ Chapter 4 ]

Fig 1.3 Research aspects flowchart

Each dc-dc converter in dc grid is modeled as a dynamical subsystem and the stability of
the entire grid is investigated. The decentralized controller achieves transient stability and
steady-state requirements based only on local information and measurements and the adaptive

neural networks (NNs) are employed to approximate the unknown nonlinearities.



The renewable generator (RG) in the ac grid is modeled to behave as a synchronous
generator (SG) with similar dynamics where the dc-link capacitor acts as the energy storage
similar to the rotor of a SG. With the proposed modeling, the GTI resembles a synchronous
generator with excitation control. The advantage of this modeling is that all available excitation
control methods for synchronous generator can be applied to the renewable generator equipped
with the proposed GTI excitation-like mechanism. Thus, the GTI can be controlled by excitation-
like mechanisms such as AVR (Automatic Voltage Regulator) and PSS (Power System
Stabilizer), as well as their nonlinear counterparts.

The contributions of this dissertation are:

- Nonlinear modeling and decentralized control of dc grids through adaptive neural

network state feedback controller in discrete-time with proven stability

- Nonlinear modeling and decentralized control of dc grids through adaptive neural

network output feedback controller in discrete-time with proven stability

- Nonlinear modeling and decentralized control of ac grids through adaptive neural

network state feedback controller in continuous-time with proven stability

The rest of the dissertation is arranged in the following sequence. In Chapter 2 a dc
interconnected network has been modeled in discrete-time domain and a decentralized neural
network controller with state feedback method is proposed. This kind of controller can utilize
output feedback method as proposed in Chapter 3. In Chapter 4 an ac network has been
considered in continues-time domain and has been stabilized by a decentralized neural network
controller using state feedback method. Chapter 5 includes the conclusion and suggestions for

the future work.



1.4 Definitions

Neural network (NN) approximation [18]

A general function f(x)eR where Xe& R™  can be written as
f(X) =W T DNV T X)+&(x) [14-15] in the compact set A € R™ (neural network approximation
domain) with &(x) denotes neural network functional reconstruction error vector, W RN>1

and V e R™N represent target neural network weight matrices.
Mean-value theorem [19]
Given an arc (differentiable) between two endpoints, there is at least one point at which

f(b)-f(a)

the tangent to the arc is parallel to the secant through its endpoints: f’(c) = b
—a

4y «t

F=1

Fig 1.4 Arc and secant between two endpoints a and b
Uniform ultimate bounded (UUB) [18]
Consider the dynamical system x(k +1) = f (x) with x e R" being a state vector. Let the

initial time step be k, and initial condition be x, = x(ky) . Then, the equilibrium point X, is said



to be UUB if there exists a compact set S — R" so that for all x, €S there exists a bound B
and a time step K(B, Xo) such that |x(t) — x| < B for vk >kq + K.

Constant power loads (CPLs) [7]

Power electronic converters when tightly regulated, behave as constant power loads (CPLS),
which exhibit negative impedance characteristics and consequently reduce the grid stability
margins.
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CHAPTER 2
DECENTRALIZED DISCRETE-TIME ADAPTIVE NEURAL
NETWORK CONTROL OF INTERCONNECTED DC DISTRIBUTION
SYSTEM

2.1 Introduction

Many distributed energy resources (DERs) such as photovoltaic (PV,) variable-speed
wind turbines, and storage devices can be connected to the dc grid through dc-dc converters
(DDCs.) Therefore, the dc distribution system has attracted much attention [1]-[7], as there is
only one voltage conversion mechanism (i.e., dc-dc converter) required between the power
generators and the grid. This reduces system costs, as opposed to ac grids that require an
additional dc-ac conversion. However, the dc distribution system employs constant power loads,
which reduce grid stability margins [2]-[9]. Also, the existence of dynamic elements in DDC,
such as capacitor and inductor as well as low-inertia power resources, such as photovoltaic (PV)
systems, can produce undesired oscillatory behaviors when disturbances occur. Particularly, in
micro grids, faults, load changes, and other network disturbances affect the entire system more
severely than larger grids. Moreover, the frequent changes in the renewable power and loads can
potentially aggravate the grid’s stability. The main idea in [2]-[6] is to stabilize the system by
“reshaping” the load impedance or the source impedance to improve the stability margins. These
studies often rely on small signal analysis; that is, they are only valid around a small
neighborhood of an operating point. Some other studies have looked into system stability using
large signal analysis [7]-[11] and proposed nonlinear stabilization techniques. In [7], loop
cancellation technique is applied to all converters loaded by CPLs to cancel the nonlinearity and
obtain a stable system. However, the method relies on the existence of resistive loads. Also,

synergetic and sliding-mode control techniques have been proposed in [12].
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The aforementioned techniques present approaches to overcome the system instability;
however, they have not considered the interconnected nature of general dc grids where several
loads and generators interact. Examples of such systems include medium-size dc distributed
generation systems and micro grids that employ multiple DERs.

The cases of a multi-load system have been studied in [13]-[14] and a large-signal
stability method is proposed to ensure the entire system’s stability. In these methods, a
stabilizing power, which is determined by the relevant controller, must be absorbed by each load.
However, the method relies on a constant voltage dc bus, an assumption that may not be realized
in many dc power systems. The main drawback of the method presented in [13] is its centralized
controller that requires obtaining the information from all subsystems. In an interconnected
system, a decentralized control is usually preferred because it permits reduced amount of
information exchange between subsystems, which leads to less time delays and reduces
computational burden.

In recent years, there has been a continuous trend towards the decentralized control of
interconnected nonlinear systems [15]-[19] for their increased reliability over the centralized
control structure as mentioned earlier. The decentralized control schemes have been developed
primarily for nonlinear continuous-time systems [15]-[17] with less work in discrete-time
systems [18]-[19]. In discrete-time control, the controller is applied in certain time steps, which
is usually equal to the sampling time while in continuous-time domain the controller is assumed
to be applied continuously. The discrete-time controller is preferred for computer
implementation [20] because it considers the discrete-time natures of the hardware. For

example, it is well-known that a stabilizing proportional controller for strictly proper plants can
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be unstable if discretized for the computer implementation [21]. Hence, the discrete-time natures
of the system and the controller have to be explicitly taken into account in the design.

Limited work has been reported in the literature for decentralized control of dc systems to
enhance a grid’s stability. In [22] a decentralized predictive controller in discrete-time is
developed and applied to dc-dc converters connected in parallel branches; however, interactions
and nonlinearities of the interconnected dc grid and low-inertia DERSs (such as solar arrays) are
not considered in the control design. In [23] a decentralized controller approach is proposed for
coordinated supplementary control of active and reactive power in high-voltage dc links in ac
grids using linear controller design techniques. Finally, voltage droop control is proposed based
on load sharing and linear system theory to stabilize the dc voltage [24]-[25].

A novel decentralized nonlinear neural network controller is proposed in this chapter for
the interconnected dc grid in discrete-time. The dc grid is modeled as an interconnection of
DERs connected to constant-power and resistive loads through DDCs. Then, adaptive NN
controllers with online learning capabilities are employed to overcome uncertainties in the
DDCs’ dynamics and stabilize the output voltages in the event disturbances occur in the grid.
Each DDC is modeled as a discrete-time dynamical subsystem and the stability of the entire dc
grid is investigated. Though the proposed modeling and controller design can be applied to a
variety of DERSs, specific attention is paid to solar arrays to address low-inertia distribution
systems and micro grids. Through the Lyapunov stability method the stability of all the DDCs’
output voltages in the interconnected dc grid is proven using local states measurement.

In this chapter, first, the dc distribution grid topology is presented in section 2.2 followed
by the developed DDC discrete-time model. In section 2.3, dynamic model of the buck converter

is derived in canonical form. The dc network is then presented in the form of a nonlinear
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interconnected discrete-time system in section 2.4, while it’s associated decentralized NN
controller development using state feedback is proposed in section 2.5. Simulation results on a
low-voltage distribution grid and concluding remarks are presented in sections 2.6 and 2.7,
respectively.

2.2 DC Grid Model

The N-bus interconnected dc grid comprising n subsystems (dc-dc converters) and “N -
n” load buses is depicted in Fig. 2.1. Each subsystem represents a distributed energy resource
connected to the grid through a dc-dc converter that is modeled by dynamical equations. The
subsystems interconnect through the dc network that is governed by algebraic load-flow
equations. Thus, the dc grid can be represented by, generally nonlinear, differential-algebraic
equations. When converted to discrete-time model, the dc grid is modeled by difference-
algebraic equations. In this section, the buck converter in continuous-current mode (CCM)
operation is considered; however, other types of DDCs can be utilized and modeled in a similar
way.

It is important to mention that boost converters are more attractive due to their ability to
increase the output voltage that requires lower solar array voltage leading to fewer panels;
however, their operating range is very limited [26],[27]. The advantage of the buck converter is
its greater stability since unlike in the boost converter, output voltage in the buck converter is
proportional to the duty cycle and does not grow exponentially, and thus, the duty cycle has a
greater control range. In low-voltage applications, solar voltage connected through a step-down
buck converter is conventional. Also, solar voltages up to 600V [28] are feasible through
stacking the solar panels which in turn reduces the wiring connection losses in the panels due to

lower currents [26]. On the other hand, if needed, voltage magnification can be provided by
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using the forward converter that takes advantage of both transformer action and buck converter
voltage adjustment. The forward converter can be modeled in a similar manner to the buck

converter where the output voltage/current is multiplied/divided by the forward transformer’s

turns ratio.

u+l

Rl il
Distribution
System
V N
Dc.~
DG _. e T’_l—q o—h
B

R[ ] LN

Fig. 2.1 N-bus dc distribution system, n generator buses and N-n non-generator buses, with load
PLion bus ‘i’

A typical buck converter topology that can interface a DER with the dc grid is

represented in Fig. 2.2. Consider the converter’s input and output capacitors’ voltages, V;,; and
Vouti» and the inductor’s current i j (Fig. 2.2) as the subsystem’s state variables. Then, the

dynamical equations describing the i-th subsystem (i.e., the i-th DDC) at time step kT

(discretized in the switching period T ) can be shown by

Vin,i (k+1T) C|n|[J |n|(t dt j( o iL,i(t)dt]‘|'vin,i(k-r)

LT =L 0t [ v 0d i (kT)

j (k+D)T

Vouti (K +0T) = Cogi (i, (®) =lout i ©)) dt +Vour i (KT) €y
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where index 1<i<n represents the subsystem (DDC) number, n is the total number of

subsystems , T and d; are the converter switching period and duty cycle, respectively, and L;,
Cini and Cg;, are the converter’s inductor, input capacitor, and output capacitor values,
respectively. In addition, i;,; is the input current provided by the DER, and k is the discrete step
(kez®.)

Remark 1. Note that in the conventional DDC modeling the effects of the voltage and current

variations during each switching cycle are ignored leading to the simplified equations

Vini (K+T)=T/Cjpj x[ijn,i (KT) —dj i (KT)]+Vip, (KT)

iLi (K+DT) =T/Lj x[d; Vig,i (KT) = Vouei (KT)] +ip i (KT)

Vouti (K+1)T) =T/C0utyi X[ i (KT) =iguei (KT )]+ Vot i (KT) - 2

From now on, the switching time T is removed from the time index for simplicity; for instance,

Vini (KT) is shown by vj,; (k).

DC-DC Buck Converter

Iir:,f IL:E i;our,i
— .._,,vr.f.!'. = —
T s T
vin,f — di Dr' C T vour,i

out.i
= C:'n,f ) -
a
i Duty Ratio

Fig. 2.2 Dc-dc buck converter.

Remark 2. Output current iy, (k) in (1) generally depends on the grid’s bus voltage vector

[Vout,17~~-7vout,n’V17V2'~-'VN]T- However, grid voltages [v;,V,,...,vy]" can be obtained from
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DDC output voltage vector [vout,l,v<)ut,2,...,vout’n]T by solving the load-flow equations for

T
[vi,vo,...,vnT

In the next section, the discrete-time interconnected dc grid model will be obtained.
2.3 Buck Converter Discrete-Time Model

In this section, the buck converter discrete-time model (1) is represented in Brunovsky
canonical form [29]. The presented modeling and proposed controller aim at stabilizing the buck
converter output voltage in an interconnected dc network and in the presence of PV power
generators as the source of electric power. Thus, no storage is considered in the system model to
avoid extra costs to the network. Also, no high-power constant dc source, such as rectified ac-dc
power, is assumed in the grid to include isolated micro grids. As the network undergo faults and
disturbances, the dc voltage fluctuates in the network affecting the solar power generation in a
nonlinear fashion which could potentially lead to the entire network instability and voltage
collapse. Thus, in this work the goal is to stabilize the converter output voltages through an
adaptive control scheme by using the learning capability of the NNs leading to an enhanced
stability of such interconnected dc grids. The proposed controller alters the converter’s duty
cycle to attain the stability through an adaptive scheme while taking the converter input and
output voltages and currents as the only measurable states to the selected converter; thus, no
communications are assumed between the converters to simplify the controller structure.

In this section, several steps are carried out to convert dynamics (1) to a standard
controllable representation. First, error dynamics are derived around the steady-state operating
points. Next, the unknown functions in the error dynamics are expanded and elaborated.

