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ABSTRACT 

        In recent years, modern graphics processing units have been widely adopted in high perfor-

mance computing areas to solve large scale computation problems. The leading GPU manufacturers 

Nvidia and AMD have introduced series of products to the market. While sharing many similar de-

sign concepts, GPUs from these two manufacturers differ in several aspects on processor cores and 

the memory subsystem. In this work, we conduct a comprehensive study to characterize and com-

pare the architectural features of Nvidia’s Fermi and AMD’s Cypress GPUs.  

        We first investigate the performance and power consumptions of an AMD Cypress GPU. By 

employing a rigorous statistical model to analyze the execution behaviors of representative general-

purpose GPU (GPGPU) applications, we conduct insightful investigations on the target GPU archi-

tecture. Our results demonstrate that the GPU execution throughput and the power dissipation are 

dependent on different architectural variables. Furthermore, we design a set of micro-benchmarks to 

study the power consumption features of different function units on the GPU. Based on those results, 

we derive instructive principles that can guide the design of power-efficient high performance com-

puting systems. We then make the concentration shift to the Nvidia Fermi GPU and compare it with 

the product from AMD. Our results indicate that these two products have diverse advantages that 

are reflected in their performance for different sets of applications. In addition, we also compare the 

energy efficiencies of these two platforms since power/energy consumption is a major concern in 

the high performance computing system.  
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CHAPTER 1. INTRODUCTION 

        This thesis focuses on characterizing and comparing the architectural features of modern 

GPUs manufactured by Nvidia and AMD. We aim at extracting key features that are respectively 

manifested on the products from these two leading manufacturers. The observation can be used 

to guide the software programmer working on general purpose GPUs (GPGPUs) to optimize 

their applications by efficiently utilizing the computing resources. Moreover, our observation 

may also shed some lights to GPU architects to steer the design of more powerful processors in 

the future.  

        This chapter presents an informative introduction to these works. It starts from describing 

the importance of GPUs in current computer community, and then explains the necessity to per-

form an in-depth investigation on modern GPUs. Finally, this chapter briefly outlines the 

roadmap of this thesis.  

1.1 The Importance of GPU 

With the emergence of extreme scale computing, modern graphics processing units (GPUs) 

have been widely used to build powerful supercomputers and data centers. With large number of 

processing cores and high-performance memory subsystem, modern GPUs are considered as 

promising candidates to facilitate high performance computing (HPC). The leading manufactur-

ers in the GPU industry, Nvidia and AMD have introduced series of products that are currently 

used in several preeminent supercomputers. For example, in the Top500 list released in June 

2011, the world’s second fastest supercomputer Tianhe-1A installed in China employs 7168 

Nvidia Tesla M2050 general purpose GPUs [13]. LOE-WE-CSC, which is located in Germany 

and ranked at 22nd in the Top500 list [13], includes 768 AMD Radeon HD 5870 GPUs for paral-

lel computations. 
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However, unlike traditional CPUs which have been studied by researchers for long time, the 

fast evolving GPUs are still considered as mysterious innovations by general users/developers. 

For example, where potential bottlenecks for a GPU execution may exist and what kinds of data 

structures might harm the performance are not quite clear. For programmers from areas including 

biology, physics, and finance, it is of great importance for them to quickly identify the shortcom-

ings of their programs and boost the application performance accordingly. Considering that both 

products from Nvidia and AMD are widely utilized in a wide spectrum of computing platforms, 

a systematic investigation on typical GPU architectures and a comprehensive comparison be-

tween representative products from leading manufacturers is becoming quite demanding, in order 

to assist both software programmers and hardware architects to optimize the GPU system per-

formance. Although researchers have made the initial attempts to address these unknowns 

[33][48][49], most of the problems still remain open. 

In addition to performance, the increasing power consumption caused by the high clock fre-

quency and massive processing elements integrated on the device emerges as another important 

concern. For instance, the peak power of an Nvidia GTX 280 can achieve 236 watts [8] while a 

typical multi-core CPU usually consumes less than 150 watts power [5]. Since the high power 

consumption easily translates to an increase of the device temperature, the expensive cost on the 

system cooling tends to compensate all the benefits gained from the performance improvement. 

As a consequence, it is highly necessary to reduce the GPU power consumption during the op-

erations. 

In the past decade, high power consumptions have been considered as a major constraint in 

CPU design and several strategies are accordingly proposed to trim the power budget. Neverthe-

less, compared to studies on the CPU power consumption, researches on GPU power are still at 
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an early stage. To date, most of previous works on this issue [34][38] focus on predicting power 

consumption from observable characteristics of the target device, because current commercial 

GPUs do not provide convenient approaches such as hardware sensors for dynamic power moni-

toring. However, rather than purely making accurate predictions, extracting architectural discov-

eries which can benefit the design of low-power systems is a more promising topic. This makes 

an in-depth study on GPU power consumptions and the underlying architectural behaviors quite 

important. 

Currently, Nvidia GPUs with the CUDA framework are more extensively studied in prior 

works, AMD GPUs which also serve as important components in many high performance com-

puting systems have received relatively little attention. Taking this into consideration, we first 

conduct a detailed study on a recent AMD GPU. After that, we shift our concentration to the 

Nvidia Fermi GPU and accordingly make a comparison between the two products at the architec-

tural level.  

1.2 Thesis Organization 

This thesis consists of a total of four chapters and is organized according to the objectives 

described above: 

 Chapter 2 introduces the necessary background for this work including the high-level 

GPU architecture, unified programing language for contemporary GPU platforms, and 

the statistical models engaged in this work. 

 Chapter 3 presents the study conducted on the AMD Cypress GPU in detail. This in-

cludes the characterization of execution performance and power consumption. In addi-

tion, by employing advanced statistical tools, the hardware events that are the most in-
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fluential to performance and power are identified.  In addition, based on the observation, 

we implement a set of micro-benchmarks to further investigate the different power fea-

tures of the execution units.  

 Chapter 4 demonstrates the comparison between AMD Cypress and Nvidia Fermi GPU. 

We choose a common set of benchmarks to analyze the performance and power-

efficiency features of the two products and make comparison accordingly. 
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CHAPTER 2. BACKGROUND 

2.1 Target GPU Architecture 

In this section, we describe the architecture organizations of a representative Nvidia Fermi 

GPU and an AMD Cypress GPU. A summary of manufacturing parameters of these two GPUs 

along with a description of the host system is listed in Table 2-1 [2][9]. 

2.1.1 Cypress GPU Architecture 

        The Cypress GPU used in this work is an AMD Radeon HD 5870 [2]. As an important 

product addressing high performance computing, this GPU is delicately designed to accelerate 

solving large scale computation problems from different areas. 

Figure 2-1 illustrates a simplified architecture of the Radeon HD 5870. In general, it is com-

posed of 20 Single-Instruction-Multiple-Data (SIMD) computation engines and the underlying 

memory hierarchy. The array of SIMD engines works as the heart of the entire chip because 

most of the computations are conducted in this component. Each SIMD engine is able to work 

independently, whereas the global data share provides a mechanism for the communication be-

tween individual engines. The GPU also contains an Ultra-Threaded Dispatch Processor, which 

is responsible for managing a large number of in-flight threads and assigning them to available 

computing units. The memory subsystem of the device includes an L2 cache and the global 

memory. 

An SIMD engine is a powerful processor. As can be seen from the upper portion of Figure 

2-2, each SIMD core contains 16 thread processors (TP) and 32KB local data share. The local 

data share is designed for the synchronization and data communication between the tasks as-

signed to the same SIMD core. More accurately, in the OpenCL context, only the work-items 
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within a work-group can be synchronized. Accesses to the local data share are much faster than 

to the global memory. In principle, an SIMD is similar to a stream multiprocessor (SM) on an 

Nvidia GPU while the local data share is equivalent to the share memory on an SM. Besides, 

each SIMD includes a texture unit with 8KB L1 cache. 

Ultra-Threaded Dispatch Processor

SIMD 1

Crossbar

Memory Controller (8-channels)

L2 

Cache

Global Data Share

Global 

Memory

SIMD 2

SIMD 10

…
….

SIMD 10

…
….
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SIMD 20

 

Figure 2-1. Architectural overview of an ATI Radeon HD5870 GPU 
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Figure 2-2. The architecture of an SIMD engine and a VLIW processor 

The AMD Cypress GPUs adopt the Very Long Instruction Word (VLIW) structure. We 

demonstrate this in the lower part of Figure 2-2 by visualizing the internal architecture of a 

thread processor. Each TP is a VLIW processor. It includes five processing elements, four of 

which are ALUs while the remaining one is a special function unit. In each cycle, data-
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independent operations assigned to these processing elements constitute a VLIW bundle and are 

simultaneously executed. Note that the released documents [14] from AMD refer the four ALUs 

as x, y, z, w and the special function unit as t. In later sections of this paper, we use the term 

ALUs and x/y/z/w interchangeably. Similarly, the term special function unit and t unit refer to the 

same component. 

2.1.2 Fermi GPU Architecture 

Fermi is a widely used CUDA-capable GPU architecture introduced by Nvidia [17]. Derived 

from prior families such as G80 and GT200, the Fermi architecture has been improved to satisfy 

the requirements of large scale computing problems. The GeForce GTX 580 used in this study is 

a Fermi-generation GPU [9]. Figure 2-3 illustrates its architectural organization [18]. The major 

component of this device is an array of streaming multiprocessors (SMs), each of which contains 

32 Streaming Processors (SPs, or CUDA cores). There are 16 SMs on the chip with a total of 512 

cores integrated in the GPU. Within a CUDA core, there exist a fully pipelined integer ALU and 

a floating point unit (FPU). In addition to these regular processor cores, each SM is also 

equipped with four special function units (SFU) which are capable of executing transcendental 

operations such as sine, cosine, and square root. 
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Figure 2-3. Architecture of an Nvidia GTX 580 
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The innovative design of the fast on-chip memory is an important feature on the Fermi GPU. 

In specific, this memory region is now configurable to be either 16KB/48KB L1 cache/shared 

memory or vice versa. Such a flexible design provides performance improvement opportunities 

to programs with different resource requirement. The L1 cache can be disabled by setting the 

corresponding compiler flag. By doing that, all global memory requests will be bypassed to the 

768KB L2 cache shared by all SMs directly. Note that we use the term Fermi, GTX 580, and 

Nvidia GPU interchangeably in this paper.  

