
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2014

Efficient Indexing for Structured and Unstructured
Data
Manish Madhukar Patil
Louisiana State University and Agricultural and Mechanical College, manish.m.patil@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Patil, Manish Madhukar, "Efficient Indexing for Structured and Unstructured Data" (2014). LSU Doctoral Dissertations. 785.
https://digitalcommons.lsu.edu/gradschool_dissertations/785

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/785?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

EFFICIENT INDEXING FOR
STRUCTURED AND UNSTRUCTURED DATA

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Manish M. Patil

Bachelor of Engineering (B.E.), Mumbai University, 2003
December 2014

Dedicated to my parents and my wife.

ii

Acknowledgments

As with any research, this work too would have been an impossible task without the efforts of

various people, who were with me throughout. I owe my success to all these people.

I would start by extending my sincerest gratitude to my advisor Dr. Rahul Shah for believing in

me and giving me the opportunity to be a part of challenging and exciting research projects. His

passion and drive towards research has been a constant motivating factor through all these years.

His guidance and encouragement have been crucial in shaping not only my dissertation research

but also my overall development as a professional researcher. Without his immense patience and

support in times of uncertainties, this journey would have been much more grueling. He has been

my mentor in the truest sense. For this, and many other reasons, I will always value the personal

and professional experiences with him during my graduate studies.

I owe a special debt of gratitude to Dr. Wing-Kai Hon and Dr. Jeffrey S. Vitter with whom I have

collaborated on numerous papers. Their guidance has been truly invaluable and I feel privileged

to have the opportunity to work with them. I am grateful to Dr. Seung-Jong Park and Dr. Jianhua

Chen for being a part of my thesis committee. Their willingness to evaluate my work is highly

appreciated.

I am very thankful to Amy Rambhia for making me aware of the wonderful research opportunity

at LSU. I would like to thank Avani Rambhia for proofreading my papers on numerous occasions

and discussions there-after that had significant impact on my writing skills. I thank all my friends in

the computer science department for their help and understanding throughout this PhD. A special

thanks to my friend and a valued colleague Sharma Thankachan for his time to time thoughtful

inputs that have made my work qualitatively better. I would also like to thank Ajay Panyala, Praveen

Kondikoppa, and Vinay Amatya. Their willingness to go out of their way to use their skills for

others cannot be thanked enough. Additionally, I thank all my friends in Baton Rouge, in particular

Akanksha Kanitkar for lending me an ear from time to time.

iii

I cannot go without mentioning my family. My parents, Mrs. Leela Patil and Mr. Madhukar

Patil have been a source of great inspiration for me. I truly appreciate them passing their values

and beliefs in education on to me. I would be remiss to not mention my wife, Amita Kasar, for

everything she has had to endure over the past several years with us both continuing our educations

in different continents. She has always been there for me, patiently, despite her hectic and stressful

schedule and different time zones. I hope I can show her the same level of encouragement as she

continues to pursue her career.

iv

Table of Contents

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Abstract . x

Chapter 1: Introduction . 1
1.1 Top-k Query Processing . 2
1.2 Modeling Uncertainty in Data . 3
1.3 Computation Models . 4
1.4 Our Contributions . 5

Chapter 2: Preliminaries . 9
2.1 Ordered Range Retrieval . 9
2.2 Restricted Ordered Range Retrieval . 9
2.3 Three-dimensional Dominance Reporting . 10
2.4 Three-sided Orthogonal Range Reporting . 11
2.5 Suffix Trees and Compressed Suffix Trees . 11
2.6 Bit Vectors with Rank/Select Support . 12

Chapter 3: Ranked Join Indexing . 13
3.1 Introduction . 13
3.2 Problem Statement . 16
3.3 Achieving Worst Case Query Time of Õ(

√
kn) 16

3.4 Adapting for Positively Correlated Data . 25
3.5 Top-k Join Queries with More Than Two Relations 29
3.6 Experimental Analysis . 31
3.7 Related Work . 40
3.8 Summary . 41

Chapter 4: Inverted Indexes for Phrases and Strings . 42
4.1 Introduction . 42
4.2 Theoretical Framework . 43
4.3 Practical Frameworks . 49
4.4 Experimental Analysis . 51
4.5 Top-k TF-IDF Queries . 57
4.6 Related Work . 60
4.7 Summary . 61

v

Chapter 5: Categorical Range Maxima Queries . 62
5.1 Introduction . 62
5.2 Applications of CRMQ . 64
5.3 Top-k to Threshold Mapping . 68
5.4 The Framework . 69
5.5 Interval Tree Based Solution . 70
5.6 Bootstrapping . 74
5.7 The Final Data Structures . 77
5.8 CRMQ in Internal Memory . 80
5.9 Summary . 85

Chapter 6: Ranked Retrieval in Uncertain Databases . 86
6.1 Introduction . 86
6.2 Top-k Queries on Uncertain Data . 87
6.3 Problem Statement . 89
6.4 Computing PRF e(α) . 90
6.5 Proposed Data Structure: . 96
6.6 Experimental Study . 101
6.7 Related Work . 104
6.8 Summary . 105

Chapter 7: Similarity Joins for Uncertain Strings . 106
7.1 Introduction . 106
7.2 Preliminaries . 108
7.3 q-gram Filtering . 110
7.4 Indexing . 118
7.5 Frequency Distance Filtering . 120
7.6 Verification . 123
7.7 Experiments . 126
7.8 Summary . 137

Chapter 8: Conclusions and Future Work . 138

Bibliography . 139

Vita . 150

vi

List of Tables

1.1 Example of a relation with x-tuples . 4

1.2 Example of a relation with attribute uncertainty 4

1.3 String S represented in string-level model . 4

1.4 String S represented in character-level model . 5

3.1 Houses (H) and Schools (S) database . 14

6.1 Traffic monitoring data . 86

6.2 Calculation of rank-scores of tuples in Table 6.1 96

7.1 Application of q-gram filtering . 112

vii

List of Figures

1.1 Dissertation overview . 5

3.1 Overview of query algorithm . 21

3.2 Effect of correlation (ρ) . 34

3.3 Effect of k . 35

3.4 Effect of number of tuples . 37

3.5 Effect of join selectivity . 37

3.6 Results for real datasets . 38

3.7 Index construction time . 39

4.1 Space comparison of indexes . 53

4.2 Compression achieved for each of three components in Conditional Inverted Lists . 53

4.3 Effect of pattern length (k = 3) . 54

4.4 Effect of k (|P | = 3) . 55

4.5 Time (high, low, mean) for a set of phrase queries (k = 10) 56

4.6 Space for inverted index . 56

4.7 Answering 2-pattern queries . 59

6.1 Data structure for uncertain database in Table 6.1 98

6.2 Data structure in Figure 6.1 after setting m4 = 0 for retrieving top-2 100

6.3 Data structure in Figure 6.1 after inserting t* . 101

6.4 Data structure in Figure 6.1 after deleting t4 . 102

6.5 Top-k query performance . 102

6.6 Processing (insert, delete, top-k) cost on (a) real dataset (b) synthetic dataset 103

7.1 Trie-based verification example . 127

7.2 Effectiveness vs. efficiency . 128

7.3 Effect of dataset size |S| . 129

viii

7.4 Effect of θ . 130

7.5 Effect of τ . 132

7.6 Effect of k . 133

7.7 Effect of q . 134

7.8 Trie-based verification . 136

7.9 Effects of string length . 136

ix

Abstract

The collection of digital data is growing at an exponential rate. Data originates from wide range

of data sources such as text feeds, biological sequencers, internet traffic over routers, through sensors

and many other sources. To mine intelligent information from these sources, users have to query the

data. Indexing techniques aim to reduce the query time by preprocessing the data. Diversity of data

sources in real world makes it imperative to develop application specific indexing solutions based

on the data to be queried. Data can be structured i.e., relational tables or unstructured i.e., free text.

Moreover, increasingly many applications need to seamlessly analyze both kinds of data making

data integration a central issue. Integrating text with structured data needs to account for missing

values, errors in the data etc. Probabilistic models have been proposed recently for this purpose.

These models are also useful for applications where uncertainty is inherent in data e.g. sensor

networks. This dissertation aims to propose efficient indexing solutions for several problems that

lie at the intersection of database and information retrieval such as joining ranked inputs, full-text

documents searching etc. Other well-known problems of ranked retrieval and pattern matching

are also studied under probabilistic settings. For each problem, the worst-case theoretical bounds

of the proposed solutions are established and/or their practicality is demonstrated by thorough

experimentation.

x

Chapter 1
Introduction

The world is drowning in data! There is an enormous amount of data being generated at

unprecedented rates. Data emerges from text feeds, biological sequencers, internet traffic over

routers, through sensors and several other sources. Due to the large volume of data, ability to query

a particular dataset for mining useful/relevant information is of utmost importance. As the size of a

data collection grows, the cost of executing queries over the data also increases. One of the most

effective, and ubiquitous, tools for reducing query execution time is indexing. An index is a data

structure that can significantly reduce the amount of data that needs to be processed when a query

is executed. However, the heterogeneous nature of the data, makes it infeasible to have uniform

indexing solutions across different data sources. Based on its characteristics, data can be designated

as either structured or unstructured data. The term structured implies that the data is identifiable

as it is organized in a structure. The most common form of structured data is a relational database

table. The term unstructured data refers to any data that does not have a pre-defined structure. For

example, images, videos, and text are all considered to be unstructured data.

Databases (DB) and information retrieval (IR) have evolved as separate fields primary dealing

with structured and unstructured data respectively. In this dissertation, we focus on structured data

in the form of relational database and unstructured data in the form of text. There are fundamental

differences in the way we query a relational database and a collection of text documents as well

as the properties that we expect query results to satisfy. Database systems support a structured

query whereas a query to the document collection is typically free text. Knowledge of underlying

data organization and its semantics (data relationships) can be exploited while indexing a database

whereas documents in a collection are typically considered to be independent of each other. Moreover

a bag-of-words model in information retrieval do not attach any semantics to document contents.

In terms of query outputs, database systems produce exact results which are expected to satisfy

1

soundness and completeness properties, whereas for text documents relevance of query result is of

prime importance. Thus, indexing these two types of data pose different challenges.

Traditionally, data (structured as well as unstructured) has been modeled in terms of precise

values. However, recent years have witnessed increasing attention devoted to managing uncertain

data due to large number of applications where uncertainty or imprecision in values is either inherent

or desirable. Examples of such applications include sensor networks, data cleaning, data integration,

and moving objects tracking, to name just a few. Consider a sample data cleaning application

using automated methods to correct errors in data. Often, in such scenarios there is more than one

reasonable alternative for the corrected value. In the standard data model, one is forced to pick

one of these alternatives, which may lead to incorrectness. An uncertain model can allow multiple

choices for an attribute value to be retained. With varied nature of uncertainty in data indexing

solutions for precise data are often not directly portable to uncertain data. Even in situations where

solutions can be ported, it is often possible to build more effective indexes for uncertain data.

In this dissertation, we propose efficient indexing solutions for a series of database and informa-

tion retrieval problems, each dealing with a specific type of data. A common theme among these

problems is to retrieve the few most relevant data objects instead of swamping the end-user with

all data objects satisfying the query. Below, we first elaborate on such top-k query processing. We

then review the uncertain data models and computational models used to capture data fuzziness and

to analyze running time (efficiency) of indexing solutions respectively. Finally, remainder of this

chapter gives overview of the subsequent chapters by defining the problem under consideration and

outlining main contributions for each of them.

1.1 Top-k Query Processing

Database as well as information retrieval systems allow users to rank query answers. Such

ranking is typically based on some scoring function. The data object score acts as a valuation for

that object according to its characteristics. For example, price, year of manufacturing, number of

miles driven, etc of car objects in a automobile database, or number of occurrence of query pattern

in a given document. Data objects can be evaluated by a single attribute or multiple attributes that

2

contribute to the total object score. Thus, ranking enables access to the query answers in the order of

their relevance. In many application domains, end-users are more interested in the most important

(top-k) query answers in the potentially much larger answer space. Consider a user interested in ten

least expensive cars manufactured after year 2010 with less than 50,000 miles on the odometer or a

reader interested in a chapter that refers to the character Lily Potter the most in the Harry Potter book

series. In such scenarios, our goal is to report k data objects with the highest score by employing

top-k query processing. One way to answer a given top-k query is to first obtain list of data objects

satisfying the input query, compute the score of each object according to scoring function, sort

the objects based on their score, and return the first k objects as results. Clearly this approach

is not scalable with respect to the data size. The main problem with such sort-based approach

is that sorting is a bottleneck operation that requires all data objects satisfying the query to be

retrieved i.e., application of query predicates is separate from ranking of query outputs. Integrating

rank-awareness in query processing techniques is likely to provide a more efficient and scalable

solution. By avoiding enumeration of all query outputs, such an integrated approach can achieve the

query time proportional to k instead of data size or the number of query outputs and is one of the

key objectives of various problems investigated in this dissertation.

1.2 Modeling Uncertainty in Data

There are two main approaches for modeling uncertain (probabilistic) relational data [133, 31].

One approach (tuple uncertainty) is to attach a probability value with each tuple - the probability

captures the likelihood of the given tuple being present in the given relation. The second approach

(attribute uncertainty) allows probability values at the attribute level. In this approach, a given

tuple may have multiple alternatives for a given attribute. Table 1.1 shows uncertainty information

expressed using tuple uncertainty. The tuples for Car id = Car1 are grouped together in a x-tuple,

so they are mutually exclusive. Thus, Car1 has problems with either brakes or transmission with

probability 0.1 and 0.9 respectively. Table 1.2 shows the uncertain data presented in Table 1.1

expressed using attribute uncertainty. Analogous to the models of uncertain database, two models

- string-level and character-level - have been proposed recently by Jeffrey Jestes et al. [77] for

3

uncertain strings. A natural way of modeling an uncertain string is the string-level uncertainty

model, in which all possible instances for the uncertain string are explicitly listed and they form a

probability distribution function (pdf). In contrast, the character-level model describes distributions

over all characters in the alphabet for each uncertain character position in the string. The character-

level model is both realistic and concise in representing the uncertainty in long text strings. An

uncertain string S represented in string-level model in Table 1.3, is represented in character-level

model in Table 1.4.

TABLE 1.1. Example of a relation with x-tuples
Car id Problem Probability

Car1 Break 0.1
Car1 Tires 0.9
Car2 Transmission 0.2
Car2 Suspension 0.8

TABLE 1.2. Example of a relation with attribute uncertainty
Car id Problem

Car1 (Break, 0.1), (Tires, 0.9)
Car2 (Transmission, 0.2), (Suspension, 0.8)

1.3 Computation Models

The first model we consider is the random access machine (RAM) model, which is probably

the most popular computation model for analyzing the performance of algorithms in computer

science. In this model, a computer is equipped with a CPU and memory of an unbounded size. It

costs a unit of time to perform arithmetic calculation (e.g., addition, subtraction, multiplication,

division), compare two numbers, read/write a word in memory, etc. (see [120] for a complete list of

operations). The time complexity of an algorithm is measured in the number of operations executed;

the space consumption of a data structure is measured in the number of words occupied in memory.

We assume the size of a word to be Θ(log n) bits, where n denotes the size of the problem in hand.

TABLE 1.3. String S represented in string-level model
S = {(AAC, 0.04), (AAT, 0.06), (GAC, 0.36), (GAT, 0.54)}

4

TABLE 1.4. String S represented in character-level model
S = S[1] S[2] S[3]

(A,0.1) (A,1) (C,0.4)
(G,0.9) (T,0.6)

When the dataset cannot be accommodated in internal memory, an algorithm typically needs to

perform disk access. In this case, its running time is often dominated by its I/O cost, rather than the

CPU overhead. For such a scenario, external memory model (EM) was introduced by Aggarwal and

Vitter [2]. In EM, the CPU is connected directly to an internal memory, which is then connected

to a much slower disk. The disk is of an unbounded size and is formatted into disjoint blocks,

each of which contains B consecutive words. An I/O operation reads a block of data from the disk

into memory, or conversely, writes a block of memory information into the disk. Main memory

can accommodate M words and is assumed to have at least two blocks, i.e., M ≥ 2B. The time

complexity of an algorithm is measured in the number of I/Os performed; the space consumption of

a structure is measured in the number of disk blocks it occupies.

1.4 Our Contributions

We deal with the indexing of structured data in Chapter 3 and 6 while we investigate problems

concerning (unstructured) text data in Chapters 4, 5, and 7 as shown in Figure 1.1. Throughout the

dissertation space-time complexities specified are for RAM model unless explicitly stated otherwise.

Chapter 3:

Ranked Join Indexing

Chapter 6:

Ranked Retrieval in
Uncertain Databases

Chapter 7:

Similarity Joins for
Uncertain Strings

Chapter 4:

Inverted Indexes for
Phrases and Strings

Chapter 5:

Categorical Range

Strctured Data Unstrctured Data

Traditional/

Uncertain Data

Certain Data

Maxima Queries

FIGURE 1.1. Dissertation overview

5

Chapter 3 (based on [111]): With data organized into relational tables, it is a common user

requirement to correlate multiple relations for query processing through join operations. The end-

user is also typically interested only in the “best” tuples which match the query. The ranked joins

problem combines these two aspects and is the focus of this chapter. In top-k ranked joins, we

have two input relations where each tuple has a score. The relations are joined according to joining

criteria and the score of the combined tuple is monotonic function of input scores. By accessing

the tuples from the relations in the ranked order, one hopes that for finding only top-k tuples, one

does not have to scan through the entire relations. With the goal of avoiding unnecessary accesses

to input relations, a lot of research effort has been devoted to developing stopping criteria that

prunes the scanning in each relation. However, these heuristics heavily rely on scores as well as the

correlation of scores between two relations. It is known that for uniformly random scores between

two relations of length n, scan depth of O(
√
kn) is required. However, in the worst-case scenario if

two relations are opposingly ranked then one might need scan depth of (n+ k)/2. In such cases,

rather than relying on scanning, it helps to preprocess the data in anticipation of such queries. We

build a linear space index which explicitly writes subset of answers and calculates the rest on the

fly. Based on this, we show that even if the relations are anti-correlated, one can achieve Õ(
√
kn)

join trials to extract top-k join tuples. The experimental evaluation compares proposed indexing

techniques against state-of-the-art algorithmic solution and shows superior performance.

Chapter 4 (based on [112]): This chapter considers the full-text documents searching problem.

Let D= {d1, d2, ..., d|D|} be the collection of |D| documents of total length n. The top-k document

retrieval problem is to maintain D as a data structure, such that given a query Q = (P, k), we

can report k documents with the highest score(P, dr) values. Here, score(P, dr) is any function

which is dependent only on the set of occurrences of P in dr. Inverted indexes are widely used in

information retrieval for this purpose. However, the index has a shortcoming, in that only predefined

pattern queries can be supported efficiently. In terms of documents where word boundaries are

undefined, if we were to index all the substrings of a given document, then the storage quickly

becomes quadratic in the data size. Also, if we want to apply the same type of indexes for querying

6

phrases or sequence of words, then the inverted index will end up storing redundant information.

We present a set of inverted indexes which work naturally for strings as well as phrase searching and

evaluate space-time tradeoffs for them. Techniques from succinct data structures are deployed to

achieve compression while allowing fast access in terms of score and document-id based retrieval.

For phrase searching, we show that our indexes compare favorably against a typical inverted index

deploying position-wise intersections.

Chapter 5 (based on [113]): Given an arrayA[1...n] of n distinct elements from the set {1, 2, ..., n},

a range maximum query RMQ(a, b), returns the highest element in A[a...b] along with its position.

In this chapter, we study a generalization of this classical problem called Categorical Range Maxima

Query (CRMQ) problem, in which each element A[i] in the array has an associated category (color)

given by C[i] ∈ [σ]. A query then asks to report each distinct color c appearing in C[a...b] along

with the highest element (and its position) in A[a...b] with color c. Let pc denote the position of the

highest element in A[a...b] with color c. We investigate two variants of this problem: a threshold

version and a top-k version. In threshold version, we only need to output the colors with A[pc] more

than the input threshold τ , whereas top-k variant asks for k colors with the highest A[pc] values.

In the word RAM model, we achieve linear space structure along with O(k) query time, that

can report colors in sorted order of A[·]. In external memory, we present a data structure that

answers queries in optimal O(1 + k
B

) I/O’s using almost-linear O(n log∗ n) space, as well as a linear

space data structure with O(log∗ n+ k
B

) query I/Os. Here k represents the output size, log∗ n is the

iterated logarithm of n and B is the block size. Further, we show that CRMQ enables us to obtain

I/O-efficient data structure for top-k document retrieval problem studied in previous chapter.

Chapter 6 (based on [110]): This chapter studies the problem of ranked retrieval over uncertain

databases. In traditional databases, a user defined score function assigns a score value to each

tuple and a top-k query returns k tuples with the highest score. In uncertain database, top-k answer

depends not only on the scores but also on the membership probabilities of tuples. Several top-k

definitions covering different aspects of score-probability interplay have been proposed in the

past. Most of the existing work in this research field is focused on developing efficient algorithms

7

for answering top-k queries on static uncertain data. Any change (insertion/deletion of a tuple or

change in membership probability/score of a tuple) in underlying data forces re-computation of

query answers. Such re-computations are not practical considering the dynamic nature of data in

many applications. We propose a truly dynamic data structure that uses ranking function PRF e(α)

proposed by Li et al. [90] under the generally adopted model of x-relations [133]. PRF e can

effectively approximate various other top-k definitions on uncertain data based on the value of

parameter α. For an uncertain relation with n tuples, our structure can answer top-k queries in

O(k log n) time, can handle an update in O(log n) time and takes O(n) space. Finally, we evaluate

practical efficiency of our structure on both synthetic and real data.

Chapter 7 (based on [109]): A string similarity join finds all similar string pairs between two

input string collections. It is an essential operation in many applications, such as data integration and

cleaning, and has been extensively studied for deterministic strings. Increasingly, many applications

have to deal with imprecise strings or strings with fuzzy information in them. This chapter presents

the solution for answering similarity join queries over uncertain strings that implements possible-

world semantics, using the edit distance as the measure of similarity. Given two collections of

uncertain stringsR, S, and input (k, τ), our task is to find string pairs (R, S) between collections

such that Pr(ed(R, S) ≤ k) > τ i.e., probability of edit distance between R and S being at most k

is more than probability threshold τ . We can address the join problem by obtaining all strings in S

that are similar to each string R in R. However, existing solutions for answering such similarity

search queries on uncertain string databases only support deterministic string as input. Exploiting

these solutions would require all (exponential) possible instances of R to be considered which is

not only ineffective but also prohibitively expensive. We propose various filtering techniques that

give upper and (or) lower bound on Pr(ed(R, S) ≤ k) without enumerating possible instances for

either of the strings. We then incorporate these techniques into an indexing scheme and significantly

reduce the filtering overhead. Further, we alleviate the verification cost of a string pair that survives

pruning by using a trie structure. Finally, effectiveness of the proposed approach is evaluated by

thorough experimentation.

8

Chapter 2
Preliminaries

In this chapter, we briefly describe various known data structures that form the building blocks

of our newly introduced indexes.

2.1 Ordered Range Retrieval

Let A[1...n] be an array of score values of length n. Given a set of t non-overlapping ranges

[l1, r1], [l2, r2], ..., [lt, rt], ordered range retrieval (ORR) problem seeks k largest scores in A[li, ri]

for 1 ≤ i ≤ t in non-increasing order. In its most simplest form query consists of a single range [l, r]

i.e., t = 1. This problem can be considered as a generalization of range maximum query (RMQ).

The RMQ index is a linear-space data structure which can return the position and the value of the

maximum element in any subrange A[l...r] such that 0 ≤ l ≤ r ≤ n. Although solving RMQ can

be dated back from Chazelle’s original paper on range searching [28], many simplifications [14]

and improvements have been made since then, culminating in Fischer et al.’s 2n + o(n) bit data

structure [45, 46]. All these schemes can answer RMQ in O(1) time. We shall use RMQ data

structure to answer the ORR query. The basic result is captured in the following lemma [66].

Lemma 2.1. Let A be an array of numbers. We can preprocess A in linear time and associate

A with a linear-space RMQ data structure such that given a set of t non-overlapping ranges

[l1, r1], [l2, r2], ..., [lt, rt], we can find the k highest scoring entries in non-increasing order of score

in A[l1, r1] ∪ A[l2, r2] ∪ ... ∪ A[lt, rt] in O(t+ k log k) time.

2.2 Restricted Ordered Range Retrieval

Let A[1...n] be an array where each entry is associated with three values select, join, score.

Restricted ordered range retrieval (RORR) seeks k highest scoring entries along with their scores

among those entries A[i] which satisfy input constraints. We consider following two variants of this

problem which differ in constraints that the join values of the array A can be subjected to.

9

Lemma 2.2. Let A[1...n] be an array where each entry is a triplet of the form (select, join, score).

We can associate A with a O(n) space data structure, such that given a range [sl, sr] and parameters

je, k, we can search among those entries A[i] with sl ≤ A[i].select ≤ sr, A[i].join = je, and report

the k highest scoring entries in non-increasing order of score by spending O(log k) time per answer

after initial query set up cost of O(log n).

Proof. Let Aj,s denote a list of entries from an array A such that they are first sorted based on join

values and ties are broken by ordering based on the select values. We maintain such a list Aj,s along

with a RMQ structure on the score values associated with entries in the list Aj,s as an index. To

answer the query, we begin by performing a binary search to obtain the boundary [l, r] in Aj,s such

that all the entries in the subrange Aj,s[l...r] qualify the given constraints i.e., Aj,s[i].join = je and

sl ≤ Aj,s[i].select ≤ sr for l ≤ i ≤ r. Now RMQ component can be used to retrieve array entries

in the non-increasing order of the score values as described in Lemma 2.1.

Lemma 2.3. Let A[1...n] be an array where each entry is a triplet of the form (select, join,

score). We can associate A with a O(n) space data structure, such that given two ranges [sl, sr],

[jl, jr], and a parameter k, we can search among those entries A[i] with sl ≤ A[i].select ≤ sr,

jl ≤ A[i].join ≤ jr, and report the k highest scoring entries in non-increasing order of score by

spending O(log n) time per answer after initial query set up cost of O(log2 n).

Proof. The above RORR query can be answered by directly using the result from [65]. However,

this approach returns k answers in an unsorted order. In order to get faster query time, authors use

a variant of the Lemma 2.1 in their algorithm by allowing the answers to be unsorted. Since we

need to retrieve top-k answers by paying the cost on per-answer basis, only change required in the

solution proposed in [65], is to use Lemma 2.1 instead of its variant.

2.3 Three-dimensional Dominance Reporting

Given a set S of n points in three dimensions and a query point q = (q1, q2, q3), the three-

dimensional dominance reporting asks for all the points s = (x1, x2, x3) ∈ S such that xi < qi,

1 ≤ i ≤ 3. Vengroff and Vitter [131] addressed this problem in the external memory model and

10

proposed an O(n log n)-space data structure that can answer queries in optimal O(logB n+ k/B)

I/Os. The best known result for the problem is by Afshani [1] which achieves linear space along

with same optimal I/O bound.

2.4 Three-sided Orthogonal Range Reporting

Given a set S of n points in two dimensions, three-sided orthogonal range reporting asks for

all points inside a query rectangle of the form [x1, x2] × (−∞, y]. The best EM model solution

to the two-dimensional three-sided range reporting problem is due to Arge et al. [8] which takes

linear space and reports all the points inside the query rectangle in O(logB n+ k/B) I/Os. When

the two-dimensional points are on the [n] × [n] grid, Larsen et. al [85] achieve improved query

bound of O(1 + k/B) I/Os.

2.5 Suffix Trees and Compressed Suffix Trees

Given a text T [1...n], a substring T [i...n] with 1 ≤ i ≤ n is called a suffix of T . The lexico-

graphic arrangement of all n suffixes of T in a compact trie is known as the suffix tree of T [132],

where the ith leftmost leaf represents the ith lexicographically smallest suffix. Each edge in the

suffix tree is labeled by a character string and for any node u, path(u) is the string formed by con-

catenating the edge labels from root to u. For any leaf v, path(v) is exactly the suffix corresponding

to v. For a given pattern P , a node u is defined as the locus node of P if it is the node closest to

the root such that P is a prefix of path(u); such a node can be determined in O(p) time, where p

denotes the length of P . The generalized suffix tree (GST) is a compact trie which stores all suffixes

of all strings in a given collection D of strings. The drawback of the suffix tree is its huge space

consumption, which requires O(n log n) bits in theory. Yet, it can perform pattern matching in

optimal O(p+ |output|) time, where |output| is the number of occurrences of P in T . Compressed

suffix tree (CST) is a space-efficient version of suffix tree. Several variants of CSTs have been

proposed to date [98, 54, 118, 117, 47, 107, 130, 21, 106]. String B-tree (SBT) [43] for a text T

can be thought of as an external memory counterpart of suffix tree as it occupies Θ(n/B) blocks or

Θ(n log n) bits space and can locate the locus node of pattern P in O(p/B + logB n) I/Os.

11

2.6 Bit Vectors with Rank/Select Support

Let B[1..n] be a bit vector with its m bits set to 1. Then, rankB(i) represents the number of 1’s

in B[1..i] and selectB(j) represents the position in B where the jth 1 occurs (if j > m, return NIL).

There exists representations of B in n+ o(n) bits and m log(n/m) +O(m) + o(n) bits, which can

support both rankB(·) and selectB(·) operations in constant time. These structures are known as fully

indexible dictionaries. Another representation, where the space occupancy is m log(n/m) +O(m)

bit support only selectB(·) operation in constant time and is known as indexible dictionary [116].

12

Chapter 3
Ranked Join Indexing

3.1 Introduction

Ranking queries are useful in focusing attention on the most important answers to a query from

larger answer space. In top-k join queries, a “join” condition among tuples in different input relations

joins them together in one output join result. Each join result has a combined score computed from

the scores of participating tuples. The goal is to produce the top-k join results based on the combined

score. Thus, top-k join query is essentially a multi-criteria optimization query that combines the

individual scores into one global score by applying the provided aggregation function. Real-life

examples of multi-criteria optimization, are given below.

Example 1. A family is interested in buying a 3 bedroom house with a school nearby having at least

500 students, with the objective of minimizing the total cost. Consider a simple cost function that

sums the price of the house and 5-year school tuition. Searching the two web databases, HOUSES

and SCHOOLS, the family issues the following query:

SELECT * FROM HOUSES H, SCHOOLS S
WHERE H.location = S.location AND H.no of bedrooms = 3
AND S.no of students >= 500
ORDER BY H.price + 5 * S.tuition LIMIT 10

Example 2. A tourist is looking for a good restaurant to have dinner. A local information website

can provide the list of restaurants along with information about their locations and cost (average

price for a diner). Also restaurant ratings are typically available through websites (such as Zagat-

Review), where food rating for a restaurant is given by a number between 1 and 30. By imposing

some constraints on dinner cost and restaurant rating, the tourist can issue the following query:

SELECT * FROM RESTAURANTS R, REVIEWS S
WHERE R.id = S.rest id AND 20 <= R.price <= 45 AND S.rating > 10
ORDER BY S.rating/R.price DESC LIMIT 10

13

Such top-k join queries can be answered in a naive way as follows: First, the input relations are

filtered to retrieve tuples satisfying the given predicates, which are then joined according to the join

condition. For each join result, the global score is computed according to the given scoring function.

Finally, the results are sorted on the computed combined score to produce the top-k results. With the

goal of being more efficient than the naive approach, several algorithms have been proposed till date

for answering top-k join queries [100, 25, 73, 93, 3]. Most of these algorithms take relations filtered

based on given predicates as input lists. These lists typically support sorted access i.e., tuples can

be retrieved in a ranked order as determined by their scores. Algorithm proceeds by incrementally

retrieving the tuples from the input lists and maintain aggregate score of all “seen” tuples. Algorithm

terminates when “enough” information to decide on the top ranked join results are obtained. This

stopping mechanism determines the number of tuples accessed from the input lists (scan depth) for

answering a query.

Primary focus of the work on top-k join processing so far has been to derive tighter early termi-

nation conditions while navigating the cartesian product of input lists systematically. Unfortunately,

effectiveness of such “stopping mechanism” heavily depends on the correlation between the input

lists. Consider the sample database shown in Table 3.1 for the example queries described earlier.

Let us assume we are interested only in the top-1 result for both examples. It can be seen that for a

tourist to decide the best possible choice, almost all the restaurants need to be evaluated whereas

a family can decide on the best choice by evaluating three houses and three schools only. The

main factor that can cause worst case scenario, as evident in the tourist example, is the “curse of

TABLE 3.1. Houses (H) and Schools (S) database
(a) HOUSES

id location price (in K)

1 3 39
2 1 40
3 1 42
4 2 45
5 3 45
6 2 46
7 3 48
8 3 48
9 3 50

(b) SCHOOLS
id location tuition (in K)

1 2 2.4
2 1 2.5
3 1 2.8
4 3 3.0
5 2 3.2
6 3 3.3
7 3 3.3

14

anti-correlation”. A restaurant which costs less (ranked higher in terms of affordability) typically

has lower ratings. Whereas input data for the example 1 is positively correlated as a good locality

typically has better schools with higher tuition fees and houses with higher costs. While most of the

algorithms proposed are efficient when the input lists to be joined are positively correlated, they

need to access sizable amount of the lists leading to poor performance otherwise.

It is known that [74], even for the input lists of length n with uniformly random scores, scan

depth ofO(
√
kn) is required. However, in the worst-case scenario if two lists are anti-correlated then

one might need scan depth of O(k + n). Motivated by the limitations of the algorithmic approach,

we take an indexing approach for answering top-k join queries. We note that top-k join query

processing is closely related with other fundamental problems in database community such as top-k

selection queries and skyline computation. However, despite their similarities, extending/adopting

the indexing solutions of these problems to support top-k join queries is challenging.

Top-k selection queries: For top-k select queries, all input lists contain the same set of objects

ranked on different criteria i.e., all the objects can be thought to be a part of a single relation, where

each object has a set of score attributes and the goal is to select the best k objects according to some

combination (aggregation) of these score attributes. Thus, a top-k selection query can be regarded as

a special case of a top-k join query when there is a one-one mapping among the tuples in relations

involved in the join query as in Example 2.

Computing skyline: Given a set of multi-dimensional objects, skyline queries find the set of

interesting (i.e., non-dominated) objects. A m-dimensional object P dominates another object Q

if P is better than or equal to Q in all m dimensions, and strictly better than Q in at least one

dimension. For the first example query described above, consider all (house, school) pairs obtained

by joining relation HOUSES (H) with SCHOOLS (S) which satisfies number of bedrooms and

number of students in school criteria. When these points are plotted in two-dimensional plane with

H.price as its x coordinate and 5 * S.tuition as its y coordinate, any point P in the skyline will have

its combined score better (lower) than any point Q not in the skyline. Therefore a top-k join query

can be thought of as selecting top-k skyline points.

15

We propose a data structure for efficient top-k join processing in this chapter. The proposed

index explicitly writes subset of answers so as to reduce the number of tuples that need to be

accessed during query time. Our index achieves the goal of performing at most Õ(
√
kn)1 join trials

to extract top-k joined tuples, even if the input lists are anti-correlated while occupying the space

linear to the input data size. The proposed data structure also integrates evaluation of predicates

on the relations involved in join with query processing which is external to most of the existing

solutions. Our extensive experimental study under different parameter settings shows that our index

yield high performance gains against the well know Rank-Join algorithm by Ilyas et al. [73].

3.2 Problem Statement

Given a set of relations R1 to Rγ such that each relation Ri is associated with a set of attributes

Ci = {α1
i , α

2
i , ..., α

c
i} and a ranking function, which assigns a score to every tuple t ∈ Ri denoted

by scorei(t), preprocess these relations and construct an index so as to answer the top-k join queries

efficiently. In the query, we assume join-condition associates those tuples from two relations

which satisfy the corresponding select-predicate (a range query on one of its attributes). Results of

the join query are ranked using a monotone function F which computes the total score of a tuple

by combining its scores in individual relations. Finally, let LIMIT controls the number of results

reported to the user. Without loss of generality, now onwards we assume higher value of scorei is

preferred and F is a monotonic non-decreasing function i.e., we would like to retrieve k join results

with the highest combined score computed using function F . Also let each relation Ri has n tuples

and N = γcn is the total size of all γ relations.

3.3 Achieving Worst Case Query Time of Õ(
√
kn)

This section describes the proposed linear space index which can answer top-k join queries

involving two relations in Õ(
√
kn) time. Without loss of generality, let the select-predicate speci-

fies a range query on attribute αsi and join is to be performed on attribute αji . We first explain the

simpler version of the index for the case where join operation is restricted to equality join. We

1The notation Õ ignores poly-logarithmic factors.

16

also assume that (1) relations involved in the top-k join query i.e., R1, R2 and (2) join, selection

attributes i.e., αj1, α
j
2, αs1, α

s
2 are predefined to begin with. Let Lsi = {t1, t2, ..., tn} denote a list

of tuples from Ri sorted based on selection attribute i.e., αsi and [li, ri] be the range in list Lsi

obtained by applying the given select-predicate on Ri. Now, our task is to join tuples {tx|tx ∈ Ls1,

l1 ≤ x ≤ r1} with {ty|ty ∈ Ls2, l2 ≤ y ≤ r2} and retrieve the top-k highest scored pairs. A naive

way of performing top-k join would result in the worst case O(n2 log n) algorithm. Our idea is to

preprocess the relations R1, R2 and store some partial answers so that top-k join queries can be

efficiently answered without going through the entire list of tuples.

