
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2014

Performance Comparison Between Patus and
Pluto Compilers on Stencils
Pratik Prabhu Hanagodimath
Louisiana State University and Agricultural and Mechanical College, phanag1@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Hanagodimath, Pratik Prabhu, "Performance Comparison Between Patus and Pluto Compilers on Stencils" (2014). LSU Master's
Theses. 2636.
https://digitalcommons.lsu.edu/gradschool_theses/2636

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2636?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2636&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

PERFORMANCE COMPARISON BETWEEN PATUS AND PLUTO COMPILERS

ON STENCILS

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master of Science

in

The Department of Electrical and Computer Engineering

by

Pratik Hanagodimath

B.E., Visvesvaraya Technological University, 2010

May 2014

ii

Acknowledgements

I thank Dr J Ramanujam for giving me an opportunity to research in the field of compiler optimization. I

thank him for his guidance and providing moral and financial support towards my completion of

master’s program. I also thank Sameer Abu Asal for his extensive support at every stage in my research

work. His guidance was truly helpful. I thank Ajay and Abhilash for helping me with troubleshooting

linux related problems. I thank all my friends and colleagues who have helped me directly and indirectly

in this tenure. It was truly a good learning experience.

 iii

Table of Contents

Acknowledgements ... ii

Abstract .. iv

Chapter 1: Introduction ..1

1.1 Introduction ..1

1.2 Literature review ..2

Chapter 2: Basic optimization techniques..3

2.1 Introduction ..3

2.2 Data flow analysis ..3

2.2.1 Dependency distance and direction vectors ..4

2.3 Transformation techniques ...5

Chapter 3: Brief overview of Patus compiler ..8

3.1 Patus ...8

3.2 Features of Patus compiler ...8

3.2.1 Cache blocking strategy ..8

3.2.2 Auto tuner ..9

3.3 Optimization techniques used by Patus ..10

3.4 A walk through DSL example ..11

Chapter 4: Brief overview of Pluto compiler ...12

4.1 Pluto ...12

4.2 Diamond tiling ..14

4.3 Sica tiling ..16

Chapter 5: Results ..17

5.1 Results ..17

5.2 Jacobi style ...19

5.3 Seidel style ...32

5.4 Execution time vs number of threads ...49

Chapter 6: Conclusion..53

References ..54

Vita ...55

iv

Abstract

The main aim of this research is to compare the performance of two compilers namely patus and pluto

on stencils. In order to observe the performances of these two compilers, two coding styles have been

implemented. Those are:

 Jacobi style

 Seidel style

The report discusses and reasons the performances of both the compilers on each style of coding. Many

performance graphs have been plotted to illustrate the difference in performance.

Pluto compiler uses an optimization technique called tiling. Tiling is an important technique which

transforms the code for better data locality and parallelism. To achieve this, appropriate tiling size and

tiling shape must be considered. Therefore, we use the following to get the best tiling performance:

 Pluto tiling: Uses rectangular shaped tiles to transform the code for pipelined execution of tiles

 Sica tiling: This is an extension of pluto tiling to find better tile sizes

 Diamond tiling: Uses diamond shaped tiles to transform the code for concurrent execution of

tiles

In order to find better tile sizes for pluto and diamond tiling, a shell script is used as a tuner which

changes the tile sizes from 8 to 512 to find an optimal tile size value.

1

Chapter 1 Introduction

1.1 Introduction

A stencil is a class of an iterative kernel in which each point in the kernel is updated by a fixed pattern of

memory access and computations. Despite the stencil kernels simplicity in updating the points, these

stencils achieve a very low fraction of peak performance. A stencils computation performs much

iteration over the spatial domain in order to update a time or a non-time dependent point in the kernel.

Due to this, the computations will take up several core hours on supercomputers. Because of their fixed

pattern of computation stencils always exhibit parallelism. Exploiting any of these parallelism leads to

an optimized code with significant performance in terms of execution speedup and data locality.

Stencils are used in a wide range of applications ranging from many scientific to engineering sectors. In

this report two image processing stencils namely blur and edge stencils, two partial differential equation

solvers namely laplacian and seidel stencils, one cellular automata namely game-of-life stencil and one

wave propagation namely wave stencils are considered for experimentation. These stencils have intense

arithmetic computations.

In this report, two compilers namely pluto and patus have been selected to observe the performances of

these two compilers on the stencil. Each compiler optimizes the code in its unique way by exploiting the

parallelism in the stencils. Our experiments on stencils are conducted using two coding styles:

 Jacobi style

 Seidel style

Performance illustrations are done using graphs such as execution time vs grid size, Gflops vs grid size

and speed-up charts. A brief reasoning on the compiler performance is also discussed at the end of each

experiment.

2

1.2 Literature review

The authors Matthias, Schenk and Burkhart present a code generation and auto tuning framework for

parallel stencil computations (Christen, Schenk, & Burkhart, 2011). This framework is known as Patus

which stands for Parallel Auto Tuned Stencil. In this paper, the authors present their strategies for

optimizing stencil computations. And discuss their results with appropriate tables and graphs. Uday

designed and implemented a fully automatic polyhedral source to source transformation framework that

can optimize regular programs (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev &

Sadayappan, 2008). This paper discusses a model driven automatic transformation in polyhedral model

and presents approach in an end to end integer linear optimization framework that is capable of find

good tiling for data locality and parallelism (Bondhugula, Hartono, Ramanujam, & Sadayappan, 2008).

One of the important necessities to tile the code is to have an appropriate tile size and tile shape. The

authors Uday, Bandishti and Pananilath present a new tiling technique that enable tile-wise concurrent

startup to maximize parallelism and provides load balancing (Bondhugula, Pananilath, & Bandishti,

2012). In this paper, the authors present their implementation on the new tiling technique called

diamond tiling and discuss their results on its performance. As mentioned earlier, choosing a tile size

places an important role in using tiling optimization technique. The authors Soddemann et.al present a

new hardware-aware and adaptive loop tiling approach that is based on the polyhedral transformation

(Dustin, Thomas, Michael, & Sven, 2013). In this paper, the authors claim that their model chooses a

better tile size and also improves auto-vectorization.

Considerable research is done in finding a framework that provides a good optimized code for general

stencils and applications. Much research is also done in the use of tiling optimization technique and to

find efficient ways to come up with better tile shapes and sizes. However, there is no available research

that compares the two framework, patus and pluto, for their efficiency on optimizing codes. This report

aims to compare the performances of patus and pluto compiler on stencils.

3

Chapter 2 Basic optimization techniques

2.1 Introduction

In this section, the report provides information regarding the basic optimization techniques. These

techniques are used by the compiler to generate optimized code. Section 2.2 explains the different types

of data dependencies and touch up on what a dependency distance and direction vector is. Section 2.3

illustrates different transformation techniques with an example.

