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Abstract 

The main aim of this research is to compare the performance of two compilers namely patus and pluto 

on stencils. In order to observe the performances of these two compilers, two coding styles have been 

implemented. Those are: 

 Jacobi style 

 Seidel style 

The report discusses and reasons the performances of both the compilers on each style of coding. Many 

performance graphs have been plotted to illustrate the difference in performance.  

Pluto compiler uses an optimization technique called tiling. Tiling is an important technique which 

transforms the code for better data locality and parallelism. To achieve this, appropriate tiling size and 

tiling shape must be considered. Therefore, we use the following to get the best tiling performance: 

 Pluto tiling: Uses  rectangular shaped tiles to transform the code for pipelined execution of tiles 

 Sica tiling: This is an extension of pluto tiling to find better tile sizes 

 Diamond tiling: Uses diamond shaped tiles to transform the code for concurrent execution of 

tiles 

In order to find better tile sizes for pluto and diamond tiling, a shell script is used as a tuner which 

changes the tile sizes from 8 to 512 to find an optimal tile size value.  
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Chapter 1 Introduction 

1.1 Introduction 

A stencil is a class of an iterative kernel in which each point in the kernel is updated by a fixed pattern of 

memory access and computations. Despite the stencil kernels simplicity in updating the points, these 

stencils achieve a very low fraction of peak performance. A stencils computation performs much 

iteration over the spatial domain in order to update a time or a non-time dependent point in the kernel.  

Due to this, the computations will take up several core hours on supercomputers. Because of their fixed 

pattern of computation stencils always exhibit parallelism. Exploiting any of these parallelism leads to 

an optimized code with significant performance in terms of execution speedup and data locality.  

Stencils are used in a wide range of applications ranging from many scientific to engineering sectors. In 

this report two image processing stencils namely blur and edge stencils, two partial differential equation 

solvers namely laplacian and seidel stencils, one cellular automata namely game-of-life stencil and one 

wave propagation namely wave stencils are considered for experimentation. These stencils have intense 

arithmetic computations.   

In this report, two compilers namely pluto and patus have been selected to observe the performances of 

these two compilers on the stencil. Each compiler optimizes the code in its unique way by exploiting the 

parallelism in the stencils. Our experiments on stencils are conducted using two coding styles: 

 Jacobi style 

 Seidel style 

Performance illustrations are done using graphs such as execution time vs grid size, Gflops vs grid size 

and speed-up charts. A brief reasoning on the compiler performance is also discussed at the end of each 

experiment. 
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1.2 Literature review  

The authors Matthias, Schenk and Burkhart present a code generation and auto tuning framework for 

parallel stencil computations (Christen, Schenk, & Burkhart, 2011). This framework is known as Patus 

which stands for Parallel Auto Tuned Stencil. In this paper, the authors present their strategies for 

optimizing stencil computations. And discuss their results with appropriate tables and graphs. Uday 

designed and implemented a fully automatic polyhedral source to source transformation framework that 

can optimize regular programs (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev & 

Sadayappan, 2008). This paper discusses a model driven automatic transformation in polyhedral model 

and presents approach in an end to end integer linear optimization framework that is capable of find 

good tiling for data locality and parallelism (Bondhugula, Hartono, Ramanujam, & Sadayappan, 2008). 

One of the important necessities to tile the code is to have an appropriate tile size and tile shape. The 

authors Uday, Bandishti and Pananilath present a new tiling technique that enable tile-wise concurrent 

startup to maximize parallelism and provides load balancing (Bondhugula, Pananilath, & Bandishti, 

2012). In this paper, the authors present their implementation on the new tiling technique called 

diamond tiling and discuss their results on its performance. As mentioned earlier, choosing a tile size 

places an important role in using tiling optimization technique. The authors Soddemann et.al present a 

new hardware-aware and adaptive loop tiling approach that is based on the polyhedral transformation 

(Dustin, Thomas, Michael, & Sven, 2013). In this paper, the authors claim that their model chooses a 

better tile size and also improves auto-vectorization. 

Considerable research is done in finding a framework that provides a good optimized code for general 

stencils and applications. Much research is also done in the use of tiling optimization technique and to 

find efficient ways to come up with better tile shapes and sizes. However, there is no available research 

that compares the two framework, patus and pluto, for their efficiency on optimizing codes. This report 

aims to compare the performances of patus and pluto compiler on stencils.   
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Chapter 2 Basic optimization techniques 

2.1 Introduction 

In this section, the report provides information regarding the basic optimization techniques. These 

techniques are used by the compiler to generate optimized code. Section 2.2 explains the different types 

of data dependencies and touch up on what a dependency distance and direction vector is. Section 2.3 

illustrates different transformation techniques with an example.  

2.2 Data flow analysis 

 Flow dependency 

A dependency is termed a flow dependency if a memory location is written in one statement and 

read in subsequent iterations. An example shown below illustrates flow dependency due to 

access to array A: 

for ( i ….)  { 

 A[i] = b[i] + c[i] 

 D[i] = A[i] 

} 

 

 Anti-dependency 

Occurs when a memory location is read in some statement and in later iterations some value is 

written to the same memory access. An example below illustrates anti-dependence due to array 

b. 

 for ( i ….)  { 

 A[i] = b[i] + c[i] 

 b[i] = d[i] 

} 
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 Output dependency 

Occurs when a memory location which is written in one statement; and in later iterations the 

same memory location is written again. Array D in the example shown below illustrates output 

dependency. 

For ( i ….)  { 

 D[i] = b[i] + c[i] 

 D[i] = A[i] 

} 

 

 Input dependency 

Occurs when a memory location is read in two different iterations. Array b in the example shown 

below illustrates input dependency. 

for ( i ….)  {// iterations 

 A[i] = b[i] + c[i] 

 D[i] = b[i] 

} 

 

2.2.1 Dependency distance and direction vectors 

A dependency distance vector represents the dependency distance between the memory access of source 

iteration and sink iteration. Direction vector represents the sign { +, 0, - } of the distance vector. 

