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Abstract

The use of information technology in electric power grid introduces the vulnerability prob-

lem looming the future smart grid. The supervisory control and data acquisition (SCADA)

is the first defense, which itself is undermined by potential malicious attacks. This disserta-

tion studies two particular security threats facing the smart grid and SCADA systems: the

unobservable attack and the replay attack. The former is well known in fault detection of

the power grid and has received renewed interest in the past a few years, while the latter

is motivated by the Stuxnet worm allegedly used against the nuclear facilities in Iran. For

unobservable attacks, this dissertation adopts the dynamic state estimation approach and

treats each bus of the power grid as a dynamic agent. A consensus estimation strategy is

proposed to estimate the dynamic states of the power grid, based on which unobservable

attacks can be effectively detected. Detection of replay attacks is harder. Two different ap-

proaches are proposed in this dissertation. The first is the whitening filter approach that

converts the detection of the replay attack into an equivalent white noise detection through

whitening a feedback signal. However this approach is less effective, if the replay attack does

not change much the whiteness of the filtered feedback signal. Hence a second approach

termed as spectrum estimation is proposed. It is shown that the spectrum of the feedback

signal in presence of the replay attack can be very different from the case when the replay

attack is absent. This approach improves the detection results of the former one. Both are

illustrated and examined by the simulation studies.
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1 Introduction

Smart grid is a future power grid for which the supervisory control and data acquisition

(SCADA) system will play a crucial role in monitoring and controlling the power grid. In

fact SCADA systems are already widely used in many different industries, including electric

power systems. According to [3], a SCADA system used for power grid provides 100 ∼ 200

voltage/current measurement samples per second, enabling real time monitoring and control

for power grid. Because of its effectiveness, the SCADA system is now an essential component

of the power grid, and an indispensable part of the future smart grid. SCADA now becomes

an enabling technology vital to the smart grid.

Notwithstanding advantages of the SCADA system, it also brings some drawbacks. Due

to many sites over large distance and use of information technology, especially wireless com-

munications and networking, SCADA systems give rise to the security problem enticing the

vulnerability of the smart grid which becomes more and more serious, endangering the safety

of our national infrastructures, including the power grids. This dissertation is focused on this

looming security problem for the future safety of the smart grid, and endeavors to provide

some viable solution approaches to tackle this difficult problem.

In this chapter we will give a brief introduction of smart grid, emphasizing the advantages

and also potential problems facing the smart grid. The security issues in the smart grid will

be described subsequently. Based on the background information on smart grid and secu-

rity issues, we will present our dissertation research from signal/system models to existing

methods and to our proposed solutions.
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This dissertation is organized as follows. The first chapter will provide an introduction to

the smart grid covering both of its advantages and the challenges it faces. Since the security is

the theme of this dissertation, we will give more detailed description on the looming security

problem facing the smart grid. Our dissertation will be focused on two particular types of

malicious attacks against the smart grid with one termed as unobservable attacks, and the

other called replay attacks. Both have received great attention in the research community

[4, 2, 5, 6, 7, 8]. Unfortunately the existing detection methods are not very effective and each

has its drawbacks. For this reason, we undertake our research on these two different attacks.

In Chapter 2, we propose a dynamic state estimation approach to detection of the unob-

servable attacks. The novelty of our proposed approach lies in the consensus estimation by

treating each bus as a dynamic agent. Although it requires dynamic modeling of the power

grid, the estimation results are far superior to the static state estimation currently em-

ployed. More importantly unobservable attacks are not unobservable anymore, and they can

be effectively detected demonstrated by both our theoretical results and simulation studies.

The replay attack is a more serous threat to the smart grid. Two chapters of this disser-

tation are devoted to detection of the replay attack. Chapter 3 is focused on the whitening

filter approach, while Chapter 4 is focused on the spectral estimation approach. Replay at-

tacks are motivated by the Stuxnet worm that is allegedly brought down the Iranian nuclear

program. However it also opens a door to attacks against industrial infrastructures such as

power grid. Mo and Sinopoli [9, 2] are the first to study the replay attack via injecting a

Gauss white noise to the control input signal. However their approach is limited to Linear

Quadratic Gaussian (LQG) feedback control systems. In addition the injected noise deterio-

rates the control performance. Although several papers followed to address the performance

deterioration issue, injection of the noise to the feedback system remains. We propose to

make use of the communication noises that exist in the SCADA system induced by the net-

work channels without injecting noises to the system, and demonstrate the effectiveness of
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our proposed two approaches. Our dissertation is concluded in Chapter 4 that highlights the

contribution of this dissertation, and outlines the future direction in security research for

smart grid.

1.1 Introduction to Smart Grid

In this section, issues in the power grid and advantages of smart grid will be elaborated

based on the available literature.

1.1.1 Issues facing the power grid

The power system has been evolved for more than one hundred years. With its devel-

opment and extension, at present in the United States, the power system has more than

14,000 transmission substations and 4,500 large distribution substations, which make it the

most complex electric infrastructure in the world. However, as time pass by, the electric

infrastructure is aging, outmoded, underfunded and over stressed today. Right now, we are

using the 19th century system from the days of Edison and the 20th century equipments by

Westinghouse to keep up with a 21st century economy [10]. The power industry is facing

great challenges and compelled to solve many important issues which are discussed next.