Subsequently, new converter dynamic representation is presented by assigning the converter

17



output voltage as the controlled variable and a supplementary duty cycle as the control input.
Finally, a discussion on the stability of the converter unobservable state is carried out.
Recall that each DDC, which connects a DER to the dc grid, is considered as a

subsystem. Equations (1) model buck converter ‘i’ dynamics as functions of subsystem state

variables x; (k):[vin,i(k)liL,i(k)’Vout,i(k)]T (values defined at the beginning of the switching

interval.) Subtracting the steady-state values x,; = [v Voutail' from the actual values,

ino,i ’iLo,i'
the state error vector can be calculated as %; (k) = x; (K) — Xoi =[Vini (K), i ; (K), Voue; ()T - Also,
lin i (K) = i i (K) —fingi AN oy i(K) =Tou i(K)—iouq i @re the converter input and output current errors,

respectively.
In this work, the errors are aimed to be made zero that in turn makes the converter output

voltage approach its steady-state value. This procedure is conducted through synthesizing an
additional duty cycle d i (defined later) to be added to the steady-state duty cycle d, ; mitigating

the errors. The scheme stabilizes the network around the nominal converter output voltage in the

presence of the grid disturbances.

Dynamics Vi, ;((k+DT), 1 j((k+1T), and Voue; (kK +1T)) in (1) are in general functions
of the state error vector %;(k) and output current error iy, ;(k); however, it is difficult to obtain

closed-form representations of these dynamics, and thus, these functions are unknown.

Subsequently, the error dynamics are represented as unknown functions of the errors

Vini (k+2))=hy (% (k), d;)

iLi(k+D)=h, (% (k) d;)
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Vout,i (K +2) = h3 (% (K)) + & (fout,i (K)) ©)
As mentioned earlier, since the integrals in (1) cannot be easily converted to closed-form

functions of the states without simplification mentioned in Remark 1, functions hy;(.), hy;(.),
h3i(),and 4 (.)are unknown. While,hy;(.), h,;(.) and hs;(.) are functions of the converter
state errors %; (k) (available at converter ‘i’ location,) (.) is a function of the entire grid state
errors since iy, ;(k) depends on the other converters states, as explained in Remark 2. These

states are not available at converter ‘i’ location due to the controllers’ decentralized structure.

Next, for the convenience of control design, dynamics (3) are presented in canonical

form. One can take V. (k) along with its next step value as new state variables & =[&y; , &l

for converter ‘i’ and perform input-output feedback linearization [29] as follows

G1,i (K) =Vout,i (K)

Sri(kK+1) =Ygy (k+1) =3 (K)

S2i(k+D=Voui(k+2). (4)
According to (1) (and (2),) in obtaining V,;(k +2) it is noted that the future step of

output current (fout,i (k +1)) is needed that cannot be measured. As explained earlier (Remark 2,)

the output current can be obtained as a function of all subsystems’ output voltages; i.e.,

louti (K+1) = 8 (Vour 1 (K+D, ... Vouen(k+D).  Thus, Toyi(k+1) is a function of

EK) = [&(K),....&, (K)]" according to (4). Consequently, &, i(k+1) in (4) can be expressed as
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Sk +D) =hyi (% (k). d;) +A;(E(K) where hy;(%i(k),di)= hgi(%(k+1) is obtained from
the last equation in (3).

Output current fout,i(k +1) (and thus, function A;(&(k))) cannot be computed since
other DDCs’ states are not available at subsystem ‘i’ location. Function A;(£(k)) depends on the

entire system state vector &(k)and is called the interconnection term [30] that is a function of all
the converters’ states, some of which are unavailable.

Next, by utilizing mean-value theorem [31] around d; =d,;, function hy;(X;(k),d;)
can be rewritten as
hy i (%i (K), dj) = f; (X (K)) + g; (% (K)) u; (X (K)) (5)

where d, ; is the steady-state duty cycle, u; =d; is the state feedback control input, d; =d;—dy;,

fi (Xi (K)) = hyi(Xi(k),do;), and g;(X; (k)):ah41i/8di‘d LA with d; being an appropriate

function of 6i. Therefore, according to (4) and (5), converter state-space equations can be

rewritten in canonical form as
Srik+1) =& (k)
Soi(k+1) = i (X (k) + g; (% (K)) u; (k) + A (£(K)) (6)
with u; = d i as the subsystem’s input and unknown nonlinear functions f;(X;(k)), g; (X; (k)),
and A ;(&).

In summary, new representation (6) is presented that involves local states & ;(k),

&»,i(k), and state error vector X;(k) as well as generally unavailable grid states &, ; (k) for
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j=1...,n;j=i. Also, due to unknown functions involved in dynamic representation (1),
fi (X (K)), g; (X (K)),and A ; (&) are unknown.
Dynamics represented in (4) are only of order two while the converter original dynamics

(1) are of order three. That is, one of the dynamics has been neglected in this procedure. With

respect to the design variable V,; (k), the additional dynamic is unobservable and is known as
internal dynamics [29]. The internal dynamics constitute the zero dynamics when the designed
observable states (here & =[&y;, §2,i]T) tend to zero and must be stable to assure the overall
network stability (minimum-phase system [29].) In the proposed design, V;, ; (k) is taken as the
subsystem zero dynamic, that is,

Vin i ((k+1)) =hy (%; (k). O

Input current ... is fed to the converter from a DER and can be considered as a function

ini
of converter input voltage i;,; =¥;(viy;). The characteristics of function ‘¥;(.) play an important
role in attaining stable internal dynamic, which will be discussed in section V. In order to
achieve stable internal dynamic, the DER requires certain design considerations, as will be
explained.

Remark 3. In order to assure system stability, the following DDC properties are elaborated and
utilized. First, it is worthwhile to mention that v;,; (k) (DER interface voltage) has a maximum.
Also, as this work investigates the voltage and power fluctuations, it is reasonable to assume that

Vini (k) stays away from zero. These result in 0<g; yin <0; (X (K)) <09 max - FOr convenience,

if the simplified model of Remark 1 is considered, g;(Xj(k)) is bounded between
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9i, min :TZ/(Li Cout,i)xvin,i,min and O, max :Tz/(l-i Cou'[,i)XVin,i,rT'ax . Second, according to (3) in
all subsystems the interconnection terms A;(¢) are functions of output current errors and

consequently have small values as long as the step time (or equivalently DDC switching time) is
small. For example, using the simplified model, a switching frequency of 10 kHz and output
capacitor of 10 mF introduces a factor of 0.01 to the output current error. Further reduction in the

step time T and/or an increase in the output capacitor size reduces A (&) .

It is noteworthy that the buck converter model in discontinuous-current mode (DCM) can

be represented in a similar manner to dynamics (1) as

(k+
KT

(k+d

T i)TiL,i(t)dt]+Vin,i(kT)

ina(k+T) = CA [ it |

Voug i T) = Cod [T 0) oy (Dt v (KT

Note that the discrete inductor current is zero at all sampling times (beginning of
switching cycle) and can be removed from the states since one may solve for the current using
input and output voltages at discrete steps. Also, the unknown dynamics from the DCM
operation can be represented in the form of equations (6). Though the focus is only on the
converter CCM operation, the NN controller developed in the next section may be applied to
both continuous and discontinuous system representations since the utilized approximation
property of the NN holds for both types of systems [29] as will be
2.4 Discrete-Time Interconnected System Background

A class of discrete-time interconnected systems consisting of n subsystems (DDCs) can

be represented in canonical form as
Spilk+D) =&pu1i(k); 1< p<I-1)
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G i(k+1) = (X (k) + g (% (k)i (k) + A (£ (k)

yi (k) =&, (k) 8
for 1<i<n where & =[&; ,...,§|,i]T is the state error vector of subsystem i’ after conducting
input-output feedback linearization, 1is the order of the subsystem (I =2 according to model
(4),) f;(%;(k)) denotes internal dynamics, g;(X;(k)) is the input gain and A ; (£ (k)) represents
the interconnection effects with & :[51T ,...,§nT]T and X; is the original subsystem states errors

from which the input-output feedback linearization was derived as explained in (4) and (6).

Functions f;(X;(k)) and g;(X;(k)) can in general be nonlinear functions of states. It is desired

to design a controller that stabilizes £ at the origin (£ =0.) Thus, filtered error is defined as
(=04 0" & k) ©)
where 4; =[4; ,...,/I,_l,i]T and A4y ; through 4, ; are chosen in such a way that place the poles

11 inside the unit disc. In

of the characteristic equation x(s)=4; +12’is+-~+/1|_1,is'_2 +5
constructing filtered error r;(k) in (9) for the DDC an estimate of state &,;(k) maybe used by

employing simplified model of Remark 1 as illustrated in Fig. 2.3. This doesn’t affect the

convergence of the DDC output voltage since filtered error utilizes state & ;(k) as well. The

design proceeds by two assumptions and one definition.

Assumption 1- Functions g; (X; (k)) are bounded and away from zero for 1<i<n. That is,

0<gi min <0i (X (K)) < 9 max (10)
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where g; min and g; m are positive real constants. This is a valid assumption for the dc grid as

discussed in Remark 3 and is less restrictive than unity control gain (g;(X; (k)) =1) in the past

literature [18].

Assumption 2 [29]- The interconnection terms are bounded by a function of the states such that
Ai(&)<op + Z’j\l:l”ij HQHZ where og; and 7;; are positive constants for 1<i<n. The filtered

error r;(k) converges to zero whenever states &; (k) converge to zero. Similar to continuous-
time systems [30] this further implies that

Ai(f)ﬁzr;:l5ij(|’j)§50i +Zr}:17ij‘rj‘ (11)
where &;; is a positive function while &y and y;; are positive constants for 1<i<n and
1< j <I. In addition, the effects of the interconnection terms are assumed weak compared to the
subsystem dynamics. That is, Jg; and y;; are small values, which is valid in the dc grid as

explained in Remark 3. This assumption is less stringent than that of [18] with constant bounds
on the interconnection terms.

Definition. (Uniform Ultimate Bounded (UUB)) [29]. Consider the dynamical system
x(k +1) = f(x) with x e R" being a state vector. Let the initial time step be k, and initial

condition be xg = x(kg). Then, the equilibrium point X, is said to be UUB if there exists a

compact set S < R" so that for all x, € S there exists a bound B and a time step K (B, X,)

such that |x(k) — x| < B for vk >kq +K.

24



2.5 Nonlinear Discrete-Time Controller Design and Stability Analysis

In this section, a state feedback controller for the discrete-time interconnected system (1)
is presented and NN function approximation [29] is employed to overcome the unknown
dynamics of each subsystem. The NN controller utilizes an adaptive NN weight tuning scheme
which is conducted online with no need to utilize large data sets as in offline training schemes.

A. Nonlinear Controller Design

The filtered error dynamic in (9) can be derived using (8) as

nk+D) =04 10" &k +1)

~ T
R OD+0 4TS +MJ 12)

=0; (X (k
g; (% ( ))( g; (% (k) ! gi (% (k)

The goal is to achieve asymptotically stable filtered error dynamics in the form of

r(k+1) =K;g; (X (k) r; (k) (with 0<K; <]/gi,max ) in the absence of the interconnection terms.

Thus, one can define the stabilizing control as

Ui =U;" =Ujg +K; 1 (k) (13)
where
Uig =—0; (& () 7 (F; (X (K)+[0 417 & (k))- (14)

In practice, the internal dynamics f;(X;(k)) and input gain g;(X;(k)) may be uncertain
or difficult to obtain as explained in Section 2.3, and thus, u;4 is unavailable. Thus, NN function

approximation property is employed to approximate u,, [29] using the available states as

Uig =—0; (X; (k))_l(fi & () +[0 41" & (k)) =07 1 (% (K), & (K)) — & (% (K), & (K)) (15)
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where 6, is the target NN weight matrix, g;(.) is the activation function and a basis function
[31], and &;(.) is the NN function approximation error that satisfies ||&; (.)|<&; yax [29] in @
compact set 4 comprising all possible variations of variables %; =[¥;,; i i, ¥o.i]- In practice,
only an estimation of the target NN weights 6, is available.

From now on, for simplicity, 4 and & are utilized to represent g;(X;(k)) and
& (% (k)) , respectively. Thus, u;q4 is approximated as U;4, which renders controller u; in (13) as
Ui =Uig + K (k) =67 () +Kir; (K) (16)
where é,T (k) is the NN weight estimation matrix. The block diagram of the converter’s NN

controller is depicted in Fig. 2.3. In the figure all the input variables are discretized at the sample

time kT.

L n T rfﬂ
oufe o+
Vour =3 " :1
! 7 ™
=1
Buck it &
Converter 12 #()
: . [T A —
IL + 5 IL -/7
) T ;. -
d r
d 0 '
D—:- et ) .
+ -
da F
A+ "

Fig. 2.3 Converter NN controller.
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B. Stability Analysis

By replacing u; from (16) in (12), the filtered error dynamic becomes

(kD) =04 U7 &K+D = £ (}())+[0 417 & (K)

+93 (% GNOT (0 + K3 (K))+ A (£(K)) - (17)
The weight estimation error is defined as ¢, =6, —¢;, and thus, by adding and subtracting

Uijq, (17) can be rewritten as

(kD) = gy (6 (KD(GT 41+ 2, + Kty (0))+ A (£K) . (18)

Next, define the NN weight update law [32] as

6" (k+1) =0, (k) ~a it (k+1) (19)

where 0 < ¢; <1 is a positive design constant. Subtracting the target weights from (19), one has

0, (k+1) =6; (k) - et i (k +1) - (20)
Provided that the NN weight update is obtained by (19) and control gains K; and ¢; in

(16) and (19) are chosen properly, the states &, ; approach zero for all 1<i<n and 1< p<I in

UUB fashion; i.e, they stay in close proximity of the origin. Unknown nonlinearities in the
subsystems are approximated by NNs whose weights are calculated using (19).
The stability of the nonlinear discrete-time interconnected system (1) in the presence of

unknown dynamics f;(X;(k)) and input gain g;(X;(k)), and unknown interconnection terms
Aj(£(k)) for 1<i<n is proven by showing the stability of weight estimation errors 5, (k) and
the filtered errors r; (k) forall 1<i<n and is given in Appendix A. The filtered error r; (k) , and

consequently &; (k), converge to zero for all 1<i<n as explained.
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Next, one should assure that zero dynamics V;j; (k) (as described in Section 2.3) are

stable for 1<i <n when the observable states & =[&;, &.i1" are zero. In order to prove the

stability of the zero dynamic, here the simplified model of Remark 1 is used for convenience.