3.3.1 Index Structure

Our index consists of three components namely binary trees, score-matrices, RORR structures

and are described below.

(1) Binary trees: In our index, we maintain a balanced binary tree representation of both the

relations R1 and R2. Let ∆s
i be the balanced binary tree (of n leaves) built over the list Lsi i.e.,

each leaf in ∆s
i corresponds to a tuple in relation Ri and leaves are sorted by selection attribute αsi .

Evaluation of select-predicate (a range query) on attribute αsi can now be performed by a simple

binary search on ∆s
i to obtain a range [li, ri] in the list Lsi .

(2) Score-matrices: Consider a naive way of storing answers for all possible queries. The number

of possible contiguous ranges in Lsi is
(
n
2

)
= O(n2). Therefore, if we preprocess these lists and

store the top-k answers for all pairs of ranges (between Ls1 and Ls2, based on given join condition,

for a fixed k), top-k join query can be answered in optimal O(k) time. However, the space required

for storing all answers O(n4k) (for a fixed k) is not practical at all.

A key idea to reduce the space requirement without increasing query time too much is to store

the answers between only selected pairs of ranges. Each node u of ∆s
i naturally corresponds to

a range covering all tuples represented by the leaves in the subtree rooted at node u. Let Lsi (u)

denotes the list of these tuples and g = Õ(
√
kn) be a grouping parameter. A node u of ∆s

i is called

a heavy node if the number of leaves in its subtree is more than a parameter g, i.e |Lsi (u)| > g. It

17

can be easily verified that the number of heavy nodes in ∆s
i is O(n/g). Our index stores the top-k

answers (for a fixed k) for pairs (u, v) computed using predefined join condition, where u is a heavy

node in ∆s
1 and v is a heavy node in ∆s

2. Here final score of a tuple after join is computed using

monotonic function F (score1, score2). This information is stored in a two-dimensional matrix

which we call a score-matrix of dimensions O(n/g)×O(n/g) with each entry of the matrix storing

top-k answers. Since k is an online parameter and we do not want our index to be tied to a fixed

value of k, we maintain score-matrix for k = 1, 2, 4, 8, ... separately i.e., we maintain a collection

of log n score-matrices. Though this collection of score-matrices is tied to a scoring function at the

construction time, later (Section 3.3.7) we describe how such a collection can be used to answer a

range of monotonic linear scoring functions.

(3) RORR structures: As explained earlier, score-matrix stores the top-k answers for selected

pairs of ranges. For top-k queries that can not be answered using score-matrix only, we need to do

some on-the-fly computations. RORR structure is intended to accelerate these computations during

query execution. We maintain a RORR index (Lemma 2.2) for the relation Ri such that values of

the triplets (select, join, score) of an array on which RORR structure is to be built are populated

using attributes αsi , α
j
i and scoring function scorei respectively.

Before we move on to the query algorithm, we highlight the important properties of our structure.

Lemma 3.1. Given any contiguous range [l, r] in a list Lsi , it can be divided into h < 2 log n

subranges such that, each of this subrange corresponds to the list Lsi (u), where u is a node in ∆s
i .

Proof. Follows from the properties of a balanced binary tree.

Using Lemma 3.1 and the condition for a node to be heavy in balanced binary tree ∆s
i , we write

the following lemma.

Lemma 3.2. Given any contiguous range [l, r] in a list Lsi , it can be divided into 3 subranges:

[l, l′− 1], [l′, r′] and [r′+ 1, r], such that l′− l < g, r− r′ < g and the subrange [l′, r′] can be further

divided into h < 2 log n sub-subranges such that each of this sub-subrange is of the form Lsi (u), u

being a heavy node in ∆s
i .

18

Proof. For simplicity, assume n and g to be a power of 2 then any range [mg, (m + 1)g − 1]

for m ≥ 0 will be of the form Lsi (u), u being a heavy node in ∆s
i . Therefore the range [l, r]

can be divided into 3 subranges: [l, l′ − 1], [l′, r′] and [r′ + 1, r] such that l′ = gdl/ge − 1 and

r′ = gbr/gc.

3.3.2 Query Algorithm

To answer the top-k join query, our query algorithm sequentially executes following steps:

(1) Query binary trees: Query algorithm begins with filtering of tuples in the relations R1 and R2

based on given select-predicates. Since the select-predi- cate is a range query, we can obtain a

contiguous range [li, ri] in the list Lsi using binary tree ∆s
i such that each tuple tx ∈ Ri, li ≤ x ≤ ri

satisfies the given predicate. In order to reduce the computations performed during query execution,

we would like to use the pre-computed top-k answers from the score-matrix. To enable such a

lookup we divide the range [li, ri] using Lemma 3.2 into three subranges [li, l
′
i − 1], [l′i, r

′
i] and

[r′i + 1, ri]. Now, we can split the main task of answering top-k join query between the ranges [l1, r1]

and [l2, r2] into the subtasks of answering top-k join queries between following subranges.

(1) [l′1, r
′
1] and [l′2, r

′
2]

(2) [l1, l
′
1 − 1] and [l2, r2] (3) [r′1 + 1, r1] and [l2, r2]

(4) [l1, r1] and [l2, l
′
2 − 1] (5) [l1, r1] and [r′2 + 1, r2]

Top-k answers for the first subtask are obtained by querying the appropriate score-matrix in

Step 2. Whereas Step 3 of the query algorithm efficiently computes top-k answers for the remaining

subtasks by querying the appropriate RORR structures. We note that the pairs [l′1, r
′
1], [l2, r2] and

[l1, r1], [l′2, r
′
2] need not be considered, as these cases are subsumed by the five cases listed above.

(2) Query score-matrix: Using Lemma 3.1 and 3.2, for a range [l′i, r
′
i] from the previous step, we

can obtain a set Si of O(log n) nodes such that: (1) each node in Si is a heavy node in ∆s
i , (2) the

subtrees of any two nodes in Si are disjoint and (3) the subtrees of the nodes in Si together contain

exactly all the tuples in Ri that are covered by the range [l′i, r
′
i].

19

Top-k answers for the first subtask can now be retrieved by querying score-matrix component

O(log2 n) times once for each pair of nodes (u, v) ∈ S1 × S2. We choose appropriate score-matrix

based on the online query parameter k i.e., the one which stores top-(2m) answers, 2m−1 < k ≤ 2m.

From each query (among O(log2 n) queries), we retrieve only the top-1 answer, and put them

into a max-heap (binary search tree). In each iteration, we do the following: (1) We perform the

extract-max operation on the heap and add it to our answer list. (2) Let (u, v) be the pair of nodes

which has contributed the answer just extracted. We query the cell of the score-matrix corresponding

to the pair (u, v) to retrieve the next highest ranked answer and insert it into the heap. Thus, after k

iterations, we get the top-k answers as required for the first subtask.

(3) Query RORR structure: We demonstrate the steps involved in the query algorithm by con-

sidering subtask 2 as a representative case, other subtasks can be handled in a similar way. Before

we explain how to answer the top-k join query between ranges [l1, l
′
1 − 1] and [l2, r2] for subtask 2,

we show how to retrieve the join results in non-increasing order of a combined score for a given

tuple tx ∈ R1 such that l1 ≤ x ≤ l′1 − 1. We initiate a query to the RORR structure for relation

R2 (Lemma 2.2) with parameter je set to the join value of tuple tx and range [sl, sr] as dictated by

select-predicate(R2). Now this query can be used to retrieve tuples from R2, which satisfy the

input predicate and can produce valid join combinations with tx, in the non-increasing order of

score2. We note that since score1(tx) is fixed and ranking function F (score1, score2) is monotonic,

ordering of the tuples based on score2 as given by the RORR structure is same as the ordering based

on combined score.

To obtain top-k join results for a pair of range ([l1, l′1−1], [l2, r2]) we use the following procedure:

For each tuple tx in [l1, l
′
1 − 1], we initiate the RORR query with appropriate query parameters as

explained above and find the tuple ty in [l2, r2], that gives the maximum combined score. All these

top-1 answers are inserted into a max-heap (binary search tree). Then, in each of the k iterations,

we do the following: (1) We perform the extract-max operation on the heap and add it to our answer

list. (2) Let tx be the tuple in R1 which has contributed the answer just extracted. We use the RORR

query initiated for tx to retrieve the next highest ranked join result for tx and insert it into the heap.

20

(4) Top-k reporting: This step of the query algorithm simply combines the top-k answers obtained

in previous steps for each of subtasks to obtain the top-k answers for the main task of joining the

tuples {tx|tx ∈ Ls1, l1 ≤ x ≤ r1} with {ty|ty ∈ Ls2, l2 ≤ y ≤ r2}. This step can be executed in time

linear to input parameter k.

For the subtasks 2 to 5, one of the two ranges will be small (≤ g). We call the tuples belonging

to these small ranges as fringe tuples. A tuple pair appearing in the final top-k answers will either

have at least one fringe tuple or both of its tuples can be non-fringe. Subtasks 2 to 5 cover the

former scenario whereas tuple pair with both non-fringe tuples will be returned as an answer during

execution of the subtask 1. Thus all top-k answers will be found by our query algorithm. However,

subtask division presented above leads to duplicate join results being reported. This can be avoided

by simply replacing the subtasks as (4) [l2, l
′
2 − 1] and [l′1, r

′
1], (5) [r′2 + 1, r2] and [l′1, r

′
1] without

affecting the correctness of algorithm.

Figure 3.1 shows the overview of the query algorithm when applied to Example 2. Restaurants

which satisfy the input predicates i.e., tuples in sample database of Table 3.1, are shown as shaded

leaves. Since n = 16 in this case, to retrieve the top-1 answer we choose grouping parameter g = 8.

Best choice for the tourist can now be decided by on-the-fly evaluation of 3 joins using RORR

structures in addition to a score-matrix lookup.

REVIEWS

28
25

23
20

19
17

15
14

13
11

10
10

9
9

9
9 ra

tin
g

Heavy
node: v

RESTAURANTS

15
15

15
16

18
18

18
21

22
22

24
24

30
30

36
45 pr

ic
e

Heavy
node: u

row index

column
index

Use pre-computed answers
(Query score-matrix)

On-the-fly evaluations
(Query RORR structure)

FIGURE 3.1. Overview of query algorithm

21

3.3.3 Space-Time Analysis

This subsection analyzes the performance of our structure. We will also fix the value of grouping

parameter g to strike a good balance between space and query time. We begin by bounding the

space and query complexities as mentioned in the following lemma.

Lemma 3.3. Our structure uses O(n + n2k log n/g2) space, and answers top-k join query in

O(log3 n) +O((g + k) log n) time.

Proof. For a relation Ri, we maintain a balanced binary tree representation and a RORR structure

and each of these two structures occupies a linear space. Since there are only two relations, total

space required for all binary trees and all RORR structures can be bounded by O(n). Our structure

also maintains a collection of O(log n) score-matrices where size of the each score-matrix is

bounded by O(n/g)×O(n/g)× k = O(n2k/g2). Therefore, the proposed index structure occupies

O(n) +O(n2k log n/g2) space.

To obtain the query complexity, we analyze the time spent by the query algorithm in each of

the four steps. Recall that the first step of algorithm simply obtains a range [li, ri] using binary

tree ∆s
i and splits it into subranges based on Lemma 3.2 for both the relations R1, R2. Thus time

complexity of Step 1 can be bounded by O(log n). Time required for querying score-matrix in Step

2 of the algorithm can be bounded by O((log2 n+ k) log n) as heap contains at most O(log2 n+ k)

elements when kth highest join result for subtask 1 is retrieved. A close look at the algorithm

reveals that querying RORR structure (Step 3) dominates the query cost. Again we use subtask

2 as a representative and query cost for the other subtasks can be bounded in a similar way. We

split the time required for answering subtask 2 as follows: (1) For each tuple tx ∈ R1 such that

l1 ≤ x ≤ l′1 − 1, we initiate a query to RORR structure on R2 which has initial query set up cost of

O(log n) before any answers can be retrieved (Lemma 2.2). Since l′1− l < g (Lemma 3.2), total cost

can be bounded by O(g log n). (2) Time required for retrieving total of O(g + k) answers from a

collection of RORR queries can be bounded by O((g+k) log k) (Lemma 2.2). With heap containing

at most O(g + k) elements when top-k answers for subtask 2 are found, cost of heap operations

can be bounded by O((g + k) log n). Thus querying RORR structure takes O((g + k) log n) time.

22

The last step of query algorithm combines top-k answers from each of the five subtasks to produce

top-k answers for the original top-k join query in O(k) time. Therefore, our query algorithm can

answer top-k join queries in O(log3 n+ (g + k) log n) time.

Depending on the choice of g, Lemma 3.3 gives various tradeoffs between space and query time.

To achieve linear space, we choose g =
√
nk log n, which establishes the result summarized below.

Theorem 3.4. Given relations R1 and R2 of size n, top-k join queries with (1) equality join on

a predefined attribute and (2) both the relations being subjected to a range query on a predefined

attribute, can be answered in O(
√
nk log3/2 n) time by maintaining an index of size O(n).

3.3.4 Index Construction

From the index description, it can be seen that construction of each binary tree and RORR

structure can be achieved inO(n log n) time. A naive way of populating score-matrix would result in

quadratic construction time. However, we can first construct binary trees and RORR structures and

then use the procedure described in Step 3 of the query algorithm to achieve Õ(n3/2) construction

time. An important observation that allows more efficient index construction is that, we do not need

to explicitly compute top-k answers for each heavy node pair (u, v). Let ulandur be the left and

right child of a node u in ∆s
1 respectively with both being heavy nodes. We observe that for a tuple

pair (tx, ty) to be in top-k answers for (u, v), it must be in top-k answers for (ul, v) or (ur, v). Thus,

top-k answers for (u, v) can be computed by simply scanning at most 2k join results.

Further, we would like to highlight that the proposed index can be made semi-dynamic (insertion

only). Balanced binary trees can handle insertions efficiently whereas RORR structures summarized

in Lemma 2.2 and 2.3 can be replaced by their dynamic counterparts [64, 91] still maintaining linear

index space. We can easily obtain Õ(n3/4) query time and (amortized) update time solution by

keeping track of newly inserted tuples and reconstructing all the score-matrices only after O(n3/4)

tuples are inserted to a relation. However, these O(n3/4) tuples now need to be evaluated during

query time using RORR structures in the same way fringe tuples are evaluated in Step 2 of the query

algorithm. We observe that Õ(
√
kn) query time as well as Õ(

√
n) update time can be obtained by

23

balancing the cost of evaluating fringe leaves and that of newly inserted tuples. We can achieve the

same by reconstructing the score-matrix entries related to a particular heavy node only if g tuples

are inserted in its subtree.

3.3.5 Supporting Arbitrary Relations, Selection and Join attributes

To support generalized top-k queries, for each relation Ri, we now maintain a balanced binary

tree representation for each of its c attributes. As RORR structure depends on the selection as well as

join attribute, we need to maintain RORR index for c2 pairs of attributes for each of the γ relations.

Similarly, for a given pair of relations we maintain score-matrices for all possible combinations

of join and selection attributes. Furthermore, as two relations involved in a join query can be

picked up in γ2 ways, we store score-matrices for each of these combinations as well. As before,

score-matrices are maintained for each k = 1, 2, 4, 8, Finally, to limit the total space requirement

of our index we choose threshold g =
√
γc2nk log n. For answering a query, we follow the same

procedure as described earlier by choosing the appropriate balanced binary trees, score-matrix

and RORR structure at each step of the query algorithm. By following similar analysis as used in

previous subsection, Theorem 3.4 can be rewritten as follows.

Theorem 3.5. Top-k join queries involving any two relations out of γ relations with (1) equality join

on a single attribute and (2) each relation being subjected to a range query on one of its attributes,

can be answered inO(
√
cNk log3/2 n) time by maintaing an index withO(cN) size and Õ((cN)3/2)

construction time, where c is the number of attributes per relation, n is the number of tuples per

relation, and N = γcn is the total size of all γ relations.

3.3.6 Supporting Inequality Joins

To support inequality joins, instead of using the RORR structure from Lemma 2.2, we now use

the one in Lemma 2.3. We note that, with this change our index can support both equality as well as

inequality joins making it generic, without hurting its space requirement. Here, we only highlight

the difference in the way RORR structure is used by our query algorithm, as rest of the operations

remain unchanged. For illustration purpose, we again use subtask 2 and assume the join operation

24

to be αj1 ≤ αj2. Given a tuple tx ∈ R1 with l1 ≤ x ≤ l′1− 1, to retrieve the valid join combinations it

produces for subtask 2, we query appropriate RORR structure for relation R2 (based on αi2, αj2). The

select-predicate(R2) determines the range [sl, sr] and for the query parameter range [jl, jr], we set

jl to minimum join value in relation R1 and jr to join value of tuple tx. Thus, we achieve an index

with space requirement as that of index in Theorem 3.5 but with query time O(
√
cNk log5/2 n).

3.3.7 Supporting Approximate Monotonic Linear Scoring Functions

In this subsection we show how an index built for a particular scoring function can be used to

approximately answer top-k join queries with scoring functions that incorporate user preferences.

For presenting the ideas, we assume the index has been built with aggregate scoring function as sum

i.e., F (score1, score2) = score1 + score2 and all scores are positive integers. Such an index can

directly support exact top-k join results for all functions δ(score1 + score2), where δ is a scaling

factor. For scoring functions with arbitrary user preferences i.e., (δscore1 +βscore2), we would like

to achieve (1 + ε) approximation for ε > 0. Thus, our goal in this case is to retrieve top-k answers

such that score of all the returned top-k answers is at least 1/(1 + ε) times that of the actual top-kth

answer. To achieve this we build score-matrices with scoring functions score1 + score2/(1 + ε)i

and score1/(1 + ε)i + score2. Therefore, for a particular value of k we now have O((logm)/ε)

score-matrices as opposed to just one score-matrix used before, where m = max(score1, score2).

Space complexity of the index can be maintained to be linear despite increased number of score-

matrices by adjusting the grouping parameter appropriately. For example, linear space bound can be

obtained for index in Theorem 3.4 by choosing g =
√

(kn log n logm)/ε thus compromising query

time only by the factor of
√

(logm)/ε. We note that ε is a query-space tradeoff parameter i.e., we

can achieve the same query time as before with increased index space by a factor of (logm)/ε.

3.4 Adapting for Positively Correlated Data

The index proposed in the previous section has been developed to achieve the goal of providing

theoretical guarantee for top-k join query. As a side-effect, the proposed index is insensitive to the

correlation between two input lists to be joined. When the input lists are positively correlated, scan

25

depth is typically only a small fraction of their lengths. However, our index ignoring the correlation

may end up accessing more number of tuples (determined by g) than the scan depth. Below we show

how our index can take the advantage of positively correlated data to achieve better performance.

We will first extend the index structure and then incrementally improve the query algorithm.

Index structure: In addition to the three components of our index described earlier, we maintain

a component called “RMQ Structures” so as to support ordered range retrieval for any relation

Ri. Recall that Lsi denotes a list of tuples from Ri sorted based on selection attribute i.e., αsi . We

maintain a RMQ structure on the score values associated with tuples in list Lsi based on ranking

function scorei. Now all tuples in Ri satisfying the given select-predicate (a range query) on

attribute αsi can be retrieved in non-increasing order of their score efficiently (Section 2.1). As

there are γ relations and for each relation we have c choices for selection attribute αsi , total space

required for RMQ structures can be bounded by O(γcn) = O(N). Thus space complexity of our

index remains unchanged.

Query algorithm: From Section 3.3.3 we know that, Step 3 of the query algorithm i.e., querying

RORR structure dominates the query cost. This step aims to return top-k answers for subtasks 2 to 5,

obtained by splitting main task of answering top-k join query between the ranges [l1, r1] and [l2, r2].

For these subtasks, one of the two ranges is small (≤ g) by Lemma 3.2. Query algorithm presented

in previous section requires at least one join result to be computed for each tuple in the small list.

When input lists are positively correlated, an immediate improvement can be obtained by using any

of the heuristics proposed earlier to obtain top-k answers for each of these subtasks. Though any

heuristic can be applied, here we use a well known Rank-Join algorithm proposed by Ilyas et al. [73].

Therefore, Step 3 of the query algorithm now creates four instances for Rank-Join algorithm for

handling each of the subtasks 2 to 5. In each step of the algorithm, Rank-Join retrieves the next

highest ranked tuple from one of two input lists. Sorted access of tuples required by Rank-Join

is supported by RMQ structures component of the index. In addition to the immediate gains, use

of Rank-Join offers another subtle benefit: ability to merge/overlap the subtasks as we only need

collective top-k answers from all subtasks.

26

Merging of subtasks: A close look at the four subtasks reveals the fact that these subtasks are not

entirely independent. Subtasks 2 and 3, have list of tuples in the range [l2, r2] common between

them. Use of Rank-Join allows us to merge the related subtasks, effectively reducing the combined

efforts spent on the individual subtasks.

Let L2,3 be the list obtained by merging the tuples in the range [l1, l
′
1 − 1] (subtask 2) and

[r′1 + 1, r1] (subtask 3) of relation R1. In a merged task Rank-Join can then operate on the list L2,3

and [l2, r2] to retrieve collective top-k answers as required. Since Rank-Join accesses the tuples

in ranked order from the input lists, we do not have to physically merge tuples from the range

[l1, l
′
1 − 1] and [r′1 + 1, r1]. It only suffices to have the ability to retrieve the tuples in non-increasing

order of the score from the logically merged list L2,3. RMQ structure maintained on attribute αs1 of

the relation R1 can be used to achieve this goal along with a max-heap (binary search tree) which is

initially empty as follows: We begin by initiating the ORR queries on ranges [l1, l
′
1 − 1], [r′1 + 1, r1]

separately. The highest scored tuples obtained using ordered range retrieval from both the ranges

are then inserted into the heap. Whenever Rank-Join tries to access a next tuple from list L2,3 we do

the following: (1) We perform the extract-max operation on the heap and supply it as a next tuple

to Rank-Join. (2) We identify the range to which tuple just extracted belongs to and use the ORR

query initiated on it to obtain next highest scored tuple, which is then inserted into the heap.

The process of merging subtasks 2 and 3 described above can also be applied to merge subtasks

4 and 5 in a similar way. Let the two new merged tasks be merge2,3 and merge4,5 respectively.

Thus, Step 3 of the query algorithm executes two instances of Rank-Join algorithm applied to tasks

merge2,3 and merge4,5.

Overlapping of subtasks: Though tasks merge2,3 and merge4,5 are independent of each other,

we still need collective top-k answers and not top-k answers for these tasks individually. This

allows us to overlap the execution of two tasks by executing them simultaneously. A simple way to

achieve this is to perform one step of Rank-Join algorithm on two tasks alternately. At any point

during the execution Rank-Join maintains a threshold which gives an upper-bound on the score

of all join combinations not yet seen. Let T2,3 be the current threshold for the task merge2,3 and

27

T4,5 be the same for task merge4,5. Then score of any unseen join combination from either tasks is

T = max(T2,3, T4,5). Hence, by terminating the execution of both instances of Rank-Join algorithm

when we have k distinct join results with combined score higher than threshold T , correctness of

the algorithm is ensured. However, instead of switching between the tasks merge2,3 and merge4,5

at every step, a score guided strategy is likely to give us top-k answers faster. If T2,3 > T4,5 then

more steps need to be performed for merge2,3 to reduce the value of T2,3 and, hence, the value of

the threshold, leading to possible faster reporting of ranked join results.

Thus, in our final query algorithm, for Step 3 we execute two Rank-Join instances simultaneously

on tasks merge2,3, merge4,5. We can optimize the query algorithm further as below. So far we have

allowed Rank-Join to make only sorted accesses to the input. However our index also offers random

access capabilities using its RORR structure component i.e., given two relations R1 and R2, our

index can retrieve all the tuples from relation R2 which produce valid join results (as well as satisfy

given select-predicate, if any) for a given tuple tx ∈ R1 and vice a versa. As noted in [73], we

can try to achieve better performance by allowing Rank-Join to exploit random access capabilities

of our index. Precomputed answers obtained by querying score-matrix for subtask 1 can help us

further to achieve early termination of Rank-Join instances i.e., we can terminate execution of both

Rank-Join instances when we have found k distinct join results with score higher than the current

threshold T coming from either task merge2,3 or merge4,5 or subtask 1.

Unified query algorithm: Query algorithms described in this section and in previous section can

be used when two input lists to be joined are known to be positively correlated and anti-correlated

respectively. However, absence of prior knowledge about correlation can lead to incorrect algorithm

selection resulting in poor query performance. Below we describe a simple hybrid approach that

combines the advantages of both query algorithms and can achieve competitive performance for all

inputs. The new query algorithm behaves exactly like the algorithm just described for positively

correlated data except one modification: In step 3 of the algorithm, if two Rank-Join instances on

tasks merge2,3, merge4,5 do not terminate before scan depth of c
√
km is reached for either of them,

we terminate both the instance and being execution of Subtasks 2 to 5 as described in previous

28

section. Here, c is a user controlled parameter and m is the length of the shortest list out of four lists

passed as input to tasksmerge2,3 andmerge4,5 i.e.,m = min(l′i− li+ri−r′i, r′1− l′1) for i = {1, 2}.

The choice of the parameter c
√
km is motivated by the fact that scan depth of O(

√
km) is required

to find the top-k answers for the input lists of length m with uniformly random scores [74]. This

suggests that scan depth of c
√
km or more is a good indicator of data not being positively correlated

and, hence, the switch to Subtasks 2 to 5 which are aimed to provide the performance guarantee in

the worst case. Parameter c allows user to balance the performance degradation of hybrid solution

with respect to the query algorithms tuned for positively and negatively correlated data primarily

based on the efficiency of ORR structure.

3.5 Top-k Join Queries with More Than Two Relations

A binary pipeline is a common approach for answering top-k join queries involving many

relations. For simplicity, we elaborate on how Rank-Join works for a top-k join on three input lists,

say R1, R2 and R3. Two Rank-Join instances progressively join the three inputs to produce valid

join combinations. Bottom Rank-Join instance generates partial joins results by joining R1 with R2.

At each step, top Rank-Join instance reads the next highest ranked tuple from R3 and next highest

ranked partial join result from bottom Rank-Join instance. Here one step of top Rank-Join instance

can force bottom Rank-Join instance to perform as many steps as necessary to obtain next highest

ranked partial join result. Thus, early termination of top Rank-Join instance can avoid significant

computational efforts. Below we show how we can achieve such a early termination for the top-most

Rank-Join instance using score-matrices component of our index. Though, we assume join involves

three relations only, the proposed technique can be easily extended for generic queries.

Index structure: To support top-k join queries involving multiple relations we maintain binary

tress, RORR and RMQ structures as before, whereas score-matrices component requires the follow-

ing changes. Instead of a 2-dimensional matrix for a pair of heavy nodes in binary trees, we now

maintain an 3-dimensional matrix, with each entry storing top-k answers among a triplet of heavy

nodes, each from a binary tree corresponding to a different relation. As we have total c6 different

29

combinations of selection and join attributes over 3 relations, we maintain as many score-matrices

corresponding to these combinations for a fixed k occupying O(c6(n/g)3k) space. Further, since

we maintain score-matrices for each k = 1, 2, 4, ..., total space needed for all score-matrices, and

hence, the total index space can be bounded as O(cN) by choosing appropriate grouping parameter

g = (c2n)1−1/3(k log n/3)1/3.

Query algorithm: We begin by querying the binary trees to obtain the range [li, ri] of tuples for

each of the three relations satisfying the given select-predicates and range splitting as described in

Lemma 3.2. Let range [li, ri] be divided into [li, l
′
i − 1], [l′i, r

′
i] and [r′i + 1, ri]. Since the first and the

last subranges are small (≤ g), as before we call the tuples in those ranges as fringe tuples. Now

the top-k answers such that none of the tuples in the answer triplet (tx, ty, tz) is a fringe tuple can

be directly obtained by querying appropriate score-matrix. Then, we only need to look for answer

triplets where at least one of the tuple is a fringe tuple using the binary pipeline approach.

Below we modify the working of the top-most Rank-Join instance in the pipeline to compute

only those result triplets which contain one or more fringe tuples. For three relations, this Rank-Join

instance reads the tuples from R3 and partial join results produced by Rank-Join instance below it.

We split this top-most instance into two sub-instances, the one which operates on the inputs listsRf
1,2,

R3 and the one that operates on the input lists Rnf
1,2, Rf

3 . Here Rf
1,2 represents the partial join results

of R1 and R2 such that at least one of the tuple in result pair is a fringe tuple and Rnf
1,2 represents

the remaining partial results. Similarly Rf
3 represents the fringe tuples in R3 qualifying the applied

select-predicate. Lists Rf
1,2 and Rnf

1,2 are not computed entirely. Rather the output of Rank-Join

instance just below the top-most are simply bifurcated based on the tuples involved in the partial

join. Thus, at each step of top-most Rank-Join instance, we retrieve next highest ranked partial join

result for R1 and R2, then based on the list it belongs to we execute one of its two sub-instance and

compute threshold for the upper bound on the score of any unseen join combination. We terminate

the top-most Rank-Join instance when we have found k join results with the score higher than the

threshold. Since we already have top-k answers computed from score-matrices, top-most Rank-Join

instance can be terminated earlier than it would have been otherwise.

30

3.6 Experimental Analysis

In this section, we compare our proposed index with Rank-Join algorithm through experimenta-

tion. We first describe our experimental setup. Then, we compare the performance of our index with

Rank-Join by varying different experimental parameters. We choose Rank-Join for comparative

study because it was shown to have good performance in practice, and its variants HRJN, HRJN* are

instance optimal with an optimality ratio of 2 for our experimental settings [44]: (1) join involves

only two relations (2) aggregation function F depends on only one attribute from each relation. This

optimality assumes that each relation Ri is accessed in non-increasing order of the score. Such an

access model has been a common assumption in earlier studies of rank joins as well.

3.6.1 Experimental Setup

We consider two variants of the Rank-Join algorithm to compare our index against. The first

variant which we call NRA is essentially HRJN* algorithm in [73] which is restricted to sorted

accesses only. The other variant RA is Rank-Join algorithm capable of performing random accesses.

We consider two variants of our index as well, IND-N and IND-P. IND-N is the index designed to

provide performance guarantees as summarized in Theorem 3.4. For handling positively correlated

data as described in Section 3.4, IND-P makes use of a variant of Rank-Join algorithm that utilizes

random access (i.e., algorithm RA). Though any heuristic can be employed as pointed out earlier,

we select RA as it can exploit the random access capabilities supported by our index and is known

to outperform NRA for low join selectivity. We implemented all of the query algorithms using the

programming language C++, compiled with the g++ compiler version 4.2. Our experiments were

run on an Intel Core 2 Duo 2GHz machine (MAC OS 10.7.4) with a 8GB RAM.

For the experiments, we used both synthetically generated and real data. The first real data

set NBA (www.databasebasketball.com) contains ≈20,000 statistics of an NBA player’s

performance. Our second data set, XML [127], consists of 160,000 tuples. It is the outcome of

the join of two data sets recording the size and outdegree of a collection of XML documents. We

use synthetic datasets of two relations with each relation having three attributes: select, join, score.

31

While select attributes are random number, join attributes are determined based on desired selectivity.

By default we assume that the tuples in two relations have one-one mapping. In this case we assign

distinct join values in the range [1, n] for each tuple in both relations. For generating datasets with

varying correlation we use a correlation parameter ρ (-1 ≤ ρ ≤ 1) and generate the score values

of tuples as follows. We generate a pair of correlated random numbers for each join value, using

equations X2 = X1, Y2 = ρX1 +
√

1− ρ2Y1 where X1, Y1 are input random numbers in the range

[1, n] and X2, Y2 follows given correlation parameter ρ. Values of X2 and Y2 can be thought of as

temporary scores assigned to tuples, and thus, decide their ordering within the individual relations.

Since X2 and Y2 are correlated, positions of tuples sharing a join value in two relations also follows

same correlation, for instance, for ρ = 1 all join values will be located at same position in both the

relations that are sorted based on score. By varying the value of ρ, we can create lists with positive

or negative and stronger or weaker correlations. After setting the positions of tuples in two relations,

we generate the score values for tuples in each relation as per the desired probability distribution [3].

We use uniform, gaussian (mean = 0, standard deviation = n/4), zipf (θ = 0.7) for our experiments.

Since our index achieves similar performance for these distributions, we report results for uniform

score distribution only.

To provide higher selectivity, we begin by generating two relations with one-one tuple mapping

as before. We can not randomly replicate the join values in the relations as it would hurt the

correlation. Inspired from [3], we use the correlation parameter ρ to control the replication of the

join values. We pre-define a set of distinct join values whose cardinality depends on given selectivity.

These values are placed in the first relation at equidistant positions. Let m be one such position.

We randomly replicate the join value at position m for the tuples in the range [m− nρ,m+ nρ] as

many times as necessary. Whenever a tuple tx in first relation receives the updated join value from

pre-defined set, tuple ty in second relation that shares the old join value of tx also updates its join

value. There will be exactly one such tuple as the original relations have one-one mapping.

In our tests, we use following default settings for different experimental parameters: (a) n

= 100,000 (b) k = 10 (c) Join selectivity = 0.001% (one-one mapping) (d) ρ = −0.8, 0.6 (d)

32

Scoring function = SUM. For each dataset we generate a set of 100 queries at random ensuring

that more than 2g tuples qualify the selection criteria in both relations based on number of required

answers. Average time required to answer such a set of queries is used as a measure to evaluate the

performance of different query algorithms. We justify this selection criteria later in the Section 3.6.3.

In addition, we also ensure that the queries can not be answered only using score-matrices so as to

avoid any unfair advantage to the proposed index against different variants of Rank-Join algorithm.

3.6.2 Effects of Correlation

In this experiment, we compare the performance of our index with Rank-Join by varying the

correlation between the two relations. Rank-Join assumes the availability of access to tuples in a

ranked order. Hence, we further differentiate each of the Rank-Join variant under consideration

based on how such sorted access is provided. Algorithms SORT-NRA and SORT-RA sort the tuples

qualifying the select predicates. For fair comparison, we also consider algorithms ORR-NRA and

ORR-RA which utilize the ORR structure described in Section 2.1. As random accesses are know

to help Rank-Join algorithm to terminate faster for lower selectivity, we omit results of SORT-NRA

and ORR-NRA for better clarity in this experiment. We also consider a variant IND-H that is

essentially the same as IND-P, however, it employes a unified query algorithm as explained earlier.

All the Rank-Join algorithms show performance improvement as we vary ρ from -1 to 1

(Figure 3.2) since top-k answers can be found at smaller scan depths. For negatively correlated data,

Rank-Join needs to scan through a significant portion of the input lists. Retrieving all these tuples

by ORR query poses overhead which can be longer than time required for sorting the qualifying

tuples. Whereas for positively correlated data sorting proves to be a performance bottleneck. Hence,

for the remaining experiments we use SORT version of the Rank-Join algorithms for negatively

correlated data and ORR version otherwise.

As shown in Figure 3.2 performance of IND-N remains unaffected due to variations in ρ. This

helps IND-N to outperform all Rank-Join variants when input lists are negatively correlated. Even

for the variant of Rank-Join that performs best IND-N offers performance improvement up to the

factor of 8. Even higher performance gain will be obtained when more number of tuples qualify

33

 100

 1000

 10000

 100000

 1e+06

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

T
im

e
 (

m
ic

ro
 s

e
c
)

Correletion (rho)

IND-N
IND-P
IND-H

SORT-RA
ORR-RA

FIGURE 3.2. Effect of correlation (ρ)

query predicates (Section 3.6.4). Algorithms employing tighter terminating conditions than used

in Rank-Join also can be forced to scan through the number of tuples proportional to n when data

is negatively correlated, whereas IND-N can return top-k by performing Õ(
√
kn) join trials only.

Thus, IND-N offers a solution for handling worst case scenarios where heuristic approaches are

known to be inefficient. However, insensitivity of IND-N makes it a less attractive option under more

favorable conditions. Algorithm of IND-P can help us to maintain the competitive edge over the

Rank-Join algorithms even for the positively correlated data. Since IND-P makes use of a heuristic

algorithm at the core, its performance deteriorates with decreasing ρ. IND-H i.e., a hybrid query

algorithm which adapts to the underlying correlation and remains competitive for the entire range

of ρ, provides us with a unified way of querying the data. Figure 3.2 shows the performance of this

unified query algorithm with c = 1.

3.6.3 Effects of k

We now study the effect of the number of required answers on performance. Figure 3.3 shows

how the query time increases with increasing k up to 100 for two datasets with ρ = −0.8 and 0.6.