2.2 CUDA & OpenCL Programming Language 

The CUDA programming language is usually used to develop programs on Nvidia GPUs. A 

CUDA application launches a kernel running on the GPU. A typical kernel includes several 

thread blocks, each of which is further composed of many threads. During a kernel execution, 

multiple blocks can reside on the same SM to improve the parallelism. Once a block is assigned 

to an SM, it is divided into groups of 32 threads which are termed as warps. A warp is the small-

est scheduling unit to be run on the hardware function units in a single-instruction-multiple-

threads (SIMT) fashion. All threads within a warp execute the same instruction that operates on 

scalar registers. Specific to the GTX 580, a warp is executed on a group of 16 SPs and two warps 

can be concurrently issued on the same SM because of the dual issue technology introduced on 

Fermi GPUs [17]. Multiple warps from several thread blocks can be active simultaneously and 

the instruction and memory latency is hidden by switching among these warps. Note that the 

number of warps that can reside on the same SM is not arbitrarily large. As listed in Table 2-1, 

the maximal number of warps that can be assigned to an SM on the GTX 580 is 48. In practice, 

the actual resident warps per SM may be much fewer than this limit if each thread requires a 
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large amount of hardware resources (e.g., shared memory and register). GTX 580 realizes the 

compute capability 2.0. Its resource constraints are summarized in Table 2-1. 

Table 2-1. Architectural Parameters of the two GPUs 

GPU information 

 GTX 580 Radeon HD 5870 

Technology 40nm 40nm 

#transistors 3.0 billion 2.15 billion 

processor clock 1544 MHz 850 MHz 

GDDR5 clock rate 2004 MHZ 1200 MHz 

GDDR5 bandwidth 192.4 GB/s 153.6 GB/s 

Global memory size 1536MB 1024MB 

Shared memory, Local data share 16KB or 48KB/SM 32KB/CU 

#SM, #CU 16 20 

SPs/SM, TPs/CU 32 16 

#Processing elements/core - 5 

#Execution units 512 1600 

Blocks/SM, workgroups/CU 8 8 

Threads/SM, work-items/CU 1536 2048 

threads/block, work-items/workgroup 1024 256 

threads/warp, work-items/wavefront 32 64 

warps/SM, wavefronts/CU  48 32 

registers/SM(CU) 32768 (32-bit) 16384 (4×32-bit)  

L1 cache/SM & L2 cache for local/global 

data 

16KB or 48KB/SM 

768KB 
- 

Host system information 

CPU Intel Xeon E5530 AMD Opteron 6172 

main memory type PC3-8500 PC3-8500 

memory size 6GB 6GB 

The Open Computing Language (OpenCL) is also a programming framework developed for 

parallel application [12]. It emphasizes the feature of portability. In specific, an OpenCL pro-

gram can be compiled and run on any device that is compliant with the OpenCL specification. 

Similar to the CUDA language developed by Nvidia, OpenCL is also widely used in the general-

purpose GPU computing realm. 

A function executed on an OpenCL device is termed a kernel. The basic component of a 

running kernel is called a work-item which is comparable to a thread from the CUDA terminolo-
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gy. Several work-items form a work-group and a kernel usually launches an amount of work-

groups, in order to achieve the optimal performance. Multiple work-groups can reside on the 

same SIMD engine and share the re-sources. Specific to the GPU used in this study, each SIMD 

supports up to eight work-groups [15]. However, this number may be reduced due to the re-

source constraint. For instance, in the event that each work-item requires a large amount of regis-

ters, the actual number of work-groups allocated to an SIMD may be far fewer than the limit. 

When a kernel is executed on an AMD GPU, each work-group is further divided into multi-

ple wavefronts. The size of a wavefront is varying across different series of AMD GPUs. In a 

Radeon HD 5870, each wavefront is composed of 64 work-items [15]. During a kernel execution, 

the latencies due to events including global memory accesses can be hidden from switching 

among the resident wavefronts on the same SIMD. 

2.3 Statistical Model 

Advanced statistical tools are widely used to analyze the relationship between a specific re-

sponse and several influential variables in computer architecture area. Especially when the size 

of input variables is huge, the employment of statistical models provides an approach to quickly 

and accurately capture the pivot of the problem. Therefore, in order to correlate the execution 

characteristics and the performance (and the power dissipation) of the GPU, we engage a rigor-

ous statistics tool, i.e., Random Forest [23], to facilitate our study. 

Random Forest is a classifier consisting of several regression trees [24], each of which is 

constructed as follows: (1) take a bootstrap sample from the original training instance space; and 

(2) build a regression tree based on the sampled data. At each split, the candidate set of variables 
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is a random subset of all the variables. The response is estimated to be the average of predictions 

from all the trees involved in the forest. 

Random Forest provides two useful interpretation tools to our study. The first one is the 

relative variable importance characterization. The influence of a variable is calculated by the 

times it is selected for splitting, weighted by the squared improvement to the model after splitting, 

and then average over all trees. The relative importance is then scaled to make the sum add up to 

100, with a larger number indicating a stronger influence on the output variable. The second tool 

is the partial dependence plot, which visualizes the variation of the response with a subset of var-

iables changing after accounting for the average effects of all other input variables. 

The accuracy of the built model is evaluated by leave-one-out cross-validation (LOOCV) 

[42]. This strategy repeatedly selects a single observation from the original sample as the valida-

tion data while using the remaining observations as the training data. Furthermore, we use the R-

Square metric to mathematically assess the goodness of fit of our model. This metric, which is 

often called the coefficient of determination, is a widely used measure in the statistical learning 

area to represent the proportion of variations accounted by a trained model. Simply speaking, it 

reflects the percentage of the outcomes that are likely to be predicted by the model. In general, a 

large R-Square value is an indicator of the high accuracy of a trained model.  
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CHAPTER 3. STATISTICALLY ANALYZE THE PERFORMANCE 

AND POWER FEATURES OF AMD CYPRESS GPU 

3.1 Overview 

As mentioned in the introduction section, compared to Nvidia GPUs which are heavily stud-

ied in prior works, AMD GPUs have received relatively little attention. Therefore in this chapter, 

we present a comprehensive investigation on an AMD Cypress GPU. In general, the main con-

tributions of this work are the following.  

 Performance analysis and important variables characterization. We build a statistical 

model to bridge the gap between execution behaviors and the corresponding GPU per-

formance. By doing this, we are able to quickly identify the most influential factors to the 

execution throughputs of the target GPU. 

 Power modeling and investigations. We also build a model to correlate the GPU power 

consumption and the architectural behaviors. Based on the modeling results, we design a 

set of micro-benchmarks to uncover the distinct power consumption features of different 

function units within a VLIW processor on the target GPU.   

 Extraction of instructive principles. According to the statistical analysis, we summarize 

instructive guidelines that are beneficial to both of software developers and hardware en-

gineers to improve the application performance while reducing the power consumption of 

modern GPUs.  

3.2 Methodology 

3.2.1 Experimental Setup 

We conduct all of our studies on a system equipped with an ATI Radeon HD5870 GPU. The 

computer is running a Windows 7 operating system with Microsoft Visual Studio 2010 installed. 
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The ATI Stream Profiler 2.1 [3] is integrated into the Visual Studio and is able to profile 

OpenCL kernels executed on the GPU. Table 3-1 lists the names and general descriptions of the 

counters collected by the profiler. We run the OpenCL benchmarks provided by the ATI Stream 

SDK [2] for our analysis. All the used applications are shown in Table 3-2. 

Table 3-1. Explanations of the profiler counters 

Counter Description 

LDSSize The size of local data share used by a work-group 

GPR The number of general purpose registers used by a work-item 

ScratchRegs The number of scratch registers used by a work-item 

FCStacks The size of flow control stack 

Wavefronts The number of launched wavefronts 

ALUInsts The number of ALU instructions executed per work-item 

FetchInsts 
The number of fetch instructions from the global memory executed per 

work-item 

WriteInsts 
The number of write instructions to the global memory executed per 

work-item 

LDSFetchInsts 
The number of fetch instructions from the local data share executed per 

work-item 

LDSWriteInsts 
The number of write instructions to the local data share executed per 

work-item 
ALUBusy The percentage of kernel time executing ALU instructions 

ALUFetchRatio The ratio of ALU to Fetch instructions 

ALUPacking The packing efficiency of the five-way VLIW 

FetchSize The size of the data fetched from the global memory 

CacheHit The data cache hit ratio 

FetchUnitBusy The percentage of kernel time the fetch unit is active 

FetchUnitStalled The percentage of kernel time the fetch unit is stalled 

WriteUnitStalled The percentage of kernel time the write unit is stalled 

CompletePath The size of data written to the global memory through the CompletePath 

FastPath The size of data written to the global memory through the FastPath 

PathUtilization 
The percentage of data written through FastPath or CompletePath com-

pared to the total size transferred by the bus 
ALUStalled The percentage of kernel time the ALU is stalled 

LDSBankConfict 
The percentage of kernel time the local data share is stalled by bank con-

flicts 
 

Kernel configurations such as the work-group size can significantly impact the program ex-

ecution performance, as well as the power dissipation [35]. Taking this into consideration, we 
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run each kernel with different configurations and collect the results from the profiler respectively. 

On average, each kernel is tested with about three configurations, leading to a total of 78 differ-

ent measurements. The number of configurations tested for each kernel is also listed in Table 3-2. 

Note that we do not set the configurations for each kernel in a uniform way since the kernels 

have distinct inherent features and resource requirements. All the kernels used in this study 

launch more than 100 work-groups, in order to make the tasks evenly distributed among the 

SIMD engines. 

Table 3-2. Benchmarks used in this chapter 

#Cfgs Application Name Kernel Name 

3 AESEncryptDecrypt AESDecrypt 

3 BitonicSort bitonicSort 

3 BlackScholes blackScholes 

5 DCT DCT 

3 DwtHaar1D dwtHaar1D 

3 
EigenValue 

calNumEigenValueInterval 

3 recalculateEigenIntervals 

5 FastWalshTransform fastWalshTransform 

3 FFT kfft 

1 FloydWarshall floydWarshallPass 

6 Histogram histogram256 

3 HistogramAtomics histogramKernel 

4 Mandelbrot mandelbrot_vector 

3 MatrixMultiplication mmmKernel_local 

3 MatrixTranspose matrixTranspose 

3 MonteCarloAsian calPriceVega 

5 PrefixSum prefixSum 

3 QuasiRandomSequence QuasiRandomSequence 

3 RadixSort permute 

2 Reduction reduce 

4 ScanLargeArrays blockAddition 

3 SimpleConvolution simpleConvolution 

2 
SimpleImage 

image3dCopy 

2 image2dCopy 
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The power consumption of a GPU under load can be decoupled into the idle power Pi_gpu 

and the runtime power Pr_gpu. To estimate the GPU idle power, we first use a YOKOGAWA 

WT210 Digital Power Meter to measure the overall system power consumption Pidle_sys when the 

GPU is added on. We then record the power Pidle_sys_ng by removing the GPU from the system. 