Consider the following example: 

For ( i … ) { 

 For ( j …) { 

  a[i][j] = a[i][j] + a[i-1][j+1] + a[i][j-1]; 

 } 

} 

The dependency distance vector which is calculated as sink instance minus the source instance; for the 

above example distance vector due to accesses to array “a” is as shown: 

(
   
    

) 
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The direction vector for the example is as shown: 

(
   
   

) 

It is very important to note that the first non-negative component should always be a 0 or positive, it 

must never be negative. The level at which the first non-negative component occurs defines the 

dependency for that level. For instance, there is a level 1 and level 2 dependencies for the above 

example.  

2.3 Transformation techniques 

 Skewing  

Loop skewing is a technique to change distance vectors to a form where further transformations 

can be enabled such as loop interchange or tiling. Skewing is always done to the inner loop with 

respect to the outer loop. Skewing the inner loop with respect to outer loop by a factor ‘f’ 

changes a distance vector from (
  
  

) to (
  

         
). Skewing the loops is always legal 

because it does not change the order of execution of iterations. Consider the following example: 

for ( i … ) { 

 for ( j …) { 

  a[i][j] =  a[i-1][j+1] + a[i][j-1]; 

 } 

} 

 

The distance vector for the example is (
  
   

). Here dependencies are carried by both the 

loops. If the inner loop is skewed by a factor 2 with respect to the outer loop, then the 

dependency distance vector will be (
  
  

). This enables loop interchange technique which will 

make the outer loop carry all the dependencies and inner loop parallel. 
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 Loop interchange 

This technique as the name says, loops can be interchanged to make a loop level carry all the 

dependencies. This technique is often used after loop skewing. Consider the pervious example 

where after skewing the loops the new dependency distance vector is (
  
  

). Now, if loop 

interchange is applied, the dependency distance vector would be (
  
  

). We can see that the 

dependencies are carried by the outer loop and inner loop is parallel. One should be careful while 

applying loop interchange; the outer most loop after the interchange must always be positive or 

0. It is not a valid transformation if the first level component is a negative value. 

 Vectorization 

Vectorization  is an optimization technique to execute the statements in the loop on different 

available processors in the same time step. Vectorization is only possible if there exists no 

dependency loops between one statement to another statement. For example, consider the code 

shown below, vectorization is not possible because there exists a dependency cycle between 

statements S1 and S2.  

for ( i …) { 

 for (j … ) { 

  S1: a[i][j] = b[i][j]; 

  S2: b[i+1][j] = a[i][j] 

 } 

} 

Consider the following example, In this example the inner loop “j” is parallel as is does not carry 

any dependencies and is vectorizable; and all the dependencies is carried by the outer loop “i”.  

for ( i …) { 

for (j … ) { 

 S1: a[i][j] = a[i-1][j] + a[i-2][j-1] 
                           } 
              } 



7 

 

In the vectorized form the above code look like: 

for ( i …) { 

 S1: a[i][1 : N] = a[i-1][1 : N] + a[i-2][1 : N]. 

 }  

 

 Loop tiling 

Tiling is an optimization technique that partitions the iteration space of the loops into smaller 

tiles for improving data locality and to incur smaller execution overhead. A tile is defined by a 

set of boundaries regularly spaced apart. A tile is valid as long as there are no negative 

dependencies in it. Consider the code shown below: 

for ( i=0; i<N; i++) { 

 for ( j=0; j<N; j++) { 

  S1: a[i][j] = a[i-1][j] + a[i-2][j-1] 

 } 

} 

The general form of tiling with a tile size of “T” would look like: 

 

for ( ii=0; ii<N; ii+T ){    // In steps of T tiles 

 for (jj=0; jj<N; jj+T){     //In steps of T tiles 

  for (i=ii; i<ii+T; i++) { 

   for (j=jj; j<jj+T; j++){  

    S1: a[i][j] = a[i-1][j] + a[i-2][j-1] 

   } 

  } 

 } 

} 
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Chapter 3 Brief overview of Patus compiler 

3.1 Patus 

Patus stands for Parallel Auto-Tuned Stencil. It is an auto tuning as well as a code generation tool for the 

class of stencils (Christen, Schenk, & Burkhart, 2011). The main goal of patus compilers is to accept a 

DSL (domain specific language) which contains a stencil specification and turn this DSL to a high 

performance C code which is optimized. The resultant C code is generated considering the architecture 

of the system. Patus targets the architectures such as many and multi core processors. As mentioned 

earlier, patus takes in a DSL input for producing an optimized C code. This DSL allows the programmer 

to express the stencil computations in a comprehensive way independently of hardware architecture 

specific details (Christen, Schenk, & Burkhart, 2011). Expressing the stencil computations as a DSL also 

adds to the programmer’s productivity and the programmer need not concern with hardware specific 

details and low level programming issues. The other uses of DSL are its portability and re-use. Once the 

DSL is specified, it can be re-used on different platforms without having to change it as required by 

architecture. Hence the code can be re-used and is portable across different platforms.  

3.2 Features of Patus compiler 

Patus compiler has its own features through which it generates an optimized C code. Its features are: 

1) Cache blocking strategy 

2) Auto tuner 

3.2.1 Cache blocking strategy 

The DSL when compiled with patus uses cache blocking strategy to generate the optimized C code. A 

basic structure of this strategy is as shown (Christen, Schenk, & Burkhart, 2011): 
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Strategy cacheblocking ( … ) // parameters like grid size, blocks and chunk are passed here. 

{ 

 //iterates over time specified 

 For t = …. 