• Efficiency Issue: Our power grid has served us for many years. Approximately 70 per-

cent of the transformers and transmission lines are 25 years old, and 60 percent of the

circuit breakers are 30 or more years old [11]. The resistance in the transmission lines

increases as the power grid is ageing. Consequently, more power is lost in the grid in

form of heat. Since the power grid keeps expansion, and has become more complex and

larger than before, it becomes increasingly difficult to access the status and informa-

tion of the power system. To make sure that there is enough power to satisfy all the

customers’ energy demand, utility companies always have to generate excess power to

have adequate margin in meeting the power needs. Therefore, the excessive power is

thrown away in the grid. As a result, all the customers have to pay for the waste. In
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addition it is harder to optimize the power delivery due to the increased complexity and

wide spread of the power grid. Right now, the entire power infrastructure in the U.S. is

managed by about 130 control centers. These centers are isolated and operated blindly

to each other. So, they cannot effectively cooperate with each other, which results in

low efficiency for power delivery [10]. For example, it is possible for some regions to

have high power demand, but there are no enough power plants to generate enough

power to meet the power demand. While in some other regions, the power companies

generate excess power to meet the customers’ peak energy demand in that area which

is often wasted. As a result, it leads to the lack of power in some regions while wasting

power in some other regions. Hence the issue of low efficiency of the power delivery

needs to be tackled. Moreover the booming of the renewable energy and its applica-

tion (of hybrid vehicles) provide new energy sources. There is no reason that the wind

power in Texas cannot be balanced and mixed with hydropower in Washington State.

However the existing power grids are not well prepared for these new power sources.

How to effectively use these new energy sources becomes more urgent than before.

• High Cost Issue: The cost for producing electricity in the daytime is much more expen-

sive than its cost in night. In fact the peak electricity demand can be 100 times more

costly to produce [10]. Since power companies cannot control the customers’ usage of

electricity power, most customers are using power in the daytime with high cost. Thus,

it costs a lot to produce the electricity power. Also, to satisfy the maximum power

requirement in the peak time, power plant has to keep hot standby, which means that

the power plant has to consume coal or fossil fuel to keep generator running at the

synchronous speed even when there is no high power demand. If more power plants

are built today, then the cost of hot standby will increase significantly. Because of the

shortage of fossil fuel and coal, it is urgent to consider new ways to reduce the high

cost in producing electricity.
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• Reliability Issue: With the power grid extension and ongoing interconnections, the

complexity of the power system has increased worldwide. At the same time, there are

still many aging transmission lines and devices on duty. As such the power system

becomes more difficult to control than before, and thus more susceptible to failures,

even the catastrophic failures. For example, in a short span of two months in 2003, there

were several blackouts around the world and affected a number of customers [12, 13, 14];

On August 14, 2003, in Northeast United States and Canada, the blackouts affected

approximately 50 million people. It took over a day to recover power to New York City

and other affected areas. It is considered as one of the worst blackouts in the history

of these countries; On August 28, 2003, in London, the blackouts affected commutes

during the rush hour and caused an approximately 50-minute loss of power supply

to about 20% of the London demand (734MW); On September 23, 2003, in Sweden

and Denmark, the blackout affected about 5 million people. The power supply was

restored after 5 hours to most of the customers; On September 28, 2003, in Italy, the

blackout affected about 57 million people. The power restored to major cities after 5-9

hours. It is considered the worst blackout in Europe. So far as it is reported, the worst

blackout was in India happened just on July 31, 2012, spreading to more than half

the country. It left more than 600 million people in northern and eastern India out of

power. This is considered as the worst on the earth. The reason for the blackout lies in

the increased complexity of the power system and unstable aging devices. It increases

the difficulty of system-wide coordination of back up protection and also causes more

disturbances due to the high sensitivity of these aging devices. Although the blackouts

are still the small probability events, they are always associated with huge expenses

to power utilities and customers. Thus now is the time for us to pay more attention

to the reliability issue. As just described above, power system has been developed for

more than a hundred years. But there is no significant change in the past one hundred
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years. Our electric grid is still using electro-mechanics from the 1960s and 70s rather

than microprocessors in the digital age today. As the power system keeps expansion

and grows to more complex, some problems which seem very minor in the past become

extremely urgent today. Hence it is necessary to make an evolution to the power grid

which can encounter these problems. And it will be a vast, interconnected, intelligent

system that is monitored and controlled end to end-all the way down to billions of

individual devices. That is the smart grid that is going to be the next generation

power grid.

1.1.2 Advantages of smart grid

This subsection introduces the smart grid and answers the basic question such as what

smart grid is and what benefits it can offer to us [12, 13, 14, 10, 11].

Figure 1.1: Conceptual model for smart grid

Roughly speaking, smart grid is a new generation power grid that uses optimized control

algorithm, smart meters, networking and communications infrastructure that are embedded
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in residences, companies, factories and throughout the power distribution grid. It is an in-

telligent and interactive power grid which provides customers and the grid the ability to

monitor and regulate energy consumption comprehensively in real time. It is an evolution of

the power grid. People will benefit more from its application.

The smart grid offers the following advantages.

• More efficiency and low cost: With the installation of smart meters and the inter-

connection between customers and utility companies, utility companies can frequently

gather data from customers by smart meters. Also, customers can easily and timely get

their usage information. It makes the power grid a two-way interactive grid. With the

interactivity, power companies are able to estimate the energy demand in the power

grid more precisely and regulate the power supply in real time. So, there is no need

to generate excessive power any more, which reduces the power waste in the grid and

maximizes the power supply efficiency while still guards against power grid overload.

Figure 1.2: Schematic illustration of power usage change

Recall that in the peak loads time excessive energy is very expensive due to the fact

that large amount usage of the power is from thermal power plants which use expensive

coal and natural gas as the fuel. Also, with the application of smart grid, time-based

pricing are going to be feasible. Customers will be provided the fluctuated utility price
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which changes according to the fuel consumption in real time. So they can adjust their

power usage according to the real time price. Therefore, it will change the customers’

power usage habits. As shown in Fig. 1.2, these power usage habit changes will reduce

the peak demand and shift part of power usages to the low price time period, which

reduces the total cost of power generation and save money for customers.

