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Abstract 

Cyber-physical security describes the protection of systems with close relationships 

between computational functions and physical ones and addresses the issue of vulnerability to 

attack through both cyber and physical avenues. This describes systems in a wide variety of 

functions, many crucial to the function of modern society, making their security of paramount 

importance. The development of secure system design and attack detection strategies for each 

potential avenue of attack is needed to combat malicious attacks. This thesis will provide an 

overview of the approaches to securing different aspect of cyber-physical systems. The cyber 

element can be designed to better prevent unauthorized entry and to be more robust to attack 

while its use is evaluated for signs of ongoing intrusion. Nodes in sensor networks can be 

evaluated by their claims to determine the likelihood of their honesty. Control systems can be 

designed to be robust in cases of the failure of one component and to detect signal insertion or 

replay attack. Through the application of these strategies, the safety and continued function of 

cyber-physical systems can be improved. 
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Chapter 1: Introduction 

1.1 Motivation 

Technological advances have greatly eased modern life, but as infrastructure becomes 

increasingly dependent on technology, its vulnerability to malicious attack also grows. More and 

more technological systems interface thoroughly with the physical world, leaving them 

vulnerable not only to traditional cyber attacks but also to attacks through physical avenues. 

Cyber-physical security as a field applies to systems with close relationships between 

computational functions and physical ones, such as the example system shown in Figure 1. 

Examples of cyber-physical systems include the smart grid, process control systems, air traffic 

control systems, and medical monitoring. This applies to systems in a wide variety of functions, 

many of great importance to the function of modern society. Attacks can occur through the 

network, through replacement or control of sensors, or through providing false data to sensors by 

manipulating the conditions at the sensor site.  

 

Figure 1: Example diagram of a cyber-physical system. [Mitchell, 2013] 

Attacks in control systems have been reported in electric power control systems, including 

those for transmission, generation and distribution in fossil, gas turbine, and nuclear plants, and 

in business such as water, oil and gas, chemicals, paper and agribusiness [Turk, 2005]. An attack 
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on the communication system used by a railway company shut down all rail traffic in the 

Washington, D.C. area, including morning commuter traffic, for twelve hours [Turk, 2005]. A 

former consultant at a waste water plant in Queensland, Australia, used the system to release up 

to 1 million liters of sewage into nearby waterways [Turk, 2005]. One of the most famous attacks 

against a control system is the Stuxnet worm, a virus that affects specific Supervisory Control 

and Data Acquisition (SCADA) systems, and was allegedly used against nuclear facilities in 

Iran. Stuxnet was designed to reprogram industrial centrifuges, leading them to failure while 

remaining almost undetectable due to the replay data disguising the attack [Chabukswar, 2011]. 

Stuxnet continued to spread through the internet and through thumb drives, and its presence in 

the United States was reported by Chevron in 2012 [Kushner, 2013]. Cyber–physical security 

encompasses the detection of attacks against such systems and the design of these systems to 

continue to function in the event of an attack. Replacement or control of sensors can be used in 

attacks such as denial-of-service (DoS) attacks, which overload the system with requests to deny 

access to users.  

1.2 State of the Research Field 

Research into cyber-physical security has become better prioritized as examples of well-

publicized cyber-physical attacks force industries and governments to recognize their 

vulnerabilities. Many organizations were reluctant to report security incidents out of 

embarrassment, and others denied that the risk even existed, believing that the distinctness of 

their systems provided safety [Byrnes, 2004]. This was a reasonable conclusion prior to 2001, 

when reported cyber incidents were largely the result of accidents or disgruntled employees 

within a company, with only thirty-one percent resulting from outside attack [Byrnes, 2004]. A 

huge shift in reported cyber attacks occurred in a short period, so that by 2003 seventy percent of 
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cyber attacks were external. These attacks made vulnerabilities previously unnoticed, especially 

in industrial control systems, unavoidable. Attacks such as the Slammer Worm, in which a 

common frame relay used for internet traffic as well as the power grid was overwhelmed, 

blocking traffic to the substations, highlighted the vulnerability of modern infrastructure. As the 

Slammer Worm showed, attacks occurring through the internet can impact even systems that 

don’t use the internet for their function [Byrnes, 2004].  

The cyber security field has many strategies for the defense from network attacks from 

outsiders, but remains especially vulnerable to malicious attack by insiders and loss of function 

due to denial-of-service attacks, to which there is no sufficient protection. Sensor network 

security has a robust set of strategies for the determination of malicious nodes in ideal 

conditions, but remains vulnerable to the ejection of honest nodes from the network resulting 

from communication issues common in real world situations. Significant progress has been made 

in the determination of the ideal controller in the presence of DoS attack but remains more 

vulnerable to an attacker with an ideal attack strategy. Detection and design strategies for signal 

insertion to control systems have been well developed, but control systems remain in large part 

quite vulnerable to replay attack in that current detection strategies have a low success rate and 

significant loss of function. 

1.3 Outline of the Thesis 

Cyber-physical security can be approached in a number of ways, and we will attempt to 

divide these approaches by the avenue of attack which they seek to defend from. Chapter 2 will 

outline the study of traditional cyber attacks, which remain of concern for cyber-physical 

systems; even those not connected to a network can become vulnerable through carelessness on 

the part of users. Design of the system through the correct use of keys and network topology can 
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help protect the system, as can the monitoring of system function for anomalous use indicative of 

an incursion. Chapter 3 elaborates on the security of sensor networks; cyber physical systems 

generally require sensors to gather physical data to perform their functions, leaving them 

vulnerable to attacks which alter the environment, fool the sensor, or insert a false sensor into the 

system. Through evaluation of the data provided by sensors across the network over time, the 

reliability of individual sensors in the network can be evaluated. Chapter 4 discusses the 

protection of control systems, which can be harmed through DoS attack, manipulated through the 

insertion of malicious signals, and deceived through data readings used to disguise an attack. 