No application is running during these two measurements; therefore, the difference between 

them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power. When the GPU is executing an 

OpenCL kernel, we measure the system power Prun_sys and accordingly calculate the GPU 

runtime power as Prun_sys – Pidle_sys. By summing up Pi_gpu and Pr_gpu, we obtain the power con-

sumption of the target GPU under stress. Note that Pi_gpu is a constant while Pr_gpu is varying 

across different measurements. For the sake of high accuracy, we measure the power consump-

tion of each kernel multiple times and use their average for later analysis. 

3.2.2 Overview of the Methodology and Data Process 

Our studies are generally composed of three steps. First, for each of the kernels chosen for 

the study, we collect its performance profile and power consumption. Second, we feed the ob-

tained data into Random Forest to build a model connecting the response (i.e., performance and 

power consumption, respectively) and the execution behaviors. This includes characterizing the 

relative importance for all variables and plotting the partial dependence. Note that the raw data 

reported by the profiler need preprocess before being used for the statistical analysis. In specific, 

the counters providing measurements in cumulative fashion, such as ALUInsts and FetchInsts, 

are divided by the kernel time to approximate the corresponding intensity within a unit time. 

Metrics including ALUBusy reflect the GPU behaviors on average during an execution and thus 

can be directly included for the model training. For the performance analysis, we use millions of 

instructions per second (MIPS) as the metric, where the total number of executed instructions is 



 

16 

 

obtained by summing up the amount of each type of instruction listed in Table 3-1. Another issue 

is that counters that hardly change across different profiles are eliminated from the training in-

puts, in order to make the model more robust. Finally, we derive insightful principles from the 

modeling results, in order to steer the program optimization and potential hardware upswing. 

3.3 Result Analysis 

3.3.1 Performance Analysis 

As we mentioned earlier, the performance of typical AMD GPUs has not been well investi-

gated by prior studies. However, for a programmer running parallel programs on an AMD GPU, 

it is of great importance to realize that where the potential performance bottleneck may exist. 

This justifies that a detailed study on the GPU performance and the underlying architectural be-

haviors is highly demanding. In this section, we perform an in-depth analysis on this problem by 

employing the Random Forest technique described in section 2.2. 

The established model for the GPU performance analysis achieves an R-square value of 79.7% 

with a median absolute error of 13.1%, indicating a relatively high accuracy. This makes the de-

ductions based upon this model fairly convincible. Recall that the employed statistical tool pro-

vides two interpretation tools for the analysis. The first one is the relative factor importance 

characterization. We illustrate the variable importance to the GPU performance in Figure 3-1. As 

can be observed, ALUBusy, which denotes the percentage of GPU execution time spent on ALU 

instructions, is identified as the dominant factor to the GPU performance. This does not go be-

yond our expectation. For general-purpose computations on a GPU, the tasks are majorly execut-

ed on the integer/floating point units within the SIMD engines. Higher utilizations on those com-

puting elements mean that more instructions are executed during a time period, referring to high-

er execution throughput. The second most important variable is the average ratio of the ALU in-
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structions to the global memory fetch instructions. Fetch operations from the global memory 

have a long latency in order of hundreds of cycles. Although such latencies can usually be hid-

den by switching among the available wavefronts on an SIMD engine, a kernel demonstrating an 

extremely small ALUFetchRatio may not be benefited from such parallelism. In the worst case, 

no wavefronts are ready to be resumed when the running one is stalled by a long-latency memory 

access since all of candidates are waiting for the requested data for computations. In this scenario, 

the executions are forced to suffer from the memory latencies and the performance is inevitably 

degraded. 

 

Figure 3-1. Relative variable importance to the GPU performance 

ALUPacking stands as the third most significant variable. Differing from ALUBusy and 

ALUFetchRatio, this factor is a specific metric used to evaluate the VLIW executions. In practice, 

it is not likely that all of the n slots of an n-way VLIW processor can be fully utilized in each cy-

cle. This is because that only the data-independent instructions can be grouped together and be 

executed in a vector-like fashion, whereas the compiler may fail to always find sufficient instruc-

tions to form a compact bundle. On average, if m out of all n slots have been filled with valid 

instructions in an n-way VLIW processor, the packing ratio is m/n. From the perspective of per-
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formance improvement, we always attempt to increase the packing efficiency of a VLIW execu-

tion, in order to deliver higher throughput. The followed three influential factors are FetchSize, 

GPR, and FastPath, respectively. The variable FetchSize denotes the size of data fetched from 

the global memory during a time period. In general, this metric should be avoided reaching high 

values when optimizing the performance. Kernels which intensively access the global memory 

tend to decrease the ALU utilization and accordingly degrade the performance, especially in cas-

es when few wavefronts reside on an SIMD engine. The reason of this is similar to our analysis 

made on ALUFetchRatio. Actually, if considering these two variables in conjunction, we can in-

fer a general theorem that the more computations on every fetched byte are operated, the higher 

performance it can be expected. The amount of general-purpose registers allocated to a work-

item also contributes to the overall performance. Accesses to the registers take less time than ac-

cessing any other components in the memory subsystem does. As a result, if all intermediate val-

ues of a computation are stored in general-purpose registers instead of being shuffled to the 

global memory, a kernel should be able to finish its task more quickly. The counter following 

GPR is FastPath. The FastPath is an optimized channel for data communications in the AMD 

hardware. This path delivers a much faster transfer speed than its counterpart which is called the 

CompletePath. Therefore, increasing the utilization of the FastPath is effective to improve the 

performance. More discusses about these two paths will be given shortly. The counters ranking 

afterwards are not playing important roles to impact the GPU performance, so we omit the analy-

sis to those variables. 

The second tool offered by Random Forest is the partial dependence plots, providing us vis-

ualized interpretations to observe the relation between individual variables and the GPU perfor-

mance. We show the plots for the six most important factors in Figure 3-2. The vertical axis of 
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each plot is scaled for better comparison. As can be observed, the top three influential variables 

are all positive related to the GPU performance. Additionally, compared to the counters ranked 

behind, the variations of these variables tend to result in much fiercer change on the overall per-

formance. This proves that they are the most influential factors. The counters GPR and FastPath 

also show positive relationship to the performance while FetchSize demonstrating a negative one. 

Generally speaking, the trends of these curves testify our analyses described above. 

 

Figure 3-2. Partial dependence plots for the six most important variables to performance 

Essentially, it is straightforward to understand the significance of counters including ALU-

Busy, ALUFetchRatio, and FetchSize, because the inference derived from these variables are 

close to what have been revealed from traditional CPU studies. Nevertheless, the FastPath is a 

special hard-ware on AMD GPUs and thus deserves further analysis. As shown in Figure 3-3, 

this path and its counterpart (i.e., the CompletePath) are two special data communication chan-

nels located between the write combine cache and the memory channel. While offering much 

higher transfer speed, the FastPath, however, has a constraint that it only supports basic opera-

tions such as non-atomic writes with 32-bit types [8], whereas the CompletePath supports more 

advanced operations. Therefore, if communications via the CompletePath are replaced by using 

the FastPath everywhere possible, the overall performance can be remarkably improved.  
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Figure 3-3. The memory system including the FastPath and CompletePath 

We implement two simple kernels to confirm this idea and visualize the key points in Figure 

3-4. In the first kernel, each work-item loads the necessary datum from the global memory and 

conduct computation based on the fetched data. The data type of the computation result is set to 

short (16-bit long), which is identical to the type of the output array. In this scenario, the compu-

ting result of each work-item will be stored into the global memory via the CompletePath, be-

cause the write operation is conducted on a 16-bit variable. As shown in Figure 3-4, such an exe-

cution usually corresponds to a MEM_RAT_STORE instruction in the ATI ISA. On contrary, if 

we slightly modify the kernel by concatenating two short results into an int one (32-bit long) and 

change the data type of the output array in accordance, the storage will be more efficiently per-

formed through the FastPath (i.e., using MEM_RAT_CACHELESS_STORE). Therefore, the 

second kernel greatly outperforms the first one. In specific, we observe that the kernel execution 

time can be decreased by up to 23% after the improvement. Note that with this modification, a 

necessary post-process on the output data may be introduced if the ensuing computations need 

inputs of short type. This overhead may compensate the benefit of a faster kernel execution. 
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However, since the GPU computation takes most portion of entire application and dominates the 

execution time for many GPGPU problems, such modification is still worthwhile. Putting all of 

these together, we summarize the techniques for performance optimization from three aspects: 

 For software developers, they should amend the algorithms or application work-flows to 

efficiently utilize the data fetched from the global memory. That is to say, every byte 

loaded from the global memory should be maximally reused for computation.  

 Programmers should also define the variables with the most suitable data type in order to 

favor the FastPath transfer.   

 Hardware architects can upgrade the platforms by increasing the sizes of the constrained 

resources such as the general-purpose registers and by enhancing the special hardware 

including the FastPath for advanced operations support. 

….

16-bit 32-bit

Input Array

Output 

Array

CompletePath

modified kerneldefault kernel

FastPath

=

short a;
   .
   .
   .
   .
gm_array_short[Pos] = a;

.

.

.

CompletePath Store: 

     MEM_RAT_STORE_TYPED: RAT(9)[R7], R3

short a, b;

int c;
   .
   .
   .
   .
c = (int)(a << 16) + (int)b;

gm_array_int[Pos] = c;

.

.

.

FastPath Store: 

     MEM_RAT_CACHELESS_STORE_RAW: RAT(1)[R4].x__, R1

=

 

Figure 3-4. An example of kernel improvement for better using the FastPath 

3.3.2 Power Analysis 

Apart from the performance, the rising power consumption of a modern GPU is another 

concern that deserves investigation in detail. We elaborate the relationship between the GPU 

power dissipations and the architectural behaviors in this section. The built model for the GPU 
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power is quite accurate. Mathematically speaking, the R-square of the model is 88.9% and the 

median absolute error is 4.34%, indicating that almost 90% of the outcomes can be predicted by 

this model with high accuracy. Again, this gives us confidence of the following analyses. 

In order to gain an overall insight into the relation between the kernel execution behaviors 

and the corresponding power dissipations, we first identify the importance of different factors. 

