
Research Collection

Journal Article

Taking climate model evaluation to the next level

Author(s): 
Eyring, Veronika; Cox, Peter M.; Flato, Gregory M.; Gleckler, Peter J.; Abramowitz, Gab; Caldwell, Peter;
Collins, William D.; Gier, Bettina K.; Hall, Alex D.; Hoffman, Forrest M.; Hurtt, George C.; Jahn, Alexandra;
Jones, Chris D.; Klein, Stephen A.; Krasting, John P.; Kwiatkowski, Lester; Lorenz, Ruth; Maloney,
Eric; Meehl, Gerald A.; Pendergrass, Angeline G.; Pincus, Robert; Ruane, Alex C.; Russell, Joellen L.;
Sanderson, Benjamin M.; Santer, Benjamin D.; Sherwood, Steven C.; Simpson, Isla R.; Stouffer, Ronald J.;
Williamson, Mark S.

Publication Date: 
2019-02

Permanent Link: 
https://doi.org/10.3929/ethz-b-000323491

Originally published in: 
Nature Climate Change 9(2), http://doi.org/10.1038/s41558-018-0355-y

Rights / License: 
Creative Commons Attribution 3.0 Unported

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000323491
http://doi.org/10.1038/s41558-018-0355-y
http://creativecommons.org/licenses/by/3.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


PersPective
https://doi.org/10.1038/s41558-018-0355-y

1Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany. 2University of Bremen, Institute 
of Environmental Physics (IUP), Bremen, Germany. 3College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.  
4Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada. 5Program for Climate 
Model Diagnosis and Intercomparison (PCMDI), Lawrence Livermore National Laboratory, Livermore, CA, USA. 6Climate Change Research Centre and 
ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia. 7Climate and Ecosystem Sciences 
Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 8Department of Earth and Planetary Science, University of California, Berkeley, CA, 
USA. 9University of California, Los Angeles, CA, USA. 10Computational Earth Sciences Group and Climate Change Science Institute, Oak Ridge National 
Laboratory, Oak Ridge, TN, USA. 11Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA. 12Department of 
Geographical Sciences, University of Maryland, College Park, MD, USA. 13Department of Atmospheric and Oceanic Sciences and Institute of Arctic and 
Alpine Research, University of Colorado, Boulder, CO, USA. 14Met Office Hadley Centre, Exeter, UK. 15Geophysical Fluid Dynamics Laboratory, NOAA, 
Princeton, NJ, USA. 16Laboratoire de Météorologie Dynamique (LMD), IPSL, Paris, France. 17Institute for Atmospheric and Climate Science, ETH Zurich, 
Zurich, Switzerland. 18Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA. 19National Center for 
Atmospheric Research (NCAR), Boulder, CO, USA. 20NASA Goddard Institute for Space Studies, New York, NY, USA. 21University of Arizona, Tucson, AZ, 
USA. *e-mail: veronika.eyring@dlr.de

The Intergovernmental Panel on Climate Change (IPCC) Fifth 
Assessment Report (AR5) concluded that the warming of the cli-
mate system is unequivocal and human influence on the climate 

system is clear1. Observed increases of greenhouse gases have contrib-
uted significantly to warming of the atmosphere and ocean, sea-ice 
decline and sea-level rise. The size and rapidity of these changes is 
concerning. Human-caused climate change is already affecting many 
aspects of societies and ecosystems. These impacts will become more 
visible and more serious in the twenty-first century. It should, there-
fore, be an international priority to improve our understanding of the 
climate system, and to reduce current uncertainties in projections of 
future change. This will rely on information from theory, observations, 
and Earth system model (ESM) simulations that are coordinated as 
part of the World Climate Research Programme (WCRP) Coupled 
Model Intercomparison Project (CMIP; refs. 2–5). CMIP is now in its 
sixth phase (CMIP6)5 and is confronted with a number of new chal-
lenges. Compared to CMIP5, an increased number of institutions 
participate in CMIP6, many with multiple model versions. The latest 
generation of climate models feature increases in spatial resolution, 
improvements in physical parameterizations (in the representation 
of clouds, for example) and inclusion of additional Earth system pro-
cesses (such as nutrient limitations on the terrestrial carbon cycle) 

and components (such as ice sheets). These additional processes are 
needed to represent key feedbacks that affect climate change, but are 
also likely to increase the spread of climate projections across the mul-
timodel ensemble. This escalates the need for innovative and compre-
hensive model evaluation approaches.