• More reliable, more green: In the smart grid, with the application of advanced control

algorithms, and fast system state feedback, the power grid becomes more reliable. It

can handle a wide variety of power sources and storage systems while also maintaining

stability. Keep in mind that the renewable energy such as solar and wind are always

fluctuating. In the past, it was difficult to coordinate renewable energy with the power

grid. But in smart grid, due to its fast regulating ability, the renewable energy can be

easily connected to the power grid and coordinated with other distributed power plants

to increase the power supply redundancy. Thus it encourages more renewable energy

to be used in the power generation, which reduces the greenhouse gas emission and

makes power generation more environment friendly. Meanwhile with the increasing use

of hybrid vehicles and electric vehicles, smart grid is able to coordinate these vehicles

to serve as batteries and backup power for the grid, which makes the power grid more

robust in presence of the fluctuate demand impact from customers. With the interactive

ability, the control center can coordinate the power usage of customers so as to reduce

the adverse impact to the power grid. For example, in factories, many machines contain

large numbers of motors. The start current of a motor is 5 ∼ 7 times as normal. If these

machines start at the same time, the start current will have a huge impact to the grid.

To reduce this kind of impacts, factories have to invest a lot of money on upgrading the

infrastructure. But in the smart grid, control center can intelligently control the start

sequence of machines, which will reduce the total start current so as to minimize the

impact to the grid. As a result it will also save the cost of infrastructure investment.
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And with the fast response ability and application of advanced control algorithm, the

smart grid can react quickly to any of the power fluctuation in grid and coordinate

the power generation and distribution, and protection of customer activities. Thus, the

stability margin of the smart grid will be increased, which increases the ability to resist

disturbance and reduces the chance of black out in the grid. Thus, the smart grid is

more reliable, robust, highly efficient and having low cost.

1.2 Security Issues in Smart Grid

It is important to point out that as a coin has two sides, smart grid also brings some new

problems. The most imminent one is the potential security issue emerging in the smart grid.

As shown in Fig. 1, with the wide use of smart meters, network and communications infras-

tructure that are embedded in residences, companies, factories and throughout the power

distribution grid, the supervisory control and data acquisition (SCADA) system becomes

more complex and interconnected. The connections between smart meters and control net-

works as well as Internet make the smart grid more vulnerable to penetration. The increased

size and complexity of the power grid networks provide plenty potential intrusion nodes. Ma-

licious devices might be inadvertently infiltrated inside the trusted networks by personnel.

Devices used both inside and outside of the trusted networks can be infected with malware

when used outside, and infiltrate that malware when used inside the trusted networks. Also,

the components of the IT infrastructure with susceptibilities or wrong configurations may

lead to back doors and holes in the network. Networking devices in the trusted network can

be taken control for bypassing proper protocol. Moreover, adversaries can take advantage

of the susceptibilities of the devices and setup back doors for future access to the center

control network which is the core of the smart grid. There are wide variety motivations for

adversaries to launch attacks on the smart grid. Some of attacks are for economic reasons

like reducing the utility fee bills. Some of the attacks might be just the pranks. While some

of the attacks are for very serious terrorism reasons. Terrorists might attack the power grid
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to threaten people by taking control of electricity and other life-critical resources. For ex-

ample, terrorists can take control of the smart meter to send fake data to the control center

so as to mislead the control center to make a wrong action to the power grid. These wrong

actions may mess up the electricity delivery and cause huge impact to the power grid, which

reduce its stability and reliability or even cause serious consequences. Some of the relays

may frequently close and open when they are not required to do that. Generators might be

burned during the frequently trip off and synchronous with the power grid. Nuclear plants

might be threatened not by the bomb but by the huge oscillation in the grid. Terrorists

may shut down the electricity in some areas for their next step of the terrorism action. Or

they may make blackout in the power grid, which may influence large number of areas like

industries, traffic, communication or hospitals. These attacks will cause serious impacts to

people’s life and homeland security. Also people’s privacy information might be robbed by

attackers for future crime purpose. So the reasons for adversaries to attack the smart grid

are various, which increase the vulnerability of the smart grid. Thus security of the smart

grid is an urgent research problem facing our nation.

There are various kinds of adversary actions in the smart grid today. Once the adversaries

gain access to the power control network, they can perform a wide range of attacks. And

these attacks will lead to both cyber and physical aftermaths. For the cyber aftermaths, they

can be specified as follows [9, 15, 16, 17, 18, 19, 20, 21, 22, 23]:

• Malware spreading and controlling devices: attackers can write some malware programs

and spread them to control center and smart meters. Once the device or system is

infected by the malware, adversaries can use the malware to change or modify some

functions in the device or system such as taking control of the device or sending false

information.

• Vulnerabilities in common protocols: in the smart grid, communication between com-

ponents will be based on existing protocols which inherit the vulnerabilities. Common
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protocols may include TCP/IP and remote procedure call (PRC). Attackers can access

the control system network by investigating these vulnerabilities in protocols.

• Access through database links: the database on the control system network records the

power system activities, which also mirror logs into the business network. The improp-

erly configured modern database architectures will be attacked by skilled attackers.

They can access to the database on the business network which gives a path to the

control system network.

• Modbus security issues: The SCADA system uses the Modbus protocol as the com-

munication protocol. As the Modbus is a simple client-server protocol, it is originally

designed for low-speed serial communications in process control network. Thus, it was

not designed for high-security-critical environments. Therefore, several attacks can be

launched. These include broadcast message spoofing, baseline response replay, direct

slave control, Modbus network scanning, passive reconnaissance and rogue interloper.[9]

• Eavesdropping attacks: adversaries can gather sensitive information by monitoring the

network communication between smarts components. They will use the information

for future crime activities such as stealing power usage, disclosure of the controlling

structure of smart grids.

• Injecting false information on price and meter data: by compromising the smart meters

and communication equipment, adversaries can inject false information to the control

center, such as false price and meter data. This fake information can result in negative

price, power shortage or many other significant damages to the public. In addition, it

will produce huge financial impacts on electricity markets [5].