This is illustrated in Figure 3-5. As can be seen, ALUPacking is the most decisive variables, in-

dicating that it inclines to impose more significant impact on the GPU power consumption than 

any other factors do. This makes sense if we take into account the VLIW architecture of AMD 

GPUs. A larger packing ratio implies that more processing units in a vector processor are utilized 

for computation; and more power will be consumed as a consequence. For the benchmarks used 

in this study, some of them such as histogram are executed with fairly high packing efficiency 

(i.e., ALUPacking greater than 80%), making them more power-hungry compared to others. The 

number of ALU and global memory fetch instructions (ALUInsts and FetchInsts) are respectively 

positioned at the second and the third place in the ranking. This is also reasonable. Recall our 

data process method described in section III. The ALUInsts and FetchInsts actually represent the 

average intensity of ALU computations and global memory accesses. Obviously, the larger these 

two variables are, the higher power consumption will be, because high execution intensity indi-

cates that the corresponding unit is active most of the time during an execution. The FetchUnit-

Busy and ALUBusy are identified as the fourth and fifth important factors. These two variables 

denote the utilizations of fetch units and ALUs, so they have similar implications as those of 

ALUInsts and FetchInsts. Variables ranked after ALUBusy slightly contribute to the total power 

consumption, so we do not discuss them in detail. 



 

23 

 

We show the partial dependence for the top six important variables in Figure 3-6. The verti-

cal axis of each plot is scaled from 115 watts to 140 watts. As shown in the figure, the GPU 

power consumption shows an ascending trend with the increase of each of the five most im-

portant variables; however in the sixth plot, we notice that the GPU power remains almost a con-

stant regardless of the change on ALUFetchRatio. This suggests that GPU power consumptions 

are not quite aware of the ratio between the ALU computations and the memory accesses. In fact, 

as long as the execution intensities of these two operations stay at high values, the GPU power 

tends to be fairly large. 

 

Figure 3-5. Relative variable importance to GPU power consumption 

 

Figure 3-6. Partial dependence plots of the six most important variables to GPU power 
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3.3.3 A Case Study on the Power Consumption 

Based on the analyses made in previous section, we are able to extract guidelines to reduce 

the GPU power consumption as we have done for the performance improvement; however be-

fore doing that, we are going to take a further step to investigate the power consumption patterns 

and then summarize principles based on the new findings. Our model identifies the VLIW pack-

ing ratio as the most important variable to the power consumption of the target GPU. More inter-

estingly, if taking a closer look at the partial dependence between GPU power and the ALUPack-

ing (i.e., the first plot in Figure 3-6), we notice a steep ascend on the curve when the packing ra-

tio reaches around 80%. Since a thread processor on the ATI HD5870 GPU works as a five-way 

VLIW processor, an 80% packing ratio means that there are four valid operations in each VLIW 

bundle on average. Put it another way, only four out of five units in a thread processor are uti-

lized. On the other hand, the five-way VLIW processor actually consists of four ALUs (i.e., 

x/y/z/w units) and a special function unit (i.e., t unit).  Considering all of these in conjunction, it 

is natural to raise a question that whether the power step-up encountered at 80% packing ratio is 

introduced by the difference between the function units. Furthermore, if the answer is positive, 

we are also interested in exploiting the potential opportunities for GPU power reduction from 

this specific aspect. In this section, we aim at uncovering this mystery using a set of micro-

benchmarks. 

Intuitively, we consider that the four ALUs are designed in a uniform way and thus consume 

the same power. However, the special function unit is an uncertain component. The released 

documents from AMD [14] mention that the t unit is designed to execute complex operations 

such as trigonometric, exponential, and logarithmic functions, as well as regular integer and 

floating point operations. Therefore, this unit is highly probable to require more power compared 
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to the four ALUs due to its complexity. To confirm our assumption, we run a group of micro-

benchmarks with different packing ratios and compare their power consumptions. 

Figure 3-7 demonstrates the structure of our micro-benchmarks. The one shown on the left is 

the kernel source code and the one on the right is the assembly-level code. For simplicity, we 

only list the key part of the kernel, which is a for loop. Since the execution of the for loop domi-

nates the kernel time, the average packing ratio of the kernel approximately equals to that of the 

loop. Therefore, our work is equivalent to tuning the packing ratio of the loop body. To achieve 

this goal, we first define two vector type variables (i.e., float4 d1, d2). In the AMD OpenCL con-

text, each element of a vector such as s0 of d1 can be involved in a regular scalar operation. Spe-

cific to the example code, the four elements of d1 and d2 are assigned to different computations 

which are independent from each other. By doing this, the x/y/z/w units are utilized, resulting in 

an 80% packing ratio. In order to achieve a 100% packing ratio (i.e., the case shown in Figure 3-

7), we define another vector variable and use it in a computation that has no data dependency 

with the previous four operations. By default, the compiler will assign this operation to the t unit 

to maximize the performance. This is highlighted by the red circles in Figure 3-7. Note that in 

the assembly code, the instructions under the same numerical label (i.e., 5 and 6 marked in bold) 

are grouped into a single bundle and are executed together. Adjusting the packing ratio to 60%, 

40% and 20% is also straightforward with this framework. For instance, if we only keep the op-

erations on s0, s1, and s2 while eliminating the calculations of s3, the resultant packing ratio is 

around 60%, as there are only three data independent instructions available in each cycle. 

We measure the power consumptions of these kernels and illustrate the results in Figure 3-8. 

Note that the profiling results of the kernels show that the ALUPacking is the only varying pa-

rameter while all other counters remain unchanged. Therefore, we can safely conclude that the 
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difference across the power consumptions should be caused by the changes of the packing ratio; 

or in other word, by the employment of different processing elements. In addition, the assembly-

codes show that the t unit is not involved in computations when the packing ratio varies from 20% 

to 80%. We thereby infer from the linear segment of the curve that the x/y/z/w units within a 

thread processor consume identical power. The slope abruptly becomes steeper when the ratio 

exceeds 80%, implying that the t unit is likely to require higher power to conduct an operation. 

Actually, from the curve, it is easy to derive that, the special function unit approximately con-

sumes twice more power than an ALU to drive an execution.  

float4 d1, d2, temp,

for(int i = 0; i < 3000; i++)

{

      d1.s0 = d2.s0 + 2;

      d1.s1 = d2.s1 + 4;

      d1.s2 = d2.s2 + 6;

      d1.s3 = d2.s3 + 8;

      temp.s3 = d2.s0 + temp.s0;

      d2.s0 = d1.s0 + 1;

      d2.s1 = d1.s1 + 3;

      d2.s2 = d1.s2 + 5;

      d2.s3 = d1.s3 + 7;

      temp.s0 = d1.s0 + temp.s3;

}

LOOP       

        ALU: ADDR()  CNT()

              5   x:  ADD __, R2.x, R3.x

                   y:  ADD __, R2.x, (0x4000000, 2.0f).x

                   z:  ADD __, R2.w, (0x4100000, 8.0f).y

                   w: ADD __, R2.z, (0x40C0000, 6.0f).z

                    t:  ADD __, R2.y, (0x4080000, 4.0f).w

              6   x:  ADD __, PV5.y, 1.0f

                   y:  ADD __, PV5.w, (0x40A0000, 5.0f).x

                   z:  ADD __, PV5.x, PV5.w

                   w: ADD __, PV5.z, (0x40E0000, 7.0f).y

                    t:  ADD __, PS5, (0x40e0000, 3.0f).z

 END LOOP

 

Figure 3-7. An example code for the VLIW packing ratio tuning. The one on the left is the kernel 

source code, while the one on the right is the assembly-level code. The red circles indicate that 

the five-way VLIW are fully utilized, corresponding to a 100% ratio 
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Previous studies demonstrate that executing distinct types of operations on a processor may 

result in different power consumptions; therefore, we also compare the power when different 

calculations are included in the kernel. We first modify the kernel which has an 80% packing 

ratio by replacing all the floating point additions in the loop with multiplications. By doing this, 

we aim at measuring the power dissipations when the ALUs (i.e., x/y/z/w) are busy on running 

multiplications. Our second goal is to further investigate the special function unit. Specifically, 

we record the power consumptions when the t unit is conducting multiplications or floating point 

to integer conversions. The results of these two experiments are demonstrated in Figure 3-9. As 

can be observed, executing multiplications on the four ALUs consumes identical power as run-

ning addition instructions does; besides, the special function unit consumes the same power no 

matter it is assigned an addition, a multiplication, or a conversion operation. Note that the small 

discrepancy between the values shown in Figure 3-9 should be caused by the measurement errors.  

 

Figure 3-9. Comparison of power consumptions while executing different instructions 

Based on these observations, it is straightforward to consider that decreasing the usage of the 

special function unit may help to reduce the energy consumption because the t unit is more pow-

er-consuming than other ALUs. To study this issue, we design a reduction benchmark to com-

pare the executions when the packing ratio is set to 80% and 100%, respectively. The kernel 

70

75

80

85

90

95

100

105

110

115

120

125

130

135
A

LU
 p

ac
ki

n
g 

ra
ti

o
 (

%
)

G
P

U
 P

o
w

e
r 

(W
)



 

28 

 

structure is similar to the micro-benchmark shown in Figure 3-7, as it is convenient to control the 

packing ratio in this circumstance. Recall that for the kernel with 80% packing ratio, the t unit 

will not be utilized for computation. The results are shown in Figure 3-10. As expected, encapsu-

lating four computations into a bundle can decrease the power consumption, but suffering from a 

performance degradation. However, the energy consumptions in these two cases are almost iden-

tical. Considering that the special function unit still consumes static power even if no operations 

are assigned to it, we can expect more power and energy savings with real four-way VLIW pro-

cessors.   

 

Figure 3-10. Execution comparison of the reduction benchmark when the special function unit is 

used/not used 

According to our analysis, the principles for GPU power and energy reduction can be sum-

marized as follows: 

 Software developers can adjust the execution order of the expressions within an applica-

tion kernel, in order to decrease the packing ratio and reduce the power consumption. Es-

pecially, for kernels which largely use the special function unit to conduct ALU opera-

tions, excluding the t unit from computation may result in remarkable power savings. 
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However, this adjustment should be carefully conducted because inappropriate modifica-

tion may lead to unacceptable performance degradation. 

 Hardware engineers should optimize the VLIW processors to lower down the power con-

sumption of the special function unit. Our experiments demonstrate that the t unit con-

sumes more power even if it is executing a simple floating point addition. This cost-

inefficient design deserves further optimization for better efficiency. 