According to Remark 1, the zero dynamic is driven by
Vin,i(K+2) =T/Cin i X[ (Vi i (K)) = i () ]+ Vi i (K) - (21)
When the output variable v, (K) is zero, the controlled system (4) is at the equilibrium; that is,
Vouti (K) =Voutgi» iLi(K)=i4j, and dj(k)=d,;, and thus, observable states & (k)=0.
Consequently, at equilibrium, (21) becomes
Vin i (K+1) =T/Cip i X[ i (Vin i (K)) = o i 1 1+ Vin i (K) - (22)
Consider the Lyapunov function candidate F:\?in’iz(k). Then, the first difference of the
Lyapunov function is
AT =i % (k+2) 05 12 (K). (23)
By using (22), (23) can be calculated as

AT = (T /Cini)? X[¥; (Vi i () =g, g 1% +Vin i (K)
+2T/Cin,i X[‘Pi (Vin,i(k))_do,i iLo,i ]Vin,i(k) _Vin,iz(k) (24)

which results in

AT =(T/Cini)® X[ ¥ (Vin (K)) = do,j i 17

+2T /Cipy i X['¥; (Vin, i (K)) = dg i 6 1Vin, i (K) - (25)
For photovoltaic source considered here, ij, (k) is a nonlinear function of v;, (k) in the form

of
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; in,i (K)/(Vr g
in () = W (Vin (k) =npi (15 =g O 1)) (26)
where Npi and ng; are the numbers of the parallel strings and series panels forming the PV

generator [33], respectively, V; is thermal voltage, |, is the short circuit current and I

denotes the reverse saturation current [28].
The derivative of the solar current with respect to the panel voltage is negative. That

means, for an increase in the voltage the current decreases. In other words, one has

Wi (Vin,i (K)) < ¥ (Ving, i) =do,i 11, for  ;ni(k)>0,

i (Vin,i (K)) > Wi (Ving, i) = doi I, for ;i (k) <0

where vjn,; is the input capacitor steady state voltage. Therefore, the second term in (25) is

negative. In order to prove AI" <0 in (25), it is enough to show that

lPi (Vin, i (k)) - do,i iLo,i

S2Cin’i/T><

i, ()] (27)
The term on the left hand side of (27) is the solar current derivative with respect to V;,(k) that

satisfies

W (Vin, i (K)) —dg iLo,i

3‘5‘}3/5\/in,i‘m

i ()] (28)

As (26) suggests,

oY, /avin,i‘ has its maximum value at v;, =V, (solar open circuit voltage,) and

thus, from (27) and (28), stability criterion becomes

‘5‘Pi/5vin,i

<2Cip; /T (29)

Vin,i =Vop

Finally, using (26) and (29), one concludes that
(npi Irs/VT nsi) e Yo/ 01 ) = 2Cin,i/T : (30)
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By assuring (30) in the solar and dc-dc converter system design, AL<0 and stability of (k)

are obtained.
2.6 Simulation Results

In order to confirm the theoretical analysis and the proposed adaptive NN controller
design, the interconnected dc grid shown in Fig. 2.4 is tested using the Matlab/Simulink
environment. The dc grid comprises four DDCs fed by PV sources and connected to the dc
network comprising CPLs and resistive loads whose data are given in Table 2.1. The total load in
the grid is 23.1 kW, of which 74% is CPL. Each DDC is a step-down buck converter of Fig. 2.2,
equipped with NN controller (16) accompanied by NN weight update law (19). The goal is to
stabilize the all DDC output voltages despite grid disturbances. The simulations are performed in

multiple cases in order to evaluate the transient response and robustness of the controller.

[ 387

< B 1 Py
Py —DC~ i py —\DC | \L2 |(pp DG~ :
~DC l‘ | .~ DC I _~DC T
: 2
BusS | = Bus...l_ Bus 3 y 7

I | | i had
Buss “—>» P.-’_' Bus 6 P Bus 7 -#p Bus § -:P

Lo L7 L8

Fig. 2.4. Test interconnected dc network.

In the first three scenarios, load changes are applied to the system at t=0.9 s and removed
at t=1 s in 3 locations. Also, the transient response of the system to the intermittent solar
generation is evaluated.

Case 1. A disturbance occurs at bus 1 as a result of a load change from 2 kW to 5 kW
causing a sudden increase in the grid power consumption.

Case 2. Load P, g on bus 6 increases from 4.2 KW to 8.2 kW.
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Case 3. Load P__g on bus 8 is disconnected which causes a sudden reduction of 3.5 kW

in power consumption.

Table 2.1. Grid parameters

DDC Parameters DDC Parameters

- PV series and parallel cells & arrays PL1 2kW-
ns=1000 ; np=20 (Resistive:1kW;CPL:1kW)

- PV short circuit current  lsc=1 A PL2 2 kW-Resistive
- PV maximum power  Pmax=8.7 kW PL3 1 kW- Resistive
- DDC capacitors Cin=Cou=10 mF PLa 2 KW- Resistive
- DDC inductance L=150 mH PLs 3.4kW-CPL
- Switching frequency f;=10 kHz PLe 4.2kW-CPL
- Line resistances (Fig. 2.4) PL7 5 kW-CPL
Riine= 0.01 Ohm PLs 3.5kW-CPL

Figures 2.5 to 2.8 show that the DDC output and grid voltages are controlled and
maintained close to the reference value while the input solar power and voltage undergo transient
changes and are finally stabilized as predicted. Voltages and powers are shown in volts and
watts, respectively. As the photovoltaic system operates in voltage higher than maximum power

point voltage (v, >Vp,,) an increase in input power p;, necessitates a reduction in the DDC

input voltage v;,, as Figs. 2.6 and 2.7 confirm. Selected grid voltages are depicted in Fig. 2.8 and

imply stable voltages in the entire dc grid.
Case 4. In this case, solar arrays 1 (i.e., connected to bus 1) undergo a drop in the power
production due to a moving object passing over the PV panels. As a result, some of the parallel

arrays are disconnected and the solar power reduces by 80%. Figure 2.9 shows that the DDC
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input voltage and solar power of bus 1 drop, significantly; however, the proposed adaptive
controller is able to maintain the output voltage and stabilize the DDC both when the obstacle
blocks the arrays and when it is removed. Note that, the other solar panels compensate for the
load-generation power mismatch through maintained nominal output voltage.

Case 5. In order to further demonstrate the ability of the controller to automatically adjust
to different operating points, in this case the load level of bus 7 has been altered. Load P_; (bus
7, in Fig. 2.4) increases from 5 kW to 8 kW at t=0.9 s and goes back to 5 kW at t=1.2 s. Then, it

decreases to 3 kW at t=1.5 s and reaches to 6 kW at t=1.8 s. The results are depicted in Figs. 2.10

to 2.12 where good tracking performance of the controller is observed.
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Fig. 2.5 DDC output voltages after the load changes in cases 1, 2, and 3.
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Fig. 2.6 DDC input voltages after the load changes in cases 1, 2, and 3.
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Fig. 2.7 DDC input powers after the load changes in cases 1, 2, and 3.
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Fig. 2.9 Proposed controller’s performance in the presence of intermittent solar power in case 4.
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Case 6. The performance of the proposed controller is evaluated under a line-break
scenario where the line connecting busses 1 and 5 is subject to a fault and disconnects at t=0.9 s.
The results are illustrated in Figs. 2.13 through 2.15 showing that the voltages are kept in
acceptable ranges while the solar generators experience changes in their delivered power.

Case 7. The performance of the proposed controller is compared against the droop-based

decentralized controller proposed in [25]. The droop controller is designed and tuned to track the
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converter nominal output voltage with Kp =30 and K; =1. In this scenario, load P_;

decreases from 5 kW to 3 kW at t=0.9 s and then to 1 kW at t=1 s. As Fig. 2.16 implies, as
opposed to the proposed controller’s precise voltage tracking, the droop controller has an overall
steady state error. The droop controller’s transients are slightly shorter and have smaller voltage
variations than that of the proposed adaptive controller; however, it leads to larger steady-state
errors in the output voltage. Next, in order to evaluate both controllers robustness, a sinusoidal
measurement noise of 1 kHz frequency and 2 V (peak-peak) amplitude is added to all the output
voltage measurements. Results of Fig. 2.17 show an improved performance and better noise
rejection of the proposed adaptive controller over the droop controller.

Overall, the simulation results show a good control performance provided by the

proposed adaptive NN controller in stabilizing the interconnected dc grid.
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Fig. 2.13 Line disconnect scenario; DDCs’ input powers, in case 6.
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Fig. 2.17 Comparison of the proposed NN and droop controllers in response to measurement
noise in case 7.

2.7 Conclusions
In this chapter, a nonlinear discrete-time model of the interconnected dc grid is presented
in controllable form and grid stability is achieved through an adaptive state feedback neural

network controller design. The neural networks with online learning are utilized to approximate
38



unknown nonlinear functions in the grid’s dynamic representation. Through Lyapunov stability
criterion, stability of the interconnected dc grid is proven in the presence of unknown dynamics
of the dc-dc converters. Simulation results show the effectiveness of the proposed adaptive
discrete-time NN controller in the presence of the power system disturbances. The theoretical
conjectures and simulation results of the proposed NN controller imply that the converter input
voltages and powers as well as the output voltages are stabilized desirably in the entire dc grid
using local data in a decentralized control scheme.
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CHAPTER 3
DECENTRALIZED DISCRETE-TIME OUTPUT FEEDBACK
CONTROL OF INTERCONNECTED DC DISTRIBUTION SYSTEM

3.1 Introduction

A novel decentralized nonlinear controller is proposed in this chapter, for the
interconnected dc grid in discrete-time using output feedback mechanism. The dc grid is an
interconnection of DERs connected to resistive and constant-power loads through DDCs. The
adaptive NN-based controller is employed to overcome the unknown dynamics of each
subsystem’s converter and stabilize the entire grid, assuming that only part of the local
measurements are available to each converter. Here the photovoltaic arrays are employed as
DERs and their nonlinear characteristics is taken into account. Through the Lyapunov stability
method the stability of all the DDCs’ output voltages in the interconnected dc grid is proven
using some local states measurement. In Chapter 2 a decentralized nonlinear controller for the
interconnected dc grid was proposed. In that method a state feedback controller is utilized in
each subsystem which requires obtaining all state variables of each subsystem. However all state
variables might not be available or measurable in some systems. In this chapter an output
feedback controller is utilized instead of state feedback. As the output feedback controller needs
only partial knowledge of subsystem states, the controller is viable even if some of the states are
not available and also the number of measure points is reduced [1].

The rest of the chapter is organized as follows. In the next section the dc distribution grid
topology is presented. In Section 3.3, the DDC discrete-time model is developed and presented
in the form of a nonlinear interconnected discrete-time system. The decentralized NN controller
is developed in Section 3.4 using output. Simulation results on a low-voltage distribution grid are

shown in Section 3.5 followed by the concluding remarks in Section 3.6.
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3.2 Interconnected DC Microgrid

In this section, the dynamical model along with the control mechanism of the DERS is
represented. Though the proposed modeling and controller design can be applied to a variety of
DERs, specific attention is paid to photovoltaic source here to address the low-inertia distribution
systems and micro grids. Fig. 3.1 shows the interconnected dc grid comprising N buses with n

DER buses and N-n load buses.

Source 1 Source n
= 4 =
= v G =l
- — =
Rf_:l — 1’1 1’” 1 PLF!

N-Bus DC Distribution System ‘

1

1 VN
'PI.:?I TI &. ‘V

Fig. 3.1 N-bus dc distribution system, n distributed generation sources and N-n non-generator
buses, with load P i on bus ‘i’.

Each DER is a photovoltaic source connected to a dc-dc converter as depicted in Fig. 3.2.
Each dc-dc converter is modeled as a discrete-time dynamical subsystem and the stability of the
entire dc grid is investigated. In this chapter, the buck converter in continuous-current mode
(CCM) operation is considered. As explained in Chapter 2 boost converters are more commonly
used in photovoltaic systems due to their ability to increase the output voltage that requires lower
solar array voltage leading to fewer panels; however, the boost converter output voltage grows
exponentially and therefore its operating range is very limited [2]. Unlike the boost converter,

output voltage in the buck converter is proportional to the duty cycle and thus, the duty cycle has
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a greater control range and stability [2]. In photovoltaic energy applications if voltage
magnification is needed, forward converter can be utilized that takes advantage of both

transformer action and buck converter voltage adjustment.

PI‘ L s EL:"' 'rom.i
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Fig. 3.2 dc-dc buck converter.

As any fault and disturbance occurs in the network, the dc voltage fluctuates affecting the
photovoltaic power generation in which could potentially lead to the entire network instability.
The goal is modeling and designing an adaptive controller to stabilize the buck converter output
voltage in an interconnected dc network. The proposed controller in [2] adjusts the converter’s
duty cycle to attain the stability through a decentralized scheme while taking the converter input
and output voltages and currents as the only measurable states to the selected converter.