2.2 Data flow analysis

 Flow dependency

A dependency is termed a flow dependency if a memory location is written in one statement and

read in subsequent iterations. An example shown below illustrates flow dependency due to

access to array A:

for (i ….) {

 A[i] = b[i] + c[i]

 D[i] = A[i]

}

 Anti-dependency

Occurs when a memory location is read in some statement and in later iterations some value is

written to the same memory access. An example below illustrates anti-dependence due to array

b.

 for (i ….) {

 A[i] = b[i] + c[i]

 b[i] = d[i]

}

4

 Output dependency

Occurs when a memory location which is written in one statement; and in later iterations the

same memory location is written again. Array D in the example shown below illustrates output

dependency.

For (i ….) {

 D[i] = b[i] + c[i]

 D[i] = A[i]

}

 Input dependency

Occurs when a memory location is read in two different iterations. Array b in the example shown

below illustrates input dependency.

for (i ….) {// iterations

 A[i] = b[i] + c[i]

 D[i] = b[i]

}

2.2.1 Dependency distance and direction vectors

A dependency distance vector represents the dependency distance between the memory access of source

iteration and sink iteration. Direction vector represents the sign { +, 0, - } of the distance vector.

Consider the following example:

For (i …) {

 For (j …) {

 a[i][j] = a[i][j] + a[i-1][j+1] + a[i][j-1];

 }

}

The dependency distance vector which is calculated as sink instance minus the source instance; for the

above example distance vector due to accesses to array “a” is as shown:

(

)

5

The direction vector for the example is as shown:

(

)

It is very important to note that the first non-negative component should always be a 0 or positive, it

must never be negative. The level at which the first non-negative component occurs defines the

dependency for that level. For instance, there is a level 1 and level 2 dependencies for the above

example.

2.3 Transformation techniques

 Skewing

Loop skewing is a technique to change distance vectors to a form where further transformations

can be enabled such as loop interchange or tiling. Skewing is always done to the inner loop with

respect to the outer loop. Skewing the inner loop with respect to outer loop by a factor ‘f’

changes a distance vector from (

) to (

). Skewing the loops is always legal

because it does not change the order of execution of iterations. Consider the following example:

for (i …) {

 for (j …) {

 a[i][j] = a[i-1][j+1] + a[i][j-1];

 }

}

The distance vector for the example is (

). Here dependencies are carried by both the

loops. If the inner loop is skewed by a factor 2 with respect to the outer loop, then the

dependency distance vector will be (

). This enables loop interchange technique which will

make the outer loop carry all the dependencies and inner loop parallel.

6

 Loop interchange

This technique as the name says, loops can be interchanged to make a loop level carry all the

dependencies. This technique is often used after loop skewing. Consider the pervious example

where after skewing the loops the new dependency distance vector is (

). Now, if loop

interchange is applied, the dependency distance vector would be (

). We can see that the

dependencies are carried by the outer loop and inner loop is parallel. One should be careful while

applying loop interchange; the outer most loop after the interchange must always be positive or

0. It is not a valid transformation if the first level component is a negative value.

 Vectorization

Vectorization is an optimization technique to execute the statements in the loop on different

available processors in the same time step. Vectorization is only possible if there exists no

dependency loops between one statement to another statement. For example, consider the code

shown below, vectorization is not possible because there exists a dependency cycle between

statements S1 and S2.

for (i …) {

 for (j …) {

 S1: a[i][j] = b[i][j];

 S2: b[i+1][j] = a[i][j]

 }

}

Consider the following example, In this example the inner loop “j” is parallel as is does not carry

any dependencies and is vectorizable; and all the dependencies is carried by the outer loop “i”.

for (i …) {

for (j …) {

 S1: a[i][j] = a[i-1][j] + a[i-2][j-1]
 }
 }

7

In the vectorized form the above code look like:

for (i …) {

 S1: a[i][1 : N] = a[i-1][1 : N] + a[i-2][1 : N].

 }

 Loop tiling

Tiling is an optimization technique that partitions the iteration space of the loops into smaller

tiles for improving data locality and to incur smaller execution overhead. A tile is defined by a

set of boundaries regularly spaced apart. A tile is valid as long as there are no negative

dependencies in it. Consider the code shown below:

for (i=0; i<N; i++) {

 for (j=0; j<N; j++) {

 S1: a[i][j] = a[i-1][j] + a[i-2][j-1]

 }

}

The general form of tiling with a tile size of “T” would look like:

for (ii=0; ii<N; ii+T){ // In steps of T tiles

 for (jj=0; jj<N; jj+T){ //In steps of T tiles

 for (i=ii; i<ii+T; i++) {

 for (j=jj; j<jj+T; j++){

 S1: a[i][j] = a[i-1][j] + a[i-2][j-1]

 }

 }

 }

}

8

Chapter 3 Brief overview of Patus compiler

3.1 Patus

Patus stands for Parallel Auto-Tuned Stencil. It is an auto tuning as well as a code generation tool for the

class of stencils (Christen, Schenk, & Burkhart, 2011). The main goal of patus compilers is to accept a

DSL (domain specific language) which contains a stencil specification and turn this DSL to a high

performance C code which is optimized. The resultant C code is generated considering the architecture

of the system. Patus targets the architectures such as many and multi core processors. As mentioned

earlier, patus takes in a DSL input for producing an optimized C code. This DSL allows the programmer

to express the stencil computations in a comprehensive way independently of hardware architecture

specific details (Christen, Schenk, & Burkhart, 2011). Expressing the stencil computations as a DSL also

adds to the programmer’s productivity and the programmer need not concern with hardware specific

details and low level programming issues. The other uses of DSL are its portability and re-use. Once the

DSL is specified, it can be re-used on different platforms without having to change it as required by

architecture. Hence the code can be re-used and is portable across different platforms.

3.2 Features of Patus compiler

Patus compiler has its own features through which it generates an optimized C code. Its features are:

1) Cache blocking strategy

2) Auto tuner

3.2.1 Cache blocking strategy

The DSL when compiled with patus uses cache blocking strategy to generate the optimized C code. A

basic structure of this strategy is as shown (Christen, Schenk, & Burkhart, 2011):

9

Strategy cacheblocking (…) // parameters like grid size, blocks and chunk are passed here.

{

 //iterates over time specified

 For t = ….

 {

 // iterates over subdomain of the grid

 For subdomain v (cb) in u(:; t)

 Parallel schedule chunck

 {

 // calculates the stencil for each point in subdomain of the grid

 For point p in v(:; t)

 v[p; t+1] = stencil (v[p; t]);

 }

 }

}

The parameters like grid size, cache blocks and chunks are passed as arguments to this strategy. The

cache block and chunk parameter are link to auto tuner to find an optimal value for these parameters. A

brief explanation of auto tuner is given in the next paragraph. This strategy iterates over the time

specified for all subdomains of size “v“ as shown in the strategy. The value of size “v” depends on “cb”

which is obtained from auto tuner. The “parallel” key word specifies parallel execution of blocks “v”

dealt to worker threads. The “chunk” and “schedule” keywords specify how many consecutive blocks

one thread is given. At the end, the stencils computation is done for “p” points in the subdomain of “v”

block.