CMIP provides the basis for multimodel evaluation and has, 
over the years, revealed a variety of systematic differences between 
models and observations, with many persisting from one model 
generation to the next6,7. An important issue that remains to be fully 
addressed is the extent to which model errors affect the quality of cli-
mate projections and subsequent impact assessments8. Traditionally, 
many climate projections are shown as multimodel averages in the 
peer-reviewed literature and IPCC reports, with the spread across 
models presented as a measure of projection uncertainty9. There is 
now emerging evidence that weighting based on model performance 
may improve projections for specific applications10–12. A further 
complication in devising model weighting approaches is that many 
CMIP models share components, or are variants of another model in 
the ensemble, and hence are not truly independent12–16. This has the 
potential to bias the multimodel results in ways that are only begin-
ning to be explored. The lack of independence challenges the notion 
of a ‘model democracy’, in which each model is weighted equally17.
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Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate 
projections for a given future scenario. Owing to different model performances against observations and the lack of indepen-
dence among models, there is now evidence that giving equal weight to each available model projection is suboptimal. This 
Perspective discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations 
with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most 
relevant to climate projections, and advanced methods for model weighting. These approaches are needed to distil the most 
credible information on regional climate changes, impacts, and risks for stakeholders and policy-makers.
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The growing number and complexity of models, the expanding 
suite of outputs they produce, the multitude of downstream applica-
tions and the growing availability of observational datasets drive a 
need for more routine and systematic evaluation, utilizing a compre-
hensive set of existing model performance metrics and diagnostics. 
Newly developed CMIP evaluation tools18,19 will ultimately enhance 
our ability to identify model errors, to investigate their causes and to 
quantify and potentially reduce projection uncertainties.

In this Perspective, we summarize key advances since AR5 and 
key scientific opportunities for improving climate model analyses 
that will be assessed in the AR6. Our focus is on gaps in the under-
standing of systematic errors, the development of CMIP model 
evaluation tools, emergent constraints and weighting methods. We 
also address the need for more user- and policy-oriented model 
evaluation at the regional scale required for impact studies. Finally,  
we discuss how the scientific community might provide more 
robust climate model information and more tightly constrained 
model projections.

From model errors to understanding processes
Comparing model results to observations provides insight into the 
quality of model simulations and the way in which various processes 
are represented. Comparisons with observations can reveal short-
comings in individual models and systematic errors in a large multi-
model ensemble7,20. An example of a systematic error is the excessive 
simulated band of precipitation in the tropical Pacific south of the 
Equator, a feature not present in observations. Taken together with 
the usually correctly simulated climatological intertropical conver-
gence zone (ITCZ) precipitation maximum that stretches across 
the tropical Pacific north of the Equator, this systematic splitting 
of tropical Pacific rainfall into two discrete branches is commonly 
referred to as the double ITCZ. Other examples of systematic errors 
include a dry Amazon bias, a warm bias in the eastern parts of 
tropical ocean basins, differences in the magnitude and frequency 
of El Niño and La Niña events, biases in sea surface temperatures 
(SSTs) in the Southern Ocean, a warm and dry bias of land surfaces 
during summer, and differences in the position of the Southern 
Hemisphere atmospheric jet7.

One major challenge is that it is often not possible to attribute 
a specific cause to a specific systematic error. For example, it has 
been suggested that the systematic warm bias in the upwelling zones 
off the west coasts of each continent (see Fig. 1) is associated with 
biases in the representation of stratocumulus clouds21 and boundary 
layer convection22 in these regions. However, other studies suggest 
that the root cause of this warm bias is the representation of ocean 
upwelling and its forcing from surface winds23. An additional com-
plication is that a regional difference between the simulation and 
observations may be a consequence of errors that occur far from the 
region in question, and are manifested via teleconnections. Certain 
regional SST biases, for example, are related to biases in other ocean 
basins and to aspects of the large-scale ocean overturning circula-
tion24. In some cases, although the link between a particular bias 
and some physical process may seem robust, the specific cause of 
the bias — as well as its remedy — may remain elusive.