For the physical aftermaths, they are specified as follow [7, 24, 25, 26, 27, 28]:
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• Interception of SCADA frames: attackers can intercept SCADA Distributed Network

Protocol 3.0 (DNP3) frames and gather unencrypted plain text frames by using a pro-

tocol analysis tool for sniffing network traffic. This intercepted data includes control

and configuration information. It can be used in future on another SCADA system or

intelligent equipment device, so as to shut down or disrupt service. Malware targeting

industrial control system: attackers can inject worms into control systems and recon-

figure control system settings. A well-known example is the computer worms called

Stuxnet in 2010 [29]. It is the first known worms which specifically target at SCADA

systems and had been infect thousands of computers worldwide.

• DoS/DDoS attacks on networks and servers: attackers can launch DoS/DDoS attacks

against various power grid components such as smart meters, communication infras-

tructures, and utility business servers. Once they successfully attack these components,

the electricity will not be able to control in the target region and power supply might

be shut down as the result of the attack.

• Sending fake commands to smart meters in a region: adversaries can send fake command

or data to devices in a target region so as to make them do wrong action. They

can send disconnect command to some relays in the target region to stop the power

delivery in that area. Or they can make invalid switching of electric devices to result in

unsafe connections. These may cause the target place burn on fire. Thus, the unsecured

communication may threaten people’s life.

• Aurora attack: This kind of attacks came out and caught engineers’ eye in 2007. The

intent of the Aurora attack is to intentionally open a breaker and close it out of

synchronism to cause damage to connected power system devices such as generators,

motors and transformers. When an out-of-synchronism close is initiated, the resulting

high electrical current and torque will translate to the twist stress on the mechanical
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shaft of rotating equipment. This kind of twist stress will reduce the life of the rotating

equipment and even possibly destroy it.[30]

The above discussion shows the importance of the smart grid security. These security

issues need to be resolved before the smart grid can be operated successfully. My research

will focus on the cyber-physical security which will be outlined in the next section.

1.3 Dissertation Research

Per our discussion in the previous section, there exist various potential adversary actions

in the smart grid, which reveal the vulnerability of the smart grid. Possible attack actions

can be separated into two groups and thus pose two major challenges. One is to take control

of the target region computer for future crime actions. These attack actions are based on

the cyber system, which can be solved by recent cyber security approaches. The other is to

modify the data or injecting malicious data into the control system, which can bypass the

cyber security. Hence the existing security approaches are inadequate to address the second

challenge. It is important to observe that in the smart grid, the core of a monitoring and

control system lies in the critical task of state estimation. Plenty of distributed measurements

over the power grid are used to keep tracking of the current grid state. The accuracy of the

measurement data is essential for maintaining stability and preventing disruption. Because

many of the measurement data come from various meters distributed in the power grid and

there are always some bad data measurements due to the fault of meters, fault detection

techniques are often employed in early research. Power system researchers have developed

many techniques for processing the data in order to eliminate the bad data measurement

[31]. These techniques first detect if there are bad measurement data, and then identify and

remove them.

In early time, researchers considered only false data. However the advent of smart grid

has brought in potential attacks that inject malicious data into measurement data. It is
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entirely possible for attackers to compromise meters and to introduce false data. Later on

it is realized that the existing false data detection techniques can also detect the malicious

measurements injected by adversaries. This is because all the existing data detection tech-

niques rely on the same assumption that the square of the difference between observed

measurements and their corresponding estimates will significantly increase if there are bad

data measurements [32]. Unfortunately this assumption is not always true. It is possible to

bypass the existing detection techniques by attackers if they know the configuration of the

power grid. Attackers can systematically generate bad data measurements so as to bypass

the bad data measurement detection techniques without increasing the square of the error

between observed measurements and their corresponding estimates. Such attacks are called

unobservable. For this reason there is an urgent need to develop new methods for detection

of the unobservable malicious data injected by attackers. This is one of main focuses of our

dissertation research.

Another devastating and deceiving attack is the replay attack. Stuxnet worm is a prime

example. While being used initially to counter the Iran nuclear program allegedly [33] the

Stuxnet worm opens the door to malicious attackers. So long as attackers have remote

access to sensing and actuation devices, they are able to modify the software or reprogram

the devices to launch coordinated attacks against the system infrastructure without being

detected virtually by the underlying SCADA system until it is too late. Specifically replay

attacks assume that the sensing data are secretely recorded by the attacker using software,

which are then replayed back to the SCADA system while conducting the attack on the

physical system. The deception created by replay is often seen in movies and spy fictions. It

is now possible to deploy the replay attack through Stuxnet worm without being virtually

detected by the SCADA – a nightmare to the SCADA. A solution approach as proposed in

[2] injects a known independently identically distributed (i.i.d.) zero-mean Gaussian noise

into the control input serving as the authentication signal. Assuming LQG control systems,
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a χ2 detector is used to detect the presence of the replay attack. It is shown in [2] that in

presence of the replay attack, the normalized error covariance of the innovation signal of the

Kalman filter deviates from the identity with a higher variance dependent on the variance of

the injected noise or the authentication signal. As its variance increases, the detection rate

improves but the control performance suffers. There exists a tradeoff between the detection

rate and loss of the control performance in terms of the variance of the authentication

signal. A method is proposed in [34] for designing the covariance of the authentication signal

to minimize the performance loss while guaranteeing a certain probability of detection rate.

The proposed method is demonstrated with an application to security for micro-grids. A

different approach is taken in [1] by switching the LQG controller between the one with no

added noise and the one with added noise. Results from noncooperative stochastic game are

used to minimize the worst-case control and detection cost.

Replay attacks represent another potentially lethal threat to the smart grid. Although

the method proposed in [2] and studied in [34, 1] provide effective detection algorithms,

injecting noise deteriorates serious by the performance of the smart grid, because the noise

variance has to be large enough in order to be effective for detecting the replay attack. So the

research for replay attacks is far from over, and is the focus of this dissertation research. In

the next two subsections, we provide more detailed description for these two major attacks

threatening the future smart grid.

