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Abstract

Fast and reliable Spectrum Sensing (SS) plays a crucial role in the cognitive radio

(CR) technology in order to prevent unwanted interference to the primary users

(PU) and to reliably and quickly detect the white spaces in the spectrum for

opportunistic access by the secondary users (SU).

Spectrum Sensing must often be performed in the absence of information such

as PU signaling scheme, noise level and channel fading coefficients. While these

parameters can be estimated in the SU, estimation errors significantly deteriorates

the performance of SS techniques. In this thesis, we introduce and evaluate the

performance of two novel blind spectrum sensing algorithms which do not rely on

knowledge of these parameters.

The first is a SS technique for signaling schemes which introduce controlled in-

tersymbol interference in the transmitter. The second is for cases when the receiver

of the SU is equipped with a multiantenna system. This approach exploits the path

correlation among the signals received at different antennas.

Next we analyze the performance of Spectrum Monitoring (SM), an new tech-

nique which allows the SU to detect the presence of the PU using its own receiver

statistics. In contrast to SS, with SM, the SU does not need to interrupt its own

transmission in order to detect the presence of the PU. We carefully construct

the decision statistics for SM and evaluate its performance. The performance of a

hybrid SM/SS system shows a significant improvement over SS alone.

x



Chapter 1
Introduction and Background

1.1 Opportunistic Spectrum Access

Today most of the radio spectrum is assigned to licensed users. However, while

spectrum utilization is mainly concentrated around certain parts of the spectrum,

a considerable portion of the spectrum is underutilized. The spectrum usage is

more concentrated for the frequencies below 3GHz [2]. Figure 1.1 shows actual

measurement of the power spectral density (PSD) of the received signal in a fre-

quency band 6 GHz wide collected for a span of 50 μs and sampled at 20 GS/s [1].

It can be observed that spectrum utilization is more intense at frequencies below

3 GHz whereas the spectrum is under-utilized in the 3-6 GHz bands.

FIGURE 1.1. Actual measurement of 0-6 GHz spectrum utilization [1]

According to Federal Communications Commissions (FCC) [3], the spectrum

utilization in different locations and frequencies is varying from 15% to 85%. Fixed

spectrum allocation policies do not allow unlicensed users to reuse the mostly

vacant bands which are allocated to licensed users. The limited available spectrum,

inefficiently regulated bands and overcrowding of the radio spectrum coupled with
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the ever increasing demand for wireless services has led to the introduction of a

new paradigm in spectrum management, namely opportunistic spectrum access

(OSA).

In OSA a secondary user (SU) can identify and utilize the portions of the licensed

spectrum that are currently unused by the primary users (PU). Cognitive Radio

(CR), first introduced in [4], has been proposed as the enabling technology for

opportunistic spectrum access. Afterward many efforts have been made to clearly

define the functionalities of CRs and many efforts have been made to standardize

it [5]. However, most of them have focused on theoretical analysis, and only a few

of them have been validated in practical system.

1.2 Cognitive Radios

Cognitive radio networks provide an opportunity to create time and location de-

pendent virtual unlicensed bands (bands that have been shared with the PU), and

to have dynamic spectrum management to prevent destructive interference to the

PUs. Even though no CR-based commercial devices have been introduced yet, FCC

allows the use of the unused television spectrum [6]. The Institute of Electrical and

Electronics Engineers (IEEE) has also supported the cognitive radio by developing

the IEEE-802.22 standard for Wireless Regional Area Network (WRAN) which

works in unused TV channels [7]. In the following, we are going to explain two

fundamental functionalities of cognitive radios, namely Cognitive Capability and

Reconfigurability.

1.2.1 Cognitive Capability

The cognitive capability enables the secondary users to acquire necessary infor-

mation from their radio environment. Transmitted waveforms, radio frequency

spectrum, communication network protocol, security policies, and locally avail-

2



able resources are some examples of the information that the secondary user can

gain from the licensed networks [8]. No standard duty cycle algorithm for cogni-

tive radio has been established yet. However, Figure 1.2 demonstrates a typical

cognitive cycles [9]. The steps of cognitive cycle defined in Figure 1.2 are,

• Spectrum sensing: In a cognitive radio network a secondary user must reliably

sense the channel to determine whether in a specific band another user’s

signal (primary or secondary) is present or not.

• Spectrum analysis: The cognitive radio should evaluate the parameters of

the potentially available band such as channel capacity, or noise level.

• Spectrum decision: In the absence of another signal, the secondary user

adapts its operating parameters (e.g., carrier frequency, transmit power, mod-

ulation, coding, etc.) in order to make best use of the available spectrum hole

and provide the desired quality of service.

FIGURE 1.2. Duty cycle for cognitive radios

At the end of the cognitive cycle, the available spectrum is determined and

the secondary user initiates transmission. As long as the secondary user wishes

3



to transmit, this cycle runs to keep track of the changes in the current transmit-

ting band. Figure 1.3 demonstrates how the secondary user utilizes the available

spectrum holes.

FIGURE 1.3. Opportunity Spectrum Access

1.2.2 Reconfigurability

The Reconfigurability of the cognitive radios means cognitive radio’s transmitter

and receiver should be capable of adjusting their operating parameters such as

transmission power, carrier frequency or modulation scheme to take maximum ad-

vantage of the available radio resources in their environment [10]. The SUs should

have the capability of adjusting their operating functions only by doing software

adaptation and with no hardware modifications. This adjustment should happen

not only at the initialization of the transmission but also during the communica-

tion, due to the fact that the secondary user may switch between available spectrum

holes. Some examples of parameters that the secondary user should reconfigure fre-

quently are,

• Transmission Power: The secondary user should adjust its transmission am-

plifier gains to first avoid an interference to the primary user who may be

present in the band but has not been sensed due to misdetection (because

4



of for example large fading). Second to open up an opportunity to the other

secondary users to access the available spectrum.

• Operating Frequency: Switching between spectral holes implies that the sec-

ondary user should have the capability of changing its operating frequency.

• Modulation: Based on the service that the secondary user receiver needs,

the secondary user should adjust its modulation. On the other hand, the

secondary user may also change its modulation based on available spectrum

condition.

1.3 Spectrum Sensing in Cognitive Radios

As it was described, the first required capability of cognitive radio systems is spec-

trum sensing. In SS, two metrics of the probability of detection and the probability

of false alarm are widely used in order to assess and compare the performance of

different approaches. The probability of detection is defined as the probability that

the SS algorithm is capable of detecting the existence of the PU. The probability of

false alarm indicates the probability that the detector falsely alarms the existence

of the PU when it is not present.

Spectrum sensing is performed for out-of-band channels (out-of-band sensing)

in order to determine if they are vacant of the PU signals, and for the in-band

channel so that the SU can promptly vacate the channel in which the PU has

emerged (in-band sensing). Since protection of incumbent users is paramount, strict

requirements are imposed on in-band sensing. For example in IEEE 802.22, the

Wireless Regional Area Networks (WRAN) standard, a PU should be detected

within 2 secs [5, 7] after it starts transmission. This requirement (referred to as

detection time) implies that the transmission intervals of the SU must be shorter

than two secs., and must be periodically interrupted by spectrum sensing intervals.

If spectrum sensing determines that the channel is vacant of the incumbent users,

5



then a new transmission interval resumes followed by another sensing interval, and

so on.

During the sensing intervals the communication of the SUs is suspended result-

ing in loss of quality of service (QoS) in the secondary network. Therefore, it is

desired to make the sensing periods as short as possible and to reduce their fre-

quency. However, duration of the spectrum sensing period affects the performance

of the sensing algorithm as expressed by the detection and false alarm probabili-

ties. Detection probability should be large (e.g., > .9 for IEEE 802.22 standard)

since with misdetection the SU will continue to transmit causing interference to

incumbent users. On the other hand, the probability of false alarm must be small

(e.g., < .1 for IEEE 802.22 standard) as it results in loss of throughput in the sec-

ondary network. In addition, during its transmission intervals the SU does not try

to detect the presence of the PU signal. Therefore if the PU emerges, not only will

the SU cause undue interference to the PU, but also its own communication may

be disrupted due to the interference from the PU. Spectrum sensing has received a

great deal of attention in recent years and many algorithms have been proposed. A

survey of some recent algorithms appears in [9, 11, 12] and the references therein.

1.4 Blind Spectrum Sensing

Based on the available prior knowledge of the signaling scheme used by the PU,

the noise power, or the channel path coefficients, spectrum sensing techniques may

be classified into two categories; feature detection and blind detection.

• Feature detection techniques: These algorithms utilize specific characteristics

of the primary signal, noise and/or channel parameters (such as channel

fading coefficients). Clearly as more knowledge of the primary signal, noise

or channel is assumed, better performance can be achieved at the expense of

additional complexity and less generality.
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• Blind detection algorithms: These algorithms assume a minimal prior in-

formation of the primary signal parameters (e.g., bandwidth, modulation

scheme, etc.), noise information (e.g., noise power) or the channel informa-

tion (e.g., channel fading coefficients).

Cyclo-stationary detectors are examples of feature detectors, which require more

information on the primary signal parameters and are more computationally in-

tensive [13, 14, 15, 16, 17]. Energy Detector (ED) is the most typical example of

spectrum sensing algorithm [18, 19]. Despite its easy implementation, selection of a

threshold in ED to achieve a given false alarm probability requires precise knowl-

edge of the noise power (in this sense, ED is considered as a feature detection

algorithm). In the presence of noise power uncertainty, the performance of ED is

severely degraded due to a phenomenon referred to as “SNR wall” [20]. To avoid

the problem of noise power uncertainty in energy detectors, a generalized likeli-

hood ratio test (GLRT) algorithm may be employed [15, 21]. Even though GLRT

based energy detector is a blind spectrum sensing algorithm, the performance of

such algorithms at low SNR values are generally poor.

Recently several autocorrelation-based algorithms have appeared in the litera-

tures which are robust to noise uncertainty and exploit the fact that while white

noise samples are uncorrelated, most communication signals exhibit non-zero cor-

relation. However, these algorithms either assume a specific modulation scheme,

[22, 23], or rely on oversampling (with respect to the modulation symbol period)

of the received signal [24, 25, 26].

1.5 Spectrum Sensing Using Multiple Antennas

Multiple antenna systems have been widely used in wireless communication to

increase channel capacity and to improve transmission reliability. Recently, several

7



authors have considered using multiple antenna systems for spectrum sensing [19,

26, 27, 28, 29, 30].

In [28] the authors employ GLRT based multiple antenna algorithm. Their algo-

rithm is blind and it is shown that the system is robust to noise power uncertainty.

A multiple-antenna system is also employed in [29] where an eigenvalue-based

signal detection scheme is developed under noise power and/or signal correlation

uncertainty. In [31], it is shown that in the presence of an unknown number of

interferers, single-user multiple-antenna systems still suffer from SNR wall phe-

nomenon. Recognizing that low-power interferers are local whereas the primary

user has a global footprint, the authors propose a collaborative spectrum sensing

technique to exploit what they refer to as “interference diversity”.

1.6 Thesis Organization and Contributions

In Chapter 2, we propose a spectrum sensing technique for signaling schemes which

introduce controlled intersymbol interference in the transmitter. Examples include

correlative coding or partial response signaling techniques which have an inherent

memory in the transmitted signal. A decision statistic is introduced based on the

autocorrelation of the received signal and its performance in terms of the proba-

bilities of false alarm and detection is evaluated for AWGN and Rayleigh fading

channels. It is shown that the proposed method is a constant false alarm detector.

The numerical results from simulation and analysis are presented to demonstrates

the accuracy of our analysis.

Coexistence of the primary users and the secondary users in cognitive networks

leads to increases in co-channel interference (CCI) which needs to be appropriately

mitigated. CCI is often modeled as a white Gaussian noise process and assumed to

simply reduce the signal-to-noise (plus interference) ratio. In Chapter 3, we consider

the effect of CCI by a careful examination of the samples at the output of the
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matched filter receiver. We show that the timing offset between the interference and

the desired signals may result in the correlation of adjacent samples. We evaluate

the bit error rate (BER) resulting from CCI as well as the distribution of the total

number of errors in a packet. We use this result to introduce spectrum monitoring

scheme. However, our results can be employed for more accurate evaluation of

CCI and in developing techniques for CCI mitigation such as design of precoders

or forward error correction codes.

In Chapter 4, using the receiver statistics, we introduce a decision statistic to

enable the SU to detect the emergence of the PU without having to interrupt

its own communication. The proposed algorithm is not an alternative spectrum

sensing techniques. Rather it is intended to enhance an existing spectrum sensing

by increasing channel utilization for the SU and reducing detection delay for the

PU. We derive closed form formulas for channel utilization and detection delay

using two Markov chain models. The limits of the introduced decision statistic

is derived and an optimization problem is solved to maximize channel utilization

with a constraint on detection delay. Numerical results are presented from analysis

and simulation which show the accuracy of the analysis and the proficiency of the

proposed method.

In Chapter 5, we consider the problem of blind spectrum sensing when the

receiver of the secondary user is equipped with a multiantenna system. Using an

estimate of the cross correlation among the signals received at different antenna

elements, we propose a blind detection method which assumes no prior knowledge

of the signaling scheme used by the PU, the noise power, or the channel path

coefficients. The cross correlation among the received signals is a result of the

correlation among the channel path coefficients from the primary user transmitter

to different antenna elements of the secondary receiver. The detection and false

9



alarm probabilities of the proposed algorithms are evaluated using an asymptotic

analysis, and the results are compared with simulation results.

Finally, the thesis is concluded in Chapter 6 by presenting some final remarks.

10



Chapter 2
Blind, Constant False Alarm Spectrum
Sensing for Correlative Coding Signaling

2.1 Introduction and Background

The proficiency of the blind spectrum sensing in cognitive radios has been ex-

plained in Chapter 1. Recently several covariance and autocorrelation-based al-

gorithms have appeared in the literature which are robust to noise uncertainty

and exploit the fact that while white noise samples are uncorrelated, most com-

munication signals exhibit non-zero correlation. These algorithms either assume a

specific modulation scheme, [22, 23], or rely on oversampling (with respect to the

modulation symbol period) of the received signal [25, 26, 24].

In this Chapter, we exploit the correlation present in communication signals

resulting from correlated signaling or coding to introduce a novel blind spectrum

sensing technique. We develop a decision statistic based on the autocorrelation of

the received signal samples. The proposed method is constant false alarm rate in

that its false alarm rate can be set by selecting the number of observation samples.

The false alarm and detection probabilities are evaluated analytically for AWGN

and Rayleigh fading channels and compared with results from simulation.

2.2 Autocorrelation or the Received Signal at

the Secondary User Receiver

The baseband complex envelope of the primary user transmitted signal is given by

[32],

s(t) =
∞∑

n=−∞

ha(t− nTs)F(Xn) (2.1)

Xn = [xn, xn−1, · · · , xn−K ], (2.2)
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where {xn} is the sequence of zero-mean independent and identically distributed

transmitted symbols, ha(t) for t ∈ [0, Ts) is the pulse shape, Ts is the symbol

duration and K is a non-negative integer. Finally F(.) is a function defined based

on the modulation scheme and the forward error correction (FEC) code utilized by

the PU. If K = 0 corresponds to full-response signaling, while K ≥ 1 define partial

response signaling for which there is an inherent memory in the modulated signal.

Correlative coding, continuous phase modulation, and trellis coded modulation are

some schemes which introduce memory into the transmitted signal. This Chapter

will focus on correlative coding.

Correlative coding, also called partial response signaling or controlled intersymol-

interference (CISI) signaling is introduced in [33] in which the data sequence

is passed through a finite impulse response (FIR) filter denoted by fCISI where

fCISI(z) =
∑K−1

k=0 fkz
−k. Due to their simplicity and their useful spectral shapes,

Doubinary signaling with fCISI(z) = 1+z−1, andModified doubinary signaling with

impulse response fCISI(z) = 1−z−2 are the most commonly used correlative coding

schemes [34]. The transmitted signal with correlative coding and linear modulation

is given by

s(t) =
∞∑

n=−∞

ha(t− nTs)

(
K−1∑
k=0

xn−kfk

)
(2.3)

The autocorrelation function of s(t) is given by

Φss(τ) =
1

Ts

Ts∫
0

E [s(t+ τ)s∗(t)] dt (2.4)

=
1

2Ts

∞∑
n=−∞

∞∑
m=−∞

⎛
⎝ Ts∫

0

ha(t+ τ −mTs)h
∗
a(t− nTs)

×
K−1∑
p=0

K−1∑
q=0

fqf
∗
pE[xm−px

∗
n−q] dt

)
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=
1

2Ts

∞∑
n=−∞

∞∑
m=−∞

⎛
⎝ −nTs+Ts∫

−nTs

ha(t+ τ − (m− n)Ts)h
∗
a(t) (2.5)

×Ex
K−1∑
p=0

K−1∑
q=0

fqf
∗
p δ(m− n+ q − p) dt

)

=
1

2Ts

∞∑
i=−∞

⎛
⎝ ∞∫
−∞

ha(t+ τ − iTs)h
∗
a(t)dt

×Ex
K−1∑
p=0

K−1∑
q=0

fqf
∗
p δ(i+ q − p)

)

=
1

2Ts

∞∑
i=−∞

(
Ga(τ − iTs) Ex

K−1∑
p=0

K−1∑
q=0

fqf
∗
p δ(i+ q − p)

)

where δ(k) = 1 for k = 0 and 0 otherwise, Ex is the average energy of the trans-

mitted symbols and Ga(t) � ha(t) ∗ h∗a(−t), where ∗ between two signals denotes

convolution and h∗a(t) is the conjugate of ha(t). Assuming Ga(−Ts) = Ga(Ts) = 0,

Ga(t) is a function defined on [−Ts, Ts] which implies that in 2.4, i assumes one of

two values, i.e.,

i ∈ {�τ/Ts� , �τ/Ts�+ 1} (2.6)

where �.� is the floor function. After some manipulations one can show that,

Φss(τ) =
Ex
2Ts

(
Ga(T )

K−1−T∑
p=0

fp+T f
∗
p (2.7)

+ Ga(T − Ts)
K−2−T∑

p=0

fp+T +1 f
∗
p

)

where T � τ −
⌊

τ
2Ts

⌋
Ts, and 0 ≤ T < Ts.

