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Abstract
Motor Vehicle fatalities per 100,000 population in the United States has been reported to be

10.69% in the year 2012 as per NHTSA (National Highway Traffic Safety Administration).

The fatality rate has increased by 0.27% in 2012 compared to the rate in the year 2011. As

per the reports, there are many factors involved in increasing the fatality rate drastically

such as driving under influence, texting while driving, and various other weather phenomena.

Decision makers need to analyze the factors attributing to the increase in an accident rate

to take implied measures. Current methods used to perform the data analysis process has

to be reformed and optimized to make policies for controlling the high traffic accident rates.

This research work is an extension to the data-mining algorithm implementation “Most As-

sociated Sequential Pattern” (MASP). MASP uses association rule mining approach to mine

interesting traffic accident data using a modified version of FP-growth algorithm. Owing

to the huge amounts of available traffic accident data, MASP algorithm needs to be fur-

ther modified to make it more efficient with respect to both space and time. Therefore, we

present a parallel implementation to the MASP algorithm. In addition to this, pattern tree

and apriori-tid algorithm implementation has been done. The application is designed in C#

using .NET Framework and C# Task Parallel Library.

viii



Chapter 1

Introduction
As per the report from National Highway Traffic Safety Administration in 2014, the overall

cost of motor vehicle crashes in the United States is equivalent of 1.9% of the $14.96 trillion

Gross Domestic Product (GDP) in 2010 [8]. This recent report underscores the importance

of safety measures that needs to be incorporated into the system. The quality of life and

economy in any country are governed by making the roadways safer for the general public.

Highway Safety Research Group (HSRG) is a division of the Information Systems and De-

cision Sciences Department (ISDS) within Louisiana State University, Baton Rouge. HSRG

aims at storing, maintaining, and analyzing traffic accident related data that is collected

from various law enforcement agencies throughout Louisiana. The raw data collected needs

to be analyzed to extract interesting patterns from the input data and aid the policymakers

in their decision-making.

1.1 Motivation

Department of Transportation and Development (DOTD) requires crash data reports to

identify accident prone intersections and roadway segments and advance new projects. For

example, if the curve in a road segment is experiencing more incidents due to the speed limit

on the segment, then policymakers can reduce the limit for a particular section. There is an

immense scope in data mining techniques to improve upon the information discovered from

the data generated from traffic incidents.

1.2 Problem Statement

The previous research work done to mine crash-related patterns using “Most Associated

Sequential Pattern” (MASP) algorithm has few drawbacks [7]. The application cannot han-

dle and mine huge amounts of data efficiently. Moreover, we need to incorporate pattern

1



visualization techniques into the application to display patterns and relationships contained

within the data. In order to solve all these problems, we have made some enhancements to

the existing application and performed experiments to analyze the performance with respect

to CPU usage and memory limits.

1.3 Objective

This thesis aims at several objectives done to enhance the previous research work done in

MASP (Most Associated Sequential Pattern).

1. Multi-threaded MASP: A multi-threaded implementation is done so that program ex-

ecution speed can be increased. C# Task Parallel Library and Threads are used for

parallelizing the tasks as well as Linked List structures for storing the huge volumes of

data.

2. Sequential and Multi-threaded Apriori-TID: We have implemented both the sequential

and multi-threaded versions of Apriori-TID algorithm. LinkedList and HashMap data

structures are used to store huge volumes of frequent itemsets and association rules

respectively generated from the datasets.

3. Multi-threaded FP-Growth: The existing sequential execution of the FP-Growth has

been enhanced to include the multi-threaded implementation. The multi-threaded

implementation improved the execution speed for running the algorithm to a great

extent.

4. Pattern Tree Visualization: This implementation enables the visual aspect of the pat-

terns in the form of a tree structure generated from MASP.

2



1.4 Definitions

1. Most Associated Sequential Pattern (MASP): MASP implies a sequential itemset

{I1,I2,I3,I4,...Ii,Ik} wherein each child Ii given its parent, has the highest association

threshold and highest frequency among other items at the same level. A MASP pat-

tern is defined as being sequential because each item-pattern depends on the previous

pattern [7].

2. MASP Rules: The rules that are obtained after mining the transactional data using

MASP is defined as MASP Rules.

3. Block: The transactions generated by the MASP query which comprises of select clause,

predicate and data source collection. In the predicate for block, we use the equality of

the form “attribute=value”.

4. Counter Block: The transactions generated by the MASP query which comprises of

select clause, predicate and data source collection. In the predicate for block, we use

the equality of the form “attribute 6= value”.

5. Itemset: It corresponds to a set or one or more items.

6. k-itemset: Any itemset of length k.

7. Support: It is defined as the fraction of transactions that contain the itemset.

8. Confidence: Conditional probability that a transaction containing X will also contain

Y for the transaction X⇒Y.

9. Frequent Itemsets: Given a transaction database, all itemsets that frequently occur

i.e. whose support is greater than or equal to the minimum support threshold.

10. Pattern Tree: Binary Tree depicting the association rules/patterns obtained in MASP.

3



11. Apriori-TID: Algorithm that is a variant of Apriori algorithm such that the whole

transactional database is not searched after the first iteration. Instead, we create a

subset of the database from the previous iteration to compute the support value for

the itemsets.

4



Chapter 2

Background
2.1 Most Associated Sequential Pattern (MASP)

Most Associated Sequential Pattern (MASP) is a name given to the variant of the associa-

tion rule mining algorithm [7]. This approach is used to find the most associated sequential

patterns and also generate the datasets that contain the transactions. These transactions

can be further mined to find the interesting patterns. Most Associated Sequential Pattern is

different from traditional association rule mining algorithms which deals with generating fre-

quent patterns along with the timestamp. On the other hand, MASP patterns are sequential

and they do not have a timestamp associated with it.

MASP construction involves searching for an item Imax that satisfies two conditions:

1. Minimum support

2. Association strength threshold

For example, initially the MASP set is empty. We find an item V1 whose frequency is highest

among the group and then check if its frequency is greater than or equal to the minimum

association strength threshold. If it passes the above condition, then the item is added to the

MASP set. As a result, the parent block is segregated into two parts: block which contains

V1 and counter-block containing V1. The same procedure is now used for the counter-block.

This process is repeated until no more data is remaining or no item exists that meets the

threshold value. Figure 2.1 shows how the blocks and the counter-blocks are created. This

block created at level 1 is formed from the MASP query. The MASP query comprises of

select clause, predicate and the data source from which data is selected.

5



Block

Counter Block

V1

V1

Figure 2.1: MASP Block at level 1, MASP1 = {V1}

2.2 Multi-Threading

Multi-threading is one of the approaches in Parallel Computing. Multi-threading is a form

of multi-core programming which uses multiple cores on the same processor. A distributed

processing environment where execution is performed on separate physical nodes, is beyond

the scope of this research. Rather, our application is executed on a single physical machine.

Multi-threading is a mechanism wherein a program has several threads in execution. A

thread is defined as an elementary unit of program execution. Several threads execute in

parallel to increase the concurrency of the application. These threads share the resources

and belong to the same process within which they execute. In a single core system, multi-

threading internally uses context switching to switch the processor among several threads.

In short, it is similar to multi-tasking. On the contrary, a multi-core system truly provides

concurrency in multiple thread execution.

6



There are several issues involved while designing the algorithm to execute in parallel using

the multi-threaded approach. Initially, we need to divide the various steps of our algorithm

such that all the activities are divided equally among all threads. Although, we always aim

to gain maximum concurrency but sometimes sequential execution is required due to the

algorithm design. We need to keep a balance while segregating the tasks among different

threads. After task division, we need to split the data appropriately with reference to data

dependencies. Multi-threaded implementation requires thorough testing and debugging of

the source code. We need to maintain the correctness and accuracy of the designed algorithm

while controlling access to shared data.