Filters can be used to detect signal insertion, but defense against more complicated attacks 

remain challenging. 
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Chapter 2: Approaches to Cyber Security 

2.1 Cyber Attacks 

Cyber physical systems have many points of vulnerability due to the many components 

that these systems employ. For instance, a smart grid system is particularly vulnerable to cyber 

incursions due to the physically distributed nature of the system, leaving many entry points on 

the consumer side such as meters or appliances physically vulnerable [Fadlullah, 2011]. With 

entry points vulnerable to cyber attack from outsiders across the system and to the possibility of 

misuse by system users, the pricing data, integrity of commands and software, and system 

availability of the smart grid must be protected [Mo, 2012]. These attacks from entry points can 

come in the form of infected devices, intrusion via a network such as the internet, preinstalled 

vulnerabilities left during the supply chain, or a malicious insider. Network attacks have a 

number of possible sources, including backdoors in the IT infrastructure, direct access to remote 

terminal units, exploiting trusted peer utility links, or hijacking the Virtual Private Network 

(VPN) connection employed by a legitimate user. Once an attacker is inside the system, it is 

vulnerable in a range of ways, from more trivial attempts to reduce electricity prices to terrorist 

attacks. Once the cyber-physical system has been infiltrated, the adversary’s access to the control 

system has the potential for enormous physical consequences. In the case of a smart grid, an 

attacker could cause widespread blackouts, putting lives in danger when elements of critical 

infrastructure, such as hospitals or traffic lights, do not receive power. An example model of one 

such smart grid network is shown in Figure 2. Attackers to such a system endanger the 

confidentiality of system information, the integrity and the availability of the system information 

and the system function to legitimate users [Mo, 2012].  
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Figure 2: Model of a smart grid's hierarchical network. [Fadlullah, 2011] 

Another common type of cyber attack is a Denial of Service (DoS) attack, which brings 

down a server or network by overloading the system with fake requests so that no resources are 

available for legitimate requests. Distributed DoS (DDoS) attacks in a smart grid employ 

compromised meters or appliances and can be used to prevent pricing data from being updated 

accurately, leading to inaccurate information about the demand on the system. These attacks are 

especially common in the types of wireless implementation common to widespread grids, in 

which the scale often makes lower cost equipment and protocol necessary [Zhang, 2011]. The 
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efficiency of the smart grid is reliant on the accurate information about power use and princing, 

which is used to determine the amount of power to be generated and the running of various home 

appliances to be sure that all aspects of the system run in the most energy and cost effective 

manner possible. Inaccurate information from DDoS attacks could become very costly to the 

power company or the consumer [Mo, 2012].  

2.2 Design of a Secure Cyber System 

The traditional approach to the protection of a cyber system is to create a figurative wall 

around it, in which the system can’t be entered except by legitimate users [Mukherjee, 1994]. 

Firewalls are designed to secure the entrances to the system by examining packets as they pass 

through and determining whether or not they should be allowed to proceed. This evaluation takes 

place using a series of rules to which the packet is compared [Gouda, 2004]. The interface in 

which the packet arrives at the firewall, the packet's original source, its final destination, and the 

transport protocol it uses are all used to determine whether or not the packet can be allowed 

through.  Appropriate key management is another important aspect of securing the cyber system 

under this approach. Secure key encryption can be a valuable barrier to outside intrusion. The 

difficulty with encryption keys in cyber-physical systems is managing them over a large and 

varied infrastructure. For instance, most smart meters have a single key for each meter, which 

lasts over the life of the device. While this simplifies the management of a large meter system, 

the ability to revoke keys and to update them periodically would be a simple step to ensure far 

greater security to the entire grid [Hadley, 2010].   

It cannot be assumed that such methods will prevent all attackers from gaining entrance, 

leaving a need for the design of the communication architecture which achieves maximum 

security. The network topology, or the design of the connections between nodes, can be designed 
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to be more resilient to attack. The routing protocol used should be designed to avoid 

vulnerabilities in which a single compromised router could bring down the system [Mo, 2011]. 

Lack of consideration when constructing a communication network leaves the system 

unnecessarily vulnerable; it has been shown that the internet is even more vulnerable to attack 

than a random network topology would be [Lee, 2006]. In order to design a network topology 

that is most robust against cyber attacks, the way in which an attack is spread through the 

network must be properly understood. This spread can be modeled in the same way as many 

other phenomena, such as rumor routing, or the spread of a virus. Such occurrences have been 

studied at length, providing a variety of existing models to choose from. The work of [Roy, 

2012] assumes the adversary of the cyber physical system network seeks to measure or modify 

points in the network in order to estimate and or actuate the network and attempt to design the 

network topology to be more resistant to such measures. The security of the system is measured 

in terms of the discoverability of attacks and recoverability of the system in the face of attacks. 

When considering spread dynamics for an n
th

 order system with the state space equations 

                  

                 

the security of which is considered to be equivalent to the concept of observability in control 

theory, or rank {  } = n, where    is the observability matrix defined by 

   

 

  
 

 
  
 
 
 

       

  
 

 

[Roy, 2012] theorizes firstly that the less partial knowledge of the system the attacker 

requires the lower the rank of the observability matrix must be. Secondly, they theorize that the 



9 
 

estimation goal at time state k is secure “if and only if there is a nonzero vector in the range of A
k
 

that is in the null space of  ” [Roy, 2012]. 

The network’s graph topology can be evaluated in terms of the ease of estimation of its 

state and the security of different locations within the network. The spread model can employ 

either the probability of an infected node coming into contact with an infected node or by tracing 

the infection itself.  

Network analysis can also be applied to the design of the power grid to minimize the 

damage done by a physical attack. Such design considers power flow to the most crucial system 

components and the largest possible disruption to the grid to reduce the damage done [Salmeron, 

2004]. Examples include [Salmeron, 2004] and [Pinar, 2010]. 