If there is no over-sampling in spectrum sensing, we would have τ = lTs. Con-

sequently, T = 0 which results in for 0 ≤ l ≤ K − 1 we have,

Φss(lTs) = Ēh Ex
K−l−1∑
p=0

fp+lf
∗
p (2.8)
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where

Ēh �
1

Ts

Ts∫
0

|ha(t)|2dt (2.9)

2.2.1 Correlation of the Received Signal

Let H0 and H1 denote the absence and the presence of the PU, respectively. We

assume block fading in that the channel coefficient, denoted by g, is fixed during

the sensing period. The baseband complex envelope of the received signal at the

SU receiver under hypothesis Hη, η ∈ {0, 1}, is given by

r(t) = ηgs(t) + v(t). (2.10)

where {v(t)} is the white Gaussian noise process with zero mean and variance N0

which is independent of s(t). It can be seen that the correlation of the received

signal under hypothesis Hη is given by

Φ(η)
rr (τ) = η|g|2Φss(τ) +N0δ(τ) (2.11)

where δ(τ) is the impulse function.

2.3 Decision Statistic

Spectrum sensing is performed on N consecutive samples of the received signal,

r � {r0, r1, · · · , rN−1}, where rn � r(nTs). The correlation of the received signal

is estimated as,

Φ̂rr(τ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
N−τ

N−τ−1∑
n=0

rn+τr
∗
n if τ ≥ 0

Φ̂∗rr(−τ) if τ < 0

(2.12)

One can verify that Φ̂rr(τ) under Hη is a consistent and unbiased estimate of

Φ
(η)
rr (τ). The real and imaginary parts of Φ̂rr(τ) are denoted by ξ̂(τ) and χ̂(τ),
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respectively. The proposed decision statistic is now given by

T =
K−1∑
τ=1

[
Ω(R)

τ ξ̂(τ) + Ω(I)
τ χ̂(τ)

]
− λξ̂(0)

H1

≷
H0

0 (2.13)

where Ωτ � Ω
(R)
τ + jΩ

(I)
τ for τ ∈ {1, 2, · · · , K−1} are coefficients which have to be

appropriately selected and λ is the real-valued threshold which is chosen to achieve

the desired probability of false alarm. One notes that Φ̂rr(0) is the average energy

of the received signal and thus χ̂(0) = 0.

The performance of the proposed algorithm is evaluated in terms of the proba-

bilities of false alarm and detection denoted by p0 and p1, respectively. To this end

we need to find the distribution of T under each hypothesis.

2.3.1 Distribution of the Proposed Decision Statistic

The correlation of the received signal in (2.11) is a function of the power of the

channel, |g|2. As a result ξ̂(τ), χ̂(τ), and consequently the decision statistic are

functions of |g|2. Therefore we first compute all the distributions conditioned on

|g|2. The unconditional distributions are computed in the next section. For ease of

notation in this subsection, we drop the conditioning on |g|2 from our notations.

From (2.10), the memory of the received signal is limited and is at most KTs.

Therefore the received sequence {rn} although correlated has a finite memory.

More precisely, this an identically distributed sequence for which rn and rm are

independent if |n −m| > K. Therefore by the central limit theorem for strongly

mixing random processes the distribution of Φ̂rr(τ) under Hη converges to a Gaus-

sian distribution CN (μΦ̂|η(τ), σ
2
Φ̂|η
(τ)). This implies,

ξ̂(τ) | η ∼ N (μξ̂|η(τ), σ
2
ξ̂|η
(τ)) (2.14)

χ̂(τ)|η ∼ N (μχ̂|η(τ), σ
2
χ̂|η(τ)) (2.15)
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From (2.12) it is easy to show μΦ̂|η(τ) = Φ
(η)
rr (τ). So,

μξ̂|η(τ) = ξ(η)(τ) (2.16)

μχ̂|η(τ) = χ(η)(τ) (2.17)

where ξ(η)(τ) and χ(η)(τ) are the real and imaginary parts of Φ
(η)
rr (τ), respectively.

From (2.13), we see that T also Gaussian. For ease of notation let us define

Ω0 � −λ. Therefore the mean of T is given by

μT |η � E[ T | Hη] (2.18)

=
K−1∑
τ=1

Ω(R)
τ ξ(η)(τ) + Ω(I)

τ χ(η)(τ)− λξ(η)(0)

=1̄Ξη + 1̄Xη

where 1̄ is 1×K vector with all elements of 1, and vectors Ξη and Xη are defined

as

Ξη � [Ω
(R)
0 ξ(η)(0), · · · ,Ω(R)

K−1ξ
(η)(K − 1)]† (2.19)

Xη � [Ω
(I)
0 χ(η)(0), · · · ,Ω(I)

K−1χ
(η)(K − 1)]†, (2.20)

where A† is the conjugate transpose of A.

To find the variance of T , define the covariance matrix of Ω
(R)
τ ξ̂(τ), and Ω

(I)
τ χ̂(τ)

for τ ∈ {0, 1, · · · , K−1} under hypothesis Hη as Γξ̂|η =
[
γξ̂|η(i, j)

]
K×K

and Γχ̂|η =[
γχ̂|η(i, j)

]
K×K

, respectively. The elements of these matrices have been evaluated

in Appendix A From (2.13), and after some manipulation we have,

E[ T 2 | Hη] = 1̄
(
Γξ̂|η + Γχ̂|η + ΞηX

†
η +XηΞ

†
η

)
1̄†, (2.21)

which results in,

σ2
T |η � E[ T 2 | Hη]− μ2

T |η (2.22)

= 1̄
(
Γξ̂|η + Γχ̂|η − ΞηΞ

†
η −XηX

†
η

)
1̄†.
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And finally, the distribution of T under hypothesis Hη conditioned on |g|2 is given

by, T | η ∼ N
(
μT |η, σ

2
T |η

)
. Note that under H1 both μT |η and σ

2
T |η depend on α �

|g|2. Now the conditional probabilities of false alarm and detection (conditioned

on α) are

pη|α = Q(−
μT |η

σT |η
) (2.23)

where Q(x) = 1/
√
2π

∫∞
x
exp(−u2/2)du, is the Q-function. Finally the uncondi-

tional probabilities of false alarm and detection are given by,

pη =

∫
pη|xfα(x)dx (2.24)

where fα(.) is probability density function of α.

2.3.2 Constant False Alarm Ratio Detection

The received signal under H0 is the white Gaussian noise process. Therefore

Φ(0)
rr (τ) = N0δ(τ) (2.25)

which results in

Ξ0 = [−λN0, 0, · · · , 0]† (2.26)

X0 = [0, 0, · · · , 0]† (2.27)

Substituting the values of ξ(0)(i) and χ(0)(i) from (2.26) and (2.27) into (6.3), and

(6.4), followed by some manipulations one can verify that for i, k ∈ {0, 1, · · · , K −

1},

γξ̂|η(i, k) = λ2N2
0 δ(i)δ(k)

(
1 +

1

2N

)
+
N2

0Ω
(R)
i

2

2(N − i)
δ(i− k) (2.28)

γχ̂|η(i, k) =
N2

0Ω
(I)
i

2

2(N − i)
δ(i− k) (2.29)
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Moreover,

μT |0 = −λN0. (2.30)

By substituting (2.28) and (2.29) into (2.22) we get,

σ2
T |0 = N2

0

(
λ2

N
+

K−1∑
i=1

Ω
(R)
i

2
+ Ω

(I)
i

2

2(N − i)

)
(2.31)

Therefore from (2.24), the probability of false alarm is given by,

p0 = Q

⎛
⎜⎜⎜⎜⎜⎜⎝

λ√√√√λ2

N
+

K−1∑
i=1

Ω
(R)
i

2
+ Ω

(I)
i

2

2(N − i)

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.32)

It is clear from (2.32) that the probability of false alarm is not a function of N0 or

g, and can be fixed by choosing proper values of N and λ. This is why the proposed

algorithm is a constant false alarm ratio (CFAR) technique.

If p0 = P0 is the desired false alarm rate, then for a given number of samples N

the threshold λ can be chosen as

λ =

√√√√√√√√
K−1∑
i=1

Ω
(R)
i

2
+ Ω

(I)
i

2

2(N − i)

1

[Q−1(P0)]
2 −

1

N

(2.33)

2.4 System Optimization

To improve the proficiency of the proposed decision statistic, we can optimize

the performance by appropriately selecting the vector Ω= [Ω1, · · · ,ΩK−1]. The

distribution of T under Hη is a function of Ω which means the probabilities of

false alarm and detection are also functions of Ω. The correlation of the received

signal is function of the coefficient of the channel from the PU to the SU which
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is unknown. For a given channel coefficient, T and (as a result) false alarm and

detection probabilities are functions of Ω and λ. To show this dependency, we

subsequently use the notation μT |η(Ω, λ), σ
2
T |η(Ω, λ), p0(Ω, λ), and p1(Ω, λ).

One approach to optimize the performance over Ω is to maximize the detection

probability with a constraint on the probability of false alarm, i.e., a Neyman-

Pearson criterion. Considering the fact that multiplying Ω by a constant factor

will not change the decision statistic, and each Ωi in (6.3) and (6.4) is divided by

N − i, the constrained optimization problem is given by,

Maximize: p1(Ω, λ) (2.34)

Subject to:

⎧⎪⎪⎨
⎪⎪⎩

p0(Ω, λ) ≤ Popt

K−1∑
i=0

Ω
(R)
i

2
+ Ω

(I)
i

2

N − i
=W

(2.35)

As p1 is an increasing function of p0, the maximum of p1 occurs when p0 = Popt,

and from (2.32) we can find the corresponding λopt. To maximize the integral in

(2.24), we maximize the integrand. Now since Q(x) is a deceasing function of x,

the optimization problem can be rewritten as

Maximize:
μT |1(Ω, λopt)

σT |1(Ω, λopt)
(2.36)

Subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λopt =

√√√√√√√√
K−1∑
i=1

Ω
(R)
i

2
+ Ω

(I)
i

2

2(N − i)

1

[Q−1(Popt)]
2 −

1

N
K−1∑
i=0

Ω
(R)
i

2
+ Ω

(I)
i

2

N − i
=W

(2.37)

This optimization problem is too complicated to be tractable. However, we can

approximate (2.36) for low-SNR regime which is the reasonable in the SS. After
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some manipulation from (2.22), we get

σ2
T |1 ≈ λopt

(
1

N
− 2N2

0

)
+

K−1∑
i=1

Ω
(R)
i

2
+ Ω

(I)
i

2

2(N − i)
(2.38)

Define Oi = OR
i + jOI

i � ΩR
i +jΩI

i

N−i
for 0 ≤ i ≤ K − 1, and O � [O0, · · · ,OK−1].

Using Lagrange multiplier and approximation in (2.38) Define the Lagrangian as

L =
K−1∑
τ=1

(N − i)
(
OR

i ξ
(1)(τ) +OI

i χ
(1)(τ)

)
(2.39)

−Nλopt
(
ξ(1)(0) + χ(1)(0)

)
− 

(
OO† − 2W

)
Setting the derivative of the Lagrangian with respect to OR(τ) to zero,

∂L
∂OR

τ

= ξ(1)(τ)(N − τ)− 2OR
τ = 0 (2.40)

which results in,

OR
τ =

N − τ

2
ξ1(τ) (2.41)

Similarly, one can get evaluate OI
τ . Note that this result is for a given |g|2, however

multiplying the optimization coefficients by a constant factor does not change the

performance, so let us multiply it by 2/(|g|2(N − τ)) and we get,

Ω(τ) = Φss(τ), for 1 ≤ τ ≤ K − 1. (2.42)

2.5 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm via sim-

ulation and compare it with derived analytical results. Simulation results are ob-

tained from 104 independent trials. The PU uses 16-QAM with rectangular pulse

shape. Two types of channels, Rayleigh Fading and additive white Gaussian noise

(AWGN), are considered.

Fig 2.1 demonstrates the probability of detection of the proposed method, when

P0 = 0.1, for doubinary signaling, and different values of N . It is clear that by
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increasing the value of N the performance improves. It can also be seen that the

performance in AWGN channel outperform the performance in Rayleigh fading

channel. In particular, to achieve the operating region of pd ≥ 0.9, pf ≤ 0.1, when

N = 512 the required SNR for Rayleigh fading channel and AWGN channel should

be at least −6.5 dB and −12.7 dB, respectively.

Fig 2.2 demonstrates the receiver operating characteristic (ROC) curves for

AWGN and Rayleigh fading channel for two different values of N and SNR=-8dB.

Doubinary signaling is assumed.

FIGURE 2.1. p1 versus SNR for Rayleigh and AWGN channel, doubinary signaling, and
different values of N

Finally, Fig 2.3 shows probability of detection versus SNR for p0 = .1 and

different correlative coding techniques. In particular we employed doubinary, Kabal,

Kretzmer, and Kretzmer2 with FIR transfer functions given by 1+ z−1, 1 + z−1−

z−2− z−3, 1+ 2z−1+ z−2, and 2+ z−1− z−2, respectively. The proficiency of these

methods have been evaluated in [33].
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FIGURE 2.2. ROC for Rayleigh and AWGN channel, doubinary signaling, and different
values of N

FIGURE 2.3. p1 versus SNR for Rayleigh and AWGN channel, different values of N
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Chapter 3
Evaluating the Effect of Co-Channel
Interferer Signals in the Wireless
Networks

3.1 Introduction and Background

The ever growing popularity of wireless services coupled with the limited spectrum

have resulted in an increase in the spacial reuse of the radio spectrum where many

wireless services, applications or users coexist in the same frequency band. For

example in cellular mobile networks frequency reuse enables the users to share

the same frequency band as long as they are sufficiently apart. Another example

is in the overcrowded 2.4 GHz ISM band in which WLAN, Bluetooth, wireless

headsets, and cordless phones may share the same band. More recently dynamic

spectrum access has been proposed by FCC where unlicensed users can share the

spectrum with licensed users. One approach is the so-called underlay cognitive

radio networks where secondary unlicensed users may coexist with the primary

licensed users provided that they adapt their transmission parameters in order to

limit their interference to the primary users [35].

Coexistence of users in the same frequency band results in co-channel interference

which can severely degrade the performance of wireless transceivers. Co-Channel

Interference (CCI) has been the subject of many studies in the literature. Effects

of CCI in WLAN with multiple access points is addressed in [36] and [37]. CCI in

wireless sensor networks has been studied in [38] and [39]. For cellular networks the

radio link performance is usually limited by CCI rather than noise, and the outage

probability due to CCI is of primary concern [32], where CCI can meaningfully

degrade the performance of users especially near the border of the cells [40, 41].
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In cognitive radios several authors have investigated the effects of interference

caused by the secondary users on the primary user [42, 37, 43, 44]. Several authors

have proposed methods to mitigate the effects of CCI [45, 46, 47, 48] or to exploit

the effects of CCI on the secondary user receiver statistics in order to detect the

emergence of the primary user [49, 50].

In the study of the effects of CCI, the interference signal is often modeled as

a white Gaussian process. As a result it can be added to the thermal noise and

accounted for by appropriately reducing the signal to noise (plus interference) ratio

(SNIR). However, this is not a good model owing to the fact that the interference

signal is generated from a finite set of modulation symbols.

In this Chapter, we evaluate the effect of CCI on the bit error rate (BER), and

the distribution of the total number of errors in a packet by a careful examination

of the samples at the output of the matched filter receiver. It is demonstrated

that due to the timing offset between the desired and the interference signals, the

adjacent samples may be correlated. We show that BER and the distribution of

the total number of errors highly depend on this timing offset and identify the best

and worst cases for BER. This result can be exploited to reduce CCI in cooperative

networks. Our results can also be employed for more accurate evaluation of CCI

effects and in developing techniques for CCI mitigation such as design of precoders

[51, 52] or forward error correction codes. In this thesis, we use CCI to detect the

emergence of the primary user during the signal reception in the secondary user

receiver in Chapter 4.