There are several benefits of a multi-threaded program. It allows for a greater degree of

control over the program’s execution by separating the control and execution threads. Addi-

tionally, it also makes the application scalable by increasing concurrency and better resource

utilization.

2.2.1 Conversion of Sequential to Multi-Threaded Code

Figure 2.2 and 2.3 illustrate the CPU performance while running a multi-threaded code over

a sequential code execution. Figure 2.3 shows that all of the 8 logical processors are being

utilized to their maximum capacity. On the contrary, Figure 2.2 illustrates sub-optimal

utilization of the logical processors.

1. Identify the true independent computations: The instructions that are to be executed

in parallel need to run independent of one another. There are instances where a

sequential code is desirable since dependencies exists in the execution of instructions

such as in loop. Consider an illustration of house construction. Different workers like

plumber, carpenter etc. are involved in performing different operations. Here, most

of the workers are doing independent tasks but the task performed by one affects the

task performed by another.

7



Figure 2.2: CPU Usage for Sequential Execution

Figure 2.3: CPU Usage for Multi-Threaded Execution
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2. Concurrency must be implemented at the highest possible level: We can use either

top-down or bottom-up approach to implement threading. We aim to achieve coarse-

grained solution where we have lower overheads and better scalability.

3. Do not assume an ordering of execution: In sequential code, it is very trivial to find

the ordering in instruction execution. On the contrary, thread order execution is non-

deterministic.

4. Choice between Task Parallel Library (TPL) and Threading: Task Parallel Library

has the advantage of freeing the user from handling the threads internally. TPL can

be used for almost all of the asynchronous needs without worrying too much about

managing thread life-cycle. ThreadPool is useful when we want to have a greater

control in thread creation, management and thread destruction.

The thread creation involves huge overhead such as context switching etc. Tasks

can dynamically decide to create different threads of execution. Tasks internally use

ThreadPool for thread life-cycle management.

Tasks always guarantee that the application will have maximum performance when

run on any given system.

5. Parallel Add-ins: Task Parallel Library contains parallel extensions where the same op-

eration runs concurrently on different elements of the source collection. .NET contains

two constructs to achieve data parallelism:

• Parallel.For

• Parallel.ForEach

9



Sequential version

foreach (var input in inputCollection)

{

DoWork(input);

}

Parallel equivalent

Parallel.ForEach(inputCollection , item => DoWork(input));

TPL and the parallel extensions enable the users to levarage the maximum hardware

capacity.

6. Use Thread-Local variables; lock the data if required: The parallel execution of the code

should yield correct output. The amount of synchronization should be kept low else

it will increase the overheads in thread execution. The sequential code might contain

collections that are populated with the computed data in some loop. We have two

choices; either we can apply lock to the data variable or else we can use Concurrent

Collections. Concurrent collections are thread-safe. Details have been described in

Section 4.2.3.1.

2.3 Apriori-TID

Association Rule Mining is a method for finding interesting patterns in large databases. As

an illustration, the association rule {Beer,Bread} ⇒ {Milk} implies that if a customer

purchases beer and bread together, then he/she is more likely to buy milk. Such patterns

can be used for decision-making about marketing and promotional pricing etc.

10



There are two tasks to be performed in mining association rules on a database:

1. Find all Frequent Patterns: Frequent Itemsets summarizes datasets. These are the

combination of items that frequently occur together. Given a transactional database

D and minimum support Smin, we find all frequent itemsets as well as the frequency

of each set in the collection.

2. Find all Association Rules: We generate high confidence rules from the frequent item-

sets.

There are several algorithms for the implementation of association rule mining such as Apri-

ori, FP-Growth, and Apriori-TID etc. Our application already contains the implementation

of FP-Growth algorithm. We have implemented Apriori-TID algorithm to mine association

rules from the transactional database.

2.3.1 Frequent Itemset Generation

For n items in the transactional database D, there are 2n possible itemsets that can be

generated. Brute force method of generating frequent itemsets requires O(MT ), where M is

number of candidate itemsets generated and T is the number of transactions in database D.

This computation is very expensive since M = 2n; which is exponential. Therefore, we have

reduced the number of candidates M generated by using pruning technique as illustrated

in Figure 2.4. Apriori-TID reduces the number of transactions T by using a subset of the

previous database used at every step of the itemset generation. Additionally, we have used

HashMap and LinkedList data structures for storing the candidates as well as transactions

that reduces the number of comparisons at each step.

11



Figure 2.4: Apriori TID itemset pruning [1]

1. Reduce the number of candidates: The anti-monotone property of support mentions

that the support of an itemset is always less than the support of its subset. This

anti-monotone property is used extensively in Apriori-TID. The property can be illus-

trated by an example such as Support(Milk) ≥ Support(Beer,Milk), where {Milk} ⊆

{Beer,Milk}. We are using HashSet to store the transaction Id’s where an item oc-

curs and store the items as a KeyValuePair of ItemStruct consisting of the Item-id

as Key and Value as count of transactions and HashSet of transactions. The details

of the data structures used is elaborated in Section 4.2.3.1.

2. Reduce the number of transactions: The original database is not used for computing the

support of an item after the first pass. Apriori-TID creates and uses a data structure

D′ at every step of candidate itemset generation. D′ is a HashSet of all the transactions

that contains the frequent itemset. Therefore, support is calculated just by a single

pass over the dataset compared to multiple passes as in Apriori algorithm.

12



2.3.2 Association Rule Generation

Total number of possible rules for 2n itemsets using brute-force approach is 3n − 2n−1 + 1.

Confidence of rules generated from the same itemsets possesses anti-monotone property such

that I{A,B,C,D} : Confidence(ABC → D) ≥ Confidence(AB → CD). Candidate rules

are generated by merging the two rules that contain the same prefix in the rule consequent.

Figure 2.5 shows how the rules are pruned if the parent rule is infrequent then all of its

subsets are pruned.

Figure 2.5: Apriori TID Rules pruning [1]
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Chapter 3

Related Work
We currently have a large number of algorithms and techniques available that can be used to

mine association rules. It is not feasible for a decision maker to analyze all possible patterns

generated. Hence, a modular decision support system is needed to enable policymakers for

taking timely decisions accurately. There are two measures Support and Confidence that

are widely used in association rule mining [1, 7]. If we want to mine huge volumes of data

efficiently, then it might take exponential amount of computing resources (heuristics) [21].

Additionally, it requires lot of computation power along with time and memory space in

generating all the association rules. Some of the techniques proposed for such purposes

include Intelligent Data Distribution Algorithm, and Hybrid Distribution Algorithm that

gives an efficient and scalable solution to the problem [9].

However, before using such parallel approaches, we need to tackle several challenges such

as load balancing, data dependencies, data and task segregation, and communication cost

[16]. Multi-threading is one of the efficient method that can be implemented to solve these

challenges [17]. There can be data dependency requirements to partition data among different

processors. The load among different cores needs to be evenly balanced. A classifier to

predict the fastest Association Rule Mining algorithm improves the accuracy of the results

to 80% with less overhead [11]. All these methods improve the performance by distributing

the tasks and data to multiple CPU processors.

Association rule mining algorithms such as Apriori and Apriori-TID are used to discover

meaningful relationships/patterns between items in a large transactional database [2]. These

algorithms are known to outperform previously used algorithms such as AIS and SETM.
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In order to provide scalability to the existing association rule mining algorithms and improve

the response time, parallelism is a desired approach. The parallel design considers three main

components namely: hardware platform, type of parallelism, and load-balancing technique

[22].