2.3 Approaches to Cyber Attack Detection 

Traditional cyber defense works to ensure the availability, confidentiality, and integrity 

of the cyber system [Mo, 2012]. It seeks to ensure the system is available for use when needed, 

that the data in the system cannot be viewed by outsiders without permission, and that the system 

data cannot be altered by those without permission. Analysis of the use of the cyber-physical 

system can be used to determine likelihood of an intrusion, by invasion or by malicious insider. 

There are two categories for intrusion detection, misuse detection and anomaly detection. Misuse 

detection is used to search for specific patterns, events or data associated with a known system 

weakness and anomaly detection looks at changes in patterns of utilization that can indicate an 

attack [Balasubramaniyan, 1998]. Anomaly detection presupposes that an attack on the system 

will involve patterns that do not occur during normal system operation, and searches for such 

unusual patterns [Denning, 1987]. This has the advantage of being able to detect attacks even if 

the system vulnerability is not previously known. The normal behavior patterns in activities such 
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as logins, commands executed, and files and devices accessed can be observed for later 

comparison in which a statistically significant anomalous behavior would indicate a possible 

attack [Mukherjee, 1994]. A number of approaches to such detection have been developed, 

among them agent based intrusion detection and bioinformatics inspired intrusion detection.  

In a large scale network, intrusion detection must be adapted from the single detector 

model to something better suited analyzing the number of packets used on such a scale. Agent 

based intrusion detection was developed to meet this need [Chatzigiannakis, 2004]. Software 

agents are designed to operate independently of other programs or user input, in different areas 

of the network. In addition to detecting individual attacks across the network, when implemented 

properly, agent based intrusion detection can determine when a cooperative intrusion is 

occurring across the network [Benattou, 2004]. [Balasubramaniyan, 1998] proposed the intrusion 

detection architecture known as Autonomous Agents for Intrusion Detection (AAFID), using a 

hierarchal structure of agents to perform detection tasks. Using AAFID, any number of agents 

can be distributed over any number of hosts in a network. All agents in a single host report to a 

single transceiver, and transceivers report their results to one or more monitors, each of which 

oversee several transceivers and perform high level detection through correlating data across the 

network. This is not specific to any one detection technique, and can be adapted for different 

approaches [Balasubramaniyan, 1998]. Benattou and Tamine combine the concept of a network 

of agents with that of mobile agents. Agents are categorized by their varying analysis functions 

and can be dispatched by the Specialized Local Agent, or SLA, which is responsible for 

coordinating agent activity and determining where different analysis agents are needed. Mobile 

Agents collect data, which together with the Correlate Agents determine if attacks are 

widespread. Interpreter Agents select specific local events to be considered by the Analyzer 
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Agents to detect complex local attacks. This keeps all detection functions from being run at all 

times and minimizes the processing power required for the intrusion detection system [Benattou, 

2004].  

Similar works have been completed by [Helmer, 1998], [Blanc, 2006], [Chatzigiannakis, 

2004], and [Zhao-wen, 2007]. 

One approach to intrusion detection uses a biological model of the immune system’s 

response to viral invasion as inspiration for a cyber strategy. There are a variety of immune 

based strategies that can be employed, including negative selection algorithms, immune network 

algorithms, danger theory, and clonal selection algorithms. In a biological immune system, 

antigens, or foreign proteins indicative of a virus or harmful bacteria, are detected by antibodies 

chemically binding to the specific part of a protein they are designed to recognize, after which 

the antigen is destroyed. These techniques seek to mimic the way in which a biological immune 

system trains itself to detect such invaders. One of the easiest to implement examples of this is 

the process developed by [Forrest, 1997], in which the specific processes run by a computer were 

considered the antigens. Given a collection of digital data to be monitored for changes, a set of 

detectors that did not match the data was generated. The detectors were then continuously 

compared to the data, and match detectors were used to indicate a change had occurred with a 

known location. Like with a biological immune system, matches between the detector and the 

data that were close but not precise were also considered matches, and the closeness of the match 

was determined using Hamming distances. The primary weakness in this system was the 

generation of detectors, which could be improved over a random set using dynamic 

programming methods but was still quite imprecise [Forrest, 1997]. 
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The work of [Zhang, 2011] on artificial immune system (AIS) algorithms is another 

example of such method, employing the clonal selection algorithm, a machine learning based 

technique that trains the system over time to recognize attacks.  The AIS is a machine learning 

based system where positive examples alone can be used to train the system to recognize attacks. 

The clonal algorithm is based on antigen recognition in the immune system, in which only cells 

that recognize the antigens are allowed to reproduce themselves. Immune cells contain a wide 

variety of receptors that can bind to a bacterial invader, and so when an attack occurs cells with a 

matching receptor will bind to the invader. Cells that bind to a receptor are stimulated to 

reproduce, resulting in an immune response prepared to deal with that immune attack. The 

CLONALG algorithm is an unsupervised algorithm that uses cycles of maintenance, selection, 

cloning and mutation to mimic an immune response and train the system to respond to attacks. 

An initial group of ‘antibodies’ is generated randomly and divided into a group of memory cells 

and a reservoir pool, as well as a set of antigenic patterns. A single antigen is chosen and 

compared to every member of the set of antigens, and the antibodies with the greatest similarities 

to the antigen are selected and reproduced in numbers varying linearly with the degree of 

similarity between the antibody and antigen. This population is then mutated and again compared 

to the antigen. The antibody with the highest affinity is saved and the previous set of antibodies 

is replaced by the new group with higher affinity.  By repeating this process, a memory pool is 

generated that can recognize the desired ‘antigen’. The Artificial Immune Recognition System 

(AIRS) builds on the clonal algorithm by the addition of affinity maturation and affinity 

recognition balls (ARB). Like CLONALG, AIRS buildings ‘antibodies’ over time, but it differs 

in that it is a supervised system. After initialization, AIRS operates in cycles of antigen training, 

competition, memory cell selection, and classification of the dataset. In initialization, two sets, 
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the ARBs and the memory pool are made after the dataset has been normalized and the variable 

for the affinity threshold calculated. Each antigen is then compared to the memory cell pool in 

the antigen training step and the best memory cell is selected. Like in the CLONALG, the cell is 

then mutated and placed in the ARB pool. The ARB cells with the lowest similarity are 

discarded and the ones with the highest go into the memory cell pool. This is then repeated until 

all antigens are tested.      