3.3 Buck Converter Model

A discrete-time model for the buck converter Fig. 3.2 is represented in this section in
Brunovsky canonical form [2],[3]. The converter output voltage and duty cycle are assigned as
the controlled variable and the control input, respectively.

Figure 3.2 represents the ith subsystem of the dc microgrid of Fig. 3.1 which is a buck
converter interfacing a DER with the dc grid. This subsystem state variables are the converter’s

input and output capacitors’ voltages, V;,; and v, ;, and the inductor’s current i_; (Fig. 3.2).
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Subtracting the states steady-state values x,; from the actual values, the state error vector
can be considered as x; (k) = x; (K) — Xo; =[Vin i (K), Ty i (K), Vour i KTT - AISO, i1 i (K) = iin i (K) = ingi
and gy, ; (k) =ioyu; (K)—iouq ; @re the converter input and output current errors, respectively.

The controller aims to make the errors zero and equivalently (making the converter
output voltage approach its steady-state value) by synthesizing an additional duty cycle d i to be
added to the steady-state duty cycle d,;. The scheme stabilizes the network around the

converter output voltage reference value in the presence of the grid disturbances

According to [2] the error dynamics are represented as unknown functions of the errors
Vin,i ((k+1)) =hy (X (k). d;)
iLi((k+D)=hy (% (k) d})
Vout i (K +2)) =h3(X; (K)) + & (iou () - 1)
Since the integrals in (1) cannot be easily converted to closed-form functions of the states,

functions hy;(.), hy;i(), h3;(), and G () are unknown. As iy, (k) depends on the other

converters states, 4 (.) is a function of the entire grid state errors which are not available at

converter ‘i’ location due to the controllers’ decentralized structure.

In order to present dynamics (1) in canonical form define new state variables
& =[&, &1 . Take Vout (K) along with its next step as follows
&1,i (K) =Voui (k)
Gri(k+1) =V (k+1) =& (k)

52,i (k+1) = Vout,i (k+2). (2)
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As explained in [2] the converter state-space equations can be rewritten in canonical form as

ci(k+1) =&;(k)

& ik +D) = (x5 (k) + g; (K (k) ui (k) + A (S(k)) (3)
with u; = d i as the subsystem’s input and unknown nonlinear functions f;(X;(k)), g; (X; (k)),

and A ;(£). Function A;(&(k)) depends on the entire system state vector £(k) and is called the

interconnection term [4] that is a function of all the converters’ states, some of which are
unavailable.
Dynamics represented in (4) are of order two while the converter original dynamics (1)

are of order three. That is, one of the dynamics known as internal dynamics [2] has been shown

to be stable when the observable states (here & =[&,;, &,;1") tend to zero.

In the next section the proposed discrete-time control design is discussed.
3.4 Output Feedback Controller Design
In this section, the decentralized output feedback controller proposed in [1] is applied to
system (3) using partial knowledge of subsystem states.
A. Discrete-Time Interconnected System Background
A class of discrete-time interconnected systems consisting of n subsystems (DDCs) is

represented in canonical form as
gp,i (k+1) = §p+l,i (k); Isp<m-1
Sm,i (K+1) = (% (k)) + g (X; (K)u; (k) + A (£ (k) (4)

yi(k) =& (k)
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for 1<i<n where & =[&,....&n;]" is the state error vector of subsystem ‘i’ , m is the order of

the subsystem (m = 2according to model (3)), A;(&(k)) denotes the interconnection effects

with & :[élT ,...,§nT]T and X; is the original subsystem states errors from which the feedback
linearization was derived. The internal dynamics f;(X;(k)) and the input gain g;(X;(k)) in
general are nonlinear functions of states. It is desired to design a controller that stabilizes & at
the origin (£=0.)

Define the tracking error as

Zp,i(K) =E&p,i (K) =& pa,i (K) (5)
for 1<i<n and 1<p<m, where &4 ;(K)Iis the desired trajectory for the state & ;(k) , and
Sp1d,i(K)=Epgi(k+1) for 1< p<m-1.

Only the subsystems outputs (&, ; for all 1<i<n) are considered available and so an

observer is required to estimated the rest of the states. Two assumptions and one definition are
presented before beginning the controller design.

Assumption 1- Functions g; (X; (k)) are bounded and away from zero. That is,
0<dimin <9 (%K) <9 max (6)
where g min and g; mx are positive constants. This is a valid assumption for the dc grid as

discussed in [2].

Assumption 2 [3]- The interconnection terms are bounded by a function of the states such that

Ai(&) <oy +Z,j\l:177ij H(f i H2 where og; and 7;; are positive constants for 1<i <n. The tracking

48



error z;(k) converges to zero whenever states £;(k) converge to zero. Similar to continuous-time
systems [4] this further implies that

Ai(f)ﬁzr;:15ij(2j)$50i +Z?:17ij‘zj‘ (7)
where &j; is a positive function while 5y and y;; are positive constants for 1<i<n and
1<j<m|2].

Definition. (Uniform Ultimate Bounded (UUB)) [3]. Consider the dynamical system
x(k+1) = f(x) with x e R" being a state vector. Let the initial time step be k, and initial

condition be x, = x(ky). Then, the equilibrium point x, is said to be UUB if there exists a
compact set S —R" so that for all x, €S there exists a bound B and a time step K(B, xg)

such that [X(K) — X[ < B for vk > kg + K.

B. Observer Design

Consider the observer

ép,i(k)zépﬂ,i(k_l); 1<p<m-1

A ) ) (8)
Emi(K) =Wy (k —D)g; (V" M; (k —1))

where & =[£1,i ,...,fm,i]T is estimation of & and
Mik-2) =[&i(k-1),&i(k-D,..Eni(k=D),ui(k-D]" with state estimation error defined as
E =& &, forall 1<i<n.Wy; e R is the target NN weight matrix estimation, ¢,() is the

activation function and Lq j is the number of the hidden layer neurons. The hidden layer weight
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matrix Vy; is chosen initially at random and kept constant. In fact, the NN in observer (8)
approximates the nonlinear function f; (x; (k —1)) + g; (X; (k —1)u; (k —1) which can be written as

i (% (kD) + gy (% (k=D)uy (k=2 =Wy ;T g (Vi Mi(k=D) -+ ; (M; (k—1)) 9)

matrix. For simplicity ¢;(M;(k—1)) and ¢, (I\?Ii(k —1)) are used to show ¢, (Vl,iTMi(k -1)) and
o, (V' M; (k—1)) respectively.
Next, define the observer NN weight update law as
W 7 () =W i (k ~1) — g i (M (K =D)L (K =D (M (k=) + Iy & (k ~D)] (10)
where 0< ey <1 and Ij; <1 are user defined positive constants.
By subtracting the target weights W;; (k) =W;,(k —1) from (10), one obtains
W (k) =W (k =) - agn (M (k- D) T (k=D (Mi(k-D) + W, T (Vi (k-2) +1i&i (k-1 (11)
Next, the decentralized controller development is developed.
C. Controller Design
In this section a NN-based controller is introduced to stabilize system (4) employing the
estimated states calculated from the observer (8). The NN function approximates the control
input.

The tracking error dynamics can be written by using (5) as
Zmik+D) =& i(K+D) =&mg i = Fi (%K) + i (X (K uj (K) + A (E(K)) = Ema.i» where Smq i

is the desired value of &y, . In order to achieve asymptotically stable dynamics for the tracking
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error zp i (k+1) = K;g; (X (K))z i (k) with K;g; (X;(k)) <1, the ideal stabilizing control input
for system (4) can be defined as

U i ==0; (X (k) ™ (fi (% (K)) = &ma,i + KiZm,i (K)

where K;is a positive design constant. However, in practice the internal dynamics f; (X; (k))

and control gain g;(X;(k)) and consequently ug ; are not available. Thus, the NN function
approximation property is employed to approximate uq ; as

Ug,i =WZi0 Va,i Yi (K) + 2,1 Va,i Vi (K) + Kz, (K) (12)
where W, ; is the target NN weight matrix, Y;(k)=[&;(K),&s;(K), -, &mi(K) Emg.i(K)]T and
&,,i(.) is the function approximation error which satisfies [&;, ()| < &j2max for all 1<i<n. Since
the target NN weights W, ;, approximation error &, ;, and the full subsystem state vector &; (k)
are not available, ug ; is calculated using an approximation of the NN weights together with the
estimated subsystem states via the nonlinear observer (8)

Uy =g =W5 0 (Vo Vi (K) + Ki 2 (K) (13)
where W, ; is the NN weight estimation matrix and Y; (k) =[£ ; (K), &5 (K), -, &m.i (K), Ema.i (1" -

Similar to the previous case, the hidden layer weight matrix v, ; is chosen initially at random

and kept constant. For simplicity p;(Y; (k)) is used to show p; (V, ;" Y; (K)) -
Consequently, by using (13) and adding and subtracting u;4, the tracking error dynamic

becomes

Zm, i (K+1) = £ (X (K)) +Ai (£) = Emg,i (K +1) + g; (X; (k))mz-l:ipi (Vi (K)) + K 2y i (K) +Ug _ud,i)
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=0 (X; (k))szT,iPi (Y; (K)) + S; + g5 (% (k))Kigm,i +0i (X (K)Kjzpm i (14)
where K; is the expected error damping coefficient,s; = g;(x; (k))ﬁ/va,iﬁi —&;(Yi (k))) and
A= (G0 - o (% k).

Define the controller NN weight update law as
Wiy (k +2) =Wip (K) — i (G () V2" ()Y, (K)) + 1024 (15)

where 0<a, j <1 and I, j <1 are user defined positive constants.

By subtracting the target weights W, j(k) =W, j(k-1) from (15), the weight estimation error
Vv2,i =V\A/21i —WS,; is obtained
Wy, (k-+1) =W, (k) =i i (Y (DM, i (K)o Y; (K0) + Wi i Y (K) + 15,24, ] (16)
Using (4) and (8) the state estimation error 5, = fi —¢&; dynamics can be obtained by as

cj%:p,i(k +1)=5f,+1,i(k); 1As p<m-1 -
Emi(K+1) =Wy ;(K)g; (M (k))+ A —A;(X)
where A =Wil @ —&;1(M; (k) and @ =¢; (M, (k))—¢;(M; (k)). The stability of the nonlinear
discrete-time interconnected system (4) is proven and given in Appendix B. The tracking errors
z; (k), the state estimations errors Ei(k), and NN weight estimation errors Wil(k) and

VViz(k) of the individual subsystems are bounded in the presence of unknown internal

dynamics f; (X; (k)), control gain matrix g;(X;(k)), and interconnection terms A;(&) for

1<i<n.
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3.5 Simulation Results

In order to demonstrate the effectiveness of the proposed adaptive NN controller design,
the interconnected dc grid in the IEEE 14-bus power system configuration shown in Fig. 3.3 is
tested using the Matlab/Simulink environment. The dc grid comprises five DDCs fed by PV
sources and connected to the dc network. The specifications are given in Table 3.1. The total

load in the grid is 24 kW, of which 42% is CPL. The goal is to stabilize all of the DDC output

voltages despite grid disturbances. The simulations are performed in several scenarios in order to
demonstrate the effectiveness and robustness of the controller and evaluate its transient response.
In all cases, the photovoltaic system operates in voltage higher than maximum power point

voltage (v;, >V,,.) @nd thus an increase in the DDC input power p;, necessitates a reduction in

mpp

input voltage v;,.

DG

Fig. 3.3 Test interconnected dc network with 5 distributed generations (DGs) in IEEE 14-bus
configuration.

In the first two scenarios, load changes are applied to the system at t=0.6 s and removed
at t=0.7 s in 2 locations.
Case 1. A disturbance occurs at bus 6 as a result of a load change from 3 kW to 5 kW

causing a sudden increase in the grid power consumption.
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Case 2. Load P ; on bus 7 is disconnected which causes a sudden reduction of CPL for

4 KW.
Table 3.1. Grid parameters

DDC Parameters DDC Parameters
- PV series cells ns=970 PL1 2kW- Resistive
- PV parallel arrays PL2 2 kW- Resistive
np=17 forPVs 1,2,3and 5 PLs 2 kW- Resistive
np= 33 for PV 4 PLa 2 kW- Resistive
- PV short circuit current le=1A PLs 2 KW- Resistive
- PV maximum power PLe 3 kW- CPL
Pmax=7.2 KW for PVs 1, 2, 3and 5 PL7 4 KW- CPL
Pmax=14 kW for PV 4 PLs 1 kW- CPL
- DDC capacitors  Cin=5 mF, Co,:==1 mF PLo 0.5 kW- CPL
- DDC inductance L=150 mH PL10 2 KW- Resistive
- Switching frequency f=10 kHz PL11 1 kw- CPL
- Line resistances (Fig. 3.3) PL12 0.5 kw- CPL
RLine= 0.01 Ohm PL3 1 kW- Resistive
PL1a 1 kW- Resistive

Figures 3.4 shows the DDCs output voltages response to the load changes in scenarios 1
and 2. Also the selected grid voltages are depicted in Fig. 3.5. These voltages undergo transient
changes and are finally stabilized. The controller adjusts the solar power and voltage (Figs. 3.6
and 3.7) to stabilize the DDCs output voltage. This controller utilizes less information of the
local system rather than the state feedback controller and estimates the unknown variables. As
result, the output has more fluctuations in steady state and transient conditions in comparison to
state feedback controller.