The query time of all Rank-Join variants increases with k because more tuples are required to be

checked in order to obtain the top-k join results. However, the increase is very small for negatively

correlated dataset. When two lists are opposingly ranked, even for small value of k, Rank-Join

has to scan significant portion of the lists. As a result, when Rank-Join terminates for a top-k

34

query, it is highly likely that it has also seen the (k + 1)th result. The query time of IND-N and

IND-P shows an interesting step property for increase in k. Since we store the partial answers in

score-matrices for k = 1, 2, 4, 8, ... and we probe score-matrix which stores top-(2m) answers such

that 2m−1 < k ≤ 2m, grouping factor which directly controls the query time remains same for all

values k between 2m−1 and 2m. For negatively correlated data, since IND-N spends fixed amount of

efforts based on the grouping factor, we get flat performance between two values of k which are

consecutive powers of 2. However, for positively correlated data, Rank-Join heuristic employed by

IND-P spends efforts proportional to scan depth which increases with increase in k. This leads to

increase in query time of IND-P even for values of k between consecutive powers of 2. Whenever k

is equal to power of 2, query time for both IND-N, IND-P increases substantially due to sudden

increase in the grouping factor leading to step graph-like behavior.

For negatively correlated data IND-N offers significant performance gains over the Rank-Join

variants for small values of k. With increase in k, query time for IND-N increases more rapidly

than that of Rank-Join, thus, gradually diminishing the advantages it offers. We notice that the

performance gains offered by IND-N and IND-P are due to the partially stored answers in score-

matrices. As k increases, at some point the parameter 2g becomes larger than the number of tuples

qualifying the query predicates. When this happens we may not be able to find any stored answers

that are useful for answering the query i.e., even IND-N will have to access all the tuples in the input

lists. However the exact breaking point at which IND-N offers no performance gain depends on the

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
ic

ro
 s

e
c
)

k

rho = -0.8
IND-N

SORT-NRA
SORT-RA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

m
ic

ro
 s

e
c)

k

rho = 0.6
IND-P

ORR-NRA
ORR-RA

FIGURE 3.3. Effect of k

35

factors like efficiency of ORR query, heap implementation and cost of random access etc. To avoid

such a scenario we ensure that query predicates return more than 2g tuples, as pointed out earlier. In

practice, Rank-Join algorithms provide reasonable performance for these cases because under such

circumstances either k is proportional to n or input lists are small (less than Õ(
√
n)). For positively

correlated data, IND-P remains competitive even for higher values of k, as it takes advantage of

stored answers at the same time also gets benefited by friendly correlation between input lists.

3.6.4 Effects of Number of Tuples

We now vary the number of tuples qualifying the select predicates, and investigate its effect

on performance. Figure 3.4 shows how query time increases for both Rank-Join variants with

increasing number of tuples up to 90,000. Increasing the number of data items has a considerable

impact on the performance of Rank-Join algorithm whereas IND-N remains almost insensitive. For

negatively correlated data, the scan depth increases linearly along with number of tuples in the input

lists adversely affecting the performance of Rank-Join algorithms. On the other hand, IND-N only

needs to look at more number of entries in the score-matrix to cope up with the increase in input size.

For retrieving top-10 tuples from the input lists of size 90,000 that are negatively correlated, IND-N

outperforms the variant of Rank-Join that performs best by a factor of 10. We do not show the

results of this experiment for positively correlated data as query time increases only marginally with

more tuples in input lists. We note that performance of IND-N is more dependent on the database

size than the number of tuples in the inputs lists to be joined.

3.6.5 Effects of Join Selectivity

In this experiment, we fix the value of k at 10 and vary the join selectivity gradually up to

1%. With increase in selectivity, performance of RA algorithm degrades as shown in Figure 3.5.

Degradation of RA is severe for negatively correlated data as number of valid join combinations

evaluated by RA increases linearly with selectivity. For positively correlated data, though RA

shows improvements initially, eventually its query time begins to increase. Both the variants of our

index shows increasing query times for higher selectivity. During query RORR structure step of

36

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 10000 30000 50000 70000 90000

T
im

e
 (

m
ic

ro
 s

e
c
)

Number of tuples

rho = -0.8, k = 10 IND-N
SORT-NRA

SORT-RA

FIGURE 3.4. Effect of number of tuples

the algorithm, IND- N performs a binary search on valid join combinations of a particular tuple

(Lemma 2.2) to filter out the ones which do not qualify the query predicates. Increase in query time

for IND-N can be attributed to higher cost of binary searches with increase in selectivity. For IND-P

such increase results due to deteriorating performance of heuristic RA that is being used internally.

NRA stands out from the other algorithms as it gets more and more efficient with increasing

selectivity. Performance degradation issue of IND-P can be eliminated by using NRA instead of RA

as a part of query algorithm. Increase in selectivity essentially lessens the impact correlation has

on the top-k join query processing. Since for higher selectivity, negative correlation is no longer

a concern, IND-N can be replaced by its counterpart IND-P which can benefit from efficiency of

NRA algorithm.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.001 0.01 0.1 1

T
im

e
 (

m
ic

ro
 s

e
c
)

selectivity (%)

rho = -0.8, k = 10 IND-N
SORT-NRA

SORT-RA

 0

 500

 1000

 1500

 2000

 2500

 0.001 0.01 0.1 1

T
im

e
 (

m
ic

ro
 s

e
c
)

selectivity (%)

rho = 0.6, k = 10
IND-P

ORR-NRA
ORR-RA

FIGURE 3.5. Effect of join selectivity

37

3.6.6 Results for Real Datasets

We now evaluate performance of IND-N for two real datasets. We use field goals made/field

goals attempted and outdegree/size as a ranking function for NBA and XML data respectively.

Moreover, we do not apply any select predicates i.e., we retrieve top-k tuples over the entire

datasets. Instead of comparing the query times, total number of sorted and random accesses done

by the algorithm is used as a measure of performance. This helps us to analyze the comparative

performance independent of the system and implementation details. Figure 3.6 shows results of the

experiment which are similar to the results obtained for synthetic dataset with negative correlation

in Figure 3.3. For both the datasets, IND-N performs fewer accesses than both NRA and RA. As

observed earlier, for lower values of k performance gap between IND-N and Rank-Join is substantial,

and it narrows down gradually with increase in k. Experiment with real datasets reveal an interesting

fact that though we expect query time and total number of accesses made by IND-N to increase

with k, occasionally query performance may improve for higher value of k. Let S1 be the set tuples

part of a group for k1 = 2m−1 (Section 3.3.1) and similarly S2 be the set for k2 = 2m. Then under

following circumstances such a behavior can be observed: (1) Set S1 is a proper subset of S2, (2) All

the tuples in set S2 qualify the applied select predicate, and (3) Number of tuples qualifying the

select predicate are strictly less than 2|S1|.

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f a
cc

es
se

s

k

NBA DATA
IND-A

NRA
RA

 10000

 100000

 1e+06

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
a
c
c
e
s
s
e
s

k

XML DATA

IND-N

NRA

RA

FIGURE 3.6. Results for real datasets

38

3.6.7 Index Construction Time

In the final set of experiments, we study the effect of data size, join selectivity and correlation

on time required to build the proposed indexing structure. Dependance of index construction time

on data size (Õ(n3/2)) is evident in the Figure 3.7, which shows the time required to build an

index for n varying from 100,000 to 1,000,000 with default values of correlation (ρ =-0.8) and

selectivity. We choose not to build score-matrix for k such that grouping parameter g ≥ n, as

under such circumstances the proposed data structures do not offer any benefits over algorithmic

approach. We observe that with increasing value of k, group size g increases and time required to

populate a score-matrix i.e., O(n2 log n/g) decreases. With score-matrix computations dominating

the index construction time, we may also choose not to build score-matrices for smaller values

of k by sacrificing the query time to some extent. By excluding score-matrices only for k = 1, 2

we can achieve up to 45% reduction in construction time. Such index only doubles the query

time in the worst case by returning top-4 answers even when top-1 or top-2 results are requested.

“Querying ORR Structure” being a common link between index construction and query execution

of IND-N, index construction time shows trends similar to the query performance of IND-N for

varying correlation and selectivity. This also suggests that the ideas introduced in Section 3.4 to take

advantage of favorable inputs can be used to improve the construction time as shown in Figure 3.7

for ρ = 0.6.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
 (

se
c)

Number of tuples (x 1000)

rho = -0.8, k>=1
rho = -0.8, k>=4
rho = 0.6, k>=1
rho = 0.6, k>=4

FIGURE 3.7. Index construction time

39

3.7 Related Work

Top-k queries on a traditional dataset have been well studied in the literature. Fagin [39]

first investigated the problem of answering top-k selection queries over pairwise combinations

of multiple ranked inputs and proposed an algorithm for this problem assuming both sorted and

random accesses are available for all the inputs. Later Fagin et al. [41], Guntzer et al. [57], Nepal

and Ramakrishna [105] independently proposed threshold algorithm TA improving upon the earlier

Fagin’s algorithm. Several extensions of TA have been proposed for processing top-k queries in

different environments [22, 96, 13, 36, 137, 4]. As the size of the inputs grows, random access to

each of them becomes a bottleneck for query performance. To remedy this, trade-off between sorted

access and random access has been studied by Fagin et al. [41], Chang and Hwang [25], and Bruno

et al. [20]. Algorithms have also been proposed to account for the the case when random accesses

are not supported or are extremely expensive [41, 72, 58].

Natsev et al. [100] proposed algorithm J∗ for efficient processing of top-k join queries over

ranked inputs with any arbitrary join conditions. In [25] Chang and Hwang extend their algorithm for

top-k selection queries to answer top-k join queries. Extending the work on top-k selection queries,

Ilyas et al. [73] gave Rank-Join algorithm for top-k join queries. Even though experimental studies

in [73] show that Rank-Join significantly outperform J∗, as pointed in [93, 3, 44] Rank-Join can

access more objects than necessary for answering the query because of it’s lazy stopping condition.

Recently proposed algorithms LARA-J [93], NR-JTop [3], FRPA [44] employ efficient stopping

mechanism and are shown to outperform Rank-Join. However, despite tighter threshold used in

stopping mechanism, these algorithms may also have scan depth proportional to input size in the

worst case scenarios. Efforts have been made towards extending the relational algebra in [88] so as

to support efficient evaluation of top-k join queries. Li et al. [87] combines top-k join processing

with aggregate queries. Index-based approaches for answering the top-k queries have been presented

in [127, 126]. The index proposed in [126] is applicable only for top-k selection queries, whereas

the index proposed in [127] makes use of a predefined number K and cannot answer top-k join

queries with k > K.

40

3.8 Summary

It is known that for uniformly random scores between two relations of length n, scan depth of

O(
√
kn) is required while answering the top-k join query. However, in the worst-case scenario if

two relations are inversely ranked then one might need scan depth proportional to the size of input

relations. In many situations, when users want to optimize between multiple criteria of selections,

these criteria are often inversely correlated. In this chapter, we proposed the indexing technique for

achieving sub-linear worst case query time for answering top-k join queries involving two relations

while keeping space requirement linear to the size of the database. Thus, we get the average case

performance even in the worst-case scenario.

41

Chapter 4
Inverted Indexes for Phrases and Strings

4.1 Introduction

The most popular data structure in the field of Information Retrieval is the inverted index. For

a given collection of documents, the index is defined as follows: Each word in this collection is

called a term and corresponding to each term we maintain a list, called inverted list, of all the

documents in which this word appears. Along with each document in this list we may store some

score which indicates how important the document is with respect to that word. Different variants

of the inverted index sort the documents in the inverted lists in a different manner. For instance, the

sorting order may be based on the document ids or the scores. Compression techniques are often

applied to further reduce space requirement of these lists. However, inverted index has a drawback

that it can support queries only on predefined words or terms. As a result, it cannot be used to index

documents without well-defined word boundaries.

Different approaches have been proposed to support phrase searching using an inverted index.

One strategy is to maintain the position information in the inverted list, that is, for each document

d in the inverted list of a word w, we store the positions at which w occurs in d. The positions

corresponding to each d in the list can be sorted so as to achieve compression (using encoding

functions like gap, gamma, or delta) [59]. To search a phrase, we first search for all the words in the

phrase and obtain the corresponding inverted lists. The positions of each word within a document

are extracted, so that we can then apply an intersection algorithm to retrieve those documents

where these words are appearing in the same order as in the phrase. Another (naive) approach

is to store inverted lists for all possible phrases, however, the resulting index size will be very

large thus prohibiting its use in practice [140]. Different heuristics are proposed in this respect,

such as maintaining the inverted lists only for popular phrases, or maintaining inverted lists of

all phrases up to some fixed number (say h) of words. Another approach is called “next-word

42

index” [134, 10, 11, 135], in which corresponding to each term w, a list of all the terms which

occurs immediately after w is maintained. This approach will double the space, but it can support

searching of any phrase with two words efficiently. Nevertheless, when the phrase goes beyond two

words, we have to fall back to the intersection algorithm.

In this chapter, we first introduce a variant of inverted index which naturally works for string as

well as phrase searching. Our index does not assume any restrictions on the length or the popularity

of the phrases. In addition, by avoiding the use of the intersection algorithm we achieve provable

bounds for the query answering time with respect to the output size. Furthermore, we show different

heuristics and compression techniques to make our index space-efficient.

4.2 Theoretical Framework

In traditional inverted indexes, phrase queries are performed by first retrieving the inverted list

for each word in the phrase and then applying an intersection algorithm to retrieve those documents

in which the words appear in the same order as in the phrase. Unfortunately, there is no efficient

algorithm known which performs this intersection in time linear to the size of the output. Another

limitation of the traditional inverted indexes is that they do not support string documents where there

is no word demarcation (a query pattern can begin and end anywhere in the document). A naive

approach to address these issues is to maintain inverted lists for all possible phrases (or strings). In

the next subsection, we introduce a simple index that is based on a suffix tree and augments this

with the inverted lists. This index can answer the queries in optimal time, however, the space is a

factor of |D| away from the optimal. As phrase is a special case of a string (that is, string that starts

and ends at word boundaries), we will explain our indexes in terms of strings.

4.2.1 Inverted Lists

Let D={d1, d2, ..., d|D|} be the collection of documents of total length n drawn from an alphabet

set Σ, and ∆ be the generalized suffix tree of D. Let u be the locus node of a pattern P . Now a naive

solution is to simply maintain an inverted list for the pattern corresponding to path(u) for all internal

nodes u in ∆. The list associated with a node u consists of pairs of the form (dj, score(path(u), dj))

43

for j = 1, 2, 3, ..., |D|, where the score of a document dj with respect to pattern P = path(u) is

given by score(path(u), dj). We assume that such a score is dependent only on the occurrences of P

in the document dj . An example of such a score metric is frequency, so that score(P, dj) represents

the number of occurrences of pattern P in document dj . For a given online pattern P , the top-k

highest scoring documents can be answered by reporting the first k documents in the inverted list

associated with the locus node of P , when the inverted lists are sorted by score order. Since the

inverted list maintained at each node can be of length |D|, the total size of this index is O(n|D|).

Though this index offers optimal query time, it stores the inverted list for all possible strings. In the

next subsection we show how the inverted lists can be stored efficiently in a total of O(n) space.

4.2.2 Conditional Inverted Lists

The key idea which leads to O(n) storage for inverted lists is the selection of nodes in the suffix

tree for which inverted lists are actually maintained. We begin with the following definitions:

• Maximal String: A given string P is maximal for document d, if there is no other string Q

such that P is a prefix of Q and every occurrence of P in d is subsumed by Q.

• Conditional Maximal String: Let Q be a maximal string for which P is a prefix and there is

no maximal string R such that R is in between P and Q, that is, P is a prefix of R and R is a

prefix of Q. Then we call Q a conditional maximal string of P .

Consider the following sample documents d1, d2, and d3:

• d1: This is a cat. This is not a monkey. This is not a donkey.

• d2: This is a girl. This is a child. This is not a boy. This is a gift.

• d3: This is a dog. This is a pet.

Note that “This is ” is maximal in d1 as well as d2, but not in d3. The conditional maximal

strings of “This is ” in d1 are “This is a cat ... donkey.” and “This is not a ”. The conditional maximal

strings of “This is ” in d2 are “This is a ” and “This is not ... gift.”.

44

Lemma 4.1. The number of maximal strings in a document dj is less than 2|dj|.

Proof. Consider the suffix tree ∆j of document dj . Then for each maximal string P in dj , there

exists a unique node u in ∆j such that path(u) = P . Thus, the number of maximal strings in dj is

equal to the number of nodes in ∆j .

Lemma 4.2. For a given pattern P , we have score(P, dj) = score(Pi, dj), where Pi is the shortest

maximal string in dj with P as prefix. If such a string Pi does not exist, then score(P, dj) = 0.

Proof. As Pi is the shortest maximal string in dj with P as prefix, every occurrence of a pattern P

in dj is subsumed by an occurrence of Pi. Hence, both patterns will have same score with respect to

document dj , with score(P, dj) = 0 signifying that the pattern P does not occur in dj .

Lemma 4.3. For every maximal string Q(6= empty string) in dj , there exists a unique maximal

string P such that Q is a conditional maximal string of P .

Proof. Corresponding to each maximal string Q in dj , there exists a node u in ∆j (suffix tree of

document dj) such that Q = path(u). The lemma follows by setting P = path(parent(u)), where

parent(u) denotes the parent of u in ∆j .

The number of maximal strings in D={d1, d2, ..., d|D|} is equal to the number of nodes in ∆

(Lemma 4.1). In the context of maximal strings, the index in Section 4.2.1 maintains inverted lists

for all maximal strings in D. However, score(P, dj) depends only on pattern P and document dj .

This gives the intuition that, for a particular document dj , instead of having entries in inverted lists

corresponding to all maximal strings in D, it is sufficient to include dj in the inverted lists of only

those strings which are maximal in dj . Thus, for each document dj , there will be at the most 2|dj|

entries in all inverted lists, so that the total number of such entries corresponding to all documents

is at most
∑|D|

j=1 2|dj| = O(n). However, the downside of this change is that the simple searching

algorithm used in Section 4.2.1 can no longer serve the purpose. Therefore, we introduce a new

data structure called “conditional inverted lists” which is the key contribution.

From now onwards, we refer to the maximal strings by the pre-order rank of the corresponding

node in ∆. That is Pi = path(ui), where ui is a node in ∆ with pre-order rank i. In contrast to the

45

traditional inverted list, the conditional inverted list maintains score(Pi, dj) only if Pi is maximal in

dj . Moreover score(Pi, dj) is maintained not with Pi, but instead with Px, such that Pi is a condi-

tional maximal string of Px in dj . Therefore, ux will be a node in the path from root to ui. Formally,

the conditional inverted list is an array of triplets of the form (string id, document id, score) sorted

in the order of string-ids, where the string-id is pre-order rank of a node in ∆. A key observation

is the following: The conditional inverted list of a string Px has an entry (i, j, score(Pi, dj)) if and

only if Pi is a conditional maximal string of Px in document dj . From the earlier example, the

conditional inverted list of “This is ” has entries corresponding to the following strings. We assign

a string id to each of these strings (for simplicity) and let the score of a string corresponding to a

document be its number of occurrences in that document.

“This is a cat ... donkey.” (string id = i1, score in d1 = 1)

“This is not a ” (string id = i2, score in d1 = 2)

“This is a ” (string id = i3, score in d2 = 3)

“This is not a ... gift.” (string id = i4, score in d2 = 1)

Since the string ids are based on the lexicographical order, i3 < i1 < i2 < i4. Then the

conditional inverted list associated with the string “This is ” is given below. Note that there is no

entry for d3, since “This is ” is not maximal in d3.

string id i3 i1 i2 i4

document id d2 d1 d1 d2

score 3 1 2 1

We also maintain an RMQ (range maximum query) structure over the score field in the con-

ditional inverted lists so as to efficiently retrieve documents with the highest score. We begin

by retrieving document with the highest score using the suffix range as input. Such a document

partitions the suffix range into two subranges which are then used as input for RMQ to obtain the

document with next highest score. We elaborate on such recursive applications of RMQ later in

following subsection.

46

Lemma 4.4. The total size of conditional inverted lists is O(n).

Proof. Corresponding to each maximal string in dj , there exists an entry in the conditional inverted

list with document id j. Hence, the number of entries with document id as j is at the most 2|dj| and

the total size of conditional inverted lists is O(
∑|D|

j=1 2|dj|) = O(n).

Lemma 4.5. For any given node u in ∆ and any given document dj associated with some leaf in

the subtree of u, there will be exactly one string Pi such that (1) Pi is maximal in dj , (2) path(u)

is a prefix of Pi, and (3) the triplet (i, j, score(Pi, dj)) is stored in the conditional inverted list of a

node ux 6= u, where ux is some ancestor of u.

Proof. Since there exists at least one occurrence of dj in the subtree of u, Statements (1), (2), and

(3) can be easily verified from the definition of conditional inverted lists. The uniqueness of Pi can

be proven by contradiction. Suppose that there are two strings P ′i and P ′′i satisfying all of the above

conditions then path(u) will be a prefix of P ∗i = lcp(P
′
i , P

′′
i), where lcp is the longest common

prefix. Then from the one-to-one correspondence that exists between maximal strings and nodes in

suffix tree (Lemma 4.1), it can be observed that the lcp between two maximal strings in a document

dj is also maximal. Thus P ∗i is maximal in dj and this contradicts the fact that, when P ′i (or P ′′i) is a

conditional maximal string of Px, there cannot be a maximal string P ∗i , such that P ∗i is a prefix of

P
′
i and Px is a prefix of P ∗i .

4.2.3 Answering Top-k Queries

Let P be the given online pattern of length p. To answer a top-k query, we first match P in ∆ in

O(p) time and find the locus node ui. Let ` = i and r be the pre-order rank of the rightmost leaf in

the subtree of ui, that is, P` and Pr represent the lexicographically smallest and largest maximal

strings in D with path(ui) as a prefix, then, all maximal strings with P as prefix can be represented

by Pz, ` ≤ z ≤ r. From Lemmas 4.3 and 4.5, for each document dj which has an occurrence in the

subtree of ui, there exists a unique triplet with score score(P, dj) in the conditional inverted list of

some ancestor node ux of ui with string id ∈ [`, r]. Now the top-k documents can be retrieved by

first identifying such triplets and then retrieving the k highest scored documents.

47

Note that the triplets in the conditional inverted lists are sorted according to the string-ids.

Hence, by performing a binary search of ` and r in the conditional inverted list associated with each

ancestor of ui, we obtain t non-overlapping intervals [`1, r1], [`2, r2], ..., [`t, rt], where t < p is the

number of ancestors of ui. Using an RMQ (range maximum query) structure over the score field

in the conditional inverted lists, the k triplets (thereby documents) corresponding to the k highest

scoring documents can be retrieved in O(t+ k log k) time (Lemma 2.1). Hence the total query time

is O(p) +O(t log n) +O(t+ k log k) = O(p log n+ k log k).

Theorem 4.6. The String Inverted Index for a collection of documents D = {d1, d2, ..., d|D|} of

total length n can be maintained in O(n) space, such that, for a given pattern P of length p, the

top-k document queries can be answered in O(p log n+ k log k) time.

Note that the same structure can be used for document listing problem [99], where we need to

list all the documents which has an occurrence of P . This can be answered by retrieving all the

documents corresponding to the intervals [`1, r1] ∪ [`2, r2] ∪ ... ∪ [`t, rt] in the conditional inverted

lists. Hence the query time is O(p log n+ docc), where docc is the number of documents containing

P . If our task is to just find the number of such documents (counting, not listing), we may use

docc =
∑t

i=1(ri − `i), and can answer the query in O(p log n) time.

Theorem 4.7. Given a query pattern P of length p, the document listing queries for a collection of

documentsD = {d1, d2, ..., d|D|} of total length n can be answered in O(p log n+ docc) time, where

docc is the number of documents containing P . The computation of docc (document counting) takes

only O(p log n) time.

The index described in this section so far is a generalized index for string documents. When

word boundaries are well-defined and query patterns will be aligned with word boundaries as well,

we can build the inverted index for phrases by replacing the generalized suffix tree with a word

suffix tree. A word suffix tree is a trie of all suffixes which start from a word boundary. We call this

a phrase inverted index. Theorems 4.6 and 4.7 can be rewritten for phrase inverted index as follows:

48

Theorem 4.8. The Phrase Inverted Index for a collection of documents D = {d1, d2, ..., d|D|} with

total N suffixes, which start from a word boundary, can be maintained in O(N) space, such that,

for a given pattern P of length p, the top-k, document listing, and document counting queries can

be answered in O(p logN + k log k), O(p logN + docc) and O(p logN) time, respectively.

4.3 Practical Frameworks

In Section 4.2, we introduced the theoretical framework for our index. However, when dealing

with the practical performance, the space and time analysis has to be more precise than merely

a big-O notation. Consider a collection of English text documents of total length n, where each

character can be represented in 8 bits then the text can be maintained in 8n bits. The conditional

inverted list can consist of at the most 2n triplets and if each entry in the triplet is 32 bits (word in

computer memory), then the total size of the conditional inverted lists can be as big as (2n× 3× 32)

bits = 24× (datasize). Moreover, we also need to maintain the generalized suffix tree, which takes

≈20-30 times of the text size. Hence the total index size will be ≈ 50× (datasize). This indicates

that the hidden constants in big-O notation can restrict the use of an index in practice.

In this section, we introduce a practical framework of our index when frequency is used as

score metric, that is, score(P, dj) represents the number of occurrences of pattern P in document

dj . However, the ideas used can also be applied for other measures. Based on different tools and

techniques from succinct data structures, we design three practical versions of our index (index-A,

index-B, index-C) each successively improving the space requirements. We try to achieve the index

compression by not sacrificing too much on the query times. Index-C takes only ≈ 5× (datasize),

and even though it does not guarantee any theoretical bounds on query time, it outperforms the

existing indexes [33] for top-k retrieval.

4.3.1 Index-A

Index-A is a direct implementation of our theoretical index from Section 4.2 with one change.

As suffix tree is being used as an independent component in the proposed index, we replace it

by compressed suffix tree (CST) without affecting the index operations and avoid the huge space

49

required for suffix tree. We treat index-A as our base index as it does not modify the conditional

inverted lists which form the core of the index.

4.3.2 Index-B

In this version, we apply different empirical techniques to compress each component of the

triplets from the conditional inverted list separately.

Compressing document array: Taking into account the fact that the total number of documents

is |D|, we use only dlog |D|e bits (instead of an entire word) per entry for the document value.

Compressing score array: When pattern frequency is used as the score metric, score array

consists of numbers ranging from 1 to n. The most space-efficient way to store this array would be

to use exactly the minimal number of bits for each number with some extra information to mark the

boundaries. But this approach may not be friendly in terms of retrieving the values. Our statistical

studies showed that more than 90% of entries have frequency values less than 16 (which needs

only 4 bits). This leads us to the heuristic for distributing frequency values into four categories:

a) 1-4 bits, b) 5-8 bits, c) 9-16 bits, and d) 17-32 bits based on the actual number of bits required to

represent each value. We use a simple wavelet tree structure [55] which first splits the array into

two arrays, one with 1-8 bits and another with 9-32 bits, required per entry. Both arrays are further

divided to cover the categories a, b and c, d, respectively. Each of the child nodes can be further

divided into two. The values stored at the leaf nodes of the wavelet tree take only as many bits as

represented by the category it belongs to. Further, we use rank-select [97, 116] structures on the bit

vectors in the wavelet tree for fast retrieval of values.

Compressing string-id array: Since the entries in the conditional inverted lists are sorted based

on string-id values, we observe that there will be many consecutive entries of the same string-id,

each with different document-id. Therefore, run-length encoding is a promising technique for

string-id compression. In order to support fast retrieval of a particular string-id value, we again

maintain additional bit vectors to keep track of which string-id values are stored explicitly and

which values are eliminated due to repetition in the conditional inverted lists.

50

4.3.3 Index-C

In our final efforts to further reduce the space required for the index, the following two observa-

tions play an important role. Approximately 50% of the entries from all the conditional inverted lists

in the index, have string-id corresponding to leaf node in ∆ and have low score value (frequency of

one). Moreover, the document array, which is a part of the triplet in the conditional inverted lists,

does not contribute in the process of retrieving top-k answers and is used only during reporting to

identify the documents with highest score. First observation suggests that pruning the conditional

inverted list entries corresponding to leaf nodes would significantly reduce the index space. In

particular, we do not store those triplets whose string-id field corresponds to a leaf node in ∆. The

downside is that the modified index will no longer be able to report the documents with frequency

of one. However, this shortcoming can be justified by reductions in space, and algorithmic approach

can be employed to retrieve such documents if needed. Using second observation, we can choose

to get rid of the document-id field and incur additional overhead during query time. In short, the

document-id in the triplet corresponding to an internal node (string-id = pre-order rank of that node)

is not stored explicitly in the conditional inverted lists. The string-id of a triplet in a conditional

inverted list associated with a node ui is replaced by a pointer pointing to triplet associated with

the highest-descendent node in the subtree of ui with the same document-id. Now the triplets in

the conditional inverted lists are sorted according to the value of this pointers. Retrieval of the

document-id can be done in an online fashion by chasing pointers from an internal node up to the

leaf corresponding to that document. Though these modifications do not guarantee any theoretical

bounds on query time (O(n) in worst case), we observed that index-C performs well in practice.

4.4 Experimental Analysis

We evaluated our new index and its compressed variants for space and query time using english

texts and protein collections. ENRON is a ≈100MB collection of 48619 email messages drawn from

a dataset prepared by the CALO Project1. PROTEIN is a concatenation of 141264 Human and

1http://www.cs.cmu.edu/ enron/

51

Mouse protein sequences totaling ≈60MB2. We implemented all of the above indexes using the

programming language C++, compiled with the g++ compiler version 4.2. Public code libraries 3

were used to develop some of the components in the indexes. Our experiments were run on an Intel

Core 2 Duo 2.26GHz machine (MAC OS 10.6.5) with a 4GB RAM. In the following discussions,

we first analyze the space-time tradeoffs for various indexes described in this chapter. Then we

empirically compare these indexes with the inverted index when word boundaries are well defined

and query patterns are aligned on word boundaries. Finally we evaluate the performance of our

index for two pattern queries (with TF-IDF as a relevance metric) using heuristic algorithm.

4.4.1 Space-Time Tradeoffs

Figure 4.1 shows the space requirements for the original index and its compressed variants

against input text size for both datasets. Reduction in the space requirements for index-B and

index-C can be analyzed separately for the three key components of the indexes: document array,

score array and string-id-array. Figure 4.2 shows the space utilization of these components for each

of the proposed indexes.

For both document array and score array, even though it is possible to use the theoretically-

minimal number of bits required per entry, it would result in a slowdown in the query time due to

the lacking of efficient mechanisms for the retrieval of the array values. In index-B, recall that we

try to keep the encoding simple and do not compress the data to the fullest extent so as to achieve

reasonable compression and restrict query time within acceptable limit simultaneously. Particularly,

as most of the values in the score (frequency) array (≈ 97% for ENRON, ≈ 98% for PROTEIN)

are less than 16, the proposed heuristic for compressing the score array in index-B achieves a very

good practical performance. Out of three components, string-id array is the least compressible as its

values correspond to the pre-order ranks of nodes in the suffix tree with ranges from 0 to |T | = n.

We can utilize the fact that string-id array entries for a node are sorted in the increasing order by

using difference encoding (such as gap) for efficient compression. However, such a method would

2http://www.ebi.ac.uk/swissprot

3http://www.uni-ulm.de/in/theo/research/sdsl.html, http://pizzachili.dcc.uchile.cl/indexes.html

52

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Text IndexA IndexB IndexC Text IndexA IndexB IndexC

S
p
a
ce

 (
M

B
)

ENRON

PROTEIN

FIGURE 4.1. Space comparison of indexes

naturally incur a query time overhead. Instead, as mentioned in the previous section, index-B makes

use of the run-length encoding to represent the consecutive entries with the same string-id value, and

was able to eliminate ≈ 30% string-id array entries for ENRON and ≈ 25% string-id array entries

for PROTEIN in our experiments. Using these compression techniques, index-B is ≈ 10 times the

text as compared to index-A (≈ 20 times text).

Recall that index-C does not store the document id for each entry explicitly to achieve space

savings, at the expense of a slightly longer time to report the documents. Space savings are also

achieved when we prune the inverted list entries corresponding to the leaf nodes, which account for

50% in ENRON and 55% in PROTEIN of the total number of entries. As a result, index-C improves

further on index-B and takes only ≈ 5 times of the text in the space requirement.

 0

 100

 200

 300

 400

 500

 600

 700

DocumentArray ScoreArray String-idArray

S
p
a
ce

 (
M

B
)

ENRON DATA

IndexA
IndexB
IndexC

 0

 50

 100

 150

 200

 250

 300

DocumentArray ScoreArray String-idArray

S
p
a
ce

 (
M

B
)

PROTEIN DATA IndexA
IndexB
IndexC

FIGURE 4.2. Compression achieved for each of three components in Conditional Inverted Lists

53

For these experiments, 250 queries from ENRON and 125 queries from PROTEIN, which appear

in at least 10 documents with frequency 2 or more, are generated randomly for pattern lengths

varying from 3 to 10. This therefore forms a total of 2000 and 1000 sample queries for ENRON and

PROTEIN, respectively. In addition, we ensure that the selected patterns of length 3 appear in at

least 80 documents to observe the practical time in reporting top-k (k = 10, 20, ..., 80) documents.

Figure 4.3 shows the average time required to retrieve k = 10 documents with the highest score

(frequency) for patterns with varying lengths. Average time required for retrieving documents in

descending order of score (frequency) for a set of patterns with length 3 is shown in Figure 4.4

for varying k. These figures show that space savings achieved by the successive variants of our

index (with increasing level of compression) will not hurt the query time to a great extent. A

nearly linear dependance of query time on pattern length and k can also be observed from these

figures. Matching the pattern P in compressed suffix tree ∆ and binary search to obtain intervals

in conditional inverted list of nodes in compressed suffix tree during top-k retrieval dominates the

query time for index-A. Occasional slight drop in the query time for the indexes for increasing

pattern length can be attributed to the binary search as it depends on the number of documents in

which the query pattern is present. Query timings for index-B closely follow to that of index-A, with

decoding the score (frequency) values for possible top-k candidates being primarily responsible

for the difference. Index-C has an additional overhead of decoding the document-id for each top-k

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9 10 11

T
im

e
 (

m
ic

ro
 s

e
c)

Pattern Length

ENRON DATA

IndexA
IndexB
IndexC

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9 10 11

T
im

e
 (

m
ic

ro
 s

e
c)

Pattern Length

PROTEIN DATA

IndexA
IndexB
IndexC

FIGURE 4.3. Effect of pattern length (k = 3)

54

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
ic

ro
 s

e
c
)

K

ENRON DATA

IndexA

IndexB

IndexC

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
ic

ro
 s

e
c
)

K

PROTEIN DATA

IndexA

IndexB

IndexC

FIGURE 4.4. Effect of k (|P | = 3)

answer to be reported. As a result, the gap in the query time of index-C with the other indexes

should gradually increase with k, as is observed in the Figure 4.4.

4.4.2 Word/Term Based Search

In this subsection, we compare our phrase indexes with the traditional inverted index, highlight-

ing the advantages of the former ones over the latter. For a fair comparison, our proposed indexes in

this subsection are built on the word suffix tree instead of the generalized suffix tree (Theorem 4.8)

so as to support searching of only those patterns that are aligned with the word boundaries. We begin

by comparing the query times. Traditional inverted index are known to be efficient for single-word

searching. When the inverted lists are each sorted in descending order of score, ranked retrieval of

documents would simply return the initial entries from the list corresponding to the query word.

However, for efficient phrase searching, sorting the document lists by document-id (instead of score)

would allow faster intersections of multiple lists. Figure 4.5 shows the time required for retrieving

top-10 documents with highest score (frequency) for a set of phrases consisting of two and three

words, respectively. Here, we generated 800 additional queries aligned on english word boundaries

from ENRON. Traditional inverted index has its inverted lists sorted according to the document ids

as mentioned, and we apply finger binary search [69] for intersecting multiple lists. We do not

report the results when inverted lists are sorted by score as the timings were significantly worse.

Figure 4.5 show that our phrase indexes perform much better than the intersection-based retrieval,

and the performance degradation in traditional inverted index would become more serious with the

55

 10

 100

 1000

 10000

 100000

InvertedIndex IndexA IndexB IndexC

T
im

e
 (

m
ic

ro
 s

e
c)

(Document Sorted)

2 word phrase queries

 100

 1000

 10000

 100000

InvertedIndex IndexA IndexB IndexC

T
im

e
 (

m
ic

ro
 s

e
c)

(Document Sorted)

3 word phrase queries

FIGURE 4.5. Time (high, low, mean) for a set of phrase queries (k = 10)

increase in words in a phrase query. Query times of our string/phrase indexes show that its query

time for reporting top-10 documents is in the range of 100-400 microseconds, thus achieving good

practical performance.