There has been relatively less research done to incorporate parallelism in the execution of

association rule mining. There are three different types of parallelization approaches for as-

sociation rule mining algorithms [23]. The first approach is Count Distribution algorithm for

Apriori rule generation. In this approach, local database partition is used to fetch the partial

support for candidate itemsets. After each iteration, global support is calculated from the

partial computation of support values. The second approach is Data Distribution algorithm

wherein candidate itemsets are partitioned into disjoint sets and given to different proces-

sors to generate global support values. However, this approach has huge communication

overheads. The third method is Candidate Distribution where each processor gets parti-

tioned candidated and work independently on their respective replicas of database. The last

approach is Count Distribution which has better performance compared to above three men-

tioned approaches. In the Count Distribution approach, candidate itemsets are generated in

parallel and stored in a hash data structure to speed up performance.

Three types of thread operation models have been proposed [16].The first model Dispatcher-

Worker Thread Model consists of one dispatcher thread and multiple worker threads. Each

worker thread works in parallel with other worker threads and all requests are managed by

the dispatcher thread. The second model Peer to Peer Model where no dispatcher-worker

relationships exist. All are worker threads working on separate requests in parallel. The

third kind of model is Pipeline Model which represents producer-consumer relationship. In

the pipeline model, all threads are organized in the form of a pipeline and the requests are

processed in order. The peer-to-peer model has been proved to be a better model compared

to rest of the other two models.
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Chapter 4

Method
This thesis aims at enhancing the present methodology “Most Associated Sequential Pattern”

(MASP) for data mining of interesting traffic accident patterns. There are various objectives

that are targeted at in this work:

1. Multi-threaded implementation of MASP

2. Pattern tree visualization

3. Multi-threaded implementation of FP-Growth algorithm

4. Apriori-TID implementation

Each of the above enumerated objectives are implemented after careful consideration of the

present system in terms of memory and time, as well as choosing efficient data structures.

The initial step is data pre-processing that prepares the input data for further operations.

4.1 Data Pre-Processing

Association Rule Mining involves the extraction of interesting patterns in large databases.

However, it uses discrete data as an input. This implies that we need to transform the

continuous data to discrete form using discretization or binning method. This initial step

is most important since we need to make our input data suitable for pattern mining. Not

only this, we must encode the data in a form that can effectively improve the performance

of data-mining process as well as help in reducing the memory utilization.

Binning or quantization technique helps in reducing the errors in the observed data. Using

this method, we replace the value that falls within a certain interval by the central value of

that interval.
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The designed application uses the above described discretization method. The user is able to

import the raw data and based on the selections made, the application is able to discretize

the input data. There are three options provided to set the binning type:

1. Default: No binning is performed on the attribute.

2. Fixed: User is able to provide fixed bin size.

3. Bin Range: User is able to provide range of values for discretizing an attribute’s value.

As an illustration, if the user selects the bin range as {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

and the attribute’s values are {42.5, 55, 5, 18.6, 22.7, 78.7}. Then, after discretization, each

of the attribute’s value is replaced by the characteristic value of the interval. Hence, we

get the discretized value for the attribute as {40, 50, 10, 20, 70}. Figure 4.1 shows the entire

process in more detail.

4.2 Multi-Threaded Implementation of MASP

Of the numerous concurrent programming API’s available in C#, we are using the Task

Parallel Library and Threads to execute our application in parallel. We have used the

Threading namespace which is a part of System. We are also using concurrent collections

provided by the C# Task Parallel Library.

4.2.1 Multi-Threaded Conversion

The existing application contains the method Convert that performs several operations on

the raw input data that the user imports into the application. Initially, the raw data is

discretized into Binned Data. Then Item Lookup Table is created and finally data table

Transactional Data is built.
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Figure 4.1: Process of Discretization
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The entire conversion method is executed once for any input dataset. Due to the complexity

of the conversion algorithm and the number of operations executed on each row, the execution

time is substantially high. We aim to reduce the run time by executing the operations in

parallel using multi-threading. In order to compare the performance of the sequential and

parallel execution of the method, we created a new method Parallel-Convert that contains

the multi-threaded code and a new button Parallel-Run.

We started by parallelizing the section of code that took maximum amount of execution

time. In the Convert method, the code section that creates the Transactional Database

took the longest execution time. The execution time for the remainder of the code sections

within the Convert method is insignificant and parallelizing it would result in additional

overheads. As a result, the code section for creating the Transactional Database is modified

by replacing the sequential version with the parallel version. We have used C# Task Parallel

Library to run the code in parallel across various system’s computing cores. The details of

the code section and the improved performance are described in Section 4.2.3.1.

4.2.2 Multi-Threaded MASP

Once the data conversion is done, the next stage is to detect all of the Most Associated

Sequential Patterns in the encoded data. A frequent item-set is considered to be the most

associated when it meets the minimum association threshold level [0, 1].

The algorithm execution time is greatly increased by few code sections that takes more

execution time to complete. We aimed at parallelizing the code using Thread Class. C#

Task Parallel Library cannot be used directly for few of the code sections. This is because

there are few limitation in the .NET Framework support with regards to parallel while

method.
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Our overall aim was to make the code run in negligible time without making substantial

modifications to it. Therefore, both Thread delegate as well as Parallel.ForEach method

are used to gain maximum performance improvement. Moreover, we have used thread-safe

concurrent data-structures whose details are mentioned in Section 4.2.3.1.

An export functionality has been added to export the MASP rules that are generated in this

step. The advantage of exporting the rules to a separate excel is to be able to query the

database effectively and efficiently. This code section is integrated into the Export panel of

the application.

4.2.3 Implementation Details

C# Task Parallel Library is based upon the concept of an asynchronous operation (task).

At a higher level of abstraction, a task refers to a thread or a threadpool work item. Task

parallelism is achieved where one or more independent tasks run concurrently. Tasks are

queued to the ThreadPool where we can adjust the number of threads and provides load

balancing for maximizing throughput [13].

There are two benefits of using tasks:

1. More efficient and more scalable.

2. More control than thread or work item.

As a result, in .NET Framework, Task Parallel Library is the preferred API for implementing

multi-threaded, parallel, and asynchronous codes.

Task Parallel Library (TPL) uses System.Threading.Tasks.Parallel class to support data

parallelism. Data Parallelism is implemented by using Parallel.For and Parallel.Foreach

loops. These methods are parallel implementations of for and foreach loops. Here, the

data is partitioned into sub-parts that execute concurrently. In addition to this, PLINQ is

also used that is a parallel version of LINQ queries.
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Parallel.For and Parallel.Foreach methods provide various functionalities such as con-

trolling the degree of concurrency, monitor thread-state, and maintaining thread-local states

etc.

4.2.3.1 Data Structure

System.Collections.Concurrent namespace contains many thread-safe collections that

are used in place of their corresponding types in System.Collections namespace. These

collections are accessible by multiple threads concurrently. Concurrent classes include

• BlockingCollection< T >

• ConcurrentBag< T >

• ConcurrentDictionary< Tkey, TV alue >

• ConcurrentQueue< T >

Our multi-threading implementation involves the use of these concurrent collections based

on the data requirements.

Table 4.1 shows the overview of the concurrent collections used in our implementation and

their descriptions [12].

21



Table 4.1: Concurrent Collections

Class Description

BlockingCollection<T>
Provides blocking and bounding capabili-
ties for thread-safe collections that implement
IProducerConsumerCollections<T>

ConcurrentBag<T> Represents a thread-safe, unordered collection of ob-
jects.

ConcurrentDictionary<Tkey,Tvalue> Represents a thread-safe collection of key/value pairs
that can be accessed by multiple threads concurrently.

ConcurrentQueue<T> Represents a thread-safe first in-first out (FIFO) collec-
tion.