1.3.1 Signal and system models

This subsection presents signal and system models for the unobservable attacks. The replay

attack is too complex to be included, which is delayed to Chapter 3.

In the power system, electricity is generated from power plant and transmitted to the load

centers by transmission lines, the load centers then distribute the electricity to customers

by the distribution system enabled by power lines. Control center monitors and controls the

power system working in order. Monitoring the power system status is very important in
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keeping the system reliability. To make sure that the power system continues to work well

even in presence of faults, power engineers use meters to monitor system components and

transmit the meter data to the control center. Fig. 1.3 shows an IEEE 14-bus test system that

is one of the commonly used power system models. In this system, each bus and transmission

line is equipped with Current Transformers (CTs) and Power/Voltage Transformers (PTs).

These CTs and PTs feedback signals to meters so that meters can provide current and

voltage signals to the control center. In the control center, the server can gather all the data

from these meters and use them to calculate the power system status.

Figure 1.3: IEEE 14-bus test system

Denote N (µ,Σ) as normal distribution with mean µ and covariance Σ. We assume lin-

earized measurement model of the power grid described by [29]

z = Hx+ v, v ∼ N (0, R) (1.1)

where z of sizem is the power system state that the control center calculated, x of size n is the

data vector from meters, and H of dimension m×n is the measurement matrix. The system

state includes the power flow, power load or any states that the control center wants by

computing the data from meters. The data vector includes current, voltage, power angle and

any other data that meters can directly provide. The system matrix depends on the topology
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of the power grid, the parameters of the transmission lines, and the distribution of CTs and

PTs. The vector v represents the measurement noise, assumed to be normal distributed with

mean zero and diagonal covariance matrix R. Commonly m > n is assumed in order to have

redundancy in the measurement so that it has the ability to protect against the bad data

which may come from failure or breakdown of meters. The existing estimation techniques rely

on three statistical estimation criteria applied to state estimation: the maximum likelihood

criterion, the weighted least-square criterion, and the minimum variance criterion [35]. These

criteria lead to an identical estimator with the optimal solution given by

x̂ = (HTR−1H)−1HTR−1z, R = diag(σ2
1 , σ

2
1, · · · , σ2

m). (1.2)

Due to various reasons such as meter failures and malicious attacks, bad measurements

can be resulted in. Various detection methods have been developed to ensure the success of

state estimation [36, 35, 37, 38, 23, 39, 40, 41]. Clearly normal meter measurements always

provide acceptable accuracy for estimation of the state variables which are close to their

actual values, while abnormal meters may shift the estimated state variables away from

the true value. To prevent the estimation from bad measurements, measurement residual

z−Hx̂ is always calculated, and its Euclidean-norm ‖z−Hx̂‖ is used to detect the presence

of bad measurements. For instance ‖z − Hx̂‖ can be compared with a threshold τ , and

if ‖z − Hx̂‖ > τ , then a bad measurement exists [31]. Many researchers have studied the

problem of bad measurements detection and identification in power system [42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52]. However, all of them use the same inequality ‖z − Hx̂‖ ≶ τ to

detect the existence of bad measurements. It is important to point out that a smart attacker

can systematically bypass this detection method.

To attack the system, adversaries often inject wrong data to the power system instead of

the true measurements, leading to the signal model

za = z + a = Hx+ v + a (1.3)
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where za is the data collected by control center, a is the vector of the injected attack data

added to the original measurements. Denote x̂a and x̂ the estimates of x using the malicious

measurement za and the original measurement z, respectively. We have x̂a = x̂+ c where c

is a nonzero vector of length n and represents estimation error injected by the adversary. It

is shown in [31] that if the adversary can find a c ∈ Rn such that

a = Hc, za = Hx+ v + a = H(x+ c) + v, (1.4)

then the measurement residual of za is equal to that of z, and the attack will not change the

residuals of the measurement. Indeed there holds

‖za −Hx̂a‖ = ‖z + a−H(x̂+ c)‖ = ‖z −Hx̂‖. (1.5)

As a result, the attack is able to bypass the bad measurement detection. For this reason,

such attacks are termed “unobservable”. By ignoring the measurement noise, the SCADA

will believe that x+ c is the true data from meters. It is possible to protect the measurement

meters and their signal transmission routes in order to prevent adversaries from changing

the value from meters. However, in the real world, due to the high cost and difficulties

of management, only a small set of meters can be protected. Therefore it is possible for

adversaries to launch attacks from the unprotected devices without altering the measurement

or estimation residual. On the other hand, attackers may not know the actually system

information, and they cannot find the proper c vector to make a = Hc. In this situation,

attacks are very similar to bad measurements.

1.3.2 Existing methods

For the observable attacks, many existing detection methods can be used, including gen-

eralized likelihood ratio test (GLRT) [4], largest normalized residue test (LNRT) [53], J(x̂)

detector [51]. The LNRT and J(x̂) detectors are two classical bad data detectors. They were

often used to test bad measurements in the past when the sample size is small. The GLRT
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performs better than the previous two methods when the sample size is large. However, the

best and powerful detector dose not exist. There are always pros and cons for any detector.

For instance the computation and memory complexities of GLRT may increase due to the

high sparsity condition of the attack vector a [4]. There thus exist tradeoffs between the

detection performance and complexity including the sparsity level.

For the unobservable attacks, it is much more challenge to detect than the observable

attack. Recently the graph-theoretic method is suggested to prevent the unobservable attack

[4]. This method is aimed to prevent the smallest unobservable attack by finding the smallest

set of meters which causes the system unobservable if they are removed. By protecting

these meters, attacker will not be able to attack the grid sneakily. However even if these

meters are known to us, it is still difficult to protect all of them due to the high cost and

management difficulties. Recall that the power grid is enormously big and complex, while

the number of meters being protected is limited [29]. Thus the detection methods are still

under investigation and more advanced methods being developed nowadays.