 { 

  // iterates over subdomain of the grid 

  For subdomain v (cb) in u(:; t) 

      Parallel schedule chunck 

  { 

   // calculates the stencil for each point in subdomain of the grid 

   For point p in v(:; t) 

    v[p; t+1] = stencil (v[p; t]); 

  } 

 } 

} 

 

The parameters like grid size, cache blocks and chunks are passed as arguments to this strategy. The 

cache block and chunk parameter are link to auto tuner to find an optimal value for these parameters. A 

brief explanation of auto tuner is given in the next paragraph. This strategy iterates over the time 

specified for all subdomains of size “v“ as shown in the strategy. The value of size “v” depends on “cb” 

which is obtained from auto tuner. The “parallel” key word  specifies parallel execution of blocks “v” 

dealt to worker threads. The “chunk” and “schedule” keywords specify how many consecutive blocks 

one thread is given. At the end, the stencils computation is done for “p” points in the subdomain of “v” 

block. 

3.2.2 Auto tuner 

Auto tuner is a tuning feature of patus that tunes to find the best configuration parameters for cache 

blocking strategy. As explained in the previous paragraph, the auto tuner is passed with “cb”, grid sizes 

and chunk information. The auto tuner runs the stencil computations with these parameters and produces 

the output. Many sets of values are tested by the auto tuner and the configuration that ran the best is 

given as output at the end of testing all the values in its set.  
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3.3 Optimizations techniques used by Patus 

Patus uses cache blocking strategy to find the best configuration for blocking the grid size. This is the 

same as the tiling optimization technique. Patus also uses loop unrolling technique to unroll the inner 

most loop and collapses the inner loop to its immediate outer loop. After loop unrolling technique is 

applied, patus uses vectorization technique to vectorize the inner most loop.  

3.4 A walk through DSL example 

 stencil example ( float grid U ) 

{ 

 iterate while t < 1; 

 domainsize = ( 3 .. height-3, 3 .. width-3 ); 

 initial { 

  U[ x, y; t ] = x*x + y*y; 

  U[ x, y; t+1] = 0; 

 }; 

 operation { 

  U[ x, y; t+1] = U[ x, y; t] + U[ x, y-1; t] + U[ x-1, y; t] + ……. 

 };  

} 
 

 The “stencil” specifies the stencil of “example” in the domain specific language (DSL). This 

stencil operates on a grid size “U” specified as an argument. The grid parameter need not be 

passed in the DSL. It can be specified later as a command line argument when executing for 

bench mark harness using auto tuner.  

 The “iterate” term specifies the number of time steps to be performed for the stencil 

computation. If this information is not provided, then by default the stencil computation is run 

for t = 1 time step. 

 The “domainsize” defines the iteration space for the stencil computation. The total grid size is 

mentioned as “U” which takes on 0 … max-1 values. The stencil computation is applied only to 

the iteration space as specified in “domainsizes” and not to the whole grid size “U”. 
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 The “initial” specifies the initialization of the grids 

 “operation” defines the actual computations for the “example”.   
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Chapter 4 Brief overview of Pluto compiler 

4.1 Pluto 

Pluto is an automatic parallelization tool which uses polyhedral model to transform the code for better 

data locality and parallelism.  A polyhedral dependency matrix is a matrix which gives complete 

information regarding the kernel. Pluto makes a geometric representation by using this matrix and finds 

affine transformations for effective tiling of the loops. Pluto is not limited to only tiling transformation; 

it can find affine transformations for effectively fusing the loops and many more. Thus, pluto using the 

polyhedral model transforms the C code from source to source for a coarse-grained parallelism and data 

locality.  

Tiling is a key transformation technique used by pluto to optimize the code for better data locality and 

parallelism. To transform the code for better locality, pluto divides the iteration space of the loops in 

such a way that the data access needed in the innermost tiled loop fits appropriately in cache. By doing 

so, a better reuse of the data placed in the cache is enabled and this improves locality of data. During this 

process pluto generates many tiles which can be concurrently executed on different processors with 

reduced frequency and communication between the tiles. This way pluto achieves parallelism among the 

tiles for faster execution. Therefore, finding an appropriate tile is an important and integral part of pluto.  

The task of program optimization in polyhedral model may be viewed in phases as (Bondhugula, 

Ramanujam, & Sadayappan, 2008): 

 Static dependency analysis of input program 

 Transformation in polyhedral abstraction  

 Generation of code for the transformed program 
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Pluto uses the mathematical models in an algorithm to find appropriate tiles. The mathematical models 

are briefly shown: 

In order to find legal tiles with affine dependencies on multiple domains, the following must be satisfied 

(Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev & Sadayappan, 2008): 

                                and     and Pe are legal tiling hyerplanes and dependency 

polyhedron respectively.  

In order to find minimum latency schedules (Bondhugula, Hartono, Ramanujam, & Sadayappan, 2008): 

     (       (     ))    under dependency polyhedron.  

An example shown below illustrates the original code and the transformed code with dependency 

polyhedron from accesses to array A (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev & 

Sadayappan, 2008): 

// original code: 

for ( i=0; i< N; i++ )  

 for ( j=0; j<N; j++ )  

  S1: A[i][j] = A[i][j] + u[i] * v[j]; 

 

for ( i=0; i<N; i++ )  

 for ( j=0; j<N; j++ )  

  S2: x[i] = x[i] + A[j][i] * y[j]; 

 

The dependency polyhedron ( Pe ) for inter statement dependence on A is (Bondhugula, Baskaran, 

Krishnamoorthy, Ramanujam, Rountev & Sadayappan, 2008): 

[
 
 
 
 
 
      
        
      
        
       
       ]

 
 
 
 
 

 . 