3.2 Probability of Bit Error

We consider two transmitters denoted U1 and U2 transmitting in the same fre-

quency band. A receiver is interested in detecting the signal from U1 and experi-

ences interference from U2’s transmission. To make the analysis tractable, BPSK
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or QPSK modulation are assumed for U1 whereas U2 may employ an arbitrary

M -array linear digital modulation scheme. The received signals from U1 and U2

are, respectively, given by

s1(t) =

√
E1

Ts

∞∑
n=−∞

ane
jωctp1(t− nTs) (3.1)

and

s2(t) =

√
E2

Ts

∞∑
n=−∞

bne
jωc(t+τ)+jζp2(t+ τ − nTs) (3.2)

=

√
E2

Ts

∞∑
n=−∞

bne
j(ωct+θ)p1(t+ τ − nTs),

where, for i = 1, 2, Ei, pi(t) and Si denote the energy, pulse shape and set of

constellation points of Ui, respectively. Also τ and ζ are the time offset and phase

offset between two received signals, and Ts denotes the symbol duration. Finally

an ∈ S1 and bn ∈ S2 are the transmitted symbols by U1 and U2 modulation,

respectively, and θ � ωcτ + ζ. It is assumed that the sequences {an} and {bn} are

independent and identically distributed (iid) and are independent of each other.

Furthermore, all the symbols are equally likely. Note that if τ �= 0, then two

adjacent bits of U1 receive interference from the same symbol of the U2 resulting

in the correlation of the error events for adjacent bits . The output of the matched

filter at the receiver is given by

rn =
√
E1 an + νn +

∞∑
k=−∞

∫ (n+1)Ts

nTs

√
E2

Ts
bke

jθp2(t+ τ − kTs)p1(t− nTs)dt (3.3)

=
√
E1 an + νn +

√
E2

Ts
ejθ

∞∑
k=−∞

bk

∫ ∞

−∞

p2(t+ τ − kTs)p1(t− nTs)dt

=
√
E1 an + νn +

√
E2e

jθ

∞∑
k=−∞

bkψ((k − n)Ts − τ)

where {νn} is assumed to be the iid Gaussian noise process. Moreover

ψ(t) �
1

T
p1(−t) ∗ p2(t), (3.4)
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where ∗ denotes convolution. Using the above notation and the fact that pi(t) = 0

for t /∈ [0, T ], (3.3) can be written as

rn =
√
E1an + νn +

√
E2e

jθ (bnψ(−τ) + bn+1ψ(Ts − τ)) (3.5)

We first consider BPSK or the in-phase component of QPSK modulation. Con-

sider the received signal in (3.5) and let xn = 1 if the nth bit in the received

sequence is in error, and xn = 0 otherwise. Then,

pb,1 � Pr(xn = 1) (3.6)

= Pr
(
�
{
νn +

√
E2e

jθ(bnψ(−τ) + bn+1ψ(Ts − τ))
}
>

√
E1

)

where �{.} denotes the real part. Here and subsequently, superscripts R and I

represent the real and imaginary parts of a signal, respectively. Rewriting (3.6) we

have,

pb,1 =Pr
(
νRn +

√
E2 cos θ

(
bRnψ(−τ) + bRn+1ψ(Ts − τ)

)
−

√
E2 sin θ

(
bInψ(−τ) + bIn+1ψ(Ts − τ)

)
>

√
E2

)
=Pr

(
νRn +

√
E2ψ(−τ)

(
bRn cos θ − bIn sin θ

)
+

√
E2ψ(Ts − τ)

(
bRn+1 cos θ − bIn+1 sin θ

)
>

√
E1

)
(3.7)

Denote by Sθ
2 a new constellation obtained from a rotation of S2 by θ and let

S(eff)
2 be the set of points obtained from projection of Sθ

2 onto the real line. Then

pb,1 =
1

M2
×

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

Q

(√
E1 −

√
E2 (ψ(−τ)α− ψ(Ts − τ)β)√

N0/2

)
(3.8)

where M is the size of the constellation S2.

Define Ψ(α, β) � ψ(−τ)α + ψ(Ts − τ)β and assume that the constellation S2

has the symmetry property that if a ∈ S2, then −a and
√
−1a ∈ S21. Then the bit

1Note that all practical constellations such as MPSK and QAM satisfy this property.
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error probability can be written as,

pb,1 = (3.9)

1

2M2

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

{
Q

(√
2γ1

√
2γ2Ψ(α, β)

)
+Q

(√
2γ1 −

√
2γ2Ψ(α, β)

)}

where γi � Ei/N0 for i ∈ {1, 2} is signal to noise ratio. Using Taylor’s expansion

of the two terms in (3.9) around 2γ1 we get

pb,1 = Q(
√
2γ1) (3.10)

+Q(2)(
√
2γ1)

2γ2
2!M2

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

Ψ2(α, β)

+Q(4)(
√
2γ1)

4γ22
4!M2

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

Ψ4(α, β) + · · ·

where Q(n)(.) denotes the nth derivative of Q(.). For small γ2, we can approximate

Taylor’s expansion of pb,1 by its first three terms. Using Lemmas 1 and 2, (3.10) is

approximated by,

pb,1 ≈ Q(
√
2γ1) +

√
γ1
π
e−γ1

γ2
M2

×
∑

α∈S
(eff)
2

∑
β∈S

(eff)
2

(
α2ψ2(−τ) + β2ψ2(Ts − τ)

)
(3.11)

= Q(
√
2γ1) +

√
γ1
π
e−γ1

γ̄2
2

(
ψ2(−τ) + ψ2(Ts − τ)

)
where γ̄2 is the average signal to noise ratio of U2 given by,

γ̄2 �
γ2
M

∑
a∈S2

|a|2, (3.12)

One would note that the first term in (3.11) is the effect of noise and the second

term is due to the CCI from U2. In addition pb,1 is independent of θ. From this

it follows that for QPSK modulation the errors in the in-phase and quadrature

components are independent and identically distributed.
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Lemma 1. For the constellation S2 with the symmetry property that if a ∈ Su,

then −a and
√
−1a ∈ S2, the following equality holds.

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

Ψ2(α, β) =M
(
ψ2(−τ) + ψ2(Ts − τ)

) ∑
α∈S2

|α|2 (3.13)

Proof. Regardless of the value of θ, α ∈ S(eff)
2 implies that −α ∈ S(eff)

2 . Thus

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

(αψ(−τ) + βψ(Ts − τ)) = (3.14)

1

2

⎡
⎢⎣ ∑

α∈S
(eff)
2

∑
β∈S

(eff)
2

(αψ(−τ) + βψ(Ts − τ))

+
∑

α∈S
(eff)
2

∑
β∈S

(eff)
2

(−αψ(−τ) + βψ(Ts − τ))

⎤
⎥⎦

= 0

which implies,

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

Ψ2(α, β) (3.15)

=
∑

α∈S
(eff)
2

∑
β∈S

(eff)
2

(α2ψ2(−τ) + β2ψ2(Ts − τ))

=
1

2

(
ψ2(−τ) + ψ2(Ts − τ)

) ∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

α2 + β2

=M
(
ψ2(−τ) + ψ2(Ts − τ)

) ∑
α∈S

(eff)
2

α2

Lemma 2. For the constellation S2 which has the symmetry property in Lemma

1, we have

∑
α∈S

(eff)
2

α2 =
∑
α∈S2

|α|2 (3.16)
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Proof. For symmetry constellation we have,

∑
α∈S2

(
αR

)2
=

∑
α∈S2

(
(
√
−1α)R

)2
=

∑
α∈S2

(
αI

)2
(3.17)

∑
α∈S2

αRαI =
1

2

(∑
α∈S2

αRαI +
∑
α∈S2

−αRαI

)
= 0 (3.18)

So, we can write,

∑
α∈S

(eff)
2

α2 =
∑
α∈S2

(
αR cos(θ)− αI sin(θ)

)2
(3.19)

= cos2(θ)
∑
α∈S2

(αR)2 + sin2(θ)
∑
α∈S2

(αR)2 − sin(2θ)
∑
α∈S2

αRαI =
∑
α∈S2

|α|2

In the case of non-zero time offsets, the events of two consecutive errors are

dependent. Define P2b,1 as the probability of two consecutive bits being in error.

Then

p2b,1 � P (xn = 1, xn+1 = 1) (3.20)

=
1

2
[P (xn = 1, xn+1 = 1|an = 1, an+1 = 1)

+P (xn = 1, xn+1 = 1|an = 1, an+1 = −1)] ,

Note that

P (xn = 1, xn+1 = 1|an = i, an+1 = j) (3.21)

= P (xn = 1, xn+1 = 1|an = −i, an+1 = −j)

The first term of (3.20) is evaluated as,

P (xn = 1, xn+1 = 1|an = 1, an+1 = 1)

= P
(
νRn +

√
E2

(
ψ(−τ)b(eff)n + ψ(Ts − τ)b

(eff)
n+1

)
>

√
E1, (3.22)

νRn+1 +
√
E2

(
ψ(−τ)b(eff)n+1 + ψ(Ts − τ)b

(eff)
n+2

)
>

√
E1

)
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=
1

M

∑
β∈S

(eff)
2

[
P

(
νRn +

√
E2

(
ψ(−τ)b(eff)n + ψ(Ts − τ)β

)
>

√
E1 | b(eff)n+1 = β

)

×P
(
νRn+1 +

√
E2

(
ψ(−τ)β + ψ(Ts − τ)b

(eff)
n+2

)
>

√
E1

∣∣∣ b(eff)n+1 = β
)]

(3.23)

=
1

M3

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

∑
δ∈S

(eff)
2

Q
(√

2γ1 −
√
2γ2Ψ(α, β)

)

×Q
(√

2γ1 −
√
2γ2Ψ(β, δ)

)
(3.24)

=
1

2M3

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

∑
δ∈S

(eff)
2

Q
(√

2γ1 −
√
2γ2Ψ(α, β)

)

×Q
(√

2γ1 −
√
2γ2Ψ(β, δ)

)
+

1

2M3

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

∑
δ∈S

(eff)
2

Q
(√

2γ1 +
√
2γ2Ψ(α, β)

)

×Q
(√

2γ1 +
√
2γ2Ψ(β, δ)

)
(3.25)

From (3.22) to (3.23) we use the independence of xn and xn+1 conditioned on

bn+1. To simplify (3.25), we approximate it by substituting the first three terms

of Taylor’s expansion around
√
2γ1 for each Q-function in (3.25). Using the same

approach for the second term of (3.20) and after some manipulations,

P (xn = 1, xn+1 = 1|an = 1, an+1 = ±1) (3.26)

≈ Q2(
√
2γ1) +

2γ2
M3

Q(
√
2γ1)Q

(2)(
√
2γ1)

×
∑

α∈S
(eff)
2

∑
β∈S

(eff)
2

∑
δ∈S

(eff)
2

(
Ψ2(α, β) + Ψ2(β, δ)

2

)

± 2γ2(Q
(1)(
√
2γ1))

2

M3

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

∑
δ∈S

(eff)
2

Ψ(α, β)Ψ(β, δ)

Therefore p2b,1 is given by,

p2b,1 ≈ Q2(
√
2γ1) +Q(

√
2γ1)

√
γ1
π
e−γ1

2γ2
M2

∑
α∈S

(eff)
2

∑
β∈S

(eff)
2

Ψ2(α, β). (3.27)
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Using Lemma 1, Equations (3.11)-(3.15), and after some manipulations (3.27) is

given by,

p2b,1 ≈ Q(
√
2γ1)

(
2pb,1 −Q(

√
2γ1)

)
(3.28)

Consider a packet transmission system in which users U1 and U2 transmit their

messages using packets of length N bits. Let e =
∑N

n=1 xn denote the number of

errors in a received packet of U1. We would like to find the distribution of e, namely

P (e = ). Since adjacent errors are dependent, {xn} is not a Bernoulli sequence

and thus the distribution of e is not binomial. However, e is the sum of identically

distributed random variables which are weekly dependent [53]. More specifically,

{xn} is strongly mixing in that xn and xm are independent if |m − n| > 1. Thus

using the central limit theorem for strongly mixing sequences, [53], we conclude

that e converges in distribution to a Gaussian distribution N (m1, σ
2
1), where m1 =∑N

n=1 Exn = Npb,1, and σ
2
1 =

∑N
i=1

∑N
j=1Cov(xi, xj). It follows that,

σ2
1 = N(pb,1 − p2b,1) + 2(N −M)

(
p2b,1 − p2b,1

)
(3.29)

whereM is the number of bits per transmitted symbol of U1.

3.2.1 The Worst Case

In section 3.2 we calculate the probability of bit error and the distribution of the

total number of errors in a packet. These quantities depend on the timing offset τ .

In particular the average number of errors per packet depends on τ . To determine

the worst case for the average number of errors we set ∂pb,1/∂τ = 0 which results,

∂

∂τ

(
ψ2(−τ) + ψ2(Ts − τ)

)
= 0. (3.30)

The result depends on the pulse shapes of U1 and U2. For the case that they use

the same pulse shape, one can verify that

ψ(−t) = ψ(Ts − t) (3.31)
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∂

∂t
ψ(−t) = − ∂

∂t
ψ(t). (3.32)

Using the above, it can be shown that ψ2(−τ) + ψ2(Ts − τ) is convex for 0 ≤

τ ≤ Ts. Therefore its maximum occurs on the boundaries and its values on τ = 0

and τ = Ts are equal. Consequently the average number of errors per packet is

maximized when U1 and U2 are synchronized.

3.3 Simulation Results

In this section we validate our modeling assumptions by comparing the analytical

results obtained in the previous section with those from simulation. We assume

users U1 and U2 employ QPSK and 16-QAM modulation schemes, respectively

and both use rectangular pulse shapes. Fig. 3.1 compares the distribution of the

total number of errors derived from analysis with the histogram obtained from

simulations for SNR values of γ1 = 2dB and γ2 = −3dB and for three different

values of the timing offset τ . The figures show a close match between the results

from analysis and simulation. As the figure shows, the average number of errors

is largest for τ = 0 (maximum pb,1) and smallest for τ = T2

2
(minimum pb,1). A

significant difference can be observed in the average number of errors as well as

the distribution of the number of errors between the best and the worst case. This

implies that in cooperative systems where the timing offsets can be adjusted, it is

desirable to set τ = Ts/2. On the other hand for system design in non-cooperative

networks, one should consider the worst case corresponding to τ = 0.

Cramer−von Mises criterion, [54, 55], provides a metric to test the goodness of

fit of a distribution compared to the empirical distribution. For the distribution of

the number of errors in a packet of length N this metric is given by

Df �
1

N + 1

N∑
n=0

[Fy(n)− Fy(n)]
2py(n) (3.33)
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where Fy, py, and Fy are the empirical cumulative distribution function (CDF), the

empirical probability density function (PDF), and the CDF of number of errors

from analysis in a received packet, respectively. Fig. 3.2 shows the value of Df

versus γ2 for different values of τ when N = 1024, γ1 = 3dB. Fig. 3.2 demonstrates

that Df is quite small but increases with γ2 and decreases from τ = 0 to τ = Ts/2.

This is due to the fact that the approximation of pb,1 in (3.11) is less accurate for

larger values of pb,1.

FIGURE 3.1. Distribution of Number of Errors in a packet with length N = 1024, when
γ1 = 2dB, γ2 = −3dB and U1 and U2 uses QPSK and 16-QAM respectively

In the following example we consider the problem of code design for user U1. Sup-

pose U1 and U2 employ QPSK and 64-QAM modulation schemes, respectively and

that U1 uses a (1023,K) BCH code for forward error correction. We are interested

in the largest value of K (highest code rate) which guarantees an average packet

error rate below η% in the presence of CCI from U2. TABLE 3.1 demonstrates

these values for the parameters γ1 = 5dB, γ2 = 0dB and γ1 = 4dB, γ2 = −1dB,
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FIGURE 3.2. Cramrvon Mises test to measure the accuracy of estimated distribution of
number of errors in a packet when N = 1024, γ1 = 3dB and U1 and U2 uses QPSK and
16-QAM respectively

and the average packet error probability Pth. We would like to point out the more

than 20% increase in code rate from the worst case to the best case.

TABLE 3.1. Minimum K and required coding rate γ1 = 5dB, γ2 = 0dB and γ1 = 4dB,
γ2 = −1dB

γ1 = 5, γ2 = 0 γ1 = 4, γ2 = −1
Pth K Rate K Rate

Worst Case
0.1% 618 0.60411 473 0.462366
1% 648 0.63343 513 0.501466

(τ = 0) 10% 708 0.69208 573 0.560117

Best Case
0.1% 738 0.72141 628 0.613881
1% 768 0.75073 658 0.643206

(τ = Ts/2) 10% 808 0.78983 708 0.692082
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Chapter 4
Enhancing Sensing-Throughput Tradeoff
in Cognitive Radios Using Receiver
Statistics

4.1 Introduction and Background

In overlay cognitive radio networks spectrum sensing is used by the SU determine

whether the channel is occupied by the PU or not. During the sensing periods

communication of the SU’s is suspended resulting in loss of throughput in the

secondary network. Therefore, it is desired to make the sensing periods as short as

possible. However, the sensing periods cannot be too short since the performance

of the sensing algorithm as expressed by misdetection and false alarm probabilities

will be adversely affected. Misdetection increases the detection delay. Therefore

misdetection probability should be small (e.g., < .1 for IEEE 802.22 standard).