3.4 Related Work 

In recent years, several researchers have authored outstanding studies on the GPU perfor-

mance modeling. Hong et al. [33] introduce an analytical model with memory-level and thread-

level parallelism awareness to investigate the GPU performance. Their model can be used to de-

rive the performance of a CUDA kernel by carefully analyzing the execution overlap of memory 

warps and computation warps. Baghsorkhi et al. [21] propose to use the work flow graph to es-

timate the execution time of a GPU kernel. In [48], Wong et al. present using a set of micro-

benchmarks to explore the internal architecture of a widely used Nvidia GPU. More recently, 

Zhang and Owens [49] use a similar micro-benchmark based approach to quantitatively analyze 

the GPU performance. Our work majorly differs from these studies in that we employ a statisti-

cal tool to accurately identify the most influential variables to the GPU performance, instead of 

deriving all conclusions based on micro-benchmark executions or analytical models.  

On the other hand, literature on the GPU power analysis can also be found in prior studies. 

Hong and Kim [34] propose an integrated GPU power and performance analysis model which 

can be applied without performance measurements. By combining an analytical timing model 

and an empirical power model, they accurately predict the power consumptions of GPU work-

loads based on only the instruction mix information. Using performance counters to predict the 
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GPU power is another feasible approach. Ma et al. [36] present a scheme to analyze the power 

consumption of a GPU when the device is running typical OpenGL programs. In [38], Nagasaka 

et al. introduce a statistical model to precisely estimate the power consumption of GPGPU ker-

nels running on an Nvidia GTX 285.  

Efforts are also made to explicitly improve the energy efficiency of GPU applications. 

Huang et al. [35] evaluate the performance, energy consumption and energy efficiency of com-

mercial GPUs running scientific computing benchmarks. They demonstrate that the energy con-

sumption of a hybrid CPU+GPU environment is significantly less than that of traditional CPU 

implementations. In [44], Rofouei et al. present a similar conclusion that a GPU is more energy 

efficient compared to a CPU when the performance improvement is above a certain bound. Ren 

et al. [43] consider even more complicated scenarios in their study. The authors implement dif-

ferent versions of matrix multiplication kernels, running them on different platforms (i.e., CPU, 

CPU+GPU, CPU+GPUs) and comparing the respective performance and energy consumptions. 

Their experiment results show that when the CPU is given an appropriate share of workload, the 

best energy efficiency can be delivered.  

Studies on typical AMD GPUs are even fewer. Taylor and Li [47] develop a micro-

benchmark suite for AMD GPUs. By running the micro-benchmarks on different series of AMD 

products, they discover the major performance bottlenecks on those devices. However, power 

consumption is not taken into account in their work. 

To the best of our knowledge, this study is the first one to systematically analyze the per-

formance and power consumption of a typical AMD GPU at the architectural level. Our work 

respectively identifies the most important variables that impact GPU performance and power 
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consumptions; additionally, we give suggestions that can be easily understood by both software 

engineers and hardware architects to optimize the system efficiency.  

3.5 Conclusion 

In this chapter, we present a comprehensive study on the performance and power consump-

tions of a recent AMD GPU. By employing a rigorous statistical model to analyze the execution 

behaviors of representative general-purpose GPU (GPGPU) applications, we conduct insightful 

investigations on the target GPU architecture. Our results demonstrate that the GPU execution 

performance and the power dissipation are dependent on different architectural variables. Fur-

thermore, we design a set of micro-benchmarks to study the power consumption features of dif-

ferent function units on the GPU. Based on those results, we derive instructive principles that can 

guide the design of power-efficient high performance computing systems. 
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CHAPTER 4. ARCHITECTURAL COMPARISON BETWEEN NVIDIA 

FERMI AND AMD CYPRESS GPUS 

4.1 Overview 

In recent years, leading GPU manufacturers Nvidia and AMD have introduced series of 

products to the market. While sharing many similar design concepts, GPUs from these two man-

ufacturers differ in several aspects on processor cores and the memory subsystem. In this chapter, 

we present a comprehensive study to characterize the architectural differences between Nvidia’s 

Fermi and AMD’s Cypress GPUs and demonstrate their impact on performance. Specifically, we 

still use the Radeon HD5870 as the representative of AMD Cypress GPUs and choose a Geforce 

GTX 580 from the Fermi product family. Our results indicate that these two products have di-

verse advantages that are reflected in their performance for different sets of applications. In addi-

tion, we also compare the energy efficiencies of these two platforms since power/energy con-

sumption is a major concern in the high performance computing system.  

According to the experiment results, we can summarize a few interesting observations: 

 For programs that involve significant data dependency and are difficult to generate com-

pact VLIW bundles, the GTX 580 (Fermi) is more preferable from the standpoint of high 

performance. The ATI Radeon HD 5870 (Cypress), on the other hand, is a better option 

to run programs with high VLIW packing ratio.  

 The GTX 580 GPU outperforms its competitor on double precision computations. The 

Fermi architecture is delicately optimized to deliver high performance in double preci-

sion, making it more suitable in solving problems with high precision requirement. 

 Memory transfer speed between the CPU and GPU is another important performance 

metric which impacts the kernel initiation and completion. Our results show that Nvidia 
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generally has higher transfer speed. Besides the lower frequency of the device memory 

on the AMD HD 5870 GPU [2][9], another reason is that the memory copy in CUDA 

has smaller launch overhead compared to the ATI OpenCL counterpart.   

 Program executions can benefit from the new two-level caches on Nvidia’s GPU. This is 

especially important when the application parallelism is relatively low and memory ac-

cess latencies cannot be fully hidden by multithreading.  

 The ATI Radeon HD 5870 consumes less power in comparison with the GTX 580. If a 

problem can be solved on these two GPUs in similar time, the AMD GPU will be more 

energy efficient. 

4.2 Methodology 

4.2.1 Experimental Setup 

        Our studies are conducted on two separate computers, equipped with an Nvidia Geforce 

GTX 580 and an ATI Radeon HD 5870 GPU respectively. The CUDA toolkit version 3.2 [7] is 

installed on the Nvidia system while the ATI Stream SDK version 2.1 [4] is used on the AMD 

computer. Both development kits provide visual profilers [3][7] for the performance analysis. 

For power analysis, the power consumption of a GPU can be decoupled into the idle power 

Pi_gpu and the runtime power Pr_gpu. To estimate the GPU idle power, we first use a YOKOGA-

WA WT210 Digital Power Meter to measure the overall system power consumption Pidle_sys 

when the GPU is added on. We then record the power Pidle_sys_ng by removing the GPU from the 

system. No application is running during these two measurements; therefore, the difference be-

tween them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power. When the GPU is executing a 

CUDA or OpenCL kernel, we measure the system power Prun_sys and calculate the GPU runtime 

power as Prun_sys – Pidle_sys. By summing up Pi_gpu and Pr_gpu, we obtain the power consumption of 
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the target GPU under stress. Note that Pi_gpu is a constant while Pr_gpu is varying across different 

measurements. For the sake of high accuracy, we measure the power consumption of each pro-

gram multiple times and use their average for the analysis. 

4.2.2 Application Selection 

As described previously, modern GPUs have been delicately designed to better execute large 

scale computing programs from different domains. Therefore, we decide to use common GPGPU 

applications to carry out our investigation. Recall that our study is conducted in two steps. For 

the first study, we use representative CUDA and OpenCL applications respectively selected from 

Nvidia and ATI SDKs for the comparison. For the second study, which will be detailed in sec-

tion 5, we use a common set of OpenCL programs for our investigation. In this subsection, we 

will introduce the procedure of choosing representative applications from two SDKs for our first 

study. 

In total, the Nvidia application suite contains 53 GPGPU applications while the AMD set in-

cluding 32 such benchmarks. Considering that both SDKs include tens of programs, it will be 

fairly time consuming to understand and study each of the problems in detail. Previous studies 

show that it is effective to use a small set of applications to represent the entire benchmark suite, 

in order to investigate the underlying CPU hardware [35]. We believe that this approach can be 

also applied to the GPU study. In this work, we employ a statistical clustering technique to 

choose the most representative programs from the SDKs. 

Cluster analysis is often used to group or segment a collection of objects into subsets or 

“clusters”, so that the ones assigned to the same cluster tend to be closer to each other than those 

in different clusters. Most of the proposed clustering algorithms are mainly heuristically motivat-
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ed (e.g., k-means), while the issue of determining the "optimal" number of clusters and choosing 

a "good" clustering algorithm are not yet rigorously solved [29]. Clustering algorithms based on 

probability models offer an alternative to heuristic-based algorithms. Namely, the model-based 

approach assumes that the data are generated by a finite mixture of underlying probability distri-

bution such as multivariate normal distributions. Studies have shown that the finite normal mix-

ture model is a powerful tool for many clustering applications [22][25][37]. 

In this study, we assume that the data are generated from a finite normal mixture model and 

apply the model-based clustering. In order to select the optimal number of clusters, we compute 

the Bayesian Information Criterion (BIC) [45] given the maximized log-likelihood for a model. 

The BIC is the value of the maximized log-likelihood plus a penalty for the number of parame-

ters in the model, allowing comparison of models with differing parameterizations and/or differ-

ing numbers of clusters. In general, the larger the value of the BIC, the stronger the evidence for 

the model and number of clusters is [30]. This means that the clustering which yields the largest 

BIC value is the optimal. In this paper, model-based clustering is run by using the mclust, which 

is contributed by Fraley and Raftery [30]. In the second study, we use a common set of OpenCL 

programs from the NAS parallel benchmark suite [6] to make a more consistent comparison. The 

programs running on two GPUs are compiled from the same source code and take identical input 

files. Therefore, by profiling these programs, we are able to investigate that how architectural 

difference will impact the performance of the same program.  

4.2.3 Procedure Overview 

Our approach consists of three steps. First, we use the visual profilers to collect the execu-

tion behaviors of all general purpose applications included in the SDKs. Some applications pro-

vide more than one kernel implementations with different optimization degrees. For example, the 
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matrix multiplication benchmark from the AMD SDK contains three versions: computation 

without using the local data share, using the local data share to store data from one input matrix, 

and using the local data share to store data from both input matrices. Each of the three versions 

can be invoked individually. In this work, we treat these kernels as different programs since they 

have distinct execution behaviors on the GPU. Another issue is that several benchmarks from 

two SDKs correspond to the same application scenario. For such programs, we explore the code 

and ensure that the Nvidia and AMD implementations have identical input and output size. Sec-

ond, by employing the BIC based statistical clustering method, we classify all applications into a 

number of categories according to their performance profiles. We then choose a program from 

each cluster for our analysis. For fair comparisons, each selected application based on clustering 

in one SDK is used to find an “equivalent” application in the other SDK. We made the best effort 

including minor code modifications to ensure the selected kernels to perform the same tasks 

when running on both systems. Third, we use the selected set of applications to compare the ar-

chitectural differences and energy efficiency of two GPUs. 