(

 
 
 

 
 

  
  
 
 )

 
 
 

    0 
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The transformation is as shown (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev & 

Sadayappan, 2008): 

For statement S1:            i    j    const 

                               
      
      
      

 

For statement S2:            i    j    const 

                               
      
      
      

 

The transformed code is as shown (Bondhugula, Baskaran, Krishnamoorthy, Ramanujam, Rountev & 

Sadayappan, 2008): 

for ( c1=0; c1<N; c1++) { 

 for ( c2=0; c2<N; c2++) { 

  A[c2][c1] = A[c2][c1] + u[c2] * v[c1]; 

  x[c1] = x[c1] + A[c2][c1] * y[c1]; 

 } 

}  
 

 

4.2 Diamond tiling 

Stencil computations are computed by updating gird points using neighboring grid point’s values. Hence 

stencils exhibit properties for data locality and parallelism optimizations. With pluto tiling framework, 

the tile hyper planes are chosen in such a way that the tiles would be enabled for pipelined execution. 

But at the start of the computation, not all the processors are busy. Therefore this leads to a load 

imbalance start up (Bondhugula, Pananilath, & Bandishti, 2012). This issue can be overcome by using 

diamond tiling. There always exists a face of the iteration space and a set of hyper planes to select, such 

that the combination could lead to a tile wise concurrent start up. This provides a good load balance by 

eliminating pipeline fill ups and drain-delays, and maximizes parallelism (Bondhugula, Pananilath, & 

Bandishti, 2012). For getting a concurrent start up at least one level of outer loop parallelism is 
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expected. This nature is observed in Jacobi style, which is explained in results section. We can observe 

from the graphs that diamond tiling gives significant results. If the dependencies are present all over the 

iteration space then getting a concurrent startup is not possible. This nature is observed in seidel style, 

also explained in results section, the dependencies are spread throughout the iterations and hence we 

observe no concurrent start up.     

Brief mathematical notations and constraints for concurrent startup are discussed below: 

In order to find valid hyper planes from source iteration to sink iteration, the following should be valid 

(Bondhugula, Pananilath, & Bandishti, 2012): 

                , where (s, t)   Pe.  

Pe – Polyhedron dependency matrix 

                  are hyper planes for statements  

Theorem 1 (Bondhugula, Pananilath, & Bandishti, 2012): 

For a statement, a transformation enables tile-wise concurrent start along a face f iff the tile schedule is 

in the same direction as the face and carries all inter-tile dependences. 

This is denoted as: f . C   1, where f is the face allowing concurrent startup and C is a matrix containing 

inter-tile dependencies of original iteration space. 

Theorem 2 (Bondhugula, Pananilath, & Bandishti, 2012): 

Concurrent start along a face f can be exposed by a set of hyper-planes iff f lies strictly inside the cone 

formed by the hyper-planes, i.e., iff f is a strict conic combination of all the hyperplanes 

This is denoted as:     lambda1 . h1 + lambda2 . h2 + … + lambdaN . hN 

Theorem 3 (Bondhugula, Pananilath, & Bandishti, 2012):  

A transformation T allows concurrent startup along f iff  f . inverse(Tr)   1.  

An algorithm is proposed by Uday to find the appropriate hyper-planes which enable concurrent startup.  
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4.3 Sica tiling 

Tile size selection plays an important role in tiling optimization technique. Pluto uses a default tile 

selection (32) when compiling the C code for optimization using tiling technique. But this default tile 

selection does not necessarily yield an optimized code that always performs well on every application. 

There always exists a tile size for which the optimized code performs best.  

 Sica tiling presents a hardware aware and adaptive loop tiling approach that is based on pluto’s 

polyhedral transformations and dedicated to improve auto-vectorization (Dustin, Thomas, Michael, & 

Sven, 2013). They use an adaptive strategy to find near optimal tile sizes for vectorizable loops through 

dynamic tile size calculations. The tile size for first level of tiling should fit to the ratio of the amount of 

data read in one iteration of the loop which is vectorizable and the size of the L1 cache. In the same way, 

the tile size for the second level of tiling should fit to the ratio of L2 cache size and L1 cache size 

(Dustin, Thomas, Michael, & Sven, 2013). The calculation of different levels of tiling is as shown below 

(Dustin, Thomas, Michael, & Sven, 2013): 

First level tile size = q (L1) = floor ( 
          

    ⁄  ) *         ⁄  

Where: 

  = ratio of cache to use 

CL1 and CL2 = the size of L1 and L2 cache in Kbytes 

R = SIMD register width in bits 

  = Elements per iteration 

D = size of data type 

Second level tile size = q (L2) = CL2 / CL1 

 



17 

 

Chapter 5 Results 

5.1 Results  

In this section, the report provides the performance results obtained by executing stencil benchmarks. 

Two experimental styles were chosen to compare the performances of the compilers on stencils: 

1) Jacobi style 

2) Seidel style 

Five out of six stencil benchmarks are taken from patus compiler. These stencil benchmarks include 

blur, edge, game of life, laplacian and wave. Seidel stencil is a benchmark that is written in seidel style 

and hence it is not considered in Jacobi style of evaluation. In seidel style, all the six stencils are written 

in seidel style of coding to compare the performances.  

The following gives information regarding the use of compiler specific command line options and 

commands to compile the C code for optimizations: 

 Pluto: 

- polycc  -- tile -- parallel filename.c –o filename.par.c 

“parallel“ command line option uses skewing transformation technique. This will either 

skew to make outer loop carry all dependency and inner loops vectorizable or makes 

outer loop parallel for tiling purpose. The “tile” option tiles the loops using tiling 

technique. This option gives a pipelined execution of tiles and not concurrent tile 

execution. 