3.2.2 Auto tuner

Auto tuner is a tuning feature of patus that tunes to find the best configuration parameters for cache

blocking strategy. As explained in the previous paragraph, the auto tuner is passed with “cb”, grid sizes

and chunk information. The auto tuner runs the stencil computations with these parameters and produces

the output. Many sets of values are tested by the auto tuner and the configuration that ran the best is

given as output at the end of testing all the values in its set.

10

3.3 Optimizations techniques used by Patus

Patus uses cache blocking strategy to find the best configuration for blocking the grid size. This is the

same as the tiling optimization technique. Patus also uses loop unrolling technique to unroll the inner

most loop and collapses the inner loop to its immediate outer loop. After loop unrolling technique is

applied, patus uses vectorization technique to vectorize the inner most loop.

3.4 A walk through DSL example

 stencil example (float grid U)

{

 iterate while t < 1;

 domainsize = (3 .. height-3, 3 .. width-3);

 initial {

 U[x, y; t] = x*x + y*y;

 U[x, y; t+1] = 0;

 };

 operation {

 U[x, y; t+1] = U[x, y; t] + U[x, y-1; t] + U[x-1, y; t] + …….

 };

}

 The “stencil” specifies the stencil of “example” in the domain specific language (DSL). This

stencil operates on a grid size “U” specified as an argument. The grid parameter need not be

passed in the DSL. It can be specified later as a command line argument when executing for

bench mark harness using auto tuner.

 The “iterate” term specifies the number of time steps to be performed for the stencil

computation. If this information is not provided, then by default the stencil computation is run

for t = 1 time step.

 The “domainsize” defines the iteration space for the stencil computation. The total grid size is

mentioned as “U” which takes on 0 … max-1 values. The stencil computation is applied only to

the iteration space as specified in “domainsizes” and not to the whole grid size “U”.

11

 The “initial” specifies the initialization of the grids

 “operation” defines the actual computations for the “example”.

12

Chapter 4 Brief overview of Pluto compiler

4.1 Pluto

Pluto is an automatic parallelization tool which uses polyhedral model to transform the code for better

data locality and parallelism. A polyhedral dependency matrix is a matrix which gives complete

information regarding the kernel. Pluto makes a geometric representation by using this matrix and finds

affine transformations for effective tiling of the loops. Pluto is not limited to only tiling transformation;

it can find affine transformations for effectively fusing the loops and many more. Thus, pluto using the

polyhedral model transforms the C code from source to source for a coarse-grained parallelism and data

locality.

Tiling is a key transformation technique used by pluto to optimize the code for better data locality and

parallelism. To transform the code for better locality, pluto divides the iteration space of the loops in

such a way that the data access needed in the innermost tiled loop fits appropriately in cache. By doing

so, a better reuse of the data placed in the cache is enabled and this improves locality of data. During this

process pluto generates many tiles which can be concurrently executed on different processors with

reduced frequency and communication between the tiles. This way pluto achieves parallelism among the

tiles for faster execution. Therefore, finding an appropriate tile is an important and integral part of pluto.

The task of program optimization in polyhedral model may be viewed in phases as (Bondhugula,

Ramanujam, & Sadayappan, 2008):

 Static dependency analysis of input program

 Transformation in polyhedral abstraction

 Generation of code for the transformed program

13

Pluto uses the mathematical models in an algorithm to find appropriate tiles. The mathematical models

are briefly shown:

In order to find legal tiles with affine dependencies on multiple domains, the following must be satisfied

(Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev & Sadayappan, 2008):

 and and Pe are legal tiling hyerplanes and dependency

polyhedron respectively.

In order to find minimum latency schedules (Bondhugula, Hartono, Ramanujam, & Sadayappan, 2008):

 (()) under dependency polyhedron.

An example shown below illustrates the original code and the transformed code with dependency

polyhedron from accesses to array A (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev &

Sadayappan, 2008):

// original code:

for (i=0; i< N; i++)

 for (j=0; j<N; j++)

 S1: A[i][j] = A[i][j] + u[i] * v[j];

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 S2: x[i] = x[i] + A[j][i] * y[j];

The dependency polyhedron (Pe) for inter statement dependence on A is (Bondhugula, Baskaran,

Krishnamoorthy, Ramanujam, Rountev & Sadayappan, 2008):

[

]

 .

(

)

 0

14

The transformation is as shown (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev &

Sadayappan, 2008):

For statement S1: i j const

For statement S2: i j const

The transformed code is as shown (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev &

Sadayappan, 2008):

for (c1=0; c1<N; c1++) {

 for (c2=0; c2<N; c2++) {

 A[c2][c1] = A[c2][c1] + u[c2] * v[c1];

 x[c1] = x[c1] + A[c2][c1] * y[c1];

 }

}

4.2 Diamond tiling

Stencil computations are computed by updating gird points using neighboring grid point’s values. Hence

stencils exhibit properties for data locality and parallelism optimizations. With pluto tiling framework,

the tile hyper planes are chosen in such a way that the tiles would be enabled for pipelined execution.

But at the start of the computation, not all the processors are busy. Therefore this leads to a load

imbalance start up (Bondhugula, Pananilath, & Bandishti, 2012). This issue can be overcome by using

diamond tiling. There always exists a face of the iteration space and a set of hyper planes to select, such

that the combination could lead to a tile wise concurrent start up. This provides a good load balance by

eliminating pipeline fill ups and drain-delays, and maximizes parallelism (Bondhugula, Pananilath, &

Bandishti, 2012). For getting a concurrent start up at least one level of outer loop parallelism is

15

expected. This nature is observed in Jacobi style, which is explained in results section. We can observe

from the graphs that diamond tiling gives significant results. If the dependencies are present all over the

iteration space then getting a concurrent startup is not possible. This nature is observed in seidel style,

also explained in results section, the dependencies are spread throughout the iterations and hence we

observe no concurrent start up.

Brief mathematical notations and constraints for concurrent startup are discussed below:

In order to find valid hyper planes from source iteration to sink iteration, the following should be valid

(Bondhugula, Pananilath, & Bandishti, 2012):

 , where (s, t) Pe.

Pe – Polyhedron dependency matrix

 are hyper planes for statements

Theorem 1 (Bondhugula, Pananilath, & Bandishti, 2012):

For a statement, a transformation enables tile-wise concurrent start along a face f iff the tile schedule is

in the same direction as the face and carries all inter-tile dependences.

This is denoted as: f . C 1, where f is the face allowing concurrent startup and C is a matrix containing

inter-tile dependencies of original iteration space.

Theorem 2 (Bondhugula, Pananilath, & Bandishti, 2012):

Concurrent start along a face f can be exposed by a set of hyper-planes iff f lies strictly inside the cone

formed by the hyper-planes, i.e., iff f is a strict conic combination of all the hyperplanes

This is denoted as: lambda1 . h1 + lambda2 . h2 + … + lambdaN . hN

Theorem 3 (Bondhugula, Pananilath, & Bandishti, 2012):

A transformation T allows concurrent startup along f iff f . inverse(Tr) 1.

An algorithm is proposed by Uday to find the appropriate hyper-planes which enable concurrent startup.