Case 3. In this case, the solar arrays connected to bus 3 undergo a 70% drop in the power

production. In this scenario a moving object passing over the PV panels causes some of the

parallel arrays to be disconnected. Figure 3.8 shows that the output voltage of the DDC on bus 3
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is stable in the presence of intermittent solar power. The proposed controller adjusts the
generated power in each DDC when the obstacle blocks the arrays and when it is removed. That

is, other solar panels compensate for the power mismatch.
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Fig. 3.4 DDC output voltages after the load changes in cases 1 and 2.
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Fig. 3.5 Bus voltages after the load changes in cases 1 and 2.
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Fig. 3.8 Proposed controller’s performance in the presence of intermittent solar power in case 3.

pin3

Case 4. The robustness of the controller is tested under a low impedance ground fault

Rtauit =1€2 condition. The fault is applied on bus 10 at t=0.6 s and removed after 5 ms at

t=0.605 s. The results are depicted in Fig. 3.9 where good damping of the DDCs voltages and

powers is observed.
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Fig. 3.9 Low impedance ground fault in case 4.

57



Case 5. The droop-based controller proposed in [5] with parameters Ky, =30 and
K, =1 is applied to DDCs to be compared against the proposed controller. In this scenario, load

P_11 increases from 1 kW to 2 KW at t=0.6 s and gets disconnected at t=1 s. As Fig. 3.10

implies, as opposed to the proposed controller’s precise voltage tracking, the droop controller has
a significant voltage fluctuations in steady state condition.

Case 6. Figure 3.11 compares the proposed controller with droop controller in another
scenario in which there is a sinusoidal measurement noise of 1 kHz frequency and 2 V (peak-
peak) in all the output voltage measurements. As the results show the proposed controller has
better noise rejection over the droop controller.

In general, the proposed adaptive neural network decentralized controller makes a decent

control performance in stabilizing the interconnected dc grid.

220
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Time (s)
Fig. 3.10 The proposed NN and droop controllers under the load change of case 5.
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Fig. 3.11 The proposed NN and droop controllers in response to measurement noise in case 6.

3.6 Conclusion

In this chapter, a decentralized discrete-time model of the interconnected dc distribution
system is stabilized through an adaptive output feedback neural network controller. The dc
distribution system consists resistive and constant-power loads (CPLs.) and multiple dc sources
which are photovoltaic sources connected to the grid via dc-dc converters. A decentralized
output feedback controller design is introduced to mitigate voltage and power oscillations after
disturbances. The neural networks with online learning are utilized to approximate unknown
nonlinear functions in the grid’s dynamic. As the output feedback controller is able to estimate
some of the systems states in case they are not available. Simulation results imply that the entire

dc grid is stabilized suitably through the proposed controller.
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CHAPTER 4
NOVEL DECENTRALIZED CONTROL OF POWER SYSTEMS WITH

PENETRATION OF RENEWABLE ENERGY SOURCES IN SMALL-

SCALE POWER SYSTEMS
4.1 Introduction

Conventional synchronous generators have large inertia and can store a significant
amount of energy in their rotating mass. When a fault or disturbance occurs in the power grid,
the generators provide power balance in the network by storing or injecting power
instantaneously. Therefore, the system naturally possesses some robustness against disturbances.
By contrast, available distributed energy resources that are connected to the grid via grid-tie
inverters (GTIs) rely only on a small amount of energy stored in their dc-link capacitor, and thus,
lack these large kinetic buffers unless costly battery storage or large capacitors are employed. In
order to involve the renewable generator in grid stability enhancement, the idea of modeling GTI
similar to a synchronous generator has been used in many literatures [6]-[11], proposing the
concept of “virtual synchronous generator” (VSG) [6] and ‘“synchronverter” [7]. However,
majority of the research in this area does not consider the dynamics of the dc-link capacitor and
the stability of the overall system. In [6], the concept of “Virtual Synchronous Machine” (VSM)
is presented where the power electronic interface can have virtual inertia equivalent to the rotor’s
inertia of a synchronous generator. Then, the inverter’s reference currents are calculated from the
grid voltage. However, it is assumed that the inverter has access to abundant energy and the dc-
link dynamics are not considered. In [7]-[10] the inverter connecting the renewable energy
source to the large grid is controlled to respond to the frequency variations while the dc-link
voltage variations in small and micro grid and the stability of the entire grid are not considered.

In [7], the inverter is modeled similar to a synchronous generator by considering imaginary rotor
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angle and field current to provide desired active and reactive powers. In this model, the GTI
phase angle mimics rotor angle. However, the dc-link dynamic has no relation to the inverter
operation. In [8] and [11], a virtual inertia is attained by adding short-term energy-storage to the
inverter and the required damping power proportional to the derivative of the grid frequency is
supplied by the storage resulting in an increased integration cost due to storage rather than the
dc-link capacitor.

On the other hand, recent advances in decentralized controllers [12]-[17] has made them
attractive in power system stabilizer designs. Due to the requirement of a large amount of
information exchanges between subsystems, increased need for computing capacity [12]-[14],
and significant time delays [15], [16] in the centralized controllers, decentralized control is
preferred to ensure the performance and stability of the power grid. Decentralized control
strategies achieve transient stability and steady-state requirements based only on local
information and measurements. In the past few years, much research work has been conducted
on adaptive neural networks (NNs) decentralized control of nonlinear interconnected systems
[17]-[19] including multi-generator power systems [12]-[16], [20]. Several authors in [16] and
[18], [19] propose adaptive neural network decentralized controllers for interconnected systems
and provide asymptotic stability; however, extra filters are required besides the neural network
controller to provide the stability. In addition, in multi-generator transient stability the variations
of the generators’ input powers are neglected [12]-[16], [20]; an assumption that is not valid
considering renewable energy sources such as solar arrays whose powers fluctuate with voltage.

Thus, this chapter aims at a) developing dynamical model of a renewable generator that
behaves like a synchronous generator and includes both dc-dc and dc-ac conversion dynamics

with a focus on the dc link energy fluctuations and stability and b) developing an adaptive
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nonlinear decentralized stabilizer in continuous-time that is applied to all grid generators,
regardless of their type, and assures the entire grid’s stability through Lyapunov stability method.

In this chapter, the power system with penetration of renewable generators is considered
where GTls and dc-dc converters are used to interface the device to the grid in order to control
the delivered power. A lot of attention has been paid to solar power in this chapter; however, the
proposed approach can be used with other renewable energy sources that connect to the grid
through GTI. Here, we refer to renewable energy source as the source of renewable energy such
as wind, solar, etc., and renewable generator as the renewable energy system interacting with
power grid that includes the source of energy as well as the pertinent power electronic and
storage. In the proposed GTI model with dynamic gain and phase angle control, the renewable
generator is modeled to possess similar dynamics to those of synchronous generator and the dc-
link capacitor acts as the energy storage similar to the rotor of a synchronous generator. As
opposed to existing VSG and synchronverter [6]-[11] models in which an imaginary inertia is
considered, the energy stored in the dc-link capacitor plays the role of kinetic energy storage and
appears as a dynamical state. In the proposed approach, the GTI can be controlled by excitation-
like mechanisms such as AVR and PSS as well as their nonlinear counterparts. Next, the
renewable generator dynamical model is extended to include the dynamics of the dc-dc converter
interfacing the renewable energy source and the inverter.

Subsequently, proper nonlinear decentralized controllers are developed to stabilize the
individual GTIs and the dc-dc converters. The assumption on constant input power used in the
past literature is not considered. This helps integrate low-inertia renewable generators such as PV
arrays into the small and micro grids. Also, much attention has been given to the multi-generator

and nonlinear natures of the interconnected power grid as opposed to the past work that
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considers single-machine-infinite-bus type of system [6]-[11]. Subsequently, the asymptotic
stability of the overall system comprising synchronous generators and renewable generators is
ensured by employing the proposed GTI and converter controllers through Lyapunov stability
method. Finally, the decentralized controller is simplified. The simplified controller is easier to
synthesize; however, it only assures that the states errors only stay bounded. In order to achieve
this, neural networks (NNs) with quadratic neural network update law are utilized to approximate
unknown interconnection effects of the grid on the synchronous generators and renewable
generators and to avoid additional filters used in the previous approaches [16], [18], [19]. The
proposed decentralized neural network controller is applied to both the synchronous generators
excitations and the GTI excitation-like mechanisms.

The rest of the chapter is organized as follows. In the next section the model for
renewable generator consisting the GTI and solar dc-dc converter is presented. Section 4.3
proposes the nonlinear decentralized controller for GTI and feedback controller for solar
converter. Simulation results are shown in Section 4.4 followed by the concluding remarks in
Section 4.5.

4.2 Renewable Generator Model

In this section, the dynamical model along with the control mechanism of the renewable

generator, shown in Fig. 4.1, comprising a photovoltaic source connected to a grid-tie inverter

via a dc-dc converter is represented. The entire grid comprises n subsystems including n,
renewable generators and n-n, synchronous generators. Figure 4.1 represents one of the grid
subsystems where index 1<i<n, indicates the subsystem number and n, is the total number of

renewable generators.
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Fig. 4.1 The i-th renewable generator.

A. Grid-tie inverter model

The dynamic of the dc-link stored energy can be represented by the capacitor voltage driven by
the power balance equation at the dc link as

CNeiVei = Rni — P i=1...ny 1)
where ny is the number of renewable generators, V¢; is the dc-link voltage of the i-th renewable

generator, B, is the injected power to the dc-link from the dc-dc converter, and P, ; is the

delivered power to the grid by the i-th renewable generator as depicted in Fig. 4.1. The delivered
power from the i-th GTI to the grid is given by

E’e,i = BiVI’iVi Sin(]/i _Hi) y i 21, ey M (2)

where V,; and 7; denote the GTI output voltage magnitude and phase angle, and v; and 6,

represent the voltage magnitude and phase angle of the grid bus connected to the GTI through

admittance B;.

Angle 7; can be altered to adjust the renewable generator output power and consequently
acts similar to the rotor angle & in the synchronous generator [21]. An auxiliary variable 2; is
used to control y; in the renewable generator as
Vi=4. (3)
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Variable 4, mimics the rotor speed in the synchronous generator. In synchronous generators, the

speed relates to the kinetic energy stored in the rotor. In order to give imaginary speed 1 a

meaningful relationship to the stored energy in the dc-link capacitor, it is defined as

4 =VeNgi = UC) (R, ~P..i) - 4)
In order to preserve the similarity to the synchronous generator, per unit values of V;,

A;, and C; are utilized in (4). From (4) it yields

2 =(Vai? ~Veio')/2 )

representing the scaled changes in the dc-link stored energy with V;, as the steady-state value

of V;. In the renewable generator, capacitance c, plays the role of machine inertia; that is, its

higher size reduces the oscillations and contributes to an enhanced dynamic stability.
Next, in order to attain excitation-like control to the renewable generator, two new

auxiliary parameters are defined as E;; and Eqyj, similar to the rotor flux and field voltage in

the synchronous generator, introducing a third dynamic to the renewable generator; i.e.,

=/ 1 ' ' ' '
Eqri =T (—(Xdri/Xdri)Eqri + ((Xari = Xri) / Xari)Vi cos( 7 — &) + Efdri) (6)
dr0i

where parameters Xq. , Xgri and Tg,. are design parameters that need to be chosen for each
renewable generator as opposed to those of synchronous generator that are machine parameters
and fixed. Egqyi is the applied field-voltage-like input to the GTI imaginary excitation system

and can be controlled by any of the known synchronous generator excitation control methods.
Equations (3), (4), and (6) represent a one-axis-like model for the renewable generator. In the

one-axis model the device output power satisfies [21]
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Pei = U/ Xqri)Vi [Eqri sin(ri —6;) — ((Xqri —Xari) /(2 Xqri)) Vi Sin(2( 7i = 6)] (7
with parameter X to be a renewable generator design parameter, as opposed to synchronous
generator g-axis reactance, that is a fixed machine parameter.

Remark 1. As mentioned earlier, angle 7; is a state variable that acts in a manner similar to rotor

angle in the synchronous generator; that is, it varies with changes in the capacitor’s stored
energy. In the synchronous generator the rotor angle is not equivalent to the output voltage phase
angle. Rather, the relationship between the rotor angle and the output voltage phase angle in the
synchronous generator is more involved and depends on the selected synchronous generator

model [22] (i.e., one-axis, two-axis, etc.) By contrast, in this work it is aimed to represent the
GTI output voltage phase angle by 7; (unlike in the synchronous generator [7]) since it provides
an easier implementation in the GTI where a phase angle and an amplitude modulation index

[22] is directly generated and applied to the GTI. In order to achieve this goal it is necessary that

the power from (7) (i.e., synchronous-generator-like power) is equal to the GTI power obtained

from (2); thus, I3e,i = P, j. This in turn requires inverter voltage V,; to be

. Xgri — Xdri
Eqrism(7i _gi)_%

V.. = qri
" Xgri By sin(y; — 6;)

Visin(2( 7 —6,))

(8)

Inverter amplitude modulation index k;,; can be tuned to adjust the GTI output voltage obtained
in Remark 1 as
Kini =Vri/Vei - )

Adjusting amplitude modulation index k;j,; according to (9) allows the GTI to deliver the

synchronous-generator-like power governed by (7). Inverter gain k;,; and phase angle y; are

67



control parameters and could be altered to adjust the renewable generator output power and
enhance the individual GTI and grid stability.