- polycc -- partlbtile -- parallel filename.c –o filename.diamond.c 

The “parallel” flag will perform as explained above. The “partlbtile” flag tiles the loops 

in such a way that it would enable concurrent execution of tiles. 
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- Polycc –tile –sica –parallel filename.c –o filename.sica.o 

The “tile” and “parallel” flags perform as explained above. The “sica” flag tiles the code 

using sica model of tiling.  

The table 5.1gives information of the compiler and the compiler flags used to compile the C and 

optimized codes generated by pluto.  

TABLE 5.1. Compiler and compiler flags for pluto 

Compiler icc 14.0.1 

Compiler flags -O3 –fp-model precise –mavx  -openmp 

 

 Patus: 

- patus filename.stc  

This command uses “patus” as a wrapper on the DSL and compiles the DSL to produce 

an optimized C code with other related files for benchmark harness. 

- Make tune [options]  

This command will start the auto tuner feature of patus for benchmark harness and   

provides the configuration information that ran the best. These configuration are used as 

command line options in the below shown command. 

- ./bench [options] 

This command uses the configuration provided by the auto tuner as command line option 

to execute the optimized C code. 

The table 5.2 provides the information on the compiler and compiler flags used to compile the optimized 

C code generated by patus. 

TABLE 5.2. Compiler and compiler flags for patus 

Compiler gcc 4.4.7 (Jacobi style) / icc 14.0.1 (Seidel style) 

Compiler flags -O3 –mavx –openmp 
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The hardware configuration used is: 

TABLE 5.3. Hardware configuration 

Microarchitecture Details 

Model Intel ® Xeon ® CPU E5 – 2624 

Clock 2.00 GHz 

Cores 6 

Processors 12 

L1 cache / core 32KB 

L2 cache / core 256KB 

L3 cache / socket 15KB 

 

5.2 Jacobi style 

In Jacobi style the stencil computations are written to a temporary array and values from temporary 

array are copied back to the actual array in the later computation. An example is shown below to 

illustrate Jacobi style of coding. Due to the use of such a coding style, dependencies do not exists inside 

loop nest but dependencies exist over time steps and between loop nests of a particular time. In the 

example below, there are no dependencies in loop nest 1 (or 2) but dependencies exist between loop nest 

1 and loop nest 2 and also over time steps. 

// Time step  

For ( t=0; t<N; t++ )  

 // Loop nest 1 

 For ( i …)  

  For ( j …)  

   temp_array[i][j] = array[i][j] + ….. 

 // Loop nest 2 

 For ( i …)  

  For ( j…)  

   array[i][j] = temp_array[i][j] 
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Shown below are the performance of five stencils when compiled with pluto and patus. Each stencil is 

written in Jacobi style and the compiler specific commands are also shown:  

 Blur stencil: 

Pluto commands: 

- polycc –tile –parallel blur.c –o blur.par.c 

- polycc –partlbtile –parallel blur.c –o blur.diamond.c 

- polycc –tile –sica –parallel blur.c –o blur.sica.c 

- icc –O3 –fp-model precise –mavx blur.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp blur.par.c –o par (for pipelined parallel code) 

-  icc –O3 –fp-model precise –mavx –openmp blur.diamond.c –o diamond (for concurrent 

parallel code) 

- icc –O3 –fp-model precise –mavx –openmp blur.sica.c –o sica (for sica tiled parallel 

code) 

Patus Commands: 

- patus blur.stc 

- make tune height=6000 width=6000 ( for grid size 6000*6000) 

- ./bench 6000 6000 2998 200 1 4 1 

- make tune height=8000 width=8000 (for gris size 8000*8000) 

- ./bench 8000 8000 3998 148 1 4 1 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 4998 128 1 4 1 

The table 5.4 gives the information of performance of blur stencil when compiled via pluto and patus. 

The numbers mentioned in brackets gives information of tile sizes that worked best.  
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TABLE 5.4. Performace table for pluto and patus on blur stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

6000*6000 60 12.24  7.55 5.13(24) 16.39 65.35 1.28 1.52(128) 55.32 6.69 15.67 

8000*8000 80 26.07  7.46 10.72(16) 18.60 177.25 0.96 3.64(96) 54.78 12.13 16.03 

10000*10000 100 51.36  7.78 14.76(24) 26.39 264.12 1.10 7.34(96) 53.08 17.66 24.34 

 

 
FIGURE 5.1. Grid size versus Execution time 

 

 
FIGURE 5.2. Grid size versus GFOPLS 
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FIGURE 5.3. Speedup performance 
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- ./bench 6000 6000 5998 140 2 4 0 

- make tune height=8000 width=8000 (for gris size 8000*8000) 

- ./bench 8000 8000 7998 24 4 1 0 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 4999 224 1 2 1 

The table 5.5 gives the information of performance of edge stencil when compiled via pluto and patus. 

TABLE 5.5. Performance table for patus and pluto on edge stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica- 

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

6000*6000 60 8.48 2.54 2.64(16) 8.15 36.55 0.58 1.01(104) 21.33 3.30 6.53 

8000*8000 80 18.69 2.73 5.01(16) 10.19 65.79 0.64 2.51(88) 20.30 8.34 6.13 

10000*10000 100 41.95 2.38 10.84(16) 9.34 111.83 0.72 4.93(72) 20.23 17.14 5.82 

 

 
FIGURE 5.4. Grid size versus Execution time 
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FIGURE 5.5. Grid size versus GFLOPS 

 

 
FIGURE 5.6. Speedup performance 
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 Game of life stencil: 

Pluto commands: 

- polycc –tile –parallel gol.c –o gol.par.c 

- polycc –partlbtile –parallel gol.c –o gol.diamond.c 

- polycc –tile –sica –parallel gol.c –o gol.sica.c 

- icc –O3 –fp-model precise –mavx gol.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp gol.par.c –o par (for pipelined parallel code) 

-  icc –O3 –fp-model precise –mavx –openmp gol.diamond.c –o diamond (for concurrent 

parallel code) 

- icc –O3 –fp-model precise –mavx –openmp gol.sica.c –o sica (for sica tiled parallel code) 

Patus commands: 

- patus game-of-life.stc 

- make tune height=6000 width=6000 ( for grid size 6000*6000) 

- ./bench 6000 6000 2998 144 1 4 0 

- make tune height=8000 width=8000 (for gris size 8000*8000) 

- ./bench 8000 8000 7998 172 4 4 0 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 4999 280 1 4 1 

The table 5.6 gives the information of performance of game of life stencil when compiled via pluto and 

patus. 

