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Abstract 
 

Real time motion tracking is very important for video analytics. But very little 

research has been done in identifying the top-level plans behind the atomic activities 

evident in various surveillance footages [61]. Surveillance videos can contain high 

level plans in the form of complex activities [61]. These complex activities are usually 

a combination of various articulated activities like breaking windshield, digging, and 

non-articulated activities like walking, running. We have developed a Bayesian 

framework for recognizing complex activities like burglary.  This framework (belief 

network) is based on an expectation propagation algorithm [8] for approximate 

Bayesian inference. We provide experimental results showing the application of our 

framework for automatically detecting burglary from surveillance videos in real time.



 

Chapter 1  

Introduction 

1.1 Motivations  
Video surveillance systems have become increasingly important for national 

security. Object tracking and motion classification are two important 

characteristics for any such surveillance system. However, once an object is 

tracked and its motion has been classified into a standard category by comparing 

it against a database of actions, the hard part is to use these actions or sequence 

of actions to discover activities that are unusual or seek attention [61]. Currently 

this is done by human operators who watch the output of surveillance cameras 

continually for unusual activities. However, for hours and hours of video data, this 

becomes a Herculean task and hence calls for an automated system that could 

track the objects, classify the motion, and reason about the top level plans of the 

subjects in the videos. Although many trackers [34,35,36,37,38] and motion 

classifiers [40,41,42,43] are available in industry today, none of them have the 

ability to reason about top level plans involving complex activities like robbery, 

burglary, or escapade. 

1.2  Our Contributions 
Real time motion tracking is very important for video analytics. But very little 

research has been done in identifying the top-level plans behind the atomic 

activities evident in various surveillance footages. Surveillance videos can contain 

high level plans in the form of complex activities [61]. These complex activities 
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are usually a combination of various articulated activities like breaking 

windshield, digging, and non-articulated activities like walking, running. We have 

developed a Bayesian framework for recognizing complex activities like burglary.  

This framework (belief network) is based on an expectation propagation algorithm 

[8] for approximate Bayesian inference. We provide experimental results showing 

the application of our framework for automatically detecting burglary from 

surveillance videos in real time. 

1.3 Framework 
Figure 1.1 explains the architecture of our complex activity recognition system. 

The input video is initially stabilized to remove jitter and noise. The stabilized 

video is then fed to the object tracking module. The object  tracking module 

tracks the moving objects in the video. The tracked video is then fed to the 

atomic activity recognition module to track articulated activities like digging, 

breaking windshield, and non-articulated activities like person walking, running, 

etc. An articulated activity is one that does not involve any translational motion; 

translational motion involves motion of only a part or parts of a body, whole body 

does not move. Such activities cannot be identified from a track (track stores 

path, velocity, color, and size of a moving object over time); they require analysis 

of the vertical and horizontal histograms (horizontal histograms and vertical 

histograms contain the mean of the intensity values of all the pixels along a 

particular direction) across frames [60]. The histogram contains the mean of the 

intensity values of all the pixels at a particular x or y coordinate; sometimes they 

require additional features like HOG (Histogram of Oriented Gradients) [59]. A 
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non-articulated activity is one that involves translational motion; such an activity 

can be directly identified from a track, non-articulated activities are also called 

as track-based activities. The observed activities are then combined using the 

Bayesian framework based complex activity recognition module to infer complex 

activities like burglary. Complex activities are combination of many atomic 

activities. 

1.4 Thesis Organization 
Chapter 2 surveys existing work related to this thesis. Chapter 3 explains the 

system architecture for complex activity recognition.  

Chapter 4 explains our framework for reasoning about complex activities. 

This chapter introduces the probabilistic complex activity recognition framework. 

This is followed by the description of the algorithm of this complex activity 

recognition, and its implementation. 

Chapter 5 describes the application of our complex activity recognition 

framework to identifying complex activity like burglary in full motion video. We 

provide experimental results in this chapter in terms of a confusion matrix and a ROC 

Curve. Chapter 6 concludes the thesis and describes future work. 
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Chapter 2  

Related Work 

Complex activity recognition from streaming videos has received a lot of attention in 

recent times. In [32], the authors have developed a system for recognizing activities 

involving  teams of people, activities occurring within the same team, and 

interactions between a team and an individual, for e.g., stealing, fight, arrest, etc.. 

They have composed the individual  actions of each person in the team to infer the 

composite activities performed by the whole team. They have used their system to 

identify  various activities like cops taking someone into custody, a crowd engaging in 

violence, etc. The system in [32] can only reason about interactions between humans; 

while in this thesis we consider activities that involve interactions between vehicles 

and humans as well as interactions between humans. 

 In [33], the authors have surveyed the field of automated  complex activity 

recognition from videos. According to them, a complex activity recognition system  

first takes the input video data and preprocesses it; this step involves correction of 

damaged frames; the video is then stabilized to correct jitter and noise in the video, 

and then  fed to the next level for further processing; this step involves tracking the 

various moving bodies, detect various actions, etc.. Finally logical reasoning is used to 

detect complex activities. 

In [1], the authors attempt to recognize robberies from streaming videos. They 

detect a robbery event on the basis of observations related to other suspicious 

events. The events that were used in robbery event detection were (i) a person 
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running very quickly and (ii) robbing a bag all of a sudden. The robbing event consists 

of (i) two persons coming close to each other, (ii) then passing one another, and (iii) 

some object getting transferred between them. They use an ad-hoc  combination of a 

ratio-histogram and Gaussian Mixture models to chain together the three events. The 

figure 2.1 is taken from [1] shows events involve in a robbery.  