4.3 Result Analysis 

4.3.1 Benchmark Clustering 

The clustering results for Nvidia and AMD benchmark suites are respectively listed in Table 

4-1 and Table 4-2. As can be seen, the optimal number of categories for Nvidia applications is 

five. The AMD programs have a larger number of clusters, although this set has even fewer ap-

plications than the Nvidia suite. Actually, our clustering analysis shows that the global optimal 

cluster number for AMD programs is 31, while 10 is a suboptimal choice. Considering that the 

goal of this study is to investigate and compare the architectural features of two GPUs using a 
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manageable set of representative applications, we decide to classify all AMD programs into 10 

groups according to the suboptimal classification. 

Table 4-1. Clustering result for the Nvidia benchmark suite 

 Benchmarks 

Cluster 1 

Clock, ConvolutionSeparable, DwtHarr, FastWalshTrans-

form, Ptxjit, ScalarProd, SimpleAtomicsIntrincs, SimpleZero-

Copy, Transpose_coarsegrain, Transpose_coalesed, Trans-

pose_diagonal, Transpose_finegrain, Transpose_optimized, 

Transpose_sharedmemory, Transpose_simplecopy, VectorAdd, 

BinomialOption, QuasiRandomGenerator, Scan, Reduction_k0, 

Reduction_k1, Reduction_k2, Reduction_k3 

Cluster 2 
ConjugateGradient, FDTD3D, Histogram, SimpleCUFFT, Ra-

dixSort 

Cluster 3 

ConvolutionFFT2D_builtin, ConvolutionFFT2D_custom, Con-

volutionFFT2d_optimized, dxtc, SortingNetworks, Trans-

pose_naive, BlackScholes, Reduction_k4, Reduction_k5, Re-

duction_k6 

Cluster 4 

EstimatePiInlineP, EstimatePiInlineQ, EstimatePiP, Estimate-

PiQ, MatrixMul_2_smem, MatrixMulDrv, MatrixDylinkJIT, 

MonteCarlo, SimpleVoteIntrincs, SingleAsianOptionP, thread-

FenceReduction, DCT8×8, MersenneTwister 

Cluster 5 EigenValue, Mergesort 

 

Table 4-2. Clustering result for the AMD benchmark suite 

 Benchmarks 

Cluster 1 
AESEncryptDecrypt, BlackScholes, DwtHarr, MonteCarloA-

sian, MersenneTwister, LDSBandwidth, 

Cluster 2 
HistogramAtomics, MatrixMulImage, Ma-

trixMul_no_smem, ConstantBandwidth, ImageBandwidth 

Cluster 3 BinomialOption 

Cluster 4 BitonicSort, FastWalshTransform 

Cluster 5 

BinarySearch, DCT, FFT, Histogram, MatrixTranspose, Pre-

fixSum, Reduction, SimpleConvolution, QuasiRandom-

Sequence, ScanLargeArray 

Cluster 6 EigenValue 

Cluster 7 FloydWarshall 

Cluster 8 MatrixMul_1_smem, MatrixMul_2_smem  

Cluster 9 MonteCarloAsianDP, GlobalMemoryBandwidth 

Cluster 10 RadixSort 
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The common set of applications used for this work should cover all clusters from both 

benchmark suites. To achieve this goal, we select 10 programs including BinomialOptions, 

BlackScholes, EigenValue, FastWalshTransform, FloydWarshall, Histogram, Ma-

trixmul_2_smem, Matrixmul_no_smem, MontecarloDP, and RadixSort. By doing this, all the 5 

clusters in the Nvidia SDK and the 10 clusters in the AMD SDK application set are fully covered. 

Note that the Nvidia benchmark suite does not provide CUDA implementations for applications 

including FloydWarshall, Matrixmul_no_smem, and MontecarloDP; so we implement them 

manually. A brief description of these 10 applications is given in Table 4-3. 

Table 4-3. Common applications 

Workload Description 

BinomialOption Binomial option pricing for European options 

BlackScholes Option pricing with the Black-Scholes model 

EigenValue 
Eigenvalue calculation of a tridiagonal symmetric ma-

trix 

FastWalsh Hadamard ordered Fast Walsh Transform 

FloydWarshall Shortest path searching in a graph 

Histogram Calculation of pixel intensities distribution of an image 

Matmul_2_smem 
Matrix multiplication, using the shared memory to store 

data from both input matrices 

Matmul_no_smem Matrix multiplication, without using shared memory 

MonteCarloDP 
Monte Carlo simulation for Asian Option, using double 

precision 

RadixSort Radix-based sorting 

 

For each benchmark suite, we validate the effectiveness of clustering by comparing the av-

erage of selected programs and that of all applications for important metrics. The metrics used 

for validations on two GPUs are slightly different. For the execution rate, we employ the widely 

used millions of instructions per second (MIPS) as the criteria for each set individually. For the 

Nvidia applications, we also compare the SM occupancy, which is defined as the ratio of active 

warps on an SM to the maximal allowable warps on a streaming multiprocessor. This metric can 

reflect the overall parallelism of an execution and is fairly important in the general purpose GPU 
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computing. For the AMD programs, we choose the ALUBusy and ALUPacking as additional val-

idation metrics. This is because that in the VLIW architecture, the packing ratio is one of the 

dominant factors that determine the throughput. Moreover, the ALUBusy indicates the average 

ALU activity during an execution, which is also critical to the overall performance. 

The validation results are demonstrated in Figure 4-1 and Figure 4-2. As observed, the aver-

age occupancy and MIPS for all Nvidia applications can be well approximated by the selected 

programs. For the AMD programs set, both ALUBusy and ALUPacking can be estimated reason-

ably well; however, we notice that the metric MIPS leads to around 30% discrepancy when using 

the subset of programs. As we described previously, the global optimal cluster number for the 

AMD programs is 31, meaning that almost each application stands as an individual cluster. This 

indicates that the execution patterns of AMD programs are not sufficiently close to each other 

compared to the Nvidia programs. As a consequence, the chosen 10 programs are not able to ac-

curately represent the characteristics of all applications. Nevertheless, considering that the num-

ber of applications has been largely reduced, we believe that the validation result is still accepta-

ble to reduce the benchmarking efforts. In general, the validation results indicate that our bench-

mark clustering is reasonable and the selected programs are representative of the entire suite. 

 

Figure 4-1. Validation result for the Nvidia benchmark suite 
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Figure 4-2. Validation result for the AMD benchmark suite 

4.3.2 Overall Execution Time Comparison 

In general purpose GPU computing realm, the CPU side is usually referred as the host while 
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time distribution. For applications such as Histogram, the time spent on communication between 
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computer. To further understand this issue, we conduct a group of experiments to test the 

memory transfer performance on both computer systems. Figure 4-4 illustrates the communica-

tion time when copying different sizes of data from the host to the device. Similarly, the time for 

mem_D2H is shown in Figure 4-5. In general, the results support our inference. However, when 

copying a large amount of data from the GPU to the CPU, AMD performs better. 

 

Figure 4-3. Execution time breakdown of selected applications from SDKs 

 

Figure 4-4. Host-to-Device memory transfer performance 

 

Figure 4-5. Device-to-Host memory transfer performance 
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In a CUDA application, the API cudamemcpy is called for data communication, whereas an 

OpenCL program uses the CLEnqueueWritebuffer function to transfer data to the GPU and then 

invokes the CLEnqueuReadbuffer routine to copy the computation result back to the host side. 

As can be observed, the cudamemcpy takes fairly short time (i.e., tens of microseconds) when the 

data size is small (e.g., < 1024KB); in contrast, the OpenCL API needs at least 1 millisecond (i.e., 

1000 µs) regardless of the data size. Note that in both systems, the time hardly changes when the 

data size varies between 64KB and 1024KB. It is thereby reasonable to infer that the time should 

be majorly taken by the configuration overhead such as source and destination setup in this case. 

Therefore, the gap demonstrates that the OpenCL API for memory copies has a larger launch 

overhead than the corresponding CUDA routine. On the other hand, the OpenCL function 

CLEnqueueReadbuffer takes shorter transfer time when the data size is relatively large. This in-

dicates that the AMD OpenCL implementation has specific advantages on transferring large 

chunk of data from the GPU to the CPU. The BlackScholes benchmark has the largest size of da-

ta that need to be read back to the host side, making the AMD system to be a faster device. 

The kernel execution on the GPU is always considered as the most important part in study-

ing GPU performance. In these 10 pairs of applications, seven of them run faster on the Nvidia 

GPU, while AMD performing better on Blackscholes, MatMul_2_smem, and MatMul_no_smem 

benchmarks. The kernel computation time of EigenValue, FloydWarshall, and RadixSort on 

Radeon HD 5870 is substantially longer than those on GTX 580. Table 4-4 lists the ALUBusy 

rate and packing ratios of these ten programs when executed on the HD 5870. Note that for ap-

plications which invoke multiple kernels with different behaviors, we calculate the performance 

metric (e.g., ALUBusy, Packing ratio) by averaging that of all individual kernels weighted by the 

corresponding execution time. As shown in the table, the three programs running faster on the 
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AMD GPU have a common point that the VLIW packing ratio is fairly high (highlighted in light 

gray). Recall that Radeon HD 5870 includes 320 five-way VLIW processors working at 850MHz. 

Therefore, provided that the packing ratio is α, the theoretical peak performance can be calculat-

ed as [5]: 320 × 5 × α × 850MHz × 2 = 2.72 α TFLOPS. Note that in this equation, the factor 2 is 

included because that the fused multiply-add (FMA) operation, which includes two floating point 

operations, is usually used while deriving peak throughput of a GPU in convention. Similarly, 

the maximal performance of the GTX 580 GPU is 512×1544MHz×2 = 1.581 TFLOPS. In com-

parison, the packing ratio α should be no less than 58% (i.e., 1.581/2.72) to make the AMD GPU 

run faster. Since the packing ratios of BlackScholes, Matmul_2_smem, and Matmul_no_smem are 

all greater than this threshold, these programs run faster. On the other aspect, Eigenvalue, 

FloydWarshall, and RadixSort have fairly low packing ratios; even worse, their ALUBusy rates 

are low during the execution (highlighted in dark grey). These two factors result in the poor per-

formance of these three programs. 