1.3.3 Proposed solutions

Since the static state estimators are widely used in power systems and play a very impor-

tant role in power grid operation, all the existing detection methods for malicious attacks

are based on the static state estimation, by using the following measurement model

z = Hx+ a + v

It leads to the difficulties in detecting unobservable attacks. As the power grid expands, static

state estimation becomes increasingly a limiting factor. Facing the increasing generations

and loads, the power grid becomes extremely large and complex. It is very challenging for

static state estimators to capture the power system dynamic behaviors, which also limits the

methods of detecting attacks.
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Recently there is a new trend in the research community in studying the dynamic state

estimation techniques, enabled by the SCADA system that is capable of measuring and

transmitting the power grid information with sampling frequency of 100 ∼ 200 Hz [54]. For

this reason the time varying nature and dynamic behaviors can be modeled quite accurately

[55]. By using dynamic state estimation, the power system state can also be estimated and

predicted more accurately, because the system state estimation is now related not only to

the present measurement but also based on the past system states. As a result dynamic state

estimation algorithms constitute a significant and integral part of the power system state

estimation techniques with a potential to impact the operation of power system control and

real time monitoring.

The dynamic state estimation comes with several advantages [56, 57]:

• It helps to identify and reject bad data so as to improve the estimator performance.

• In case of pseudo measurements, it readily provides high quality values and avoid ill

conditioning.

• It can also be used for data validation as the states are predicted one more time against

the measurement samples.

• In addition it can help identify abnormal changes in the system, the topological errors,

and other anomalies.

With these advantages, dynamic state estimation algorithms play more and more impor-

tant role in modern day system analysis [58, 59]. Today the SCADA systems have evolved

from early telemetry systems that used tone-based modulation techniques to transfer analog

and digital values at low data rates over telephone lines and radio links [3]. As the devel-

opment of sensor technology and the increasing processing ability of micro control unit; the

data accumulation ability of SCADA systems has been significantly improved with the faster
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data measurement rate which is up to 4 samples per cycle [54], i.e., 200 Hz sampling rate.

The modern SCADA systems are able to provide real time updates from thousands of re-

mote terminal units (RTUs) which are often spread over large geographical areas, using a

range of secure communications media, to multiple ‘users’ that may also be remotely located

[3]. Due to the accuracy and efficiency provided by the SCADA system today, the dynamic

state estimation becomes more and more feasible and practical in its application to power

grids. For this reason, the system dynamic state information and realization matrices are

identifiable. A new approach based on dynamic state information is proposed in this disser-

tation to detect the unobservable attack, and a new detection algorithm will be developed,

where the output residual error will significantly increase if an unobservable attack exists.

The effectiveness of this approach will be demonstrated in the next chapter.

However a more serious threat to the future smart grid is the replay attack in which

adversaries record a sequence of sensor measurements and replay the sequence afterwards

[9]. The well known replay attack is launched by Stuxnet malware. It is a computer worm

virus that was discovered in June 2010. It was allegedly designed to attack Siemens Step 7

software which is widely used for program logic controller (PLC) programming. It allegedly

attacked the Iran’s uranium enrichment plant at Natanz when the plant was undergoing

finishing touches in mid to late 2009. The Stuxnet allegedly caused 984 which is one fifth

of the centrifuges damaged. As Iran ran isolated valves to allow engineers to take away

failing centrifuges from its system without disrupting the enrichment process, Stuxnet shut

off some of these valves to increase pressure across the entire set of centrifuges so as to spun

them wildly out of control and damage them. Meanwhile, Stuxnet also secretly recorded the

normal operations status readings when the plant runs under normal condition, and then

played those readings back to the plant operators when the systems was failing. It is like

many Hollywood movies that bad guys play the pre-recorded security tape when they rob the

bank. Thus it would appear to the operator that everything was running smoothly while the
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centrifuges was already damaged. This replay attack prevents a safety system from taking

some actions to prevent abnormal operation.

The PLC is used in most of the industry infrastructures, especially in the power grid. The

Stuxnet story tells us that the power devices are very vulnerable to the replay attack. Recent

investigation and report by Symantec Corporation, a computer security software maker in

Silicon Valley, show that they snared the Stuxnet in a global malware collection system. It

is thus a fact that the Stuxnet worm already began to pop up around the globe. The worm

appeared not only in Iran, but also appeared in India, Indonesia and other countries. No one

knows whether their systems have been infected this worm and when it will start attacking

their systems. Thus it is a very urgent task to detect and prevent this new type of attacks

[60, 33].

In order to detect the replay attack, a simple method has been proposed in [9] for LQG

(linear quadratic Gauss) feedback control systems. The basic idea is to inject an additional

Gauss random noises to the control signal. Because of the use of the Kalman filter in the

LQG control system, the output estimation error is white and has the smallest error variance.

The injected random noise serves as a time stamp. Because it is generated by the designer

of the control system, it does not deteriorate the output estimation error. However when the

replay attack is present, then the injecting noises cannot be canceled, thereby increasing the

error variance for the output estimation. Several other papers follow with modifications on

the injected noise so to minimize the negative impact to the control system performance.

However no matter how to modify the injected noise, it is inevitable to deteriorate the control

system performance, and may also sacrifice the detection rate against the replay attack.

This problem will be investigated in this dissertation, and we propose two new approaches

without injecting Gauss noises at the control input. Instead the existing communication

noises induced by communication channels will be utilized to develop our new detection
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algorithms. The advantages of our new approaches lie in the fact that they can detect replay

attack without sacrificing the control system performance.
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2 A Dynamic Estimation Approach

The state estimator is a fundamental component of modern electric power systems. The state

of an electric power system operating in steady-state is defined as the vector of voltage mag-

nitudes and phase angles (voltage phasors) at all network buses. In this manner, knowledge

of the voltage phasor at each bus and the impedance of each branch (also known as network

topology) completely characterizes the state of the power system. The system data exchange

(SDX) service of the North American Electric Reliability Corporation (NERC), introduced

in 2003, is capable of providing hourly topology information; while SCADA systems are ca-

pable of providing local power data in real-time [54].Therefore it is now feasible to estimate

the dynamic state of a power system.