16

4.3 Sica tiling

Tile size selection plays an important role in tiling optimization technique. Pluto uses a default tile

selection (32) when compiling the C code for optimization using tiling technique. But this default tile

selection does not necessarily yield an optimized code that always performs well on every application.

There always exists a tile size for which the optimized code performs best.

 Sica tiling presents a hardware aware and adaptive loop tiling approach that is based on pluto’s

polyhedral transformations and dedicated to improve auto-vectorization (Dustin, Thomas, Michael, &

Sven, 2013). They use an adaptive strategy to find near optimal tile sizes for vectorizable loops through

dynamic tile size calculations. The tile size for first level of tiling should fit to the ratio of the amount of

data read in one iteration of the loop which is vectorizable and the size of the L1 cache. In the same way,

the tile size for the second level of tiling should fit to the ratio of L2 cache size and L1 cache size

(Dustin, Thomas, Michael, & Sven, 2013). The calculation of different levels of tiling is as shown below

(Dustin, Thomas, Michael, & Sven, 2013):

First level tile size = q (L1) = floor (

 ⁄) * ⁄

Where:

 = ratio of cache to use

CL1 and CL2 = the size of L1 and L2 cache in Kbytes

R = SIMD register width in bits

 = Elements per iteration

D = size of data type

Second level tile size = q (L2) = CL2 / CL1

17

Chapter 5 Results

5.1 Results

In this section, the report provides the performance results obtained by executing stencil benchmarks.

Two experimental styles were chosen to compare the performances of the compilers on stencils:

1) Jacobi style

2) Seidel style

Five out of six stencil benchmarks are taken from patus compiler. These stencil benchmarks include

blur, edge, game of life, laplacian and wave. Seidel stencil is a benchmark that is written in seidel style

and hence it is not considered in Jacobi style of evaluation. In seidel style, all the six stencils are written

in seidel style of coding to compare the performances.

The following gives information regarding the use of compiler specific command line options and

commands to compile the C code for optimizations:

 Pluto:

- polycc -- tile -- parallel filename.c –o filename.par.c

“parallel“ command line option uses skewing transformation technique. This will either

skew to make outer loop carry all dependency and inner loops vectorizable or makes

outer loop parallel for tiling purpose. The “tile” option tiles the loops using tiling

technique. This option gives a pipelined execution of tiles and not concurrent tile

execution.

- polycc -- partlbtile -- parallel filename.c –o filename.diamond.c

The “parallel” flag will perform as explained above. The “partlbtile” flag tiles the loops

in such a way that it would enable concurrent execution of tiles.

18

- Polycc –tile –sica –parallel filename.c –o filename.sica.o

The “tile” and “parallel” flags perform as explained above. The “sica” flag tiles the code

using sica model of tiling.

The table 5.1gives information of the compiler and the compiler flags used to compile the C and

optimized codes generated by pluto.

TABLE 5.1. Compiler and compiler flags for pluto

Compiler icc 14.0.1

Compiler flags -O3 –fp-model precise –mavx -openmp

 Patus:

- patus filename.stc

This command uses “patus” as a wrapper on the DSL and compiles the DSL to produce

an optimized C code with other related files for benchmark harness.

- Make tune [options]

This command will start the auto tuner feature of patus for benchmark harness and

provides the configuration information that ran the best. These configuration are used as

command line options in the below shown command.

- ./bench [options]

This command uses the configuration provided by the auto tuner as command line option

to execute the optimized C code.

The table 5.2 provides the information on the compiler and compiler flags used to compile the optimized

C code generated by patus.

TABLE 5.2. Compiler and compiler flags for patus

Compiler gcc 4.4.7 (Jacobi style) / icc 14.0.1 (Seidel style)

Compiler flags -O3 –mavx –openmp

19

The hardware configuration used is:

TABLE 5.3. Hardware configuration

Microarchitecture Details

Model Intel ® Xeon ® CPU E5 – 2624

Clock 2.00 GHz

Cores 6

Processors 12

L1 cache / core 32KB

L2 cache / core 256KB

L3 cache / socket 15KB

5.2 Jacobi style

In Jacobi style the stencil computations are written to a temporary array and values from temporary

array are copied back to the actual array in the later computation. An example is shown below to

illustrate Jacobi style of coding. Due to the use of such a coding style, dependencies do not exists inside

loop nest but dependencies exist over time steps and between loop nests of a particular time. In the

example below, there are no dependencies in loop nest 1 (or 2) but dependencies exist between loop nest

1 and loop nest 2 and also over time steps.

// Time step

For (t=0; t<N; t++)

 // Loop nest 1

 For (i …)

 For (j …)

 temp_array[i][j] = array[i][j] + …..

 // Loop nest 2

 For (i …)

 For (j…)

 array[i][j] = temp_array[i][j]

20

Shown below are the performance of five stencils when compiled with pluto and patus. Each stencil is

written in Jacobi style and the compiler specific commands are also shown:

 Blur stencil:

Pluto commands:

- polycc –tile –parallel blur.c –o blur.par.c

- polycc –partlbtile –parallel blur.c –o blur.diamond.c

- polycc –tile –sica –parallel blur.c –o blur.sica.c

- icc –O3 –fp-model precise –mavx blur.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp blur.par.c –o par (for pipelined parallel code)

- icc –O3 –fp-model precise –mavx –openmp blur.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp blur.sica.c –o sica (for sica tiled parallel

code)

Patus Commands:

- patus blur.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

- ./bench 6000 6000 2998 200 1 4 1

- make tune height=8000 width=8000 (for gris size 8000*8000)

- ./bench 8000 8000 3998 148 1 4 1

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 4998 128 1 4 1

The table 5.4 gives the information of performance of blur stencil when compiled via pluto and patus.

The numbers mentioned in brackets gives information of tile sizes that worked best.

21

TABLE 5.4. Performace table for pluto and patus on blur stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

6000*6000 60 12.24 7.55 5.13(24) 16.39 65.35 1.28 1.52(128) 55.32 6.69 15.67

8000*8000 80 26.07 7.46 10.72(16) 18.60 177.25 0.96 3.64(96) 54.78 12.13 16.03

10000*10000 100 51.36 7.78 14.76(24) 26.39 264.12 1.10 7.34(96) 53.08 17.66 24.34

FIGURE 5.1. Grid size versus Execution time

FIGURE 5.2. Grid size versus GFOPLS

0

50

100

150

200

250

300

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

0

10

20

30

40

50

60

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

22

FIGURE 5.3. Speedup performance

 Edge stencil:

Pluto commands:

- polycc –tile –parallel edge.c –o edge.par.c

- polycc –partlbtile –parallel edge.c –o egde.diamond.c

- polycc –tile –sica –parallel edge.c –o edge.sica.c

- icc –O3 –fp-model precise –mavx egde.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp edge.par.c –o par (for pipelined parallel

code)

- icc –O3 –fp-model precise –mavx –openmp edge.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp edge.sica.c –o sica (for sica tiled parallel

code)

Patus commands:

- patus edge.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

0

1

2

3

4

5

6

7

8

9

6000*6000*60 8000*8000*80 10000*10000*100

Patus

Pluto

Sica

Diamond

23

- ./bench 6000 6000 5998 140 2 4 0

- make tune height=8000 width=8000 (for gris size 8000*8000)

- ./bench 8000 8000 7998 24 4 1 0

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 4999 224 1 2 1

The table 5.5 gives the information of performance of edge stencil when compiled via pluto and patus.