4.2.3.2 Details

Below code sections shows the conversion of sequential code into multi-threaded equivalent

to improve performance.

1. Sequential and multi-threaded Conversion Method

// sequential implementation

foreach (DataRow row in BinData.Rows)

{

string [] itemarray = new string[AttributeBins.Count()];

int colind = 0;

foreach (object item in row.ItemArray)

{

itemarray[colind] = ItemLookUp.Where(o => o.Value.

attributeName == BinData.Columns[colind ]. ColumnName && o.

Value.valueName == item.ToString ()).FirstOrDefault ().Key;
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colind ++;

}

TransactionalData.Rows.Add(itemarray);

}

// parallel implementation

var DataTableBag = new System.Collections.Concurrent.

ConcurrentBag <List <string []>>(); //Use a thread -safe

datastructure in the concurrent collection. The CocurrentBag

contains unordered data.

Parallel.ForEach <DataRow , List <string[]>>( BinData.AsEnumerable (),

() => new List <string []>(),

(row , loop , transactionData) =>

{

string [] itemarray = new string[AttributeBins.Count()];

int colind = 0;

foreach (object item in row.ItemArray)

{

itemarray[colind] = ItemLookUp.Where(o => o.Value.

attributeName == BinData.Columns[colind ]. ColumnName && o.

Value.valueName == item.ToString ()).FirstOrDefault ().Key;

colind ++;

}

transactionData.Add(itemarray);

return transactionData;

},

(finalresult) =>

{
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DataTableBag.Add(finalresult); // adding the data to the bag

after each thread execution

});

2. Sequential and multi-threaded MASP block creation

// sequential implementation

while (CandidateBlock.Count != 0)

{

...

...

}

//multi -threaded implementation

int threadCount = Environment.ProcessorCount; // corresponding to

8 logical cores

int numThreads = 0; // keeps track of the number of threads

bool finished = false;

while (threadCount > 0)

{

new Thread(delegate () // thread delegate method

{

#region Processing

Interlocked.Increment(ref numThreads); //locks the data

variable to increment the count

...

...

mineBlock.Enqueue(SelWher);

Interlocked.Decrement(ref numThreads); //locks the data

variable to decrement the count
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Thread.Sleep (2); //to synchronize thread execution

#endregion Processing

if (finished) // checks if the thread needs to be destroyed

{ break; }

}).Start ();

threadCount --;

}

The optimal number of threads that gave maximum performance for the creation of MASP

blocks is equal to the number of logical processors in the system. For our system configura-

tion, we have 8 logical cores.

Figure 4.2 shows the performance of MASP block create method with the variation of number

of threads spawned in the implementation. As the number of threads increase past the

number of logical cores, additional time is consumed by context switching which increases

the total execution time.

Table 4.2 shows the speedup obtained by using the multi-threaded version over the sequential

method. Amdahl’s law is used to obtain the speedup.

According to Amdahl’s law [15]:

Speedup = tp/ts,

where tp = parallel execution time in seconds

ts = sequential execution time in seconds
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Figure 4.2: MASP Block create method variation with thread count

Table 4.2: Speedup and Execution Time Comparison of Sequential and Multi-Threaded
Methods for 8000 records (Highway Traffic Dataset)

Method Seq Time(sec) Multi-Threaded Time(sec) Speedup Obtained

Convert 4.09 1.74 2.351
Create Blocks 6.84 2.6 2.691

FP-Growth 4.09 9.96 2.435

4.3 Multi-Threaded Apriori-TID

Figure 4.3 shows the high-level design of the Apriori-TID algorithm implementation.

4.3.1 Implementation Details

The multi-threaded implementation of Apriori-TID algorithm involves running the code

sections in parallel. We have used Concurrent Collections available in C# Task Parallel

Library that are thread-safe collections. Concurrent collections are used to store Candidate

Itemsets generation and Rule Generation step.
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Figure 4.3: Apriori TID High-Level Design
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The implementation of Apriori-TID is a slightly different version of regular Apriori-TID

algorithm [2]. The algorithm is slightly modified in the construction of the data-structure Ck

which comprises of < TID,Xk >, where Xk corresponds to the k-itemset in the transaction

TID. Instead, we assign each candidate itemset with an identifier that uniquely identifies the

item and is also used as an indexer. The structure of the itemset comprises of ItemStruct

class that contains a member variable Count which is used for calculating support of each

item, the HashSet comprise of the transaction identifiers comprising of the itemsets as well as

a boolean variable that tracks whether the item is frequent or not. ItemStruct eliminates the

need of reconstructing the Ck in every iteration of the algorithm. We just need to do intersect

operation for the Hashset of transactions of k itemsets to create a new HashSet< T > data

member of ItemStruct class.

public void IntersectWith(

IEnumerable<T> otherCollection

)

The IntersectWith method of HashSet< T > is O(N) operation if otherCollection has

the same equality comparer as the current HashSet< T > object. Otherwise, this method

is O(N + M) where N is the count of elements in current HashSet< T > object and M is

number of elements in otherCollection.

This reduces the space complexity for creating and storing a new data structure Ck. This

makes our algorithm more efficient with respect to both space and time complexity.

4.3.2 Multi-threaded Apriori-TID

The sequential implementation of Apriori-TID has been multi-threaded to improve the per-

formance. The code section reveals the conversion of sequential to multi-threaded Apriori-

TID algorithm. Here, for loop has been modified to Parallel.For which improves the

performance of loop execution considerably.
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Data: Transactional Database D
Result: Rules generated RuleSet
begin

ActiveSet←− newLinkedList < KeyV aluePair < List < int >, ItemStruct >> ();;
add all items in transaction dataset D to the ActiveSet;
prune the 1-itemset using minimum support threshold Smin;
while ActiveSet is not null do

use Ik−1 join Ik−1 to generate a set of unpruned 1-itemset;
compute the intersection of Hashset< T > of Ik−1 itemsets;
compute the Count C of Hashset< T >;
if C ≥ Smin then

add the item to ActiveSet ;
else

go back to the beginning of current section;
end

end

end
Algorithm 1: Apriori-TID implementation

The below mentioned code section is used to generate frequent k-itemsets:

// sequential code

for(int i=0;i<wsC;i++) //used for frequent k-itemset generation

{

LinkedListNode <KeyValuePair <List <int >, ItemStruct >> iNode =

workingSet.First;

...

}

//multi -threaded code

Parallel.For(0, wsC , i => //for k-itemset generation

{

LinkedListNode <KeyValuePair <List <int >, ItemStruct >> iNode =

workingSet.First;

...

}
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4.3.2.1 Data Structure

The ItemStruct class is used to store the frequent k-itemsets generated from the Apriori-TID

algorithm.

Rule class is used to store the antecedent, consequent, support, and confidence of each

generated rule.

public class Rule : IComparable <Rule >

{

string combination; // contains antecedent

string remaining; // contains consequent

double confidence;

double support;

}

public struct ItemStruct

{

public double Count { get; set; } // contains the number of

transactions in which the item occurs; used for computing

support

public HashSet <int > TransactID { get; set; } // Hashset comprising

of all transaction -id(s)

public bool Active { get; set; } // tracks whether the item is

frequent or not

}

4.4 Multi-Threaded FP-Growth Tree

This section deals with the generation of association rules from K-Patterns from FP-Growth

algorithm. The rules are formed by combining the antecedent and the consequent part of

the patterns. This algorithm takes an enormous amount of time to execute. Moreover, there
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are several dependencies in terms of the data-structure being used in the implementation.