On the other hand, the probability of false alarm must also be small (e.g., < .1

for IEEE 802.22 standard) since false alarm results in loss of throughput in the

secondary network.

It is evident that an intricate tradeoff is at work between protecting the in-

cumbent users and the quality of service in the secondary network. This tradeoff,

referred to as sensing-throughput tradeoff, has been formulated in [56]. Recently

efforts have been underway to increase the throughput of SU without violating the

maximum allowed detection delay. In [57] Zarrin et al. maximize the throughput

with respect to the frame length when the quickest sensing algorithm is employed.

In [58], Stergios et al. proposed a new receiver and frame structure for cognitive

radios so as to perform spectrum sensing and the data transmission simultaneously

in order to overcome the sensing-throughput tradeoff. Adaptive scheduling of spec-
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trum sensing whereby the sensing period is adapted to the primary user activities

has been investigated in [59] and [60] in order to improve the SU’s throughput.

During its own transmission periods the SU does not attempt to detect the

presence of the PU signal. This implies that if the PU emerges, not only will

the SU cause undue interference to the PU, but also its own communication may

be disrupted due to the interference from the PU. In [61] the authors proposed

several physical-layer receiver statistics that a secondary radio can employ in order

to detect the emergence of the PU signal during its own communication. These

statistics can be easily derived after demodulation and/or decoding of each packet

and are often available for other purposes such as performance improvement in

adaptive transmission schemes. Some examples include the receiver error count

(REC), the iteration count (IC) in systems using iterative decoding, and the signal-

to-noise ratio. To contrast this with the usual spectrum sensing techniques, the

authors referred to this approach as spectrum monitoring.

In this Chapter, we revisit the problem of sensing-throughput tradeoff by con-

sidering spectrum monitoring using the receiver statistics. A new decision statistic

is introduced using a combination of the receiver error counts and the output of

a CRC (cyclic redundancy check) code in order to detect the emergence of the

primary user in the in-band channel. Using the proposed decision statistic, the

probabilities of false alarm and detection are evaluated in closed form. We also

evaluate both channel utilization 1 and detection delay of the hybrid spectrum

sensing/spectrum monitoring system in closed form using two Markov chain mod-

els. The upper and lower limits of performance for this decision statistic are eval-

uated and an optimization problem is formulated to maximize channel utilization

with a constraint on detection delay. Numerical results are presented from analy-

1Defined as the average fraction of time that under hypothesis H0 the SU communicates over the channel.
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sis and simulation which show the accuracy of the analytical formulation and the

efficacy of the proposed algorithm. To present the performance of the algorithm

with concrete examples we simulate the proposed system using two forward error

correcting codes, namely a BCH code and a convolutional code. It is shown that

the results from these simulations are closely matched with those from analysis.

4.2 System Model

The SU starts with a spectrum sensing interval (SSI) during which it attempts to

detect the presence of the PU. If at the end of SSI, the SU decides that the PU

signal is present, then another sensing interval begins anew. This process continues

until the channel is sensed to be free of the PU signal at which time a spectrum

monitoring interval (SMI) begins during which the SU will be receiving packets.

After the reception of each packet the SU computes a decision statistic (described

below) in order to determine whether the PU has emerged or not. If it is decided

that the PU has emerged, the SU vacates the channel and starts a new SSI; oth-

erwise, it continues in SMI mode until KM packets are received. At that time a

new sensing interval begins. In other words SMI is restricted to a maximum of

KM packets. It is assumed that time at the SU is slotted with the slot duration

Tp equal to the transmission time of a single packet, and that the length of SSI is

TS = KSTp for some integer KS ≥ 1.

Some remarks are in order. The system model described above does not require

that spectrum sensing be repeatedly performed on the same channel when the

channel is found to be occupied. Cognitive radios are envisioned to be equipped

with agile radios capable of scanning the spectrum for white spaces. If at the end

of an spectrum sensing interval the channel is found to be occupied, the secondary

user may switch and begin its sensing operation in a new channel. The model

and subsequent analysis presented here applies without change assuming that the
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detection and false alarm probabilities are the same for all the channels. Next, for

most spectrum sensing algorithms the sensing time (required to achieve the desired

false alarm and detection probabilities) is determined by the number of observation

samples and the sampling rate. Assuming a sampling rate equal to the symbol rate

of the primary user (i.e., no oversampling) it can be seen that for an spectrum

sensing interval of duration Tp, enough observation samples can be collected to

complete the spectrum sensing operation. We have chosen the more general case

where spectrum sensing interval has duration KSTp. In case the spectrum sensing

interval duration is shorter than a packet time, then our results provide a very

tight lower bound to channel utilization and detection delay. This is due to the

fact that a fraction of packet time is very small compared to the detection delay

mandated by the standards such as IEEE 802.22. Finally we should point out that

spectrum monitoring is not a substitute for spectrum sensing, but it is intended to

enhance the performance of (any) existing spectrum sensing algorithms by enabling

the secondary user to detect the emergence of the prmary user during its sown

communication.

4.3 Decision Statistic

At the source the information sequence is assumed to be first encoded using a CRC

code (for error detection) followed by a forward error correction (FEC) scheme to

obtain an N -bit packet2. At the receiver the packet is demodulated and decoded.

The decoded packet is then checked by CRC and also encoded using a replica of

the transmitter’s encoder. The output of the encoder is compared to the output

of the demodulator3 to estimate the number of errors introduced by the channel.

2In today’s communication systems error control coding is widely used to combat channel errors. Therefore
there is no loss of throughput or increase in complexity due to FEC if it is already in use by the SU. Moreover,
the throughput loss associated with the addition of CRC is small given the number of parity check bits compared
to the length of the data string.

3If the decoder uses soft decision, then hard decision must be performed on the demodulator output before
comparison with the encoder’s output.
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The number of errors thus calculated is referred to as receiver error count (REC)

and is used in our decision statistic.

Consider a spectrum monitoring interval and let the hypotheses H0 and H1,

respectively, represent the absence and the presence of the PU during the reception

of the current packet. Also denote by Cv (resp. Cnv) the events that the CRC is

validated (resp. not validated) and let k denote the REC. The proposed decision

rule is now given by, ⎧⎪⎨
⎪⎩

({k ≥ μ} ∩ Cv) ∪ Cnv , Decide H1

else, Decide H0

(4.1)

where μ is the REC threshold. Denote by t the maximum number of errors in

a packet that FEC is capable of correcting. In the sequel the threshold value μ

in (4.1) is chosen such that μ ≤ t. Fig. 4.1 illustrates an implementation of the

proposed decision rule4.

If the decision is H1, i.e., η = 1 in Fig. 4.1, the SMI is terminated. Otherwise it

is decided that the PU has not emerged and SMI continues (up to KM packets).

A number of CRC codes are incorporated into technical standards. The most

commonly used are the 16- and the 32-bit CRCs, such as CCITT-16, CRC-32-

Castagnoli and CRC-32-IEEE [62, 63, 64]. It is shown in [65] that for an L-bit

CRC, used over a binary symmetric channel, the probability of undetected error

(CRC failure) approaches 2−L when the number of information bits is large (e.g.,

≥ 100). For a 16-bit CRC this probability is around 1.5 × 10−5 and for a 32-bit

CRC it is 2.3× 10−10.

Let the actual number of errors introduced by the channel in the current packet

be denoted by e. The value of e is unknown since we do not know if the packet

is correctly decoded or not. However, note that if the packet is correctly decoded,

4Note that as (4.1) and Fig. 4.1 show, the decision rule does not rely on the actual number of channel errors.
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FIGURE 4.1. The proposed system model

then the CRC will rightfully indicate so and the value of REC is equal to the

actual number of errors, i.e., k = e. On the other hand, if the packet is not

decoded correctly, then the actual number of errors cannot be inferred from REC.

In this case there are two possibilities. First, CRC is not validated, (Cnv), and

therefore succeeds in detecting that the packet is not correctly decoded. In this

case REC is not used and it is decided that the PU has emerged (see Fig. 4.1).

Second, CRC is validated (Cv), i.e., it fails to detect that the packet is incorrectly

decoded. In this case REC is used but it is not the same as the actual number of

errors e. The probability of the event that the packet is incorrectly decoded (small

probability event) and that this event is not detected by the CRC (probability less

than 2−L for an L-bit CRC) is clearly extremely low. If this event occurs under

H1, the system may fail to detect the emergence of the PU. It is not difficult to

see that the additional (average) detection delay caused by such events would be

less than 2−L in packet time, i.e., 2−L× Tp. On the other hand if this event occurs

under H0, the (average) loss in channel utilization for the SU will be less than

2−L × KS

KM+KS
≤ 2−L. In view of the above in subsequent analysis we ignore the

event that the packet is decoded incorrectly and that such event goes undetected

by the CRC. Therefore when the event Cv occurs, REC and the actual number of

channel errors are assumed to be equal, i.e., e = k. It should be noted, however,

40



that the proposed method works even in the presence of CRC failures and as shown

above and confirmed through simulations in section 4.7, the resulting effect on the

system performance is negligible.

Let pf and pd denote the probabilities of false alarm and detection in the SMI,

respectively. From (4.1) and assuming that μ ≤ t we get,

pf = P [({k ≥ μ} ∩ Cv) ∪ Cnv|H0]

= P (({e ≥ μ} ∩ Cv) ∪ ({e ≥ μ} ∩ Cnv)|H0)

= P (e ≥ μ|H0), (4.2)

and similarly, the probability of detection is given by,

pd = P ({e ≥ μ}|H1). (4.3)

where the second equality in (4.2) follows from the fact that since μ is chosen such

that μ ≤ t, Cnv implies {e ≥ μ}.

4.4 Channel Utilization

Channel utilization is the average fraction of time that (under hypothesis H0) the

SU communicates over the channel. In the absence of the PU, the SU does not use

the channel if the system is in spectrum sensing. In three cases the system leaves

the SMI and enters the SSI. First, at the end of an SMI (after the transmission of

KM packets); next, if a false alarm occurs during SMI; and finally, when a false

alarm occurs at the end of an SSI.

Under hypothesis H0 the spectrum monitoring operation can be modeled by

KM + 1 states, {0, 1, · · · , KM}, where state 0 represents spectrum sensing and

states 1, 2, · · · , KM , represent the first, second and KMth packet of the SMI. The

REC of each packet is independent of the REC of any other packet, hence, given

the current state, the next state is independent of the past states. Consequently,

41



FIGURE 4.2. Markov chain model for spectrum monitoring in the absence of primary
users.

under H0, spectrum monitoring can be modeled by the Markov chain depicted

in Fig. 4.2 where p̂f denotes the false alarm probability of the spectrum sensing

algorithm. We call this chain, whose probability transition matrix is given below,

the Channel Utilization Markov Chain (CUMC).

PCUMC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̂f 1− p̂f 0 0 · · · 0

pf 0 1− pf 0 · · · 0

pf 0 0 1− pf · · · 0

...
...

... 0
. . .

...

pf 0 0 0 · · · 1− pf

1 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

It is clear that the CUMC is an irreducible, positive recurrent and aperiodic

Markov chain with finitely many states. Therefore, it has an invariant distribution,

π = [π0, · · · , πKM
] which satisfies the following system of equations,

πPCUMC = π,

KM∑
i=0

πi = 1 (4.5)

where πi shows the long-run proportion of time the process spends in state i, [66].

Channel utilization is now given by the fraction of time that the process spends in

states 1, 2, · · · , KM . Considering the duration of SSI and SMI, channel utilization

is given by,

U =

∑KM

i=1 πi

π0KS +
∑KM

i=1 πi
=

1− π0
π0KS + 1− π0

(4.6)
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From (4.5) we get,

π0 =
pf

pf + (1− p̂f )[1− (1− pf )KM ]
(4.7)

By substituting (4.7) into (4.6) we get,

U =
(1− p̂f )[1− (1− pf )

KM ]

(1− p̂f )[1− (1− pf )KM ] +KSpf
(4.8)

4.5 Detection Delay

Detection delay is defined as the average time it takes to detect the presence of

the primary user after its emergence in the channel. Therefore, detection delay

is evaluated under hypothesis H1. Considering the fact that the total length of

SSI and SMI is (KS + KM)Tp, we define a set of KM + KS + 1 states where for

0 ≤ i ≤ KS−1, state i belongs to the SSI, i.e., iTp shows the elapsed time from the

beginning of SSI. For KS ≤ i ≤ KS +KM − 1, state i represents the transmission

of the (i − KS + 1)th packet in the SMI. Finally, state KM +KS indicates that

detection has occurred.

The probability of detection in spectrum sensing algorithms depends on the du-

ration of observation of the PU signal. Therefore during the SSI, the probability

of detection denoted p̂d(i) depends on the state i = 0, 1, · · · , KS − 1, in which the

PU signal emerges. In Appendix E we have evaluated these probabilities assuming

that for spectrum sensing, the SU employs an energy detector [18, 19]. However, a

remark is in order here. The proposed spectrum monitoring technique is not contin-

gent upon the use of energy detector for spectrum sensing. In case another spectrum

sensing method such as the cyclostationary detector, [13], or the autocorrelation-

based detector [25] is used, the detection probabilities p̂d(i), i = 0, 1, · · · , KS − 1,

should be replaced with the appropriate values.

To evaluate detection delay, we define two events. The first event, denoted X1, is

when the PU emerges at the beginning of the SSI, namely in state 0, or in any of
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the SMI states, namely state i for KS ≤ i < KS +KM . The second event, denoted

X2, is when the PU emerges at the beginning of one of the intermediate states of

SSI, namely state i for 1 ≤ i < KS . Because the transmission time of each packet

is assumed to be fixed, we evaluate the detection delay in terms of the number of

packets.

Conditioned on the event X1, it can be shown that the probability of transition

from each state to another is independent of past states and is determined by

whether the system is in spectrum sensing or spectrum monitoring. Consequently,

under hypothesisH1, and conditioned on X1, we can model the system by a Markov

chain as shown in Fig. 4.3. The probability transition matrix for this chain, which

we refer to as Detection Delay Markov Chain (DDMC), is given by (4.9) where

pm = 1− pd and p̂m = 1− p̂d(0) are the probabilities of misdetection in spectrum

monitoring and spectrum sensing, respectively. In the following we denote p̂d(0)

by p̂d.

FIGURE 4.3. Markov chain model for detection delay given X1.

We note that in DDMC, state KM +KS is an absorbing state and all other

states are transient.
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PDDMC = (4.9)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

States 0 1 ··· KS KS+1 ··· KS+KM−1 KS+KM

0 0 1 0 0 · · · 0 0

1
...

. . .
...

...
. . .

...
...

... 0 · · · 0 1 0 0

KS−1 0 · · · 0 p̂m 0 · · · 0 p̂d

KS 0 · · · 0 pm 0 pd

...
...

. . .
... 0

. . .
...

0 0
... pm

KS+KM−1 pm 0 · · · 0 0 · · · 0 pd

KS+KM 0 0 · · · 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let fk(i) be the probability of going in k steps from state i to state KS +KM .

Then, from Chapman-Kolmogorov equation [66],

fk+1(i) =

KM+KS−1∑
j=0

PDDMC(i, j)fk(j) (4.10)

Define the vector f
k
of length KM +KS as,

f
k
� [fk(0), fk(1), · · · , fk(KM +KS − 1)]T (4.11)

where T denotes the transpose operation. Then

f
k+1

= Gf
k
= Gkf

1
(4.12)

where the matrix G is obtained by removing the last row and column of PDDMC ,

and where

f
1
= [

KS−1︷ ︸︸ ︷
0 · · · 0 p̂d

KM︷ ︸︸ ︷
pd · · · pd]

T (4.13)
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The average number of steps to reach the detection state, KM +KS, starting from

state i, denoted as F (i), is now given by,

F (i) �
∞∑
k=1

kfk(i) =
∞∑
k=0

(k + 1)
[
Gkf

1

]
(i)

(4.14)

where [y](i) denotes the ith component of the vector y. Detection delay is now

given by

D1 =

KM+KS−1∑
i=0

F (i)κ(i) (4.15)

where κ(i) is the conditional probability that given the event X1, the PU emerges

in state i. Let κ = [κ(0), κ(1), · · · , κ(KM +KS − 1)]. We have,

κ = [
1

KM + 1

KS−1︷ ︸︸ ︷
0 · · · 0

KM︷ ︸︸ ︷
1

KM + 1
· · · 1

KM + 1
]T (4.16)

Substituting (4.14) for F (i) in (4.15) and after some manipulations, detection delay

conditioned on X1 can be written as,

D1 = κT (I −G)−2f
1

(4.17)

where I is an identity matrix of size (KM +Ks)× (KM +KS). We have evaluated

the inverse of I −G in Appendix B.

Given X2, the PU emerges in state i, 1 < i < KS, with probability 1
KS−1

. In

this case the PU will be detected at the end of the SSI with probability p̂d(i) and

detection delay is equal to KS − i. On the other hand if the PU is not detected at

the end of SSI, then detection delay is equal to KS−i plus detection delay given X1

when the primary user emerges in state KS. Consequently, detection delay given

X2 is given by,

D2 =
1

KS − 1

KS−1∑
i=1

{p̂d(i)(KS − i) (4.18)

+(1− p̂d(i))(KS − i+ 1KS+1(I −G)−2f
1
)
}
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where 1KS+1 = [

KS︷ ︸︸ ︷
0 · · · 0 1

KM−1︷ ︸︸ ︷
0 · · · 0 ]T . Finally the total detection delay is

given by,

D = D1P (X1) +D2P (X2) (4.19)

=
KM + 1

KS +KM

D1 +
KS − 1

KS +KM

D2.