 The weakness of AIS techniques is the need for a large set of attack samples to be used 

during the training process in order to ensure that the system will be able to recognize an attack. 

Without a sufficient number, AIS is no more efficient than traditional machine learning 

techniques such as support vector machine (SVM). SVM is a machine learning system that uses 

large margin separation, in which the distance between a data point and a line drawn to 

maximize the distance between the data points on each side of the line separate data into two 

separate areas.  

 These are only a few examples of the use of bioinformatics methods for intrusion 

detection. Other examples include the work of researchers such as [Coull, 2003] and 

[Janakiraman, 2006].  
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Chapter 3: Detection of Compromised Sensors 

3.1 Attacks on Sensor Networks 

Networks of sensors are useful in a variety of applications, from straightforward 

information gathering to large projects such as a smart grid. They are prized for their low cost 

and quick deployment, but these same factors make the network vulnerable to incursions such as 

node replication attack. Such an attack is considered in terms of the classic mathematical 

problem of the Byzantine Generals, first considered by Lamport et al. in 1982 [Vempaty, 2013]. 

In this problem, a group of generals of the Byzantine Empire work to plan an attack on a city, but 

one or more of the generals may be a traitor. Using the information each general reports and the 

attack plan suggested by each one, the group must nonetheless come to an accurate consensus as 

to the correct information or best attack plan. The same problem applies to a network of sensor 

nodes in which some may be either controlled or added by an adversary. Compromised sensors 

function much like a traitorous general, impeding the decisions made by the group, as shown in 

Figure 3. Node replicas can be used to inject false data into the system, suppress legitimate data, 

revoke legitimate nodes and disconnect the network by using the correct protocols [Vempaty, 

2013]. For instance, if sensors in a smart grid are made to send false data about the state 

estimation of the grid, it will alter decisions made by the grid based on the state estimation data. 

This could change power availability to the grid, pricing based on power usage, and charges to 

the users [Mo, 2011]. Thus a system must be developed to detect such attacks while also using 

low cost hardware.  



15 
 

 

Figure 3: Compromised smart grid with dishonest reports in the network. [Vempaty, 2013] 

The two general approaches to detecting node replicas are centralized detection and 

localized voting systems. Centralized detection uses a single central point of contact, or fusion 

center which receives and processes all claims from sensors and is responsible for determining 

whether or not they are compromised, as depicted in Figure 4. 

 

Figure 4: A centralized detection scheme. 

This has the advantage over localized voting of being able to detect distributed node 

replications more easily. False nodes can also work in unison to better change the consensus 

decision of the network, or they can be working independently. If working independently, the 

ratio of Byzantine nodes to honest nodes must be at least one half, but if the Byzantine nodes 
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work in concert this ratio can be lower and still deceive the network. The more nodes working 

together the easier the deception will be to achieve. Similarly, if the attacking nodes are aware of 

the true decision they are working against they can better prevent the system from reaching that 

conclusion. 

3.2 Centralized Detection 

There are a variety of approaches to centralized detection, including reputation based 

scheme and adaptive learning schemes. A reputation based scheme such as the one developed by 

[Rawat, 2011] uses the fusion center to determine a value for each node’s reliability based on 

discrepancies between the individual node’s values and input from other nodes. For a system 

with sensors transmitting every time instant t, the reputation metric is defined as 

                  

 

   

 

after time interval T, where       is the i
th

 sensor’s decision at time instant t,       is the decision 

made at the fusion center at that time and is the indicator function over the set S. Thus the greater 

the difference between the values the less the node is trusted, and if the pattern holds over time 

the node will be trusted less and less. This could be an issue if there are honest outliers in the 

nodes readings or if there are communication issues between the node and the fusion center. The 

fusion center could become suspicious of a node due to communication issues and has the 

potential to eventually drop honest nodes. Reputation based schemes can be problematic if they 

do not take into account the possibility of communication errors that can cause readings which 

appear suspicious. If the nodes under suspicion are removed from the decision making process, 

over time the network can remove many honest nodes due to naturally occurring errors, leaving 

few or no nodes left in the system. The combination of reputation based schemes with other 
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security detection strategies to improve the security of the sensor network is discussed further in 

Section 3.4.  

[Vempaty, 2013] worked on an adaptive learning scheme, in which the system identifies 

attacking sensors by comparing their behavior with what would be expected of an honest sensor. 

Knowledge of the dishonest sensors and the information they send is used to adapt global 

decision making. To determine the behavior expected of an honest sensor, the sensor’s previous 

behavior over a period of time must be used to determine the probability of the sensor sending a 

one as its value. This demonstrates the most likely behavior of the sensor, which is then used to 

determine the likelihood of its honesty later. This has the advantage of working even when 

Byzantine sensors are in the majority but can only work if the system has knowledge of the 

honest sensor’s behavior. This is a flaw that could prevent it from being useable in many 

circumstances; if any behavior deviates from what is expected ahead of time then honest 

readings could be unfairly disregarded by the detection system. 

The work of [Soltanmohammadi, 2013] describes a centralized detection system that 

seeks to identify the nature of a node's false data, in this case termed misbehavior, so that false 

data due to attack may be distinguished from false data due to hardware or software degradation. 