Our aim was to take care of the implementation details while trying to find the sections that

consume more execution time. We have used C# Task Parallel Library for improving the

performance of this method. The code sections that are parallelized include:

1. construction of k-pattern tree

2. generation of rules from the frequent patterns

4.4.1 Implementation Details

// sequential version

foreach (PatternTreeNodes pk_1 in k_1_patternTree) //this method is

used for generating the k-patterns in the application

{

foreach (ChildPositions ck_1 in pk_1.ChildPositions)

{

...

}

}

//multi -threaded implementation

System.Collections.Concurrent.ConcurrentBag <PatternTreeNodes >

TreeNodesCollection = new System.Collections.Concurrent.

ConcurrentBag <PatternTreeNodes >(); //Use the thread -safe concurrent

collection to store the computational results obtained

Parallel.ForEach(k_1_patternTree , pk_1 =>

{

foreach (ChildPositions ck_1 in pk_1.ChildPositions)

{

...

}

}
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4.5 Visualization of MASP Pattern Tree

The output of the MASP block creation step is a Mined Database from which we create a

pattern tree. A Pattern Tree enables a visual interpretation of the mined data in order to

get quantitative and qualitative information from them.

There are several third-party API’s available online that can be used to generate the pattern

tree, like Google Visualization Charts. However, third party API’s have external dependen-

cies and require internet connectivity to communicate and generate graphics. We have used

a Binary Tree implementation to store and draw node images for enabling visual perspective

from the data.

The mined data has a special property that each node contains at most two children and the

generated tree is not balanced. For a given node in a binary tree, the first child is named

as the Left Child and the second child is referred as the Right Child. Additionally, the

mined data contains the items either in Block or Counter-Block. If the item V1 is present

in the Block, we add it to the left child. If present in the Counter-Block, we add the item

to the right child and mark it as the item’s complement V1.

4.5.1 Implementation Details

Figure 4.5 shows the complete pattern tree generated from the mined dataset and Figure 4.4

represents a subsection of the pattern Tree. Additionally, we can export the MASP Tree into

.xlsx format. The table can be later imported to create and display Pattern Tree without

processing the raw input data. Table 4.3 shows the subset of the Pattern Tree data exported

into Excel format. NODE-ID is an identifier for each node. PARENT-ID denotes the identifier

of the parent-node for this node. ITEMID is the item contained in the node. TYPE specifies

if this node is to be added to the left or right of the parent-node. LEFT CHILD and RIGHT

CHILD refers to the left and the right child of the node.
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Data: Mined DataTable M that contains the set of MASP’s obtained from the Section
4.2.2

Result: Pattern Tree: Tree
begin

Tree←− {};
for m in M do

get the item-id itemId from m;
perform depth-first search to find the parent-node of itemId;
if parent-node’s child 6= itemId then

insert the current node m into the Tree;
if m contains “=” then

add the itemId as the LeftChild;
else

add the itemId as the RightChild;
end

else
go back to the beginning of current section;

end

end

end
Algorithm 2: Pattern Tree Creation

Figure 4.4: Sub-section of the MASP Tree
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Figure 4.5: MASP Tree

Table 4.3: Pattern Tree in Table Format

NODE-ID PARENT-ID ITEMID TYPE LEFT CHILD ID RIGHT CHILD ID

1 0 414 = 2 3
3 1 366 <> 0 0
2 1 366 = 4 5
5 2 228 <> 6 7
7 4 151 <> 0 0
6 4 151 = 8 9
9 6 114 <> 0 0
8 6 114 = 10 11
11 8 439 <> 0 0
10 8 439 = 12 13
13 10 368 <> 0 0
12 10 368 = 14 15
15 12 413 <> 0 0
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In addition to generating a visual representation of the MASP tree, the implementation

allows for the saving of the Pattern Tree into various image file formats such as *.gif, *.jpg,

and *.png.

4.5.1.1 Data Structure

Binary Tree has been implemented for creating the MASP Pattern Tree since we can have

at most two children for any node. Also, the tree is unbalanced.

Below class specifies the BinaryTreeNode and BinaryTree class structures used in the im-

plementation:

public class BinaryTreeNode

{

public int Value { get; set; }

public int Node { get; set; }

public int Parent { get; set; }

public string Block { get; set; }

// gets or sets the right node connected to this node , if any

public BinaryTreeNode Right { get; set; }

// gets or sets the left node connected to this node , if any

public BinaryTreeNode Left { get; set; }

}

public class BinaryTree

{

// the root node , it won ’t be seen on the graph!

public BinaryTreeNode RootNode { get; private set; }

}
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4.6 Complexity

1. Binary Tree:

We have implemented Depth First Search (DFS) Pre-Order traversal for searching for

the parent node of the new node.

Time complexity for Depth First Search is O(|N |), where |N | is the number of nodes

in the tree.

Space complexity for Depth First Search is O(|H|), where |H| is the depth of the tree.

This is because we have done a recursive implementation of the Depth First Search

algorithm. DFS stores only the current path in order to get to the solution. Hence,

the space complexity is a linear function of the depth.

Node Insertion takes O(1) time complexity since we got the parent node by DFS search.

2. Cyclomatic Complexity and Class Coupling: Cyclomatic complexity depicts the num-

ber of decision logics in the source code [19]. If the number of decisions are more in

the code, then the cyclomatic complexity is more.

Class coupling indicates how many classes a single class/method is referencing [5].

Table 4.4 shows the cyclomatic complexity and class coupling values obtained for each

of the main methods of the application. As depicted in the Table 4.4, the cyclomatic

complexity of FP-Growth algorithm is more than any other methods in the table.

This is evident through the fact that FP-Growth algorithm takes more execution time

than Apriori-TID whose cyclomatic complexity is less. This means that FP-Growth

algorithm source code contains large number of decision paths. Binary Tree creation

and display has the least cyclomatic complexity.

The threshold for class coupling is 30 for a method and 80 for a class [6].
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Table 4.4: Code Complexity Analysis

Methods Cyclomatic Complexity Class Coupling

Sequential Convert 32 34
Multi-threaded Convert 39 44

Sequential Create Blocks 48 26
Mult-threaded Create Blocks 54 36

Sequential FP-Growth 60 29
Multi-threaded FP-Growth 65 38

Sequential Apriori-TID 26 28
Multi-threaded Apriori-TID 30 32

Create Tree 4 10
Display Tree 2 6
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Chapter 5

User Interface
The user interface for Pattern Mining is shown in Figure 5.1. The data to be mined is

imported into the interface in the desired format. Then the required attributes are selected

through “Select Attributes”. Once this is done, then we need to load the attributes and

perform discretization if desired. Next, the minimum support and confidence values are

specified in the provided textboxes. Once we select the mined type and whether to mine

entire data or just the blocks, we can run the MASP algorithm either multi-threaded or

sequential. To run the association rules, Apriori-TID or FP-Growth, the required type is

selected from the dropdown and then all the patterns can be mined either sequentially or

using multi-threaded implementation. We also have the option to create , display, import,

and export the pattern tree. In addition to this, a new functionality is added that can export

the MASP rules in .xlsx format.
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Figure 5.1: User Interface
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Chapter 6

Experiment and Results
Following experiments are performed using the five datasets:

1. Compare the performance of sequential and multi-threaded MASP

2. Compare the performance of sequential and multi-threaded Apriori-TID algorithm

3. Compare the performance of sequential and multi-threaded FP-Growth algorithm

4. Compare the performance of sequential Apriori-TID and FP-Growth algorithm

5. Compare the performance of multi-threaded Apriori-TID and FP-Growth algorithm

6.1 System Environment Used

Below are the system, softwares, and dataset specifications used in the experimental runs:

Operating System:

Windows 8.1 Enterprise 64-bit

CPU:

Intel Core i7 4800 MQ

1. No. of Cores: 4

2. No. of Logical Cores: 8

3. Clock Speed: 2.7 GHz

4. Max Turbo Frequency: 3.7 GHz

5. Cache: 6 MB L3 cache

Haswell 22 nm Technology
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RAM:

16.0 GB Dual-Channel DDR3 @ 798 MHz (11-11-11-28)

Graphics:

Generic PnP Monitor (1920x1080@60Hz)

Intel HD Graphics 4600

Storage:

232 GB Samsung SSD 840 EVO 250 GB mSATA (SSD)

931 GB Seagate ST1000LM014-1EJ164 (SATA)

Integrated Development Environment:

Visual Studio 2013

Softwares:

.NET 4.5

R 3.1.0 [14]

Rattle (version 3.1.1) [20]

DATASETS:

Highway Traffic [10]

BlogFeedback DataSet [4]

Diabetes Data [18]

Connect IBM [3]

Pumsb IBM [3]

6.2 Data

We have performed our experiments on five datasets. Tables 6.1, 6.2, 6.3, and 6.4 describe

the characteristics of the five datasets.
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Table 6.1: Highway Traffic Dataset

Highway Traffic

Characteristics Values
#Atrributes 38

#Transactiona 174436

Table 6.2: BlogFeedBack Dataset

Characteristics Values

Data Set Characteristics Multivariate
Attribute Characteristics Integer, Real

Number of Instances 60021
Number of Attributes 281

Missing Values N/A
Area Social

Date Donated 5/29/2014
Number of Web Hits 4085

Table 6.3: Diabetes 130-US hospitals for years 1999-2008 Dataset

Characteristics Values

DataSet Multivariate
Attribute Integer

Number of Instances 100000
Number of Attributes 55

Missing Values Yes
Area Life

Date Donated 5/3/2014
Number of Web Hits 90406

Table 6.4: DataSets Prepared by Roberto Bayardo from the UCI datasets and PUMSB

UCI DataSets and PUMSB

DataSets #Items Avg. Length #Transactions
pumsb 2113 74 49046

connect 129 43 67557
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6.3 Experimental Setup

The results are compared for below mentioned parameters:

1. minimum support(%): 0.1,10

2. minimum confidence(%): 80, 50, 25

R data mining uses apriori implementation of association rule mining. We used R to run

the rule mining for the five datasets as a traditional ARM.

6.4 Results and Discussion

Figures 6.1, 6.2, 6.3, 6.4, 6.5 depict the comparative performance of sequential, parallel

implementation of MASP, and R data mining (Traditional Association Rule Mining (T-

ARM)).

Figures 6.6, 6.7, 6.8, 6.9, 6.10 represent the comparative performance of sequential, parallel

implementation of Apriori-TID and FP-Growth Algorithms.

The Figure 6.1 shows the graph plots between MASP (both sequential and multi-threaded

implementation) and R on Highway Traffic Dataset. The horizontal axis gives the sup-

port and confidence values (in %) and vertical axis depicts the elapsed time (in sec.). The

data-labels represent the number of attributes for which the algorithm was run. Below

observations are made based on the Figure 6.1:

1. Multi-threaded implementation has a better performance with respect to time efficiency

over sequential implementation of MASP. We obtained an average speedup of 2.013.

2. The sequential MASP takes highest amount of time when running for Support = 0.1(%)

and Confidence = 25(%). This is when we obtain the maximum speedup by multi-

threading i.e. 2.92.
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Figure 6.1: MASP vs. R performance (Highway Traffic dataset)

3. R association rule mining takes more time to run even for less number of attributes and

lesser number of transactions in comparison to MASP. Minimum number of attributes

for MASP is 50 and R is 19.

4. R ARM is able to mine more number of attributes (28 v/s 19) when support is 10%

compared to when support is 0.1%.

The Figure 6.2 shows the graph plots between MASP (both sequential and multi-threaded

implementation) and R on PUMSB-IBM Dataset. The horizontal axis gives the support and

confidence values (in %) and vertical axis depicts the elapsed time (in sec.). The data-labels

represent the number of attributes for which the algorithm was run. Below observations are

made based on the Figure 6.2:

1. As discussed earlier, multi-threaded implementation has a better performance with

respect to time efficiency over sequential implementation of MASP. We obtained an

average speedup of 1.84.

2. The sequential MASP takes highest amount of time when running for Support =

0.1(%) and Confidence = 25(%). This is when we obtain the maximum speedup by

multi-threading i.e. 3.16.
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Figure 6.2: MASP vs. R performance (PUMSB-IBM dataset)

3. R association rule mining takes more time to run even for less number of attributes and

lesser number of transactions in comparison to MASP. Minimum number of attributes

for MASP is 50 and R is 19.

4. R ARM is able to mine more number of attributes (26 v/s 19) when support is 10%

compared to when support is 0.1%.

The Figure 6.3 shows the graph plots between MASP (both sequential and multi-threaded

implementation) and R on CONNECT-IBM Dataset. The horizontal axis gives the sup-

port and confidence values (in %) and vertical axis depicts the elapsed time (in sec.). The

data-labels represent the number of attributes for which the algorithm was run. Below

observations are made based on the Figure 6.3:

1. As discussed earlier, multi-threaded implementation has a better performance with

respect to time efficiency over sequential implementation of MASP. We obtained an

average speedup of 2.3.

2. The sequential MASP takes highest amount of time when running for Support =

0.1(%) and Confidence = 25(%). This is when we obtain the maximum speedup by

multi-threading i.e. 3.35.
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Figure 6.3: MASP vs. R performance (CONNECT-IBM dataset)

3. R association rule mining takes more time to run even for less number of attributes and

lesser number of transactions in comparison to MASP. Minimum number of attributes

for MASP is 50 and R is 19.

4. R ARM is able to mine more number of attributes (24 v/s 19) when support is 10%

compared to when support is 0.1%.

The Figure 6.4 shows the graph plots between MASP (both sequential and multi-threaded

implementation) and R on BLOG-FEEDBACK Dataset. The horizontal axis gives the sup-

port and confidence values (in %) and vertical axis depicts the elapsed time (in sec.). The

data-labels represent the number of attributes for which the algorithm was run. Below

observations are made based on the Figure 6.4:

1. As discussed earlier, multi-threaded implementation has a better performance with

respect to time efficiency over sequential implementation of MASP. We obtained an

average speedup of 1.74.

2. The sequential MASP takes highest amount of time when running for Support =

0.1(%) and Confidence = 25(%). This is when we obtain the maximum speedup by

multi-threading i.e. 1.88.
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Figure 6.4: MASP vs. R performance (BLOG-FEEDBACK dataset)

3. R association rule mining takes more time to run even for less number of attributes and

lesser number of transactions in comparison to MASP. Minimum number of attributes

for MASP is 50 and R is 20.

4. R ARM is able to mine more number of attributes (21 v/s 20) when support is 10%

compared to when support is 0.1%.

The Figure 6.5 shows the graph plots between MASP (both sequential and multi-threaded

implementation) and R on DIABETES Dataset. The horizontal axis gives the support and

confidence values (in %) and vertical axis depicts the elapsed time (in sec.). The data-labels

represent the number of attributes for which the algorithm was run. Below observations are

made based on the Figure 6.5:

1. As discussed earlier, multi-threaded implementation has a better performance with

respect to time efficiency over sequential implementation of MASP. We obtained an

average speedup of 2.11.

2. The sequential MASP takes highest amount of time when running for Support =

0.1(%) and Confidence = 25(%). This is when we obtain the maximum speedup by

multi-threading i.e. 3.43.
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Figure 6.5: MASP vs. R performance (DIABETES dataset)

3. R association rule mining takes more time to run even for less number of attributes and

lesser number of transactions in comparison to MASP. Minimum number of attributes

for MASP is 36 and R is 26.