But there are also compelling examples of how a multimodel 
analysis of a particular systematic bias can lead to a clearer under-
standing of underlying causes. One systematic bias revealed in the 
evaluation of CMIP5 models was the apparent difference between 
the observed and modelled global mean surface temperature 
increase in the early twenty-first century7. These differences moti-
vated a range of targeted analyses exploring model performance, 
internal variability, external forcing and observational uncertainty25. 
Although the magnitude of the slowdown differs slightly depend-
ing on which global observational dataset is analysed, this focused 
effort revealed that the observed slowdown was due to a combina-
tion of factors, chiefly involving internally generated decadal-tim-
escale variability in the tropical Pacific26,27 and the missing effects of 
a series of moderate volcanic eruptions28. Averaging the time series 
across a collection of coupled model simulations strongly reduces 
the effects of internally generated variability, more clearly reveal-
ing the underlying externally forced response. There is, therefore, 
a mismatch between the precise observed sequence of variability 
and the smooth evolution of temperature in the multimodel mean. 
Models initialized with observations from the years immediately 
before the early twenty-first century slowdown were able to cap-
ture aspects of the observed change in warming rate after 200029. 
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Fig. 1 | Annual mean SST error from the CMIP5 multi-model ensemble. Systematic errors are particularly visible in the upwelling zones denoted by black 
rectangles off the west coasts of each continent. Figure reproduced from ref. 23, Wiley.
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These results highlight the importance of using different simulation 
frameworks (for example, coupled simulations and decadal predic-
tions initialized with observations) to understand the causes of dif-
ferences between modelled and observed climate changes. Stronger 
observed warming since 2014, which is replicated in initialized 
model predictions for the period after 201430,31, adds to the evidence 
that the weaker warming before 2014 had a large contribution from 
internal climate variability.

A related question is the extent to which observational uncer-
tainties and inhomogeneities32 are hampering model evaluation. 
Just as efforts to improve models continue, there is a parallel effort 
to improve observationally based datasets. Even for a very basic 
climate quantity such as temperature, this involves refined correc-
tions for biases and incomplete global coverage in the raw surface 
observations33 and corrections for biases in satellite retrievals34. 
Observations are also critically important in model tuning35,36, 
which should be clearly documented and taken into account in 
model evaluation studies. One difficulty in comparing models 
against observations is posed by inconsistency in the sampling or 
definition of the quantities compared (for example, model data may 
be daily averages whereas satellite samples may be for a certain time 
of day). This inconsistency can be addressed by incorporating simu-
lators of specific instruments into climate models37.

New CMIP model evaluation tools
The scope of model evaluation has expanded dramatically in recent 
years. Well-established aspects of model evaluation are now becom-
ing more routine, results are available more rapidly than for CMIP5, 
enhancing their value for model analysts and developers38. A key 
development for CMIP6 is the availability of the Earth System 
Model Evaluation Tool (ESMValTool18; https://www.esmvaltool.
org/) and the Coordinated set of Model Evaluation Capabilities 
(CMEC; https://cmec.llnl.gov), which are both open-source capa-
bilities. ESMValTool includes a large collection of diagnostics and 

performance metrics for atmospheric, oceanic and terrestrial vari-
ables; not only for the mean state, but also for trends, variability, key 
physical processes and emergent constraints. ESMValTool also has 
the capability to reproduce figures from several chapters of AR5 and 
incorporates targeted analysis packages, such as the National Center 
for Atmospheric Research (NCAR) Climate Variability Diagnostics 
Package39. CMEC comprises the PCMDI Metrics Package (PMP19), 
the International Land Modeling Benchmarking Project package 
(ILAMB40) and the parallel toolkit for extreme climate analysis 
(TECA41). CMEC emphasizes a diverse suite of physical and bio-
geochemical summary statistics gauging the consistency between 
models and observations across a range of space and timescales.

Both ESMValTool and CMEC have undergone rapid develop-
ment over the past few years, and are now mature, well-tested tools 
that provide end-to-end provenance tracking to ensure reproduc-
ibility. One goal is to routinely provide evaluation results through 
the Earth System Grid Federation (ESGF) shortly after new CMIP6 
simulations are published. This workflow is depicted in Fig. 2: the 
tools are run at selected ESGF nodes, utilizing observations avail-
able in standard formats or provided by the user38. The foundations 
for this significant undertaking are the community-based experi-
mental protocols and conventions of CMIP, including their exten-
sion to observations (obs4MIPs42) and reanalysis.