TABLE 5.6. Performance table for patus and pluto on game of life stencil 

Grid Size Time ICC 
ICC: 

Gflops 
Pluto 

Pluto: 

Gflops 

Sica- 

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 
Patus 

Patus: 

Gflops 

6000*6000 60 11.65 2.58 5.42(16) 5.56 54.56 0.55 2.09(120) 14.42 4.10 7.36 

8000*8000 80 27.45 2.60 11.17(16) 6.40 96.17 0.60 5.16(96) 13.85 9.57 7.48 

10000*10000 100 54.04 2.58 18.25(16) 7.66 174.01 0.62 10.02(102) 13.95 15.11 9.25 
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FIGURE 5.7. Grid size versus Execution time 

 

 
FIGURE 5.8. Grid size versus GFLOPS 
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FIGURE 5.9. Speedup performance 
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- make tune x_max=400 y_max=400 z_max=400 ( for grid size 400*400*400) 

- ./bench 400 400 400 199 148 148 1 4 1 

- make tune x_max=500 y_max=500 z_max=500 ( for grid size 500*500*500) 

- ./bench 500 500 500 249 4 64 1 4 0 

The table 5.7 gives the information of performance of laplacian stencil when compiled via pluto and 

patus. 

TABLE 5.7. Performance chart for patus and pluto on laplacian stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

300*300*300 300 31.15 1.27 10.95(8) 5.62 5.52 11.14 9.40(32) 6.55 21.40 2.87 

400*400*400 400 108.70 1.44 27.46(8) 7.18 15.87 12.42 25.94(40) 7.58 72.70 2.71 

500*500*500 500 198.21 1.76 61.69(8) 7.86 39.86 12.16 56.01(24) 8.66 144.68 3.35 

 

 
FIGURE 5.10. Grid size versus Execution time 
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FIGURE 5.11. Grid size versus GFLOPS 

 

FIGURE 5.12. Speedup performance 
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- polycc –tile –sica –parallel wave.c –o wave.sica.c 

- icc –O3 –fp-model precise –mavx wave.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp wave.par.c –o par (for pipelined parallel 

code) 

-  icc –O3 –fp-model precise –mavx –openmp wave.diamond.c –o diamond (for concurrent 

parallel code) 

- icc –O3 –fp-model precise –mavx –openmp wave.sica.c –o sica (for sica tiled parallel 

code) 

Patus Command: 

- patus wave.stc 

- make tune x_max=300 y_max=300 z_max=300 ( for grid size 300*300*300) 

- ./bench 300 300 300 299 8 8 1 4 3 

- make tune x_max=400 y_max=400 z_max=400 ( for grid size 400*400*400) 

- ./bench 400 400 400 395 32 32 1 7 3 

- make tune x_max=500 y_max=500 z_max=500 ( for grid size 500*500*500) 

- ./bench 500 500 500 499 4 44 1 4 8 

The table 5.8 gives the information of performance of wave stencil when compiled via pluto and patus. 

TABLE 5.8. Performance table for patus and pluto on wave stencils 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

300*300*300 300 25.31 3.31 11.55(8) 13.33 7.36 20.91 8.46(32) 18.19 16.04 9.60 

400*400*400 400 67.89 3.31 27.33(8) 18.03 23.09 21.34 26.72(40) 18.44 52.14 9.45 

500*500*500 500 175.69 3.31 72.73(32) 16.67 54.32 22.32 58.14(48) 20.86 126.89 12.12 
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FIGURE 5.13. Grid size versus Execution time 

 

 
FIGURE 5.14. Grid size versus GFLOPS 
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FIGURE 5.15. Performance speedup 
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example is shown below to illustrate seidel style of coding. We can see that the values written to the 

array are accessed in the subsequent iterations for computation. Hence the dependencies exist within the 

loop iterations.  

For (t=0; t<N; t++)  

 // Loop nest 

 For (i ….)  

  For (j …)  

   a[i][j] = a[i-1][j-1] + a[i][j-1] + … 
 

Shown below are the performances of six stencils when compiled with pluto and patus. Each stencil is 

written in seidel style and compiler specific commands are also shown. 

 Blur stencil: 

Pluto commands: 

- polycc –tile –parallel blur.c –o blur.par.c 

- polycc –partlbtile –parallel blur.c –o blur.diamond.c 

- polycc –tile –sica –parallel blur.c –o blur.sica.c 

- icc –O3 –fp-model precise –mavx blur.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp blur.par.c –o par (for pipelined parallel code) 

-  icc –O3 –fp-model precise –mavx –openmp blur.diamond.c –o diamond (for concurrent 

parallel code) 

- icc –O3 –fp-model precise –mavx –openmp blur.sica.c –o sica (for sica tiled parallel 

code) 

Patus Commands: 

- patus -- architecture = x86_64 AVX blur.stc 

- make tune height=6000 width=6000 ( for grid size 6000*6000) 

- ./bench 6000 6000 1498 224 2 0 

- make tune height=8000 width=8000 (for gris size 8000*8000) 
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- ./bench 8000 8000 3997 308 2 4 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 4997 152 4 3 

The table 5.9 gives the information of performance of blur stencil when compiled via pluto and patus. 