The source of the node's misbehavior used to determine the type of decision it will make, and by 

analyzing the node's decision over time the fusion center can determine whether or not it is the 

result of an attack. [Soltanmohammadi, 2014] describes a system for the classification of 

misbehavior by cognitive radios based on the expectation maximization algorithm. Assuming 

that the majority or the cognitive radios are honest, a set of the CR's decisions in relation to the 

hypothesis are used to determine whether or not it is dishonest or not working properly. 
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3.3 Distributed Decision Making 

The primary flaw of a centralized detection design is that it also makes the system 

vulnerable; the whole system fails if the fusion center is compromised. Alternative approaches 

involve the collaborative determination of an incursion by the sensor network. More recent 

advances in algorithms to detect node replication allow for the collaborative detection of 

distributed node replication. One such approach to determining the false node employs the use of 

witness nodes to verify the location claims of each sensor node. There are different methods of 

selecting witness nodes, including deterministic multicast, randomized multicast, and line 

selected multicast. In deterministic multicast, a node broadcasts its location information, 

considered a claim until verified, to a deterministically selected set of nodes called witnesses, 

which are chosen using the node’s identification number in the network. Therefore, if an 

adversary attempts to replicate the node and claim its identification number, the imposter will 

broadcast to the same witness nodes, which will be able to find the false node based on the 

conflicting claims. In randomized multicast, nodes notify a neighbor of their location claims, and 

the neighboring nodes randomly send these location claims to other nodes in the network. In a 

network of n nodes, as long as at east    nodes are witnesses to each, the birthday paradox 

predicts that there will be a high probability of a collision. This approach is considered more 

resilient than the deterministic multicast. An approach with lower communication cost than 

randomized multicast is line selected multicast, in which nodes send their location claims in lines 

through their neighbors, as shown in Figure 5. This is based on the fact that nodes in sensor 

networks work as both sensors and routers, and to send locations claims to other nodes the 

information must pass from node to node. Each node sends its location claim to an immediate 
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neighbor, which sends the claims to its neighbor, and so on, creating a line of witness nodes 

which can detect false claims when the line is crossed.  

 

Figure 5: An illustration of line selected multicast, in which the node α has been replicated as α‘ 

and neighbors β1, 2 and 3 report location claims to γ, resulting in an intersection at σ. [Parno, 

2005] 

When considering approaches to distributed detection in terms of their efficiency versus the cost 

in memory to each node and communication cost in the system, line selected multicast is the 

most efficient system.  

Another approach to witness nodes which reduces the necessary memory is the timed 

distribution of location claims. In the strategy known as the high noon approach, nodes devote 

their computing power to the detection of Byzantine nodes for a periodic length of time t and 

then spend the rest of the time on non-detection tasks [Parno, 2005]. During the detection period 

nodes determined to be Byzantines have their privileges revoked and then the data is forgotten at 

the end of the period. During the next detection period the process begins again. In the time slot 

approach, a length of time is divided into units of nodes by their identification number, and 

during each period one group of nodes broadcasts their location claims, leaving the network with 

a far smaller pool of nodes to check during each time period. All of these techniques are valuable 
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to reduce the necessary equipment costs without impairing the effectiveness of the byzantine 

detection system. 

3.4 Resilience to False Sensor Claims 

Security can also be designed for a sensor network in terms of making it more robust 

against node replication attacks, such as noise enhanced signal processing or weighted sequential 

ratio probability testing. These are signal processing methods used to increase the likelihood of 

accurate sensor data being used regardless of whether or not byzantine nodes have been 

identified. While these methods do take into account the likelihood of a sensor being a byzantine, 

this is used only for the network to come to a final decision rather than to remove a sensor from 

the network, as might occur in a different security strategy. Noise-enhanced signal processing, 

such as the work done by [Gagrani, 2011] uses stochastic resonance to make the system more 

resistant to Byzantine attack by the introduction of noise. Stochastic resonance is a physical 

phenomenon in nonlinear systems in which the signal output can be enhanced by the addition of 

noise to the input. This is most helpful to the system when the Byzantine nodes do not also apply 

this strategy; using the ratio of honest nodes needed to come to the correct decision as a metric, 

stochastic resonance when both the honest and byzantine nodes employ it makes no difference to 

the system’s performance. Stochastic resonance can be used in coordination with other metrics to 

determine honesty, in which a node deemed honest is told to employ stochastic resonance from 

then forward and the nodes under suspicion are not. The stochastic resonance noise can also be 

added at the fusion center, as is the case in the model shown in Figure 6. The optimal function of 

such a system occurs is dependent on the system’s knowledge of the channel state information 

and the local sensor detection performance indices. The approach which requires the least 

information is the equal gain combiner, or ECG.  
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Figure 6: Inference network model for stochastic resonance added at the fusion center. [Gagrani, 

2011] 

Though it does not have a performance as good as other stochastic resonance approaches, 

addition at the fusion center can still be a valid approach depending on the circumstances under 

which the system operates. As a whole, noise enhanced signal processing is primarily of interest 

in addition to other approaches to sensor network security rather than as a singular method of 

protection, but when used in conjunction with a robust method of byzantine detection it can be 

valuable. 

Weighted sequential probability ratio test (WSPRT) is another method to make the sensor 

network more robust to attack. One example of WSPRT is the work of [Chen, 2008], which 

considers the detector design and the data fusion process using WSPRT in cognitive radio 

network sensor systems. WSPRT has two steps; the first is a reputation based action and the 

second is the hypothesis test. The reputation step is similar to other reputation schemes in that it 
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judges the accuracy and honesty of a sensor based on how closely its data reflects the final local 

decision. The second step is based on the Sequential Probability Ratio Test (SPRT), a hypothesis 

test used for sequential analysis which allows for the sampling of a variable number of 

operations [Chen, 2008]. In a non-adversarial environment, SPRT has both bounded false alarm 

probability and bounded miss detection probability. WSPRT is essentially SPRT with the 

reputation of the sensors taken into account. The likelihood ratio of SPRT is defined as 

    
        

        

 

   

 

where H1 and H0 are the hypotheses to be chosen between. The likelihood ratio of WSPRT is 

defined as  

     
        

        
 
  

 

   

 

where wi is the weight of Ni and is a function of ri, the reputation value of sensor Ni,        . 