Static-state estimators, introduced in [61], use power meter readings from SCADA systems

to generate an estimate of the state of the power system when operating in steady-state.

However, a power system rarely operates in steady-state since generation units and loads

are continually added and/or removed. This is especially true for modern systems where

renewable distributed generation sources contribute to unpredictable power fluctuations [62].

Under normal conditions a power system actually operates in a quasi-steady-state where the

state changes slowly. This means that it is possible to monitor a power system by taking

measurements over short intervals of time to estimate the state. Indeed, the smart grid

infrastructure facilitates the collection of these measurements. However, effective algorithms

to process this large amount of measurements are still being investigated. Some recent papers

that use graph theory as a tool for solving different aspects of the power flow problem are
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[63] which investigates the real-time identification of multiple external line outages; and [64]

which focuses on determining groups of transmission lines that if removed would cause a

severe blackout.

The objective of this chapter is to develop a distributed dynamic state estimator based

on the MAS framework (for an overview of MAS see [65]). By employing a distributed

estimator, power measurements obtained from the SCADA system can be used to obtain

state estimates of the power system when operating in quasi-steady state. More importantly

distributed state estimators can be employed to detect the unobservable attacks

2.1 Background Material

This section provides the background material to be used in later sections.

Network Graph and Its Associated Matrices

Consider a power system consisting of N buses denoted by the set of nodes or vertexes

V = {vi}Ni=1 and T transmission lines described by the set of edges E ⊂ V ×V. The network

topology of a power system is then specified by the weighted graph G = (V, E). An edge

starting at node i and ending at node j is denoted by (vi, vj) ∈ E . The node index set

is denoted by N = {1, · · · , N}. The neighborhood of node i is denoted by the set Ni =

{j | (vj, vi) ∈ E}. A path on the graph is an ordered set of distinct nodes {vi1 , · · · , viK} such

that (vij−1
, vij ) ∈ E . If there is a path in G from node vi to node vj , then vj is said to be

reachable from vi, denoted as vi → vj. The set of descendants of node vk is denoted as

Sk = {vj ∈ V : ∃ a path vk → vj}. The digraph is called connected if there exists a node vk

such that vj ∈ Sk for j = 1, . . . , N, j 6= k. Such a node vk is called a connected node.

Let A = [ aij ] ∈ RN×N be a weighted adjacency matrix. The value of aij ≥ 0 rep-

resents the coupling strength of edge (vj , vi). Denote the degree matrix for A by D =

diag {deg1, · · · , degN} with degi =
∑
j∈Ni

aij and the Laplacian matrix as L = D − A. Let

1N ∈ RN be a vector of 1’s. It is clear that L1N = 0 and thus it has at least one zero eigen-
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value. It is also known that Re{λi(L)} ≥ 0 ∀ i. In fact the only eigenvalues of the Laplacian

matrix on the imaginary axis are zero in light of the Gershgorin circle theorem. In addition,

zero is a simple eigenvalue of L, if and only if G is a connected digraph. We would like to call

attention to the fact that similar conditions on the eigenvalues of L can be obtained through

other properties of G. For example, in [66], it is stated that L has one zero eigenvalue if and

only if G has a spanning tree.

Positive and Bounded Real Lemmas

Consider an internally stable transfer matrix

H(z) = Ch(zI − Ah)
−1Bh (2.1)

where Ah is a Schur stability matrix. Define its H∞ norm via

‖H‖∞ = sup
|z|>1

σ[H(z)].

The transfer matrix H(z) is said to be bounded real, if ‖H‖∞ < 1. The following lemma

provides necessary and sufficient conditions for H(z) to be bounded real [67].

Lemma 1. Consider the internally stable transfer matrix H(z) in (2.1). The following are

equivalent:

(a) ‖H‖∞ < 1, i.e., H(z) is bounded real;

(b) There exists a stabilizing solution Xh ≥ 0 to the algebraic Riccati equation (ARE)

Xh =A′
hXhAh + A′

hXhBh(I −B′
hXhBh)

−1B′
hXhAh + C ′

hCh (2.2)

satisfying I − B′
hXhBh > 0;

(c) There exists a stabilizing solution Yh ≥ 0 to ARE

Yh =AhYhA
′
h + AhYhC

′
h(I − ChYhC

′
h)

−1ChYhA
′
h +BhB

′
h (2.3)

satisfying I − ChYhC
′
h > 0.
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It is important to point out that the requirement on the stabilizing solution can be re-

moved. It is a fact [67] that if a solution Xi ≥ 0 to ARE (2.2) exists satisfying I−B′
hXiBh > 0

or a solution Yi ≥ 0 to ARE (2.3) exists satisfying I − ChYiC
′
h > 0, then its corresponding

stabilizing solution satisfying the corresponding inequality also exists.

Positive real transfer matrices are more complex than bounded real ones. They are square

transfer matrices; they allow simple poles on the unit circle with the rest inside the unit

circle; they cannot be strictly proper. However for convenience we will consider only stable

positive real transfer matrices. For this reason we begin with a square transfer matrix

S(z) = Ds + Cs(zI −As)
−1Bs (2.4)

where As is a Schur stability matrix and Rs = Ds+D′
s > 0. Such an S(z) is said to be strict

positive real, if

S(z) + S(z)∗ > 0 ∀ |z| ≥ 1.

The following result provides equivalent conditions for square S(z) to be positive real [68, 69].

Lemma 2. Consider the internally stable square transfer matrix S(z) in (2.4). The following

are equivalent:

(α) S(z) + S(z)∗ > 0 ∀ |z| ≥ 1., i.e., S(z) is strict positive real;

(β) There exists a stabilizing solution Xs ≥ 0 to ARE

Xs =A′XsA+ (C ′
s − A′

sXsBs)(Rs − B′
sXsBs)

−1(Cs − B′
sXsAs) (2.5)

satisfying Rs −B′
sXsBs > 0.