Emergent constraints on Earth system sensitivities
One of the biggest challenges in ESM evaluation is to identify the 
performance metrics that are most relevant to climate projections7. 
The reliability of models can only be assessed with observations of 
the past and present. This means that models are assessed against 
criteria that are not necessarily informative in terms of the qual-
ity of model projections of future climate change. The emergent 
constraint approach attempts to address this problem by identify-
ing robust, physically interpretable relationships between Earth sys-
tem feedback behaviours on short, well-observed timescales and on  
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timescales that span the twenty-first century and beyond43,44 (see the 
figure in Box 1). Emergent constraints use an ensemble of ESMs 
to define a relationship between a measured aspect of current or 
past climate and the strength of a simulated Earth system feedback 
in the future. It is the model ensemble behaviour (rather than the 
behaviour of a single model) that defines the emergent relationship 
between the observed variability and the projection of the future 

climate. When combined with observational data and a measure of 
observational uncertainty, the model-derived emergent relationship 
can be converted into an emergent constraint on the Earth system 
sensitivity in the real world.

When AR5 was published, numerous emergent constraints had 
been identified. Examples include studies of snow–albedo feed-
back43, sea-ice45, tropical precipitation extremes46, carbon loss from 
tropical land under warming47 and the future latitudinal shift of the 
Southern Hemisphere westerlies48. Such studies have proliferated 
since AR5, including constraints on cloud feedbacks and equilib-
rium climate sensitivity (ECS)49–57, strengthening of the hydrologi-
cal cycle58,59, the temperature sensitivity of tropical land carbon 
storage60, CO2 fertilization of plant photosynthesis61, future changes 
in ocean net primary production62, permafrost loss63, changes 
in natural sources and sinks64 of CO2 and mid-latitude daily heat 
extremes65. The proposed observable constraints involve historical 
trends43,45,64, interannual variability47,55,60, seasonal cycles43, trends in 
the seasonal cycle61 and spatial variability63. Constraints have been 
tested against different ensembles and scenarios43,47,60,66. For example, 
a relationship between the ECS and the inferred strength of upward 
mixing in the tropical lower troposphere was used to discount ECS 
values below 3 °C, as all models with lower ECS had too little mixing 
(Fig. 3, left) and by implication a decreased positive cloud feedback 
at low levels53. This would narrow the range of ECS significantly 
compared to the 1.5–4.5 °C range assessed by AR51. However, other 
emergent constraint studies for ECS lead to different estimates  
of this uncertainty range51–57, pointing to the need for further 
research. For carbon cycle feedbacks, an emergent constraint on 
the impact of increased CO2 on photosynthesis was found based  
on observed changes in the seasonal cycle of atmospheric CO2,  
suggesting that doubling of the CO2 concentration in the atmo-
sphere will cause global plant photosynthesis to increase by approxi-
mately one third (Fig. 3, right)61.

Despite the attractiveness of emergent constraints, there are 
some well-justified concerns. Most importantly, the emergent 
relationship between the observable and the sensitivity to be con-
strained is derived from a model ensemble. The emergent constraint 
may be misleading if the model ensemble has a systematic error 
(such as the double ITCZ) that affects the emergent relationship, 
or reflects the simplicity of a parameterization common to many 
models rather than an intrinsic underlying process. Second, there 
is a danger of finding spurious relationships between observables 
and Earth system sensitivities if the high-dimensional outputs avail-
able from ESMs are simply data-mined for high correlations67. The 
correlations found in a data-mining approach should be restricted 
to those that have a physical explanation. Finally, we should not 
expect short-term variability to yield constraints on slow feedbacks 
that have negligible effects on that variability. For example, interan-
nual variations in sea level are unlikely to provide constraints on 
century-timescale sea-level rise due to ice-sheet melt. On the other 
hand, fast processes (such as water vapour and cloud feedbacks) are 
evident in short-term variability as well as trends, and are therefore 
much better candidates for emergent constraints that relate variabil-
ity and sensitivity. Many of the most uncertain feedbacks are fast 
feedbacks such as these, which are more amenable to the emergent 
constraint technique.