TABLE 5.5. Performance table for patus and pluto on edge stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

6000*6000 60 8.48 2.54 2.64(16) 8.15 36.55 0.58 1.01(104) 21.33 3.30 6.53

8000*8000 80 18.69 2.73 5.01(16) 10.19 65.79 0.64 2.51(88) 20.30 8.34 6.13

10000*10000 100 41.95 2.38 10.84(16) 9.34 111.83 0.72 4.93(72) 20.23 17.14 5.82

FIGURE 5.4. Grid size versus Execution time

0

20

40

60

80

100

120

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica- tiling Diamond-tiling Patus

24

FIGURE 5.5. Grid size versus GFLOPS

FIGURE 5.6. Speedup performance

0

5

10

15

20

25

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

0

1

2

3

4

5

6

7

8

9

6000*6000*60 8000*8000*80 10000*10000*100

Pluto

Sica

Diamond

Patus

25

 Game of life stencil:

Pluto commands:

- polycc –tile –parallel gol.c –o gol.par.c

- polycc –partlbtile –parallel gol.c –o gol.diamond.c

- polycc –tile –sica –parallel gol.c –o gol.sica.c

- icc –O3 –fp-model precise –mavx gol.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp gol.par.c –o par (for pipelined parallel code)

- icc –O3 –fp-model precise –mavx –openmp gol.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp gol.sica.c –o sica (for sica tiled parallel code)

Patus commands:

- patus game-of-life.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

- ./bench 6000 6000 2998 144 1 4 0

- make tune height=8000 width=8000 (for gris size 8000*8000)

- ./bench 8000 8000 7998 172 4 4 0

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 4999 280 1 4 1

The table 5.6 gives the information of performance of game of life stencil when compiled via pluto and

patus.

TABLE 5.6. Performance table for patus and pluto on game of life stencil

Grid Size Time ICC
ICC:

Gflops
Pluto

Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops
Patus

Patus:

Gflops

6000*6000 60 11.65 2.58 5.42(16) 5.56 54.56 0.55 2.09(120) 14.42 4.10 7.36

8000*8000 80 27.45 2.60 11.17(16) 6.40 96.17 0.60 5.16(96) 13.85 9.57 7.48

10000*10000 100 54.04 2.58 18.25(16) 7.66 174.01 0.62 10.02(102) 13.95 15.11 9.25

26

FIGURE 5.7. Grid size versus Execution time

FIGURE 5.8. Grid size versus GFLOPS

0

20

40

60

80

100

120

140

160

180

200

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica- tiling Diamond-tiling Patus

0

2

4

6

8

10

12

14

16

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

27

FIGURE 5.9. Speedup performance

 Laplacian stencil:

Pluto command:

- polycc –tile –parallel lap.c –o lap.par.c

- polycc –partlbtile –parallel lap.c –o lap.diamond.c

- polycc –tile –sica –parallel lap.c –o lap.sica.c

- icc –O3 –fp-model precise –mavx lap.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp lap.par.c –o par (for pipelined parallel code)

- icc –O3 –fp-model precise –mavx –openmp lap.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp lap.sica.c –o sica (for sica tiled parallel code)

Patus command:

- patus laplacian.stc

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 149 20 8 1 8 0

0

1

2

3

4

5

6

6000*6000*60 8000*8000*80 10000*10000*100

Pluto

Sica

Diamond

Patus

28

- make tune x_max=400 y_max=400 z_max=400 (for grid size 400*400*400)

- ./bench 400 400 400 199 148 148 1 4 1

- make tune x_max=500 y_max=500 z_max=500 (for grid size 500*500*500)

- ./bench 500 500 500 249 4 64 1 4 0

The table 5.7 gives the information of performance of laplacian stencil when compiled via pluto and

patus.

TABLE 5.7. Performance chart for patus and pluto on laplacian stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

300*300*300 300 31.15 1.27 10.95(8) 5.62 5.52 11.14 9.40(32) 6.55 21.40 2.87

400*400*400 400 108.70 1.44 27.46(8) 7.18 15.87 12.42 25.94(40) 7.58 72.70 2.71

500*500*500 500 198.21 1.76 61.69(8) 7.86 39.86 12.16 56.01(24) 8.66 144.68 3.35

FIGURE 5.10. Grid size versus Execution time

0

50

100

150

200

250

300*300*300*300 400*400*400*400 500*500*500*500

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

29

FIGURE 5.11. Grid size versus GFLOPS

FIGURE 5.12. Speedup performance

 Wave stencil:

Pluto command:

- polycc –tile –parallel wave.c –o wave.par.c

- polycc –partlbtile –parallel wave.c –o wave.diamond.c

0

2

4

6

8

10

12

14

300*300*300*300 400*400*400*400 500*500*500*500

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

0

1

2

3

4

5

6

7

300*300*300*300 400*400*400*400 500*500*500*500

Pluto

Sica

Diamond

Patus

30

- polycc –tile –sica –parallel wave.c –o wave.sica.c

- icc –O3 –fp-model precise –mavx wave.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp wave.par.c –o par (for pipelined parallel

code)

- icc –O3 –fp-model precise –mavx –openmp wave.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp wave.sica.c –o sica (for sica tiled parallel

code)

Patus Command:

- patus wave.stc

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 299 8 8 1 4 3

- make tune x_max=400 y_max=400 z_max=400 (for grid size 400*400*400)

- ./bench 400 400 400 395 32 32 1 7 3

- make tune x_max=500 y_max=500 z_max=500 (for grid size 500*500*500)

- ./bench 500 500 500 499 4 44 1 4 8

The table 5.8 gives the information of performance of wave stencil when compiled via pluto and patus.

TABLE 5.8. Performance table for patus and pluto on wave stencils
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

300*300*300 300 25.31 3.31 11.55(8) 13.33 7.36 20.91 8.46(32) 18.19 16.04 9.60

400*400*400 400 67.89 3.31 27.33(8) 18.03 23.09 21.34 26.72(40) 18.44 52.14 9.45

500*500*500 500 175.69 3.31 72.73(32) 16.67 54.32 22.32 58.14(48) 20.86 126.89 12.12

31

FIGURE 5.13. Grid size versus Execution time

FIGURE 5.14. Grid size versus GFLOPS

0

20

40

60

80

100

120

140

160

180

200

300*300*300*300 400*400*400*400 500*500*500*500

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

0

5

10

15

20

25

300*300*300*300 400*400*400*400 500*500*500*500

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

32

FIGURE 5.15. Performance speedup

Observation and comments:

We can observe that in all the graphs of stencils, pluto has performed better than patus. In terms of

optimization approach, both the compilers perform tiling (blocking) technique on the loops and

vectorization of inner most loops. But why pluto has performed better than patus?. This is because, patus

can only tile (block) the grid sizes and use vectorization on innermost loops, but, pluto on the other hand

does tiling (blocking) on both grid sizes and time loop and also use vectorization on inner most loops.