The numbers mentioned in brackets gives information of tile sizes that has worked best. 

TABLE 5.9. Performance table for patus and pluto on Blur stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

6000*6000 60 28.09 2.99 8.70(8) 9.65 66.44 1.26 7.45(8) 11.27 22.87 3.67 

8000*8000 80 66.62 2.99 13.39(8) 14.88 206.26 0.96 13.92(8) 14.32 58.35 3.41 

10000*10000 100 130.19 2.99 29.03(8) 13.41 280.23 1.39 29.01(8) 13.42 107.9 3.61 

 

 
FIGURE 5.16. Grid size versus Execution time 

 

0

50

100

150

200

250

300

6000*6000*60 8000*8000*80 10000*10000*100

Grid size vs Execution time 

ICC Pluto Sica-tiling Diamond-tiling Patus



35 

 

 
FIGURE 5.17. Grid size versus GFLOPS 

 

 
FIGURE 5.18. Performance speedup 
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 Edge stencil: 

Pluto commands: 

- polycc –tile –parallel edge.c –o edge.par.c 

- polycc –partlbtile –parallel edge.c –o egde.diamond.c 

- polycc –tile –sica –parallel edge.c –o edge.sica.c 

- icc –O3 –fp-model precise –mavx egde.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp edge.par.c –o par (for pipelined parallel 

code) 

-  icc –O3 –fp-model precise –mavx –openmp edge.diamond.c –o diamond (for concurrent 

parallel code) 

- icc –O3 –fp-model precise –mavx –openmp edge.sica.c –o sica (for sica tiled parallel 

code) 

Patus commands: 

- patus – architecture = x86_64 AVX edge.stc 

- make tune height=6000 width=6000 ( for grid size 6000*6000) 

- ./bench 6000 6000 2997 332 2 3 

- make tune height=8000 width=8000 (for gris size 8000*8000) 

- ./bench 8000 8000 3997 332 4 0 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 4997 260 2 3 

The table 5.10 gives the information of performance of edge stencil when compiled via pluto and patus. 

TABLE 5.10. Performance table for patus and pluto on edge stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica- 

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

6000*6000 60 23.58 0.91 4.04(8) 5.32 18.12 1.19 4.25 5.06 13.58 1.58 

8000*8000 80 55.92 0.91 6.99(8) 7.30 43.76 1.16 7.46 6.84 38.01 1.34 

10000*10000 100 109.27 0.91 15.82(8) 6.31 86.57 1.15 15.55 6.42 47.87 2.08 
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FIGURE 5.19. Grid size versus Execution time 

 

 
FIGURE 5.20. Grid size versus GFLOPS 
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FIGURE 5.21. Performance speedup 
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- make tune height=8000 width=8000 (for gris size 8000*8000) 

- ./bench 8000 8000 3997 88 2 3 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 9995 336 2 2 

The table 5.11 gives the information of performance of game of life stencil when compiled via pluto and 

patus. 

TABLE 5.11. Performance table for patus and pluto on game of life stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica- 

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

6000*6000 60 54.11 0.55 10.01(8) 3.01 48.19 0.62 9.84(8) 3.06 23.58 1.28 

8000*8000 80 128.31 0.55 16.19(8) 4.42 113.27 0.64 16.83(8) 4.25 40.29 1.77 

10000*10000 100 250.67 0.55 37.24(8) 3.75 238.83 0.67 37.27(8) 3.75 62.26 2.24 

 

 
FIGURE 5.22. Grid size versus Execution time 
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FIGURE 5.23. Grid size versus GFLOPS 

 

 
FIGURE 5.24. Performance speedup 
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- polycc –partlbtile –parallel seidel.c –o seidel.diamond.c 

- polycc –tile –sica –parallel seidel.c –o seidel.sica.c 

- icc –O3 –fp-model precise –mavx seidel.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp seidel.par.c –o par (for pipelined parallel 

code) 

-  icc –O3 –fp-model precise –mavx –openmp seidel.diamond.c –o diamond (for 

concurrent parallel code) 

- icc –O3 –fp-model precise –mavx –openmp seidel.sica.c –o sica (for sica tiled parallel 

code) 

Patus commands: 

- patus – architecture = x86_64 AVX seidel.stc 

- make tune height=6000 width=6000 ( for grid size 6000*6000) 

- ./bench 6000 6000 1498 324 2 0 

- make tune height=8000 width=8000 (for gris size 8000*8000) 

- ./bench 8000 8000 1998 184 2 2 

- make tune height=10000 width=10000 (for grid size 10000*10000) 

- ./bench 10000 10000 2498 72 2 4 

The table 5.12 gives the information of performance of seidel stencil when compiled via pluto and patus. 

TABLE 5.12. Performance table for patus and pluto for seidel stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

6000*6000 60 20.06 0.96 3.55(8) 5.46 30.46 0.58 3.30(8) 5.87 13.04 1.48 

8000*8000 80 47.60 0.96 6.11(8) 7.53 71.19 0.64 5.90(8) 7.79 31.68 1.45 

10000*10000 100 93.00 0.96 14.91(8) 6.02 138.44 0.64 13.66(8) 6.57 51.25 1.75 
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FIGURE 5.25. Grid size versus Execution time 

 

 
FIGURE 5.26. Grid size versus GFLOPS 
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FIGURE 5.27. Performance speedup 
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- ./bench 300 300 300 298 32 4 1 2 1 

- make tune x_max=300 y_max=300 z_max=300 ( for grid size 300*300*300) 

- ./bench 300 300 300 298 32 4 1 2 1 

- make tune x_max=300 y_max=300 z_max=300 ( for grid size 300*300*300) 

- ./bench 300 300 300 298 144 36 4 6 2 

The table below gives the information of performance of laplacian stencil when compiled via pluto and 

patus. 