4. R ARM is able to mine more number of attributes (32 v/s 26) when support is 10%

compared to support = 0.1%.

The Figure 6.6 represent the graph plots between Apriori-TID (both sequential and multi-

threaded implementation) and FP-Growth (both sequential and multi-threaded implemen-

tation) on Highway Traffic Dataset. The horizontal axis gives the support and confidence

values (in %) and vertical axis depicts the elapsed time (in sec.). The data-labels represent

the number of attributes for which the algorithm was run. The algorithms are executed for

the complete number of records available. Below observations are made based on the Figure

6.6:

1. Multi-threaded implementation of both Apriori-TID and FP-Growth have better per-

formance with respect to elapsed time over sequential implementation of Apriori-TID

and FP-Growth respectively. We obtained an average speedup of 2.98 for Apriori-TID

and 2.41 for FP-Growth implementation.
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Figure 6.6: Apriori-TID Seq/Multi-Threaded vs. FP-Growth Seq/Multi-Threaded

2. The sequential Apriori-TID and FP-Growth takes highest amount of time when run-

ning for Support = 0.1(%) and Confidence = 0.25(%).

3. Apriori-TID is able to incorporate more number of attributes as compared to FP-

Growth. Minimum number of attributes for Apriori-TID is 10 and FP-Growth is 6.

The Figure 6.7 represent the graph plots between Apriori-TID (both sequential and multi-

threaded implementation) and FP-Growth (both sequential and multi-threaded implementa-

tion) on PUMSB-IBM Dataset. The horizontal axis gives the support and confidence values

(in %) and vertical axis depicts the elapsed time (in sec.). The data-labels represent the

number of attributes for which the algorithm was run. The algorithms are executed for the

complete number of records available. Below observations are made based on the Figure 6.7:

1. Multi-threaded implementation of both Apriori-TID and FP-Growth have better per-

formance with respect to elapsed time over sequential implementation of Apriori-TID

and FP-Growth respectively. We obtained an average speedup of 2.25 for Apriori-TID

and 2.86 for FP-Growth implementation.
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Figure 6.7: Apriori-TID Seq/Multi-Threaded vs. FP-Growth Seq/Multi-Threaded

2. As described earlier, the sequential Apriori-TID and FP-Growth takes highest amount

of time when running for Support = 0.1(%) and Confidence = 0.25(%).

3. Apriori-TID is able to incorporate more number of attributes as compared to FP-

Growth. Minimum number of attributes for Apriori-TID is 9 and FP-Growth is 6.

The Figure 6.8 represent the graph plots between Apriori-TID (both sequential and multi-

threaded implementation) and FP-Growth (both sequential and multi-threaded implemen-

tation) on CONNECT-IBM Dataset. The horizontal axis gives the support and confidence

values (in %) and vertical axis depicts the elapsed time (in sec.). The data-labels represent

the number of attributes for which the algorithm was run. The algorithms are executed for

the complete number of records available.

Below observations are made based on the Figure 6.8:

1. Multi-threaded implementation of both Apriori-TID and FP-Growth have better per-

formance with respect to elapsed time over sequential implementation of Apriori-TID

and FP-Growth respectively. We obtained an average speedup of 2.21 for Apriori-TID

and 2.20 for FP-Growth implementation.
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Figure 6.8: Apriori-TID Seq/Multi-Threaded v/s FP-Growth Seq/Multi-Threaded

2. As described earlier, the sequential Apriori-TID and FP-Growth takes highest amount

of time when running for Support = 0.1(%) and Confidence = 0.25(%).

3. Apriori-TID is able to incorporate more number of attributes as compared to FP-

Growth. Minimum number of attributes for Apriori-TID is 11 and FP-Growth is 6.

The Figure 6.9 represent the graph plots between Apriori-TID (both sequential and multi-

threaded implementation) and FP-Growth (both sequential and multi-threaded implementa-

tion) on BLOG-FEEDBACK Dataset. The horizontal axis gives the support and confidence

values (in %) and vertical axis depicts the elapsed time (in sec.). The data-labels represent

the number of attributes for which the algorithm was run. The algorithms are executed for

the complete number of records available.

Below observations are made based on the Figure 6.9:

1. Multi-threaded implementation of both Apriori-TID and FP-Growth have better per-

formance with respect to elapsed time over sequential implementation of Apriori-TID

and FP-Growth respectively. We obtained an average speedup of 2.87 for Apriori-TID

and 2.27 for FP-Growth implementation.
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Figure 6.9: Apriori-TID Seq/Multi-Threaded v/s FP-Growth Seq/Multi-Threaded

2. As described earlier, the sequential Apriori-TID and FP-Growth takes highest amount

of time when running for Support = 0.1(%) and Confidence = 0.25(%).

3. Apriori-TID is able to incorporate more number of attributes as compared to FP-

Growth. Minimum number of attributes for Apriori-TID is 9 and FP-Growth is 7. 4.

The longest rule size obtained when Support = 10% is 3 due to the scattered nature

of dataset.

The Figure 6.10 represent the graph plots between Apriori-TID (both sequential and multi-

threaded implementation) and FP-Growth (both sequential and multi-threaded implemen-

tation) on DIABETES Dataset. The horizontal axis gives the support and confidence values

(in %) and vertical axis depicts the elapsed time (in sec.). The data-labels represent the

number of attributes for which the algorithm was run. The algorithms are executed for the

complete number of records available.

Below observations are made based on the Figure 6.10:
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Figure 6.10: Apriori-TID Seq/Multi-Threaded v/s FP-Growth Seq/Multi-Threaded

1. Multi-threaded implementation of both Apriori-TID and FP-Growth have better per-

formance with respect to elapsed time over sequential implementation of Apriori-TID

and FP-Growth respectively. We obtained an average speedup of 2.24 for Apriori-TID

and 2.02 for FP-Growth implementation.

2. As described earlier, the sequential Apriori-TID and FP-Growth takes highest amount

of time when running for Support = 0.1(%) and Confidence = 0.25(%).

3. Apriori-TID is able to incorporate more number of attributes as compared to FP-

Growth. Minimum number of attributes for Apriori-TID is 10 and FP-Growth is 6.

Table 6.5 shows the experimental results obtained after running sequential and parallel

MASP as well as R data mining. The table shows the statistics with respect to the elapsed

time of sequential and multi-threaded MASP and R association rule mining. The table also

shows the longest rule size obtained. Longest rule size (woN) depict longest of the rule size

including negation conditions with respect to attribute values such as A = “10” and B 6=

“4”. Longest rule size (wN) shows the longest rule size without any negation condition with
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respect to attribute values such as A = “4”. + symbol in rule size indicates that the rule

length can be more than the number provided. The experiments were performed for the

maximum number of attributes and number of transactions that can be supported by both

MASP and R. Each dataset name contains the total number of transactions in (#Records).

Table 6.6 gives the experimental results obtained from running sequential and parallel

Apriori-TID and FP-Growth algorithms. The experiments are performed for the entire

datasets based on support (0.1%, 10%) and confidence values (80%, 50%, 25%).