To put in simple terms, patus can only perform space tiling, whereas pluto can do both time and space

tiling. This feature of pluto gives it an edge over patus in terms of performance. At best, patus, with

more tuning to find better tiling (blocking), can reach up to pluto’s pipelined tiling performance, this is

observed in game of life stencil. However, patus cannot reach to pluto’s diamond tiling performance due

to the lack of time tiling (blocking).

5.3 Seidel style

Unlike Jacobi style of coding, the stencil computations in seidel style are written to an array and this

array might be accessed depending upon the dependencies between them in subsequent iterations. An

0

0.5

1

1.5

2

2.5

3

3.5

300*300*300*300 400*400*400*400 500*500*500*500

Pluto

Sica

Diamond

Patus

33

example is shown below to illustrate seidel style of coding. We can see that the values written to the

array are accessed in the subsequent iterations for computation. Hence the dependencies exist within the

loop iterations.

For (t=0; t<N; t++)

 // Loop nest

 For (i ….)

 For (j …)

 a[i][j] = a[i-1][j-1] + a[i][j-1] + …

Shown below are the performances of six stencils when compiled with pluto and patus. Each stencil is

written in seidel style and compiler specific commands are also shown.

 Blur stencil:

Pluto commands:

- polycc –tile –parallel blur.c –o blur.par.c

- polycc –partlbtile –parallel blur.c –o blur.diamond.c

- polycc –tile –sica –parallel blur.c –o blur.sica.c

- icc –O3 –fp-model precise –mavx blur.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp blur.par.c –o par (for pipelined parallel code)

- icc –O3 –fp-model precise –mavx –openmp blur.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp blur.sica.c –o sica (for sica tiled parallel

code)

Patus Commands:

- patus -- architecture = x86_64 AVX blur.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

- ./bench 6000 6000 1498 224 2 0

- make tune height=8000 width=8000 (for gris size 8000*8000)

34

- ./bench 8000 8000 3997 308 2 4

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 4997 152 4 3

The table 5.9 gives the information of performance of blur stencil when compiled via pluto and patus.

The numbers mentioned in brackets gives information of tile sizes that has worked best.

TABLE 5.9. Performance table for patus and pluto on Blur stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

6000*6000 60 28.09 2.99 8.70(8) 9.65 66.44 1.26 7.45(8) 11.27 22.87 3.67

8000*8000 80 66.62 2.99 13.39(8) 14.88 206.26 0.96 13.92(8) 14.32 58.35 3.41

10000*10000 100 130.19 2.99 29.03(8) 13.41 280.23 1.39 29.01(8) 13.42 107.9 3.61

FIGURE 5.16. Grid size versus Execution time

0

50

100

150

200

250

300

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

35

FIGURE 5.17. Grid size versus GFLOPS

FIGURE 5.18. Performance speedup

0

2

4

6

8

10

12

14

16

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6000*6000*60 8000*8000*80 10000*10000*100

Speedup

Sica

Patus

Pluto

Diamond

36

 Edge stencil:

Pluto commands:

- polycc –tile –parallel edge.c –o edge.par.c

- polycc –partlbtile –parallel edge.c –o egde.diamond.c

- polycc –tile –sica –parallel edge.c –o edge.sica.c

- icc –O3 –fp-model precise –mavx egde.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp edge.par.c –o par (for pipelined parallel

code)

- icc –O3 –fp-model precise –mavx –openmp edge.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp edge.sica.c –o sica (for sica tiled parallel

code)

Patus commands:

- patus – architecture = x86_64 AVX edge.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

- ./bench 6000 6000 2997 332 2 3

- make tune height=8000 width=8000 (for gris size 8000*8000)

- ./bench 8000 8000 3997 332 4 0

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 4997 260 2 3

The table 5.10 gives the information of performance of edge stencil when compiled via pluto and patus.

TABLE 5.10. Performance table for patus and pluto on edge stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

6000*6000 60 23.58 0.91 4.04(8) 5.32 18.12 1.19 4.25 5.06 13.58 1.58

8000*8000 80 55.92 0.91 6.99(8) 7.30 43.76 1.16 7.46 6.84 38.01 1.34

10000*10000 100 109.27 0.91 15.82(8) 6.31 86.57 1.15 15.55 6.42 47.87 2.08

37

FIGURE 5.19. Grid size versus Execution time

FIGURE 5.20. Grid size versus GFLOPS

0

20

40

60

80

100

120

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica- tiling Diamond-tiling Patus

0

1

2

3

4

5

6

7

8

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

38

FIGURE 5.21. Performance speedup

 Game of life stencil:

Pluto commands:

- polycc –tile –parallel gol.c –o gol.par.c

- polycc –partlbtile –parallel gol.c –o gol.diamond.c

- polycc –tile –sica –parallel gol.c –o gol.sica.c

- icc –O3 –fp-model precise –mavx gol.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp gol.par.c –o par (for pipelined parallel code)

- icc –O3 –fp-model precise –mavx –openmp gol.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp gol.sica.c –o sica (for sica tiled parallel code)

Patus commands:

- patus -- architecture = x86_64 AVX game-of-life.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

- ./bench 6000 6000 2997 132 2 3

0

1

2

3

4

5

6

7

8

6000*6000*60 8000*8000*80 10000*10000*100

Speedup

Sica

Patus

Pluto

Diamond

39

- make tune height=8000 width=8000 (for gris size 8000*8000)

- ./bench 8000 8000 3997 88 2 3

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 9995 336 2 2

The table 5.11 gives the information of performance of game of life stencil when compiled via pluto and

patus.

TABLE 5.11. Performance table for patus and pluto on game of life stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

6000*6000 60 54.11 0.55 10.01(8) 3.01 48.19 0.62 9.84(8) 3.06 23.58 1.28

8000*8000 80 128.31 0.55 16.19(8) 4.42 113.27 0.64 16.83(8) 4.25 40.29 1.77

10000*10000 100 250.67 0.55 37.24(8) 3.75 238.83 0.67 37.27(8) 3.75 62.26 2.24

FIGURE 5.22. Grid size versus Execution time

0

50

100

150

200

250

300

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica- tiling Diamond-tiling Patus

40

FIGURE 5.23. Grid size versus GFLOPS

FIGURE 5.24. Performance speedup

 Seidel stencil:

Pluto commands:

- polycc –tile –parallel seidel.c –o seidel.par.c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

0

1

2

3

4

5

6

7

8

6000*6000*60 8000*8000*80 10000*10000*100

Speedup

Sica

Patus

Pluto

Diamond

41

- polycc –partlbtile –parallel seidel.c –o seidel.diamond.c

- polycc –tile –sica –parallel seidel.c –o seidel.sica.c

- icc –O3 –fp-model precise –mavx seidel.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp seidel.par.c –o par (for pipelined parallel

code)

- icc –O3 –fp-model precise –mavx –openmp seidel.diamond.c –o diamond (for

concurrent parallel code)

- icc –O3 –fp-model precise –mavx –openmp seidel.sica.c –o sica (for sica tiled parallel

code)

Patus commands:

- patus – architecture = x86_64 AVX seidel.stc

- make tune height=6000 width=6000 (for grid size 6000*6000)

- ./bench 6000 6000 1498 324 2 0

- make tune height=8000 width=8000 (for gris size 8000*8000)

- ./bench 8000 8000 1998 184 2 2

- make tune height=10000 width=10000 (for grid size 10000*10000)

- ./bench 10000 10000 2498 72 2 4

The table 5.12 gives the information of performance of seidel stencil when compiled via pluto and patus.