4.6 System Assessment

In this section, we assess the limits of spectrum monitoring in terms of achievable

regions for channel utilization and detection delay. It is assumed that a spectrum

sensing algorithm with a fixed duration KSTp and (fixed) probabilities of false

alarm, p̂f , and detection, p̂d, is employed.

Considering (4.8) and the fact that pf is a decreasing function of μ, channel

utilization is an increasing function of KM and μ. Therefore for a fixed μ and for

a fixed KM channel utilization is bounded as

1− p̂f
1− p̂f +KS

≤U <
1− p̂f

1− p̂f +KSpf (μ)
(4.20)

1− p̂f
1− p̂f +KS

≤U ≤ 1− p̂f
1− p̂f +KS/KM

, (4.21)

respectively. For most spectrum sensing algorithms, a packet time is sufficiently

long for spectrum sensing to provide acceptable false alarm and detection proba-

bilities. In this case detection delay is given by D = D1 for which an alternative

representation is given in appendix C.

In general the performance of spectrum sensing algorithms is better than spec-

trum monitoring, i.e., for a fixed SNR and probability of false alarm, pd < p̂d.

Considering this and the fact that for KS = 1, pd is a decreasing function of μ, one

can verify that D1 in (6.11) is an increasing function of KM and μ. So, for a fixed
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μ and 1 ≤ KM <∞, detection delay is bounded by

2 + (1− p̂d) + (1− pd(μ))

2(1− (1− p̂d)(1− pd(μ)))
≤ D ≤ 1

pd(μ)
(4.22)

On the other hand for a fixed KM and different values of μ, detection delay is

bounded by

1 +
1− p̂d
1 +KM

≤ D ≤ 2 + (2− p̂d)KM

2p̂d
(4.23)

4.6.1 Optimization of Channel Utilization

The two parameters of spectrum monitoring, namely KM and μ can be chosen to

maximize channel utilization subject to an upper bound on detection delay. As is

shown in (4.20)–(4.23), both channel utilization and detection delay are increasing

functions of KM and μ for KS = 1. Therefor a constrained optimization problem

can be formulated as follows.

Maximize U(KM , μ),

Subject to D(KM , μ) ≤ Dmax (4.24)

where Dmax is the maximum acceptable detection delay. Since pd(μ) ∈ [0, 1], is a

finite decreasing sequence of μ, by setting pd(N + 1) = 0, it follows that for any

given 1 ≤ Dmax <∞ there exists μ0 such that,

1

pd(μ0)
≤ Dmax <

1

pd(μ0 + 1)
. (4.25)

The probability of detection is a function of the time offset between the received

signals from the SU and the PU. Therefore to solve the optimization problem,

we consider the minimum value of pd which guarantees that the detection delay

constraint in (4.24) is not violated. Setting ∂pd/∂τ = 0 results in

∂

∂τ

(
ψ2(−τ) + ψ2(Ts − τ)

)
= 0 (4.26)
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For the pulse shapes of interest (e.g., raised cosine, rectangular), (4.26) results in

τ = Ts/2. This is intuitive as for a timing offset of τ = Ts/2, each symbol of SU

receives equal interference from two symbols of the PU resulting in the minimum

pd. Subsequently we use this worst-case value for τ . To find the maximum value of

μ which does not violate (4.24), we consider the upper bound in (4.22), and also

the fact that μ ≤ t, to obtain the maximum value of the threshold, μ0, given by

μ0 = min

(
t,

⌊
Q−1(

1

Dmax

)σ1 +Npb,1

⌋)
, (4.27)

Let us define two regions, Ω1 = [0, μ0] and Ω2 = [μ0, t]. We have,

∀KM , ∀μ ∈ Ω1, D(KM , μ) ≤ Dmax (4.28)

U(KM , μ) ≤ U(KM , μ0) (4.29)

Consequently, μ0 is the optimum solution in Ω1, and by increasing KM , channel

utilization will increase up to its upper bound in (4.20). For μ ∈ Ω2, the probability

of false alarm is small, so, the channel utilization in (4.8) is approximated by,

U(KM , μ) ≈
KM(1− p̂f )

KM(1− p̂f ) +KS

(4.30)

Treating KM and μ as continuous variables, the gradient of U(KM , μ) can be

written as,

∇U(KM , μ) =

(
KS(1− p̂f )

(KS +KM(1− p̂f ))2
, 0

)T

, (4.31)

where (.)T denotes transpose. (4.31) implies that for all μ ∈ Ω2, channel utilization

is almost constant. Consequently in region Ω2, the maximum channel utilization

is not a function of μ and is achieved for the largest value of KM . Moreover, from

(4.22) and (4.25), for μ > μ0, Dmax < D(∞, μ) which implies that to satisfy

(4.24), for each μ > μ0 there is a maximum acceptable KM which is finite. The

maximum KM satisfying (4.24) for μ > μ0 is evaluated in appendix D. As a
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result, in region Ω2 the highest channel utilization is achieved for μ = μ0 and

KM −→ ∞. In conclusion, the optimum solution to (4.24) is obtained for μ = μ0

and for KM −→ ∞, for which channel utilization increases without violating the

constraint in (4.24).

4.7 Numerical Results

Numerical results on the performance of spectrum monitoring evaluated through

analysis and simulation are presented here, and the advantages of joint spectrum

sensing and spectrum monitoring compared to pure spectrum sensing is demon-

strated. The simulation results are obtained by repeating each experiment at least

104 times, and all pulse shapes are rectangular.

Fig. 4.4 illustrates the ROCs from simulation and analysis for N = 511, γs = 3

dB, different values of γu and two cases of τ = 0 and τ = Ts/2. The simulation

results are obtained using two different forward error correcting codes: a rate 1/2

convolutional code with generator matrix [g(0) = (716502)8 ; g
(1) = (514576)8],

[67], and a (511, 304) binary BCH code. We also employed a CRC-8 with the

generator polynomial x8+x7+x6+x4+x2+1. The SU employs QPSK, and the PU

uses 16-QAM signaling. It is also evident from the graphs that the performance

of the system is independent of utilized FEC technique. As shown in Fig. 4.4,

the performance of spectrum monitoring degrades from τ = 0 to τ = Ts/2. In

particular, for pf = 0.1 and γu = −4 dB, probability of detection is 0.92 and

0.61 for τ = 0 and τ = Ts/2, respectively. Recall that as discussed in Section 4.6,

τ = Ts/2 is the worst case for detection delay. We should point out that when

the detection and false alarm probabilities from simulation and analysis are close

as illustrated by Fig. 4.4, the channel utilization and detection delay will also be

close since the latter are only determined by the former. Similar conclusions can

be derived from Fig. 4.5 which shows the simulation results when the SU uses a
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16-QAM modulation scheme and the PU uses 64-QAM. The (511, 304) BCH code

and CRC-8 described above are used and γs = 5dB is assumed.

FIGURE 4.4. ROC for N = 511, γs = 3dB, different γu, and τ = 0, Ts/2.

In the remainder of this section we evaluate CU and DD in terms of the false

alarm and detection probabilities pf and pd. Figs. 4.6 and 4.7 illustrate channel

utilization versus pf and pd, respectively, for different values of KM and KS, and

N = 256, γs = 3dB, γu = −3.5dB, and p̂f = 0.1. As illustrated in these figures

and evident from Fig. 4.2, increasing pf (or pd), increases the probability that the

secondary user stops transmission (returns to state 0), resulting in lower channel

utilization. Moreover, it can be seen from Fig. 4.6 and Fig. 4.7 that increasing

KS results in lower channel utilization because the system spends more time in

spectrum sensing where the SU cannot use the channel. On the other hand, channel

utilization increases with KM . For a fixed value of KS, a larger KM implies that

the SU spends more time transmitting and less time in spectrum sensing.
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FIGURE 4.5. ROC for (511, 304)-BCH code, CRC-8, 16-QAM and 64-QAM for the SU
and the PU, γs = 5dB, different γu, and τ = 0, Ts/2.

Figs. 4.6 and 4.7 illustrate that in the case ofKM = 1 and for a fixedKS, channel

utilization is not a function of pd and pf . This is due the fact that there is only a

single spectrum monitoring state and regardless of the decision in that state, the

system moves into the spectrum sensing state. Therefore channel utilization is only

a function of the decision in the spectrum sensing state. This statement can also

be verified from (4.8) for KM = 1 and the lower bound in (4.20).

Fig. 4.8 shows detection delay versus pd from analysis and simulation for KS =

1, 5, KM = 1, 2, 5, 10, 25, N = 256, γs = 3dB, γu = −6dB, and p̂f = 0.1. Energy

detector is assumed to be used for spectrum sensing. The probability of detection

for energy detector when the PU emerges during SSI is derived in Appendix E.

We should point out that the proposed spectrum monitoring technique is not

contingent upon the use of energy detector for spectrum sensing and that energy

detector is used here as an example only. It is well known that energy detectors,

52



FIGURE 4.6. Channel utilization vs pf for different values of KM and KS , N = 256,
γs = 3dB, γu = −3.5dB and p̂f = 0.1.

while easy to implement, suffer from some drawbacks such as “SNR wall” [20].

In case another spectrum sensing method such as the cyclostationary detector,

[13], or the autocorrelation-based detector [25] is used, the detection probabilities

p̂d(i), i = 0, 1, · · · , KS − 1, should be replaced with the appropriate values.

It can be seen that in the case of KS = 1, detection delay is an increasing func-

tion of KM . This is due to the following. In general for fixed system parameters,

spectrum sensing is more effective in detecting the presence of the PU than spec-

trum monitoring. Smaller values of KM result in shorter time between visits to

state 0 in DDMC where, with a high probability p̂d, the detection of PU occurs

after a single packet time (KS = 1). For larger values of KM , subsequent visits to

state 0 take longer and although spectrum monitoring attempts to detect the pres-
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FIGURE 4.7. Channel utilization vs pd for different values of KM and KS , N = 256,
γs = 3dB, γu = −3.5dB and p̂f = 0.1.

ence of PU, it is not as effective as spectrum sensing, resulting in longer detection

delay. Therefore in this case (KS = 1), detection delay increases with KM .

When KS > 1, the spectrum sensing decision is made after state KS−1, whereas

the spectrum monitoring decision is made after each packet. For small values of

the spectrum monitoring detection probability, pd, the chance of detecting the PU

in the SMI is small, and with a high probability, the detection of PU will occur

in the SSI. Therefore detection delay increases with KM . On the other hand for

larger values of pd, the detection is made faster if it is made during the SMI.

Consequently detection delay decreases with KM . Note that as expected for large

values of pd, (e.g., pd > 0.7 in this example), a detection delay of one (packet) can

be achieved by increasing KM (independent of the value KS). Fig. 4.8 also shows

that for KS = 1 and fixed KM , the detection delay is a decreasing function of pd.

54



FIGURE 4.8. Detection delay vs pd for different values of KM and KS , N = 256,
γs = 3dB, γu = −6dB and p̂f = 0.1.

In Figs. 4.9 and 4.10 we evaluate channel utilization versus detection delay for

two values of τ = 0 and τ = Ts/2, whenKS = 1, N = 256, γs = 0dB, γu = −2.3dB,

and for the spectrum sensing algorithm, p̂d = 0.95 and p̂f = 0.1. The bounds in

these figures can be found from (4.20), (4.21), (4.22) and (4.23). For any KM ,

detection delay is an increasing function of μ. For fixed channel utilization, the

worst detection delay corresponds to pf = pd = 0, i.e., the system uses spectrum

sensing alone and no spectrum monitoring is performed. This implies that spectrum

monitoring improves the performance of the system regardless of the values of KM

and μ.
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FIGURE 4.9. Channel utilization vs detection delay for τ = 0, KS = 1, N = 256,
p̂d = 0.95, p̂f = 0.1, γs = 0dB and γu = −2.3dB.

FIGURE 4.10. Channel utilization vs detection delay for τ = Ts/2, KS = 1, N = 256,
p̂d = 0.95, p̂f = 0.1, γs = 0dB and γu = −2.3dB.
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Chapter 5
Blind Spectrum Sensing Using Antenna
Arrays and Path Correlation

5.1 Introduction and Background

In this Chapter we present a blind spectrum sensing technique for a secondary re-

ceiver equipped with a multiple-antenna system. Our approach exploits the channel

path correlation among the signals received at different antenna elements. Corre-

lation of channel paths coefficients has been established in a number of papers

[68, 69, 70, 71, 72]. In particular it is shown that, in general, the path correlations

increase as the beamwidth of the signals is reduced. A typical scenario is when

the transmitter antenna, located on a high tower, has a LOS to the vicinity of

the receiver where local scatterers may be present. Consequently the multi-path

signals arrive within a certain range of angles resulting in highly correlated chan-

nel coefficients, [69, 70]. An example of this includes cases for which IEEE 802.22

standard has been developed to allow for reuse of underutilized licensed TV bands

[5, 73]. Another scenario is the so-called keyhole or pinhole channels, in which,

due to a large number of scatterers, there is only a small aperture through which

all the signals can arrive at the receiver [71, 72]. Path correlation has also been

considered in [74] in the design of MIMO predcoders.

In [75] the authors have studied the effects of path correlation on the perfor-

mance of ED in a multi-antenna system. They have shown that in the presence of

this correlation the system performance is degraded. In this paper, on the other

hand, our goal is to exploit the path correlation for spectrum sensing. Our pro-

posed algorithm is totally blind in that it does not require any knowledge of the

primary signal parameters, the noise power or the channel fading coefficients. Our
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decision statistic is based on the estimate of the cross-correlations among the re-

ceived signals at different antenna elements. We evaluate the performance of the

proposed algorithm through analysis and simulation and compare our results to

several spectrum sensing techniques that utilize multi-antenna systems [28, 29, 21],

It is shown that the proposed algorithm outperforms these methods.

5.2 System Model

Consider a SU receiver equipped with a linear antenna array of M equally spaced

elements. Let hk denote the channel fading coefficient from the PU transmitter

to the kth antenna. It is assumed that hk is a circularly symmetric Gaussian

random variable with unit variance. Moreover, the channel undergoes block fading

in that hk remains unchanged during the spectrum sensing. For each antenna,

the primary user’s signal is assumed to arrive within a given range of angles or

beamwidth. Assuming that the angle of arrival is uniformly distributed in the

interval [θ − θmax, θ + θmax], it is shown in [69] that the correlation between the

channel coefficients hk and hl is given by

φRR
hh (k − l) � E[hRk h

R
l ] = E[hIkh

I
l ] = J0(z(k − l))/2

+
∞∑

m=1

J2m(z(k − l)) cos(2mθ)
sin(2mθmax)

2mθmax

(5.1)

and

φRI
hh (k − l) � E[hRk h

I
l ] = −E[hIkhRl ]

=
∞∑

m=0

J2m+1(z(k − l)) sin((2m+ 1)θ)
sin((2m+ 1)θmax)

(2m+ 1)θmax

(5.2)

where z = 2πD
λ
, and where D and λ are the antenna spacing and the wavelength,

respectively. Here and subsequently, the superscripts R and I represent the real

and imaginary parts of the complex variables, respectively.
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Since (5.1) and (5.2) hold where the SU’s are far from the PU’s, the incident

angle θ is usually very small. Thus in the following we assume that θ = 0 which

leads to

φRR
hh (l) = J0(zl)/2 +

m=∞∑
m=1

J2m(zl)
sin(2mθmax)

2mθmax

(5.3)

and

φRI
hh (l) = 0 (5.4)

The extension to the case where θ �= 0 is somewhat straightforward. Also note

that for the case of θmax = π, the above reduces to Clark’s model, [76, 77]. Fig.

5.1 shows the correlation φRR
hh (l) vs. the normalized distance z = D/λ for several

values of θmax.

5.3 Correlation of Received Signals

We assume that the received signal at each antenna is down converted and sampled

at the rate of one sample per symbol. In other words no oversampling is assumed.