 

Figure 2.1: Example of Events Involve in a Robbery [1] 

In [1], the authors have used only three events which is not sufficient to accurately 

detect complex activities that we consider in this thesis, while our system composes 

together various different kind of activities using a Bayesian framework to infer a 

complex activity. 

Bayesian networks has previously been used for automatic inference in  problems like 

weather prediction [55], diagnosing diseases [56], etc. We have used the Expectation 

Propagation algorithm [8] in our framework. In general Bayesian inference is an NP-

hard problem [58]. The algorithm in [8] performs approximate Bayesian inference and 
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has been shown experimentally [57] to be more efficient and more accurate 

compared to other approximate Bayesian inference algorithms like assumed-density 

filtering [57] for large networks. 
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Chapter 3  

System Description for Complex Activity 

Recognition 

Complex activities involve combinations of  atomic activities. To recognize complex 

activities, one first needs to recognize atomic activities. Atomic activities are either 

articulated or non-articulated.  

3.1 Video Stabilization 

 Full motion videos can contain translational/rotational motion of the camera that 

makes it difficult to track moving objects accurately in the video. So, we need to 

stabilize the video first before we use it for tracking and activity recognition. There 

are many techniques available to stabilize a video, like full frame video stabilization 

[24], and video stabilization using scale-invariant features [25]. The technique that 

we have used involves an iterative algorithm to fix the position of background pixels. 

This algorithm stems from the work in our group (computer vision research group) 

[26].  

Algorithm for video stabilization 
1. Find significant feature points using Shi and Tomasi’s algorithm [27]. In this 

step, we find corner points of the objects in a frame. We compute gradients of 

each patch of the image in the X and Y direction. We create  a matrix of the 

mean values of the (X-gradients)2, means values of the X-gradient times the Y- 

gradients, and mean values of (Y-gradients)2. If both the eigenvalues of this 
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matrix are non-zero then this is a feature point.   We repeat this calculation for 

each patch in the image. 

2. Use Lucas-Kanade optical flow [28] to track the moving feature points found in 

step 1 through each successive frame. In this step, we determine the gradients 

in X, Y and time (T).  We try to locate feature points from one frame to next 

frame. 

3. For each iteration, each time with a smaller bin size (half of the size of the 

previous iteration) for a histogram of an image translation and rotation; each 

bin contains a range of possible translation and rotation: 

3.1 Find the translation of each point i.e., for a set of rotations to the image 

we find the corresponding translation of each feature points to explain its 

movement from step 2. 

3.2 Compute common translational and rotational pair i.e., for each rotation 

and translation pair, we add one to a corresponding bin and determine 

which bin has the maximum value. 

4. Morph the image to correct for the cumulative translational and rotational 

motion. We use an affine transformation (affine transformation is a 

combination of translation, rotation, scale, reflection, and skew) [65] with the 

cumulative translation and rotation values updated with values calculated in 

step 3.  

5. The stabilized video is then fed to the object tracking module to track the 

location of the objects in the video. 
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3.2 Moving Object Tracking in Videos 

Moving Objects such as cars, humans, etc. in a streaming video need to be tracked for 

video surveillance, robotics, etc. The object tracking module is   crucial part of the 

complex activity recognition system. There are many object tracking algorithms 

available, like adaptive object tracking based on an effective appearance filter [30], 

object tracking by asymmetric kernel mean shift with automatic scale and orientation 

selection [31]. In [30], the authors provide a parametric technique for tracing moving 

objects in a video based on a new distance metric. This distance metric takes into 

account both the colors as well as the topology of a surface. In [31],  the authors 

provide an approach for tracking moving objects in a video that adapts itself to 

rapidly changing motions of the camera and foreground objects. The approach in [31] 

is based on mean-shift; the kernel scale and orientation dynamically changes in 

response to changes in the foreground and the background. We have used the “agile 

framework for real-time visual tracking in videos” [26] to locate the position of the 

object in a particular frame. The agile framework is agnostic to occlusions, variations 

in lighting, different objects moving at different speeds, etc. It is an ensemble 

framework that switches between different individual algorithms based on the current 

state. Tracked videos are fed to the atomic activity recognition module to recognize 

the atomic activities in the video. The figure 3.1 is taken from [26] shows example of 

tracked moving objects. 
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Figure 3.1 : Object Tracking Example [60, 26] 

3.3 Atomic Activity Detection Module 

Atomic activity detection module detects atomic activities in the video, like running, 

walking, digging, breaking windshield, etc. Different types of objects have 

distinguishing motion signatures that depend on their shape and intent. Different 

activities are associated with distinct motion characteristics and their subtle 

interactions  [60]. For example, non-articulated  activities like vehicle turns, start 

and stop, human walking, running, etc. are based on the physical movement of an 

object across frames [60]. On the other hand, articulated activities like human 

digging, waving (gesturing), boxing, clapping, etc. may be associated with a 

stationary object where the only observed motion is that of its body parts. We have 

used the articulated activity analyzer to recognize the activities like breaking 

windshield, digging which are classified as articulated activities.  The articulated 

activity analyzer uses a combination of techniques such as template matching 

(template matching involves matching part or whole of an image with another part or 
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whole of an image) [66], horizontal and vertical histograms etc. [60] for recognizing 

articulated activities. Non-articulated activities like running, walking are recognized 

using track-based analyzer. The track-based analyzer uses the tracks generated by the 

tracker (tracker tracks the movement of moving objects across frames) along with a 

combination of algorithms including language theoretic and machine learning-based 

classifiers to identify activities The figures 3.2 and 3.3 show example of a non-

articulated and an articulated activity respectively.  

  

 

 

3.4 Complex Activity Recognition 

The complex activity recognition module uses the atomic activities recognized by 

atomic activity detection module to recognize high-level plans like burglary, etc. We 

have used a Bayesian framework to chain the atomic activities to infer a complex 

activity. We discuss complex activity recognition in later part of this thesis. 