A key point behind the widespread usage of the inverted index is that it can be stored in little

space when compared with the size of input document collection; 20%-60% or more depending on

whether it includes the position lists. One way to avoid the intersection of position lists in the phrase

queries would be to store inverted list of all phrases up to some fixed number (say h) of words. Such

an index still has to reply on intersection for phrases with more than h words. Figure 4.6 shows the

space requirement for this variant of inverted index without the position lists. From the figure, it is

clear that the space required for such a solution gradually increases with h and directly depends

on the number of distinct phrases in the input text. In contrast, our phrase index supports phrase

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

S
p
a
ce

 (
M

B
)

Inverted Index (upto h words)

Text
Inverted Index

IndexA
IndexB
IndexC

DistinctPhrases(millions)

FIGURE 4.6. Space for inverted index

56

searching with arbitrary number of words. In the most space-efficient version of our phrase index

(index-C), it takes just under two times of the input text in space. With gradual increase in space

required, the traditional inverted index for phrases up to h words occupies more space than index-C

for all h ≥ 5. It is important to note that the traditional inverted index is maintained as an additional

data structure along with the original text, whereas our proposed indexes are self indexes and do not

need original text. Thus, our phrase index compares favorably against the traditional inverted index

for phrase searching in practice.

4.5 Top-k TF-IDF Queries

In web search engines, tf-idf (term frequency–inverse document frequency) [9] is one of the

most popular metric for relevance ranking. The query consists of multiple keywords (patterns), say

P1, P2, ..., Pm and the score of a document d, score(d), is given by score(d) =
∑m

i=1 tf (Pi, d) ×

idf (Pi), where tf (Pi, d) denotes the number of occurrences of Pi in d, and idf (Pi) = log |D|
1+docc(Pi)

,

with |D| representing the total number of documents and docc(Pi) representing the number of

documents containing pattern Pi. Many other versions of this metric are available in the literature.

For top-k document retrieval that is based on the tf-idf metric (with multiple query patterns), most

of the existing solutions are based on heuristics. When the query consists of a single pattern, the

inverted index with document lists sorted in score order can retrieve top-k documents in optimal

time. However, for an m-pattern query (a query consisting of m patterns say P1, P2, ..., Pm), we

may need the inverted lists sorted according to the document id as well. In this section, we introduce

an exact algorithm and compare the results obtained by applying it to inverted index as well as our

index (index-B). Although our algorithm does not guarantee any worst-case query bounds, the focus

is to explore the capabilities of our index as a generalized inverted index. Along with our index, we

make use of a wavelet tree [55] over the document array for its advantages in offering dual-sorting

functionalities. We restrict the query patterns to words in order to give a fair comparison between

our index and the inverted index.

Suppose that N denotes the number of suffixes in the word suffix tree. Let DA[1...N] be an

array of document ids, such that DA[i] is the document id corresponding to ith smallest suffix

57

(lexicographically) in the word suffix tree. Note that each entry in DA takes at most dlog |D|e

bits to store. Therefore a wavelet tree W-Tree of DA can be maintained in N log |D|(1 + o(1))

bits. Now, given the suffix range [`, r] of any pattern P , the term frequency tf (P, dj) for the

document with id j can be computed by counting the number of entries in DA with DA[i] = j

and ` ≤ i ≤ r. This query can be answered in O(log |D|) time by exploring the orthogonal range

searching functionality of W-Tree. Since term frequency in any document can be computed using

W-Tree, we do not store the score (term frequency) array in index-B. This slightly compensates for

the additional space overhead due to W-Tree. Inverse document frequency idf can be computed

using Theorem 3. For simplicity, we describe the algorithm for two pattern queries (P1 and P2) as

follows, and the algorithm can be easily extended for the general m-pattern queries. Let Sans and

Sdoc be two sets of documents which are set to empty initially, and let dk1 and dk2 represents the kth

highest scoring document corresponding P1 and P2, with term frequency as the score function and

score(d) = tf (P1, d) idf (P1) + tf (P2, d) idf (P2).

Algorithm 1 Answering top-k tf-idf query involving two patterns
Sans = Sdoc = {}, x = y = 1
while |Sans | < k do

if score(dx1) ≥ score(dy2) then
Sdoc ← Sdoc ∪ dx1 and x← x+ 1

else
Sdoc ← Sdoc ∪ dy2 and y ← y + 1

end if
if |Sdoc| = 1, 2, 4, 8, 16, ... then
scoremax = tf (P1, d

x
1) idf (P1) + tf (P2, d

y
2) idf (P2)

for each d ∈ Sdoc do
if score(d) ≥ scoremax and d /∈ Sans then
Sans ← Sans ∪ d

end if
end for

end if
end while
Choose k documents in Sans with the highest score value

The main idea of the algorithm is to maintain a list of candidate top-k documents in the set Sdoc ,

and refine the candidate set by moving documents to the set Sans from time to time. Each document

58

in Sans will have score higher than an imaginary scoremax , and the set Sans will always contain the

highest scoring documents we have examined so far. The algorithm stops as soon as Sans contains k

documents, in which we report the top-k documents from the set.

Experimental analysis: We compare the performance of our index against the traditional inverted

index for answering 2-pattern queries using the algorithm as described above. In the traditional

inverted index, document lists are sorted either by score (frequency) or document-id. To apply the

above heuristic, we need dual-sorted documents lists, where each list is sorted on both score as well

as document-id. Score sorted lists support ranked retrieval of documents for individual patterns

but tf-idf score can not be computed efficiently. If lists are sorted by document-id, though tf-idf

score computation is faster, document retrieval in ranked order is not efficient. As a result we first

duplicate the document lists for each of the pattern Pi and sort them as required. Figure 4.7 shows

the mean time required for retrieving top-k documents for a set of fifty 2-pattern queries for ENRON

such that each pattern is highly frequent. As observed from the figure, query time for our index

increases faster than that of the inverted index.

We remark that the major part of the query time used by the inverted index is on re-sorting the

the document lists in which the query patterns occur. Thus, if the patterns are not too frequently

occurring, the time spent on re-sorting is reduced, and the advantages of our index over the inverted

index will vanish. Finally, the size of our index is ≈ 3.1 times of the text size.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
ic

ro
 s

e
c
)

k

IndexB

Inverted Index

FIGURE 4.7. Answering 2-pattern queries

59

4.6 Related Work

Suffix trees and suffix arrays are efficient data structures which can be used to index a text and

support searching for any arbitrary pattern. These data structures can be maintained in linear space

and can report all the occurrence of a pattern P in optimal (or nearly optimal) time. The space-

efficient versions of suffix trees and suffix arrays are called compressed suffix trees and compressed

suffix arrays, respectively, which take space close to the size of the indexed text. From a collectionD

of |D| documents {d1, d2, ..., d|D|} of total length n, the problem of reporting documents containing

a query pattern P is called the “document listing” problem. This problem was first studied by

Matias et al. [94], where they proposed a linear space index with O(p log n+ |output|) query time;

here, p denotes the length of the input pattern P and |output| denotes the number of the qualified

documents in the output. An index with optimal O(p + |output|) query time was later achieved

in [99]. Sadakane [119] showed how to solve the document listing problem using succinct data

structures, which take space very close to that of the compressed text. He demonstrated how to

compute the tf-idf [9] of each document with the proposed data structures. Similar work was also

done by Välimäki and Mäkinen [129] where the authors derived alternative succinct data structures

for the problem.

In many practical situations, we may be interested in only a few documents which are highly

relevant to the query. Relevance ranking refers to the ranking of the documents in some order, so that

the result returned first is what the user is most interested in. This can be the document where the

given query pattern occurs most number of times (frequency). The relevance can also be defined by

a similarity metric, such as the proximity of the query pattern to a certain word or to another pattern.

This problem is modeled as top-k document retrieval, where the task is to retrieve the k highest

scoring documents based on some score function. An O(n log n) words index has been proposed

in [62] with O(p+ log |D| log log |D|+ k) query time. Hon et al. [66] proposed a linear-space index

(O(n) words) with nearly optimal O(p+ k log k) query time. Yet, the constants hidden in the space

bound restricts its use in practice. Culpepper et al. [33] proposed a space-efficient practical index

60

based on wavelet trees [55], but their query algorithm is based on a heuristic, so that it does not

guarantee any worst-case query performance.

The most popular ranking function in web search applications is tf-idf [9]. Under the tf-idf

model, Persin et al. [114] give different heuristics to support top-k ranked retrieval when the inverted

lists are sorted in decreasing order of the tf score. Various generalizations of this are studied by

Anh and Moffat [6] under the name “impact ordering”. In [103], Navarro and Puglisi showed that

wavelet trees can be used for maintaining dual-sorted inverted lists corresponding to a word, where

the documents can efficiently be retrieved in score order or in document id order. Recently, Hon et

al. [63] proposed an index for answering top-k multi-pattern queries. On a related note, top-k color

query problems (with applications in document retrieval) have been studied in [49, 81].

4.7 Summary

This chapter introduces the first practical version of inverted index for string documents. The

idea is to store lists for a selected collection of substrings (or phrases) in a conditionally sorted

manner. Succinct data structures are used to represent these lists so as to reap benefits of dual

sorting and achieve good top-k retrieval performance. We show how top-k tf-idf based queries

can be executed efficiently. Furthermore, our indexes show a space-time advantage over all of the

traditional techniques for searching long phrases. With this being the first prototype, more research

in the area has helped in deriving structures with high practical impact.

61

Chapter 5
Categorical Range Maxima Queries

5.1 Introduction

Given an array A of n elements from a totally ordered set, a natural question is to ask for the

position of a maximum element between two specified indices a and b. Queries of this form are

known as range maximum queries (RMQ). Consider a sample query: “Give me the highest paid

employee within age group 18 to 22 years”. By arranging all employees in a age-sorted array with

his/her salary as the key, this query translates into an RMQ problem. Being an important tool in

designing data structures for numerous problems in string processing and computation geometry,

RMQ has been extensively studied in the literature [16, 119, 15, 45]. There are several variants of

the problem, the most prominent being the one where the array is static and known in advance. The

current best known result for such a scenario is by Fischer and Heun [45], where they present a

2n+ o(n)-bit structure capable of answering queries in constant time.

However, in many applications, the standard RMQ problem does not suffice. Consider the

generalization of the above query as a motivating example: “Give me the list of highest paid

employees for different job positions (one per job position) with age between 18 to 22 years”. This

problem can obviously be solved by maintaining age-sorted array of employees as before for each

designation in the organizational hierarchy and then issuing a RMQ for all of them. However, this

solution may be very inefficient as the job positions held by employees within the specified age

group can be only a fraction of all listed positions for the organization. We call the above problem

to be an instance of Categorical Range Maxima Query (CRMQ). For CRMQ, we assume that each

element in the input array A is assigned a color. The goal is to preprocess the array and maintain a

data structure, such that given a query range [a, b], one can efficiently report each distinct color c

in the query range along with the highest element in A[a...b] with color c. Further continuing the

example under consideration, lets say we only need to output the job positions where the highest

62

paid employee with that designation earns more than $80,000 per year. This natural extension of

CRMQ called “threshold-CRMQ” problem is formally defined below.

Problem 1. [Threshold-CRMQ] Let A[1...n] be an array of n distinct integers in [1, n] with each

element A[i] associated with a color C[i] ∈ [σ]. Then goal is to build a data structure such that,

given a query (a, b, τ), we can report the triplet (c, pc, A[pc]) for those colors c ∈ [σ] with A[pc] ≥ τ .

Here A[pc] represents the highest element in A[a...b] with color c. If there does not exist an element

in A[a...b] with color c, then A[pc] = −∞.

Top-k queries are widely popular in database and information retrieval systems as they allow

users to focus on the most important k outputs amongst those which satisfy the query. We also study

top-k version of CRMQ problem (top-CRMQ), where the query input consists of a range [a, b] and

an integer k ≤ σ, and we are required to output only k colors with the highest A[pc] values.

Problem 2. [Top-CRMQ] Let A[1...n] be an array of n distinct integers in [1, n] with each element

A[i] associated with a color C[i] ∈ [σ]. Then goal is to build a data structure such that, given a query

(a, b, k), we can report k triplets (c, pc, A[pc]) for colors c ∈ [σ] with the highest A[pc] values, where

A[pc] represents the highest element in A[a...b] with color c. If there does not exist an element in

A[a...b] with color c, then A[pc] = −∞.

In this article, we focus on top-CRMQ as our central problem. We distinguish between the

sorted and unsorted version of this problem. In the sorted version, a triplet (c, pc, A[pc]) is reported

before (c′, pc′ , A[pc′]), if A[pc] > A[pc′], whereas unsorted version do not place any such restrictions.

We focus on sorted version in RAM model and unsorted version in external memory. For the rest

this paper, we use the following notations: log(1)(·) = log(·), log(h)(·) = log(log(h−1)(·)) for h ≥ 2,

and log∗(·) is the minimum h such that log(h)(·) ≤ 2. Our main results are summarized in following

theorems.

Theorem 5.1. There exists a linear space (in words) and optimal O(k) time solution for the (sorted)

top-CRMQ problem in RAM model.

63

Theorem 5.2. There exists an external memory structure ofO(n log∗ n) space and optimalO(1+ k
B

)

query I/Os for the top-CRMQ problem, where log∗ n is the iterated logarithm of n and B is the

block size.

Theorem 5.3. There exists an external memory structure of linear-space and near-optimalO(log∗ n+

k
B

) query I/Os for the top-CRMQ problem, where log∗ n is the iterated logarithm of n and B is the

block size.

Answering threshold-CRMQ: Data structures for answering top-CRMQ as summarized in theo-

rems above, can be used for answering the threshold-CRMQ as well. Given a threshold-CRMQ

(a, b, τ), we issue multiple top-CRMQ’s as follows. Assume, we are using the I/O-optimal structure

in Theorem 5.2, then we choose Kj = 2jB and issue top-CRMQ (a, b,Kj) for j = 0, 1, 2, 3, ...

until we find the smallest Kj (say K ′) where at least one of the triplet (x, px, A[px]) in the output set

violates the condition A[px] ≥ τ . Then all those triplets corresponding to the output of top-CRMQ

(a, b,Kj) satisfying the condition A[·] ≥ τ can be reported as the final answers. The number of

I/O’s required is O(1 + 2 + 4 + ...+K ′/B) = O(1 +K ′/B) = O(1 + k/B), where k is the output

size. If we are using the linear-space structure, we use the same procedure, with Kj = 2jB log∗ n

and the query I/Os can be bounded by O(log∗ n+ (1 + 2 + 4 + ...+ k/B)) = O(log∗ n+ k/B). In

conclusion, results in Theorem 5.2 and Theorem 5.3 are applicable for threshold-CRMQ as well.

5.2 Applications of CRMQ

5.2.1 Sorted Dominance Reporting

In this problem, we want to store an arrayA in a data structure such that for any query range [a, b]

all elements A[i], a ≤ i ≤ b, can be reported in sorted order. Brodal et al. [19] described a linear

space data structure that answers such queries in O(b− a+ 1) time, moreover, their data structure

can also be used to report k highest points in the range in sorted order. Karpinski and Nekrich [81]

considered the same problem in the color scenario: elements of the array are also assigned colors.

We assume that colors are from an ordered set; now the query answer must report the k highest

colors that occur in the query range and colors must be reported in the reverse order. We observe

64

that the optimal data structure described in Theorem 5.1 generalizes the result of [81, 19]. This

result is obtained using a new data structure for sorted three-dimensional dominance queries, which

may be of independent interest. The result is summarized below (Proof is deferred to Section 5.8).

Theorem 5.4. A given set of n three-dimensional points can be maintained as an O(n)-word data

structure that can answer a three-dimensional dominance reporting query in O(log n + |output|)

time in RAM model, with outputs reported in the sorted order of z coordinate.

5.2.2 Ranked Document Retrieval

Suppose that we want to store a collection D = {d1, d2, ..., dD} of D documents (strings) of

total n characters, so that for a given query string P all documents containing P can be reported.

This problem can be reduced to one-dimensional color reporting problem and can be solved

optimally [99]. A more general and arguably the most important query, known as the top-k document

retrieval query asks to find those k documents in D which are most relevant to P , where k is also

an input parameter. The relevance of a document d w.r.t a pattern P is captured using a predefined

ranking function w(P, d), which is dependent on the set of occurrences of P in d. A popular example

is the term frequency, where w(P, d) is the number of occurrences of P in d. This problem has

been studied extensively in string searching community (See [101] for an excellent survey) and

linear-space and optimal query time internal memory results are known [66, 102]. Whereas in

external memory, the best known linear space index is given by Shah et al. [122], however the query

I/O bound is O(|P |
B

+ logB n+ log(h) n+ k
B

) I/Os for any constant h ≥ 1. We show that our solution

for top-CRMQ can be used to obtain the following new result.

Theorem 5.5. If the ranking function is such that, the relevance of a document w.r.t. a pattern is not

more that its relevance w.r.t. to any prefix of the same pattern, then we can construct a linear-space

structure for answering top-k document retrieval queries in O(|P |
B

+ logB n + log∗B + k
B

) I/Os,

where P is the input pattern.

To derive the index summarized in above theorem, first construct a generalized suffix tree [132]

of the document collection. Then we mark nodes with document-ids as follows: a leaf node ` is

65

marked with document dj if the suffix represented by ` belongs to dj . An internal node u is marked

with dj if it is the lowest common ancestor of two leaves marked with dj . Notice that a node can be

marked with multiple documents. For each node u (with pre-order rank rank(u)) and each of its

marked documents dj , we define a triplet (rank(u), w(path(u), dj), dj), where path(u) represents

the concatenation of edge labels on the path from root to u. Let (xi, yi, dci) represents the i-th triplet,

where xi ≤ xi+1, then we construct A and C as follows: A[i] = yi and C[i] = ci ∈ [1, D]. The

top-k documents corresponding to the query (P, k) are same as the output colors for top-CRMQ

(a, b, k), where [a, b] represents the maximal range such that for all triplets (xi, ·, ·) with i ∈ [a, b],

the node with pre-order rank xi is in the subtree of uP . Here uP represents the locus of P , the

node closest to root with P as a prefix of path(uP). Using a String B-tree [43] and some auxiliary

structures occupying O(n)-word space over all, we can compute uP in O(logB n+ |P |
B

) I/Os. We

note that, this result require relevance to be a monotonic function.

5.2.3 Categorical Range Reporting Without Duplicates

In the categorical (or colored) range reporting problem the set of input points is partitioned into

categories and stored in a data structure; a query asks for categories of points that belong to the

query range. The problem has been extensively studied in computational geometry and database

communities [75, 60, 18, 99, 81, 104, 85, 86].

In three-sided color reporting, the query asks to report the set of colors of the points in an input

region [a, b]× [τ,+∞). Without loss of generality, we assume the points are in rank-space. 1 The

first external memory result for this problem was given by Nekrich [104]. His results on this problem

were further improved by Larsen and Walderveen [86], where they presented an O(nh)-word data

structure with O(log(h) n + k
B

) query cost, k being the output size, 1 ≤ h ≤ log∗ n, log(h) n =

log log(h−1) n and log(1) n = log n. Thus, by choosing h = log∗ n, an I/O-optimal structure can be

obtained. On the other-hand, a linear space structure can be obtained by choosing h = O(1).

1By rank-space we assume the points are in [n]× [n] grid, and the projections of any two points to either axis is different. If the points are in a
[U]× [U] grid, we can reduce them to [n]× [n] grid using standard techniques. However the space will increase by an O(n) words and the query
cost by O(log logB U) I/Os (or O(log logU) time). If the coordinate values are unbounded, the extra term in space is again O(n), but in the query
cost is O(logB n) I/Os (or O(logn) time).

66

The data structures described in [104, 86] have a limitation that can compromise their usefulness

in certain situations: the list of colors in the output set may contain several (yet constant) occurrences

of the same color. Eliminating such duplicates (in the current settings) needs extra I/Os (sorting

is inevitable in these solution, which makes these results less-optimal in terms of query I/Os).

In [104], another data structure that uses linear space and reports every color exactly once is

described. Unfortunately, this data structure needs O((n
B

)ε + k
B

) I/Os to answer a query, where ε is

an arbitrarily small positive constant. We provide the solution for this important open problem that

requires every color to be reported exactly once.

Theorem 5.6. A three-sided color reporting query on a set of n points in rank-space can be answered

inO(1+ k
B

) I/Os using anO(n log∗ n)-word structure, or inO(log∗ n+ k
B

) I/Os using anO(n)-word

structure, such that the output set contains exactly one copy of each answer, where k is the output

size, log∗ n is the iterated logarithm of n and B is the block size.

Proof. Let P = {(i, yi)|i = 1, 2, 3, ..., n} be the set of points, then construct the array A, where

A[i] = yi and its color is same as that of (i, yi). Then the output of any three-sided color reporting

query on P with [a, b]× [τ, n] as an input is the same as that of a threshold-CRMQ (a, b, τ) on A.

Thus, we obtain the results summarized in the above theorem using Theorem 5.2 and 5.3.

Consequently, we achieve a smaller non-optimal term of log∗ n in the I/O bound of the linear-

space structure compared to the (n
B

)ε or log(O(1)) n terms in the existing solutions. Moreover, using

standard techniques [104, 86] in conjunction with results in Theorem 5.2, Theorem 5.3, we obtain

following results for (two dimensional) four-sided color reporting problem. Although this improves

the known results of the problem [86], the output set may contain multiple (at most twice) copies of

the same color.

Theorem 5.7. A four-sided color reporting query on a set of n points in an [n]× [n] grid can be

answered in O(1 + k
B

) I/Os using an O(n log n log∗ n)-word structure, or in O(log∗ n + k
B

) I/Os

using an O(n log n)-word structure. Here k is the output size, log∗ n is the iterated logarithm of n

and B is the block size.

67

5.3 Top-k to Threshold Mapping

Before moving on to the proposed data structure and query answering, we prove the following

result in this section: using a linear space data structure of O(n)-word, we can compute a threshold

τ ka,b for a given top-CRMQ (a, b, k) in O(1) time such that size of Outt = {c ∈ Σ, A[pc] ≥ τ ka,b} is

bounded by k +O(k), where A[pc] represents the highest element in A[a...b] with color c

Data structure: We partition the array A[1...n] into d n
log2 n
e disjoint blocks each of size log2 n

(possibly except for the rightmost block). Starting from each blocking boundary, we consider

spans (of length at most n) covering 1, 2, 4, 8, ... blocks, and for each such span S = A[x...y], we

maintain τ kx,y for k = 1, 2, 4, 8, ..., n. Here τ kx,y ∈ {A[j]|j ∈ [x, y]} with k as the output size of the

threshold-CRMQ (x, y, τ kx,y). This takes linear space i.e., O(n) words. Further, we divide each block

into sub-blocks of size log2 log n, and starting from each sub-block boundary, we consider spans (of

length at most log2 n) covering 1, 2, 4, 8, ... sub-blocks. Again, for each such span S ′ = A[x′...y′],

we maintain τ kx′,y′ for k = 1, 2, 4, 8, ...,Θ(log2 n
log2 logn

). Notice that the explicit storage of τ kx′,y′’s (using

log n bits per element) is costly. Therefore, we simply encode its relative position within that span

in O(log(log2 n)) = O(log log n) bits occupying O(n) words space overall. Finally, answers for

the query (a, b, k) where both the inputs a, b are completely within a sub-block can be maintained

in o(n) bits using tables.

Query answering: In order to compute the threshold τ ka,b corresponding to the input (a, b, k), we

get k′ by approximating k to the next highest power of 2 i.e., k′ = 2dlog ke. Then the input range

[a, b] can be partitioned into (at most) 6 spans [a, a′ − 1], [a′, a′′ − 1], [a′′, b′′], [b′′ + 1, b′], [b′ + 1, b]

such that (1) both [a, a′−1], [b′+ 1, b] are within a sub-block, (2) [a′, a′′−1], [b′′+ 1, b′] are covered

by spans of sub-blocks and (3) [a′′, b′′] is covered by two possibly overlapping spans of blocks. The

τ k
′

{·,·} for each of these spans can be retrieved in constant time and we choose the maximum among

them as our threshold τ ka,b. It can be easily verified that k̂ ≤ 6k′ < 12k and k̂ ≥ min(k, dcol),

where dcol denotes the number of distinct colors in C[a...b].

68

5.4 The Framework

For color listing problem i.e., to simply enumerate all distinct colors in C[a...b], Muthukrish-

nan [99] proposed the chaining idea, where each occurrence of a particular color points to (or

chains to) its predecessor of the same color 2. Therefore, among all occurrences of a particular color

c ∈ [σ] occurring in C[a...b], only the first ones chain will be pointing outside the range [a, b]. Based

on this observation, he reduced the problem to a (two-dimensional) three-sided range reporting

query, which can be solved optimally using known structures. We introduce a generalization of this

approach for solving our top-CRMQ problem. Formally, for each position i ∈ [1, n] in the array A,

we define previous and next pointers as follows:

prev(i) = max{{j ∈ [1, i)|A[j] > A[i], C[j] = C[i]} ∪ {−∞}}

next(i) = min{{j ∈ (i, n]|A[j] > A[i], C[j] = C[i]} ∪ {+∞}}

Using these pointers, for each position i ∈ [1, n] in A we obtain a (weighted) interval-pair

with (prev(i), i) as a backward interval, (i, next(i)) as a forward interval, and A[i], C[i] being the

weight and color associated with the interval-pair respectively. We represent such an interval-pair

by a pentuple (i, A[i], C[i], prev(i), next(i)). The following is a key observation for the two-sided

chaining just introduced.

Lemma 5.8. For a given range [a, b] and a color c, let Sa,b,c = {i1, i2, ..., ir} be the (possibly empty)

set of all positions within [a, b] such that C[i1] = C[i2] = ... = C[ir] = c. If Sa,b,c is not an empty

set, then exactly one element pc ∈ Sa,b,c satisfies the following: prev(pc) < a, b < next(pc), where

A[pc] = max{A[i1], A[i2], ..., A[ir]}.

In order to utilize the above lemma for answering top-CRMQ, we use an O(n)-word structure

that can compute a threshold τ ka,b for a given top-CRMQ (a, b, k) in O(1) time such that size of

Outt = {c ∈ Σ, A[pc] ≥ τ ka,b} is bounded by k̂ = k + O(k), where A[pc] represents the highest

element in A[a...b] with color c (see Section 5.3). Then, Lemma 5.8 suggests that if a triplet

2If there is no such predecessor, then points to −∞.

69

(c, pc, A[pc]) is an answer for a top-CRMQ, then the pentuple (pc, A[pc], C[pc], prev(pc), next(pc))

satisfies the following conditions, and vice versa: pc ∈ [a, b], prev(pc) < a, next(pc) > b and

A[pc] ≥ τ ka,b. Therefore, top-CRMQ can be reduced to a new problem as defined below.

Problem 3. Maintain a set I of n interval-pairs of the form (i, A[i], C[i], prev(i), next(i)) as a

data structure, such that given a query (a, b, k, τ ka,b), we can efficiently report all those interval-pairs

with weight ≥ τ ka,b and its backward, forward intervals stabbed by a, b respectively. i.e., output the

interval-pairs satisfying the following five constraints:

(1) prev(i) < a (2) a ≤ i (3) i ≤ b (4) b < next(i) (5) A[i] ≥ τ ka,b

Notice that the output set Outt for the above problem, is a super set of the output set Outk

of our top-CRMQ, because k̂ ≥ k. Therefore, in order to answer a top-CRMQ, we first find

the triplet (c∗, pc∗ , A[pc∗]) ∈ Outt using a selection algorithm such that the number of triplets

(c, pc, A[pc]) ∈ Outt with A[pc∗] ≤ A[pc] is k. This takes only O(k̂/B) = O(k/B) I/Os [17, 123].

Then, all those triplets in Outt with A[pc∗] ≤ A[pc] can be reported as the final outputs. Both the

problems being equivalent, we use the term “top-CRMQ” to refer to either of these problems. In

particular, by top-CRMQ (a, b, k) we refer to Problem 2 whereas by top-CRMQ (a, b, k, τ ka,b) we

refer to the Problem 3. Moreover, for notational simplicity, input to the Problem 3 is defined as a

quadruple (a, b, k, τ).

5.5 Interval Tree Based Solution

In this section, we present a simple interval-tree based external memory data structure and

achieve the result summarized in the following lemma.

Lemma 5.9. A given set I of interval-pairs can be maintained as anO(|I|)-space structure such that

given a top-CRMQ (a, b, k, τ), all interval-pairs (i, A[i], C[i], prev(i), next(i)) ∈ I with i ∈ [a, b],

prev(i) < a, next(i) > b and A[i] ≥ τ can be reported in O(log3(|I|/B) + k
B

) I/Os.

We begin by describing a linear space external memory interval tree (which is not optimal, but

is sufficient for our purpose) and then use it to answer top-CRMQ in the following subsections.

70

5.5.1 Linear Space Interval Tree

Given a set I of n intervals of the form (si, ei), where si and ei represent the start and end

points, the output of an interval stabbing query is the set of intervals stabbed by a input point q; i.e.,

we need to output all those intervals (sj, ej) such that q ∈ [sj, ej]. For simplicity we assume all start

and end points to be distinct; otherwise ties can be broken arbitrarily.

The proposed interval tree construction beings with building a balanced binary search tree (BST)

of n nodes over all end points ei of set I. Thus, each node u in BST is associated with a unique

end point which we denote as stab(u)7. Further, each node u is associated with a set of intervals

I(u) = {(si, ei)|stab(u) ∈ [si, ei], stab(v) /∈ [si, ei], where v is any ancestor of u}. Let size(u)

represent the number of leaves in the subtree of u. We finish the construction by making each node u

with size(u) ≤ B, size(parent(u)) > B, a leaf node by first setting I(u) = ∪v∈subtree(u)I(v) and

then pruning its subtree. We emphasize that, in this interval tree, for each leaf u, I(u) is bounded

by O(B)8. The size of interval tree can now be bounded as O(n) words since
∑

u |I(u)| = |I| = n.

To answer a stabbing query, we first identify the node uq such that value stab(uq) is the predecessor

of q. Then any interval stabbed by a query point q will be associated with one of the O(log(n
B

))

nodes on the path from the root to node uq. We summarize this property in the following lemma.

Lemma 5.10. Given a query point q, we can obtain a set of O(log(n
B

)) nodes in the proposed linear

space interval tree in O(log(n
B

)) I/Os such that any interval stabbed by q is associated with one of

these nodes.

For query point q and each interval (sj, ej) associated with any of the O(log(n
B

)) nodes obtained

by the above lemma, either sj ≤ q or q ≤ ej is true. The interval stabbing query can now be

answered by issuing O(log(n
B

)) single-constraint queries (i.e., check if q ≤ ej if sj ≤ q and vice

versa) on these nodes. Therefore, Lemma 5.10 can be rewritten as follows.

7For any given nodes u1 and u2, stab(u1) ≤ stab(u2) if u1 comes before u2 during the in-order traversal of BST.

8For any node u, the total number of intervals assigned to nodes in its subtree is O(size(u)). This fact follows because (1) all our start and
end points are distinct, and (2) for any interval assigned to node u, both its start and end points should be of some value associated with one of its
descendants.

71

Lemma 5.11. A set I of n intervals can be categorized into subsets using an interval tree structure,

such that an interval stabbing query (with two constraints) can be decomposed into O(log(n
B

))

queries with a single constraint.

5.5.2 Interval Tree within an Interval Tree

Taking a clue from Lemma 5.11, we aim to decompose top-CRMQ problem into a set of simpler

queries. Intuitively, we can maintain an interval tree structure with respect to the backward intervals

of all interval-pairs and reduce the original problem (which is a five-constraints query) to O(log(n
B

))

four-constraints queries. Each of these four-constraints queries can be further reduced to O(log(n
B

))

three-constraints queries by employing another interval tree structure with respect to the forward

intervals on a smaller set of interval-pairs. We elaborate on such an interval-tree-within-an-interval-

tree approach below to achieve the result summarized in Lemma 5.9.

Data structure: The proposed data structure consists of three components described as follows:

Backward interval tree: This is an interval tree based on backward intervals of all interval-pairs in I

as described earlier in the beginning of this section.

Forward interval trees: The backward interval tree partitions the set I of interval-pairs into disjoint

sets such that each set is associated with some node in the interval tree. Let I(ub) be such set

associated with node ub in backward interval tree. We maintain an interval tree at each node ub

based on the forward intervals of all interval-pairs in I(ub).

Dominance structures: Let I(ub, vf) be the set of interval-pairs associated with node vf in forward

interval tree that is in turn associated with node ub in backward interval tree. For each possible

set I(ub, vf) we maintain data structures for answering different three-dimensional dominance

queries [1] as listed below.

Q1: (1) prev(i) < a, (4) b < next(i) and (5) A[i] ≥ τ

Q2: (2) a ≤ i, (3) i ≤ b and (5) A[i] ≥ τ

Q3: (2) a ≤ i, (4) b < next(i) and (5) A[i] ≥ τ

Q4: (1) prev(i) < a, (3) i ≤ b and (5) A[i] ≥ τ

72

With each of the above components occupying linear space total space required for the proposed

data structure can be bounded by O(|I|) words. Space requirement of the backward interval tree is

O(|I|) words (Lemma 5.10). By the same argument space requirement of a forward interval tree

associated with node ub of backward interval tree is bounded by O(|I(ub)|). Thus, the total space

required for all forward interval trees is O(|I|) words. Moreover, since each interval-pair belongs to

exactly one of the I(ub, vf) set, all dominance structures collectively occupy linear space.

Query algorithm: We begin by employing the standard interval tree algorithm (Lemma 5.10) to

identify O(log(|I|/B)) nodes in the backward interval tree such that any interval-pair that has its

backward interval stabbed by a is associated with one of these O(log(|I|/B)) nodes. We then apply

the same algorithm to each of the forward interval tree associated with these O(log(|I|/B)) nodes

to obtain O(log(|I|/B)) nodes in a single forward interval tree and O(log2(|I|/B)) nodes overall

such that any interval-pair that has its backward interval stabbed by a and forward interval stabbed

by b is associated with one of these O(log2(|I|/B)) nodes. We call these nodes candidate nodes

and the set of interval-pairs associated with these nodes candidate sets. We now need to further

explore only the retrieved candidate sets to get the desired outputs.

For each candidate node vf belonging to a forward interval tree that in turn is associated with

the node ub in the backward interval tree, let stab(vf) and stab(ub) be the end points maintained

at nodes vf and ub respectively. Then, each interval-pair in I(ub, vf) is stabbed by stab(ub) and

stab(vf) on its backward and forward interval respectively. By careful examination of the relative

values of a, b, stab(ub) and stab(vf), we can eliminate two constraints out of five for top-CRMQ

and is one of the crucial observations. We classify node vf into one the following categories based

on which two constraints are satisfied by the interval-pairs in set I(ub, vf):

T1: a ≤ stab(ub) ≤ stab(vf) ≤ b

T2: stab(ub) ≤ a ≤ b ≤ stab(vf)

T3: stab(ub) ≤ a ≤ stab(vf) ≤ b

T4: a ≤ stab(ub) ≤ b ≤ stab(vf)

73

It can be easily verified that each of these categories lead to the query types Q1, Q2, Q3, and Q4

respectively on set I(ub, vf) to obtain the interval-pairs satisfying all five constraints required for

top-CRMQ problem.

Thus, by first obtaining the candidate nodes and then applying appropriate three-dimensional

dominance query on each of them all desired outputs can be retrieved. By Lemma 5.10 number

of I/Os spent on querying backward interval tree as well as each of the forward interval trees

are bounded by O(log(|I|/B)) I/Os. Therefore, all candidate nodes can be obtained by spending

O(log2(|I|/B)) I/Os. Moreover, data structure from [1] used for dominance query also requires

additional O(logB |I|) I/Os. Hence, total number of I/Os required is O(log2(|I|/B) logB |I|+ k
B

) =

O(log3(|I|/B) + k
B

). This completes the proof of Lemma 5.9.

5.6 Bootstrapping

The I/O bound in Lemma 5.9 is optimal when k ≥ B log3(n/B). In the present section, we

bootstrap this result to optimally answer “special” top-CRMQ queries. We start by introducing a

blocking scheme that forms the basis of all subsequent external memory results.

Blocking scheme: Let blocking factor δj = B(log(j)(n
B

))5 and kj = B(log(j)(n
B

))3 for j =

1, 2, 3, ..., log∗(n
B

). Without loss of generality, we further assume that both δj and kj are always

rounded to the next highest power of 2 3. We partition the array A[1...n] into n
δj

disjoint blocks each

of size δj such that block Aj,t = A[(t− 1)δj + 1...tδj]. Define fj,t to denote the left boundary of the

block Aj,t. We will say that a block of size δj is δj-block and a blocking boundary of partitioning

based on δj (i.e., fj,t) is δj-boundary. For consistency, fix δ0 = n and A0,1 = A[1...n]. Given a range

[a, b], let A[aj...bj] be the longest span of δj blocks that is completely within A[a...b]. Suppose

query range [a, b] intersects blocks Aj,l, Aj,l+1, ..., Aj,t then aj = fj,l+1 and bj = fj,t − 1. We prove

the results in Lemma 5.12 and Lemma 5.13 in the remainder of this section.

Lemma 5.12. A top-CRMQ (a, b, k, τ) can be answered in O(kµ+1

B
+ k

B
) I/Os using an O(n log∗ n)-

space structure if the span A[a...b] is completely within a δµ-block for µ ∈ [0, log∗(n
B

)].

3In order to ensure δj−1 is always divisible by δj .