Table 4-4. Execution information on the AMD GPU 

Workload ALUBusy (%) Packing ratio (%) 

BinomialOption 62.51 31.1 

Blackscholes 58.58 95.75 

Eigenvalue 18.32 54.44 

Fastwalsh 56.94 30.83 

FloydWarshall 20.35 32.3 

Histogram 21.03 33.5 

Matmul_2_smem 54.4 81.04 

Matmul_no_smem 15.4 73.5 

MonteCarloDP 49.29 71.9 

Radixsort 3.12 30.9 
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The third point that deserves detailed analysis is the double precision performance because 

of its importance in solving HPC problems. We use the MonteCarloDP application from finan-

cial engineering to compare the double precision computing capability of these two GPUs. This 

benchmark approximately achieves 70% packing ratio and 50% ALU utilization when running 

on the AMD GPU, which are adequately high for outstanding performance. However, its kernel 

execution time is remarkably longer compared to that on the Nvidia GPU. Unlike native bench-

marks selected from the SDK, the CUDA version of MonteCarloDP is directly transformed from 

the OpenCL implementation. This means that the two programs are identical on both the algo-

rithm design and the implementation details. It is thereby reasonable to conclude that the perfor-

mance gap is from the hardware difference. Each SM on the GTX 580 is able to execute up to 16 

double precision FMA operations per clock [18] with a peak throughput of 16×16×1544MHz×2 

= 790.5 GFLOPS. In the Radeon HD 5870, however, the four ALUs within a VLIW processor 

cooperate to perform a double precision FMA per clock. Therefore, the maximal processing 

power is no more than 320×1×850MHz×2 = 544 GFLOPS. Obviously, the GTX 580 is more 

preferable for double precision computations. 

4.3.3 Parallelism 

Execution parallelism stands as the heart of general purpose GPU computing. A typical 

GPGPU application usually launches a large amount of warps/wavefronts to hide long latencies 

encountered during the execution. In this section, we will investigate that how execution parallel-

ism impacts the overall performance on these two GPUs. 

We first observe the performance variations for changing the thread block size in Nvidia 

programs (work-group size for AMD programs). When the block size is changed, the number of 

blocks/work-groups resided on an SM/SIMD may vary accordingly. This in turn changes the ex-
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ecution parallelism. Clearly, the parallelism will be greatly reduced if there are too few 

warps/wavefronts on an SM or SIMD and the performance is likely to be degraded in that situa-

tion. Figure 4-6 shows the normalized execution time of selected benchmarks when the block 

size is set to 64, 128, and 256 respectively. Note that only a fraction of 10 applications are tested. 

The reason is that the block size is tightly fixed in the program implementation for some bench-

marks. As a result, changing the configuration will violate the correctness of these applications. 

Therefore, we do not include such programs in this experiment. 

 

Figure 4-6. Performance variation when changing the thread block size for Nvidia applications 
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block size while executing MonteCarloDP. Figure 4-7 demonstrates that the performance of 

these applications do not change much with varying work-group sizes on the AMD GPU. As de-

scribed previously, the AMD GPU adopts the VLIW architecture; therefore, other factors includ-

ing the ALU packing ratio are also playing significant roles in determining the execution perfor-

mance. 

 

Figure 4-7. Performance variation when changing the work-group size for AMD benchmarks 
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To further understand this issue, we record the occupancy and ALU packing ratio corre-

sponding to each working size and show them in Figure 4-9. Both occupancies on two GPUs are 

reducing with the increase of working sizes. This is due to the resources constraint on an 

SM/SIMD. As each thread computes more elements, the number of registers which are allocated 

to store intermediate variables is inevitably increased. Therefore, fewer threads are allowed to 

reside on the same SM, resulting in a decreased occupancy. On the GTX 580 GPU, such de-

creased parallelism counteracts the advantage of increased efficiencies of single threads, making 

the overall performance slightly changed. However on the AMD GPU, since the calculation of 

each matrix element is independent, the compiler is able to assign the extra computations to the 

unoccupied slots within a VLIW processor, thus increasing the packing ratio. When the working 

size varies within a reasonable range, the high packing ratio is the dominant factor to the perfor-

mance. Consequently, the HD 5870 GPU shows a performance boost when working size in-

creases. 

 

Figure 4-8. Performance variation when changing the working size 

Putting all of these together, we can conclude that the extraction of the optimal parallelism 

on two GPUs follows different patterns. On Nvidia GPU, we shall aim at increasing the SM oc-

cupancy in general, while paying attention to other factors such as the resource usage and 

0

20

40

60

80

100

1 2 4 8

K
e

rn
e

l T
im

e
 (

m
s)

Working size

ATI

Nvidia



 

48 

 

memory access behavior. On the AMD GPU, improving the VLIW packing ratio is of great im-

portance for higher performance. 

 

Figure 4-9. Occupancy and VLIW packing ratio variation when changing the working size 
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FloydWarshall suffers from memory access latencies, therefore, the L1 cache is able to capture 

data locality and effectively improve the performance. The result of MatrixMul_no_smem is sur-

prising since the execution time is getting even longer when the L1 cache is enabled. We thereby 

conduct a case study based on this benchmark to reveal the underlying reasons. 

 

Figure 4-10. Performance variation on GTX 580 when the L1 cache is enabled/disabled 

In MatrixMul_no_smem, each thread is responsible for calculating four adjacent elements in 

a column of the output matrix. This is illustrated in Figure 4-11 (labeled as vertical in Matrix C). 

When a thread is calculating the first element, it will load a block of consecutive data from the 

corresponding line in matrix A. According to [16], on a Fermi GPU, the memory transaction size 

is 128bytes when the L1 cache is enabled. Therefore, when an L1 cache miss is encountered, a 

128B segment transaction will be always issued. As the thread continues to calculate the second 

element, a global memory read request is issued again to load the data from the following line in 

matrix A. Note that all threads within the same SM shares the L1 cache. This implies that a pre-

viously cached block might be evicted in order to accommodate the new fetched data requested 

by a more recent L1 miss. In this program, the memory access pattern is quite scattered. Only a 
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memory requests directly go through the L2 cache where memory transactions are served in 32-

byte granularity. Therefore, the global memory bandwidth is more efficiently used, leading to 

better performance. 

horizontal

vertical

Matrix A

(input)
Matrix C

(output)

Cache line

 

Figure 4-11. Two versions of matrix multiplication implementations 

Based on this analysis, we modify the kernel and make each thread calculate four adjacent 

elements in the same line of matrix C (labeled as horizontal in Figure 4-11) for better reuse of L1 

cache data. To validate these two cases (i.e., vertical and horizontal), we carry out a group of ex-

periments by setting the input matrix to different sizes. The result is demonstrated in Figure 4-12 

and Figure 4-13. As we expect, in the horizontal implementation, the computation throughput is 

much higher when the L1 cache is enabled. In contrast, disabling the L1 cache can yield better 

performance for the vertical program. 

 

Figure 4-12. Performance of the "Horizontal" matrix multiplication on GTX 580 
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The caches involved in the Radeon HD 5870 GPU have different design specifications from 

that on the Nvidia GPU. In specific, both the L1 and L2 caches on the HD 5870 are only able to 

store images and same-indexed constants [15]. Many data structures used in GPGPU application 

kernels such as float type arrays are uncacheable. In the OpenCL programming, this can be 

worked around by defining the target structures as image objects and use the corresponding rou-

tines for data accesses. In order to understand the effect of the caches on the HD 5870, we com-

pare the performance of two matrix multiplication programs, one of which is designed to use the 

caches. In Figure 4-14, the curve labeled by “image object” corresponds to the version using 

caches. Note that these two programs are built on identical algorithms and neither of them uses 

the local data share; hence the performance gap comes directly from caches. Obviously, when 

setting the data array type to image object, the performance is boosted tremendously. 

 

Figure 4-13. Performance of the "Vertical" matrix multiplication on GTX 580 

 

Figure 4-14. Performance of matrix multiplication on HD 5870 
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In summary, there are several architectural differences between the caches on the GTX 580 

and Radeon HD 5870 GPUs. While programming cache-sensitive applications on Fermi GPUs, 

the data access patterns and kernel workflows should be carefully designed, in order to effective-

ly and efficiently use the L1 cache. The caches on the HD 5870 are less flexible compared to that 

on the GTX 580. To take the advantage of caches on the AMD GPU, cacheable data structures 

such as image objects should be appropriately used in the programs. 

4.3.5 Energy Efficiency 

Figure 4-15 shows the power consumptions of selected benchmarks running on two GPUs. 

Obviously, the Fermi GPU consumes more power than the AMD counterpart. Recall the manu-

facture parameters listed in Table 2-1. The GTX 580 integrates more transistors and its processor 

cores are running on a higher frequency compared to the HD 5870. Therefore, the Nvidia GPU 

tends to consume more power during program execution. The energy consumption of these 

benchmarks is shown in Figure 4-16. We observe four of those selected applications consume 

less energy on the AMD GPU. Because of the relative low power consumption, the HD 5870 

consumes less energy to solve a problem when its execution time is not significantly longer than 

that on the GTX 580.     

 

Figure 4-15. Power consumption comparison of the two GPUs 
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The energy efficiency can be interpreted by the metric Energy-delay product (EDP). We 

demonstrate the normalized EDP for these applications in Figure 4-17. As shown in the figure, 

the HD 5870 GPU wins on four of them: BlackScholes, Histogram, MatrixMul_2sm, and Ma-

trixMul_nsm. Note that three benchmarks from these four contain efficient OpenCL kernels with 

fairly high VLIW packing ratios. This indicates that the VLIW packing is also critical to the en-

ergy efficiency of the HD 5870 GPU. In case where a compact packing is easy to explore, the 

Radeon HD 5870 is more preferable from the standpoint of high energy efficiency. In general, 

we can summarize a principle that the AMD GPU can deliver better energy efficiency when the 

program can perfectly fit the VLIW processors; otherwise the GTX 580 card is more preferable. 

 

Figure 4-16. Energy consumption comparison of the two GPUs 

 

Figure 4-17. Energy efficiency comparison of the two GPUs 
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4.4 OpenCL Executions Comparison 

As stated in section 1, using pairs of CUDA and OpenCL applications for the comparison is 

effective to explore the respective advantages of these two GPUs. However, in order to eliminate 

the interference caused by the software-wise diversity, it is necessary to choose a set of truly 

identical applications to make a consistent comparison, by which we aim to investigate that how 

architectural difference between Nvidia and AMD GPUs will impact the performance of the 

same program. 

We choose the OpenCL version of the NAS parallel benchmark [6] to conduct this study. 