 

Figure 3.2: A Non-Articulated  Activity 
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Figure 3.3:  An Articulated Activity [60] 
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Chapter 4 

Reasoning about Complex Activities 

4.1 Uncertainty  in Knowledge  

In the real world scenario, when we aim at automatically detecting complex activities 

like burglary, we need to handle the uncertainty in the knowledge of the 

environment. The uncertainty in the knowledge of the environment can be attributed 

to two sources: (I) the limited accuracy of the sensing mechanism [3, 4, 5, 6, 9, 10, 

11] and (II) facts or activities that spatio-temporally affect a particular activity and 

the degree (or the probability) to which they affect it.  

Causes of Uncertainty 

We elaborate on the causes of the uncertainty below [3, 4, 5, 6, 9, 10, 11]:  

1. Lack of Data, i.e., we don’t know the complete set of causes or we may know the 

complete set of causes that can influence a particular activity but we cannot 

consider them because we don’t have enough data to know their probability  of 

occurrence. This is also called as lack of theoretical knowledge. 

2. Insufficient Data, i.e., We may know the prima-facie cause for an activity and we 

may have the data to confirm it’s truth. But we may not have enough data to 

estimate the probability of occurrence of that cause. This is also called as lack of 

practical knowledge. 

3. We may be certain that we have complete set of causes and may also believe with 

high likelihood about the influence of  each cause in the set towards a particular 
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activity. However freshly obtained data can produce inferences contrary to our 

belief. In that case a revision of the belief is needed.  

In our model to detect complex activities with Bayesian inference, in order to 

minimize the uncertainty in the knowledge-base we have trained the framework 

with a large number of example videos. In our model we are required to know the 

possible atomic activities that can take place in a complex activity, and the 

sequence of those activities as well as their probability of occurrence. These are 

together used to compute the probability of a complex activity. In the example 

burglary application (refer figure 12.1), sixteen activities (man walking, ,big 

vehicle arrived, small vehicle arrived, exiting vehicle, breaking door, breaking 

window, entering building, exiting building, humans carrying some article, humans 

loading article into a vehicle, humans running away, humans entering into vehicle, 

vehicle leaving, and vehicles speed is high) are required to compute the 

probability of the  complex activity. In figure 4.1, we have two nodes representing 

ways to enter a building, though there can be many ways to enter a building like 

entering through a pipe, but we have considered only two cases, because of lack 

of data. 

 

 

 

 

 

 

Figure 4.1: Ways to Enter a Building  

Break a 

door 

Break a 

window 
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For instance, in our model we have assumed that the burglar will enter through 

window or door but we have not included any activity like entering through pipe 

which is also a possibility, as we don’t have any data to confirm its occurrence. 

4.2 Reasoning with Uncertainty in 

Knowledge  

In a complex activity like burglary, there is a  lot of uncertainty in the knowledge-

base. Here we perform Bayesian reasoning with the uncertain knowledge, since there 

are two kinds of uncertainty, namely, theoretical and practical uncertainty in the 

activities involved in a complex activity [3, 4, 5, 6, 9, 10, 11].  Theoretical knowledge 

in reasoning can be defined as the knowledge about a set of causes responsible for a 

particular activity, i.e., the set of  facts or activity that can directly influence (or 

deductively imply) the occurrence of a particular activity temporally or spatially e.g., 

uncertainty about different kinds of ways to enter in a building.  Practical knowledge 

in reasoning is occurrence of the activities that directly influence a  particular activity 

e.g., uncertainty about exact belief of a way to enter in a building.  In figure 4.2, 

cause 1 and cause 2 are the possible causes for effect 1, and cause 2 and cause 3 are 

the possible causes for effect 2. 

 In our model we have represented the activities through belief networks, and  have 

used probabilistic reasoning under uncertainty to infer the probabilities of the 

consequent activities given the observations.  If the calculated  probabilities for a 

complex activity are more than the preset threshold (threshold based on experimental 

results), then the model infers that a complex activity has occurred.  Since the 
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activities that we are focused on are suspicious and critical ones (like burglary), 

instead of using a MAP (Maximum A posteriori Probability) approach, we will report a 

suspicious activity whenever the probability of its occurrence exceeds a threshold, 

since the cost of missing the activity can be very high compared to the cost of a false 

alarm.   

 

 

 

 

 

 

4.3 Bayes Theorem [53] 

The fundamental theorem on which our reasoning framework is based is the Bayes 

theorem. 

1. Suppose E1 is the prior event. 

2. Suppose E2 is the posterior event that depends on E1. 

Then P(E2/ E1) = P(E1/ E2). P(E2)/ P(E1) 

Figure 4.3 shows that occurrence of the event E1 affects the probability of 

occurrence of the event E2. In figure 4.3, suppose we need to find the probability of 

E2 given E1. 

Cause 1 

Effect 2 

 

Effect 1 

 

Cause 3 

 

Cause 2 

 

Figure 4.2:  Cause Effect Relationship 
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Then according to Bayes theorem, P(E2/ E1) = P(E1/ E2).P(E2)/ P(E1) 

Where P(E2/ E1) represents the conditional probability of E2 given E1; P(E2) 

represents probability of E2 ; P(E1) represents probability of E1. 

 

 

 

 

 

 

 

 

 

4.4 Graphical Models (or Bayesian Network 

or Belief Network) 

Probabilistic graphical models (or Belief Networks) are used for reasoning about 

uncertainty in  knowledge. Graphical models can be seen as directed acyclic graphs. 

In belief networks each node is a random variable [3, 4, 5, 6, 9, 10, 11]. In our model, 

these random variables are possible activities that take place in complex activities. 