74

Proof. For each block Aj,t, we maintain a data structure ITj,t (of size |ITj,t| words) summarized

in Lemma 5.9 4. The total space occupancy is O(
∑

j

∑
t |ITj,t|) = O(n log∗ n) space. Then the

δµ-block containing span A[a...b] i.e., Aµ,t with t = d a
δµ
e can be queried using structure ITµ,t to

obtain the desired answers in O(log3(δµ
B

) + k
B

) = O(kµ+1

B
+ k

B
) I/Os.

Lemma 5.13. A top-CRMQ (a, b, k, τ) can be answered in O(kµ+1

B
+ k

B
+ log∗ n) I/Os using an

O(n)-space structure if the span A[a...b] is completely within a δµ-block for µ ∈ [0, log∗(n
B

)].

The space blowup in Lemma 5.12 comes from the fact that, each interval-pair in I is repeated

log∗(n
B

) times as a part log∗(n
B

) number of IT{·,·}’s. We introduce a categorization technique based

on the blocking scheme described earlier that avoids this space blowup, though at the cost of

(acceptable) slow-down in query performance. We categorize the input interval-pairs in set I into

log∗(n
B

) + 1 types based on the following rule: An interval-pair (i, ·, ·, ·, ·) is categorized as type-j

if its both intervals (i.e., backward and forward) are stabbed by a δj-boundary, but at least one of

them is not stabbed by a δj−1-boundary.

Taking into account the boundary conditions, an interval-pair is termed as type-1 if its both

intervals are stabbed by a δ1-boundary, whereas for an interval-pair of type-(log∗(n
B

) + 1), either

of its interval is not stabbed by any boundary i.e., i and prev(i)/next(i) are within the same

δlog∗(n
B

)-block (which is of size Θ(B)). Let nj represents the number of type-j interval-pairs, then

n1 + n2 + ...+ nlog∗(n
B

)+1 = n.

We now describe the data structure and query algorithm to achieve the result in Lemma 5.13.

Intuitively, our idea is to make separate linear space data structures for interval-pairs in each type

thereby restricting the total space toO(n) words. However, now we need to probe multiple structures

to retrieve all answers, thus, incurring an additive log∗(n
B

) term in the query I/Os.

Data structure: We maintain the following structures. As each of the components described below

occupies O(n) words the overall space requirement is linear.

4ITj,t is the structure in Lemma 5.9 over the following set of interval-pairs Ij,t= {(i, ·, ·, ·, ·) ∈ I|i ∈ [(t− 1)δj + 1, tδj]}.

75

• For each block Aj,t maintain a structure ITj,t summarized in Lemma 5.9 by considering only

type-(j + 1) and type-(j + 1) interval-pairs occupying O(
∑

j(nj+1 + nj+2)) = O(n) space.

• We create a collection of two-dimensional points by mapping each type-j interval-pair

(i, A[i], prev(i), next(i)) to a point (i, A[i]). Then we apply rank-space reduction to these

two-dimensional points and maintain a three-sided range reporting structure TSj by Larsen

et al. [85] on this collection. All those type-j interval pairs with i ∈ [a, b] and A[i] ≥ τ

for any given a, b, and τ can be answered in optimal I/Os using TSj . Further, we associate

each two-dimensional point with its corresponding interval-pair, so that the interval-pairs

corresponding to the points reported by structure from [85] can be obtained without spending

any additional I/Os. Moreover, to be able to query data structure in [85] we need to map the

boundary points (a and b) and the threshold τ to rank-space. This can be achieved in constant

time by maintaining two bit vectors (along with rank-select structure [116]) of length n. Total

space required for this component is bounded by O(nj) words + O(n) bits = O(nj + n
logn

)

words. Thus, overall space corresponding to j = 0, 1, 2, ..., log∗(n
B

) + 1 is O(n) words.

• We also maintain a list A′ of all interval pairs (i, ·, ·, ·, ·) in the ascending order of i. Space

occupancy is O(n) words.

Query algorithm: As before, let Aµ,t with t = d a
δµ
e be the δµ-block containing A[a...b]. Then we

query ITµ,t by spending O(kµ+1

B
+ k

B
) I/Os. However, this will give only the outputs of type (µ+ 1)

and (µ+ 2). It remains to show how to retrieve the outputs of type-h, for h ≤ µ or h ≥ µ+ 3.

We first demonstrate how type-h outputs with h ≤ µ are retrieved when span A[a...b] is known

to be completely within the a δµ block i.e., Aµ,t. We note that for any type-h link (i, ·, ·, ·, ·) with

h ≤ µ and i falling within the block Aµ,t (i.e., i ∈ [fµ,t, fµ,t+1 − 1]), both its forward as well as

backward intervals are stabbed by δµ-boundaries (fµ,t and fµ,t+1 respectively). Therefore, such

an interval-pair implicitly satisfies constraints prev(i) < a, b < next(i). Hence, for h ≤ µ we

only need to take into account the position and weight constrain of the interval-pair (i.e., i ∈ [a, b]

and A[i] ≥ τ) and all such type-h outputs can be obtained in optimal I/Os by querying structure

76

TSh. Therefore, overall I/Os required for retrieving all type-h outputs for h ≤ µ are bounded by

O(µ+ k
B

) = O(log∗(n
B

) + k
B

).

Finally all type-h outputs for h ≥ µ + 3 can be efficiently retrieved using the following key

observation. Any type-h interval-pair (i, ·, ·, ·, ·), with h ≥ µ+ 3 is an output, only if i falls within

a δµ+1-block that contains either a or b, otherwise at least one of two conditions prev(i) < a,

b < next(i) will be violated. Therefore, the number of candidate interval-pairs in this case is

only 2δµ+2, and the output interval-pairs can be obtained by scanning the two δµ+2-blocks in A′ to

evaluate the five conditions listed in Observation 5.8 for each of the candidate. The I/Os required in

this step are bounded by O(δµ+2

B
) = o(kµ+1

B
).

Putting together all pieces, the number of I/Os required to answer a top-CRMQ (a, b, k, τ) with

A[a...b] completely within a δµ-block, can be bounded by O(kµ+1

B
+ k

B
+ log∗ n).

5.7 The Final Data Structures

This section is dedicated for proving Theorem 5.2 and Theorem 5.3. Given a top-CRMQ

(a, b, k), the structure presented in Lemma 5.9 can be maintained in O(n)-space to optimally handle

queries with k = Ω(B log3(n/B)). Otherwise, we find the parameter π ∈ [1, log∗(n/B)], where

kπ+1 < k ≤ kπ (assume klog∗(n/B)+1 = 0). Then we decompose the original query into following

subqueries:

• top-CRMQ (a, aπ − 1, k, τ)

• top-CRMQ (aπ, bπ, k)

• top-CRMQ (bπ + 1, b, k, τ)

Here A[aπ...bπ] represents the longest span of δπ blocks that is completely within A[a...b]. Let

Outi represents the set of answers corresponding to the above queries for i = 1, 2, 3 (procedure to

obtain them will be described later). Notice that these are disjoint sets and cardinality of each of them

is O(k). Moreover, ∪3
i=1Outi is a superset of final answers for the original query (a, b, τ). Therefore,

those interval-pairs (i, A[i], C[i], prev(i), next(i)) ∈ ∪3
i=1Outi with prev(i) < a, next(i) > b and

A[i] ≥ τ can be uniquely reported as the final answers (condition i ∈ [a, b] is satisfied implicitly).

77

It remains to show how to retrieve the output set for each of the subqueries efficiently. Both Out1

andOut3 can be obtained inO(kπ+1/B+k/B) = O(1+k/B) I/Os by maintaining anO(n log∗ n)-

space structure (refer to Lemma 5.12). By querying on the structure described in the following

lemma, Out2 also can be obtained in optimal I/Os. This completes the proof of Theorem 5.2.

Lemma 5.14. By maintaining an O(n log∗ n)-space structure, a top-CRMQ (α, β,K) can be

answered in optimal O(1 +K/B) I/Os if A[α...β] is a span of several δπ-blocks and K ≤ kπ for

π ∈ [0, log∗(n
B

)].

Similarly, using the linear space structure in Lemma 5.13, both Out1 and Out3 can be obtained

in O(kπ+1/B+ k/B+ log∗ n) = O(log∗ n+ k/B) I/Os. Combining this with the following lemma

for retrieving Out2, we achieve the result summarized in Theorem 5.3.

Lemma 5.15. By maintaining an O(n)-space structure, a top-CRMQ (α, β,K) can be answered in

O(log∗ n+K/B) I/Os if A[α...β] is a span of several δπ-blocks and K ≤ kπ for π ∈ [0, log∗(n
B

)].

The remaining part of this section is dedicated to prove these two lemmas i.e., Lemma 5.14

and 5.15. We identify the parameter θ as the smallest i such that, there exists a δi-boundary in [α, β].

Using θ we decompose top-CRMQ (α, β,K) further into the following subqueries, and obtain the

desired answers by merging the outputs of individual subqueries. Here A[αθ...βθ] represents the

longest span of δθ blocks that is completely within A[α...β].

• Qleft: top-CRMQ (α, αθ − 1, K)

• Omiddle: top-CRMQ (αθ, βθ, K)

• Qright: top-CRMQ (βθ + 1, β,K)

5.7.1 Answering Qmiddle

Starting from left boundary of each block Aj,t i.e., fj,t, consider the spans covering 1, 2, 4, 8, ...

blocks of size δj such that it does not cross the first δj−1-boundary that follows fj,t. We maintain the

top-kj answers (i.e., the corresponding pentuples) for each of these spans explicitly (in descending

order of weight) i.e., we maintain the list ML(j, t, i) that contains the answers for top-CRMQ

78

with kj as an input on the span A[fj,t...fj,t+2i − 1] for any 1 ≤ j ≤ log∗(n
B

), 1 ≤ t ≤ n
δj

and

i = 0, 1, 2, ..., log(
δj−1

δj
). Overall space requirement for such a storage is O(

∑
j(

n
δj

)kj log(
δj−1

δj
))

= O(
∑

j
n

log(j)(n
B

)
) = O(n) words.

To answer Qmiddle, we represent A[αθ...βθ] as union of two overlapping spans each of which

covers 2i δθ-blocks for some integer i. Let [fθ,l′ , fθ,l′+2i − 1] and [fθ,t′−2i , fθ,t′ − 1] be the ranges for

these overlapping spans such that fθ,l′ = αθ and fθ,t′ − 1 = βθ. It is evident that any top-K answer

for A[αθ...βθ] should also be in top-K answers of either of the overlapping spans i.e., it should be

present in either ML(j, l′, i) or ML(j, t′ − 2i, i). Top-K answers (in sorted order) for these two

overlapping spans can be directly retrieved from the maintained precomputed answers in O(k
B

) I/Os.

Further, the two lists can be merged to obtain the outputs for Qmiddle by a simple scan. However,

before merging we discard any answer belonging to the region of overlap between two ranges (i.e.,

span A[fθ,t′−2i ...fθ,l′+2i − 1]) from either of the answer lists to ensure uniqueness of the reported

answers. In conclusion, Qmiddle can be answered optimally using an O(n)-space structure.

5.7.2 Answering Qleft and Qright

I/O-optimal structure: For each Aj,t and h < j we maintain top-kj answers (in descending

order of weight) for the span bounded by fj,t and the first δh-boundary that follows fj,t. Similarly,

top-kj answers for the span bounded by fj,t+1 − 1 and the first δh-boundary that precedes it are

maintained. These answers are maintained in two lists SLr and SLl. The list SLr(j, t, h) and

SLl(j, t, h) contains the answer to top-CRMQ with kj as an input on the span [fj,t, fh,t′+1 − 1] and

[fh,t′ , fj,t+1 − 1] respectively for any 1 ≤ j ≤ log∗(n
B

), 1 ≤ t ≤ n
δj

and h < j with t′ = d t
(δh/δj)

e.

Here t′ is the δh-block that contains the δj-block t. Overall space for maintaining these inter-level

answers can be bounded by O(
∑

j
n
δj
kj(j−1)) = O(

∑
j

nj

(log(j)(n
B

))2
) = O(n log∗ n) words. Desired

answers for the top-CRMQ query on spans A[α...αθ − 1] and A[βθ + 1...β] are simply the first

K entries in the appropriate lists SLr(π, ·, θ), SLl(π, ·, θ) respectively and the I/Os needed for

retrieving are O(K
B

). Combing this result along with O(n)-space structure capable of answering

Qmiddle, we prove Lemma 5.14.

79

Linear space structure: To achieve linear space, we do the following modification to the data

structure just described: maintain SLr(j, ·, ·) and SLl(j, ·, ·) only for those j ≤ φ ≤ log∗(n
B

), where

log(φ)(n
B

) ≥ log∗(n
B

) > log(φ+1)(n
B

). Then space can be bounded by O(n

(log(2)(n
B

))2
+ 2n

(log(3)(n
B

))2
+

3n

(log(4)(n
B

))2
+ ... + (φ−1)n

(log(φ)(n
B

))2
) = O(n

log∗(n
B

)
) words. In addition, we maintain all SLr(φ + 1, ·, φ)

and SLl(φ + 1, ·, φ) as well occupying O(n

(log(φ+1)(n
B

))2
) = o(n) words. Further, we also assume

the availability of the linear space data structure described in Lemma 5.13. Thus overall space is

bounded by O(n)-words. In order to answer a query, we consider the following cases:

1. If π ≤ φ: Obtain answers from the appropriate SLr(π, ·, θ) and SLl(π, ·, θ) in O(K
B

) I/Os.

2. If π = φ+ 1: Obtain answers from appropriately chosen lists SLr(φ+ 1, ·, φ), SLr(φ, ·, θ)

and then merge them by spending O(K
B

) I/Os. Similarly appropriate lists SLl(φ + 1, ·, φ),

SLl(φ, ·, θ) can be accessed to obtain the desired results.

3. If π > φ + 1: We first obtain answers for the span A[αφ+1...αθ − 1] and A[βθ + 1...βφ+1]

from appropriate SLr and SLl structures in O(K
B

) I/Os. Whereas answers for A[α...αφ+1−1]

(resp., A[βφ+1 + 1...β]) can be obtained in O(log3(
δφ+1

B
) + K

B
+ log∗(n

B
)) = O(log∗(n

B
) + K

B
)

I/Os as it is completely within a block of size δφ+1 (from Lemma 5.13).

Therefore, total number of I/Os required to answerQleft andQright are bounded byO(log∗(n
B

)+

K
B

), when linear space data structure is used. Result summarized in Lemma 5.15 can now be obtained

by using this structure in addition to O(n)-space structure for answering Qmiddle.

5.8 CRMQ in Internal Memory

In this section, we show how to modify our external memory data structures to achieve the result

in Theorem 1. We first obtain internal memory version of Lemma 5.9 by simply subsisting B by 2.

Recall that this result is obtained by queryingO(log2 n) three-dimensional dominance structures. By

using our new dominance structure (Theorem 5.4) instead of the one by Afshani [1], the outputs from

each of those three-dimensional dominance queries can be obtained in the sorted order. Moreover,

these outputs can be merged to get a complete list of all answers in sorted order using a heap

80

structure. For our purpose, we use an atomic heap [48] that can perform all heap operations in O(1)

in RAM model provided the heap size is logO(1) n. By putting everything together, we obtain an

O(n)-word space and O(log3 n+ k) query time data structure for the sorted version of Problem 2.

We now apply blocking scheme with a single blocking factor δ1 = log4 n, and maintain

the interval-tree based structure over each block A1,t = A[(t − 1)δ1 + 1...tδ1] as IT1,t, taking

overall O(n) space. Recall that δ0 = n and we also maintain IT0,1. Further we maintain, the

structures ML(·, ·, ·) as described in Section 5.7.1 occupying O(n) word space i.e., from each

δ1-boundary f1,t consider the spans covering 1, 2, 4, 8, ... δ1-blocks and maintain top-k1 answers

(k1 = log3 n) for each of these spans explicitly. Whenever query input k ≥ log3 n, it can be

answered optimally using IT0,1. For k < log3 n and the input range [a, b] completely within a

δ1-block, query can be answered in O(log3 log n+ k) time only using appropriate IT1,t structure.

Otherwise, we can retrieve top-k answers from fringe spans A[a...a1 − 1], A[b1...b] and a middle

span A[a1...b1 − 1] (refer Section 5.7.1, 5.7.2) and merge them to report final top-k answers with

identical query time of O(log3 log n+ k). The non-optimal O(log3 log n)-additive factor is due to

the time for querying the interval tree based structure maintained over each δ1 block. Therefore,

for improving the case where k < log3 log n and the query span A[a...b] is completely within a

δ1 blocks, we maintain the following additional structure. Given a δ1-block A1,t, for every span

A[f1,t + i, f1,t + i + 2j − 1] for i = 0, 1, 2, 3, ..., (δ1 − 1) and j = 0, 1, 2, ..., log δ1, maintain

top-(log3 log n) answers (in sorted order). Instead of explicitly maintaining, an output element A[r]

(or its location r) for a particular span, we simply encode it as an offset from the left boundary of

the span i.e., r − f1,t + i in O(log δ1) = O(log log n) bits. Thus, overall space requirement can be

bounded by O(n log2 δ1) = o(n) bits. Now any span A[a...b] with both a as well as b in the same

δ1-block can be partitioned into two overlapping spans A[a...y] and A[x...b] where a < x ≤ y < b,

such that the top-k answers of these overlapping spans are precomputed and can be retrieved in

optimal time. Finally, by merging these answers, we obtain the final output.

Sorted three-dimensional dominance reporting: Our data structure for proving Theorem 5.4 is

based on the same approach as in [29, 92]. But we will also need additional ideas to output points in

81

sorted order. We associate sets of points P (v) with nodes v of a binary tree T . Let maxxy(S) denote

those points of a set S whose projections on the xy-plane are maximal. We set S(wr) = S for the root

wr of T . In every node v starting with the root, we store set P (v) = maxxy S(v). Then, we divide

all points from S(v) \P (v) into two equal parts according to their z-coordinates and associate them

with children vl, vr of v. In other words, points from S(v) \ P (v) are distributed among S(vl) and

S(vr) so that (1) pl.z < pr.z for any pl ∈ S(vl) and pr ∈ S(vr), (2) |S(vr)| ≤ |S(vl)| ≤ |S(vr)|+1.

Finally, we recursively apply the same procedure to S(vl) and S(vr).

For every node v, we keep all points of P (v) sorted by their x-coordinates in an array A(v).

We maintain a data structure from [19] that supports sorted reporting queries on A(v): for any

query interval [a, b], D(v) reports all points p ∈ A[i], such that a ≤ i ≤ b and p.z ≥ c, sorted in

decreasing order of their z-coordinates. D(v) uses O(|P (v)|) space and answers queries in O(k+1)

time, where k is the number of reported points. We also store structures Dx(v), Dy(v) so as to

enable us to answer predecessor and successor queries on x, y-coordinates of points in P (v).

Using D(v), Dx(v), and Dy(v), we can answer a sorted dominance query Q = [a,+∞] ×

[b,+∞] × [c,+∞] on P (v). Since P (v) contains maximal points with respect to their x- and

y-coordinates, all p1, p2 ∈ P (v) have the following property: if p1.x > p2.x, then p1.y < p2.y, i.e.,

y-coordinates of points in P (v) decrease monotonously with increasing x-coordinates. Let pl be

the point in P (v) with the smallest x-coordinate, such that pl.x ≥ a; let pr be the point in P ((v)

with the smallest y-coordinate, such that pr.y ≥ b. Let il and ir denote the x-ranks9 of pl and pr

respectively. All points p stored in A[il...ir] and only those points satisfy p.x ≥ a and p.y ≥ b.

Hence, we can answer a query Q on P (v) by reporting all points in A[il...ir] in decreasing order of

their z-coordinates until all points p, p.z ≥ c, are output.

The same sorted dominance query on S is answered as follows. Let Πq denote the search path

for c in T . We report all points p ∈ P (v) for all nodes v ∈ Πq. For every node u that is a right

sibling of v ∈ Πq, we must report relevant points stored in u and its descendants. First, we answer

the dominance queries on P (u); if at least one point was reported, we visit both children of u and

9The x-rank of a point p in a set P is the number of points p′ ∈ P such that p′.x ≤ p.x.

82

recursively process them. Let L(u) denote the list of points in P (u)∩Q sorted by their z-coordinates.

The union of L(u) for all visited nodes u contains all points in S ∩ Q: all points p, p.z ≥ c, are

stored in nodes v ∈ Πq or in right siblings of nodes v ∈ Πq and their descendants. Our procedure

visits all nodes v ∈ Πq and their right siblings; our procedure also visits all descendants of the right

siblings that contain at least one point p ∈ Q, as can be concluded from the following observation.

Observation 1. Suppose that u is the right sibling of some node v ∈ Πq or a descendant of the

right sibling of some v ∈ Πq. If P (u) ∩Q = ∅, then P (w) ∩Q = ∅ for all descendants w of u.

Every list L(u) is generated in O(|L(u)| + 1) time: using fractional cascading, we can find

indices il and ir in any visited node u in constant time. When il and ir are known, data structure

D(u) reports all points p ∈ A(u), p.z ≥ c in O(|L(u)| + 1) time. The total number of nodes u

for which lists L(u) were generated is bounded by O(log n+ k). Hence, the total time needed to

generate all lists L(u) is O(log n+ k).

It remains to show how to merge all L(u) so that the output is sorted by z-coordinates. We will

say that a node u is situated to the right of a node v if u and v are stored in respectively the right

and the left subtrees of their lowest common ancestor.

Observation 2. If pu.z > pw.z for some pu ∈ P (u) and pw ∈ P (w), then u is an ancestor of w or

u is situated to the right of w in T .

Let V denote the set of all visited nodes. Since the height of T isO(log n), we can use sweepline

approach for sorting points in the query range: we maintain the current path Πc, and report points

stored in P (u), u ∈ Πc, in sorted order. Suppose that we work with the current path Πc at some

time. Then this means that all nodes u ∈ V to the right of Πc were already processed and points

from lists L(u) are already in sorted order.

To initialize the path Πc, we start at the root and move down the tree until a leaf is reached or

the currently visited node u has no child ui ∈ V . In every visited node u, we move to its right child

ur if ur ∈ V ; otherwise, we move to its left child ul. Thus Πc is initialized to the rightmost path

that consists of nodes u ∈ V .

83

We extract the first point (i.e., the point with the highest z-coordinate) from every L(u), u ∈ Πc,

and insert them into a priority queue Q. The following steps are repeated until all points in all L(u),

u ∈ V , are sorted. We extract the highest point p from Q and add it to the sorted list of points. If

the list L(u), such that p ∈ L(u), is not empty, we extract the next point p′ from L(u) and add

it to Q. When some list L(w), w ∈ Πc, becomes empty, we might need to update the path Πc. If

L(w) is empty and w is the lowest node in Πc, we remove w from Πc. If w is the right child of its

parent and its left sibling v is in V , we also append new nodes to Πc. This is done by traversing a

downward path that starts in v. In every visited node u, starting with v, we add u to Πc and move

down the tree if at least one child of u is in V ; if both children of u are in V , we always select the

right child. For every new node u in Πc, we extract the highest point p ∈ L(u) and add it to Q.

Otherwise, if w has no left sibling or the left sibling of w is not in Πc, then we move up in the tree

and consecutively examine all ancestors w′ of w starting with the parent. If L(w′) for an ancestor

w′ of w is empty, we remove w′ from Πc. If w′ has a left sibling w′′ ∈ V , we append the rightmost

path starting at w′′ to Πc as described above. Otherwise, we examine the ancestors of w′ until a

node u, L(u) 6= ∅, is reached. When Πc and Q are empty, we have generated the sorted list of all

points in S ∩Q. Correctness of our procedure follows from Observation 2. Suppose that a point

p1 ∈ L(u1) was reported before p2 ∈ L(u2), then either (1) u1 is to the right of u2, or (2) u1 is an

ancestor of u2, or (3) u2 is ancestor of u1. In the case (1) p1.z ≤ p2.z by Observation 2. In the case

(2) u1 is an ancestor of u2. If p1 was reported before u2 was inserted into Πc, then p1.z ≥ p3.z for

some p3 ∈ L(u3), where u3 is to the right of u2. Hence, p1.z ≥ p3.z ≥ p2.z. If p1 was reported

after u2 had been included into Πc, then it follows from the description that p1.z ≥ p2.z. Case (3) is

identical with the second part of case (2).

We implement Q using the atomic heap data structure [48]; Since Q contains O(log n) elements,

all operations on Q can be supported in O(1) time. By keeping the depths of all non-empty nodes

u ∈ Πc in another atomic heap, we can determine whether there are non-empty nodes u′ ∈ Πc below

a given node u in O(1) time. Thus, we can sort all points p ∈ L(v), v ∈ V , by their z-coordinates

in O(|V |+
∑

v∈V |L(v)|) time. This completes the proof of Theorem 5.4.

84

5.9 Summary

In this chapter we introduced the problem of colored (categorical) range maxima that generalizes

the fundamental problem of computing maxima in a query range to the colored scenario. We provide

an optimal solution of the colored range maxima problem in internal memory. Our external memory

data structure uses O(n) space and answers queries in O(log∗ n + k/B) I/Os. We show that this

problem is generalizes the problem of three-sided categorical range reporting. The proposed data

structure enables us to enumerate all outputs of a three-sided categorical range reporting uniquely,

thus, closing one of the important open problems in this research area.

85

Chapter 6
Ranked Retrieval in Uncertain Databases

6.1 Introduction

The efficient processing of uncertain data is an important issue in many application domains

because of the imprecise nature of data they generate. The nature of uncertainty in data is quite

varied, and often depends on the application domain. In response to this need, much efforts have

been devoted to modeling uncertain data [133, 35, 31, 83, 121]. Most models have been adopted

to possible world semantics, where an uncertain relation is viewed as a set of possible instances

(worlds) and correlation among the tuples governs generation of these worlds.

Consider traffic monitoring application data [125] (with modified probabilities) as shown in

Table 6.1, where radar is used to detect car speeds. In this application, data is inherently uncertain

because of errors in reading introduced by nearby high voltage lines, interference from near by

car, human operator error etc. If two radars at different locations detect the presence of the same

car within a short time interval, such as tuples t2 and t4 as well as t3 and t6, then at most one

radar reading can be correct. We use x-relation model to capture such correlations. An x-tuple τ

specifies a set of exclusive tuples, subject to the constraint
∑

ti∈τ Pr(ti) ≤ 1. The fact that t2 and t4

cannot be true at the same time, is captured by the x-tuple τ1 = {t2, t4} and similarly τ2 = {t3, t6}.

Probability of a possible world is computed based on the existence probabilities of tuples present in

TABLE 6.1. Traffic monitoring data

t1 ,{t2, t4}, {t3, t6}, t5

Time Car Location Plate Number Speed Probability Tuple Id

11:55 L1 Y-245 130 0.30 t1
11:40 L2 X-123 120 0.40 t2
12:05 L3 Z-541 110 0.20 t3
11:50 L4 X-123 105 0.50 t4
12:10 L5 L-110 95 0.30 t5
12:15 L6 Z-541 80 0.45 t6

86

a world and absence probabilities of tuples in the database that are not part of a possible world. For

example, consider the possible world pw = {t1, t2, t3}. Its probability is computed by assuming

the existence of t1, t2, t3, and the absence of t4, t5, and t6. However, since t2 and t4 are mutually

exclusive, presence of tuple t2 implies absence of t4 and same is applicable for tuples t3 and t6.

Therefore, Pr(pw) = 0.3× 0.4× 0.2× (1− 0.3) = 0.0168.

Top-k queries on a traditional certain database have been well studied. For such cases, each

tuple is associated with a single score value assigned to it by a scoring function. There is a clear

total ordering among tuples based on score, from which the top-k tuples can be retrieved. However,

for answering a top-k query on uncertain data, we have to take into account both, ordering based

on scores and ordering based on existence probabilities of tuples. Depending on how these two

orderings are combined, various top-k definitions with different semantics have been proposed

in recent times. Most of the existing work is focused only on the problem of answering a top-k

query on a static uncertain data. Though the query time of an algorithm depends on the choice of a

top-k definition, linear scan of tuples achieves the best bound so far. Therefore, recomputing top-k

answers in an application with frequent insertions and deletions can be extremely inefficient. In this

chapter, we present a truly dynamic structure of size O(n) that always maintains the correct answer

to the top-k query for an uncertain database of n tuples. The structure is based on a decomposition

of the problem so that updates can be handled efficiently. Our structure can answer the top-k query

in O(k log n) time, handle update in O(log n) time.

6.2 Top-k Queries on Uncertain Data

Soliman et al. [125] first considered the problem of ranking tuples when there is a score and

probability for each tuple. Several other definitions of ranking have been proposed since then for

probabilistic data.

• Uncertain top-k (U-Topk) [125]: It returns a k-tuple set that appears as top-k answer in

possible worlds with maximum probability.

• Uncertain Rank-k (U-kRanks) [125]: It returns a tuple for each i, such that it has maximum

probability of appearing at rank i across all possible worlds.

87

• Probabilistic Threshold Query (PT-k) [67]: It returns all the tuples with probability of appear-

ing in top-k greater than a user specified threshold.

• Expected Rank (E-Rank) [32]: k tuples with the highest value of expected rank er(ti) =∑
Pr(pw)rankpw(ti) are returned, where rankpw(ti) denotes rank of ti in a possible world

pw. In case ti does not appear in possible world, rankpw(ti) is defined as |pw|.

• Quantile Rank (Q-Rank) [76]: k tuples with lowest value of quantile rank (qrφ(ti)) are

returned. The φ-quantile rank of ti is the value in the cumulative distributive function (cdf) of

rank(ti), denoted as cdf(rank(ti)) that has a cumulative probability of φ. Median rank is a

special case of φ-quantile rank where φ = 0.5.

• Expected Score (E-Score) [32]: k tuples with the highest value of expected score es(ti) =

Pr(ti)score(ti) are returned.

• Parameterized Ranking Function (PRF) [90]: PRF in its most general form is defined as,

Υ(ti) =
∑
r

w(ti, r)× Pr(ti, r) (6.1)

where w is the weight function that maps a given tuple-rank pair to a complex number and

Pr(ti, r) denotes the probability of a tuple ti being ranked at position r across all possible

worlds. A top-k query returns those k tuples with the highest Υ values. Different weight

functions can be plugged in to the above definition to get a range of ranking functions,

subsuming most of top-k definitions listed above. A special ranking function PRF e(α) is

obtained by choosing w(ti, r) = αr−1, where α is a constant. Experimental study in [90]

reveals that for some value of α with the constraint α < 1, PRF e can approximate many

existing top-k definitions. These experiments use Kendall distance [40] between two top-k

answers as a measure to compare the ranking functions. The “uni-valley” nature of the graphs

obtained by plotting Kendall distance versus varying values of α for various ranking functions

in [90] suggests there exists a value of α for which the distance of a particular ranking function

to PRF e is very small i.e., PRF e(α) can approximate that function quite well.

88

Algorithms for computing top-k answers using the above ranking functions have been studied

for static data. Any changes in the underlying data forces re-computation of query answers. To

understand the impact of a change on top-k answers, we analyze relative ordering of the tuples

before and after a change, based on these ranking functions.

Let T = t1, t2, .., tn denote independent tuples sorted in non-increasing order of their score. We

choose insertion of a tuple as a representative case for changes in T , and monitor its impact on

relative ordering of a pair of tuples (ti, tj). For ranking function U-kRanks ordering of tuples (ti, tj)

may or may not be preserved by insertion and cannot be guaranteed when the score of a new tuple

is higher than that of ti and tj . Consider a database T = t1, t2, t3 with existence probability values

0.1, 0.5, and 0.2 respectively. When all tuples are independent, probability that tuple ti appears

at rank 2 across all possible worlds is given by Pr(ti, 2) = pi
∑i−1

x=1(px
∏i−1

y=1,y 6=x(1− py)) [125].

Hence Pr(t2, 2) = 0.05 < Pr(t3, 2) = 0.1 and tuple t3 would be returned as an answer for

U-2Ranks query. Insertion of a new tuple t0 with existence probability 0.25 and score higher than

that of t1, causes relative ordering of tuples t2, t3 to be reversed as after insertion Pr(t2, 2) =

0.15 > Pr(t3, 2) = 0.0975. Thus, existing top-k answers do not provide any useful information

for re-computation of query answers making it necessary to go through all the tuples again for

re-computation in the worst case. Ranking functions PT-k, E-Rank, Q-Rank may also result

in such relative ordering reversal. However, when tuples are ranked using PRF e(α), the scope of

disturbance in the relative ordering of tuples is limited as explained in later sections. This enables

efficient handling of updates in the database. Therefore, this ranking function is well suited for

answering top-k queries on a dynamic collection of tuples.

6.3 Problem Statement

Given an uncertain relation T such that each tuple ti ∈ T is associated with a membership

probability value Pr(ti) > 0 and a score score(ti), the goal is to retrieve the top-k tuples. Without

loss of generality, we assume all scores to be unique and let t1, t2, ..., tn denotes ordering of the

tuples in T when sorted in descending order of the score (score(ti) > score(ti+1)). We use the

parameterized ranking function PRF e(α) proposed by [90] in this chapter. PRF e(α) is defined as,

89

Υ(ti) =
∑
r

αr−1 × Pr(ti, r) (6.2)

where α is a constant and Pr(ti, r) denotes the probability of a tuple ti being ranked at

position r across all possible worlds1. A top-k query returns the k tuples with highest Υ values.

We refer to Υ(ti) as the rank-score of tuple ti. In this work, we adopt the x-relation model

to capture correlations. An x-tuple τ specifies a set of exclusive tuples, subject to the constraint

Pr(τ) =
∑

ti∈τ Pr(ti) ≤ 1. In a randomly instantiated world τ takes ti with probability Pr(ti), for

i = 1, 2, ..., |τ | or does not appear at all with probability 1−
∑

ti∈τ Pr(ti). Here |τ | represents the

number of tuples belonging to set τ . Let τ(ti) represents an x-tuple to which tuple ti belongs to.

In x-relation model, T can be thought of as a collection of pairwise-disjoint x-tuples. As there are

total n tuples in an uncertain relation T ,
∑

τ∈T |τ | = n. From now onwards we represent Pr(ti) by

short notation pi for simplicity.

6.4 Computing PRF e(α)

In this section, we derive a closed form expression for the rank-score Υ(ti), followed by an

algorithm for retrieving the top-1 tuple from a collection of tuples. In the next section we show

that this approach can be easily extended to a data structure for efficiently retrieving top-k tuples

from a dynamic collection of tuples. We begin by assuming tuple independence and then consider

correlated tuples, where correlations are represented using x-tuples.

6.4.1 Assuming Tuple Independence

When all tuples are independent, tuple ti appears at position r in a possible world pw if and

only if exactly (r − 1) tuples with a higher score value appear in pw. Let Si,r be the probability that

a randomly generated world from {t1, t2, ..., ti} has exactly r tuples [138]. Then, probability of a

tuple ti being ranked at r is given as,

Pr(ti, r) = piSi−1,r−1 (6.3)

1Pr(ti, r) = 0, for r > i.

90

In the above equation,

Si,r =

piSi−1,r−1 + (1− pi)Si−1,r if i ≥ r > 0

1 if i = r = 0

0 otherwise.

Using recursion for Si,r and equation 6.2, 6.3,

Υ(ti) =
∑
r

αr−1Pr(ti, r) =
∑
r

αr−1piSi−1,r−1

Υ(ti)

pi
=
∑
r

αr−1Si−1,r−1 =
∑
r

αrSi−1,r

Υ(ti+1)

pi+1

=
∑
r

αrSi,r

=
∑
r

αr(piSi−1,r−1 + (1− pi)Si−1,r)

= αpi
∑
r

αr−1Si−1,r−1 + (1− pi)
∑
r

αrSi−1,r

= (1− (1− α)pi)Υ(ti)/pi

We have the base case, Υ(t1) = p1. Therefore,

Υ(ti) = pi
∏
j<i

(1− (1− α)pj) (6.4)

Contribution of a tuple ti towards global ranking over T can now be analyzed as follows: Tuple ti

contributes mi = pi for the computation of its own rank-score and contributes ci = 1− (1−α)pi

of computing rank-score for all tuples having score less than its own score.

Theorem 6.1. When all tuples in T are independent, rank-score of a tuple ti can be computed

as follows, where mi = pi and cj = 1− (1− α)pj .

Υ(ti) = mi

∏
j<i

cj (6.5)

91

Answering top-1 query: We use a divide and conquer approach for answering top-1 query on T ,

which forms the basis for our data structure in later section. Let the given relation T = {t1, t2, ..., tn}

be partitioned into sub-reltations Tl = {t1, t2, ..., tdn/2e} and Tr = {tdn/2e+1, tdn/2e+2, ..., tn}. Also

let tl and tr represent the top-1 answer for Tl and Tr with rank-scores ΥTl(t
l) and ΥTr(t

r) respec-

tively, where ΥTl(t
l) is computed by considering only those tuples tj ∈ Tl and ΥTr(t

r) is computed

by considering only those tuples tj ∈ Tr. Therefore, for ti ∈ Tl, ΥTl(ti) = mi

∏
j<i,tj∈Tl cj and

similarly for ti ∈ Tr, ΥTr(ti) = mi

∏
j<i,tj∈Tr cj . Now when both the relations Tl and Tr are merged

to form T , we make the following observations:

• The contribution of each tuple towards its own rank-score remains unchanged.