Weighting multimodel climate projections
Traditionally, CMIP models were treated as independent, equally 
plausible estimates of future climate. Confidence in projections was 
inferred from model agreement on the sign and magnitude of future 
change9. In the context of multimodel ensemble projections, an 
increasing number of studies have weighted models that agree better 
with historical observations of that quantity or relationships between 
the projected quantity and observable metrics11,67–70. However, the 
majority of weighting studies of certain climate properties such as 

Box 1 | Emergent constraints

An emergent constraint on an Earth system sensitivity requires 
two key components. First, there needs to be an emergent re-
lationship between the sensitivity (y axis of the figure below) 
and some measure of variation in the contemporary climate  
(x axis), which is evident across an ensemble of ESMs. Second, 
there needs to be an observation of the variation (x axis) in the 
real world, together with a measure of observational uncertainty.  
Ideally, the observation should have less uncertainty than  
the spread of the x-axis variable within the model ensemble. 
The observation of the x-axis variable and the model-derived 
emergent relationship between the y and x variables can then be 
combined to give a constraint on the Earth system sensitivity. 
The resulting emergent constraint is conditional on the model 
ensemble providing a realistic emergent relationship, and also 
on the availability of sufficiently accurate observations.

Emergent constraints. Schematic illustrating the concept of 
emergent constraints. Each blue dot represents (hypothetical) 
output from different ESMs. The comparison here involves 
a diagnostic based on a model’s performance in a historical 
simulation (x axis) and in a projection of future climate 
change (y axis). The relationship between the past or present-
day diagnostic and future projection illustrates an emergent 
relationship, which is normally quantified by a linear regression 
(red line). Once a physically plausible relationship is found, 
observations can be used to reduce the intermodel uncertainty 
in the long-term projection (compare the yellow and grey 
probability distribution functions). Uncertainty in the new 
projection (grey shading) arises from two sources: uncertainty 
in the observational constraint (blue shading) and in the linear 
regression (red shading).
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sea-ice extent in AR5 include only a small set of metrics that are not 
always clearly related to the projected quantity in question.

An increase in weighted skill scores can be relatively simply 
achieved in-sample (that is, in the observational period and/or 
location used to derive weights). However, only a few studies have 
specifically focused on the likelihood of weighted results providing 
benefits for the intended application (that is, out-of-sample, typi-
cally twenty-first century projections)10–12,14,15,68,71,72. Although we 
clearly have no observations of future climate, model-as-truth (also 
termed pseudo-reality in some studies11,68) and calibration–valida-
tion exercises for different time periods of the observations yield 
valuable information on the potential benefits of different weight-
ing approaches73. In addition to testing whether projections of a  
specific variable and metric can be improved through weighting, 
thorough out-of-sample testing can help guard against other poten-
tial issues with weighting. For example, there is no single metric that 
reliably captures all aspects of model performance for all purposes, 
even if interest is restricted to a very specific scientific question74. 
Out-of-sample testing can tell us whether optimizing in one metric  
or variable transfers any benefits to other metrics or variables71.  
It can also indicate whether internal variability has played a role in 
any in-sample success of weighting, help to avoid the issue of the 
same datasets being used to calibrate and weight models, and reveal 
whether weighting has artificially reduced ensemble spread. A fur-
ther problem is the risk of systematic errors in observational prod-
ucts producing inappropriately weighted ensembles. Furthermore, 
weighting schemes have no capacity to account for errors that are 
shared across an ensemble — an issue that is particularly important 
in the case of small ensembles.

Another relevant issue is model interdependence. Some of the 
nominally different models in the CMIP archive share individual 
components or parameterizations, or represent key processes in the 
same way. This can lead to shared biases that have the potential to 
compromise the efficacy of performance-based weighting72 and to 
create artificially strong emergent constraints75. Using model error 
correlation as a measure for interdependence, it was found that the 

effective number of independent climate models was likely to be 
significantly lower than the total number of models in the CMIP 
ensemble76,77. Several studies have subsequently introduced alterna-
tive ways of quantifying and accounting for interdependence13,14,78,79. 
Recently, the US National Climate Assessment weighted each mem-
ber of the CMIP5 archive using both a multivariate skill score for 
historical climatology and a measure of uniqueness in the archive12. 
Figure 4 shows the resulting skill weight versus the indepen-
dence weight for all CMIP5 models. Skill weights are calculated 
as multivariate root mean square errors over a North American 
domain, whereas independence weights are computed using model  
error bias correlation. No model receives high weights for both 
skill and independence (see the empty upper-right corner). This 
suggests that the ensemble has been unintentionally skill weighted 
by the inclusion of multiple versions of better-performing models. 
As in the case of efforts to define broadly applicable performance  
metrics, it is evident that there is no universally accepted definition 
of model dependence: accounting for model dependence is prob-
lem-specific. Weighting exercises that accounted for model depen-
dence were sensitive to almost all aspects of the problem, including 
the selected metric, variable, analysis period and constraining 
observational dataset.