Belief networks can be used to compute the probability of a complex activity, given 

the probabilities of possible causes responsible for its occurrence using top-down 

reasoning or forward chaining. Each high level plan can be broken down into a set of 

activities. Each activity in turn can be decomposed into simpler activities which can 

E1 

E2 

Figure 4.3: Relationship Between E2 and E1 
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be atomic or non-atomic; In top-down reasoning we explore the tree describing the 

hierarchy of a tree starting from leaves.  Conversely it can also be used to find the 

probabilities of causes responsible for a complex activity when a complex activity has 

already been  observed i.e., bottom-up reasoning [3, 4, 5, 6, 9, 10, 11, 15]. In 

bottom-up reasoning we explore a tree from root; we find the probabilities of 

complex activities given the activities and probabilities of occurrence of the atomic 

activities. So, we are performing top-down reasoning for complex activity recognition. 

Experimentally, we have seen that complex activities like burglary cannot be 

accurately detected using observation of just one or two activities. We consider all 

the atomic activities that can possibly  lead to a particular complex activity, to find 

out the probability of possible occurrence of that  activity.  In a Bayesian network, for 

complex activity recognition, the  probability for each node is computed on the basis 

of observed predecessor activities. For example, in the Bayesian network for complex 

activity detection model, in Figure 4.4, the  probability of the “exiting vehicle” node 

depends on its predecessors, i.e., the big vehicle node and small vehicle node.  

Similarly probabilities of all the other nodes depend on their predecessor nodes. The 

prior probability and observed values are then used to calculate the posterior 

distributions and calculate the probability of the final composite activity. 

 

 

 

Big Vehicle 

Exiting 

Vehicle 

Small Vehicle 

Figure 4.4: Node Dependencies 
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4.5 Reasoning Framework for Complex 

Activity Recognition 

Complex Activities can  involve many atomic activities. We need a framework to chain 

all the atomic activities together  to recognize a complex activity. In figure 4.7, we 

present a framework for automatic recognition of complex activities of interest in an 

incoming full motion video stream. Surveillance videos can contain various articulated 

and non-articulated atomic activities. Uncertainty in surveillance videos arise due to 

damaged frames, lighting effect, first-time activities etc. We need to deal with both 

kinds of uncertainty in knowledge; theoretical as well practical knowledge 

uncertainty. We use belief networks to handle uncertainty in knowledge to recognize 

complex activity. To recognize interesting  or suspicious complex activities one needs 

a model of normal/abnormal activities or patterns of life. For example,  if we try to 

detect burglary, a set of common abnormal activities that we would like to detect 

would be: a burglar coming in car, even though no car is allowed to enter a location, 

or a burglar is breaking a door.   We have used this abnormalcy modeling in 

conjunction with Bayesian reasoning to recognize interesting complex activities.  

We have partitioned activities into two sets; one set has activities that take place 

under normal circumstances while the other has activities whose occurrence entails 

abnormalcy. Suppose, we want to recognize interesting complex activities for a place 

where big vehicles are not allowed.  If  the atomic activity recognition module 

observes a trailer, an abnormal activity is triggered. The triggering elevates the 

probability of suspicious complex activities. In our model, we have a Bayesian 

network for burglary and bayesian networks for abnormal activities. Once 
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observations come, we feed these observations to abnormalcy model to get 

probabilities for abnormal activities, then we feed these observations and 

probabilities to Bayesian network for burglary. For e.g., In figure 4.5 and 4.6, a truck 

is stopping in front of a building is not an abnormal activity, but if it stops in a no 

loading zone, then it is an abnormal activity, and triggers the main network. Complex 

activity recognition can be tuned for complex activities like a burglary detection in a 

shop, by capturing information about how a person enters a shop, how they leave the 

shop, etc. In normal circumstances a  person will come walking,  will open the gate, 

enter the shop, and may leave after some time. These activities would be part of a 

normal activities chain. If they get off a vehicle, enter the shop by breaking a gate, 

come out carrying  something, load articles in the car, and drive off at a high speed, 

these sequence of activities will be part of the set of abnormal activities. In the 

Bayesian framework for complex activity recognition, we have represented the 

activities by nodes which are random variables. The prior probability for activities 

that are part of abnormal activities set, are assigned a higher value, while the prior 

probability for activities that are part of normal activities set, are assigned a lower 

value. The prior distribution is the initial expectation that a particular activity will be 

observed.  

 

 

 

Truck 

Stopping 
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Exiting 

Building 

 

Loading 

Truck  

Suspicious 

activity 

Entering 

Building 

 

Exiting 

Truck 

Figure 4.5: Bayesian Network 
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 4.6 Algorithm for Chaining Atomic  Activities 

Bayesian inference is a technique for inferring  posterior probabilities about the 

occurrence of a  set of events given the prior probabilities of the events (also called 

the belief) and a set of observations using the Bayes’ theorem [9]. The events are 

represented as nodes in a directed acyclic graph called a Bayesian network [9]. There 

are many algorithms available to do inferencing in Bayesian Networks. We have used 

both a variable elimination algorithm [58] for exact  inference and the Expectation 

Propagation algorithm for approximate inference  in a Bayesian network to compute 

the probability of occurrence of a  complex activity e.g., burglary. Expectation 

Propagation has better accuracy than other approximation algorithms available for 

Bayesian Inference [57]. Both variable elimination and Expectation Propagation 

algorithms are incorporated in our system. Depending on the size of the network, a 

user can invoke one of these algorithms that is more appropriate. We refer the reader 

to [58] for a description of the variable elimination algorithm.   We describe the 

Expectation Propagation algorithm [57] below using figure 4.8. 