• Since all the tuples in Tr have a lower score value than any tuple ti ∈ Tl they do not contribute

towards the rank-score value of ti computed over entire relation T . Thus Υ(ti) = ΥTl(ti).

Hence, tl still has the highest rank-score value Υ(tl) among the tuples in Tl.

• Since all the tuples in Tl have higher score value than any tuple ti ∈ Tr, each tj ∈ Tl

contributes 1− (1− α)pj towards rank-score value of ti computed over entire relation T .

Let Cl =
∏

tj∈Tl cj =
∏

tj∈Tl 1− (1− α)pj represents overall contribution of sub-relation Tl.

Then Υ(ti) = ClΥTr(ti). Since rank-score value of every tuple ti ∈ Tr gets scaled by the

same factor Cl, tr still has the highest rank-score value Υ(tr) among the tuples in Tr.

Therefore, the top-1 answer over uncertain relation T can be chosen from tl and tr based on the

their rank-score values computed over the entire relation.

6.4.2 Supporting Correlations

If tuple ti has some preceding alternatives, then equation 6.4 cannot be used to compute its

rank-score since the event that ti appears at a position r in a possible world, is no longer

independent of the event that exactly r − 1 tuples appear in {t1, t2, ..., ti−1}, as in equation 6.3. To

overcome this difficulty, we convert the relation T to T̄ i where all the tuples are independent [138].

For any tuple ti, let τ i be the pruned version of τ such that it consists of all tuples from τ that have

higher score value than that of ti i.e., τ i = {tj|tj ∈ τ, j < i}. For example, let T = {τ1, τ2, τ3}

92

where, τ1 = {t1, t3, t6}, τ2 = {t2, t7} and τ3 = {t4, t5} then τ 5
1 = {t1, t3}, τ 5

2 = {t2} and τ 5
3 = {t4}.

Now for each x-tuple τ ∈ T , we create an x-tuple τ̄ = {t̄} in T̄ i such that:

Pr(τ̄) = Pr(t̄) =

 Pr(τ i) if τ 6= τ(ti)

Pr(ti) otherwise.

This conversion takes into account the fact that only tuples with a score higher than that of ti

contribute to Pr(ti, r) as well as to Υ(ti), and the presence of ti implies absence of all its related

tuples. Combining related tuples into a representative tuple t̄ does not affect Υ(ti) here, since the

probability that t̄ appears is the same as the probability that any one tuple in τ ∈ T with score higher

than score(ti) appears. In other words, Υ(ti) computed using transformed relation T̄ i is same as

Υ(ti) computed using original relation T . However as all the tuples in T̄ i are independent among

themselves, we can now use equation 6.4 on T̄ i to compute the rank-score of tuple ti. Therefore,

Υ(ti) = pi
∏
t̄∈T̄ i

τ̄(t̄) 6=τ(ti)

(1− (1− α)Pr(t̄)) = pi
∏
τ∈T

τ 6=τ(ti)

(1− (1− α)Pr(τ i))
(6.6)

Now we analyze the contribution of an x-tuple towards global ranking over T using the above

formula as follows:

• x-tuple τ contributes mi = pi for computing rank-score of a tuple ti ∈ τ .

• x-tuple τ contributes ci = 1− (1− α)Pr(τ i) for computing rank-score of a tuple ti /∈ τ .

Answering top-1 query: Again, we attempt to use a divide and conquer algorithm for an-

swering top-1 query on T by partitioning relation T = {t1, t2, ..., tn} into sub-relations Tl =

{t1, t2, ..., tdn/2e} and Tr = {tdn/2e+1, tdn/2e+2, ..., tn} and assuming tl, tr represent the top-1 an-

swers for Tl, Tr respectively. If property that tl and tr remains highest rank-score tuples in

their respective sub-relations even after merging of Tl and Tr, holds true then reporting top-1 for

relation T can be done by simply comparing rank-score values of tl and tr over entire relation T .

Unfortunately, this property may not hold true for tr.

93

To illustrate the problem, consider an uncertain relation T = {t1, t2, t3, t4} with p1 = 0.35, p2 =

0.3, p3 = 0.4, p4 = 0.45 and tuples t2 and t3 are mutually exclusive. Using equation 6.6, rank-scores

can be computed as follows (α = 0.8):

Υ(t1) = 0.35

Υ(t2) = 0.3(1− 0.2× 0.35) = 0.28

Υ(t3) = 0.4(1− 0.2× 0.35) = 0.37

Υ(t4) = 0.45(1− 0.2× 0.35)(1− 0.2× (0.3 + 0.4)) = 0.36

Top-1 query on T should return tuple t3 with highest rank-score value 0.37. By adopting the

divide and conquer approach to tackle the problem, we partition the given relation into Tl = {t1, t2}

and Tr = {t3, t4}. Top-1 query is applied to these sub-relations as follows:

ΥTl(t1) = 0.35

ΥTl(t2) = 0.3(1− 0.2× 0.35) = 0.28

ΥTr(t3) = 0.4

ΥTr(t4) = 0.45(1− 0.2× 0.4) = 0.41

Thus, t1 and t4 will be reported from Tl and Tr as top-1 answers respectively. By simple merge

operation, which computes rank-score values for t1, t4 over relation T and comparing them,

t1 will be reported as top-1 answer for T . However, actual top-1 answer is tuple t3. The fact that

dependance of t2 and t3 was ignored while answering top-1 over sub-relation Tr is the root cause

behind the disturbance in relative ordering of t3 and t4. Therefore in order to maintain the relative

ordering of tuples based on their rank- score over entire relation during merge, we redefine the

expressions for contributions as follows. Here we use the notation p̂i for sum of probabilities of all

tuples tj which are related to ti and have score greater than the score of ti (i.e., j < i). In the above

example p̂3 = p2 = 0.3.

p̂i = Pr([τ(ti)]
i) =

∑
τ(ti)=τ(tj)

j<i

pj

94

Now equation 6.6 can be re arranged as follows,

Υ(ti) =
pi

(1− (1− α)p̂i)

∏
τ∈T

(1− (1− α)Pr(τ i))

Υ(ti)

mi

=
∏
τ∈T

(1− (1− α)Pr(τ i)) where, mi =
pi

(1− (1− α)p̂i)

Υ(ti+1)

mi+1

=
∏
τ∈T

(1− (1− α)Pr(τ i+1))

Here note that Pr(τ i) = Pr(τ i+1) for all τ 6= τ(ti). From the above two equations,

(
Υ(ti+1)

mi+1

)
/

(
Υ(ti)

mi

)
=

1− (1− α)Pr([τ(ti)]
i+1)

1− (1− α)Pr([τ(ti)]i)

=
1− (1− α)(p̂i + pi)

1− (1− α)p̂i

= ci

The base case is Υ(t1) = p1. Therefore, we can rewrite equation 6.6 as follows,

Υ(ti+1)

mi+1

= ci
Υ(ti)

mi

= cici−1
Υ(ti−1)

mi−1

= ... =
∏
j≤i

cj (6.7)

Theorem 6.2. For an uncertain relation T , rank-score of a tuple ti can be computed as,

Υ(ti) = mi

∏
j<i

cj

where mi = pi
(1−(1−α)p̂i)

, ci = 1−(1−α)(p̂i+pi)
1−(1−α)p̂i

and p̂i =
∑
tr with tuple ti and tuple tr being mutually

exclusive such that r < i.

This equation is applicable for dependent as well as independent tuples. Note that here mi and

ci are dependent only on the tuples which are related to ti, and hence, can be computed/updated

efficiently. Moreover, the contribution ci of a tuple ti to the rank-score of a tuple tj is the same

for all j > i. Hence, the relative ordering will not change even if we use our divide and conquer

approach. Consider the same example as before. We begin by computing values of mi and ci for

each tuple.

95

m1 = 0.35 m2 = 0.3 m3 = 0.4
(1−0.2×0.3)

= 0.43 m4 = 0.45

c1 = (1− 0.2× 0.35) = 0.93 c2 = (1− 0.2× 0.3) = 0.94

c3 = (1−0.2×(0.3+0.4))
(1−0.2×0.3)

= 0.91 c4 = (1− 0.2× 0.45) = 0.91

Now, we partition T into Tl = {t1, t2}, Tr = {t3, t4} and apply top-1 query to both these

sub-relations.

ΥTl(t1) = m1 = 0.35 ΥTl(t2) = m2 × c1 = 0.3× 0.94 = 0.28

ΥTr(t3) = m3 = 0.43 ΥTr(t4) = m4 × c3 = 0.45× 0.91 = 0.41

It can be seen that t1 and t3 are chosen as top-1 from Tl and Tr respectively. During next

comparison, t3 (Υ(t3) = m3 × c1 × c2 = 0.37) will be reported as the top-1 tuple, which is correct.

Table 6.2 shows mi and ci values computed for the uncertain data in Table 6.1.

TABLE 6.2. Calculation of rank-scores of tuples in Table 6.1

(α = 0.9) : t1 ,{t2, t4}, {t3, t6}, t5

Tuple Probability m c Υ

t1 0.30 0.300 0.970 0.300
t2 0.40 0.400 0.960 0.388
t3 0.20 0.200 0.980 0.186
t4 0.50 0.521 0.948 0.475
t5 0.30 0.300 0.970 0.260
t6 0.45 0.459 0.954 0.385

6.5 Proposed Data Structure:

In the earlier sections, we derived the simple closed form expression for calculating Υ(ti) for a

tuple ti. Now our task is to maintain a dynamic collection of tuples, such that for a given query k,

we retrieve top-k rank-scored tuples efficiently. We use data structural approach for this problem.

Our structure is a balanced binary search tree ∆ (e.g. Red black tree, AVL tree) such that each

leaf corresponds to a tuple in an uncertain relation T . Moreover, leaves in the tree are sorted in

decreasing order of the score i.e., leaves `1, `2, ..., `n of the tree represent tuples t1, t2, ..., tn in the

96

same order from left to right, such that score(ti) > score(ti+1). Let Tu represents the sub-relation

containing tuples associated with leaves of a subtree rooted at node u. i.e., Tu = {tu′ , tu′+1, ..., tu′′}

and `u′ represents the left-most and `u′′ represents the right-most leaf of node u. At each node u, we

store a triplet (topu,Mu, Cu) such that:

• topu is the tuple (represented by `u∗) with highest rank-score among tuples in sub-relation

Tu. Here u′ ≤ u∗ ≤ u′′.

• Mu = mu∗
∏

u′≤i<u∗ ci is the contribution of all tuples in Tu towards rank-score of topu.

• Cu =
∏

u′≤i≤u′′ ci is the contribution of all tuples in Tu towards rank-score of tuple ti such

that i > u′′, where `u′′ is the right-most leaf of the subtree rooted at node u.

Since our data structure stores only a constant number of information at each node, and the

number of nodes are bounded by O(n), the total space requirement of our data structure is O(n).

If node u is a leaf node representing the tuple ti, then Mu = mi, topu = ti and Cu = ci. If u is an

internal node, this information can be computed using the MERGE operation given below. Figure 6.1

shows an example for the uncertain data in Table 6.2.

Algorithm 2 MERGE(u)
v = left− child(u), w = right− child(u)
if Mv > Cv ×Mw then
topu = topv

else
topu = topw

end if
Mu = max (Mv, Cv ×Mw)
Cu = Cv × Cw

Theorem 6.3. The data structure ∆ maintains a dynamic collection of tuples such that top-1 tuple,

t1 = toproot and Υ(t1) = Mroot.

Proof. Let ta be the actual top-1 and toproot 6= ta. Let u be the closest node from root, such

that topu = ta, that means topparent(u) = tb 6= ta. This is because during the merge operation at

parent(u), ma

∏
x≤i<a ci < mb

∏
x≤i<b ci , where `x is the leftmost leaf of parent(u). Multiplying

both the sides of the equation with
∏

i<x ci, we get Υ(ta) < Υ(tb), which is a contradiction to the

97

!"# !$# !%# !&#

!'# !(#

)!%*#+,%-&*#+,.+"/#

)!$*#+,'..*#+,0"'/#)!%*#+,&$*#+,.--/#

)!'*#+,$*#+,0./#)!(*#+,%&0*#+,0&%/#

)!&*#+,'*#+,0-/#)!%*#+,&$*#+,0%./#)!$*#+,%*#+,0(/#)!"*#+,'*#+,0-/#

)!$*#+,'..*#+,0'"/#)!%*#+,&$*#+,0"0/#

)!"#$%&%'$%&%($/#

FIGURE 6.1. Data structure for uncertain database in Table 6.1

statement that ta is the highest rank-scored tuple. Therefore t1(= ta) will always be at the root

and Mroot = ma

∏
1≤i<a ci = Υ(ta) = Υ(t1).

In the following subsections, we show how to perform different operations such as update-leaf,

insert-leaf and delete-leaf on this tree. Later, we use these operations for retrieving top-k

tuples, insertion and deletion of tuples.

6.5.1 Update-Leaf

The values mi and ci within a leaf node `i can be changed in constant time. But this will change

the m and c values at all nodes which are in the path from `i to root. Therefore, we need to perform

MERGE operation on all nodes in the path from `i to root, starting from parent(`i). Since the height

of a balanced binary tree is bounded by O(log n), the total time for update-leaf can also be

bounded by O(log n).

Theorem 6.4. The mi and ci values of a leaf can be updated in O(log n) time.

6.5.2 Insert-Leaf and Delete-Leaf

We first explain, how a one-to-one correspondence between tree leaves and tuples in relation T

can be maintained during insertion or deletion of a leaf. To insert a new leaf, we begin by carrying

out standard insert procedure of a binary search tree, which would create a new leaf node v. Let w

be the parent of this newly created node. Node w being the leaf prior to insertion of v, represents a

single tuple from T and should remain as a leaf after insertion of v as well. This can be achieved by

98

creating a new internal node u, which becomes the parent of v and w. If deletion of a node results

in an internal node with only one child, we perform recursive delete on that internal node.

After insert or delete of a leaf node `i, we need to update the M and C values at each node along

the path of insertion or deletion. This can be achieved by performing MERGE operation in bottom-up

fashion beginning with parent(`i). If tree goes out of balance after insert or delete, necessary

rebalancing may force further re-computation at nodes whose left or right subtree is changed.

However, such nodes are bounded by the height O(log n) of the tree. Hence, Insert-leaf and

Delete-leaf operations can be done O(log n) time.

6.5.3 Retrieving Top-k tuples

In theorem 3, we proved that, by MERGE operation the top-1 tuple t1 will be propagated to

root node as toproot. Therefore, t1 can be retrieved in constant time. In order to retrieve the top-2

tuple t2, we use the following strategy. After retrieving t1, we set Υ(t1) = 0. As a result, the next

highest rank-scored tuple t2 will be propagated as toproot instead of t1. This can be achieved by

performing Update-leaf operation on leaf `j (leaf representing the current toproot = tj), with it

mj value set to zero. As cj remains unchanged, update operation affects only the computation of

rank-score of tj leaving rank-score of all other tuples unchanged. Repeating the same process,

we can retrieve top-k tuples with highest rank-score values. We can revert back these changes

done in data structure by restoring them values for k retrieved tuples using Update-leaf operation.

Figure 6.2 shows an example for retrieving top-2 tuple from the uncertain data in Table 6.1.

Theorem 6.5. Top-k rank-scored tuples can be retrieved in O(k log n) time.

Proof. For every tuple tj retrieved for answering top-k query, we perform Update-leaf operation

twice: once for setting mj = 0 so that tuple with next highest rank-score can be retrieved and

next after reporting top-k answers so as to restore the tree changes. Since Update-leaf is a

O(log n) time operation, total time for top-k retrieval can be bounded by O(k log n).

99

!"# !$# !%# !&#

!'# !(#

!"#$%&'())$%&')&*+%

)!$*#+,'--*#+,."'/# !",$%&'-##$&')..+%

)!'*#+,$*#+,.-/#)!(*#+,%&.*#+,.&%/#

)!&*#+,'*#+,.0/#!"-$%&$%&'/-)+%)!$*#+,%*#+,.(/#)!"*#+,'*#+,.0/#

)!$*#+,'--*#+,.'"/# !"0$%&'#)-$%&'/*/+%

FIGURE 6.2. Data structure in Figure 6.1 after setting m4 = 0 for retrieving top-2

6.5.4 Insert-Tuple and Delete-Tuple

Whenever a tuple ti gets inserted (deleted) from relation T , we modify our data structure as

follows. We begin by carrying out Insert-leaf or Delete-leaf operation as necessary. If ti

is an independent tuple then at this point all nodes in the tree ∆ have correct values for C and M .

Hence no further action is necessary. If ti is not independent, then its insertion(deletion) will change

mj and cj values for all leaf nodes corresponding to tuples tj such that j > i and τ(ti) = τ(tj).

These changes can be accommodated by performing Update-leaf operation on each `j .

Figure 6.3 shows an example of inserting a tuple t∗ (score(t2) > score(t∗) > score(t3)) that is

mutually exclusive with t5 in the uncertain data in Table 6.2 whereas Figure 6.4 shows an example

for deletion of a tuple. Thus, insertion (deletion) of a tuple can result in one Insert-leaf or

Delete-leaf operation and at maximum |τ(ti)| Update-leaf operations. Since any x-tuple can

have only constant number of tuples, tuple insertion (deletion) can be handled in O(log n) time. We

note that update of a tuple can be simulated by first deleting the tuple and then reinserting the same

with updated values.

We summarize the space requirement and performance of the proposed data structure in the

following theorem.

Theorem 6.6. A collection of uncertain data (n tuples) can be maintained using a linear size

dynamic data structure, which can retrieve top-k rank-scored tuples in O(k log n) time, and can

support insertion or deletion of a tuple t in O(d log n) time, where d is the number of tuples which

are related to t.

100

6.6 Experimental Study

In this section, we present an experimental study with both synthetic and real data evaluating

effectiveness of the data structure in handling changes in underlying database and answering top-k

queries. All experiments were conducted on 2.4 GHz Intel Core 2 Duo machine with 2GB memory

running MAC OS 10.6.4.

Datasets: We created a synthetic dataset containing 100,000 tuples. Score of a each tuple is

chosen uniformly at random from [0,100000] and it’s probability is uniformly distributed in

(0.5 × 10−5, 1.5 × 10−5). The number of tuples involved in each x-tuple follows the uniform

distribution (2,10). Along with synthetic datasets, we also use International Ice Patrol (IIP) Iceberg

Sighting Database 1. Each sighting record in the database contains date, location, number of days

the iceberg has drifted, etc. As it is crucial to detect the icebergs drifting for long periods, we use

the number of days drifted as ranking score. The sighting record also contains a confidence-level

attribute according to the source of sighting: R/V (radar and visual), VIS (visual only), RAD (radar

only), SAT-LOW (low earth orbit satellite), SAT-MED (medium earth orbit satellite), SAT-HIGH

(high earth orbit satellite), and EST (estimated). We converted these seven confidence levels into

probabilities 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.4 respectively. We gathered all records from 1981 to

1991 and 1998 to 2004. Based on it then we created 100,000 tuples dataset by random selection.

1http://nsidc.org/data/g00807.html

!"# !$# !%# !&#

!'#

!"#$%&'#()$%&'**+,%

!"-$%&'+./$%&'))0,% (!%)#*+&$)#*+,--.#

!"-$%&'+($%&'1#/,%

(!')#*+%&/)#*+/&%.#

(!&)#*+0)#*+/-.#(!%)#*+&$)#*+/%,.#(!$)#*+%)#*+/'.#(!")#*+0)#*+/-.#

(!$)#*+0,,)#*+/0".# (!%)#*+&$)#*+/"/.#

!1# !0#

(!0)#*+$)#*+/,.#
!"-$%&'+($%&'1/(,%

FIGURE 6.3. Data structure in Figure 6.1 after inserting t*

101

!"# !$#

!%# !&#

!"#$%&'(&#$%&')(*+%

'!$(#)*%++(#)*,"%-# !"#$%&'((*$%&',-*+%

'!%(#)*$(#)*,+-# '!&(#)*./,(#)*,/.-#

'!$(#)*.(#)*,&-#'!"(#)*%(#)*,0-#

'!$(#)*%++(#)*,%"-#

!"*$%&'.$%&',/+%

#!/#

FIGURE 6.4. Data structure in Figure 6.1 after deleting t4

Results: Experiments in [90] illustrate the effectiveness of ranking function PRF e(α) at approx-

imating other ranking functions for varying values of α (α = 1 − 0.9i, 0 ≤ i ≤ 200), where

normalized Kendall distance [40] is used to evaluate closeness between the top-100 answers com-

puted using a specific ranking function and PRF e(α). As revealed by these experiments, ranking

functions U-kRanks, PT-k are best approximated by PRF e(α) for i ≈ 50, hence we choose

α = 1− 0.950 for all of our experiments. Choice of α only determines the quality of approximation

and does not affect the query performance of our data structure.

We begin by evaluating the query performance of the data structure. We retrieve top-k tuples

from both the datasets for k ranging from 10 to 100. Linear dependance of query time as obtained in

the time bounds is evident from the results show in Figure 6.5. Also we can note that, correlations

among tuples does not affect the query time of our data structure.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

ic
ro

se
c)

K

Real data set
Synthetic data set

FIGURE 6.5. Top-k query performance

102

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
(m

ic
ro

se
c)

Number of tuples in data set

Top-100
Insert-100
Delete-100

(a)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
(m

ic
ro

se
c)

Number of tuples in data set

Top-100
Insert-100
Delete-100

(b)

FIGURE 6.6. Processing (insert, delete, top-k) cost on (a) real dataset (b) synthetic dataset

Next set of experiments conducted shows efficiency of our data structure in handling tuple

insertions and deletions. Time required for inserting and deleting 100 tuples is measured for datasets

of varying sizes. Figure 6.6 (a) and (b) shows that processing time per tuple increases slowly with

data size. Whenever a tuple is inserted or deleted, to maintain the correctness of data structure, we

also need to update information for leaves corresponding to its related tuples. As all tuples in real

data set are assumed to be independent, average insertion/deletion time of a tuple is less than in

case of synthetic data having correlations. For synthetic dataset, an x-tuple is selected at random

to which a new tuple is added or from which a existing tuple is deleted. We ensure the x-tuple

probability to be less than 1 to which a new tuple is being inserted. Position of a new tuple to be

inserted in score-sorted ordering of tuples is selected at random whereas tuple to be deleted is

always the highest scored tuple in the victim x-tuple. This results in more number of Update-leaf

operations per tuple deleted than for tuple inserted and its effect on tuple insertion/deletion can be

seen from figure 6.6 (b).

The proposed data structure can also be used when data arrives in streaming fashion. Jin et

al. [79] have studied the problem of answering top-k queries on sliding windows. Our data structure

achieves performance comparable to synopses proposed by them in terms of handling tuple insertion

and deletions. Even though our data structure takes linear size as compared to these space efficient

103

synopses, it can be noted that they rely on random order stream model used in streams algorithm

community [23, 24, 56] and in worst case would take linear size as well.

6.7 Related Work

Uncertain data management has attracted a lot of attention in recent years due to an increase

in the number of application domains that naturally generate uncertain data. These include sensor

networks [38], data cleaning [61] and data integration [50, 26]. Several probabilistic data models

have been proposed to capture data uncertainty (e.g TRIO [133], MYSTIQ [35], MayBMS [68],

ORION [31], PrDB [121]). Virtually all models have adopted possible worlds semantics. Each data

model captures either tuple uncertainty, or attribute uncertainty or both. Further distinction can

be made among these models based on support for correlations. Most of the work in probabilistic

databases has either assumed independence or support restricted correlations, mutual exclusion

being the most common. Recently proposed approaches [121, 83] extend the support for any

arbitrary correlations.

Efforts have been made in recent times to extend the semantics of “top-k” to uncertain databases.

Soliman et al. [125] defined the problem of ranking over uncertain databases. They proposed two

ranking functions, namely U-Topk and U-kRanks, and proposed algorithms for each of them.

Improved algorithms for the same ranking functions were presented later by Yi et al. [138]. Hua

et al. [67] proposed another top-k definition PT-k (probabilistic threshold queries) and proposed

efficient solutions. Cormode et al. [32] defined number of key properties satisfied by “top-k” over

deterministic data including exact-k, containment, unique-rank, value-invariance, and stability. With

each of the existing top-k definition lacking one or more of these properties, Cormode at al. [32]

proposed yet another ranking function expected- rank. As the list of top-k definitions continued

to grow, Li et al. [90] argued that a single specific ranking function may not be appropriate to

rank different uncertain databases and empirically illustrated the diverse, conflicting nature of

parameterized ranking functions that generalize or can approximate many known ranking functions.

With most of the work for top-k query processing being focused on “one-shot” top-k query for

static uncertain data, Chen and Yi [30] were the first to address the dynamic aspect of uncertain

104

data. They proposed a dynamic data structure to support arbitrary insertions and deletions. For an

uncertain relation with n tuples, the structure of [30] answers top-k queries in O(k + log n) time,

handles an update in O(k log k log n) time and takes O(n) space. However, this structure is tied to a

single ranking function i.e., U-Topk and works only for independent tuples. Moreover, it can be

built for some fixed k value and cannot answer a top-j for j > k. Dependance of time, required

for handling update, on k is also not desirable. Recently, Jin et al. [79] proposed a framework

for sliding window top-k queries on uncertain streams supporting several ranking functions. This

framework assumes random-order stream model which significantly reduces the space requirement

as compared to the worst-case scenario in which any data structure will have to remember every

tuple in the current window.

6.8 Summary

Top-k queries over uncertain relation T return a set of the k “best” tuples. Many algorithmic

solutions have been proposed for computing top-k answers on a fixed relation T . Thus, any change

in the data forces re-computation of top-k answers. With query time of algorithmic solutions being

linear to the size of a relation at best, recomputing top-k answers may not be feasible. In this chapter

we consider the dynamic problem, that is, how to maintain the top-k query answer when T changes,

including tuple insertion and deletions, changes in the probability or score of the tuple. We present

a fully dynamic linear space data structure that handles an update in O(log n) time, and answers a

top-k query in O(k log n) time.

105

Chapter 7
Similarity Joins for Uncertain Strings

7.1 Introduction

Strings form a fundamental data type in computer systems and string searching has been

extensively studied since the inception of computer science. String similarity search takes a set

of strings and a query string as input, and outputs all the strings in the set that are similar to the

query string. A join extends the notion of similarity search further and require all similar string pairs

between two input string sets to be reported. Both similarity search and similarity join are central to

many applications such as data integration and cleaning. Edit distance is the most commonly used

similarity measure for strings. The edit distance between two strings r and s, denoted by ed(r, s),

is the minimum number of single-character edit operations (insertion, deletion, and substitution)

needed to transform r to s. Edit distance based string similarity search and join has been extensively

studied in the literature for deterministic strings [53, 27, 7, 84, 136, 42]. However, due to the large

number of applications where uncertainty or imprecision in values is either inherent or desirable,

recent years have witnessed increasing attention devoted to managing uncertain data. Several

probabilistic database management systems (PDBMS), which can represent and manage data with

explicit probabilistic models of uncertainty, have been proposed to date [133, 124]. Imprecision in

data introduces many challenges for similarity search and join in databases with probabilistic string

attributes, which is the focus of this paper.

Uncertainty model: Analogous to the models of uncertain databases, two models - string-level

and character-level - have been proposed recently by Jeffrey Jestes et al. [77] for uncertain strings. In

the string-level uncertanity model all possible instances for the uncertain string are explicitly listed

to form a probability distribution function (pdf). In contrast, the character-level model describes

distributions over all characters in the alphabet for each uncertain position in the string. We focus

on the character-level model as it is realistic and concise in representing the string uncertainty.

106

Let Σ = {c1, c2, ..., cσ} be the alphabet. A character-level uncertain string is S = S[1]S[2]...S[l],

where S[i] (1 ≤ i ≤ l) is a random variable with discrete distribution over Σ i.e., S[i] is a set

of pairs (cj, pi(cj)), where cj ∈ Σ and pi(cj) is the probability of having symbol cj at position

i. Formally S[i] = {(cj, pi(cj))|cj 6= cm for j 6= m, and
∑

j pi(cj) = 1}. When the context of a

string is unclear we represent pi(cj) for string S by Pr(S[i] = cj). Throughout we use a lower case

character to represent a deterministic string (s) against the uncertain string denoted by a upper case

character (S). Let |S| (|s|) be the length of string S (s). Then the possible worlds of S is a set of all

possible instances s of S with probability p(s),
∑
p(s) = 1. S being a character-level uncertain

string, |S| = |s| for any of its possible instances.

Query semantics: In addition to capturing uncertainty in the data, one must define the semantics

of queries over the data. In this regard, a powerful model of possible-world semantics has been

the backbone of analyzing the correctness of database operations on uncertain data. For uncertain

string attributes, Jestes et al. [77] made the first attempt to extend the notion of similarity. They used

expected edit distance (eed) over all possible worlds of two uncertain strings. Given strings R and

S, eed(R, S) =
∑

ri,sj
p(ri)p(sj)ed(ri, sj), where sj (ri) is an instance of S (R) with probability

p(sj) (p(ri)). Though eed seems like a natural extension of edit distance as a measure of similarity,

it has been shown that it does not implement the possible-world semantics completely at the query

level [51]. Consider a similarity search query on a collection of deterministic strings with input

string r. Then, string s is an output only if ed(r, s) ≤ k. For such a query R over an uncertain string

collection, possible world semantics dictate that we apply the same predicate ed(r, s) ≤ k for each

possible instance r of R, s of S and aggregate this over all worlds. Thus, a possible world with

instances r, s can contribute in deciding whether S is similar to R only if s is within the desired

edit distance of r. However, for the eed measure, all possible worlds (irrespective but weighted

by edit distance) contribute towards the overall score that determines the similarity of S with R.

To overcome this problem, in [51] the authors have proposed a (k, τ)-matching semantic scheme.

Using this semantic, given a edit distance threshold k and probability threshold τ , R is similar to S

if Pr(ed(R, S) ≤ k) > τ . We use this similarity definition in this paper for answering join queries.

107

Problem definition: Given two sets of uncertain strings R and S, an edit-distance threshold k

and a probability threshold τ , similarity join finds all similar string pairs (R, S) ∈ R× S such that

Pr(ed(R, S) ≤ k) > τ . Without loss of generality, we focus on self join in this paper i.e.,R = S.

Related work: Uncertain/Probabilistic strings have been the subject of study for the past several

years. Efficient algorithms and data structures are known for the problem of string searching in

uncertain text [70, 5, 71, 139]. In [51] authors have studied the approximate substring matching

problem, where the goal is to report the positions of all substrings of uncertain text that are similar

to the query string. Recently, the problem of similarity search on a collection of uncertain strings

has been addressed in [34]. However, most of these works support only deterministic strings as

query input. Utilizing these techniques for uncertain string as input would invariably need all its

possible worlds to be enumerated, which may not be feasible to do taking into account the resultant

exponential blowup in query cost. Though the problem of similarity join on uncertain strings has

been studied in [77], it makes use of expected edit distance as a measure of similarity. We make an

attempt to address some of the challenges involved in uncertain string processing by investigating

similarity joins on them in this paper.

7.2 Preliminaries

In this section we briefly review filtering techniques for deterministic strings available in

literature and extend them for uncertain strings later in the article. Let r, s be the two deterministic

strings and k be the edit distance threshold.

7.2.1 q-gram Filtering

We partition s it into k + 1 disjoint segments s1, s2, ..., sk+1. For simplicity let each segment is

of length q ≥ 1 i.e, sx = s[((x− 1)q + 1)..xq]. Further, let pos(sx) represents the starting position

of segment sx in string s i.e, pos(sx) = (x − 1)q + 1. Then using a pigeonhole principle, if r is

similar to a string s, it should contain a substring that matches a segment in s. A straightforward

method to achieve this is to obtain a set q(r) enumerating all substrings of r of length q and for

each substring check whether it matches sx for x = 1, 2, .., k + 1. However, we do not need to

108

consider all substrings of r. In [89] authors have shown that we can obtain a set q(r, x) ⊆ q(r)

for each segment of s such that it is sufficient to test each substring w ∈ q(r, x) for a match with

sx. Table 7.1 shows sets q(r, x) populated for a sample string r. The substring selection proposed

in [89] is guided by following observations:

• Shift-based selection: Let w be the substring of r with start position smaller than (pos(sx)−k)

or larger than (pos(sx) + k). Then even if w matches segment sx, strings r and s cannot be

similar based on such an alignment. Hence, we do not need to include such w in set q(r, x).

• Position aware selection: This tightens the number of substrings that can be included in set

q(r, x) by taking into account the length difference of strings r and s i.e., ∆ = abs(|r| − |s|).

A substring w of r with start position smaller than (pos(sx)− b(k −∆)/2c) or larger than

(pos(sx) + b(k + ∆)/2c), even if matched with sx, cannot lead to an alignment of r and s

that has edit distance between them within desired threshold k.

Therefore, set q(r, x) includes substrings of r with start positions in the range [pos(sx)− b(k −

∆)/2c, pos(sx) + b(k + ∆)/2c] and with length q. Number of substrings in set q(r, x) is thus

bounded by k+ 1. In [89] authors prove that the substring selection satisfy “completeness” ensuring

any similar pair (r, s) will be found as a candidate pair. Please refer to the article [89] for more

details. We use a generalization of this filtering technique by partitioning s into m > k partitions.

As a consequence, for a string r to be similar to s, it should contain substrings matching more

segments of s [89, 108]. Following lemma summarizes this result.

Lemma 7.1. Given a string r and s, with s partitioned into m > k disjoint segments, if r is similar

to s within an edit threshold k, r must contain substrings that match at-least (m− k) segments of s.

Once again by assuming each segment of s to be of length q ≥ 1, we can compute the set q(r, x)

and attempt to match each w ∈ q(r, x) with sx as before to apply the above lemma.

7.2.2 Frequency Distance Filtering

The intuition behind this filtering is that if two strings are similar, then the frequency of the

alphabet symbols in two strings should also be similar [80]. Given a string s from the alphabet

109

Σ, frequency vector f(s) is defined as f(s) = [f(s)1, f(s)2, ..., f(s)σ], where f(s)i is the count of

ith alphabet of Σ i.e, ci. Let f(r) and f(s) be the frequency vectors of r and s respectively. Then

frequency distance of r and s is defined as fd(r, s) = max{posD, negD}. Frequency distance

provides a lower bound for edit distance between r and s i.e., fd(r, s) ≤ ed(r, s) and can be

computed efficiently [80]. Thus, we can safely decide that r is not similar to s if fd(r, s) > k.

posD =
∑

f(r)i>f(s)i

f(r)i − f(s)i, negD =
∑

f(r)i<f(s)i

f(s)i − f(r)i

7.3 q-gram Filtering

In this section we adopt and extend the ideas introduced for deterministic strings earlier in

Section 7.2.1 to uncertain strings. We begin with the simpler case where either of the two uncertain

strings R and S is deterministic. Let R be that string with r being its only possible instance. We try

to achieve an upper bound on the probability of r and S being similar i.e., Pr(ed(r, S) ≤ k). We

then build upon this result for the case when both strings are uncertain and obtain an upper bound

on the probability of R and S being similar i.e., Pr(ed(R, S) ≤ k).

Before proceeding, we introduce some notation and definitions. A string w of length l matches a

substring in T starting at position iwith probability Pr(w = T [i..i+l−1]) =
∏l

ps=1 pi+ps−1(w[ps]).

A string w matches T with probability Pr(w = T) =
∏l

ps=1 pps(w[ps]) if |w| = |T | = l; otherwise

it is 0. We simply say w matches with T (or vice versa) if Pr(w = T) > 0. The probability of

string W matching T is given by Pr(W = T) =
∏l

ps=1

∑
cj∈Σ Pr(W [ps] = cj)×Pr(T [ps] = cj).

Once again, we say W matches T if Pr(W = T) > 0 for simplicity.

7.3.1 Bounding Pr(ed(r, S) ≤ k)

The possible worlds Ω of S is the set of all possible instances of S. A possible world pwj ∈ Ω

is a pair (sj, p(sj)), where sj is an instance of S with probability p(sj). Let p(pwj) = p(sj) denote

the probability of existence of a possible world pwj . Note that sj is a deterministic string and∑
p(pwj) = 1. Then by definition, Pr(ed(r, S) ≤ k) =

∑
ed(r,sj)≤k p(pwj).

110

Necessary condition for Pr(ed(r, S) ≤ k) > 0: We partition the string S into m > k disjoint

substrings. For simplicity, let q be the length of each partition. Note that each partition S1, S2, ..., Sm

is an uncertain string. Let r contain substrings matching m′ ≤ m segments of S i.e., the number

of segments of S with Pr(w = Sx) > 0 for any substring w of r is m′. Then it can be seen that

for any pwj ∈ Ω, r contains substrings that match with at most m′ segments from s1
j , s

2
j , ..., s

m
j that

partition sj . Based on this observation, the following lemma establishes the necessary condition for

Pr(ed(r, S) ≤ k) > 0.

Lemma 7.2. Given a string r and a string S partitioned into m > k disjoint segments, for r to

be similar to S i.e., Pr(ed(r, S) ≤ k) > 0, r must contain substrings that match at-least (m− k)

segments of S.