TABLE 5.12. Performance table for patus and pluto for seidel stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

6000*6000 60 20.06 0.96 3.55(8) 5.46 30.46 0.58 3.30(8) 5.87 13.04 1.48

8000*8000 80 47.60 0.96 6.11(8) 7.53 71.19 0.64 5.90(8) 7.79 31.68 1.45

10000*10000 100 93.00 0.96 14.91(8) 6.02 138.44 0.64 13.66(8) 6.57 51.25 1.75

42

FIGURE 5.25. Grid size versus Execution time

FIGURE 5.26. Grid size versus GFLOPS

0

20

40

60

80

100

120

140

160

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

0

1

2

3

4

5

6

7

8

9

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

43

FIGURE 5.27. Performance speedup

 Laplacian stencil:

Pluto command:

- polycc –tile –parallel lap.c –o lap.par.c

- polycc –partlbtile –parallel lap.c –o lap.diamond.c

- polycc –tile –sica –parallel lap.c –o lap.sica.c

- icc –O3 –fp-model precise –mavx lap.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp lap.par.c –o par (for pipelined parallel code)

- icc –O3 –fp-model precise –mavx –openmp lap.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp lap.sica.c –o sica (for sica tiled parallel code)

Patus command:

- patus --architecture = x86_64 AVX laplacian.stc

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

0

1

2

3

4

5

6

7

8

9

6000*6000*60 8000*8000*80 10000*10000*100

Speedup

Sica

Patus

Pluto

Diamond

44

- ./bench 300 300 300 298 32 4 1 2 1

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 298 32 4 1 2 1

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 298 144 36 4 6 2

The table below gives the information of performance of laplacian stencil when compiled via pluto and

patus.

TABLE 5.13. Performance table for patus and pluto on laplacian stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

300*300*300 100 11.15 1.77 2.39(8) 8.56 21.02 0.5 2.60(8) 7.89 7.85 2.32

300*300*300 200 23.14 1.77 4.53(8) 9.06 44.79 0.52 4.49(8) 9.14 16.38 2.50

300*300*300 295 34.14 1.77 6.24(8) 9.70 68.07 0.47 6.67(8) 9.07 25.40 2.38

FIGURE 5.28. Grid size versus Execution time

0

10

20

30

40

50

60

70

80

300*300*300*100 300*300*300*200 300*300*300*295

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

45

FIGURE 5.29. Grid size versus GFLOPS

FIGURE 5.30. Performance speedup

0

2

4

6

8

10

12

300*300*300*100 300*300*300*200 300*300*300*295

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

0

1

2

3

4

5

6

300*300*300*100 300*300*300*200 300*300*300*295

Speedup

Sica

Patus

Pluto

Diamond

46

 Wave stencil:

Pluto command:

- polycc –tile –parallel wave.c –o wave.par.c

- polycc –partlbtile –parallel wave.c –o wave.diamond.c

- polycc –tile –sica –parallel wave.c –o wave.sica.c

- icc –O3 –fp-model precise –mavx wave.c –o orig (for the C code)

- icc –O3 –fp-model precise –mavx –openmp wave.par.c –o par (for pipelined parallel

code)

- icc –O3 –fp-model precise –mavx –openmp wave.diamond.c –o diamond (for concurrent

parallel code)

- icc –O3 –fp-model precise –mavx –openmp wave.sica.c –o sica (for sica tiled parallel

code)

Patus Command:

- patus -- architecture = x86_64 AVX wave.stc

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 299 8 12 1 4 4

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 299 8 12 1 4 4

- make tune x_max=300 y_max=300 z_max=300 (for grid size 300*300*300)

- ./bench 300 300 300 299 8 12 1 4 4

The table 5.14 gives the information of performance of wave stencil when compiled via pluto and patus.

47

TABLE 5.14. Performance table for patus and pluto on wave stencil
Grid Size Time ICC ICC:

Gflops

Pluto Pluto:

Gflops

Sica-

tiling

Sica:

Gflops

Diamond-

tiling

Diamond-

Gflops

Patus Patus:

Gflops

300*300*300 100 16.01 3.2 4.97(8) 10.32 63.24 0.5 5.48(8) 9.35 12.66 4.70

300*300*300 200 32.02 3.2 8.64(8) 11.87 123.3 0.52 8.33(8) 12.31 25.75 4.51

300*300*300 295 47.20 3.2 11.88(8) 12.73 169.4 0.56 11.97(8) 12.65 40.23 4.13

FIGURE 5.31. Grid size versus Execution time

FIGURE 5.32. Grid size versus GFLOPS

0

20

40

60

80

100

120

140

160

180

300*300*300*100 300*300*300*200 300*300*300*295

Grid size vs Execution time

ICC Pluto Sica-tiling Diamond-tiling Patus

0

2

4

6

8

10

12

14

300*300*300*100 300*300*300*200 300*300*300*295

Grid size vs Gflops

ICC: Gflops Pluto: Gflops Sica: Gflops Diamond-Gflops Patus: Gflops

48

FIGURE 5.33. Performance speedup

Observation and comments:

We can observe from the above performance graphs of stencils that patus is performing considerably

slower than pluto’s pipelined code. This is because, in contrast to Jacobi style of coding, seidel style of

coding has dependencies in subsequent iterations and patus, after tiling the grid sizes is not able to

vectorize the inner loop by loop unrolling. One might ask, how pluto was able to generate a good

optimized code? And the answer for this is, pluto uses a transformation technique called skewing, which

skews the loops to make a certain level of the loop parallel and all dependencies are carried by other

levels of the loops. Hence, in seidel style of coding, pluto generated an optimized code in which the outer

loops were made parallel for tiling purpose and inner loops carried all the dependencies. This is how

pluto was able to generate parallel pipelined executable tiles. Thus, patus was slower with respect to

pluto because of its lack of implementing skewing technique.

0

0.5

1

1.5

2

2.5

3

3.5

4

300*300*300*100 300*300*300*200 300*300*300*295

Speedup

Patus Pluto Sica Diamond

49

5.4 Execution time vs number of threads

This section provides the information on execution performance of each stencil against the number of

threads used to execute the code. We can see that, for all the stencils, the best performance in terms of

execution time is achieved for thread counts of 16 or 32.