 

 

 

  

Ei Ek E2 

O1 O2 Oj 
On 

Figure 4.8: Bayesian Network to Illustrate the Expectation Propagation Algorithm 
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Expectation Propagation Algorithm 

Start 

//In figure 4.8,   

P(Ei|O1,….,On) = P(Ei,O1,….,On) / P(O1,….,On) ∝ P(Ei,O1,….,On); 

//By chain rule, 

P(Ei,O1,….,On) = P(O1| Ei, O2,….,On) · P(O2| Ei, O3,….,On)………. P(Ei); 

//Since in a Bayesian network a node is conditionally independent of its non-

//descendant given parents. 

P(Ei,O1,….,On) = P(O1| Ei) · P(O2| Ei)…… P(On| Ei) · P(Ei); 

Let A1(Ei) = P(O1| Ei); 

A2(Ei) = P(O2| Ei); 

An(Ei) = P(On| Ei); 

Assume an  approximate distribution for P(Ei) = 0.6 = D(Ei) 

Initialize constants Q1 = ….= Qn = D(Ei) 

Randomly initialize n constants Z1,….,Zn ∈ ([0,1]) 

Assume initial values of A1(Ei), A2(Ei),……,An(Ei) 

Set convergence value ε  

do { 
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 P(Oj) = P(Oj, Ei); 

for each j=1,….,n 

Pnew(Ei| Oj) = P(Oj|Ei) · P(Ei) / P(Oj); 

                          = Aj(Ei) · D(Ei) / ∑k P(Oj|Ek) · P(Ek); 

                          = Aj(Ei) · D(Ei) / ∑k Aj(Ek) · D(Ek); 

// Minimize over j the KL divergence 

KL(P(Ei|Oj)) 

Let, α = minj KL(P(Ei|Oj), Qi) 

And 1<=m<=n be the value of j for which the term is minimized. 

retval = P (Ei|Om); 

For l= 1…n; 

{ 

Al(Ei) = Zl P (Ei|Ol) / Ql; 

Ql = P (Ei|Ol); 

   } 

} while (α > ε) 

Return retval; 
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Probability Tables for figure 4.9: 

 

 

 

 

 

Figure 4.9: Bayesian Network Example 

Table 4.1: 

A=T 0.6 

A=F 0.4 

 

Table 4.2: 

 A=T A=F 

B=T 0.8 0.2 

B=F 0.2 0.8 

 

Table 4.3: 

 A=T A=F 

C=T 0.7 0.3 

C=F 0.3 0.7 

 

A 

C 
B 
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The joint probability for this network is as follows: 

P(A|B,C) = P(A) · P(B|A) · P(C|A) 

P(A|B,C) = P(A) · AB(A) · Ac(A) 

Assume ε = 0.30 

Inference:  

P(A|B) = [P(B|A) · P(A)] / [P(B|A) · P(A) + P(B|~A) · P(~A)] 

           = 0.93 

P(A|C) = [P(C|A) · P(A)] / [P(C|A) · P(A) + P(C|~A) · P(~A)] 

           = 0.78 

DKL(A|C) = log (0.6/0.78) · 0.6 + log (0.4/0.22) · 0.4 = 0.25 

In figure 4.7, we applied expectation propagation algorithm to this network, with the 

assumption that node B is true, and node C is true to infer the probability of node A; 

Approximate probability of node A = 0.78. 

4.7 Implementation of Algorithm 

1. We initialize prior probabilities for each activity based on intuition, estimates, 

knowledge, and experimentation. These probabilities form original ‘prior’ 

distribution for the model. 
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2. Using these priors and observed value, the compute a new probability 

distribution called ‘posterior’ distribution. This distribution can then be used as 

the ‘prior’ for another run through the model. Observed values and prior 

probabilities are used to calculate the posterior probabilities. 

3. Finally, using more accurate posterior distributions, a final probability is 

calculated. 

We have used Infer.net [7] to implement a stopping complex activity 

recognition engine on intel I3 processor, RAM 4 GB, visual studio 2010, windows 

7.  
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Chapter 5 

Application 

We have applied our complex activity recognition engine to the burglary detection 

problem. 

 

5.1 Burglary Detection 

Burglary is a common problem that no city or place is free from. Burglary involves 

many atomic activities. We need to chain all those atomic activities to infer the final 

burglary activity. All research so far on this topic or topics related to this has  

concentrated on detection of one or two activities approximately to infer a conclusion 

whether a burglary/robbery has taken place or not [1]. In our model we have focused 

on taking into consideration all the possible activities that can take place in a  

burglary to infer the final conclusion if a burglary has taken place or not. See  figure 

12.1 for the Bayesian framework that we have used for burglary detection. 
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Figure 5.1 : Belief Network      
for Burglary Detection 
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Tables 5.1-5.17: Probability Tables for Burglary 

 

Table 5.1: 

 

Clear scene= T 

 

0.65 

 

Clear scene= F 

 

0.35 

 

Table 5.2: 

 Clear Scene= T Clear Scene= F 

Man walking = T 0.6 0.4 

Man walking = F 0.2 0.8 

 

Table 5.3:  

 Clear Scene= T Clear Scene= F 

Big vehicle= T 0.75 0.25 

Big vehicle= F 0.3 0.7 
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Table 5.4: 

 Clear Scene= T Clear Scene= F 

Small vehicle= T 0.7 0.33 

Small vehicle= F 0.3 0.67 

 

Table 5.5: 

 Big vehicle= 

T, Small 

vehicle= T 

Big vehicle= 

F, Small 

vehicle= F 

Small 

vehicle= T, 

Big vehicle= 

F 

Small 

vehicle= F, 

Big vehicle= 

T 

Exiting 

vehicle = T 

0.75 0.1 0.7 0.7 

Exiting 

vehicle = F 

0.25 0.9 0.3 0.3 

 