While applying the above lemma, we do not need to consider all substrings of r of length q

listed in q(r). We can obtain a set q(r, x) using position aware selection as described earlier and

use it to match against segment Sx. Table 7.1 shows the above lemma applied to a collection of

uncertain strings. None of the segments of S1 match any substring in r and hence they can not form

a candidate pair. For S2, even though the second segment matches some substring in r, we do not

use it as we know by position aware substring selection that such an alignment can not lead to an

instance of S that is similar to r. We can reject S2 as well since it has only one matched segment.

Strings S3 and S4 survive this pruning step and are taken forward.

Computing upper bound for Pr(ed(r, S) ≤ k): So far we were interested in knowing if there

exists a substring w ∈ q(r, x) that matches segment Sx. We now try to compute the probability

that one or more substrings in q(r, x) match Sx. Let Ex denote such an event with probability

αx. Then αx = Pr(Ex) =
∑

w∈q(r,x) Pr(w = Sx). The correctness of αx relies on the following

observations:

• q(r, x), being a set, contains all distinct substrings.

• Event of substring wi ∈ q(r, x) matching Sx is independent of substring wj ∈ q(r, x)

matching Sx for wi 6= wj .

111

TABLE 7.1. Application of q-gram filtering
m = 3, q = 2, k = 1, τ=0.25

r GGATCC
q(r, x) GG GA TC

GA AT CC
TC

S1 A{(C,0.5),(G,0.5)}A{(C,0.5),(G,0.5)}AC
(AC,0.5) (AC,0.5) (AC,1)
(AG,0.5) (AG,0.5)

S2 AA{(G,0.9),(T,0.1)}G{(C,0.3),(G,0.2),(T,0.5)}C
(AA,1) (GG,0.9) (CC,0.3)X

(TG,0.1) (GC,0.2)
(TC,0.5)X

S3 G{(A,0.8),(G,0.2)}CT{(A,0.8),(C,0.1),(T,0.1)}C
(GA,0.8)X (CT,1) (AC,0.8)
(GG,0.2)X (CC,0.1)X

(TC,0.1)X
S4 {(G,0.8),(T,0.2)}GA{(C,0.3),(G,0.2),(T,0.5)}CT

(GG,0.8)X (AC,0.3) (CT,1)
(TG,0.2) (AG,0.2)

(AT,0.5)X

Next, our idea is to prune out the possible worlds of S which can not satisfy the edit-distance

threshold k with r and obtain a set C ⊆ Ω of candidate worlds. We can then use Pr(C) =∑
pwj∈C p(pwj) as the upper bound on Pr(ed(r, S) ≤ k). Consider a possible world pwj in which

sj is the possible instance of S. sj being the deterministic string, we can apply the process of q-gram

filtering described in Section 7.2.1 to quickly assess if sj can give edit distance within threshold

k. If yes, pwj is a candidate world and we include it in C. This naive method requires all possible

worlds of S to be instantiated and hence is too expensive to be used. Below we show how to achieve

the desired upper bound i.e., Pr(C) without explicitly listing set Ω or C.

For ease of explanation, let m = k + 1. We partition the possible worlds in Ω into sets

Ω0,Ω1, ...,Ωm such that:

• Ωy includes any possible world pwj where r contains substrings matching exactly y segments

from s1
j , ..., s

m
j that partition sj i.e., y = |{sxj |sxj ∈ q(r, x) for x = 1, 2, ..,m}|.

• Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ ... ∪ Ωm

• Ωy ∩ Ωz = ∅ for y 6= z

112

With this partitioning of Ω, we have following:

Pr(C) = Pr(Ω1 ∪ Ω2 ∪ ... ∪ Ωm) = Pr(Ω \ Ω0)

= Pr(Ω)− Pr(Ω0) = 1−
m∏
x=1

(1− αx)

In the above equation, Ω0 denotes the event that none of the segments of S match substrings of

r. By slight abuse of notation, we say Sx matches r (using position aware substring selection) if

αx > 0. Then, the following lemma summarizes our result on the upper bound.

Lemma 7.3. Let r and S be the given strings with edit threshold k. If S is partitioned intom = k+1

disjoint segments, Pr(ed(r, S) ≤ k) is upper bounded by (1−
∏m

x=1(1− αx)), where αx gives the

probability that segment Sx matches r.

Generalizing upper bound for m > k: Finally, we turn our attention to compute Pr(C) for the

scenario where S is partitioned into m > k segments. Once again considering the partitioning

of Ω introduced above Pr(C) = Pr(∪my=(m−k)Ωy) =
∑m

y=m−k Pr(Ωy). Then we observe that

computing Pr(Ωy) in this equation boils down to the following problem: There are m events Ex

(x = 1, 2, ..m) and we are given Pr(Ex) = αx. What is the probability that exactly y events

(among those m events) happen? Our solution is as follows. Let Pr(i, j) denote the probability

that, within the first i events, j of them happen. We then have the following recursive equation:

Pr(i, j) = Pr(Ei)Pr(i− 1, j − 1) + (1− Pr(Ei))Pr(i− 1, j). By populating the m×m matrix

using a dynamic programming algorithm based on the above recursion, we can lookup the last

column to find out Pr(Ωy) for y = m− k, ...,m. This recursion gives us an efficient (O(m2)) way

to compute Pr(C). We note that it is possible to improve the running time to O(m(m − k)), but

leave out the details for simplicity.

Theorem 7.4. Let r and S be the given strings with edit threshold k. Also assume S is partitioned

into m > k disjoint segments and αx represents the probability that segment Sx matches r. Then

Pr(ed(r, S) ≤ k) is upper bounded by the probability that at-least (m− k) segments of S match r

or in another words probability that r contains substrings matching at-least (m− k) segments of S.

113

Continuing the example in Table 7.1, we now try to apply the above theorem to strings S3 and S4.

For S3 we have α1 = 1, α2 = 0, and α3 = 0.2. Therefore the upper bound on S3’s similarity with r

is 0.2 < τ and S3 can be rejected. Even though four out of six possible worlds of S3 contribute to C,

the probability of each of them being small their collective contribution falls short of τ . Similarly

the upper bound for S4 can be computed as 0.4 and the pair (r, S4) qualifies as a candidate pair.

Thus Theorem 7.4 integrates q-gram filtering and probabilistic pruning.

Let string S be preprocessed such that each segment Sx is maintained as a list of pairs (sxj , p(s
x
j)),

where sxj is an instance of Sx with probability p(sxj). Also assume r is preprocessed and sets q(r, x)

are available to us for x = 1, 2, ..,m (|q(r, x)| = k + 1,
∑m

x=1 |q(r, x)| = (k + 1)m). Then the

desired upper bound can be computed efficiently by applying the above theorem as it only adds

the following computational overhead in comparison to its counterpart of deterministic strings:

(1) computation cost for αx of each segment is bounded by k and mk overall, (2) the cost of

computing Pr(C) using dynamic programming is bounded by m(m− k).

7.3.2 Bounding Pr(ed(R, S) ≤ k)

In this subsection, we follow the analysis from the earlier subsection taking into account the

uncertainty introduced for string R. The possible worlds Ω of R and S is the set of all possible

instances of R × S. A possible world pwi,j ∈ Ω is a pair ((ri, sj), p(ri) ∗ p(sj)), where sj (ri) is

an instance of S (R) with probability p(sj) (p(ri)). Also p(ri) ∗ p(sj) denote the probability of

existence of a possible world pwi,j and
∑
p(pwi,j) = 1. Then by definition, Pr(ed(R, S) ≤ k) =∑

ed(ri,sj)≤k p(pwi,j).

Necessary condition for Pr(ed(R, S) ≤ k) > 0: We begin by partitioning the string S into

m > k disjoint substrings as before and assume q to be the length of each partition. Then the

following lemma establishes the necessary condition for R to be similar to S within edit threshold.

Lemma 7.5. Given a string R and a string S partitioned into m > k disjoint segments, for R to

be similar to S i.e., Pr(ed(R, S) ≤ k) > 0, R must contain substrings that match at-least (m− k)

segments of S.

114

The correctness of the above lemma can be verified by extending the earlier observation as

follows: Let R contain substrings matching m′ ≤ m segments of S i.e., the number of segments of

S with Pr(W = Sx) > 0 for any (uncertain) substring W of R is m′. Then for any pwi,j ∈ Ω, ri

contains substrings that match with at most m′ segments from s1
j , s

2
j , ..., s

m
j that partition sj . Next,

we obtain a set q(R, x) for each segment Sx of S using the position aware substring selection.

This allows us to only test substrings W ∈ q(R, x) for a match against Sx. We highlight that the

substring selection mechanism only relies on the length of two strings R and S, start position of a

substring W of R and that of Sx. Therefore following same arguments in [89], we can prove that

any similar pair (R, S) will be reported as a candidate.

Computing αx: Let Ex denote an event that one or more substrings in set q(R, x) match seg-

ment Sx and let αx be its probability. Using a trivial extension of the earlier result in Sec-

tion 7.3.1, we could perhaps compute αx = Pr(Ex) =
∑

W∈q(R,x) Pr(W = Sx). However,

we show that this leads to incorrect computation of αx and requires a careful investigation. Let

R = A{(A, 0.8), (C, 0.2)}AATT , S = A{(A, 0.8), (C, 0.2)}AGCT , k = 1 and q = 3. Then, we

have S1 = A{(A, 0.8), (C, 0.2)}A, q(R, 1) = {A{(A, 0.8), (C, 0.2)}A, {(A, 0.8), (C, 0.2)}AA }.

Using the above formula Pr(E1) = 0.64 + 0.04 + 0.64 = 1.32, which is definitely incorrect.

To understand the scenario better, let’s replace each substring W ∈ q(R, x) by a list of pairs

(wj, p(wj)), where wj is an instance of W with probability p(wj). Note that it is only a different way

of representing set q(R, x) and both representations are equivalent. q(R, 1) = {(AAA, 0.8), (ACA,

0.2), (AAA, 0.8), (CAA, 0.2)} and Pr(E1) =
∑

w∈q(R,x) p(w) ×Pr(w = Sx) = 1.32 as before.

However, this representation reveals that we have violated the second observation which requires

matching of two substrings wi, wj ∈ q(R, x) with Sx to be independent events. In the current

example, both occurrences of a substring AAA in q(R, 1) belong to same possible world and

effectively its probability contributes twice to Pr(E1).

We overcome this issue by obtaining an equivalent set q(r, x) of q(R, x) that satisfies the

substring uniqueness requirement i.e., wi 6= wj for all wi, wj ∈ q(r, x) with i 6= j, and implicitly

make the matching of two of its substrings with Sx independent events. To achieve this we pick up

115

all distinct (deterministic) substrings w ∈ q(R, x) (think of a representation of set q(R, x) consisting

of (wj, p(wj)) pairs) to be part of q(r, x). To distinguish between these two sets, let pR(wj) represent

the probability associated with substring wj in q(R, x) and pr(wj) be the same for q(r, x). Then,

we maintain the equivalence of sets by following the two step process described below for each

w ∈ q(r, x) and obtain the probability to be associated with it i.e., pr(w).

1. Sort all occurrences of w in q(R, x) by their start positions in R. Group together all occur-

rences that overlap with each other in R to obtain groups g1, g2, Then no two occurrences

across the groups overlap each other. Such a grouping is required only when there is a suffix-

prefix match for w (i.e., some suffix of w represents same string as its prefix), otherwise all

its overlapping occurrences represent different possible worlds of R and hence are in a single

group by themselves. We assign the probability p(gi) to each group gi as described below.

Let psj represent the start position of occurrence wj in R for j = 1, 2, .., |gi|. The region of

overlap between an occurrence wj of w and its previous occurrences in R is given by range

[y, z] = [psj, psj−1+q−1]. We define βj = βj−1+prR(wj)−Pr(wj[1..(z−y+1)] = R[y..z])

with the initial condition β0 = 1, ps0 = −1. Then p(gi) = β|gi|. In essence, we keep adding

the probability of every occurrence while taking out the probability of its overlap.

2. Assign pr(w) = 1−
∏

(1− p(gi)).

The first step combines all overlapping occurrences into a single event and then we find out

the probability that at-least one of these events takes place in second step. Now we can correctly

compute the probability of event Sx matching substrings in q(R, x) by using its equivalent set

q(r, x) as αx = Pr(Ex) =
∑

w∈q(r,x) pr(w)× Pr(w = Sx). For the example under consideration,

for a substring “AAA” we obtain a single group with its associated probability 0.8 using the process

described above. Then q(r, 1) = {(AAA, 0.8), (ACA, 0.2), (CAA, 0.2)} and Pr(E1) = 0.68 is

correctly computed.

Computing upper bound for Pr(ed(r, S) ≤ k): Finally, to obtain the upper bound on Pr(ed(R, S) ≤

k) we obtain set C ⊆ Ω by pruning out those possible worlds which can not satisfy the edit-distance

116

threshold k. Consider a possible world pwi,j in which sj (ri) is a possible instance of S (R). Both ri

and sj being deterministic strings, we can quickly assess if ri and sj can be within edit distance k by

applying the process of q-gram filtering described in Section 7.2.1. If affirmative, pwi,j is a candidate

world and we include it in C. However, our goal is to compute Pr(C) without enumerating all

possible worlds of R× S. As before, we partition the possible worlds in Ω into sets Ω0,Ω1, ...,Ωm

such that Ω = ∪my=0Ωy and Ωy ∩ Ωz = ∅ for y 6= z. Moreover, Ωy includes any possible world

pwi,j where ri contains substrings matching exactly y segments from s1
j , ..., s

m
j that partition sj i.e,

y = |{sxj |sxj ∈ q(ri, x) for x = 1, 2, ..,m}|. Then Pr(C) = Pr(∪my=(m−k)Ωy) =
∑m

y=m−k Pr(Ωy)

and can be computed by following the same dynamic programming approach described earlier.

Therefore the key difference in the current scenario (both R and S are uncertain) from the one in

the previous subsection is the computation of αx. After computing all αx we can directly apply

Lemma 7.2 and Theorem 7.4 and are rewritten as below. By slight abuse of notation as before, we

say Sx matches R if αx > 0.

Lemma 7.6. Let R, S be the given strings with edit threshold k. If S is partitioned into m = k + 1

disjoint segments, Pr(ed(R, S) ≤ k) is upper bounded by (1 −
∏m

x=1(1 − αx)), where αx gives

the probability that segment Sx matches R.

Theorem 7.7. Let R, S be the given strings with edit threshold k. Also assume S is partitioned

into m > k disjoint segments and αx represents the probability that segment Sx matches R. Then

Pr(ed(R, S) ≤ k) is upper bounded by the probability that at-least (m− k) segments of S match

R i.e., the probability that R contains substrings matching at-least (m− k) segments of S.

It is evident that the cost of computing the upper bound in the above theorem is dominated by

the set q(r, x) computations. If this is assumed to be part of the preprocessing then the overhead

involved is exactly the same as in the previous subsection. Let the fraction of uncertain characters in

the strings be θ, and the average number of alternatives of an uncertain character be γ. For analysis

of q-gram filtering, we assume uncertain character positions to be uniformly distributed from now

onwards. Then |q(r, x)| = (k+ 1)γθ·q, and computing set q(r, x) for each segment takes qγθ·q times

117

when string R is deterministic (previous subsection). Note that the multiplicative q appears only

when substring w has a suffix-prefix match and its occurrences in set q(R, x) overlap. Assuming

typical values θ = 20%, γ = 5 and q = 3, it takes only two and half times longer to compute αx

when R is uncertain using q(r, x).

7.4 Indexing

Using Theorem 7.7 we observe that if a string R does not have substrings that match a sufficient

number of segments of S, we can prune the pair (R, S). We use an indexing technique that facilitates

the implementation of this feature to prune large numbers of dissimilar pairs. So far we assumed

each string S is partitioned into m segments, each of which is of length q. In practice, we fix

q as a system parameter and then divide S into as many disjoint segments as necessary i.e.,

m = max(k + 1, b|S|/qc). Without loss of generality let m = b|S|/qc. We use an even-partition

scheme [89, 108] so that each segment has a length of q or q + 1. Thus we partition S such that the

last |S| − b|S|/qc ∗ q segments have length q + 1 and length is q for the rest of them.

Let Sl denote the set of strings with length l and Sxl denote the set of the x-th segments of strings

in Sl. We build an inverted index for each Sxl denoted by Lxl as follows. Consider a string Si ∈ Sl.

We instantiate all possibilities of its segment Sxi and add them to Lxl along with their probabilities.

Thus Lxl is a list of deterministic strings and for each string w, its inverted list Lxl (w) is the set of

uncertain strings whose x-th segment matches w tagged with probability of such a match. To be

precise, Lxl (w) is enumeration of pairs (i, Pr(w = Sxi)) where i is the string-id. By design, each

such inverted list Lxl (w) is sorted by string-ids as described later. We emphasize that a string-id i

appears at most once in any Lxl (w) and in as many lists Lxl (w) as the number of possible instances

of Sxi . We use these inverted indices to answer the similarity join query as follows.

We sort strings based on their lengths in ascending order and visit them in the same order.

Consider the current string R = Si. We find strings similar to R among the visited strings only using

the inverted indices. This implies we maintain indices only for visited strings to avoid enumerating

a string pair twice. It is clear that we need to look for similar strings in Sl by querying its associated

index only if |R| − k ≤ l ≤ |R|. To find strings similar to R, we first obtain candidate strings using

118

the proposed indexing as described in next paragraph. We then subject these candidate pairs to

frequency distance filtering (Section 7.5). Candidate pairs that survive both these steps are evaluated

with CDF bounds (Section 7.6.1) with the final verification step (Section 7.6.2) outputting only the

strings that are similar to R. After finding similar strings for R = Si, we partition Si into m > k (as

dictated by q) segments and insert the segments into appropriate inverted index. Then we move on

to the next string R = Si+1 and iteratively find all similar pairs.

Finally, given a string R, we show how to query the index associated with Sl to find candidate

pairs (R, S) such that S ∈ Sl and Pr(ed(R, S) ≤ k) > τ . We preprocess R to obtain q(r, x) that

can be used to query each inverted index Lxl . For each w ∈ q(r, x) we obtain an inverted list Lxl (w).

Since all lists are sorted by string-id, we can scan them in parallel to produce a merged (union) list

of all string-ids i along with the αx computed for each of them. We maintain a top pointer in each

Lxl (w) list that initially points to its first element. At each step, we find out the minimum string-id

i among the elements currently at the top of each list, compute αx for a pair (R, Si) using the

probabilities associated with string-id i in all Lxl (w) lists (if present). After outputting the string-id

and its αx as a pair in the merged list, we increment the top pointers for those Lxl (w) lists which

have the top currently pointing to the element with string-id i. Let the merged list be Lαx. Once

again all Lαx lists for x = 1, 2, ..,m are sorted by string-ids. Therefore by employing top pointers

and scanning lists Lαx in parallel, we can count the number of segments in Si that matched with

their respective q(r, x) by counting the number of Lαx lists that contain string-id i. If the count is

less than m− k we can safely prune out candidate pair (R, Si) using Lemma 7.6. Otherwise, we

can compute the upper bound on Pr(ed(R, Si) ≤ k) by supplying the αx values already computed

to the dynamic programming algorithm. If the upper bound does not meet our probability threshold

requirement, we can discard string Si as it can not be similar to R by Theorem 7.7, otherwise (R, Si)

is a candidate pair.

Given a string R, the proposed indexing scheme allows us to obtain all strings S ∈ S that

are likely to be similar to R without explicitly comparing R to each and every string in S as has

been done for related problems in the area of uncertain strings [77, 51, 34]. For a string r in a

119

deterministic strings collection, we need to consider m(k + 1) of its substrings while answering the

join query using the procedure just described. In comparison, in the probabilistic setting we need to

consider m(k+1)γθ·q deterministic substrings of R. Moreover, a string-id can belong to at most γθ·q

inverted lists in Lxl in probabilistic setting whereas inverted lists are disjoint for deterministic strings

collection. Thus, the proposed indexing achieves competitive performance against its counterpart for

answering a join query over deterministic strings. Further, indexing scheme uses disjoint q-grams of

strings instead of overlapping ones as in [51, 34]. This allows us to use slightly larger q with same

storage requirements.

7.5 Frequency Distance Filtering

As noted in [34], frequency distance displays great variation with increase in the number of

uncertain positions in a string and can be effective to prune out dissimilar string pairs. We first obtain

a simple lower bound on fd(R, S) and then show how to quickly compute the upper bound for

the same. For each character ci ∈ Σ, let f(S)ci , f(S)ti denote the minimum and maximum possible

number of its occurrences in S respectively. For brevity, we drop the function notations and denote

these occurrences as fSci and fSti . Note that fSci also represents the number of occurrences of ci in

S with probability 1 and fSti represents the number of certain and uncertain positions of ci. Thus

fSui = fSti − fSci gives the uncertain positions of ci in S. fRc
i , fR

u
i and fRt

i are defined similarly.

We observe that, if fRt
i < fSci , any possible world pw of R× S, will have a frequency distance at

least (fSci − fRt
i). By generalizing this observation, we can obtain a lower bound on fd(R, S) as

summarized below.

Lemma 7.8. Let R and S be two strings from the same alphabet Σ, the we have fd(R, S) ≥

max{pD, nD}, where

pD =
∑

fSti<fR
c
i

(fRc
i − fSti), nD =

∑
fRti<fS

c
i

(fSci − fRt
i)

Since the edit distance of a string pair is lower bounded by its frequency distance, we can prune

out (R, S) if the minimum frequency distance obtained by above the lemma is more than the desired

120

edit threshold k. To obtain the upper bound on the probability of fd(R, S) being at most k, we use

the technique introduced in [34] that relies on the expected value of all possible frequency distances.

Using such an expectation for positive and negative frequency distance (E[pD], E[nD]), One-Sided

Chebyshev Inequality and following the same analysis in [34], we obtain following theorem.

Theorem 7.9. Let R and S be two strings from the same alphabet Σ. Then we have,

Pr(ed(R, S) ≤ k) ≤ Pr(fd(R, S) ≤ k)

≤ B2

B2 + (A− k)2

where, A =
||R| − |S||

2
+
E[pD] + E[nD]

2

B2 =
(|R| − |S|)2

2
+

(||R| − |S||)(E[pD] + E[nD])

2

+min(|R| · E[nD], |S| · E[pD])− A2

The main obstacle in using the above theorem is efficient computation ofE[pD] =
∑

ci
E(fRi−

fSi), E[nD] =
∑

ci
E(fSi − fRi). We focus on computing E[nD] below as E[pD] can be

computed in a similar fashion. With frequency of ci in S i.e., fSi varying between fSci and fSti ,

let Pr(fSi = x) represents the probability that ci appears exactly x times. Putting it an other way,

Pr(fSi = x) represents the probability that ci appears at exactly (x − fSci) uncertain positions

from (fSui) uncertain positions overall. This leads to a natural dynamic programming algorithm

that can compute Pr(fSi = x) for all x = fSci , ..., fS
t
i by spending O((fSui)2) time. Please refer

to [34] more details. With the goal of efficiency in computing E[nD], authors preprocess S and

maintain these values in O(fSui) space. Without loss of generality, let fRc
i < fSci ≤ fRt

i < fSti .

Then by definition, E[nD] =
∑

ci
E[nDi] where,

E[nDi] =

fRti∑
x=fRci

fSti∑
y=max

(x+1,fSc
i
)

Pr(fRi = x)Pr(fSi = y)(y − x)

121

In the above equation, Pr(fRi = x) and Pr(fSi = y) can be computed in constant time

using precomputed answers. Therefore, a naive way of computing E[nDi] will take O(fSui fR
u
i).

Below we speed up this computation and achieve min(fSui , fR
u
i) time. We maintain the following

probability distributions for each ci of S. For 0 ≤ x ≤ fSui ,

S1i[x] = Pr(fSi = fSci + x)

S2i[x] =

fSui∑
y=x

Pr(fSi = fSci + y)

S3i[x] =

fSui∑
y=x

(y − x+ 1)Pr(fSi = fSci + y)

S4i[x] =
x∑
y=0

(x− y)Pr(fSi = fSci + y)

S1i is simply a probability distribution of ci appearing at uncertain positions in range [0, fSui]

(precomputed using dynamic programming). S2i maintains the probability that ci appears at at-least

x uncertain positions i.e., S2i[x] = Pr(fSi ≥ fSci + x). S3i maintains the same summation with

elements in the summation series scaled by 1, 2, Finally S4i takes the summation series for

Pr(fSi ≤ fSci + x), scales it by 0, 1, ... in reverse direction and maintains the output at index x.

The intuition behind maintaining the scaled summations is that, given a particular frequency z of

fRi, the expectation of its frequency distance with fSi ∈ [fSci , fS
t
i] resembles the summation

series for S3i[x] or S4i[x]. All the above distributions can be computed in O(fSui) time and occupy

the same O(fSui) storage. Similar probability distributions are also maintained for R. We achieve

the speed up without hurting preprocessing time and at no additional storage cost. E[nDi] can now

be computed as follows:

E[nDi] =

fSci−1∑
x=fRci

fSti∑
y=fSci

(...) +

fRti∑
x=fSci

fSti∑
y=x+1

(...)

= nD1
i + nD2

i

122

nD1
i =

fSci−1∑
x=fRci

Pr(fRi = x)(

fSti∑
y=fSci

Pr(fSi = y)(y − x))

=

fSci−1∑
x=fRci

Pr(fRi = x)(fSci − x− 1)

fSti∑
y=fSci

Pr(fSi = y)

+

fSci−1∑
x=fRci

Pr(fRi = x)

fSti∑
y=fSci

Pr(fSi = y)(y − fSci + 1)

= R4i[fS
c
i − fRc

i − 1]× S2i[0]

+ (R2i[0]−R2i[fS
c
i − fRc

i])× S3i[0]

nD2
i =

fRti∑
x=fSci

Pr(fRi = x)

fSti∑
y=x+1

Pr(fSi = y)(y − x)

=

fSti∑
x=fSci

R1i[x− fRc
i]× S2i[x− fSci + 1]

If the fraction of uncertain characters in the strings is θ, frequency filtering summarized in

Theorem 7.9 can be applied in O(σθ(|R|+ |S|)). Typical alphabet size being constant, the efficiency

of applying frequency filtering depends on the degree of uncertainty and string lengths. Therefore,

with increase in length of input strings, improvement from |R|×|S| to |R|+ |S| provides substantial

reduction in the filtering time. While answering the similarity join query, we preprocessR = Si ∈ Sl

to compute the arrays for each character in alphabet Σ and maintain them as a part of our index. All

candidate pairs passing the q-gram filtering are then subjected to frequency distance filtering for

further refinement before moving onto next string R = Si+1 ∈ Sl.

7.6 Verification

The goal of verification is to conclude whether strings in the candidate pair (R, S) that has

survived the above filters, are indeed similar i.e., Pr(ed(R, S) ≤ k) > τ . A straightforward solution

is to instantiate each possible world of R× S and add up the probabilities of possible worlds where

possible instances ofR, S are within edit threshold k. Before resorting to such expensive verification,

123

we make a last attempt to prune out a candidate pair, by extending the CDF bounds in [51]. If

unsuccessful, we use the trie-based verification that exploits common prefixes shared by instances

of an uncertain string.

7.6.1 Bound based on CDF

We briefly review the process in [51] and highlight the changes needed to compute the men-

tioned bounds correctly when both input strings are uncertain. We populate the matrix |R| × |S|

using dynamic programming. In each cell D = (x, y), we compute (at most) k + 1 pairs of

values i.e., {(L[j], U [j])|0 ≤ j ≤ k}, where L[j] and U [j] are the lower and upper bounds of

Pr(ed(R[1..x], S[1..y]) ≤ j) respectively. Then by checking the bounds in the cell (|R|, |S|), we

can accept or reject the candidate string pair (R, S), if possible. To fill in the DP table, consider

a basic step of computing bounds of a cell D = (x, y) from its neighboring cells - upper left:

D1 = (x− 1, y− 1), upper: D2 = (x, y− 1), and left: D3 = (x− 1, y). As noted in [51], when the

R[x] matches S[y] (with probability p1 =
∑

ci
Pr(R[x] = ci)Pr(S[y] = ci)), it is always optimal

to take the distribution from the diagonal upper left neighbor. When R[x] does not match S[y] with

probability p2 = 1− p1, we use the relaxations suggested in [51]. Let (argmin Di) returns index i

(1 ≤ i ≤ 3) such that LDi [0] is greatest; a tie is broken by selecting the greatest LDi [1] and so on.

Theorem 7.10. At each cell D = (x, y) of the DP table, L[j] ≤ Pr(ed(R[1..x], S[1..y]) ≤ j) ≤

U [j], where

L[j] = max(p1LD1 [j], p2L(argmin Di)[j − 1])

U [j] = min(1, p1UD1 [j] + p2UD1 [j − 1] +
3∑
i=2

UDi [j − 1])

Proof. We follow the analysis in [51] as follows. Consider a possible world pwi,j in which ri[x] =

sj[y]. Let the distance values at cells D and Di (1 ≤ i ≤ 3) be v and vi, respectively. Then we have

v = v1. This is because v2, v3 ≥ v1 − 1; thus, v = min(v1, v2 + 1, v3 + 1) = v1. Next, consider a

possible world pwi,j in which ri[x] 6= sj[y]. Then, v = min(vi) + 1. By using (argmin Di), we

pick one fixed neighbor cell (i.e., the one that has a small distance value with the highest probability)

124

instead of accounting for all possible worlds in which ri[x] 6= sj[y]; and hence the true v value

could be smaller than this one in some possible worlds. However, we observe that out of all possible

worlds with distance v in the cell D, worlds with edit distance v in D1 are not disjoint with worlds

with distance v − 1 for D2. The same argument applies for worlds with v − 1 as distance in D3 as

well. Therefore, we choose the maximum out of the two scenarios as our lower bound. For obtaining

the upper bound, the case where ri[x] matches sj[y] remains the same. Possible world pwi,j with

distance v − 1 for D2, can be extended by reading an addition character of R and we get distance

v in cell D for all of them. Similarly, moving from distance v − 1 in D3 to distance v in D can

be thought to be the case of inserting a character of S. Hence, we do not need to scale down the

probability UD2 [v − 1] as well UD3 [v − 1] to obtain the upper bound for cell D.

We note that the bounds summarized in the above theorem are different than the ones presented

in [51], as they cannot be used directly for the current scenario1. Finally, the simple DP algorithm can

be improved by computing (L[j], U [j]) only for those cells D = (x, y) for which |x− y| ≤ k, since

L[k] = U [k] = 0 otherwise. Thus, we can apply the CDF bounds based filtering for a candidate

pair (R, S) in O(min(|R|, |S|)(k + 1)max(k, γ)) where γ is average number of alternatives of an

uncertain character.

7.6.2 Trie-based Verification

Prefix-pruning has been a popular technique to expedite verification of a deterministic string pair

(r, s) for edit threshold k. A naive approach for this verification would be to compute the dynamic

programming matrix (DP) of size |r|×|s| such that cell (x, y) gives the edit distance between r[1...x]

and s[1...y]. Prefix-pruning observes that if all cells in row x i.e., (x, ∗) do not meet threshold k,

then the following rows can not have cells with edit distance k or less i.e., DP [i > x, ∗] > k. Even

using such an early termination condition, verifying all-pairs (all possible of instance of R× S) for

a candidate pair (R, S) can be expensive. With the goal of avoiding naive all-pairs comparison, we

propose trie-based verification. Let TS be the trie of all possible instances of S and TR be the same

1a) Lower bound violation: r = ACC, S = A{(C, 0.7), (G, 0.1), (T, 0.1)} with k = 1. b) Upper bound violation: r = DISC, S =

DI{(C, 0.4), (S, 0.5), (R = 0.1)} with k = 1.

125

for string R. Let node u in TS represents a string u (obtained by concatenating the edge labels from

root to node u), then all possible instances of S with u as a prefix are leaves in the subtree rooted at

u. We say a node u ∈ TS is similar to node v ∈ TR if ed(u, v) ≤ k. Using prefix-pruning then we

have following observation [42]:

• Given u ∈ TS , v ∈ TR: if u is not similar to any ancestor of v, and v is not similar to any

ancestor of u, any possible instance s of S with prefix u can not be similar to a possible

instance r of R with v as its prefix.

Using the technique in [78, 42], we can compute a set of similar nodes in TR for each node

u ∈ TS . Then, if u = sj is a leaf node, each node v = ri ∈ TR in its similar set that is also a leaf

node, gives us a possible world pwi,j whose probability contributes to Pr(ed(R, S) ≤ k). However

techniques in [42] implicitly assume both trie structures are available. Here we propose on-demand

construction of trie which avoids all possible instances of S to be enumerated. Note that we still

need to build the trie TR completely. However its construction cost can be amortized as we build

TR once and use it for all candidate pairs (R, ∗). As noted in [78], nodes in TR that are similar to

node u ∈ TS can be computed efficiently only using such a similarity set already computed for its

parent. This allows us to perform a (logical) depth first search on TS and materialize the children

of u ∈ TS only if its similarity set is not empty. Figure 7.1 illustrates of this approach and reveals

that on-demand trie construction can reduce the verification cost by avoiding instantiation and

consequently comparison with a large fraction of possible worlds of S. In the figure, only the nodes

linked with solid lines are explored and instantiated by the verification algorithm. Moreover, we do

not display the similar node sets and the probabilities associated with trie nodes for simplicity.

7.7 Experiments

We have implemented the proposed indexing scheme and filtering techniques in C++. The

experiments are performed on a 64 bit machine with an Intel Core i5 CPU 3.33GHz processor and

8GB RAM running Ubuntu. We consider the following algorithms for comparisons which use only

a subset of the filtering mechanisms. Algorithm QFCT makes use of all the filtering schemes listed

126

C T C T C T C T

C A C A

A T

T

C C

A A

G G G G G T G T G T G T

A T A T

A G

C C

C C C C

C C C C C C C C

String S String R

explored edge
unexplored edge

FIGURE 7.1. Trie-based verification example

in this article whereas QCT, QFT, FCT bypass frequency-distance filtering, filtering based on CDF

bounds and q-gram filtering respectively.

Datasets: We use two synthetic datasets obtained from their real counterparts employing the

technique used in [77, 34]. The first data source is the author names in dblp (|Σ| = 27). For each

string s in the dblp dataset we first obtain a set A(s) of strings that are within edit distance 4 to

s. Then a character-level probabilistic string S for string s is generated such that, for a position i,

the pdf of S[i] is based on the normalized frequencies of the letters in the i-th position of all the

strings in A(s). The fraction of uncertain positions in a character-level probabilistic string i.e., θ is

varied between 0.1 to 0.4 to generate strings with different degree of uncertainty. The string length

distributions in this dataset follow approximately a normal distribution in the range of [10, 35]. For

the second dataset we use a concatenated protein sequence of mouse and human (|Σ| = 22), and

break it arbitrarily into shorter strings. Then uncertain strings are obtained by following the same

procedure as that for the dblp data source. However, for this dataset we use slightly larger string

lengths with less uncertainty i.e., string lengths roughly follow uniform distribution in the range

[20, 45] and θ ranges between 0.05 to 0.2. In both datasets, the average number of choices (γ) that

each probabilistic character S[i] may have is set to 5. The default values used for the dblp dataset

are: the number of strings in collection |S| = 100K, average string length ≈ 19, θ = 0.2, k = 2, τ =

0.1, and q = 3. Similarly for protein dataset we use default setting with |S| = 100K, average string

length = 32, θ = 0.1, k = 4, τ = 0.01, and q = 3.

127

7.7.1 Effectiveness vs Efficiency of Pruning

In this set of experiments, we compare the pruning ability of the filtering techniques and the

overhead of applying them on both the datasets with θ = 0.2, k = 2 and τ = 0.1. Figure 7.2 shows

the number of candidates remaining after applying each filtering scheme and reveals that CDF

bounds provide the tightest filtering among the three. Effectiveness of the CDF follows from the fact

that it uses upper as well as lower bounds to prune the strings. The upper bound obtained by q-gram

filtering tends to be looser than the CDF as it depends on the partitioning based on q, whereas

frequency distance based upper bound is sensitive to the length difference between two strings.

However, the effectiveness of CDF comes at the cost of time. On the other hand, q-gram filtering is

extremely fast and can still prune out a significant number of candidate pairs taking advantage of the

indexing scheme. For the protein dataset, q-gram is close to CDF bounds in terms of effectiveness

and is an order of magnitude faster than computing CDF bounds. Frequency distance filtering being

dependent only on alphabet size and uncertain positions in the strings (against CDF’s dependance

on string length) can help to improve query performance by reducing the number of candidate pairs

passed on to CDF for evaluation. Therefore, in the following experiments, algorithm variants use

these filtering techniques in the increasing order of their overhead as suggested by their acronyms.

Figure 7.2 also reveals that applying q-gram filtering and the CDF bounds filtering takes longer

for the protein dataset than for dblp data. Due to larger string length and fixed q, q-gram filtering

needs to partition protein strings into a larger number of segments (i.e., m). Thus, there are more αx

probabilities to be computed and it takes longer to compute the desired upper bound in Theorem 7.7.