Now, equations (3), (4), and (6) represent a one-axis model of the renewable generator as

Bi=A5 A =GRy ) (10)

=~ 1 ' ' ' ’
Egri = T (‘ (Xari/Xari) Eqri + ((Xari = Xari) / Xari)Vi COS( 75 = &) + Efdri) :
dr0i

The inputs to the model are bus voltage magnitude V;, angle &, capacitor voltage V;, and
control voltage E ¢g,i, which are all local measurements, while the outputs are inverter amplitude

modulation index k;,; and phase angle y; that are sent to the GTI power electronic switches. By

using the proposed modeling and GTI control mechanism, the renewable generator can be
considered as an imaginary synchronous generator and behaves similarly.

Remark 2. Phase angle y can be adjusted under constant or variable frequency. In the latter case,
one can use A =2x(f;,, — fg) to find the inverter frequency f;,, while f, is the grid (desired)

frequency.
Remark 3. Through the synthesized states, an AVR-like mechanism can take the GTI’s capacitor
voltage error as input and be applied for steady-state and transient performance.
B. Solar DC-DC Converter

The renewable energy sources are often interfaced to the GTI through a dc-dc converter.
The transmitted power by these PV arrays can vary dramatically with changes in the GTI dc-link
voltage during grid transients. Non-linear characteristics of the renewable energy source and
dynamics of the dc-dc converter must then be taken into account in the stability analysis. In this

work, the buck converter is considered to interface the solar source to GTI. Although the boost
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converter is more attractive for solar systems steady-state operation due to higher output voltage,
its output voltage can grow exponentially with duty cycle as opposed to that of the buck
converter. Thus, the operating range in the boost converter is very limited [23], [24] and it is less
stable than the buck converter. Moreover, topologies such as forward converters [25] that utilize
transformers can be implemented to boost the voltage while taking advantage of the buck
converter performance.

For the PV system, usually the maximum power point tracking (MPPT) is carried out at
the PV terminals by adjusting the duty cycle of the converter that connects the PV array to the
GTI. During the transients, changes in the GTI dc-link voltage affect the harvested power since
the PV array power depends on its terminal voltage. Thus, a control mechanism should be
utilized to stabilize the PV array terminal voltage by dynamically adjusting the converter duty
cycle when the GTI dc-link voltage fluctuates. A topology to achieve this goal is demonstrated in

Fig. 4.2. Capacitor C,,; between the PV array and the GTI helps decouple the GTI’s dynamics

from that of the PV array and provide more stability.

. I -
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- i_ d; Iz +
FPV:‘T Cpyi G T Ve; [Taverter
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PP Tracker PVser i Ve
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Fig. 4.2 PPT and dc/dc buck converter control system.

The set point for V; is indicated by the MPPT block. The MPPT block command

changes with the sun irradiation level. Although the maximum power point is usually the goal,
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stability can be maintained around any power point. At each moment, any change in the GTI dc-

link voltage (V¢;) changes the PV array output power (capacitor input power Pj,;) and requires
the converter duty cycle to adjust such that Py, ; tracks the reference power through maintaining a

constant voltage at the PV array terminals. Thus, a proper model and controller for buck
converter in the presence of the PV array characteristics is developed in this section.
By adding the dynamics of a dc-dc buck converter in discontinuous-current mode (DCM)

operation to the GTI dynamics, the renewable generator dynamical model is represented as
Vi=45 Zi=WC)(Rni —Pei)

!

- 1 ' ' ' ]
Eqri = T (— (Xari /¥ari) Eqri + ((%ari = Xari)/ Xari Vi €08( 7 = &)+ E i )

drOi
i =YL (6 Vi —Vei) (11)
Vowi =1/Cpyi (1o —di 1)
where L; is the dc-dc converter inductance, d; is the converter duty cycle, and Vi and 1; are the

converter input voltage and inductor current, respectively. 1 ,; is the photovoltaic array output

in the following

current (shown in Fig. 4.2) which is a function of PV array output voltage v,

form [26]

Lowi = K0/pui) = Niil gy =Nl (€™ =) (12)
where £; =q/(ng#KT) with the Boltzmann’s constant K =1.3805 x 1023 J /K , electronic charge
q=1.6x10"1°C, cell temperature T, and the p-n junction characteristic factor ¢ (between 1 to 5.)

In addition, ny; and ng; are the numbers of the parallel branches and branch series solar cells,
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respectively, Iph is the solar cell generated current, and | denotes the reverse saturation

current.
4.3 Decentralized Controller Design

So far, a control mechanism is presented that is capable of mimicking a synchronous
generator with excitation control through appropriate GT1 amplitude modulation index and phase
angle control. Also, the developed renewable generator model incorporates the dc-dc converter
that connects the dc source to the GTI. To this end, any excitation-like controller may be
employed with the proposed control mechanism to achieve subsystem (renewable generator) and
overall grid stability. An example is given in Remark 3. It is desired that the controller/stabilizer
provide the entire grid stability through individual subsystem control using only local
measurements with assured performance. In addition, considerations on the dc-dc converter must
be taken into account to address internal stability of the renewable generator in contrast with
synchronous generators that have full state observability. These considerations are discussed in
the following sections.

In this section, a decentralized representation of the renewable generator is obtained. The
GTI dynamics are represented in Brunovsky canonical form and an adaptive state feedback
controller is utilized to stabilize the inverter dc-link voltage through adjusting the inverter
amplitude modulation factor and phase angle. The adaptive neural networks (NNs) [27] are
employed to approximate the unknown nonlinearities. In addition, feedback linearization is
utilized to mitigate the oscillations of the solar power caused by the grid disturbances.

The work of [18], [19] propose stable adaptive neural network decentralized controllers
for interconnected systems; however, extra filters are required besides the neural network

controller. By contrast, [16] utilizes quadratic error terms in the neural network update laws for
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interconnected systems in backstepping form and achieves asymptotic stability; however,
additional filters are still required. One of the main contributions of this work is achieving
asymptotic stability in the grid while avoiding the extra filters introduced in the past literature
[16] and the simulation results have been compared to this method. Subsequently, the controller
is simplified.
A. Grid-Tie Inverter Decentralized Controller

One can define the individual renewable generator states represented by (11) in vector

form as

& =[S 1 &1 1 Gai  Sai  Ssi ] =[A71, 4 Eqri Vi 1]

where Ay; =7 —7,i and y, is the inverter output voltage phase angle in steady-state
condition. In order to represent the renewable generator dynamics in Brunovsky canonical form,
a new set of state variables are defined as

Xi =Ayi ;5 Xoi =4 (13)

PP,
X3i =7m'lc_ £ =1/Ci (Vei Vi = Egril i = (Xgi = Xai)  gil i)
]

fori=1 ... ,n, where

lgi = BV; sin(y; —6,); 1 =B (Egyi —Vi cos(z; —6))

and
. 1 . . 1., . Iqi _(Xdri/xari)Ec,]ri +((Xari = Xari)/Xari)Vi cos( 7i — ;)
X3 =—(Pni —Fei) =il +Vei li ———
Ci Ci Taroi \ + Eari
—Egri I.qi _(Xqi _X('iiXI‘qi Lai + 1 I'di )] (14)
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where i=1 ... ,n, is the renewable generator number. With the inclusion of n,=n-n,
synchronous generators that are driven by similar dynamics to (13), the total number of the
subsystems (generators) is n=n, +n,.

Terms I'qi and I in (13) generally depend on the entire grid state vector that contains
the states of all synchronous and renewable generators in the grid since the time derivatives
involve the entire grid states [16]. Thus, they are considered interconnection terms for the i-th
subsystem (for i=1, ... ,n.) By substituting V; and i, from (4) and (11) and conducting input-

output feedback linearization, (13) can be rewritten as

X1i = X2j 5 X2j = Xg
X3 = fi (&) + ;i (&) uj +A;(X)

(15)
where X, =[Xy, Xoi, X511" X =[X0,....x,1" , f;(&) is called internal dynamics, g;(&;) is the
input gain, and u; is the subsystem state feedback control input to be designed for i=1 ... ,n,.
According to renewable generator model (13), 9i(§i)=—|qi/(Ci Taroi) and u;=Eg,;. The
unknown interconnections are A, (X) =1/C; [-E/ I — (xq — X )x (igilai + 1qiiai)] @nd is a function of
the entire grid states. A model similar to (15) can be derived for synchronous generators when

one-axis model is utilized [16]; thus, dynamics (15) are applied to all the subsystems (generators)

including renewable generators and synchronous generators.

It is desired to design a controller that stabilizes x; at the origin (x; =0) for i=1 ... ,n.
Thus, filtered error is defined as

n=[4 10" x (16)
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where 4; =[A4; Ay] is chosen in such a way that polynomial x(S) = 4; +22is+52 is Hurwitz.
This way, when filtered error goes to zero, it causes the grid errors converge to zero. The
derivative of the filtered error is
i =04 0% = &)+ 0i (&) uj +a; (&) + A (X) 17)
where a, (&) =[0 41" ;.

Before discussing the control design methodology the following brief introduction and

assumptions are introduced:
A general function f(x) % where X e R™ can be written as f(x) =wT oW T x)+ £(x)

[16], [27] in the compact set A e R™ (neural network approximation domain) with £(x) denotes
neural network functional reconstruction error vector, h(&) and vV eR™N represent target

neural network weight matrices.

Assumption 1- Functions g;(&;) are away from zero for 1<i<n. Thatis, 0< g pjn; <0;i ().
Also, it is assumed that |g;| < gg ey i» Where gpini and gy, ; are positive constants. This is a

valid assumption for the ac grid since the rate of change in GTI current | is physically limited

qi
in the electric grid. Also, since the transients occur around a significantly high GTI steady-state

current, it is reasonable to assume that GTI current 1 ; is always away from zero.

qi
Assumption 2 [19]- The interconnection terms are bounded by a function of the filtered error

such that ‘Ai(x)‘SZ?:lﬂiJHrng where 7;; is a positive constant for 1<i<n. Since the

interconnection effects vanish when state errors converge to zero, this assumption is applicable

to the interconnected power grids.
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The stabilizing control input u; should be chosen in such a way that makes the filtered
error asymptotically stable in the form of r =—k,r, (with K; >0) in the absence of the

interconnection terms. Thus, one can define the stabilizing controller as

Ui :Ui* =uid — Ki ri (18)
where
fi (i) +ai (&)
= —h: (&) . 19
Uig gi(ézi) |(§|)I’| ( )

and h;(.) is a nonlinear function to be designed to overcome the effects of the interconnection
terms. The interconnection terms are in general uncertain and difficult to obtain due to
unavailable grid states. Thus, term h;(&;)is an unknown nonlinear function. In order to
synthetize desired controller u;4, the neural network function approximation property [27] is

employed to approximate u;4 using the available states as

Uig =—M+ W @ (%, &)+ & (%, &) (20)

9; (Si)
where Wi* is the target neural network weight matrix, @, (.) is a set of basis functions [27], and
& () is the neural network function approximation error that satisfies |&; (.)| < ey [27] in the

compact set A comprising all possible variations of variables x;. In practice, the target neural

network weight matrix Wi* is not available and needs to be estimated by \/\7i resulting in the

weight estimation error W, =W, —w;". Thus, u;q is approximated as U;q, and controller u; in

(18) becomes

fi (&) +a (&)

+1 WiTCDi - Ki hi - (21)
9i ()

Ui =lig — K rj =—
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Since the target neural network weights are unknown, an adaptive update mechanism is
employed to train the neural network online and without any prior training phase. Define the

neural network weight update law as
WiT =—pPj riZWiT + 0Oj I’iZ(Di (22)
where p; is a positive constant. Employing a quadratic term of the error in neural network

weight update law ensures the locally asymptotic stability of the filtered error dynamic without
using additional filters in the controller used in the past literature [16], [19]. The block diagram
of the adaptive neural network controller is depicted in Fig. 4.3.

The stability of the nonlinear interconnected system in the presence of unknown

interconnection terms A; (X) with the proposed adaptive neural network controller for 1<i<n

is proven and given in Appendix C by showing the stability of the filtered errors r; and weight
estimation errors VVi forall 1<i<n.

Remark 4. In order to simplify the design, controller in the form of u; =r; W,"®, — K, r; can also

be implemented with the neural network update law (22). In this case, the knowledge of the
renewable generator or synchronous generator dynamics fi(.) and gi(.) is not needed. However,
asymptotic stability of the errors cannot be proven; that is, only boundedness of the errors can
only be proven. Thus, the state errors will stabilize but may not reach their original values. By
selecting proper control gains and neural network adaptation rate this effect can be minimized to
a reasonable extent. The proof of boundedness in this case is very similar and is not included.

Remark 5. Dynamics represented in (15) are of order three while renewable generator original

dynamics (11) are of order five. The two unobservable dynamics in (15) are known as internal

dynamics [27]. When the observable states x; =[xy, X,i,X5]'  converge to zero by employing a
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proper controller, the internal dynamics (zero dynamics,) must be stable to assure the overall grid

stability resulting in a minimum-phase system [27]. In the proposed design, the dc-dc converter

dynamics Vpyviand | are the subsystem zero dynamics and must be stable when the observable

states X; =[Xy;, X, X5]' converge to zero. In order to achieve stable zero dynamics, the dc-dc

converter must be equipped with an appropriate controller, as will be explained in the following.

kf?!
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e Eg. 10
Ve.V.0.F, ¥ ¥ Ve Ep
IL . VPF L l L CD()
Eq. 14.15 Eq. 16
f.g.a
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rco—lx 2= J,
/'9[ —
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Fig. 4.3 GTI neural network controller.
B. Solar Power dc-dc Converter Controller Design

A dc-dc converter stabilizer is aimed in this part for the PV-connected converter.
Although the controller employs the solar array specifications, the method is not restricted to
solar power and can be applied to other dc power sources such as rectified wind power, fuel
cells, etc.