Table 5.6:  

 Man walking = 

T, Exiting 

vehicle = T 

Exiting vehicle 

= F, Man 

walking = T 

Exiting vehicle 

= T, Man 

walking = F 

Exiting vehicle 

= F, Man 

walking = F 

Open door by 

force= T 

0.8 0.6 0.75 0.1 

Open door by 

force= F 

0.2 0.4 0.25 0.9 
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Table 5.7: 

 

 Man walking = 

T, Exiting 

vehicle = T 

Exiting vehicle 

= F, Man 

walking = T 

Exiting vehicle 

= T, Man 

walking = F 

Exiting vehicle 

= F, Man 

walking = F 

Open window 

by force= T 

0.8 0.6 0.8 0.15 

Open window 

by force= F 

0.2 0.4 0.2 0.85 

 

Table 5.8: 

 

 Open window 
by force= T, 
Open door by 
force= T 

Open window 
by force= F, 
Open door by 
force= T 

Open window 
by force= T, 
Open door by 
force= F 

Open window 
by force= F, 
Open door by 
force= F 

Enter building 
= T 

0.75 0.7 0.7 0.01 

Enter building 
= F 

0.25 0.3 0.3 0.99 

   

Table 5.9: 

 Enter building = T Enter building = F 

Exit building = T 0.8 0.2 

Exit building = F 0.2 0.8 
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Table 5.10:  

 Exit building = T Exit building = F 

Carry stuff = T 0.8 0.3 

Carry stuff = F 0.2 0.7 

 

 

Table 5.11: 

 Carry stuff = T Carry stuff = F 

Putting stuff in car = T 0.85 0.2 

Putting stuff in car = F 0.15 0.8 

 

 

Table 5.12: 

 Putting stuff 
in car = T,  
Carry stuff = T 

Putting stuff 
in car = F, 
Carry stuff = T 

Putting stuff 
in car = T, 
Carry stuff = F 

Putting stuff 
in car = F, 
Carry stuff = F 

Running and 
entering big 
vehicle = T 

0.9 0.7 0.8 0.4 

Running and 
entering big 
vehicle = F 

0.1 0.3 0.2 0.6 
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Table 5.13: 

 Putting stuff 
in car = T,  
Carry stuff = T 

Putting stuff 
in car = F, 
Carry stuff = T 

Putting stuff 
in car = T, 
Carry stuff = F 

Putting stuff 
in car = F, 
Carry stuff = F 

Running and 
entering small 
vehicle = T 

0.8 0.7 0.7 0.25 

Running and 
entering small 
vehicle = F 

0.2 0.3 0.3 0.75 

 

 

Table 5.14: 

 Carry stuff = T Carry stuff = F 

Running away = T 0.9 0.35 

Running away = F 0.1 0.65 

 

Table 5.15: 

 Running and entering big 
vehicle = T 

Running and entering big 
vehicle = F 

Big vehicle leaving at 
high speed= T 

0.8 0.4 

Big vehicle leaving at 
high speed= F 

0.2 0.6 

 

Table 16: 

 Running and entering 
Small vehicle = T 

Running and entering 
Small vehicle = F 

Small vehicle leaving at 
high speed= T 

0.85 0.4 

Small vehicle leaving at 
high speed= F 

0.15 0.6 
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Table 5.17: 

 

 Running 
away = 
T, Big 
vehicle 
leaving 
at high 
speed= 
T, 
Small 
vehicle 
leaving 
at high 
speed= 
F 

Running 
away = 
F, Big 
vehicle 
leaving 
at high 
speed= 
T, 
Small 
vehicle 
leaving 
at high 
speed=F 

Running 
away = 
T, Big 
vehicle 
leaving 
at high 
speed: 
F, 
Small 
vehicle 
leaving 
at high 
speed= 
F 

Running 
away = 
F, Big 
vehicle 
leaving 
at high 
speed: 
F 
,Small 
vehicle 
leaving 
at high 
speed= 
F 

Running 
away = 
T, Big 
vehicle 
leaving 
at high 
speed: 
T 
,Small 
vehicle 
leaving 
at high 
speed= 
T 

Running 
away = 
F,  Big 
vehicle 
leaving 
at high 
speed: 
T 
,Small 
vehicle 
leaving 
at high 
speed= 
T 

Running 
away = 
T, Big 
vehicle 
leaving 
at high 
speed: 
F 
,Small 
vehicle 
leaving 
at high 
speed= 
T 

Running 
away = 
F, Big 
vehicle 
leaving 
at high 
speed: 
F 
,Small 
vehicle 
leaving 
at high 
speed= 
T 

Burglary=T 0.7 0.75 0.7 0.1 0.8 0.7  0.7 0.7 

Burglary=F 0.3 0.25 0.3 0.9 0.2 0.3 0.3 0.3 
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5.2 Snatching Detection  

Clear Scene 

Another human 

carrying article 

and running 

 

Snatching 

done 

Human not 

carrying any 

article and 

running 

 

Humans 

pass each 

other 

Another human 

not carrying any 

article 

Human 

carrying 

some article 

Another 

Human 

running 

Human 

walking 

Another 

human 

observed 

Human 

observed 

Figure 5.2 : Belief 
Network for Snatching 
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Tables 5.18-5.28: Probability Tables for Snatching 

 

Table 5.18: 

Clear scene = T 0.7 

Clear scene = F 0.3 

 

Table 5.19: 

 Clear scene = T Clear scene = F 

Human observed = T 0.7 0.4 

Human observed = F 0.3 0.6 

 

Table 5.20: 

 Clear scene = T Clear scene = F 

Another 
Human observed = T 

0.7 0.35 

Another 
Human observed = F 

0.3 0.65 

 