Regional model evaluation for impact and risk assessments
A primary goal of climate research is to identify how climate vari-
ability and change affect society and to inform strategies for miti-
gation and adaptation to climate change. Impact sectors include 
agriculture, forestry, water resources, infrastructure, energy pro-
duction, land and marine ecosystems, and human health. To accu-
rately capture many of the significant effects of climate change in 
sectoral impacts models, high levels of detail regarding the evolv-
ing climate state are necessary. The impacts community generally 
needs rigorous regional-scale evaluation of the seasonal cycles of 
temperature, precipitation, humidity, wind speed and downwelling 
solar radiation. Although some sectors are affected by mean climate 
changes, the most acute impacts are related to extreme events.
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Annual mean temperature and precipitation, monsoon timing 
and intensity, and modes of variability that can alter the probabil-
ity of extreme events have been evaluated in the CMIP5 ensemble7. 
The Expert Team on Climate Change Detection and Indices com-
piled a set of indices to quantify extreme events80. Observational 
estimates of these indices have been used to evaluate CMIP5  
models81, and are now incorporated into the ESMValTool for  
evaluation of CMIP6 models. The overall model performance was 
mixed in capturing the observed behaviour of these extreme event 
metrics. However, such comparisons remain difficult to interpret 
because of substantial uncertainties and data gaps in many of the 
observational datasets, and due to limited availability of CMIP5 
model output at sub-monthly and daily frequencies.

Stakeholder-oriented applications have benefited from improved 
models, more user-relevant metrics, more robust observational sys-
tems, and longer observational records since AR5. Improvements in 
remote sensing products have enabled the evaluation of interannual 
and sub-seasonal events82. Models show continuing improvement in 
the representation of the diurnal cycle, storm tracks, the effects of 

blocking on extreme events, the El Niño/Southern Oscillation, trop-
ical cyclones and other circulation features. Awareness of multivari-
ate extremes83 has begun to emerge. The production and application 
of dynamically and empirically downscaled model information has 
advanced84. Extreme event detection and attribution has made sub-
stantial strides, with real-time probabilistic event attribution85 now 
feasible. Applications in different impact sectors have also been 
advanced by hybrid climate forcing datasets combining models and 
observations86, and by sector-specific information such as the geo-
graphic distribution of nitrogen fertilizer or irrigation applications 
and land-use patterns for agricultural modelling87.

Interactions between the climate modelling and applica-
tions communities are facilitated by the Vulnerability, Impacts, 
Adaptation, and Climate Services (VIACS) Advisory Board88, a 
CMIP6-Endorsed MIP5. This Board is an effort to draw a broader 
array of climate experts, practitioners and information brokers into 
the CMIP process, and to leverage the community engagements orga-
nized under the Global Programme of Research on Climate Change 
Vulnerability, Impacts and Adaptation (PROVIA) and as part of 
efforts such as the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP89). The VIACS Advisory Board has solicited sus-
tained community engagement: (1) on priority experiments; (2) on 
output variables to inform CMIP6 data requests; and (3) to high-
light evaluations that would help to establish model credibility with 
the VIACS community. Given that it is common practice to adjust 
model biases with monthly mean information from present-day 
fields, the evaluation of the seasonal evolution and distributions of 
monthly climate at regional scales is among the highest priorities 
for VIACS users90. ESMs often have less variance than observations 
at hourly, daily and interannual timescales, which can lead to spuri-
ous effects when bias adjustment relies on standardized anomalies. 
Tropical rainfall biases are particularly problematic.