When designing f several factors must be taken into account, including outputting         , 

accepting arbitrary ri values and giving proper weight to even those sensors which have a slightly 

negative reputation metric, since a slightly low reputation could be due to factors such as 

temporary interference. [Chen, 2008] use the function  

          

                                       
    

         
             

  

where g is a number greater than zero which increases with each decision and is selected to 

ensure that sensors are weighted properly based on their reputation.  
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 Because it incorporates a reputation scheme, WSPRT is only as effective as the 

reputation scheme it is based on. With correct evaluation of the reputation metric and selection of 

the weighting function this can be a valuable method of analyzing sensor data. 
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Chapter 4: Security in Control System  

4.1 Attacks on Control Systems  

Like other cyber-physical systems, control systems are vulnerable to malicious attacks in 

the form of deception or denial-of-service (DoS) attacks. DoS attacks can be used in cyber-

physical control systems with communication systems which can be jammed, leading sensor and 

control packets to be dropped [Amin, 2009]. As shown in [Long, 2005], DoS attacks cause a 

significant increase in overshoot, settling time, rise time, and error. Designing the control system 

with safety constraints that reduce its vulnerability is one straightforward way of protecting from 

DoS attack [Amin, 2009]. Deception attacks occur through compromising the integrity of the 

control system’s sensor and control data packets, resulting in the receipt of false data which the 

system believes to be true. This data can be used to cause the system to damage itself or to 

manipulate its function for the benefit of the attacker. Through the use of filtering this signal 

insertion can be detected and dealt with. Detection becomes more difficult in the case of a replay 

attack, in which false sensor readings are relayed to the controller, disguising the sensor data 

which could be used to detect the insertion. Such an attack is depicted in Figure 7. The system 

becomes open loop without input from the system’s sensors, so the performance of the control 

system can no longer be guaranteed. This also leaves the system vulnerable to other attacks that 

cannot be detected while the sensor data is obfuscated. The most straightforward method of 

disguise is to record the sensors’ previous data and play it back to the system, but this can also be 

done using sensor data generated to resemble normal operations without duplicating it exactly 

[Mo, 2009]. 
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Figure 7: System diagram of a replay attack. 

Replay attacks had only been theorized before the use of the Stuxnet worm against 

nuclear facilities in Iran [Chabukswar, 2011]. Stuxnet highlighted the vulnerability of cyber-

physical infrastructure in general and in control systems in particular and brought new urgency to 

the research into protection against replay attacks.  

4.2 Protecting Against Denial-of-Service Attacks 

The first line of defense against DoS attack in control systems is a design that minimizes 

the danger due to packet drop. [Long, 2005] suggest a straightforward method of DoS detection 

which assumes any packet load over a certain threshold outside of normal operating procedure to 

be a DoS attack. Once this threshold is cleared, the router begins to increase the probability of 

packet drop. This was shown through simulation to greatly mitigate the effects of DoS attack 

[Long, 2005]. 

[Amin, 2009] consider optimal controller design in the presence of DoS attack for the 

case of a linear time invariant (LTI) stochastic system  
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over time horizon k=0,…, N-1 and with measurement and control packets (     ) subject to DoS 

attacks. The authors sought to produce a causal feedback control law that for the given system 

would minimize the finite horizon objective function 
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and power constraints in an expected sense on both the state and input 

   
  
  
 
 

 
   
     

    
  
  
                                

and safety specification probabilistic constraints on state and input 

   
  
  
 
 

 
   
     

    
  
  
                                      

The system is analyzed under the Bernoulli packet drop model, in which the system is subjected 

to an attacker randomly jamming a measurement or control packet according to independent 

Bernoulli trials and with a probability of success    and    respectively. The attack has the 

admissible attack actions  

                 
      

                                       

The use of Kalman filter for state estimate              and state estimation error      

           leads to the update step  
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and correction step 

                                   

                        

                     
    

                              

leading to Kalman filter equations 

                
        

                  

                       
    

The optimal control model for the Bernoulli attack case is found to be   
           with       

taken from the Kalman filter equations and                  with             

         and     
                . It is also noted that an attacker may apply an 

optimal attack instead, having no incentive to comply with a Bernoulli model of attack, 

complicating the ability to design a controller to handle such an attack. 

4.3 Detection of Signal Insertion  

Many different approaches have been taken to the filtering of malicious signal insertion 

in a control system. Mo and Sinopoli evaluated the ‘attackability’ of a control system with a 

sensor network evaluating its state and a χ
2
 failure detector, [Mo, 2010]. By evaluating the way 

in which the system fails under different types of attacks they were able to determine that the 

failure detector would sound immediately in a case of an attack that injects large values. They 

were also able to determine that through evaluation of unstable eigenvectors sensors needed by 
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an attacker in order to cause the network to fail could be identified, providing a way to increase 

system reliability by increasing the number of sensor nodes along those vectors. 

Pasqualetti et al developed a centralized filter based on a modified Luenberger observer 

designed to detect attacks in a control system [Pasqualetti 2012, Part II]. Given a time invariant 

system 

                    

                 

where E is a possibly singular matrix and       and       describe unknown signals attributed 

to disturbances affecting the plant. The centralized attack detection filter 

                        

                

where w(0) = x(0) and output injection gain G is such that the pair (E, A+GC) is regular and 

Hurwitz. If         at all times then it can be concluded that        at all times. In the 

absence of attacks, the error e(t) = w(t)-x(t) is exponentially stable. 

Pasqualetti et al have also developed a distributed attack detection system in control systems, 

employing knowledge of the decentralized stabilization of the filter’s error dynamics and the 

waveform relaxation method to produce a distributed attack detection filter. The decentralized 

system is the interconnection of N subsystems with the state and output       and       and 

neighbors   
  for the i-th subsystem. It can be represented by 

                      
    

  

      

                        

Each subnetwork with control center   
  has the local residual generator 
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where       is the i-th estimate of      . This gives the overall filter dynamics of 

                                

                 

where        when         

Waveform relaxation is used to obtain the waveform relaxation iteration 

           
        

             

where k is the iteration index. This leads to the distributed attack detection filter 

                        
             

                 

Similar to the case of the centralized filter,        
       at all times if and only if       

  at all times, and without the presence of an attack, the asymptotic filter error        
     

     is exponentially stable [Pasqualetti, 2012, Part II]. 