TABLE 5.13. Performance table for patus and pluto on laplacian stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

300*300*300 100 11.15 1.77 2.39(8) 8.56 21.02 0.5 2.60(8) 7.89 7.85 2.32 

300*300*300 200 23.14 1.77 4.53(8) 9.06 44.79 0.52 4.49(8) 9.14 16.38 2.50 

300*300*300 295 34.14 1.77 6.24(8) 9.70 68.07 0.47 6.67(8) 9.07 25.40 2.38 

 

 
FIGURE 5.28. Grid size versus Execution time 
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FIGURE 5.29. Grid size versus GFLOPS 

 

 
FIGURE 5.30. Performance speedup 
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 Wave stencil: 

Pluto command: 

- polycc –tile –parallel wave.c –o wave.par.c 

- polycc –partlbtile –parallel wave.c –o wave.diamond.c 

- polycc –tile –sica –parallel wave.c –o wave.sica.c 

- icc –O3 –fp-model precise –mavx wave.c –o orig (for the C code) 

- icc –O3 –fp-model precise –mavx –openmp wave.par.c –o par (for pipelined parallel 

code) 

-  icc –O3 –fp-model precise –mavx –openmp wave.diamond.c –o diamond (for concurrent 

parallel code) 

- icc –O3 –fp-model precise –mavx –openmp wave.sica.c –o sica (for sica tiled parallel 

code) 

Patus Command: 

- patus -- architecture = x86_64 AVX wave.stc 

- make tune x_max=300 y_max=300 z_max=300 ( for grid size 300*300*300) 

- ./bench 300 300 300 299 8 12 1 4 4 

- make tune x_max=300 y_max=300 z_max=300 ( for grid size 300*300*300) 

- ./bench 300 300 300 299 8 12 1 4 4 

- make tune x_max=300 y_max=300 z_max=300 ( for grid size 300*300*300) 

- ./bench 300 300 300 299 8 12 1 4 4 

The table 5.14 gives the information of performance of wave stencil when compiled via pluto and patus. 
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TABLE 5.14. Performance table for patus and pluto on wave stencil 
Grid Size Time ICC ICC: 

Gflops 

Pluto Pluto: 

Gflops 

Sica-

tiling 

Sica: 

Gflops 

Diamond-

tiling 

Diamond-

Gflops 

Patus Patus: 

Gflops 

300*300*300 100 16.01 3.2 4.97(8) 10.32 63.24 0.5 5.48(8) 9.35 12.66 4.70 

300*300*300 200 32.02 3.2 8.64(8) 11.87 123.3 0.52 8.33(8) 12.31 25.75 4.51 

300*300*300 295 47.20 3.2 11.88(8) 12.73 169.4 0.56 11.97(8) 12.65 40.23 4.13 

 

 
FIGURE 5.31. Grid size versus Execution time 

 

 
FIGURE 5.32. Grid size versus GFLOPS 
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FIGURE 5.33. Performance speedup 
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5.4 Execution time vs number of threads 

This section provides the information on execution performance of each stencil against the number of 

threads used to execute the code. We can see that, for all the stencils, the best performance in terms of 

execution time is achieved for thread counts of 16 or 32.  

 Blur stencil 

TABLE 5.15. Execution time for relative number of threads for blur stencil 

Number of threads  Pluto  Diamond  Patus 

2 42.26 18.96 111.57 

4 22.70 11.23 58.56 

8 18.90 10.34 65.69 

16 16.68 7.26 35.65 

32 13.30 7.54 45.45 

48 14.54 9.76 50.48 

 

 
FIGURE 5.34. Number of threads versus Execution time 
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 Edge stencil 

TABLE 5.16. Execution time for relative number of threads for edge stencil 

Number of threads  Pluto  Diamond  Patus 

2 16.84 12.94 65.21 

4 10.61 6.75 21.43 

8 10.55 6.50 33.69 

16 7.28 5.01 16.32 

32 8.51 4.68 25.18 

48 11.67 7.55 26.13 

 

 
FIGURE 5.35. Execution time versus number of threads 
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FIGURE 5.36. Execution time versus number of threads 
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FIGURE 5.37. Execution time versus number of threads 
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 Wave 

TABLE 5.19. Execution time for number of threads for wave stencil 

Number of threads  Pluto  Diamond  Patus 

2 60.48 64.12 84.23 

4 37.00 39.05 68.41 

8 37.62 36.93 60.19 

16 27.53 26.90 50.67 

32 27.65 28.55 71.45 

48 29.89 28.24 80.64 

 

 
FIGURE 5.38. Execution time versus number of threads 
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Chapter 6 Conclusion 

In conclusion, this report provides the performance of both patus and pluto compilers on stencils using 

two different styles of coding i.e. Jacobi style and Seidel style. In Jacobi style of coding, pluto compiler 

was able to perform better than patus compiler because patus compiler lacks time blocking (tiling) and 

only blocks space (grid sizes) whereas pluto tiles both time and space. In Seidel style of coding, we 

observed that patus compiler is performing much slower than pluto compiler because of the given nature 

of dependencies in Seidel style of coding. Pluto compiler uses skewing transformation technique to 

make certain loop parallel and hence it is able to perform well with Seidel style of coding. Patus 

compiler lacks the use of skewing technique in its implementation to make parallel loop and hence patus 

compiler is not suited for the codes with Seidel style. In all of our experiments, pluto compiler, with 

some fine tuning for finding the appropriate tile sizes and the use of different tile shapes, has 

outperformed patus compiler on every stencil. Therefore, for optimizing stencils and to be able to get a 

good optimized code in terms of data locality and parallelism, the use of pluto compiler is a good choice 

than patus compiler. 
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