Ways ahead
The CMIP6 experiment design provides an opportunity for 
sophisticated, consistent characterization of the ensemble and its 
predecessors5. Targeted MIPs associated with CMIP6 will acceler-
ate efforts to disentangle internal climate variability from forced 
responses, and to evaluate which model processes are relevant to a 
wide range of climate characteristics. Insights into the underlying 
causes of systematic errors are likely to be gained from idealized 
experiments (such as aquaplanets91,92), systematic assessment of the 
influence of horizontal resolution, analyses of forcing uncertainty 
and the evaluation of individual model components. The diverse 
numerical experiments proposed in CMIP6 may help the climate 
science community to gain a deeper understanding of model behav-
iour and processes than has been possible in the past. Further diag-
nostic benefits should accrue from the development of convectively 
resolving models, dynamic vegetation, three-dimensional ice-sheet 
models and refined physical parameterizations.

Model development, evaluation and weighting will be facili-
tated by the ongoing development and deployment of new cli-
mate observing systems with continuous quality assessment and 
independent verification. Rigorous quantification of observational 
uncertainties is now routine rather than exceptional. Examples 
include the availability of ‘ensembles of observations’ for a single 
observational product, which account for uncertainties associated 
with different subjective processing choices93. Challenges remain 
in propagating these uncertainties to derived quantities such as 
trends or conditional averages. New measurements and measure-
ments made at higher frequencies will also provide further insights 
into systematic errors. ARGO floats94 and new satellite missions are 
prime examples.

An exciting opportunity is provided by the new CMIP evalu-
ation tools ESMValTool18 and CMEC19. Both evaluation packages  
will be routinely executed whenever new model simulations are  

Fig. 4 | Model skill and independence weights for CMIP5 models 
evaluated over the contiguous united States/Canada domain.  
Contours show the overall weighting, which is the product of the two 
individual weights. Figure reproduced from ref. 12, GMD, under a  
Creative Commons license.
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contributed to the CMIP6 archive. This allows rapid, quantitative 
comparisons of model results to a wide range of climate observa-
tions38. Such rapid and comprehensive feedback on model per-
formance should help in addressing the causes of long-standing 
systematic errors and facilitate a shift towards more process-ori-
ented diagnostics, while ensuring continuity with more ‘traditional’ 
diagnostics applied in previous CMIP phases. The hope is that 
ESMValTool and CMEC will be further enhanced by the CMIP6-
Endorsed MIPs and other science teams, leading to widespread 
adoption by model development teams and the user community. 
Other promising diagnostic developments on the horizon that 
should be further advanced include studies that assess responses 
to perturbations rather than mean climate95, and the application of 
innovative data science methods in Earth system science96 such as 
neural networks97, machine learning-based anomaly detection tech-
niques98, graphical models and causal discovery99.

Physically robust emergent constraints are a promising con-
cept for understanding and constraining Earth system feedbacks 
and narrowing uncertainty in future projections. They may ulti-
mately influence model development and observational strategies. 
In addition to new research on consistency across different emer-
gent constraints and across generations of model ensembles, we 
anticipate the use of more sophisticated statistical analyses, which 
have so far typically involved one-dimensional linear regressions. 
Higher-dimensional emergent relationships related to more than 
one observable should yield more robust conclusions and avoid the 
possibility of contradictory constraints derived from separate one-
dimensional relationships. There is a new opportunity to test emer-
gent constraints developed in previous model generations against 
the outputs from CMIP6 models. Finally, there needs to be a greater 
focus on developing emergent constraints for regional climate 
change that are more relevant to impacts than many of the large-
scale metrics that are the current focus of emergent constraints8.

To guard against misleading emergent constraints arising from 
spurious correlations or from the dependence introduced by a 
parameterization common to many models — rather than from an 
intrinsic underlying process — we suggest that the development 
of emergent constraints should be treated as a form of hypothesis 
testing. For example, emergent relationships between variability 
and sensitivity could be derived on the basis of physical theory 
or simple underlying models. The predicted emergent relation-
ship can then be tested against outputs from full-form ESMs. This 
approach could also yield an improved theoretical understanding 
of relationships between variability and sensitivity in the Earth 
system. Even where the outputs of one generation of models seem 
to be consistent with the hypothesized emergent relationship, 
the robustness of the relationship should be tested out of sample 
against models that were not used to define the relationship. The 
hypothesis testing approach that we propose would also protect 
from attempts to artificially tune a model to fit an observational 
constraint. Where this is carried out unphysically, the tuned model 
is likely to move away from the theoretical curve (that is, it will fit 
the x-axis observation but it will no longer be consistent with the 
y-axis sensitivity).