Let rk,m denote the mth sample of the complex envelope of the received signal at

the kth antenna. Then

rk,m = ηhksm + vk,m k = 0, 1, · · · ,M − 1 (5.5)

where {sm} is the independent and identically distributed (iid) sequence of trans-

mitted symbols, and where the noise sequences {vk,m} are assumed to be inde-

pendent sequences of iid, circularly symmetric Gaussian random variables with

variance N0. The assumption of the independence of the noise sequences for dif-

ferent antenna elements k and l is discussed in section 5.5. Finally, η ∈ {0, 1}

indicates the presence (η = 1) or absence (η = 0) of the PU signal. In the following

these two hypotheses are also denoted by Hη, η = 0, 1.
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In the following we derive the statistical properties of the sequence {rk,n}. As-

suming that E[sm] = 0, it is easy to see that

E [rk,n|Hη] = 0

E
[
rk,nr

∗
k,m|Hη

]
= 0 ∀m �= n (5.6)

The correlation of rk,n and rl,n under H0 is given by

E[rk,nr
∗
l,n|H0] = E[vk,nv

∗
l,n] = N0δ(k − l) (5.7)

The real and imaginary parts of the cross-correlation between {rk,n} and {rl,n}

under H1 are, respectively, given by

E[�{rk,nr∗l,n}|H1] =

E
[
(hRk s

R
n − hIks

I
n)(h

R
l s

R
n − hIl s

I
n) + (hRk s

I
n + hIks

R
n )(h

R
l s

I
n + hIl s

R
n )

]
+N0δ(k − l)

= 2φRR
hh (k − l) εs +N0δ(k − l), (5.8)

and,

E[�{rk,nr∗l,n}|H1] =

E
[
(hRk s

I
n + hIks

R
n )(h

R
l s

R
n − hIl s

I
n)− (hRk s

R
n − hIks

I
n)×(

hRl s
I
n + hIl s

R
n )

]
= 2φRI

hh (k − l) εs = 0, (5.9)

where εs = E[|sm|2] , and where �{.} and �{.} represent the real and imaginary

parts, respectively. To simplify notation subsequently we let

Aη(k − l) � E[�{rk,mr∗l,m}|Hη] (5.10)

Note that for Clark’s model we have

Aη(k − l) = ηJ0(z(k − l))εs +N0δ(k − l) (5.11)
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5.4 Decision Statistics

5.4.1 Decision Statistics: Special Case

Spectrum sensing is performed using N consecutive samples of the received signal

from each antenna, i.e., rk = {rk,0, rk,1, rk,2, · · · , rk,N−1}, k = 0, 1, · · · ,M − 1. In

this section we consider the special case where the cross-correlation of r0 and rl,

l = 1, · · · ,M − 1, is used in our decision statistic. The estimate of the cross-

correlation between r0 and rl is given by

R̂sp(l) �
1

N

N−1∑
m=0

(
rl,mr

∗
0,m

)
, 0 ≤ l ≤M − 1 (5.12)

In view of (5.9) in the following we only use the real part of (5.12) in the our

decision statistic. Let

ψsp(l) � �{R̂sp(l)}. (5.13)

The proposed decision statistic is now defined by

Tsp(L) �

∑L
l=1wsp(l)ψsp(l)

ψsp(0)

H1

≷
H0

λ, (5.14)

where L = M − 1, and wsp(l), l = 1, 2, · · · , L, are a set of coefficients selected to

improve the system performance. It is clear that they must be chosen to ensure the

constructive addition of the terms in (5.14) under the H1 hypothesis. It is shown

in Appendix G that in the low SNR regime, the optimal choice for wsp(l) (which

maximizes the probability of detection for a fixed probability of false alarm), is

given by wopt
sp (l) = φRR

hh (l). We note that the values of φRR
hh (l) are known from the

channel coefficient statistics given by (5.3). In particular, for the Clark’s model we

get wopt
sp (l) = J0(

2πD
λ
l), for l = 1, 2, · · · , L.

The system performance is evaluated in terms of probability of false alarm, P0,

and probability of detection,P1, given by

Pη � Pr {Tsp(L) > λ|Hη} = Pr

{
L∑
l=1

wsp(l)ψsp(l) > λψsp(0)|Hη

}
. (5.15)
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In the following section we evaluate Pη for η = 0, 1. In order to calculate Pη, we

first need to find the mean and covariance matrix of {ψsp(l)}Ll=0 given Hη.

5.4.2 Performance Analysis

To evaluate the false alarm and detection probabilities, we assume that the samples

rl,m are Gaussian random variables. This assumption is true when the modulation

scheme used by the PU is MPSK (see Appendix I ) and it is approximately true

for other modulation schemes with a large signal constellation. In addition, by the

central limit theorem, for a large N , ψsp(l), l = 0, 1, · · · , L, are jointly Gaussian

(the accuracy of these assumptions/approximations has been verified in Section

5.6). Therefore it is sufficient to evaluate the conditional mean of {ψsp(l)}Ll=0 and

covariance of {ψsp(l), ψsp(k)}Ll,k=0 given Hη, denoted by msp(l|Hη) and Csp(l, k|Hη),

respectively. It is shown in Appendix F that

msp(l|Hη) � E[ψsp(l)|Hη] = Aη(l) (5.16)

and

Csp(l, k|Hη) � cov[ψsp(l)ψsp(k)|Hη]

=
1

2N
{Aη(l)Aη(k) +Aη(l − k)Aη(0)} (5.17)

For the case of Clark’s model we get

msp(l|H0) = N0δ(l) (5.18)

msp(l|H1) = J0(zl)εs +N0δ(l) (5.19)

Csp(l, k|H0) =
N2

0

2N
[δ(l)δ(k) + δ(l − k)]

Csp(l, k|H1) =
1

2N
{ [J0(zl)εs +N0δ(l)][J0(zk)εs+

N0δ(k)] + [J0(z(l − k))εs +N0δ(l − k)][εs +N0] } (5.20)
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Let

YL �
L∑
l=1

wsp(l)ψsp(l)− λψsp(0). (5.21)

Then Pη = Pr(YL > 0|Hη). Since YL is Gaussian, Pη can be evaluated from the

mean and variance of YL conditioned on Hη and denoted by mYL|Hη , and σ
2
YL|Hη

,

respectively. Using (5.16), (5.17) and (5.21) we get

mYL|Hη � E[YL|Hη] =
L∑
l=1

wsp(l)Aη(l)− λAη(0), (5.22)

and,

σ2
YL|Hη

� var(YL|Hη) =
L∑
l=1

L∑
k=1

wsp(l)wsp(k)Csp(l, k|Hη)

+ λ2 Csp(0, 0|Hη)− 2λ
L∑
l=1

wsp(l)Csp(0, l|Hη). (5.23)

Finally, the detection and false alarm probabilities are given by

Pη = Q

(
−mYL|Hη

σYL|Hη

)
(5.24)

One can verify that the probability of false alarm does not depend on the noise

power and is given by

P0 = Q

(
λ
√
N√

Ω2
sp + λ2

)
(5.25)

where

Ω2
sp �

1

2

L∑
l=1

w2
sp(l) (5.26)

Therefore for a given probability of false alarm P0 = ε, the threshold λε can be

computed as

λε =
ΩspQ

−1(ε)√
N − [Q−1(ε)]2

(5.27)

where Q−1(.) is the inverse of the Q function.
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5.4.3 Decision Statistics: The General Case

In the previous section we considered a decision statistic based on the cross-

correlation between the signals from antenna 0 and antennas l = 1, 2, · · · , L. This

can be extended to include the cross-correlation among all pairs of antennas. Let

R̂ge(l) �
M−l−1∑
k=0

1

N

N−1∑
m=0

(
rk+l,mr

∗
k,m

)
0 ≤ l ≤M − 1 (5.28)

denote the estimate of the cumulative cross-correlation of the received signals and

let ψge(l) � �{R̂ge(l)}. The new decision statistic is given by

Tge(L) �

∑L
l=1wge(l)ψge(l)

ψge(0)

H1

≷
H0

λ (5.29)

Clearly L = M − 1 implies that the signals from all the antenna elements are

used in the decision statistic; however, since the envelope of the correlation for two

antenna elements is a decreasing function of their distance (see Fig. 5.1), we may

choose L < M − 1 when this correlation becomes negligible.

Derivation of false alarm and detection probabilities follow those in Section 5.4.

In particular, let mge(l|Hη) and Cge(l, k|Hη), respectively, denote the mean and

covariance of ψge(l) given Hη. Then

mge(l|Hη) � E[ψge(l)|Hη] = (M − l)Aη(l) (5.30)

and

Cge(l, k|Hη) � cov[ψge(l)ψge(k)|Hη]

=
1

2N

M−l−1∑
p=0

M−k−1∑
q=0

Aη(p+ l − q)Aη(q + k − p)

+Aη(l − k + p− q)Aη(q − p) (5.31)

The proof of (5.30) and (5.31) is given in Appendix F. To find the probabilities of

detection and false alarm, define

YL �
L∑
l=1

wge(l)ψge(l)− λψge(0). (5.32)
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The conditional mean and variance of YL are given by

mYL|Hη =
L∑
l=1

(M − l)wge(l)Aη(l)−MλAη(0) (5.33)

σ2
YL|Hη

=
L∑
l=1

L∑
k=1

wge(l)wge(k)Cge(l, k|Hη)

+ λ2Cge(0, 0|Hη)− 2λ
L∑
l=1

wge(l)Cge(0, l|Hη) (5.34)

In the low SNR regime the optimal weighting coefficients are calculated in ap-

pendix G and are given by

wopt
ge (l) = (M − l)φRR

hh (l) 1 ≤ l ≤ L (5.35)

Finally, Pη is given by (5.24).

5.5 Antenna Spacing

It is clear from (5.3) that, in general, the correlation of channel coefficients de-

creases with increases in inter-element spacing of the multi-antenna system. Since

our decision statistics rely on this correlation, evidently closer spacing of the an-

tenna elements would improve the performance of the proposed spectrum sensing

technique. However, as discussed in [78, 79, 80, 81, 82], small inter-element spac-

ing results in mutual coupling between the antennas. This coupling results in a

parasitic correlation of the signals (for both transmitted signal and thermal noise

components) among the antennas for spacings below one wavelength. According

to [79, Fig. 5(b)] the correlation caused by the signal coupling, particularly for

low SNR, does not change the channel correlation expressed in (5.3). However, the

presence of noise correlation due to antenna coupling complicates the task of an

autocorrelation-based spectrum sensing technique such as that proposed in this pa-

per. Therefore we must ensure that noise sequences on different antenna elements

remain uncorrelated by selecting an appropriate value for D. From [79, Fig. 5(b)],
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it can be seen that noise coupling between adjacent antennas will be negligible for

values of D satisfying D/λ = 0.39, 0.91 and D/λ ≥ 1. On the other hand D must

be chosen so that the correlation among channel coefficients, as described by (5.3)

remains high. These two conditions together provide the guideline for selecting the

values of D. In Fig. 5.1 we have plotted the channel correlation coefficients vs.

the normalized inter-element spacing D/λ for different values of θmax (using (5.1)

with θ = 0). It can be seen that for the case of Clark’s model where θmax = π,

selecting D/λ = 0.39 or 0.91 leads to very low correlation among the channel coef-

ficients. Therefore, we must consider D/λ ≥ 1. In this case the maximum channel

correlation is obtained for D = 1.1λ.

FIGURE 5.1. Correlation between channel coefficients vs. D/λ.

On the other hand when θmax = π/k for k ≥ 4, large correlation among channel

coefficients can be achieved by choosing D/λ = 0.39. This will clearly enhance

the performance of our proposed method. However, it should be noted that the

distance between antenna elements separated by 2D will be 0.78λ. Unfortunately
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in this case the noise processes in these two subsystems will be correlated due

to the mutual coupling between the two antennas (see [79, Fig. 5(b)]). 1 To get

around this problem, in the decision statistics in (5.14) or (5.29) we set the second

coefficient (wsp(2) or wge(2)) to zero and ignore the correlations among antenna

elements that are 2D apart. The simulation results verify that this does not degrade

the system performance significantly.

5.6 Simulation and Numerical Results

In this section, we present our numerical results from simulation and analysis.

First we verify the accuracy of the Gaussian assumptions in Section 5.4.2. Next we

compare our performance results with several recently-published blind spectrum

techniques.

The system model used in the simulation is based on the description of section

5.2. The channel coefficients are zero mean complex Gaussian random variables

with covariance matrix based on (5.1) (with θ = 0). The modulation systems

considered are 16 PSK, and 16 and 256 QAM. The simulation results are obtained

by repeating each experiment at least 104 times.

In Section 5.4.2 we assumed that the received signal samples rl,m are Gaussian.

Under H0, this assumption is always true. Under H1, it is not hard to show that

this assumption is true for MPSK or any other modulation scheme for which all

the signals in the constellation are of equal magnitude. However, this assumption

is approximately true for other modulation schemes. In Fig. 5.2 we show the ROC

curves for 16 PSK, and 16 and 256 QAM. It can be seen that there is no significant

difference between the numerical results obtained from analysis which rely on the

Gaussian assumption and those obtained from simulation.

1Note that this will not be an issue for antennas separated by a distance of 3D or larger.
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FIGURE 5.2. ROC curves for the the two proposed methods forM = 4, L = 3, N = 1024,
SNR= −12, θmax = π/4.

Invoking the central limit theorem, we also assumed in Section 5.4.2 that the

estimated correlations of the received signal is Gaussian. To verify the accuracy of

this assumption for small values of N , in Fig. 5.3 we plot the detection probability

P1 vs. SNR obtained from simulation and analysis for N = 10, 32, 64, 100. It can

be seen the Gaussian assumption is accurate even for values of N as small as 10.

Figs. 5.4 and 5.5 demonstrate the probability of detection P1 vs. SNR for a fixed

probability of false alarm (P0 = 0.1) under Clark’s model and a quarter-space

model (θmax = π/4), respectively. As expected, the performance of the system

improves as the number of antennas (M) increases. For the special case considered

in Section 5.4.1 we reach a point of diminishing return due to the fact that only

the correlation between a single antenna and its neighbors are considered and that

the paths correlations decrease with distance. On the other hand, for the general

case in Section 5.4.3, the improvement is considerable even when increasing M

from 6 to 8. In this case a larger M results in a larger number of antenna elements
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FIGURE 5.3. Probability of detection vs. SNR using Tgefor M = 4, L = 3, P0 = 0.1,
θmax = π/4 and different values of N .

with close distance and high path correlation resulting in improved performance.

In particular we note that using M = 8 antenna elements, the proposed method

can achieve a detection probability of 0.9 for N = 1024 samples and SNR values

of −12 and −14 dB for the Clark and quarter-space models, respectively.

Fig. 5.6 shows the detection probability P1 versus SNR for M = 4 antennas for

different values of θmax using the test statistic for the general case. As expected

(from (5.4)), Clark’s model (θmax = π) and the half-space model (θmax = π/2)

have the same performance. However, smaller values of θmax result in significant

improvements over Clark’s model. In particular for P1 = 0.9, θmax = π/16 shows

an improvement of more than 5 dB over θmax = π.

In the remainder of this section we compare simulation results from our algo-

rithms with those from three blind spectrum sensing techniques, namely the arith-

metic to geometric mean (AGM) of [29], the generalized likelihood Ratio Detector-3
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FIGURE 5.4. Detection probability vs. SNR for Clark or half-space model (θmax = π or
θmax = π/2), P0 = 0.1, N = 1024 and L = M − 1.

(GLRD3) of [28], and the maximum-to-minimum eigenvalue (MME) of [21]. Inter-

ested readers can find a brief overview of these algorithms in Appendix H. We

should point out that the GLRT method of [30] is identical to the GLRD3 of [28]

and therefore has not been included in the comparisons.

Figs. 5.7 and 5.8 show the probability of detection versus SNR for M = 4, P0 =

0.1 and N = 1024 under Clark’s model and quarter-space model, respectively, and

compare the results with from the three algorithms mentioned above. It can be seen

that our proposed method outperforms all the other algorithms. In particular for

P1 = 0.9, in the case of Clark’s model the proposed method (Tge(L)) outperforms

the other methods by 2.8 dB . In the case of quarter-space model the improvement

is 2.7 dB over AGM and 3.7 dB over GLRD3.

A remark is in order here. Although the three algorithms AGM, GLRD3 and

MME do not seem to depend on the channel paths correlations, the results in Figs.
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FIGURE 5.5. Detection probability vs. SNR for quarter-space model (θmax = π/4) with
P0 = 0.1, N = 1024 and L = M − 1.

5.7 and 5.8 show otherwise. This is due to the fact that the paths correlations

depend on the beamwidth θmax. As a result the correlations between the rows of r

in (6.35) vary with θmax. Therefore the matrix Rη in (6.36) and its eigenvalues also

depend on θmax. Consequently, the performance of these algorithms also changes

slightly depending on the beamwidth θmax.

Finally in Figs. 5.9 and 5.10 we show the complementary ROC for M = 4

and N = 64 when SNR = 0 dB and SNR = −5 dB under Clark’s model and

quarter-space model, respectively, and compare the results to the three algorithms

in [29, 28, 21].
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FIGURE 5.6. Detection probability vs. SNR using Tge(L) for different values of θmax,
with M = 4, L = 3, P0 = 0.1, N = 1024.

FIGURE 5.7. Comparison of the performance of the proposed methods with three other
blind sensing techniques for M = 4, L = 3, P0 = 0.1, N = 1024 and Clark’s Model.
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FIGURE 5.8. Comparison of the performance of the proposed methods with three other
blind sensing techniques for M = 4, L = 3, P0 = 0.1, N = 1024 and quarter-space model.

FIGURE 5.9. Comparison of the complementary ROC curves for the proposed method
and three other blind sensing techniques for M = 4, L = 3, SNR = 0 dB, N = 64 and
Clark’s Model.
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FIGURE 5.10. Comparison of the complementary ROC curves for the proposed method
and three other blind sensing techniques for M = 4, L = 3, SNR = −5 dB, N = 64 and
quarter-space model.
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Chapter 6
Conclusion

The ever increasing demand for wireless services and the static spectrum allocation

led to spectrum scarcity in wireless communications. On the other side, studies have

shown that most of the allocated radio frequencies are under-utilized. Recently,

CRs have been introduced as a potential solution to this problem. The CR network

has to be able to detect the presence of the PUs signals, so as to avoid interfering

with it. Therefore, SS plays a crucial role in the successful deployment of CRs.