4.4 Detection of Replay Attacks 

While many studies assume, perhaps falsely, that failure in a control system is due to 

random events or benign ones, the issue of failure due to an attack must be considered differently 

than in the typical failure detection algorithm. Mo and Sinopoli developed one technique to 

detect replay data in a linear time invariant (LTI) Gaussian system with an infinite horizon 

Linear Quadratic Gaussian (LQG) Controller, assuming the system has a χ
2
 failure detector [Mo, 

2009]. One strategy to detect replay attacks is to inject time-stamped noise into the system. The 

LTI system’s dynamics at time k are described as 
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where wk is the process noise with Gaussian distribution and x0 is the initial state. The network is 

assumed to be monitored by a sensor network with observation equation 

          

where yk is the vector of measurements from the sensors and vk is the measurement noise with 

Gaussian distribution. The system uses a Kalman filter, the optimal estimator for such a system, 

providing the minimum variance unbiased estimate of state, denoted by       indicating the 

estimate of    based on measurements up to time k. Because Kalman gain converges over time 

and control systems run for long period, it is assumed that to be in a steady state, and that the 

Kalman filter will be a fixed gain estimator. An LQG controller is designed for systems in the 

presence of the Gaussian noise, and is the result of a Linear Quadratic Estimator (LQE), or 

Kalman filter, with a Linear Quadratic Regulator (LQR). The controller works by minimizing the 

function 

        
   

 
 

 
    

       
    

   

   

  

based on the state estimation      . This minimization leads to the fixed gain controller 

     
                      

where   
  is the optimal control input. The system uses a failure detector which operates by 

detecting when the normalized estimation error rises above a certain probability threshold, 

indicating that an error has occurred. For a replay attack, it is assumed that an attacker can inject 

a control signal at any time, knows all of the sensor readings, and can modify them. This leads to 

the conclusion that given these capabilities the attacker will first record a period of sensor data 

and then replay it to the system while injecting a sequence of desired control input. The injected 
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signal could also be generated through observation of legitimate values and machine learning to 

resemble accurate data without actually being a replay of previous recordings. In either case the 

attack would be disguised by the false data. The controller is redesigned to reflect this, and 

becomes 

     
      

where   
  is the optimal LQG control signal and     is taken from an i.i.d. Gaussian distribution  

and zero mean and is independent of   
  [Mo 2009]. The covariance of     is indicated by  , 

and the system with the addition of     is depicted in Figure 8. 

 

Figure 8: System with insertion of authentication signal. [Mo, 2011] 

It functions as an authentication signal, though it does mean that there is a loss of 

performance as a result of its addition to the optimal LQG signal. 

The expectation of the normalized error covariance while not under attack is 

               
                     

 when under attack expectation is asymptotically given by 

   
   

                
                                      

where   is the solution to the Lyapunov equation 
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The asymptotic expectation can be used to set a threshold for failure detection, in which 

values that rise above the set threshold indicate that the system is under attack. The value set for 

the threshold varies by the importance placed on detection rate versus false alarm rate. The 

greater the covariance is set to the greater the detection rate and the loss of performance will be. 

In order to achieve a detection rate of over 35%, the covariance must be 0.6, which means a 

sacrifice in performance of 91% with respect to the optimal performance [Mo, 2009]. 

Chabukswar, Mo and Sinopoli developed ways to improve on this sacrifice in performance by 

optimizing the covariance according to the desired performance constraints, but there is still 

great loss of performance [Chabukswar, 2011]. 

To improve on this loss of performance, [Miao, 2010] developed a game theoretic 

approach to replay attacks designed to minimize losses due to detection. Like Mo and Sinopoli, 

Miao et al consider the case of a LTI system with a LQG Controller, and a χ
2
 failure detector. In 

this case, however, the authors design a system in which two controllers are switched between 

depending on the system dynamics. One is the optimal controller which operates without the 

addition of     and thus no loss of performance, and one is the controller designed by Mo and 

Sinopoli for replay attack detection with the addition of    . The controller is chosen by 

considering the system and the attacker as opponents within a game theory framework with a 

game divided into K stages corresponding to the time steps n considered in the previous work. 

Within the game, the attacker is considered the maximizer, or row player, and the system is 

considered the minimizer, or column player. Both may view the current state of the game but 

neither has complete knowledge of the other player’s previous decisions. If the detector alarm is 

triggered by the attacker than the system is considered to have won, but the system is strictly 

penalized for false alarms. The game space with three game states is denoted              and 
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the action spaces are    for the attacker and     for the system. The game states are shown in 

Figure 9. In each stage k the attacker’s action space    includes m options and the system action 

space    has two, the two controller options. The safe space, in which the system has detected 

an attack, is denoted   . The no detection space in which no alarm has been triggered is    and 

the state for a false alarm being triggered is   . 

 

Figure 9: The stochastic game model developed by [Miao, 2010], with s1 in an absorbing state. 

The state transition probability matrix is   ,    is the immediate payoff matrix, and the 

set strategies in each state k of the attacker and system for each system state are    and   . The 

state transition probability    is determined by    
           , the probability provided by the 

detector of an alarm being set off and changing the system state given the system history   . At 

stage k with strategies    and    and probability that system is at state    given as     
  , the 

probability of the system being at state   in stage k+1 is 

      
        

          

 

   

                    

These can be used to determine an optimal game strategy based on the state of the game 

and the expected payoff and a suboptimal game strategy which does not require knowledge of 
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the previous history of actions. Use of the suboptimal strategy can be shown to improve the 

control cost by approximately fifty percent compared to using only the controller with constant 

detection while the detection rate only decreases by approximately five percent when switching 

between controllers. The addition of game theoretic strategy increases the performance of the 

control system, but a trade-off between effectiveness of detection and function remains. The 

improvement in control cost is greater than the loss in detection rate, but given the initial 

detection rate still leaves room for improvement. 