Table 5.21: 

 Human observed = T Human observed = F 

Human walking = T 0.8 0.45 

Human walking = F 0.2 0.55 
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Table 5.22: 

 Another  
Human observed = T 

Another 
Human observed = F 

Human Running = T 0.7 0.35 

Human Running = F 0.3 0.65 

 

Table 5.23: 

 Human walking = T Human walking = F 

Human  
carrying some stuff = T 

0.65 0.4 

Human 
Carrying some stuff = F 

0.35 0.6 

 

Table 5.24:  

 Another 
Human running = T 

Another  
Human running= F 

Another Human not  
carrying some stuff = T 

0.7 0.35 

Another Human not 
Carrying some stuff = F 

0.3 0.65 
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Table 5.25: 

 Another Human 
not carrying 

some stuff = T, 
Human carrying 
some stuff = T 

Another Human 
not carrying 

some stuff = F, 
Human carrying 
some stuff = T 

Another Human 
not carrying 

some stuff = T, 
Human carrying 
some stuff = F 

Another Human 
not carrying 

some stuff = F, 
Human carrying 
some stuff = F 

Humans get into 
contact = T 

0.7 0.25 0.65 0.2 

Humans get into 
contact = F 

0.3 0.75 0.35 0.8 

  

Table 5.26: 

 Humans  
get into contact = T 

Humans  
get into contact = F 

Human not carrying some 
stuff and running = T 

0.9 0.3 

Human not carrying some 
stuff and running = F 

0.1 0.7 

 

Table 5.27: 

 Humans  
get into contact = T 

Humans  
get into contact = F 

Another Human carrying 
some stuff and running = T 

0.85 0.2 

Another Human carrying 
some stuff and running  = F 

0.15 0.8 
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Table 5.28: 

 Another Human 
carrying some 

stuff = T, 
Human not 

carrying some 
stuff = T 

Another Human 
carrying some 

stuff = F, 
Human not 

carrying some 
stuff = T 

Another Human 
carrying some 

stuff = T, 
Human not 

carrying some 
stuff = F 

Another Human 
carrying some 

stuff = F, 
Human not 

carrying some 
stuff = F 

Snatching = T 0.99 0.6 0.65 0.4 

Snatching = F 0.01 0.4 0.35 0.6 

 

5.3 Dataset  

We have taken video 1, video 2, video 3, video 4, video 5, video 6, video 7, video 8, 

video 15, video 16, video 17, video 18, and video 19 from youtube [62], and video 9, 

video 10, video 11, video 12, video 13, video 14, video 20, and video 21 from virat 

[64] data set. 

5.4 Results 

Here we have taken the snapshots from the videos on which the burglary detection 

module is applied (See appendix: snapshots), this will give the better understanding 

of what activities in general takes place in a burglary.  Full length tracked results are 

available at [63], and snapshots of videos are given at the end.  

5.5 Analysis  

We have analyzed the results using a confusion matrix and a ROC curve. Refer figure 

5.3, 5.4, 5.5, 5.6, and 5.7. 
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5.5.1 Confusion Matrix 

Confusion Matrix is used to show the result or performance of classification system in 

terms of actual case versus predicted case. We have also used this confusion matrix to 

analyze the performance in terms of the classification model’s ability to classify the 

negative and positive cases. Here true positive indicates that complex activity is 

taken place, and it is correctly classified as a positive case ; false positive indicates 

that a complex activity is not taken place but model wrongly classify this as a positive 

case; false negative indicates that a complex activity is taken place but model 

wrongly classify this activity as a negative case; and true negative indicates a complex 

activity is not taken place and model correctly classify this complex activity as a 

negative case. [12] 

5.5.2 Receiver Operating Characteristic 

(ROC) Curve 

This Receiver Operating Characteristic curve is a graph which is used to analyze the 

result or performance of the classification model on application of dataset on it. In 

the ROC curve the X axis represents false positive rate and Y axis represents true 

positive rate.  The ROC curve is based on all possible thresholds.[13] 
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Figure 5.3: Confusion Matrix for Burglary 

 

 

 

True Positives 6 

(Actual Burglary That was classified 

as Burglary) 

 

False Negatives 0 

(Actual Burglary That was wrongly 

classified as No Burglary) 

 

False Positives 4 

(No Actual Burglary That was 

wrongly classified as Burglary) 

 

True negatives 4 

(No Actual Burglary That was 

classified as No Burglary) 

Figure 5.4: Confusion Matrix for Burglary 
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Figure 5.5: Confusion Matrix for snatching 

 

 

True Positives 4 

(Actual Snatching that was classified 

as Snatching) 

 

False Negatives 0 

(Actual Snatching that was wrongly 

classified as No Burglary) 

 

False Positives 0 

(No Actual Snatching that was 

wrongly classified as Snatching) 

 

True negatives 3 

(No Actual Snatching that was 

classified as No Snatching) 

Figure 5.6: confusion Matrix for Snatching 

 



45 
 

 

 

Figure 5.7: ROC Curve 
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5.6 Timing Data 

Burglary: 

Source 

 

 

Youtube: Video 1 

Youtube: Video 2 

Youtube: Video 3 

Youtube: Video 4 

Youtube: Video 5 

Youtube: Video 6 

Youtube: Video 7 

Youtube: Video 8 

VIRAT:  Video 9 

VIRAT:  Video 10 

VIRAT:  Video 11 

VIRAT:  Video 12 

VIRAT:  Video 13 

VIRAT:  Video 14 

Original video 

duration 

 

230 seconds 

73 seconds 

180 seconds 

101 seconds 

55 seconds 

403 seconds 

244 seconds 

133 seconds 

43 seconds 

31 seconds 

63 seconds 

173 seconds 

58 seconds 

83 seconds 

Processing time by 

approximate inference 

 