In Chapter 2, a SS technique is proposed for signaling schemes with controlled

intersymbol interference in the transmitter. Examples include correlative coding

or partial response signaling techniques which have an inherent memory in the

transmitted signal. A decision statistic is introduced based on the autocorrelation

of the received signal and its performance in terms of the probabilities of false

alarm and detection is evaluated for AWGN and Rayleigh fading channels. It is

shown that the proposed method is a constant false alarm detector. The numerical

results from simulation and analysis are presented to demonstrates the accuracy

of our analysis.

In Chapter 3, we consider the effect of co-channel interference on a desired

signal by a careful examination of the samples at the output of the matched filter

receiver. We show that the timing offset between the interference and the desired

signals may results in the correlation of adjacent sample. We evaluate the bit error

probability resulting from CCI as well as the distribution of the total number of

errors in a packet. It is shown that the bit error probability is largest when the

interference and the desired signals are synchronized. Our results can be employed
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for more accurate evaluation of CCI effects and in developing techniques for CCI

mitigation such as designing precoders or forward error correction codes.

In Chapter 4, we introduce a novel decision statistic for spectrum monitoring

based on the receiver error count. Detection and false alarm probabilities of this

decision statistic are evaluated from analysis and simulation. Using two Markov

chain models we derive closed form formulas for channel utilization of the secondary

users and detection delay of primary users. The limits of channel utilization and

detection delay under the proposed method are derived and an optimization prob-

lem is solved to maximize channel utilization with a constraint on detection delay.

Numerical results are presented from analysis and simulation which show that the

hybrid spectrum sensing/spectrum monitoring technique significantly outperforms

spectrum sensing alone.

And in Chapter 5, we present a blind spectrum sensing technique for cognitive

radios equipped with a multi-antenna systems. The decision statistic is based on

an estimate of the cross-correlation of the signals received at different antennas

which is a result of the correlation of the channel path coefficients from the pri-

mary user transmitter to different elements in the antenna array. The performance

of the proposed methods is evaluated using an asymptotic analysis and compared

with simulation results. It is shown that the proposed methods outperform sev-

eral recently-proposed techniques for blind spectrum sensing with multi-antenna

systems.
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[13] A. V. Dandawaté and G. B. Giannakis, “Statistical tests for presence of cy-
clostationarity,” IEEE Trans. Signal Process., vol. 42, no. 9, pp. 2355–2369,
1994.

[14] W. A. Gardner and C. M. Spooner, “Signal interception: performance advan-
tages of cyclic-feature detectors,” IEEE Trans. Commun., vol. 40, no. 1, pp.
149–159, 1992.

[15] J. Lundén, V. Koivunen, A. Huttunen, and H. V. Poor, “Spectrum sensing
in cognitive radios based on multiple cyclic frequencies,” in CrownCom 2007,
Orlando, FL, 2007.

[16] J. Lunden, V. Koivunen, A. Huttunen, and H. Poor, “Collaborative cyclo-
stationary spectrum sensing for cognitive radio systems,” Signal Processing,
IEEE Transactions on, vol. 57, no. 11, pp. 4182 –4195, 2009.

[17] J. Lunden, S. Kassam, and V. Koivunen, “Robust nonparametric cyclic
correlation-based spectrum sensing for cognitive radio,” Signal Processing,
IEEE Transactions on, vol. 58, no. 1, pp. 38 –52, 2010.

[18] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc.
IEEE, vol. 55, no. 4, pp. 523–531, 1967.

[19] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy detection of
unknown signals over fading channels,” IEEE Trans. on Commun., vol. 55,
no. 1, pp. 21–24, 2007.

[20] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J. Sel. Topics
Signal Process., vol. 2, no. 1, pp. 4–17, 2008.

[21] T. J. Lim, R. Zhang, Y. C. Liang, and Y. Zeng, “Glrt-based spectrum sensing
for cognitive radio,” in Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, Nov. 30-dec. 4 2008, pp. 1 –5.

[22] S. Chaudhari, V. Koivunen, and H. Poor, “Autocorrelation-based decentral-
ized sequential detection of ofdm signals in cognitive radios,” Signal Process-
ing, IEEE Transactions on, vol. 57, no. 7, pp. 2690 –2700, july 2009.

[23] ——, “Distributed autocorrelation-based sequential detection of ofdm signals
in cognitive radios,” in Cognitive Radio Oriented Wireless Networks and Com-
munications, 2008. CrownCom 2008. 3rd International Conference on, may
2008, pp. 1 –6.

[24] Y. Zeng and Y.-C. Liang, “Covariance based signal detections for cognitive
radio,” in IEEE DySPAN, Dublin, Ireland, 2007, pp. 202–207.

78



[25] M. Naraghi-Pour and T. Ikuma, “Autocorrelation-based spectrum sensing for
cognitive radios,” Vehicular Technology, IEEE Transactions on, vol. 59, no. 2,
pp. 718 –733, 2010.

[26] ——, “Diversity techniques for spectrum sensing in fading environments,”
in Military Communications Conference, 2008. MILCOM 2008. IEEE, nov.
2008, pp. 1 –7.

[27] Y. Zeng and Y.-C. Liang, “Spectrum-sensing algorithms for cognitive radio
based on statistical covariances,” Vehicular Technology, IEEE Transactions
on, vol. 58, no. 4, pp. 1804 –1815, May 2009.

[28] A. Taherpour, M. Nasiri-Kenari, and S. Gazor, “Multiple antenna spectrum
sensing in cognitive radios,” Wireless Communications, IEEE Transactions
on, vol. 9, no. 2, pp. 814 –823, feb. 2010.

[29] R. Zhang, T. Lim, Y.-C. Liang, and Y. Zeng, “Multi-antenna based spec-
trum sensing for cognitive radios: A GLRT approach,” Communications, IEEE
Transactions on, vol. 58, no. 1, pp. 84 –88, jan. 2010.

[30] P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spectrum sensing
for cognitive radio,” Vehicular Technology, IEEE Transactions on, vol. 59,
no. 4, pp. 1791 –1800, May 2010.

[31] A. Parsa, A. Gohari, and A. Sahai, “Exploiting interference diversity for event-
based spectrum sensing,” oct. 2008, pp. 1 –12.

[32] G. L. Stuber, “Principles of mobile communication,” New York, 2002.

[33] P. Kabal and S. Pasupathy, “Partial-response signaling,” Communications,
IEEE Transactions on, vol. 23, no. 9, pp. 921 – 934, sep 1975.

[34] J. G. Proakis, “Digital communications, fourth edition,” McGraw-Hill Higher
Education, 2001.

[35] S. Parsaeefard and A. Sharafat, “Robust worst-case interference control in
underlay cognitive radio networks,” Vehicular Technology, IEEE Transactions
on, vol. 61, no. 8, pp. 3731 –3745, oct. 2012.

[36] T. Vanhatupa, M. Hnnikinen, and T. D. Hmlinen, “Evaluation of throughput
estimation models and algorithms for wlan frequency planning,” Computer
Networks, vol. 51, no. 11, pp. 3110 – 3124, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128607000114

[37] P. Tiwary, N. Maskey, S. Khakurel, and G. Sachdeva, “Effects of co-channel
interference in wlan and cognitive radio based approach to minimize it,” in
Advances in Recent Technologies in Communication and Computing (ART-
Com), 2010 International Conference on, oct. 2010, pp. 158 –160.

79



[38] G. Fang, E. Dutkiewicz, K. Yu, R. Vesilo, and Y. Yu, “Distributed inter-
network interference coordination for wireless body area networks,” in
GLOBECOM 2010, 2010 IEEE Global Telecommunications Conference, dec.
2010, pp. 1 –5.

[39] A. Abbosh and D. Thiel, “Performance of mimo-based wireless sensor net-
works with cochannel interference,” in Intelligent Sensors, Sensor Networks
and Information Processing Conference, 2005. Proceedings of the 2005 Inter-
national Conference on, dec. 2005, pp. 115 – 119.

[40] R. Muammar and S. Gupta, “Cochannel interference in high-capacity mobile
radio systems,” Communications, IEEE Transactions on, vol. 30, no. 8, pp.
1973 – 1978, aug 1982.

[41] R. Muammar, “Co-channel interference in microcellular mobile radio system,”
in Vehicular Technology Conference, 1991. Gateway to the Future Technology
in Motion., 41st IEEE, may 1991, pp. 198 –203.

[42] A. Attar, V. Krishnamurthy, and O. Gharehshiran, “Interference management
using cognitive base-stations for umts lte,” Communications Magazine, IEEE,
vol. 49, no. 8, pp. 152 –159, august 2011.

[43] Y. Wen, S. Loyka, and A. Yongacoglu, “Asymptotic analysis of interference in
cognitive radio networks,” Selected Areas in Communications, IEEE Journal
on, vol. 30, no. 10, pp. 2040 –2052, november 2012.

[44] Y.-U. Jang, “Performance analysis of cognitive radio networks based on sens-
ing and secondary-to-primary interference,” Signal Processing, IEEE Trans-
actions on, vol. 59, no. 11, pp. 5663 –5668, nov. 2011.

[45] M. Elalem, L. Zhao, and Z. Liao, “Interference mitigation using power control
in cognitive radio networks,” in Vehicular Technology Conference (VTC 2010-
Spring), 2010 IEEE 71st, may 2010, pp. 1 –5.

[46] D. Hu and S. Mao, “Co-channel and adjacent channel interference mitigation
in cognitive radio networks,” inMILITARY COMMUNICATIONS CONFER-
ENCE, 2011 - MILCOM 2011, nov. 2011, pp. 13 –18.

[47] A. Giorgetti, “Interference mitigation technique by sequence design in uwb
cognitive radio,” in Applied Sciences in Biomedical and Communication Tech-
nologies (ISABEL), 2010 3rd International Symposium on, nov. 2010, pp. 1
–5.

[48] S.-M. Cheng, W. C. Ao, and K.-C. Chen, “Efficiency of a cognitive radio link
with opportunistic interference mitigation,” Wireless Communications, IEEE
Transactions on, vol. 10, no. 6, pp. 1715 –1720, june 2011.

80



[49] M. Orooji, E. Soltanmohammadi, and M. Naraghi-Pour, “Performance analy-
sis of spectrum monitoring for cognitive radios,” To appear MILITARY COM-
MUNICATIONS CONFERENCE, 2012 - MILCOM 2012, Oct 2012.

[50] E. Soltanmohammadi, M. Orooji, and M. Naraghi-Pour, “Spectrum monitor-
ing for cognitive radios in rayleigh fading channel,” To appear MILITARY
COMMUNICATIONS CONFERENCE, 2012 - MILCOM 2012, Oct 2012.

[51] D. Rawat and D. Popescu, “Joint precoder and power adaptation for cognitive
radios in interference systems,” in Performance Computing and Communica-
tions Conference (IPCCC), 2009 IEEE 28th International, dec. 2009, pp. 425
–430.

[52] K.-J. Lee, H. Sung, and I. Lee, “Linear precoder designs for cognitive radio
multiuser mimo downlink systems,” in Communications (ICC), 2011 IEEE
International Conference on, june 2011, pp. 1 –5.

[53] P. Billingsley, Probability and Measure (Third ed.). New York: John Wiley
& Sons, 1995.

[54] H. Cramer, “On the composition of elementary errors, second paper: Statis-
tical applications,” Skand. Aktuarietidskrift, vol. 11, pp. 13–74, 1928.

[55] R. von Mises,Wahrscheinliehkeitsrechnung und ihre Anwendung in der Statis-
tik und Theoretischen Physik. F. Duticke, Ed. Vienna, Austria: Leipzig, 1931.

[56] Y.-C. Liang, Y. Zeng, E. Peh, and A. T. Hoang, “Sensing-throughput tradeoff
for cognitive radio networks,” Wireless Communications, IEEE Transactions
on, vol. 7, no. 4, pp. 1326 –1337, april 2008.

[57] S. Zarrin and T. J. Lim, “Throughput-sensing tradeoff of cognitive radio net-
works based on quickest sensing,” in Communications (ICC), 2011 IEEE In-
ternational Conference on, june 2011, pp. 1 –5.

[58] S. Stotas and A. Nallanathan, “Overcoming the sensing-throughput tradeoff
in cognitive radio networks,” in Communications (ICC), 2010 IEEE Interna-
tional Conference on, may 2010, pp. 1 –5.

[59] A. Hoang, Y.-C. Liang, and Y. Zeng, “Adaptive joint scheduling of spectrum
sensing and data transmission in cognitive radio networks,” Communications,
IEEE Transactions on, vol. 58, no. 1, pp. 235 –246, january 2010.

[60] Q. Zhao, S. Geirhofer, L. Tong, and B. Sadler, “Opportunistic spectrum ac-
cess via periodic channel sensing,” Signal Processing, IEEE Transactions on,
vol. 56, no. 2, pp. 785 –796, feb. 2008.

81



[61] S. W. Boyd, J. M. Frye, M. B. Pursley, and T. C. Royster IV, “Spectrum
monitoring during reception in dynamic spectrum access cognitive radio net-
works,” Communications, IEEE Transactions on, vol. 60, no. 2, pp. 547 –558,
february 2012.

[62] A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental Con-
cepts and Key Architectures, 2nd ed. New York: McGraw Hill, 2004.

[63] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic
redundancy-check codes with 24 and 32 parity bits,” Communications, IEEE
Transactions on, vol. 41, no. 6, pp. 883 –892, jun 1993.

[64] P. Koopman, “32-bit cyclic redundancy codes for internet applications,” in
Dependable Systems and Networks, 2002. DSN 2002. Proceedings. Interna-
tional Conference on, 2002, pp. 459 – 468.

[65] K. Witzke and C. Leung, “A comparison of some error detecting crc code
standards,” Communications, IEEE Transactions on, vol. 33, no. 9, pp. 996
– 998, sep 1985.

[66] S. M. Ross, Introduction to Probability Models, 10th ed. United State of
America: Academic Press, 2010.

[67] S. B. Wicker, Error Control Systems for Digital Communication and Storage,
1st ed. Upper Saddle River, New Jersey: Prentice-Hall, 1995.

[68] W.-Y. Lee, “Effects on correlation between two mobile radio base-station an-
tennas,” Vehicular Technology, IEEE Transactions on, vol. 22, no. 4, pp. 130
– 140, nov. 1973.

[69] J. Salz and J. Winters, “Effect of fading correlation on adaptive arrays in
digital mobile radio,” Vehicular Technology, IEEE Transactions on, vol. 43,
no. 4, pp. 1049 –1057, Nov. 1994.

[70] D.-S. Shiu, G. Foschini, M. Gans, and J. Kahn, “Fading correlation and its
effect on the capacity of multielement antenna systems,” Communications,
IEEE Transactions on, vol. 48, no. 3, pp. 502 –513, mar. 2000.

[71] D. Chizhik, G. Foschini, M. Gans, and R. Valenzuela, “Keyholes, correlations,
and capacities of multielement transmit and receive antennas,”Wireless Com-
munications, IEEE Transactions on, vol. 1, no. 2, pp. 361 –368, apr 2002.

[72] H. Xu, D. Chizhik, H. Huang, and R. Valenzuela, “A generalized space-time
multiple-input multiple-output (mimo) channel model,” Wireless Communi-
cations, IEEE Transactions on, vol. 3, no. 3, pp. 966 – 975, may 2004.

82



[73] C. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. Shellhammer, and W. Cald-
well, “Ieee 802.22: The first cognitive radio wireless regional area network
standard,” Communications Magazine, IEEE, vol. 47, no. 1, pp. 130 –138,
january 2009.

[74] H. Bahrami and T. Le-Ngoc, “MIMO precoder designs for frequency-selective
fading channels using spatial and path correlation,” Vehicular Technology,
IEEE Transactions on, vol. 57, no. 6, pp. 3441 –3452, nov. 2008.

[75] S. Kim, J. Lee, H. Wang, and D. Hong, “Sensing performance of energy de-
tector with correlated multiple antennas,” Signal Processing Letters, IEEE,
vol. 16, no. 8, pp. 671 –674, aug. 2009.

[76] R. H. Clarke, “A statistical theory of mobile-radio reception,” Bell Labs Tech-
nical Journal, vol. 4, pp. 957 –1000, 1968.

[77] W. C. Jakes, “Microwave mobile communications,” New York, 1994.

[78] S. Krusevac, P. Rapajic, and R. Kennedy, “Channel capacity of multi-antenna
communication systems with closely spaced antenna elements,” in Personal,
Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th
International Symposium on, vol. 4, sept. 2005, pp. 2366 –2370 Vol. 4.

[79] C. Domizioli, B. Hughes, K. Gard, and G. Lazzi, “Noise correlation in compact
diversity receivers,” Communications, IEEE Transactions on, vol. 58, no. 5,
pp. 1426 –1436, May 2010.

[80] S. Krusevac and P. Rapajic, “Channel capacity of mimo systems with closely
spaced terminated antennas,” in Information Theory, 2007. ISIT 2007. IEEE
International Symposium on, june 2007, pp. 1076 –1080.