FIGURE 7.2. Effectiveness vs. efficiency

128

Similarly, computing CDF bounds needs to populate a dynamic programming matrix whose size

depends on the string lengths. However, frequency distance filtering benefits from smaller alphabet

set and lower degree of uncertainty in protein sequences and shows better performance for the

protein data.

7.7.2 Effects of Data Size |S|

Figure 7.3 shows the scalability of various algorithms on the dblp dataset, where we vary |S|

from 50K to 500K. With computationally inexpensive q-gram filtering as the first step, algorithms

QFCT, QFT and QCT achieve efficient filtering even for the larger datasets. For the exceptional

case of the algorithm FCT, the filtering overhead increases almost quadratically with increase in

the input size as both filtering techniques (frequency distance and CDF bounds) need to explicitly

compare the query string R with all possible strings S ∈ S (|S| ≥ |R| − k). Also, the filtering

time required for QFT and QCT closely follows that for QFCT. This confirms the ability of q-gram

filtering to significantly reduce the filtering overhead, and highlights the advantages offered by the

proposed indexing scheme incorporating it.

Figure 7.3 also shows the time required for answering the join query for these algorithms. FCT,

lacking efficient filtering (though effective), takes the longest to output its answers. However, the

query time for QFT, despite using efficient q-gram filtering, shows a rapid increase. In contrast to

this, the good scalable behavior of QFCT and QCT emphasizes the need for using tight filtering

conditions based on the lower and upper bounds of CDF. In the absence of these, exponentially

FIGURE 7.3. Effect of dataset size |S|

129

more number of candidates need trie-based verification which results in quickly deteriorating query

performance. Thus, a combination of q-gram filtering with CDF bounds in QFCT achieves the

best of both worlds, allowing us to restrict the increase in both filtering time as well as the number

of trie-based verifications. Though the number of outputs increased quadratically with data size,

the increase in the number of false positives in the verification step of QFCT (i.e., the scenario

where a candidate pair was not an output after verification) was found to be linear to the output size.

An order of magnitude performance gain of QFCT over others seen in Figure 7.3 will be further

extended for larger input collections. With algorithm QFT requiring a higher number of expensive

verifications and QCT showing similar trends as that of QFCT, we use only the remaining two

algorithms i.e., QFCT and FCT for the experiments to follow. We also append a character ’D’ or ’P’

to the algorithms acronym to distinguish between its query times on the dblp and protein datasets.

7.7.3 Effects of θ

An increase in the number of uncertain positions in the string has a detrimental effect on

both algorithms QFCT and FCT as shown in Figure 7.4. This is due to the direct impact of θ on

every step of the algorithm in answering join queries. Starting with the q-gram filtering, more

uncertain positions for query string R imply more time required for populating the sets q(r, x) as a

preprocessing step, as well as for adding the string R to inverted indices after answering the query.

Also the larger size of set q(r, x) due to the increase in θ increases look up time in inverted indices

FIGURE 7.4. Effect of θ

130

and consequently increase the time required for computing αx. Though size of a set q(r, x) can

increase exponentially with θ, its impact is limited due to the small fixed value of q. There is another

subtle impact of θ on q-gram filtering. With more uncertain positions in query string R, more strings

in the collection can be matched with substrings of R. We found this increase to be linear with

≈ 1.5% of all join pairs evaluated by q-gram filtering for θ = 0.1 to only ≈ 4% evaluated for

θ = 0.4 on the dblp dataset. Thus, proposed q-gram filtering serves the purpose of efficient pruning

even with the increased uncertainty.

The impact of θ on the computation of frequency distance and CDF bounds is more obvious.

Computing the expected frequency distance of a character directly depends on the number of posi-

tions in input strings (R, S) where it appears probabilistically. Due to the probability computation

of two positions matching in R and S (R[x] = S[y]), it takes longer to populate a dynamic pro-

gramming matrix for CDF. Thus, the increase in filtering time of query algorithms is almost linear

to θ. Finally, in the trie-based verification, more possible words need to be evaluated, increasing

verification cost exponentially. In conclusion, the verification step is the worst affected among all

due to large θ and is the primary contributor in increased time for answering join queries. We note

that in most of the scenarios, algorithm QFCT takes longer to answer join queries for the protein

data than for the dblp data because of the higher overhead of q-gram and CDF filtering, which we

pointed out in Section 7.7.1. On the other hand, algorithm FCT performs better for the protein data

by virtue of faster frequency filtering as seen earlier. This comparative behavior of QFCT and FCT

is also evident in Figure 7.4.

7.7.4 Effects of τ

Figure 7.5 shows the results on the dblp and protein dataset for different values of τ from 0.001

to 0.4. Though the query times remain insensitive to τ for a large range, a gradual increase or

decrease in probability threshold has a two fold effect on query algorithms. We analyze the scenario

by looking at the number of candidate pairs pruned by CDF bounds either by accepting based on

lower bound or rejecting based on upper bound. As τ increases, upper bound filter becomes more

and more selective as it can reject more number of candidate pairs. On the contrary, filtering based

131

on lower bound looses its effectiveness with increased τ as it can not accept as many strings as it can

for smaller values of τ . Thus the relative increase and decrease in number of candidate pairs pruned

by CDF upper and lower bound respectively determines the overall effect of varying τ . When upper

bound filter can not compensate for the loss in effectiveness of lower bound, more candidate pairs

require trie-based verification resulting in higher query time. Such a scenario is evident in Figure 7.5

for protein data for τ ranging from 0.001 to 0.1.

τ has an interesting effect on q-gram filtering. Figure 7.5 shows the number of candidates pairs

rejected by q-gram filtering in QFCT. It also shows the count of accepted candidates using CDF

lower bound and rejected by CDF upper bound in QFCT. Note that q-gram filtering only uses the

upper bound and Figure 7.5 shows the reduced effectiveness of CDF lower bound filtering. As τ

increases, probabilistic pruning (Theorem 7.7) becomes more effective and prunes out a significant

number of candidate pairs that satisfy the necessary condition for two strings to be similar as

described in Lemma 7.6 (shown in Figure 7.5). In effect, q-gram filtering reduces the overhead of

applying CDF bounds and to some extent compensates for the increased verification cost, if any.

This effect can be seen by gradual decrease in the number of candidates rejected by CDF even

though an increased number of candidates are pruned using the upper bound overall. Finally, for

large τ , the q-gram filtering advantage coupled with reduced output size due to more selective τ

results in improved query time.

FIGURE 7.5. Effect of τ

132

7.7.5 Effects of k

Figure 7.6 shows the time required for answering a join query on the dblp dataset when k

changes from 1 to 4 and for the protein dataset with k = 2, 4, 6, 8. With increased k we can expect

more string pairs to satisfy an edit threshold and hence an increase in query time. As we loosen

the edit threshold requirement, the effectiveness of q-gram filtering begins to deteriorate since the

requirement for Lemma 7.6 can be met with string S having less number of its partitions being

matched with substrings in R. Therefore, even with probabilistic pruning, many false candidates

pairs are passed on to frequency distance and CDF filtering routines. Also, the number of candidates

removed by the upper bound of frequency distance and CDF decreases with an increase in k. Though

lower bound filtering in CDF can accept more candidates with an increase in k, this benefit is easily

offset by loose upper bounds resulting in net increase in verification cost. With increased k, the time

required for QFCT approaches that of FCT but still manages to save up to 35% of FCT’s query cost.

7.7.6 Effects of q

In this set of experiments we try to investigate the effect of q-gram length on the efficiency

and effectiveness of q-gram filtering using input collections with 100K strings. As pointed out

earlier, q-gram filtering incurs more filtering overhead for higher string lengths with fixed q. We

can hope to reduce this overhead by increasing q, however such an increase has side-effects on the

space-time tradeoff of q-gram filtering. Even though we will have fewer partitions for each string

FIGURE 7.6. Effect of k

133

due to increased q, each segment now has more possible instances to be added to the inverted indices

increasing the storage requirement as shown in Figure 7.7. The rate of increase is faster for the dblp

dataset because of higher θ i.e., more uncertain positions and larger alphabet set. We note that we

use peak memory usage as a measure that accounts for the indices maintained at any point during

query answering based on the length of a string currently under consideration. Further, this also

implies that query preprocessing that populates sets q(r, x) needs more time offsetting the benefits

of higher q to some extent. Figure 7.7 shows the improvement in the filtering time for q varying

from 2 to 6. With size of q(r, x) increasing exponentially with q, the improvement in filtering time

achieved due to fewer segments also decreases exponentially.

For deterministic strings, increasing q makes it difficult for a segment of string s to match with

substrings of query string r and implies potential improvement in pruning ability of q-gram filtering.

For uncertain strings though, due to higher q, a segment may contain a larger number of uncertain

positions. Hence there are more number of possible instances with increased chances for a segment

to find a match in substrings of a query string. As a result, the effectiveness of q-gram filtering

diminishes gradually for higher q as seen in Figure 7.7. We note that, though filtering time improves

with q, time required for answering a join query shows uni-valley behavior as less effective filtering

causes increased query time for higher q even with less filtering overhead. We found q = 3 or q = 4

offers the best combination of fast effective pruning with acceptable storage requirement. With peak

memory usage of inverted indices less than the input data size itself for both q = 3 and 4, the space

FIGURE 7.7. Effect of q

134

required for storing all indices as required for answering similarity search queries was found to be

only ≈ 1.5 and ≈ 2 times the data size respectively.

7.7.7 Evaluating Trie-based Verification

We now analyze the performance benefits offered by the trie-based verification over a naive

way of doing the same. Figure 7.8 shows the verification time required for answering join queries

on the dblp and protein datasets with varying degree of uncertainty i.e., parameter θ. With an

increase in the number of uncertain positions in the string, the number of possible worlds increases

exponentially. This results in increased verification cost for both trie-based and naive verification.

In naive verification, we need to enumerate possible worlds for each string in the dataset and also

enumerate possible words for each of the candidate strings that may form a similar pair with it. In

effect, we may enumerate all possible worlds for each string more than once. Additionally, given a

candidate pair (R, S) it needs to compare every possible instance of R with that of S. In contrast,

the trie-based verification enumerates all possible words for each string S only once and when it is

selected as a candidate for some other string R in database, it enumerates and compares only those

possible worlds which are highly likely to be similar to some instance of R. Thus the performance

gains of trie-based verification increase with increasing θ as seen in Figure 7.8. We note that the

cost of verification using trie-based approach also increases exponentially due to the requirement of

having a complete trie in place for query string R. Moreover, trie-based verification can be more

expensive than the naive method in scenarios where the majority of instances of R× S satisfy the

edit threshold due to the overhead of building a trie and computing a set of similar nodes for each

node in the trie. Though we obtained performance gains using trie-based verification on the protein

data as well, they were less significant than for the dblp data due to higher string lengths, lower

degree of uncertainty (θ) and smaller alphabet set.

7.7.8 Effects of String Length

In this final set of experiments, we test algorithms QFCT and FCT by varying the length of

the probabilistic strings. For studying this effect, we use the 100K versions of the dblp and protein

135

datasets, and append each probabilistic string to itself for 0,1,2 or 3 times. To ensure that the

verification step does not get excessively expensive, we limit the number of probabilistic characters

in a probabilistic string to be at most 8. Clearly, the costs of both algorithms increase with longer

strings as seen in Figure 7.9. In terms of filtering time, computation of q-gram filtering and CDF

bounds takes longer as string lengths increase, as described earlier in Section 7.7.1. However,

frequency distance filtering being dependent only on the number of uncertain character positions

remains unaffected. This allows algorithm FCT to close the performance gap with QFCT for higher

string lengths by virtue of efficient frequency distance filtering. Additionally, verification cost

begins to dominate the query time with the increase in string lengths. We note that even trie-based

verification needs to instantiate all possible worlds for each probabilistic string once while answering

a join query. With each possible world enumeration taking more time, higher string length adversely

affects the verification step. For fixed k, τ , and uncertain character positions, the number of output

pairs decreases with increase in string length. Despite this, the query time increases because of

the aforementioned reasons. We emphasize that the proposed filtering techniques maintain their

effectiveness with varying lengths as the fraction of the candidate pairs that undergo verification

and are accepted as output remains almost constant.

7.7.9 Comparison with EED

In this subsection, we qualitatively compare the join query algorithm in [77] against algorithms

presented in this work:

FIGURE 7.8. Trie-based verification FIGURE 7.9. Effects of string length

136

1. We partition each string in the collection based on q whereas q-gram filtering in [77] makes

use of overlapping q-grams. This allows us to significantly reduce the space required for

storing all q-grams (≈ 5× datasize as reported in [77] against our index of twice the input

data size).

2. q-gram filtering presented in [77] requires each probabilistic string pair to be evaluated during

query execution tasks like computation of frequency distance, CDF bounds computation.

Algorithm QFCT employes indexing that incorporates q-gram filtering before applying

expensive filters. Therefore, we can expect QFCT to offer benefits over the query algorithm

in [77] similar to its advantages over algorithm FCT seen in Figure 7.3.

3. Computing the exact eed between two probabilistic strings requires all possible worlds for

two strings to be instantiated in the same way as a naive verification method discussed in

Section 7.7.7. On the other hand trie-based verification allows us to determine the similarity

of a string pair efficiently (refer to Figure 7.8).

7.8 Summary

In this chapter, we study the largely unexplored problem of answering similarity join queries

on uncertain strings. We propose a novel q-gram filtering technique that integrates probabilistic

pruning and extends frequency distance and CDF based filtering techniques. In future work, we plan

to investigate tighter filtering conditions and improvements to the trie-based verification algorithm.

137

Chapter 8
Conclusions and Future Work

We have presented efficient data structures for several problems with applications in database

and information retrieval systems dealing with structured/unstructured and precise/uncertain data.

Most of these structures have been developed keeping RAM model in mind. Exponential growth

of digital data in recent years has necessitated development of disk-resident indexing solutions.

Moreover, limited scope for increasing processing power of uniprocessors has fueled interest in

distributed construction, storage, and query processing of indexes. We conclude with interesting

variations/extensions of the problems studied in this dissertation that need to explored in external

memory and (or) distributed computing model.

• As pointed out in Chapter 3, top-k join problem is closely related to computing skylines. An

extension to the classical skyline problem called range skyline asks for skyline points only

among the points that fall within the query region [82]. It would be interesting to extend

this problem for categorical data for three-sided query region of the form [a, b] × [τ,+∞]

analogous to the work in Chapter 5.

• In chapter 4 we have investigated top-k document retrieval for a given document collection

in internal memory. The proposed practical framework occupies close to twice the data size.

This limits its usage for large collections which can not fit in internal memory. Implementing a

disk-resident index for ranked document retrieval based on theoretical results in Chapter 5 will

be helpful for numerous bioinformatics applications dealing with dna or protein sequences.

• Suffix tree is a widely used indexing data structure for many of the sequence based problems,

such as pattern matching (Chapter 4, 5), finding the substrings etc. Due to the significance

of suffix tree, many construction algorithms have been proposed [128, 95] for the same.

When the string and the resulting suffix tree are too large to fit into the main memory,

138

these construction algorithms become very inefficient. Disk-based suffix tree construction

methods have been proposed in the recent past [115, 12, 52] that work efficiently with

very long strings. These techniques partition the suffix tree and aim to build each partition

independently and sequentially within the available primary memory. Exploiting popular

distributed computing models such as MapReduce for parallel suffix tree construction so as to

improve the construction time as well as scalability of existing methods remains challenging.

• Techniques proposed in Chapter 7 can be used to answer similarity search queries over a

collection of uncertain strings. Here, given a query string as input we need to output all the

strings in the collection that are within the required edit distance threshold with probability

higher than the input threshold [34]. However, with such a threshold being domain dependent,

estimating the same to achieve reasonable output size is a non-trivial task. For deterministic

strings, top-k query eliminates the need for such an estimation by requiring k most similar

strings to be reported [37]. Extending top-k semantics to the uncertain strings, so as to only

retrieve the k strings that have the highest probability of being within the desired edit distance

threshold, is an important open problem.

139

Bibliography

[1] Peyman Afshani. On dominance reporting in 3d. In Proceedings of European Symposium on
Algorithms, pages 41–51, 2008.

[2] A. Aggarwal and J. S. Vitter. The Input/Output Complexity of Sorting and Related Problems.
Communications of the ACM, 31(9):1116–1127, 1998.

[3] R. Akbarinia, I.F. Ilyas, M.T. Özsu, and P. Valduriez. Jtop algorithms for top-k join queries.
In Technical report, 2008.

[4] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Best position algorithms for top-k
queries. In Proceedings of International Conference on Very Large Data Bases, pages
495–506, 2007.

[5] Amihood Amir, Eran Chencinski, Costas S. Iliopoulos, Tsvi Kopelowitz, and Hui Zhang.
Property matching and weighted matching. In Proceedings of Symposium on Combinatorial
Pattern Matching, pages 188–199, 2006.

[6] V. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts. In Proceedings
of Special Interest Group on Information Retrieval, pages 372–379, 2006.

[7] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins. In
Proceedings of International Conference on Very Large Data Bases, pages 918–929, 2006.

[8] Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional indexability and
optimal range search indexing. In Proceedings of Symposium on Principles of Database
Systems, pages 346–357, 1999.

[9] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval. 1999.

[10] Dirk Bahle, Hugh E. Williams, and Justin Zobel. Compaction techniques for nextword
indexes. In Proceedings of International Symposium on String Processing and Information
Retrieval, 2001.

[11] Dirk Bahle, Hugh E. Williams, and Justin Zobel. Optimised phrase querying and browsing
of large text databases. In ACSC, pages 11–19, 2001.

[12] Marina Barsky, Ulrike Stege, Alex Thomo, and Chris Upton. Suffix trees for very large
genomic sequences. In Conference on Information and Knowledge Management, pages
1417–1420, 2009.

[13] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Gerhard Weikum.
Io-top-k: Index-access optimized top-k query processing. In Proceedings of International
Conference on Very Large Data Bases, pages 475–486, 2006.

[14] M. A. Bender and M. Farach-Colton. The Level Ancestor Problem Simplified. Theoretical
Computer Science, 321(1):5–12, 2004.

140

[15] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005.

[16] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993.

[17] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

[18] Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis. New
upper bounds for generalized intersection searching problems. In Proceedings of Interna-
tional Colloquium on Automata, Languages and Programming, pages 464–474, 1995.

[19] Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro López-Ortiz. Online
sorted range reporting. In Proceedings of International Symposium on Algorithms and
Computation, pages 173–182, 2009.

[20] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k queries over web-
accessible databases. In Proceedings of International Conference on Data Engineering,
2002.

[21] Rodrigo Cánovas and Gonzalo Navarro. Practical compressed suffix trees. In SEA, pages
94–105, 2010.

[22] Pei Cao and Zhe Wang. Efficient top-k query calculation in distributed networks. In PODC,
pages 206–215, 2004.

[23] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for com-
munication and stream computation. In Proceedings of Symposium on Theory of Computing,
pages 641–650, 2008.

[24] Amit Chakrabarti, T. S. Jayram, and Mihai Patrascu. Tight lower bounds for selection in
randomly ordered streams. In Proceedings of Symposium on Discrete Algorithms, pages
720–729, 2008.

[25] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In Proceedings of Special Interest Group on Management of
Data, pages 346–357, 2002.

[26] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust and effi-
cient fuzzy match for online data cleaning. In Proceedings of Special Interest Group on
Management of Data, pages 313–324, 2003.

[27] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive operator for similarity
joins in data cleaning. In Proceedings of International Conference on Data Engineering,
page 5, 2006.

141

[28] Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988.

[29] Bernard Chazelle and Herbert Edelsbrunner. Linear space data structures for two types of
range search. Discrete & Computational Geometry, 2:113–126, 1987.

[30] Jiang Chen and Ke Yi. Dynamic structures for top-k queries on uncertain data. In Proceedings
of International Symposium on Algorithms and Computation, pages 427–438, 2007.

[31] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating probabilistic queries
over imprecise data. In Proceedings of Special Interest Group on Management of Data, pages
551–562, 2003.

[32] Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for probabilistic data
and expected ranks. In Proceedings of International Conference on Data Engineering, pages
305–316, 2009.

[33] J. Shane Culpepper, Gonzalo Navarro, Simon J. Puglisi, and Andrew Turpin. Top-k ranked
document search in general text databases. In Proceedings of European Symposium on
Algorithms, pages 194–205, 2010.

[34] Dongbo Dai, Jiang Xie, Huiran Zhang, and Jiaqi Dong. Efficient range queries over uncertain
strings. In Proceedings of International Conference on Scientific and Statistical Database
Management, pages 75–95, 2012.

[35] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In
Proceedings of International Conference on Very Large Data Bases, pages 864–875, 2004.

[36] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis. Answering
top-k queries using views. In Proceedings of International Conference on Very Large Data
Bases, pages 451–462, 2006.

[37] Dong Deng, Guoliang Li, and Jianhua Feng. Top-k string similarity search with edit-distance
constraints. In Proceedings of International Conference on Data Engineering, 2013.

[38] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and Wei Hong.
Model-driven data acquisition in sensor networks. In Proceedings of International Confer-
ence on Very Large Data Bases, pages 588–599, 2004.

[39] Ronald Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci.,
58(1):83–99, 1999.

[40] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings of
Symposium on Discrete Algorithms, pages 28–36, 2003.

[41] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-
ware. In Proceedings of Symposium on Principles of Database Systems, 2001.

[42] Jianhua Feng, Jiannan Wang, and Guoliang Li. Trie-join: a trie-based method for efficient
string similarity joins. VLDB J., 21(4):437–461, 2012.

142

[43] P. Ferragina and R. Grossi. The String B-tree: A New Data Structure for String Searching in
External Memory and Its Application. Journal of the ACM, 46(2):236–280, 1999.

[44] Jonathan Finger and Neoklis Polyzotis. Robust and efficient algorithms for rank join evalu-
ation. In Proceedings of Special Interest Group on Management of Data, pages 415–428,
2009.

[45] J. Fischer and V. Heun. A New Succinct Representation of RMQ-Information and Improve-
ments in the Enhanced Suffix Array. In ESCAPE, pages 459–470, 2007.

[46] Johannes Fischer, Volker Heun, and Horst Martin Stühler. Practical entropy-bounded schemes
for o(1)-range minimum queries. In Proceedings of Data Compression Conference, pages
272–281, 2008.

[47] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded compressed
suffix trees. In Theoretical Computer Science, pages 5354–5364, 2009.

[48] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

[49] T. Gagie, G. Navarro, and S. J. Puglisi. Colored Range Queries and Document Retrieval. In
Proceedings of International Symposium on String Processing and Information Retrieval,
pages 67–81, 2010.

[50] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-Augustin Saita.
Declarative data cleaning: Language, model, and algorithms. In Proceedings of International
Conference on Very Large Data Bases, pages 371–380, 2001.

[51] Tingjian Ge and Zheng Li. Approximate substring matching over uncertain strings. PVLDB,
4(11):772–782, 2011.

[52] Amol Ghoting and Konstantin Makarychev. Serial and parallel methods for i/o efficient
suffix tree construction. In Proceedings of Special Interest Group on Management of Data,
pages 827–840, 2009.

[53] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and
Divesh Srivastava. Approximate string joins in a database (almost) for free. In Proceedings
of International Conference on Very Large Data Bases, 2001.

[54] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications to
Text Indexing and String Matching. SIAM Journal on Computing, 35(2):378–407, 2005.

[55] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text
indexes. In Proceedings of Symposium on Discrete Algorithms, pages 841–850, 2003.

[56] Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the stream. In
Proceedings of Symposium on Principles of Database Systems, pages 273–279, 2006.

143

[57] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing multi-feature queries
for image databases. In Proceedings of International Conference on Very Large Data Bases,
pages 419–428, 2000.

[58] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Towards efficient multi-feature
queries in heterogeneous environments. In ITCC, pages 622–628, 2001.

[59] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Compressed data
structures: Dictionaries and data-aware measures. Theor. Comput. Sci., 387(3):313–331,
2007.

[60] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on generalized in-
tersection searching problems: counting, reporting, and dynamization. Journal of Algorithms,
19(2):282–317, 1995.

[61] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration: The teenage years.
In Proceedings of International Conference on Very Large Data Bases, pages 9–16, 2006.

[62] W. K. Hon, M. Patil, R. Shah, and S. B. Wu. Efficient Index for Retrieving Top-k Most
Frequent Documents. Journal on Discrete Algorithms, 8(4):402–417, 2010.

[63] W. K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. String Retrieval for Multi-pattern
Queries. In Proceedings of International Symposium on String Processing and Information
Retrieval, pages 55–66, 2010.

[64] Wing Kai Hon, Manish Patil, Rahul Shah, and Sharma V. Thankachan. Compressed property
suffix trees. In Proceedings of Data Compression Conference, pages 123–132, 2011.

[65] Wing-Kai Hon, Rahul Shah, and Sharma V. Thankachan. Towards an optimal space-and-
query-time index for top-k document retrieval. In Proceedings of Symposium on Combinato-
rial Pattern Matching, pages 173–184, 2012.

[66] Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Space-efficient framework for top-k
string retrieval problems. In Proceedings of Symposium on Foundations of Computer Science,
pages 713–722, 2009.

[67] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Ranking queries on uncertain data: a
probabilistic threshold approach. In Proceedings of Special Interest Group on Management
of Data, pages 673–686, 2008.

[68] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. Maybms: a probabilistic
database management system. In Proceedings of Special Interest Group on Management of
Data, pages 1071–1074, 2009.

[69] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly ordered sets.
SIAM Journal of Computing, 1(1):31–39, 1972.

144

[70] Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evangelos
Theodoridis, and Athanasios Tsakalidis. The weighted suffix tree: An efficient data structure
for handling molecular weighted sequences and its applications. Fundam. Inf., 71:259–277,
February 2006.

[71] Costas S. Iliopoulos, Katerina Perdikuri, Evangelos Theodoridis, Athanasios K. Tsakalidis,
and Kostas Tsichlas. Algorithms for extracting motifs from biological weighted sequences.
J. Discrete Algorithms, 5(2):229–242, 2007.

[72] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Joining ranked inputs in practice.
In Proceedings of International Conference on Very Large Data Bases, pages 950–961, 2002.

[73] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k join queries in
relational databases. In Proceedings of International Conference on Very Large Data Bases,
pages 754–765, 2003.

[74] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Hicham G. Elmongui, Rahul Shah, and
Jeffrey Scott Vitter. Adaptive rank-aware query optimization in relational databases. ACM
Trans. Database Syst., 31(4):1257–1304, 2006.

[75] Ravi Janardan and Mario A. Lopez. Generalized intersection searching problems. Interna-
tional Journal of Computational Geometry and Applications, 3(1):39–69, 1993.

[76] J. Jestes, G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data.
Knowledge and Data Engineering, IEEE Transactions on, PP(99):1, 2010.

[77] Jeffrey Jestes, Feifei Li, Zhepeng Yan, and Ke Yi. Probabilistic string similarity joins. In
Proceedings of Special Interest Group on Management of Data, pages 327–338, 2010.

[78] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive fuzzy keyword
search. In Proceedings of International Conference on World Wide Web, pages 371–380,
2009.

[79] Cheqing Jin, Ke Yi, Lei Chen 0002, Jeffrey Xu Yu, and Xuemin Lin. Sliding-window top-k
queries on uncertain streams. PVLDB, 1(1):301–312, 2008.

[80] Tamer Kahveci and Ambuj K. Singh. Efficient index structures for string databases. In
Proceedings of International Conference on Very Large Data Bases, pages 351–360, 2001.

[81] Marek Karpinski and Yakov Nekrich. Top-k color queries for document retrieval. In
Proceedings of Symposium on Discrete Algorithms, pages 401–411, 2011.

[82] Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas, and
Jeonghun Yoon. I/o-efficient planar range skyline and attrition priority queues. In Pro-
ceedings of Symposium on Principles of Database Systems, pages 103–114, 2013.

[83] Christoph Koch and Dan Olteanu. Conditioning probabilistic databases. Proc. VLDB Endow.,
1:313–325, August 2008.

145

[84] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity measures
and algorithms. In Proceedings of Special Interest Group on Management of Data, pages
802–803, 2006.

[85] Kasper Green Larsen and Rasmus Pagh. I/o-efficient data structures for colored range and
prefix reporting. In Proceedings of Symposium on Discrete Algorithms, pages 583–592,
2012.

[86] Kasper Green Larsen and Freek van Walderveen. Near-optimal range reporting structures
for categorical data. In Proceedings of Symposium on Discrete Algorithms, pages 256–276,
2013.

[87] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F. Ilyas. Supporting ad-hoc ranking
aggregates. In Proceedings of Special Interest Group on Management of Data, pages 61–72,
2006.

[88] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song. Ranksql: Query
algebra and optimization for relational top-k queries. In Proceedings of Special Interest
Group on Management of Data, pages 131–142, 2005.

[89] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: A partition-based
method for similarity joins. PVLDB, 5(3):253–264, 2011.

[90] Jian Li, Barna Saha, and Amol Deshpande. A unified approach to ranking in probabilistic
databases. PVLDB, 2(1), 2009.

[91] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms, 4(3), 2008.

[92] Christos Makris and Athanasios K. Tsakalidis. Algorithms for three-dimensional dominance
searching in linear space. Inf. Process. Lett., 66(6):277–283, 1998.

[93] Nikos Mamoulis, Kit Hung Cheng, Man Lung Yiu, and David W. Cheung. Efficient aggre-
gation of ranked inputs. In Proceedings of International Conference on Data Engineering,
page 72, 2006.

[94] Yossi Matias, S. Muthukrishnan, Süleyman Cenk Sahinalp, and Jacob Ziv. Augmenting
suffix trees, with applications. In Proceedings of European Symposium on Algorithms, pages
67–78, 1998.

[95] E. M. McCreight. A Space-economical Suffix Tree Construction Algorithm. Journal of the
ACM, 23(2):262–272, 1976.

[96] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. Klee: A framework for dis-
tributed top-k query algorithms. In Proceedings of International Conference on Very Large
Data Bases, pages 637–648, 2005.

[97] J. I. Munro. Tables. In Proceedings of Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 37–42, 1996.

146

[98] J. I. Munro, V. Raman, and S. S. Rao. Space Efficient Suffix Trees. Journal of Algorithms,
39(2):205–222, 2001.

[99] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of
Symposium on Discrete Algorithms, pages 657–666, 2002.

[100] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and Jeffrey Scott Vitter.
Supporting incremental join queries on ranked inputs. In Proceedings of International
Conference on Very Large Data Bases, pages 281–290, 2001.

[101] Gonzalo Navarro. Spaces, trees and colors: The algorithmic landscape of document retrieval
on sequences. In CoRR abs/304.6023, 2013.

[102] Gonzalo Navarro and Yakov Nekrich. Top-k document retrieval in optimal time and linear
space. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012),
pages 1066–1077, 2012.

[103] Gonzalo Navarro and Simon J. Puglisi. Dual-sorted inverted lists. In Proceedings of
International Symposium on String Processing and Information Retrieval, pages 309–321,
2010.

[104] Yakov Nekrich. Space-efficient range reporting for categorical data. In Proceedings of
Symposium on Principles of Database Systems, pages 113–120, 2012.

[105] Surya Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In Proceedings of International Conference on Data Engineering, pages 22–29,
1999.

[106] Enno Ohlebusch, Johannes Fischer, and Simon Gog. Cst++. In Proceedings of International
Symposium on String Processing and Information Retrieval, pages 322–333, 2010.

[107] Enno Ohlebusch and Simon Gog. A compressed enhanced suffix array supporting fast string
matching. In Proceedings of International Symposium on String Processing and Information
Retrieval, pages 51–62, 2009.

[108] Manish Patil, Xuanting Cai, Sharma V. Thankachan, Rahul Shah, Seung-Jong Park, and
David Foltz. Approximate string matching by position restricted alignment. In EDBT/ICDT
Workshops, pages 384–391, 2013.

[109] Manish Patil and Rahul Shah. Similarity joins for uncertain strings. In Proceedings of
Special Interest Group on Management of Data, pages 1471–1482, 2014.

[110] Manish Patil, Rahul Shah, and Sharma V. Thankachan. A truly dynamic data structure for
top-k queries on uncertain data. In Proceedings of International Conference on Scientific
and Statistical Database Management, pages 91–108, 2011.

[111] Manish Patil, Rahul Shah, and Sharma V. Thankachan. Top-k join queries: overcoming the
curse of anti-correlation. In IDEAS, pages 76–85, 2013.

147

[112] Manish Patil, Sharma V. Thankachan, Rahul Shah, Wing-Kai Hon, Jeffrey Scott Vitter, and
Sabrina Chandrasekaran. Inverted indexes for phrases and strings. In Proceedings of Special
Interest Group on Information Retrieval, pages 555–564, 2011.

[113] Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jeffrey Scott Vitter.
Categorical range maxima queries. In Proceedings of Symposium on Principles of Database
Systems, 2014.

[114] M. Persin, J. Zobel, and R. S. Davis. Filtered document retrieval with frequency-sorted
indexes. In Journal of the American Society for Information Science, volume 47, pages
749–764, 1996.

[115] Benjarath Phoophakdee and Mohammed J. Zaki. Genome-scale disk-based suffix tree
indexing. In SIGMOD Conference, pages 833–844, 2007.

[116] R. Raman, V. Raman, and S. S. Rao. Succinct Indexable Dictionaries with Applications to
Encoding k-ary Trees, Prefix Sums and Multisets. ACM Transactions on Algorithms, 3(4),
2007.

[117] L. Russo, G. Navarro, and A. Oliveira. Fully-Compressed Suffix Trees. In Proceedings of
Latin American Theoretical Informatics Symposium, pages 362–373, 2008.

[118] K. Sadakane. Compressed Suffix Trees with Full Functionality. Theory of Computing
Systems, pages 589–607, 2007.

[119] Kunihiko Sadakane. Space-efficient data structures for flexible text retrieval systems. In
Proceedings of International Symposium on Algorithms and Computation, pages 14–24,
2002.

[120] Walter J. Savitch and Michael J. Stimson. Time bounded random access machines with
parallel processing. J. ACM, 26(1):103–118, 1979.

[121] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Prdb: managing and exploiting rich
correlations in probabilistic databases. VLDB J., 18(5):1065–1090, 2009.

[122] R. Shah, C. Sheng, S. V. Thankachan, and J. S. Vitter. Top-k document retrieval in external
memory. In Proceedings of European Symposium on Algorithms, 2013.

[123] Jop F. Sibeyn. External selection. In Proceedings of the 16th annual conference on Theoreti-
cal aspects of computer science, STACS’99, pages 291–301, 1999.

[124] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne E. Hambrusch, and
Rahul Shah. Orion 2.0: native support for uncertain data. In Proceedings of Special Interest
Group on Management of Data, pages 1239–1242, 2008.

[125] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Top-k query processing
in uncertain databases. In Proceedings of International Conference on Data Engineering,
pages 896–905, 2007.

148

[126] Yufei Tao, Vagelis Hristidis, Dimitris Papadias, and Yannis Papakonstantinou. Branch-and-
bound processing of ranked queries. Inf. Syst., 32(3):424–445, 2007.

[127] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick Koudas, and Divesh
Srivastava. Ranked join indices. In Proceedings of International Conference on Data
Engineering, 2003.

[128] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[129] N. Valimaki and V. Makinen. Space-Efficient Algorithms for Document Retrieval. In
Proceedings of Symposium on Combinatorial Pattern Matching, pages 205–215, 2007.

[130] Niko Välimäki, Veli Mäkinen, Wolfgang Gerlach, and Kashyap Dixit. Engineering a com-
pressed suffix tree implementation. ACM Journal of Experimental Algorithmics, 14, 2009.

[131] Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-d range searching in external
memory. In Proceedings of Symposium on Theory of Computing, pages 192–201, 1996.

[132] P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of Symposium on Switching
and Automata Theory, pages 1–11, 1973.

[133] Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage.
In CIDR, pages 262–276, 2005.

[134] Hugh E. Williams, Justin Zobel, and Phil Anderson. What’s next? index structures for
efficient phrase querying. In Australasian Database Conference, pages 141–152, 1999.

[135] Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase querying with combined
indexes. ACM Trans. Inf. Syst., 22(4):573–594, 2004.

[136] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. PVLDB, 1(1):933–944, 2008.

[137] Dong Xin, Jiawei Han, and Kevin Chen-Chuan Chang. Progressive and selective merge:
computing top-k with ad-hoc ranking functions. In Proceedings of Special Interest Group on
Management of Data, pages 103–114, 2007.

[138] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Efficient processing of top-k queries
in uncertain databases. In Proceedings of International Conference on Data Engineering,
pages 1406–1408, 2008.

[139] Hui Zhang, Qing Guo, and Costas S. Iliopoulos. An algorithmic framework for motif
discovery problems in weighted sequences. In CIAC, pages 335–346, 2010.

[140] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Comput. Surv.,
38(2), 2006.

149

Vita

Manish Madhukar Patil was born in Mumbai, India, in 1982. He obtained his bachelor’s degree in

Computer Engineering in 2003 from Datta Meghe College of Engineering, University of Mumbai.

During his doctoral studies at Louisiana State University, he has co-authored 10 refereed conference

papers and 4 journal publications (published or accepted for publication by August 2014). His

research interest falls in the area of algorithms and data structures with applications in database

systems, information retrieval, and bioinformatics.

150