In discontinuous-current mode (DCM) operation of a dc-dc buck converter (Fig. 4.4,) the

relationship between the maximum inductor current | . and the duty cycle is
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IL,rmx,i = diTs (va,i _VCi)/Li (23)
where Ts is the switching period, and Vpv,i and Vci are the input and output voltages of the i-th

solar converter, respectively.

A 7 ) VL:’
PVi "Ci 7
T, e Li
.ov". g Is I
o '4“”--' ------- . 5 f/];
d; di 1
i

Fig. 4.4 DCM operation of buck converter.

The switch average current is calculated as

I ave,i =0 1L, /2= 07T (Vs —Vii)/(215) (24)
Also, the input capacitor (Fig. 4.2) follows dynamic

CoviVovi =l pvi s avei = K Vpyi) — AT Vovi —Vei)/(2L) (25)

where 1,,; is the photovoltaic array output current which is a function of PV array output voltage

Vyy,; in the following form [26]

Loui =KV pyi) =Npil oh = Npil s (€ Y ) (26)
as explained.

The solar output voltage can be decomposed as

(27)

va,i :va,i Vv,

where va,i is the solar output voltage steady-state value and v,,; is its error. Thus, (25) can be

rewritten as
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Vi = K0y +Voui)/ Cpui = 47T, W (28)
which is in nonlinear form

Vpyi =% (va,i) + ﬂi(vpvyi,t) Wi (29)
with (%) =x(Vpyi +Vpyi)/Cpyi» Wi =d;° as  the control  input,  and

B (Vpyit) = =Ts Vi +Vpyi ~Vei) /(2L C,y) - Using feedback linearization and taking the input as

Wi =1/ B (Vi 1) (0 (Vi) = Ki Vpui ) =[Ts Vpui =Vei)T2LC i (Covi 0V py,i ) —Ki Vi) (30)
where, ki is a design positive constant, one can obtain the asymptotically stable system states
dynamics
Voui =—Ki Vpyi (31)
By selecting a proper design constant ki, the time constant of the exponentially decaying system
(31) can be set significantly smaller than that of the GTI and the grid. Thus, the PV array
terminal voltage Vpv,i can be stabilized quickly resulting in a stable PV array output power.
4.4 Simulation Results

As mentioned earlier, all available excitation control methods for synchronous generator
can be applied to the renewable generator equipped with the proposed GTI excitation-like
mechanism. Here, the IEEE 14-bus, 5-generator power system shown in Fig. 4.5 is considered to
demonstrate the effectiveness of the proposed renewable generator model (11) and decentralized
controller (21). The renewable generator is connected to bus 5 while synchronous generators are
located at buses 1 to 4. The synchronous generators and renewable generator are stabilized with
the decentralized controller in Remark 4 as well as converter controller (30). Neural Networks

are utilized to approximate the unknown functions required in the controller. The proposed
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approach has been compared to the decentralized controller proposed in [16] as well as to the
conventional droop control mechanism [1], [2], [28], [29].

A three-phase disturbance occurs at bus 6 at t =0.2s and is removed at t =0.4s. Bus 5 is
connected to a PV generator through a GTI and a dc-dc buck converter as shown in Fig. 4.1. The

generators data are given in Table 4.1.

Table 4.1 Synchronous and renewable generators parameters

Parameters SGs RG

X+ Xd s Xg 0.06,0.2,0.19 pu 0.06,0.2,0.19 pu

Tdo 7 sec 7 sec
Hi= o Mi /2 H=5 fori=1,4,5; -
H=1 fori=2,3
Inverters gain - kin=0.8 in steady state
Capacitor Bank - C=0.026 pu

Two generation and load levels “low” and “high” (given in Table 4.2) are selected for the
study to observe the robustness of the controllers.

All four synchronous generators are equipped with speed governors while the renewable
generator maintains stable input power through the proposed dynamic converter gain (30). By
employing the proposed modeling and decentralized controllers, the renewable generator’s

inverter gain k;, and angle y, and converter duty cycle d are tuned using model (11), and

controllers (21) and (30). The power system loads are considered constants. The control

objective is to stabilize the synchronous generators speed and the GTI dc-link capacitor voltage
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and damp their oscillations caused by the disturbances. Simulations are performed using one-axis

model for all synchronous generators

Table 4.2 Network loads and generations for low/high load level

Gen Bus No. P (p.u.) Q (p.u) Load P (p.u.) Q (p.u.)
Active Power Reactive Power ST Load Load
Generation Generation Low/High Low/High
Low/High Low/High
1(SG) 0.7288 0.0920 6 0.1750 -0.0390
0.7311 0.1872 0.4780 -0.0390
2 (SG) 0.0472 -0.1136 7 0.0000 0.0000
0.6830 -0.1022 0.0000 0.0000
3 (SG) 0.1180 -0.420 8 0.0110 0.0160
0.4420 -0.420 0.0760 0.0160
4 (SG) 0.0540 0.2957 9 0.1530 0.1660
0.3120 0.5243 0.5950 0.1660
5 (RG) 0.1280 0.1830 10 0.0830 0.0580
0.6120 0.3134 0.3900 0.0580
11 0.2210 0.0180
0.0350 0.0180
12 0.1000 0.0160
0.6100 0.0160
13 0.1150 0.0580
0.1350 0.0580
14 0.1890 0.0500
0.3490 0.0500
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Fig. 4.5 IEEE 14-bus, 5-generator power system.

In the case of high penetration of the renewable energy sources, the renewable generator
is a combination of a large number of small renewable energy sources and its dc-link capacitor is
the equivalent capacitor of all the renewable generators’.

In Fig. 4.6, rotors speeds are depicted as variables o, to @, for four synchronous
generators. Waveform Vc is the renewable generator dc-link voltage. Satisfactory damping is
observed for a medium size power network by using the proposed GTI1 and converter controllers.
In addition, in Fig. 4.6, the damping effect of the decentralized DSC control method [16] is
compared to that of the proposed controller applied to all the generators where the DCS
controller design parameters are chosen as given in [16]. As the results demonstrate, the
proposed controller is as effective as DSC stabilizer in damping the disturbance while it has a
simpler structure. Figure 4.7 shows the inverter gain (kin) for the renewable generator and the
duty cycle (d) of the dc-dc buck converter when the proposed stabilizer is applied where the
stabilizing efforts of the renewable generator controllers are in a reasonable range.

In Fig. 4.8 the system is tested under larger disturbances at different locations with high

load levels of Table 4.2.



Figures 4.9 and 4.10 show the performance of dc-dc converter controller (30), which
aims at delivering a constant power to the inverter. In the results of Figs. 4.6 through 4.8 the
solar array operates at a voltage higher than the maximum power point (MPP). The solar array
output voltage and power are shown in Fig. 4.9 where the proposed converter controller (30)
mitigates the oscillations satisfactorily. Also, the PV system can operate at a lower voltage than
the MPP voltage and still provide a constant power to the GTI during the transients using the
proposed dc-dc converter controller. Figure 4.10 represents this case for an operating voltage
below MPP. The advantage of operating in the latter region is the wider range of voltage

variation; however, this region is less stable than the former.
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w1

376.98 o Proposed
377.02 ———— ] e DSC
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376.98
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13827F W ,

0 1 2 3 4 5
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Fig. 4.6 Proposed stabilizer in comparison to DSC;®»; to w,are the synchronous generators

r

speed (rad/s), Vc is the renewable generator capacitor voltage (pu); with fault at bus 6 and low
load levels.
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Fig. 4.7 GTI gains kin and buck converter duty cycle (d); proposed stabilizer with fault at bus 6
and low load levels.
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Fig. 4.8 Damping effects of the proposed stabilizer; w, to », are the synchronous generators

speed (rad/s), Vc is the renewable generator capacitor voltage (pu); with faults at buses 6, 10, 14,
high load levels, and severe disturbance.
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Fig. 4.9 Solar array buck converter input voltage and power (pu), with fault at bus 6 and low load
levels when the solar voltage is higher than the maximum power point (MPP).
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Fig. 4.10 Solar array buck converter input voltage and power (pu), with fault at bus 6 and low
load levels when the solar voltage is lower than the maximum power point (MPP).

Next, the conventional droop control [1], [2], [28], [29] is applied to the GTI connected at
bus 5 with parameters K, = 0.3 and K; = 10, while the dc-dc converter is controlled by controller
(30). The performance of the proposed controller is then compared against the droop-based
controller which uses P-o and Q-V droop characteristics to generate frequency and voltage
references for the inverter. The droop controller adjusts the inverter output voltage and phase

angle to compensate for both active and reactive powers. According to Fig. 4.11, the droop

controller has longer transients in stabilizing the generators speeds when compared to the

85



proposed controller. Moreover, in droop controller the dc-link capacitor voltage is not directly

controlled which can lead to the capacitor voltage drift (when a large capacitor or battery storage

is not utilized) as shown in Fig. 4.12 utilizing the dc-link capacitor of Table 4.1. Overall, the

proposed adaptive neural network decentralized controller performs very well when compared to

the available controllers.
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Fig. 4.11 Proposed stabilizer in comparison to droop controller; o, to @, are the synchronous

generators speed (rad/s) with fault at bus 6 and low load levels.
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Fig. 4.12 Proposed stabilizer in comparison to droop controller; VC is the renewable generator
dc-link capacitor voltage (pu) with fault at bus 6 and low load levels.

4.5 Conclusion

In this chapter the power system with penetration of renewable energy sources is

modeled as a multi-generator power system and the inter-area oscillations is studied after a
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disturbance has occurred. Through a novel modeling and decentralized control strategy for the
renewable generators that dynamically controls the inverter gain and phase angle, as well as for
the synchronous generators the overall grid stability is assured and proven in Appendix C.
Simulation results on the IEEE 5-generator power system shows effectiveness of the proposed
scheme in damping oscillations in the SG’s frequencies and the GTI’s capacitor voltage, that
occur after disturbances. The proposed controller is shown to be more efficient compared to DSC
and droop controllers.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The interconnected ac/dc distribution system is represented as a class of interconnected,
nonlinear systems with unknown dynamics.

The dc distribution system comprises several dc sources, here called subsystems, along
with resistive and constant-power loads (CPLs.) Each subsystem includes a dc-dc converter
(DDC) and exploits distributed energy resources (DERS) such as photovoltaic, wind, etc. Due to
the power system frequent disturbances this system is prone to instability in the presence of the
DDC dynamical components. On the other hand, designing a centralized controller may not be
viable due to the distance between the subsystems (dc sources.)

In Chapter 2 the stability of the interconnected dc distribution system is enhanced
through discrete-time decentralized adaptive nonlinear controller design that employs neural
networks (NNs) to mitigate voltage and power oscillations after disturbances have occurred. The
adaptive NN-based controller is introduced to overcome the unknown dynamics of each
subsystem’s converter and stabilize the entire grid, assuming that only the local measurements
are available to each converter. The controller is tested in Matlab-Simulink to be evaluated in
different load and source change conditions. The controller is able to mitigate the oscillations
caused by different disturbances by adjusting the renewable sources power and stabilize the
system in the new operating point. The controller is compared to droop controller and the results
demonstrate more precise steady state response and significantly more noise rejection in the
proposed method. In Chapter 3 output feedback controller is proposed which requires less

information of the system than state feedback controller in which all state variables of the
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subsystem are required. This controller is applied to IEEE 14-bus system in Simulink and its
effectiveness has been evaluated in different conditions. This controller utilizes less information
of the local system rather than the state feedback controller and estimates the unknown variables.
As result, the output has more fluctuations in steady state and transient conditions in comparison
to state feedback controller. The output has less fluctuation in comparison to droop controller.
In Chapter 4 the ac grid contained synchronous and renewable generators is investigated.
A GTI is used to interface the renewable energy source to the grid in order to control the
delivered power. In order to adjust the operating point of the PV generator, a dc-dc converter is
incorporated to the system as an interface between the solar array and the GTI connecting the
solar array to the power network. The interaction of the solar array dc-dc converter with the GTI
is addressed. Simulation results show improved performance and stability of the proposed
converter discrete-time controller over the conventional methods in the presence of the power
system disturbance. The theoretical conjectures and simulation results of the controller imply
that the converter input voltage and power as well as the inductor current are stabilized desirably
at their initial set points, which verifies the accuracy of the converter discrete-time model and the
effectiveness of the proposed discrete-time controller.
5.2 Recommendation of Future Work
The following recommendations are made for possible future research:
e Discrete-time adaptive neural network is a relatively new topic in the power system stability
and control and hence further research be made on the update law and gain adjustment to

improve its efficiency and effectiveness.
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e The simulation scenarios be evaluated in the presence of protection equipment which have
significant influence on the system operation specifically in severe disturbances.
e The system model be more general and developed to hybrid ac/dc distributed generation

systems.

e The proposed controllers in both ac and dc systems be implemented in the lab and verified

by experimental tests.
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APPENDIX A

Consider the overall Lyapunov function candidate L=L,+L,, Where
Lo() =D o6 (K)6; (k) and L (k)= Z?:l(ri (k)/ i (k-1 f - Using (20), the first difference of the
Lyapunov function due to the first term is obtained as

— o6 (K) B (K). (A1)

1y 2
Al =600 - sk +D)|

Next, the first difference with respect to the second term in the Lyapunov function candidate is