The Table 6.6 depicts the longest rule size obtained for both sequential and parallel Apriori-

TID and FP-Growth algorithms. The elapsed time is noted for running the experiments

and performance is defined in terms of elapsed time and the number of attributes supported

by both the algorithmic implementations. The total number of records for each dataset are

mentioned below each dataset.
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Table 6.5: MASP Sequential v/s MASP Parallel v/s R (Traditional ARM) on 5 datasets

Min-support (%) 10 0.1
Min-confidence (%) 80 50 25 80 50 25

HIGHWAY
TRAFFIC
(174437)

MASP
(174437)

Max # attributes 33 33 33 33 33 33
Longest rule size (woN) 18+ 19+ 19+ 18+ 27+ 28+
Longest rule size (wN) 18+ 19+ 19+ 18+ 27+ 30+
Sequential (Time in sec) 25.99 28.58 30.03 28.58 35.97 140.59
Parallel (Time in sec) 15.32 15.65 16.85 14.41 19.41 48.14

R
(55000)

Max # attributes 28 28 28 19 19 19
Longest rule size 19 19 19 16 16 16
Time in sec 67.85 72.55 76.87 120.56 144.48 154.77

PUMSB
(49046)

MASP
(49046)

Max # attributes 50 50 50 50 50 50
Longest rule size (woN) 19+ 29+ 29+ 19+ 43+ 45+
Longest rule size (wN) 19+ 30+ 30+ 19+ 43+ 49+
Sequential (Time in sec) 11.34 18.47 18.98 11.5 24.67 168.2
Parallel (Time in sec) 7.88 10.82 11.7 7.91 14.83 53.27

R
(29046)

Max # attributes 26 26 26 19 19 19
Longest rule size 18 18 18 18 18 18
Time in sec 55.69 57.16 57.19 65.03 70.17 74.34

CONNECT
(67558)

MASP
(67558)

Max # attributes 50 50 50 50 50 50
Longest rule size (woN) 26+ 28+ 28+ 26+ 36+ 36+
Longest rule size (wN) 26+ 29+ 29+ 26+ 37+ 39+
Time in sec 31.45 32.72 27.21 30.81 46.41 201.5
Time in sec 14.04 15.84 15.96 14.41 20.26 60.08

R
(15000)

Max # attributes 24 24 24 19 19 19
Longest rule size 19 19 19 19 19 19
Time in sec 127.55 142.33 162.95 76.81 94.44 103.38

BLOG
(52397)

MASP
(52397)

Max # attributes 50 50 50 50 50 50
Longest rule size (woN) 16+ 16+ 33+ 16+ 50+ 50+
Longest rule size (wN) 16+ 16+ 33+ 16+ 50+ 58+
Time in sec 11.34 18.47 18.98 11.5 24.67 168.42
Time in sec 6.06 10.88 11.47 6.85 14.87 89.55

R
(10000)

Max # attributes 21 21 21 20 20 20
Longest rule size 20 20 20 20 20 20
Time in sec 98.06 103.87 110.88 178.36 298.87 332.33

DIABETES
(37770)

MASP
(37770)

Max # attributes 36 36 36 36 36 36
Longest rule size (woN) 22+ 23+ 23+ 22+ 28+ 30+
Longest rule size (wN) 22+ 23+ 23+ 22+ 28+ 34+
Time in sec 12.82 15.18 16.27 12.62 14.57 95.31
Time in sec 7.09 7.8 7.85 7.56 8.52 27.81

R
(9740)

Max # attributes 32 32 32 26 26 26
Longest rule size 18 18 18 17 17 17
Time in sec 105.14 107.83 109.36 162.96 174.68 185.32
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Table 6.6: APRIORI-TID Sequential/Parallel v/s FP-GROWTH Sequential/Parallel on 5
datasets

Min-support (%) → 10 0.1
Min-confidence (%) → 80 50 25 80 50 25

HIGHWAY
TRAFFIC
(174437)

APRIORI-TID

Max # attributes 10 10
Longest rule size 7 7 7 10 10 10
Sequential (Time in sec.) 18.88 18.98 19.45 1352.76 1375.55 1490.55
Parallel (Time in sec.) 4.61 5.01 5.25 593.46 688.41 728.01

FP-GROWTH

Max # attributes 10 10 6
Longest rule size 7 7 7 10 10 6
Sequential (Time in sec.) 1195.54 1415.15 1855.95 7552.45 7928.1 1922.88
Parallel (Time in sec.) 378.12 548.6 728.6 3742.88 3879.88 913.7

PUMSB-IBM
(49046)

APRIORI-TID

Max # attributes 9 9
Longest rule size 6 6 6 9 9 9
Sequential (Time in sec.) 3.06 4.37 5.53 284.77 298.74 385.71
Parallel (Time in sec.) 0.77 2.25 2.84 116.8 186.03 239.78

FP-GROWTH

Max # attributes 9 7 6
Longest rule size 6 6 6 7 7 6
Sequential (Time in sec.) 45.37 50.87 56.32 1955.44 1996.74 852.33
Parallel (Time in sec.) 12.45 12.96 16.86 904.52 911.48 440.06

CONNECT-IBM
(67558)

APRIORI-TID

Max # attributes 11 11
Longest rule size 10 10 10 11 11 11
Sequential (Time in sec.) 21.13 21.51 22.56 1240.48 1463.88 1966.85
Parallel (Time in sec.) 10.56 10.86 11.56 592.88 605.37 685.37

FP-GROWTH

Max # attributes 11 7 6
Longest rule size 10 10 10 7 7 6
Sequential (Time in sec.) 5298.15 7776.85 8975.22 754.88 856.96 268.74
Parallel (Time in sec.) 2453.3 3226.67 3985.86 360.04 406.57 120.76

BLOG
(52397)

APRIORI-TID

Max # attributes 9 9
Longest rule size 3 3 3 9 9 9
Sequential (Time in sec.) 2.05 3.31 4.62 31.44 31.96 32.18
Parallel (Time in sec.) 0.58 1.08 1.99 10.65 11.58 12.3

FP-GROWTH

Max # attributes 9 7
Longest rule size 3 3 3 7 7 7
Sequential (Time in sec.) 13.55 16.95 35.8 1741.88 1752.52 1825.44
Parallel (Time in sec.) 6.86 7.55 10.88 850.45 886.77 868.3

DIABETES (37770)

APRIORI-TID

Max # attributes 10 10
Longest rule size 9 9 9 10 10 10
Sequential (Time in sec.) 6.14 6.41 6.78 327.88 337.58 345.42
Parallel (Time in sec.) 2.93 3.06 3.58 122.88 134.96 154.21

FP-GROWTH

Max # attributes 10 8 6
Longest rule size 9 9 9 8 8 6
Sequential (Time in sec.) 2845.35 2996.7 3218.7 2095.4 2357.3 3177.25
Parallel (Time in sec.) 1339.11 1558.25 1654.54 1100.25 1187.86 1391.2
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Chapter 7

Conclusion
Several experiments have been conducted to test the performance of the multi-threaded ap-

proach over the sequential one. We have obtained speedup of around 2.5 on an average. Also,

the pattern tree will help in analyzing the mined dataset and provides a visual perspective

of the MASP obtained.

MASP implementation is compared with R implementation of Apriori algorithm for data

mining. MASP is capable of mining longer size of association rule length as compared to

R. MASP can handle more number of transactional records and attributes as compared to

R implementation. Moreover, the mined data can be exported in table format that can be

easily queried and used for analysis purpose.

The experiments conducted to test the performance of both sequential and multi-threaded

implementation of Apriori-TID and FP-Growth reveal good results. Apriori-TID is found to

be more efficient with respect to space and time as compared to FP-Growth. These results

can be attributed to the nature of datasets and algorithmic implementation.
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Chapter 8

Future Work
High performance computing (HPC) can be used for association rule mining. The perfor-

mance tests can be performed on various cloud platforms. This can provide efficient perfor-

mance measurements with respect to time and space. MapReduce services, such as Hadoop

DFS (Distributed File System) can be implemented to allow for distributed computation on

separate physical nodes.

We can also reduce the memory usage by complementing the execution environment with

a low latency storage system such as a RAID (Redundant Array of Independent Disks) of

solid state drives to store intermediate data.

Mined data can also be plugged into online visualization services like Google Charts API, to

provide an interactive interface for pattern visualization.
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