[81] J. Wallace and M. Jensen, “Mutual coupling in mimo wireless systems: a rigor-
ous network theory analysis,” Wireless Communications, IEEE Transactions
on, vol. 3, no. 4, pp. 1317 – 1325, july 2004.

[82] T. Svantesson and A. Ranheim, “Mutual coupling effects on the capacity of
multielement antenna systems,” in Acoustics, Speech, and Signal Processing,
2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference on,
vol. 4, may 2001, pp. 2485 –2488 vol.4.

[83] P. Janssen and P. Stoica, “On the expectation of the product of four matrix-
valued gaussian random variables,” Automatic Control, IEEE Transactions
on, vol. 33, no. 9, pp. 867 –870, sep. 1988.

[84] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge University Press,
1990.

83



Appendix A:
Values of Γξ̂|η and Γχ̂|η
Janssen and Stocia proved in [83] that if a, b, c and d are four Gaussian random
variables, the expectation of the product of that four Gaussian random variables
holds in the following equation.

E[abcd] = E[ab]E[cd] + E[ac]E[bd]

+ E[ad]E[bc]− 2E[a]E[b]E[c]E[d] (6.1)

Also it can be seen that,

Φ(η)
rr (i)Φ

(η)
rr (k) + Φ(η)

rr (−i)Φ(η)
rr (−k) (6.2)

= 2ξ(η)(i)ξ(η)(k)− 2χ(η)(i)χ(η)(k).

Using (6.1) and after some manipulations for low SNR-regime, one can drive
(6.3) and (6.4),

γξ̂|η(i, k) � Ω
(R)
i Ω

(R)
k E

[
ξ̂(i)ξ̂(k)

∣∣∣Hη

]
(6.3)

=
Ω

(R)
i Ω

(R)
k

4(N − i)(N − k)

N−i−1∑
n=0

N−k−1∑
m=0

+ E[rn+ir
∗
nrm+kr

∗
m | Hη] + E[r∗n+irnrm+kr

∗
m | Hη]

+ E[rn+ir
∗
nr
∗
m+krm | Hη] + E[r∗n+irnr

∗
m+krm | Hη]

=
Ω

(R)
i Ω

(R)
k

4(N − i)(N − k)

N−i−1∑
n=0

N−k−1∑
m=0

Φ(η)
rr (i)Φ

(η)
rr (k)

+ Φ(η)
rr (n+ i−m)Φ(η)

rr (m+ k − n) + Φ(η)
rr (i)Φ

(η)
rr (−k)

+ Φ(η)
rr (n+ i−m− k)Φ(η)

rr (m− n) + Φ(η)
rr (−i)Φ(η)

rr (k)

+ Φ(η)
rr (−n− i+m+ k)Φ(η)

rr (−m+ n) + Φ(η)
rr (−i)Φ(η)

rr (−k)
+ Φ(η)

rr (−n− i+m)Φ(η)
rr (−m− k + n)

= Ω
(R)
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2(N − i)(N − k)
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N−k−1∑
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ξ(η)(n+ i−m)ξ(η)(m+ k − n)

+ ξ(η)(n+ i−m− k)ξ(η)(n−m)

− χ(η)(n+ i−m)χ(η)(m+ k − n)

− χ(η)(n+ i−m− k)χ(η)(m− n)

Using the same approach one can show that,
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γχ̂|η(i, k) � Ω
(I)
i Ω

(I)
k E [ χ̂(i)χ̂(k)|Hη] (6.4)
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(I)
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Appendix B:
Inverse of the matrix (I −G)
One can verify that the eigenvalues of G, obtained from the solutions of the char-
acteristic equation det(λI −G) = 0, are given by

λk = [(1− p̂d)(1− pd)
KM ]1/(KS+KM ) exp(

2πjk

KS +KM

) (6.5)

where 0 ≤ k < KS +KM , and j =
√
−1. It can be seen that if pd �= 0 and p̂d �= 0,

then for all k (0 ≤ k < KS +KM), |λk| �= 1. This implies that the inverse of I −G
exists.
Each row and column of G has exactly one nonzero entry implying that G is a

generalized permutation matrix which can be written as G = G0C, where

G0 � diag(

KS−1︷ ︸︸ ︷
1 · · · 1 p̂m

KM︷ ︸︸ ︷
pm · · · pm) (6.6)

and where

C =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
... 0 1

...
. . . . . .

0 0 1
1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ (6.7)

is the basic circulant permutation matrix, [84]. When G is multiplied on the right
by a matrix, say A, then each row of A will be (circularly) shifted up by one and
multiplied by the corresponding element of the main diagonal of G0. Therefore,

G(KM+KS)�+n = α�Gn (6.8)

0 ≤ n < KS +KM , 0 ≤ 

where α = p̂mp
KM
m . Hence,

(I −G)−1 =
∞∑
k=0

Gk =

KS+KM−1∑
n=0

Gn

∞∑
�=0

α� (6.9)

=
1

1− α

KS+KM−1∑
n=0

Gn

Consequently, the inverse of I − G can be easily computed as the sum of a finite
number of terms.
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Appendix C:
Detection Delay for KS = 1
In this section, an alternative formula is derived for detection delay in the case of
KS = 1. From (4.19), when the length of SSI is one, detection delay is equal to D1

in (4.17). Therefore,
∑KM

n=0G
n can be represented by (6.10).

KM∑
n=0

Gn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 p̂m p̂mpm p̂mp
2
m · · · p̂mp

KM−1
m

pKM
m 1 pm p2m · · · pKM−1

m

pKM−1
m p̂mp

KM−1
m 1 pm · · · pKM−2

m
...

...
. . . . . . . . .

...
p2m p̂mp

2
m · · · p̂mp

KM−1
m 1 pm

pm p̂mpm p̂mp
2
m · · · p̂mp

KM−1
m 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.10)

Assuming KS = 1 and substituting (6.10) into (6.9) and (4.17), one can verify
that,

D = D1 =
1

1− p̂mp
KM
m

+ (6.11)

1

(1− p̂mp
KM
m )(1 +KM)

(
KM∑
n=1

np̂mp
n−1
m +

KM∑
n=1

npKM−n+1
m

)

=
1

1− p̂mp
KM
m

+
1

(1− p̂mp
KM
m )(1 +KM)

×(
KM(pm − p̂mp

KM
m )

1− pm
+
(1− pKM

m )(p̂m − p2m)

(1− pm)2

)

For small value of pm, D is approximated by

D ≈ 1 +
1

1 +KM

(
p̂m − p2m
(1− pm)2

+
KMpm
1− pm

)
(6.12)
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Appendix D:
Maximum KM for μ > μ0
From (4.24) and (6.12) and after some manipulations we get,

KM

(
1

pd(μ)
−Dmax

)
≤

(
p̂d

p2d(μ)
− 2

pd(μ)
+Dmax

)
(6.13)

As pd is a decreasing function of μ followed by (4.25),

Dmax <
1

pd(μ)
, for μ > μ0 (6.14)

So,

KM,max =

⌊
1/pd(μ)−Dmax

p̂d/p2d(μ)− 2/pd(μ) +Dmax

⌋
(6.15)

where KM,max is maximum KM for μ > μ0 that does not violate (4.24).
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Appendix E:
The values of p̂d(i) for ED
The decision statistics decides in favor of H1 when the total energy of the received
signal during the SSI exceeds a threshold, say ψED. Let us define ζ

(i) as the SNR
in the SSI when the primary user emerges in the state i, 0 ≤ i < KS. Then,
ζ(i) = Ks−i

Ks
ζ(0) and, [19],

p̂d(i) = QNKS
(
√
2NKSζ(i),

√
μED) (6.16)

where Qm(α, β) is the generalized Marcum Q-Function.
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Appendix F:
Derivation of the moments
It is easy to verify that

E[ψge(l)|Hη] =
M−l−1∑
k=0

1

N

N−1∑
m=0

�
{
E

[
rk+l,mr

∗
k,m|Hη

]}
= (M − l)Aη(l) (6.17)

from which it follows that

E[ψsp(l)|Hη] =
1

N

N−1∑
m=0

�
{
E

[
rl,mr

∗
0,m|Hη

]}
= Aη(l) (6.18)

Furthermore,

E[ψge(l)ψge(k)|Hη] =
1

N2

M−l−1∑
p=0

M−k−1∑
q=0

N−1∑
m=0

N−1∑
n=0

E
[
�
{
rp+l,mr

∗
p,m

}
�
{
rq+k,nr

∗
q,n

}
|Hη

]
(6.19)

In the following the correlation of ψge(l) and ψge(k) is first derived for an arbi-
trary angle θ. Let ρη(l − k) � E[rl,mr

∗
k,m|Hη]. It follows that

ρη(l − k) = Aη(l − k) + jBη(l − k), (6.20)

where Bη(k − l) � E[�{rk,mr∗l,m}|Hη]. For the case of θ = 0, we get Bη(l) = 0 for
all l. Using the assumption that the received signal samples are Gaussian, we get,

E[ψge(l)ψge(k)|Hη] =
1

4N2

M−l−1∑
p=0

M−k−1∑
q=0

N−1∑
m=0

N−1∑
n=0

E
[
rp+l,mr

∗
p,mrq+k,nr

∗
q,n + rp+l,mr

∗
p,mr

∗
q+k,nrq,n

+r∗p+l,mrp,mrq+k,nr
∗
q,n + r∗p+l,mrp,mr

∗
q+k,nrq,n|Hη

]
=

1

4N2

M−l−1∑
p=0

M−k−1∑
q=0

N−1∑
m=0

N−1∑
n=0

[ρη(l)ρη(k) + ρη(l)ρη(−k) + ρη(−l)ρη(k) + ρη(−l)ρη(−k)]
+ [ρη(p+ l − q)ρη(q + k − p) + ρη(p+ l − q − k)ρη(q − p)

+ ρη(q + k − p− l)ρη(p− q)

+ ρη(q − p− l)ρη(p− q − k) ] δ(m− n) (6.21)

Now by considering the fact that

ρη(l)ρη(k) + ρη(−l)ρη(−k) = 2Aη(l)Aη(k)− 2Bη(l)Bη(k),
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and
ρη(l)ρη(−k) + ρη(−l)ρη(k) = 2Aη(l)Aη(k) + 2Bη(l)Bη(k),

equation (6.21) reduces to,

E[ψge(l)ψge(k)|Hη] = (M − l)(M − k)Aη(l)Aη(k)

− 1

2N

M−l−1∑
p=0

M−k−1∑
q=0

[Aη(p+ l − q)Aη(q + k − p)+

Aη(p+ l − q − k)Aη(q − p)− Bη(p+ l − q)Bη(q + k − p)

− Bη(p+ l − q − k)Bη(q − p)] (6.22)

Equation (5.31) now follows from (6.22) and (6.17) by setting θ = 0. Finally from
(6.22) we get

E[ψsp(l)ψsp(k)|Hη] = Aη(l)Aη(k)

− 1

2N
[Aη(l)Aη(k) +Aη(l − k)Aη(0)

− Bη(l)Bη(k)− Bη(l − k)Bη(0)], (6.23)

from which (5.17) follows by setting θ = 0.
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Appendix G:
Optimization of the weighting
coefficients
Our goal is to choose the coefficients

w � (wsp(1), wsp(2), · · · , wsp(L)),

so as to optimize the system performance. Since both false-alarm and detection
probabilities are a function of these coefficients, we formulate this problem as a
constrained optimization problem, whereby we attempt to minimize the detection
probability with a constraint on the false-alarm probability (a Neyman-Pearson
type criterion). Examination of (5.21)-(5.24) reveals that scaling the coefficients
wsp(l) by the same factor does not change the probabilities of false alarm and
detection. Therefore, to obtain a unique solution, the value of Ωsp in (5.26) is
selected to be a constant. The optimization problem is now formulated as follows.

Maximize : P1(w), (6.24)

Subject to :

P0(w) ≤ ε, (6.25)

1

2

L∑
l=1

w2
sp(l) = Ω0, (6.26)

where the dependence of P1(w) and P0(w) on {wsp(l)}Ll=1 is shown explicitly. It
is easy to verify that for the optimal solution, the inequality in (6.25) is satisfied
with equality. Then we can evaluate the value of the threshold λ as in (5.27). Since
the Q function is monotone decreasing, the optimization problem can be restated
as

Maximize : J �
mYL|H1(w)

σYL|H1(w)
, (6.27)

Subject to :
1

2

L∑
l=1

w2
sp(l) = Ω0,

where mYL|H1(w) and σYL|H1(w) are given by (5.22) and (5.23), respectively, and
the value of λ in (5.22) and (5.23) is given by (5.27). The above problem is difficult
to solve because of the complexity of the cost function J . However, we note that for
small SNR values (εs << N0), the standard deviation σYL|H1 can be approximated
by

σYL|H1 ≈
√
N2

0 (Ω
2
0 + λ2)

N
(6.28)
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Then using (6.28) the optimization problem in (6.27) can be replaced by

Maximize : J̃ = c1

L∑
l=1

wsp(l)A1(l)− c2 (6.29)

Subject to :
1

2

L∑
l=1

w2
sp(l) = Ω0

where c1 = 1/σYL|H1 and c2 = Q−1(ε) are constants. The above problem can be
solved using the Lagrange multipliers method. The Lagrangian is given by

J = c1

L∑
l=1

wsp(l)A1(l)− c2 − ζ(
1

2

L∑
l=1

w2
sp(l)− Ω0) (6.30)

Evaluating the partial derivative of J with respect to wsp(l) we obtain

∂J
∂wsp

(l) = c1A1(l)− ζwsp(l) 1 ≤ l ≤ L (6.31)

Setting (6.31) to zero and solving for {wsp(l)}Ll=1, we get the optimal solution:

wopt
sp (l) =

c1
ζ
A1(l) 1 ≤ l ≤ L (6.32)

Substituting (6.32) in (6.26) we get

wopt
sp (l) =

Ω0A1(l)√√√√2
L∑
l=1

A1(l)
2

1 ≤ l ≤ L (6.33)

From (6.33) we see that the optimal coefficients wopt
sp (l) are proportional to the

correlations A1(l). Since Ω0 is an arbitrary parameter, we can select it such that

wopt
sp (l) =

A1(l)
2εs

= φRR
hh (l) for 1 ≤ l ≤ L. We use these values in our simulations.

For the general case the mean of YL under H1 is given by (5.33). Therefore, in
the low SNR regime (6.27) reduces to

Maximize : J̃ = c1

L∑
l=1

wge(l)(M − l)A1(l)− c2 (6.34)

Subject to :
1

2

L∑
l=1

w2
ge(l) = Ω0

where c1 and c2 are as before. Following the same approach as above we get (5.35).
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Appendix H:
Available Blind Spectrum Sensing
Algorithms
As described in the introduction, energy detector based spectrum sensing tech-
niques have a good performance as long as they can precisely estimate the power
of the noise, the power of the transmitted signal and the channel fading coef-
ficients [28]. To get around these requirements, several authors have considered
GLRT-based algorithms. A brief description of three of these approaches is given
in the following. Consider the received signal

r � {rm,n}, 0 ≤ n ≤ N − 1, 0 ≤ m ≤M − 1. (6.35)

Define the matrix R̂ by,

R̂ �
1

N
rrH (6.36)

By applying the singular value decomposition (SVD) to R̂ we get

R̂ = ÛΛ̂V̂ (6.37)

where Λ̂ � Diag{λ̂m}, 0 ≤ m ≤M −1, and where {λ̂m} is the set of eigenvalues of
R̂. Suppose the eigenvalues are sorted in descending order. The decision statistics
of the three algorithms are given in the following.

Arithmetic to Geometric Mean (AGM)
[29]

TAGM �
1
M

∑M−1
m=0 λ̂m

(
∏M−1

m=0 λ̂m)
1/M

Generalized Likelihood Ratio Detector-3 (GLRD3)
[28]

TGLRD3 �
λ̂0∑M−1

m=1 λ̂m

Maximum to Minimum Eigenvalue (MME)
[21]

TMME �
λ̂0

λ̂M−1
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Appendix I:
Distribution of received symbols
Lemma 3. Suppose the primary users’ transmitted symbols have zero mean and
consider the received symbols under hypothesis H1. If the PU signal constellation
has constant modulus (as in MPSK), then the received symbols are circularly sym-
metric Gaussian random variables.

Proof. Under H1, we have rk,m = hksm+ vk,m. In light of the fact that by assump-
tion vk,m is Gaussian, it is sufficient to show that νk,m = hksm is Gaussian. Note
that hk is assumed to be a a circularly symmetric Gaussian random variable with
unit variance. Conditioned on sm = s, we get νk,m = shk. Then clearly νk,m is
Gaussian with variance |s|2, i.e., for x = (x1, x2)

fνk,m|sm(x|s) =
1

π|s|2 e
−

|x|2

|s|2 . (6.38)

Now if the signal constellation has constant modulus such that |sm| = a for all m
and some constant a, then the PDF of νk,m is given by

fνk,/m(x) =
1

πa2
e−

|x|2

a2 (6.39)

In the case where the constellation does not have a constant modulus, the dis-
tribution of νk,m is a mixture of several zero-mean Gaussian distributions with
different variances.
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