L or(k+1 2o r; (k ?
ALF:E[ gf(&(k)))J _Zl[ gi(é((k)—l))] | #2
Substituting the filtered error (18) into (A2) and expanding the terms, one attains
AL, =§:AL” =Zn: [M(éﬁyi +& +Kin (|<))+A‘(X(k))}2 —i [r'(k)]Z (A3)
i i 9 (k) iz (VOi(k-1)

Expanding the first difference of the overall Lyapunov function candidate AL = AL, + AL,

results in

ALsi[gi(kwé(k)é(k)Tui +0;(K)&” + 9 (K2R (k) + A (k)% g (k) +29; ()6, (K) T e
i=1

n 2
20, ()3, ()T 1K (K) + 28, ()T 162, +20; (K)e K1 (K) + 26544 (K) + 2K, (K)A, (k)]—z[g rélf") 1)J
i=1 i -

i=1

0 28T (08 T g 0BT 00w 16+ Ko aalPl
(| B 0G0 e lo: 0BT (002 + & + Ky 1 (k) 4, ) Y TR
T |- 267 (0 [05 )BT K + & + K 1,00+ 4 (0]

By applying Cauchy-Schwarz inequality [34] (a+a,+--+a,)?<n(a®+ay’+---+a,?) and

i 0.6 1 =0 ! 6, it yields
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AL <[ @ 9700+ e ] A + 0+ 20100 + dei ] *93 002"
1 2000 + e [as] 70 (07K

i=1
SETCIR:
B d - (K = 40 e 2a: (K02 )8 (0T 1 9 AS
zim} é(gn(@ ot 1] 91 0<02)6 00T g K. (A5)
Note that using Assumption 1, one has Z?zlﬂi\Ai(X)\zs

n 2 n n H
YA S+ ()Y i) = YL AHDS + D DT Bi(n+ Dy ’?, Where 5 = () 1S

an arbitrary real-valued function of x; for all 1<i<n. Thus, (A5) becomes

[Tl e bl 9o 06,00l 2007 e G0

AL < .
3 1 205060+ et o 20002 e i

1+ 20 00 + 4eri ] 20 (02 Jei2 + (24 03 () + dery ]| 2 )0 + D62

M=

J’_

AN

<Y - 02 +Cip B 00] D -C, (A6)
i=1

where

n l+29imx 2 1
C, = ‘ e 2 24 O in T+ e ] Za )0 +1)S0;
£ é[[+4ai HﬂiHZ gf }‘l,max ( 9i, min Qj HMHmax)( )S0i

_ _ 2
Cir :gi,rrax l_z,j\l:l|:2+ gj’nin 1+4aJH’uJHn‘HX} (n+1)}/ji2 —@+Zgi’m +4a'H'u'Hr2mx gi’mz)Kiz

Cig =(gi,min — Aat; [ 4] e gi,maxz)HﬂiH Fax - (A7)
C Therefore, AL <0 in (A6) provided the following conditions hold for all 1<i<n
500 >/C,/Cir O {67 (9 > T, /Ciy. (A8)
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This guaranties the boundedness of weight estimation errors, §i(k), and filtered error r; (k)
which in turn show that states &; (k) are UUB according to the standard Lyapunov extension

[35] for all 1<i<n as explained. [
Thus, the proposed NN controller guarantees that the closed-loop signals are UUB with

the given bounds in (A7) and (A8). In order to have small errors, bound C, must be reduced
while C;, and C;, (for all 1<i<n) need to be increased. According to (A7), C, depends on
a; and &y whereas Ci. and Cjy depend on K;, «;, and y;; for all 1<i<n and 1<j<n.
Design gains K; and ¢; are selected to be small positive constants while the interconnection
bounds yj; and &y (1<i<n;1<j<n) can be made small by utilizing high enough sampling
frequency or adequately large output capacitors. Also, C, can be further reduced by utilizing
more NN hidden-layer neurons to obtain smaller NN function approximation error &; ,, [29]

(for all 1<i<n.) The NN approximation error can be made arbitrarily small provided an
arbitrarily large number of hidden layer neurons are selected. However, to provide computational

efficiency, here the NN hidden-layer neurons are limited to 10.
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APPENDIX B

The following theorem guaranties boundedness of the tracking errors, the NN weight
estimation errors, and the state estimation errors.
Theorem 2 (Decentralized NN Output Feedback Controller Stability): Consider the nonlinear

discrete-time interconnected system given by (4). Let the Assumptions 1 and 2 hold and that the

desired trajectory &4 i (for all 1<i<n) and initial conditions for system (4) be bounded in the

compact set Q. Let the subsystem states be estimated by observer (8) and unknown
nonlinearities in each subsystem be approximated by a NN whose weight update is provided by
(9). Also, let the control input be provided by a second NN whose update law is given by (15).

Then, there exist a set of control gains K;, |y, I, oy, and a,; associated with the given

NNs such that the tracking error z;(k), state estimation error Ei(k) as well as the NNs weight
estimation errors VVlyi and sz,i are UUB for all 1<i<n.

Proof. Consider the overall Lyapunov function candidate L=L>

éZ+LZ+L\,\,1+L\,\,2,

where Lz (k)= > (02 + X0 méni (07 LK) =21 D 1’72 250" +

D o tni ()7 L, 00 = 2,1 Wl. (M40 and Ly, (9= 37, 2 VT T 000

By using (17) and replacing the interconnection term A, (£)? using (7) in Assumption 1, Cauchy-

Schwartz inequality [6] (a, +a, +---+a,)?><n(a®+a,”+---+a,°), and the fact that

-”_ELM;ZHZJ- HZ zzz‘:lz'}zlﬂjizuziuz , the first term can be rewritten as
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AL () € 31 20) - 206) + 6 () O ()] + ] A

i=1
2 n 2 2
+6(1+ Do+ 601+ Y a6
where A =W — &1 (M; (K) and G =g (M; (<)) -1 (M (K)) .

Next, by substituting (14),z,;(k+1) =& ;(k+1) —&mgi(k+1), Cauchy-Schwartz
inequality, and substituting the inter-connection terms the first difference of the Lyapunov
function due to the second term becomes

n

m
AL, szll(— Zsmny (DY i K~ (5 -5m,0 7K,z ()
1=
~ n 2 ~
+5m (93 o1 O ()| +[Sil1* + 07K Emi ()7 + (1 +Dio?)
where s; = g; (x; (k))(WzT,i/;i —&2,i(Yi (k))) and 2 = p (% (K) - 1 (% (K)..

Moreover, by using (11) and Cauchy-Schwartz inequality the first difference of the Lyapunov

function due to the third term becomes

ALy (K) sngi(sal,iqm(Mi(k))ZMl,iT (001 (0 00|+ 3exy o OV ) s 0 (M k)
i=1

or OV 0 &% ™ (R OV ]+ 2T o ¥ 00+ 200,22

+3a1’i|1'i2

In addition, by using (16) and Cauchy-Schwartz inequality the first difference of the Lyapunov
function due to the fourth term is given by

n A 2| ~ A 2 A 2 A 2
ALy (k) smz[saz,ipi (O GN| M,iT (00 (F G|+ Bexg i O (0| Wi (KD (7 ()|

i=1

30ty 1 2oy O O] 2002 W, (K10 O |+ 2,7 (K11 OV )]+ 2,724,

The overall first difference of the Lyapunov function is
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AL = AL-§~ +AL, + ALy, +ALy, < (A1)

n - ~ 2
8,51 () + By 1Emi () + By i1z (K)]° + By [2m,i (K)]

i=1

+ BWl,i

W 000 (W 00+ B M, T (0, 0V ()| B

with
2 - 2 2
Bz i =1 —3ayinshi H¢’i('\/|i(k))Hrmx — 2173y
B, ; =7 —5mn,K;*g]
Em,i =T oMK O |
N
B, 27772—5”1772 (n +1)Z?:1/in2 —67.(n +1)Z?:1#ji2 _2774|2,i2 _3774a2,i|2,i2Hpi v, (k))HrmX

mrmn, 2.2
Bmi ZT—5m772Ki O, i

B\Nl,i =113 —6m _3773ai1H¢7i ('\7' [ (k))H:ﬁx

Bw, i =714 — 314c2,i| pi (¥ (k))HrzmIX —5M 1729 Fx, i

Bc.i =(n+1)(6m, +5m,) 00 + 617 Aa | +5M75S fex i

o 2 2 5 2 2
+@Bnsan,ifo (M ()| +2n3)en? + Bnacez,i|oi (G ()] +204)n

» S, i =m§x||si||,

T
1 Wy :mgX‘MZ,iPi

where e, ; = mgX‘MlTi(pi
and Ay i = m(§x||A,||
The coefficients in (Al) are defined in the following by selecting , =1, n, =2 , 73 =7, and

14 >10ng2, i as
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Bz =1- 216¥1,i|1,i2H(pi (M, (k))HZrmx 6,2

Bz i =1-10mK; % gl

B =L-10m(n+ DT 1y 60+ DT —2maba i ~Imaen e O,
Bymi =M—-10mK;*g 2, ;

B =1 2Lay o (V00

Bu i =71a ~ etz iloi (7 () ~10mg 2

~ 2
Bei = (N+D(6-+10m)og;” +6A% i +10MSZy, ; +(2lay s (M; ()| +14)y
A 2
+@nac i |pi G ()| +2n4)ap 2

Then, AL < 0 in (A1) provided the following conditions hold forall 1<i<n

ENGE r [Em,i ()| > A G \/7 2,1 ()] > v (A2)
9” fm,l Bim,i
LT k) 00, G > [ = B v Wy i (k)1 Y ()| > / v

13 99

where “v” denotes “or” operator.

The interconnection terms o and g (for all 1<i<n and 1< j<m) are weak in

nature and can be made small by utilizing high enough sampling frequency or adequately large

output capacitors. Consequently, the bound shown in (A2) can be reduced by selecting design

gains |y, lpi, a1, @y, and K; appropriately.
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This guaranties the boundedness of weight estimation errors, \/\71’i(k),W~2,i(k), and tracking error

z; (k) as well as the state estimation error Ei(k) are UUB [7] with the given bounds in (19).
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APPENDIX C

By replacing u; from (21) in (17), the filtered error dynamic becomes

fi +aq

= fi+0i(- + WD =K 1) +3; + A (X) (A1)

by adding and subtracting u;4, (A1) can be rewritten as

= +9i(_%+ﬁwﬁq’i —Kj i +Ugi —Ugi) +a; +Ai(X). (A2)

Next, from (19) and (20)

b= +9i(—%+ﬁwﬁ®i -Kjr - fi +2, —hir, +M—riWi*Tq)i —1i &) +a; + A (X)

=g; (Wi @; —K; 1 —hy 1, =1, )+ A (X) (A3)
Consider the overall Lyapunov function candidate v =v, +V,,, where V, =Zin:1ri2/2gi and
Vw = Zin:l(\ﬁiTVVi ) / (2p;) - The derivative of the first term in the Lyapunov function becomes
Vi =(61)/9; — (@i %)/ (29;%) (Ad)
Replacing r; from (A3)

Vi =—12WT @; —K; 12 —(6i12)/ (203 + (6A)/g; —hi 2 = &
<HPWT O —Ki 2+ 12 ey +|gi|ri2/(29i2)_hi R +[rAil/9;

<12 W @; —K; ;% +1,% gy —h; 1,2 +|gi|ri2/(29i2)+|riAi|/gi (A5)
Next, according to (A2) and (A3)
Vii <12 W @; +K; —ay; + ) +|6i[6° /(20:°) + il /g Zr;:lnij‘rj‘

By applying Cauchy-Schwarz inequality [30] (a, +a, +---+a,)? <n(a?+a,? +---+a,2), it yields
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; 2\ 2, 2 2 2 /5 2 2 /0 2 N2
Vi <=2 WT @ =K 1% + 6% i —hi 1+ Og i 1 /29i +nr?/2g; +]/22j:177ij r

then > Vi; is written as

n o\ n oo 2T 2 2 2
Vi <D FTWE @ K T ey —hy

+ ri2/29i2 (9gmax i +N)+] +1/22i”:lzf;:177ij2rj2

The last term can be rewritten as
n n ) n n
2 20T ZZ

n
Zﬂjizri2 :z Zﬂjizriz

i=1 j=1 j=1 i=1 i=1 j=1

And consequently

Lo ~ Jamx i TN 1&
eriSz—riz(WiT‘Di+Ki—5Mi+hi—72—*Zﬂji ) -
i-1 i-1 29; 292

i

2

(AB)

Using the neural network weight update law (25) the derivative of the Lyapunov function due to

the neural network weights is obtained as

Vivi =Y20, W, "W, +W,TW,) =W, "W [ =W, TW; /p,
“W,T iAW+ i1 2y) oy = 2T @) W T W W)
From the inequality VViTWi* sVViTVVi AW W

Viwi <15 2W; T - AW W

the derivative of the overall Lyapunov function candidate is

. n . n . n 2 AT ng'THX,I +n 1 n 2
V=3 Vi+ 2 Mwi<D, — 6" W @ +Kj—gy; +h —f—gzi:ﬂji )

29;
no2.5T ATy, *
WD W W)

Now define h; & h; = (g +n)/20,2 +1/237 7% then V < Zin:l_riz (Ki —émi +”Wi
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Therefore, semi-negative definite V (lacking the NN weight estimations errors) only guaranties
boundedness of the states. Next, with the use of Barballat’s lemma [27] the local asymptotic

stability of the filtered error r;(k) can be proven, which in turn shows that states &; (k) are

locally asymptotically stable according to the standard Lyapunov extension [27] for all 1<i<n.
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