2.54 seconds 

2.34 seconds 

2.51 seconds 

2.61 seconds 

1.93 seconds 

2.21 seconds 

2.71 seconds 

2.61 seconds 

2.01 seconds 

2.16 seconds 

2.23 seconds 

2.43 seconds 

2.47 seconds 

2.56 seconds 

Processing time 

by exact inference 

 

1.01 seconds 

0.93 seconds 

0.99 seconds 

0.81 seconds 

1.03 seconds 

0.89 seconds 

0.86 seconds 

1.07 seconds 

0.86 seconds 

1.11 seconds 

0.96 seconds 

0.86 seconds 

1.06 seconds 

     0.83 seconds 

  

Snatching:  

Source 

 

 

Youtube: Video 15 

Youtube: Video 16 

Youtube: Video 17 

Youtube: Video 18 

Youtube: Video 19 

VIRAT:  Video 20 

VIRAT:  Video 21 

 

Original video 

duration 

 

12 seconds 

25 seconds 

10 seconds 

13 seconds 

18 seconds 

20 seconds 

23 seconds 

Processing time by 

approximate inference 

 

2.11 seconds 

1.94 seconds 

1.98 seconds 

2.03 seconds 

2.12 seconds 

2.27 seconds 

2.16 seconds 

Processing time 

by exact inference 

 

0.86 seconds 

0.91 seconds 

0.68 seconds 

0.79seconds 

0.84 seconds 

0.91 seconds 

0.77 seconds 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusion  

We have developed a complex activity recognition engine to detect composite 

complex activities with applications to burglary detection. This system takes as 

input a streamed video, which is then passed to the video stabilizer for 

preprocessing [26]. The video stabilizer corrects the damaged frames. The 

preprocessed video is then passed to atomic activity recognition module to 

recognize the articulated and non-articulated activities. The articulated and 

non-articulated activities recognized by atomic activity recognition engine are 

then used by complex activity recognition  to recognize complex activities like 

burglary which involves composition of many articulated and non-articulated 

activities. The complex activity recognition engine uses a Bayesian  reasoning 

framework in conjunction with abnormalcy models to  recognize the complex 

activity.  Complex activity recognition  has a wide variety of applications in the 

fields of surveillance, battle field, robotics, etc. Our engine can recognize 

complex activities in real time.  Results depend a lot on the context, the  

location, as well as the  region of interest; For example, if a video is taken 

from a parking lot, then to get more accurate results we should not use the 

same prior probabilities that we use for a bank, or an antique shop, etc. We 

can also get accurate results by increasing/decreasing the threshold as per the 
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region of interest. While assigning prior probabilities we also need to take 

abnormal activities into calculation under the given circumstances. 

 

6.2 Future Work 

We are working on improving, and extending this complex activity recognition system 

to recognize other complex activities. We are also working on using sophisticated 

machine learning techniques to improve the accuracy. One such technique is deep 

learning. Deep learning [44] involves learning level by level [46],  e.g., we can get 

more accurate results in complex activity recognition using deep learning technique 

as we can make use of many more details, for example,  for atomic activity like big 

vehicle is arrived, there can be more details like size, type which can then be used 

for further classification, and  the  prior probabilities can be set using knowledge 

obtained from prior observed complex activities. In deep learning, system first learns 

the lowest level and  then  goes to learn next level up in the hierarchy and keeps 

doing this up to the highest level. In [48], the authors have developed a vision system 

using deep learning; They tested it on robot vision problems and found that deep 

learning can be used to obtain accurate results in object classification.  
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Appendix: Snapshots  

Snapshots for video 1: The following video was taken from public dataset youtube, it 

was true positive case. The location of the video was at a place where big vehicles 

were not allowed, so here big vehicle, breaking the door, etc. were abnormal 

activities. In this video, many articulated and non-articulated activities were 

observed. Observed activities were big vehicle arrived (activity that belongs to 

abnormal activities set), humans came out of this big vehicle, then they were 

observed breaking a door (activity that belongs to abnormal activities set), carrying 

some stuff, putting stuff in a big vehicle, entering a vehicle at a high speed, and 

finally big vehicle was observed leaving the place at a high speed. We found that high 

probability of burglary was detected for this video. 
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It is observed that scene is clear.
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It is observed that big vehicle is 

arrived. 
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It is observed that man is coming out of big ve

hicle 

It is observed that some humans are breaking a door 
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It is observed that human are entering into a building 
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It is observed that humans are carrying some 

articles 
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It is observed that humans are loading articles into a big vehicle 
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It is observed that human are running and entering into a big vehicle 
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It is observed that big vehicle is leaving and speed is high 
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Snapshots for Video 2: The following video was also taken from youtube. Here breaking 

door, people running away, were abnormal activities. In this video, at first some 

humans were observed, then  humans were seen breaking a door (abnormal activity), 

entering the building, and finally running away (abnormal activity). So, high 

probability of burglary was detected for this video. It was a true positive case. 
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It is observed that humans are walking 



61 
 

 

 

It is observed that more humans are walking. 
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It is observed that humans are breaking a door. 
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It is observed that human are entering into a building 
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It is observed that a human is running away. 
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66 
 

Snapshots for video 3: The following video was taken VIRAT dataset. This video is 

taken from parking lot. Here low probability of burglary was detected. It was a true 

negative case. 

 

 

 

It is observed that a human is walking. 
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A big vehicle is observed.  
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It is observed that a human is walking. 
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A big vehicle is observed. 
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Another big vehicle is observed. 
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It is observed that a human is coming out of a big vehicle. 
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It is observed that a big vehicle is leaving and speed is high. 
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