An alternate strategy for the detection of replay attacks using the addition of time 

stamped noise while reducing the loss of performance was proposed by [Tran, 2013] for use in 

smart grids. When applying the additional noise to the smart grid there will be discrepancies 

between the power usage and the usage that is measured by smart meters and possibly lead to a 

waste of power. To reduce this loss, this technique calls for the random signal to be added 

periodically for a relatively small span of time, allowing equipment to operate normally during 

the longer periods in which the signal has not been added.  

Chabukswar, Mo and Sinopoli also worked on another approach to intrusion detection in 

the case of power grids, in which sudden problem with load could easily be due to changes in 

demand rather than an attack or a faulty sensor, making the Gaussian noise previously proposed 

by Mo and Sinopoli impractical. A wide sense stationary (WSS) Gaussian authentication signal 

is added to the set point of the generator while the controller runs a model of the generator and 

the effect of the new signal of the grid frequency. The actual grid frequency is then observed and 

changes are compared to the predicted change from the added signal. If the correlation is 0, the 

absence of the authentication signal is easily detected, signaling an attack on the system 

[Chabukswar, 2011]. 
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These replay attack detection techniques, while an improvement over approaches that do 

not take the sensor data obfuscation of replay attacks into account, still do not adequately address 

the danger such attacks present, particularly given the loss of efficiency that results. Further 

directions of investigations should address these issues. 
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Chapter 5: Conclusion 

5.1 Summary of Thesis 

 There are many avenues of attack through which a cyber-physical system may be 

vulnerable, and protection for each of those routes must be provided for. We have approached 

these avenues divided into the system that must be defended against. 

 The study of traditional cyber attacks was outlined in Chapter 2, which covered the ways 

of ensuring the integrity, availability, and confidentiality of the system. Cyber systems are 

vulnerable DoS attacks and network attacks that can be used to access unauthorized information, 

alter information within the system, or directly damage the system function. The system can be 

designed to be robust in the face of an attack through the correct use of keys and network 

topology can help protect the system. Incursions to the system can be detected by monitoring of 

quantified and learned values of system function for anomalous use indicative of an unauthorized 

use. 

 Chapter 3 discussed the security of sensor networks. Sensor networks are vulnerable to 

the addition of false nodes, the control of an honest node by an attacker to make it behave 

dishonestly, and the manipulation of the environment around a sensor to cause it to provide 

incorrect data. Such incursions can be detected in a sensor network through the examination of 

the values given by the sensors. Using these values as provided by sensors across the network 

over time, the reliability of individual sensors in the network can be evaluated. This can be 

evaluated by a single centralized decision maker or across the network by nodes acting together. 

Sensor values can also be weighted to provide maximum resilience to false node claims. 

 Chapter 4 covered the protection of control systems from damage or manipulation due to 

the DoS attacks, insertion of malicious signals, and deception through data readings used to 
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disguise an attack. Designing the system to minimize the damage caused by packet drop helps to 

detect against DoS attack. Appropriate filters can be used to detect signal insertion, but defense 

against replay attacks remain challenging, requiring the insertion of time-stamped noise which 

destabilizes the system. Switching between such a system and a more stable control system 

based on a game theoretic model allows the system performance and attack detection to be 

optimized. These attack detection and secure system design approaches may be combined to 

combat attack, ensuring, dependent on what attacks a system might face, a robust defense for 

cyber-physical systems can be developed. 

5.2 Cyber-Physical Security Outlook 

 Despite the great strides made in the field of cyber-physical security, many weaknesses in 

the defensive approaches must be dealt with more thoroughly. Future research in cyber-physical 

security may address issues such as the reduction of cost and computing power necessary to 

detect attacks, improvement of system performance while attack detection is in operation, or the 

adaptation of existing security approaches to new or more specific kinds of cyber-physical 

systems. Some improvements in security are simply a matter of integrating known methods of 

protection to the systems currently in use. 

Cyber security has a great deal of completed work in identification and defense from 

network attacks, but remains vulnerable to malicious attack by insiders and to denial-of-service 

attacks. Weaknesses in network topology have yet to be fully addressed. The internet has been 

shown to be even more vulnerable to path based attacks such as DoS [Lee, 2006], demonstrating 

that the great potential of a system whose network topology has not been optimized for security 

to be exploited by an attacker. While the need for this work has been shown [Lee, 2006], more 
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research must be completed in determining the optimum network topology for different types of 

attacks, including both DoS attacks and physical attacks such as physical sabotage to equipment. 

A large portion of the research into sensor network security works well in optimal 

conditions, but has a tendency to false alarms due communication errors that occur in real world 

conditions. This leads to the expulsion of normally functioning sensors. Further work should be 

done on techniques that take such normal errors into account. An additional weakness in the field 

is that while detection of smaller numbers of false nodes in a sensor network is well documented, 

the protection of the network when a larger proportion of nodes are false becomes more difficult 

as the number of false nodes increases. A future direction of research in sensor networks is the 

detection of attack in the case of larger scale attacks. 

Design of a controller in the presence of a non-optimal DoS attack has been formulated, 

but the formulation of such a controller in the face of an ideal attack strategy is more 

challenging. There is still a great deal of research to be done on the design of control systems to 

be resilient to DoS attacks in which the attacker has knowledge of the system and is attacking in 

the optimal way to cause damage to the system. Detection and design strategies for signal 

insertion to control systems have been well developed, but control systems are still vulnerable to 

replay attack. The best of current strategies have a low success rate and significant loss of 

function. In the area of detecting replay attacks in control systems, the improvement of the 

system performance when attempting to detect replay attacks is crucial to its functionality in real 

use. The improvement of system functionality when incorporating an added signal for time 

verification is crucial to the practical use of such techniques. Improvement of the rate of 

detection of such a system would also be valuable. 
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