The NAS benchmark suite, which contains three pseudo-applications and five kernels, was origi-

nally derived from computational fluid dynamics applications and is widely used to evaluate the 

performance of supercomputer systems [6]. Its OpenCL implementation is thereby an appropri-

ate candidate to assess modern general-purpose GPUs. For each of the eight applications, there 

are five problem sizes (i.e., S, W, A, B, C) requiring different system re-sources for the execu-

tion. Our testbeds are able to execute 12 application-input combinations; therefore, we will run 

these 12 programs on two GPUs and make the comparison accordingly. 

Following the approach from the previous section, we start our analysis by demonstrating 

the execution time breakdown of the selected programs, which is shown in Figure 4-18. Note 

that each program is denoted by its name and problem size. For instance, BT.S means running 

the application BT with the problem size S. As can be seen from the figure, the kernel computa-

tion time dominates the entire execution for all programs on both GPUs; in addition, the AMD 

Cypress GPU takes longer time to execute these programs than the Nvidia Fermi GPU does. To 

investigate the reason of this, we collect the ALU busy rates of two GPUs while running these 

programs and list them in Table 4-5. Note that the Nvidia profiler does not provide the ALU 
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busy counter for kernel executions, so we derive the utilizations of the Nvidia GPU from the re-

ported active cycles and the corresponding kernel execution time. As can be observed from the 

table, the AMD GPU has fairly low ALU busy rates while executing these programs. Examples 

include BT.S, LU.S, and SP.S, whose executions result in less than 1% utilization. In contrast, 

the Nvidia GPU can be more efficiently used for executions, thus completing the tasks within 

much shorter time. 

 

Figure 4-18. Execution time breakdown of the 12 programs from NAS benchmark suite 

Table 4-5. ALU busy rates on the two GPUs 

Application ATI ALU busy (%) Nvidia ALU busy (%) 

BT.S 0.216 49.51 
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IS.S 4.44 35.76 

IS.W 4.00 26.43 

LU.S 0.324 46.5 
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The low ALU busy rates on the AMD GPU deserve further explorations. We summarize two 

reasons that lead to the low utilizations by carefully analyzing profiling results: (1) most kernels 

in these applications require a large number of registers and thus decrease the occupancy due to 

the resource constraint. For example, each work-item of the most time-consuming kernel from 

BT.S is assigned 63 registers, meaning that few workgroups can reside on the same SIMD en-

gine. Recall that AMD GPUs hide the memory access latency by switching among a large num-

ber of wavefronts while executing OpenCL applications; therefore, few active wavefronts imply 

insufficient ability to hide the memory latency. (2) The interleaving between ALU computations 

and memory accesses of kernels from these workloads is not fully optimized for the best perfor-

mance. Generally, long runs of ALU instructions between consecutive memory operations are 

effective to increase the execution throughput and are able to partially compensate the low paral-

lelism (i.e., small number of wavefronts). We use the ALU/Fetch ratio metric provided by the 

profiler to investigate this feature of those kernels. Figure 4-19 plots the ALU/Fetch ratios of im-

portant kernels (i.e., those which are frequently invoked and take relatively longer time to exe-

cute) from BT.S, LU.S, SP.S and FT.S. Note that FT.S is chosen for comparison because it has 

the highest ALU busy rates among the twelve programs. As can be observed, the kernels in BT.S, 

LU.S and SP.S have much lower ALU/Fetch ratios than those from FT.S. This indicates that the 

former three programs tend to frequently issue global memory requests after executing only a 

few ALU instructions, potentially resulting in memory stalls. In case where the occupancy is 

fairly low, the situation is getting even worse because all wavefronts might be waiting for the 

operands and the scheduler cannot resume any wavefront for execution to overlap the memory 

access. 
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Figure 4-19. Kernel ALU/fetch ratios of 4 benchmarks executed on the AMD GPU 

Due to the relatively low parallelism of these programs, the caches are playing an important 

role to the performance. Table 4-6 lists the derived L1 and L2 cache miss rates when BT.S, LU.S, 

SP.S and FT.S are executed on the Nvidia GPU. As can be observed, the two-level cache hierar-

chy on this GPU can serve a large portion of memory requests and consequently reduce the 

number of transactions that go through the global memory. This will assist to alleviate the impact 

of the low parallelism and small ALU/Fetch ratios, resulting in much faster executions for those 

programs. On the contrary, caches on the AMD GPU are majorly used to cache images and con-

stants [15], thus they are unable to provide fast accesses to normal read/write requests issued 

from different work-items. Under this limitation, the program executions incline to suffer from 

the long-latency global memory accesses and the execution time is subsequently prolonged. 

Table 4-6. Cache miss rates on the Nvidia GPU 

Benchmark L1 miss rate (%) L2 miss rate (%) 

BT.S 54.7 11.1 

FT.S 56.2 7.79 

LU.S 40.7 5.94 

SP.S 48.9 3.18 
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We finally compare the power consumptions of both GPUs while executing these workloads 

and demonstrate them in Figure 4-20. We notice that the AMD GPU consumes less power than 

the Nvidia GPU for all selected programs. The reason is similar to that has been described in sec-

tion 4.5. Given that the AMD GPU has fewer integrated transistors and runs at a lower frequency, 

it tends to consume less power than the Nvidia competitor. 

 

Figure 4-20. Power consumptions of two GPUs while the running NAS benchmarks 

4.5 Related Work 

In recent years, several researchers have authored out-standing studies on modern GPU ar-

chitecture. On the performance analysis aspect, Hong et al. [33] introduce an analytical model 
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In [48], Wong et al. explore the internal architecture of a widely used Nvidia GPU using a set of 
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approach to quantitatively analyze the GPU performance. Studies on typical AMD GPUs are 
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Literature on the GPU power/energy analysis can also be found in prior studies. Hong and 

Kim [34] propose an integrated GPU power and performance analysis model which can be ap-

plied without performance measurements. Zhang [50] and Chen [26] use similar strategies to sta-

tistically correlate the GPU power consumption and its execution behaviors. The established 

model is able to identify important factors to the GPU power consumption, while providing ac-

curate prediction for the runtime power from observed execution events. Huang et al. [35] evalu-

ate the performance, energy consumption and energy efficiency of commercial GPUs running 

scientific computing benchmarks. They demonstrate that the energy consumption of a hybrid 

CPU+GPU environment is significantly less than that of traditional CPU implementations. In 

[44], Rofouei et al. draw a similar conclusion that a GPU is more energy efficient compared to a 

CPU when the performance improvement is above a certain bound. Ren et al. [43] con-sider 

even more complicated scenarios in their study. The authors implement different versions of ma-

trix multiplication kernels, running them on different platforms (i.e., CPU, CPU+GPU, 

CPU+GPUs) and comparing the respective performance and energy consumptions. Their exper-

iment results show that when the CPU is given an appropriate share of workload, the best energy 

efficiency can be delivered. 

Efforts are also made to evaluate comparable architectures in Prior works. Peng et al. 

[39][40] analyze the memory hierarchy of early dual-core processors from Intel and AMD and 

demonstrate their respective characteristics. In [32], Hackenberg et al. conduct a comprehensive 

investigation on the cache structures on advanced quad-core multiprocessors. In recent years, 

comparison between general purpose GPUs is becoming a promising topic. Danalis et al. [27] 

introduce a heterogeneous computing benchmark suite and investigate the Nvidia GT200 and 

G80 series GPU, AMD Evergreen GPUs, and recent multi-core CPUs from Intel and AMD by 
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running the developed benchmarks. In [28], Du et al. compare the performance between an 

Nvidia Tesla C2050 and an ATI HD 5870. However, their work emphasizes more on the com-

parison between OpenCL and CUDA from the programming perspective. Recently, Ahmed and 

Haridy [18] conduct a similar study by using an FFT benchmark to compare the performance of 

an Nvidia GTX 480 and an ATI HD 5870. However, power and energy issues are not considered 

in their work. 

On the other hand, benchmark clustering has been proved to be useful for computer architec-

ture study. Phansalkar et al. [41] demonstrate that the widely used SPEC CPU benchmark suite 

can be classified into a number of clusters based on the program characteristics.  

Our previous work [50] adopts the benchmark clustering approach. We believe that the ap-

plications in the SDKs provide the most typical GPU programming patterns that reflect the char-

acteristics of these two devices. Therefore, we can extract and compare the important architec-

tural features by running the selected applications. In this paper, we further include a set of 

OpenCL implementations of NAS benchmarks to perform a further comparison. 

4.6 Conclusion 

In this chapter, we use a systematic approach to compare two recent GPUs from Nvidia and 

AMD. While sharing many similar design concepts, Nvidia and AMD GPUs differ in several 

aspects from processor cores to the memory subsystem. Therefore, we conduct a comprehensive 

study to investigate their architectural characteristics by running a set of representative applica-

tions. Our study shows that these two products have distinct advantages and favor different ap-

plications for better performance and energy efficiency. 
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CHAPTER 5. SUMMARY AND FUTURE WORK 

The prevalence of general-purpose programming language including CUDA and OpenCL 

has led to a concentration shift from traditional CPUs to modern GPUs in the computer commu-

nity. Nonetheless, the GPU microarchitecture and its impact on the performance and power fea-

tures are still unknown problems to many HPC users. In this thesis, we choose two widely used 

GPUs respectively from Nvidia and AMD and conduct a comprehensive investigation on these 

two platforms, in order to extract key architectural features that can be used by both software 

programmers and hardware architects for optimizing the next generation’s products. 

First, we focus on an AMD Cypress GPU due to its special VLIW structure. We employ an 

advanced statistical tool to facilitate our analysis. Based on our evaluation, the VLIW packing 

ratio appears to be fairly important to both execution performance and power efficiency. Specifi-

cally, increasing VLIW packing ratio is effective in improving both performance and energy-

efficiency, thus it is of great significance for software programmers and compiler designers to 

maximize the utilization of the function units. 

Second, we perform a detailed investigation on an Nvidia Fermi GPU and comprehensively 

compare it to the AMD Cypress GPU. We observe that because of the different architectural or-

ganization, the Fermi GPU and Cypress GPU demonstrate distinct characteristics on parallelism, 

cache hierarchy, and energy-efficiency. Therefore, developers working on AMD and Nvidia 

GPU might use different optimization techniques to enhance the performance and energy-

efficiency of their applications.  

The continuously updated GPU architecture confirms the significance of this processor in 

next generation’s computing platforms. In the near future, I will continue to concentrate on mod-
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ern GPU processors and perform similar study to identify key architectural features that impact 

the execution performance and energy efficiency, in order to extract general principles for the 

GPU system optimization.   
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