 Blur stencil

TABLE 5.15. Execution time for relative number of threads for blur stencil

Number of threads Pluto Diamond Patus

2 42.26 18.96 111.57

4 22.70 11.23 58.56

8 18.90 10.34 65.69

16 16.68 7.26 35.65

32 13.30 7.54 45.45

48 14.54 9.76 50.48

FIGURE 5.34. Number of threads versus Execution time

2 4 8 16 32 48

Patus 111.57 58.56 65.69 35.65 45.45 50.48

Diamond 18.96 11.23 10.34 7.26 7.54 9.76

 Pluto 42.26 22.7 18.9 16.68 13.3 14.54

0

20

40

60

80

100

120

140

160

180

200

Ex
e

cu
ti

o
n

 t
im

e

Blur stencils

50

 Edge stencil

TABLE 5.16. Execution time for relative number of threads for edge stencil

Number of threads Pluto Diamond Patus

2 16.84 12.94 65.21

4 10.61 6.75 21.43

8 10.55 6.50 33.69

16 7.28 5.01 16.32

32 8.51 4.68 25.18

48 11.67 7.55 26.13

FIGURE 5.35. Execution time versus number of threads

 Game of life

TABLE 5.17. Execution time for relative number of threads for game of life stencil

Number of threads Pluto Diamond Patus

2 26.32 26.38 81.94

4 16.48 14.04 54.23

8 16.27 12.30 61.18

16 11.80 9.86 14.74

32 13.95 10.78 20.32

48 15.53 11.51 25.14

2 4 8 16 32 48

 Pluto 16.84 10.61 10.55 7.28 8.51 11.67

Diamond 12.94 6.75 6.5 5.01 4.68 7.55

Patus 65.21 21.43 33.69 16.32 25.18 26.13

0

10

20

30

40

50

60

70

Ex
e

cu
ti

o
n

 t
im

e

Edge stencil

51

FIGURE 5.36. Execution time versus number of threads

 Laplacian

TABLE 5.18. Execution time for to number of threads for laplacian stencil

Number of threads Pluto Diamond Patus

2 64.82 79.26 94.86

4 38.75 42.51 82.43

8 32.09 36.36 86.91

16 26.14 25.73 70.53

32 25.84 27.53 74.26

48 32.17 32.64 85.81

FIGURE 5.37. Execution time versus number of threads

2 4 8 16 32 48

 Pluto 26.32 16.48 16.27 11.8 13.95 15.53

Diamond 26.38 14.04 12.3 9.86 10.78 11.51

Patus 81.94 54.23 61.18 14.74 20.32 25.14

0
10
20
30
40
50
60
70
80
90

Ex
e

cu
ti

o
n

 t
im

e

Game of life stencil

2 4 8 16 32 48

 Pluto 64.82 38.75 32.09 26.14 25.84 32.17

Diamond 79.26 42.51 36.36 25.73 27.53 32.64

Patus 94.86 82.43 86.91 70.53 74.26 85.81

0

20

40

60

80

100

Ex
e

cu
ti

o
n

 t
im

e

Laplacian stencil

52

 Wave

TABLE 5.19. Execution time for number of threads for wave stencil

Number of threads Pluto Diamond Patus

2 60.48 64.12 84.23

4 37.00 39.05 68.41

8 37.62 36.93 60.19

16 27.53 26.90 50.67

32 27.65 28.55 71.45

48 29.89 28.24 80.64

FIGURE 5.38. Execution time versus number of threads

2 4 8 16 32 48

 Pluto 60.48 37 37.62 27.53 27.65 29.89

Diamond 64.12 39.05 36.93 26.9 28.55 28.24

Patus 84.23 68.41 60.19 50.67 71.45 80.64

0
10
20
30
40
50
60
70
80
90

Ex
e

cu
ti

o
n

 t
im

e

Wave stencil

53

Chapter 6 Conclusion

In conclusion, this report provides the performance of both patus and pluto compilers on stencils using

two different styles of coding i.e. Jacobi style and Seidel style. In Jacobi style of coding, pluto compiler

was able to perform better than patus compiler because patus compiler lacks time blocking (tiling) and

only blocks space (grid sizes) whereas pluto tiles both time and space. In Seidel style of coding, we

observed that patus compiler is performing much slower than pluto compiler because of the given nature

of dependencies in Seidel style of coding. Pluto compiler uses skewing transformation technique to

make certain loop parallel and hence it is able to perform well with Seidel style of coding. Patus

compiler lacks the use of skewing technique in its implementation to make parallel loop and hence patus

compiler is not suited for the codes with Seidel style. In all of our experiments, pluto compiler, with

some fine tuning for finding the appropriate tile sizes and the use of different tile shapes, has

outperformed patus compiler on every stencil. Therefore, for optimizing stencils and to be able to get a

good optimized code in terms of data locality and parallelism, the use of pluto compiler is a good choice

than patus compiler.

54

References

Bondhugula, U., Baskaran, M. M., Krishnamoorthy, S., Ramanujam, J., Rountev, A., & Sadayappan, P.

(2008). Automatic Transformations for Communication-Minimized Parallelization and Locality

Optimization in the Polyhedral Model. doi:10.1007/978-3-540-78791-4_9.

Bondhugula, U., Hartono, A., Ramanujam, J., & Sadayappan, P. (2008). A practical automatic

polyhedral parallelizer and locality optimizer.

Bondhugula, U., Pananilath, I., & Bandishti, V. (2012). Tiling stencil computations to maximize

parallelism.

Bondhugula, U., Ramanujam, J., & Sadayappan, P. (2008). PLuTo: A Practical and Fully Automatic

Polyhedral Program Optimization System.

Christen, M., Schenk, O., & Burkhart, H. (2011). PATUS: A Code Generation and Autotuning

Framework for Parallel Iterative Stencil Computations on Modern Microarchitectures.

Dustin, F., Thomas, S., Michael, J., & Sven, M. (2013). Facilitate simd-code-generation in the

polyhedral model by hardware-aware automatic code-transformation. doi: urn:nbn:de:0011-n-

2347222.

55

Vita

Pratik Prabhu Hanagodimath was born in Haveri, India, to Prabhu Hanagodimath and Premalata

Hanagodimath. Pratik studied electrical and electronics engineering at SDM College of Engineering and

Technology, Visvesvaraya Technological University, India, from 2006 through 2010 towards obtaining

his Bachelor of Engineering degree. He worked for six months in a company called JSW steel ltd., India,

from January 2011 to June 2011. He is currently a Masters student in the Department of Electrical &

Computer Engineering at Louisiana State University, Baton Rouge, where he has been a graduate

student since fall 2011. During this time he has been working as a research assistant in the field of

compiler optimization under the guidance of Dr J Ramanujam.

	Louisiana State University
	LSU Digital Commons
	2014

	Performance Comparison Between Patus and Pluto Compilers on Stencils
	Pratik Prabhu Hanagodimath
	Recommended Citation

	tmp.1483774927.pdf.tGARG