There is enough evidence now that the continued assumption of 
model democracy cannot be fully justified in future IPCC assess-
ment reports. It is not yet clear, however, whether all variables of 
interest can be reliably constrained. Successful skill weighting has 
thus far been implemented for a limited number of specific applica-
tions. In these applications, the target property of interest is con-
strained by a small number of clearly relevant variables10–12,67,68. 
Future work for more complex chains of influence will need to con-
sider orthogonal uncertainties and processes. For example, regional 
precipitation change may be influenced by global-scale warming, 
large-scale dynamics and microphysical parameterizations. For 
regional climate projections, a weighting that is based on processes 

controlling the region of interest and biases in large-scale atmo-
spheric circulation is advocated8.

In addition, it has been demonstrated that CMIP models are 
not independent. Most inferences in the literature about model 
interdependence are derived from error correlation13,79. This can-
not identify the specific model components that are interdepen-
dent. Identification of these common components is a difficult task 
due to the large number of models involved in CMIP and lack of 
detailed information regarding individual model versions. Further 
work is required to understand how interdependence can best be 
assessed. These efforts can proceed in tandem with research to 
better understand the effects of model construction and geneal-
ogy. Comprehensive databases of shared code, parameterizations, 
model development and tuning practices could help disentangle 
how models are related, and for what purposes they can be consid-
ered independent estimates of change. There is also the potential 
for better quantification of natural variability from palaeoclimate 
simulations100 and enhanced collaboration with the detection and 
attribution community, whose statistical approaches provide infor-
mation on whether model responses to changes in external forc-
ings are consistent with observations. Simpler representations of the 
Earth system in a hierarchy of models will also be useful to improve 
more complex ESMs.

For improved assessments of regional impacts and risks, a key 
challenge and opportunity will be to derive collective understanding 
from global and regional climate models, as well as from regional-
scale observations. To do so it will be important to bridge the gap 
between the climate model and impacts communities, and between 
the different scales at which these communities typically operate. 
CMIP6 will include weather-resolving global model resolutions  
(∼ 25 km or finer) that need to be compared to regional model 
results and downscaled coarse-resolution simulations. Concerns 
about bias correction of climate change simulations have been 
raised, and ways to address these concerns have been proposed8. 
Many of the key systematic errors that hampered the reliable simu-
lation of surface variables and extreme events will benefit from 
increasing spatial resolution101, variable-resolution grids, improved 
parameterizations, and advances in bias corrections and downscal-
ing techniques84. Curated archives and the CMIP evaluation tools 
will enable participation by a broader diagnostic community, many 
of whom are not presently capable of advanced interrogation of 
climate model simulations. The provision of useful climate infor-
mation and messages for the impacts, risk and climate services com-
munities requires a process that is rooted in sustained engagement 
with stakeholders that concentrates on areas of particular vulner-
ability or exposure. The projection of changing hazard metrics and 
the construction of driving scenarios for impact models across a 
range of local, regional and national scales should benefit from a 
process that distils information from many different sources. Such 
sources include multiple ESMs, statistically and dynamically down-
scaled models (through the Coordinated Regional Downscaling 
Experiment, CORDEX, now a CMIP6-Endorsed MIP84) and bias 
adjusted models8. The publication of AR6 will enhance the focus on 
regional climate information through a regionally defined Atlas and 
new chapters on global-to-regional linkages, extreme events, and 
impact- and risk-relevant climate hazards.

Despite substantial progress in climate modelling over the past 
few decades, there remains a substantial spread in projections of 
future climate change. For example, the range of model estimates 
for ECS to a doubling of CO2 concentrations has not decreased 
since the 1970s7, although understanding of the processes that are 
involved has certainly increased. The need to inform mitigation 
policy and adaptation remains102. We believe that there is now an 
unprecedented opportunity to constrain policy-relevant metrics 
such as cumulative CO2 emissions consistent with specific tem-
perature targets with observations, and to reduce uncertainties in 
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climate projections, both at global and regional scales. The chal-
lenge is to make intelligent use of the petabyte-scale output that will 
become available from the new CMIP6 project, along with modern 
observation systems, new model evaluation tools and novel data sci-
ence techniques. A combination of different process-based emer-
gent constraints together with model-weighting approaches that 
consider both model performance and interdependence have the 
potential to yield more robust multimodel information for a wide 
array of societally and environmentally critical applications.
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