(γ) There exists a stabilizing solution Ys ≥ 0 to ARE

Ys =AsYsA
′
s + (Bs − AsYsC

′
s)(Rs − CsYsC

′
s)

−1(B′
s − CsYsA

′
s) (2.6)

satisfying Rs − CsYsC
′
s > 0.

However asymptotic stability for S(z) is not required for S(z) to be PR. The next result

is quoted from [70].
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Corollary 1. For S(z) in (2.4) with minimal realization and all eigenvalues of As being

simple and on the unit circle, the following statements are equivalent to S(z) being PR:

(i) There exists Xs > 0 such that

Xs − A′
sXsAs = 0, C ′

s −A′
sXsBs = 0,

and Ds +D′
s − B′

sXsBs ≥ 0;

(ii) There exists Ys > 0 such that

Ys − AsYsA
′
s = 0, B′

s − CsYsA
′
s = 0,

and Ds +D′
s − CsYsC

′
s ≥ 0.

If the inequality in (i) and (ii) are strict, then it is SPR.

2.2 Modeling and Estimation

Real Power Flow Model

For a power system operating in steady-state, with negligible admittance at every branch,

the real power injected at bus i [71] is expressed as

Pi = Vi

∑

j∈Ni

Vjbij sin(θi − θj). (2.7)

where bij is the admittance along line (i, j), Vi is the voltage magnitude of bus i, θi is the

voltage phase angle of bus i, and Ni is the set of neighboring buses connected to bus i. For

a power system with N +1 buses indexed from 0 to N (under the assumption that we know

the voltage level at each bus and that the phase angle of one bus is chosen as a reference),

the state of the power system will consist of a vector of N phase angles.

According to our previous discussion, modern power systems usually consist of generation

units and loads that are continually added and/or removed. Consequently, we assume that

the power system is actually operating in a quasi-steady-state, where the voltage phase angles

at each bus are changing slowly and randomly. Therefore, we propose to model the phase
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angle vector in the following form

θ(k) =

[
θ1(k) θ2(k) · · · θN(k)

]′
,

assuming that we have renumbered the buses to set bus 0 as the reference. To model the

dynamic behavior of the voltage phase angles, we propose to represent θi(k) for i = 1, · · · , N ,

as the output of an agent or dynamic system with the following discrete-time dynamics

xi(k + 1) = Aixi(k) +Bivi(k),

θi(k) = Cixi(k), (2.8)

where xi ∈ Rni, Ai ∈ Rni×ni, Bi ∈ Rni, and C ′
i ∈ Rni , assuming strictly causal model. How

to obtain the matrices (Ai, Bi, Ci) is postponed to the next section. The sequence {vi(k)} is

a white noise process with E {vi(k)} = 0 and autocovariance sequence (ACS)

Rvi(k) := E {vi(t)vi(t− k)} = δK(k),

where E{·} represents the expectation operator, and δK(k) is the Kronecker delta function

defined by

δK(k) =





1, k = 0,

0, k 6= 0.

The model (2.8) assumes that θi(k) is a wide-sense-stationary (WSS) process which may

not be the case for voltage phase angles. However it provides a useful first approximation

for the dynamic state estimation problem. More sophisticated models may incorporate non-

stationary random processes that will be studied in the future. It is important to note that θi

is the output of the ith agent; and that in general each agent will have a different state-space

model and state vector dimension. In the MAS literature, systems of this type are called

heterogeneous MASs. If all agents have the same state-space models, then they are referred

to as homogeneous MASs. We expect that a heterogeneous MAS will provide a better model

than a homogeneous MAS for the dynamics of the phase angles.
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Another approximation we will make is to assume that the difference θi(k)−θj(k) is small

for all i, j ∈ N . This is usually termed a small-signal model or linear DC power flow model.

With this assumption, and under the quasi-steady-state approximation, (2.7) is converted

to

Pi(k) = Vi

∑

j∈Ni

Vjbij [θi(k)− θj(k)] .

We assume that all sensor devices can measure noise corrupted power measurements, but

only one sensor is able to measure its own phase. Therefore the measurement equation is

expressed as

yi(k) = diPi(k) + giθi(k) + ηi(k) (2.9)

with ηi(k) additive white Gauss noise (AWGN) of variance σ2
ηi
and gi 6= 0 for only one i. By

rewriting (2.9) as

yi(k) = diVi

∑

j∈Ni

Vjbij [θi(k)− θj(k)] + giθi(k) + ηi(k)

it is clear that we can only measure the differences between the phase angle at a bus, except

for one bus where gi 6= 0. To simplify notation, let us define aij = ViVjbij so that the above

equation can be rewritten as

yi(k) = di
∑

j∈Ni

aij [θi(k)− θj(k)] + giθi(k) + ηi(k). (2.10)

It is clear that bij = bji, since it represents the admittance across the same branch, thereby

aij = aji for all (i, j). In the rest of this chapter, y(k) is denoted as a column vector consisting

of {yi(k)}Ni=1. That is, y(k) represents the collective measurements. Similarly, we denote

x(k) =




x1(k)

...

xN (k)



, w(k) =




w1(k)

...

wN(k)



,
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as the collective state vectors and the collective noise processes with wi(k) =

[
vi(k) ηi(k)/σηi

]′
.

It is now straightforward to see that the collective measurement equations can be expressed

as

x(k + 1) = Ax(k) +Bw(k), (2.11)

y(k) = (DL+G)Cx(k) + Ew(k), (2.12)

where L is the Laplacian matrix, and

A = diag (A1, . . . , AN) , B = diag
(
B̃1, . . . , B̃N

)
,

C = diag (C1, . . . , CN) , E = diag (E1, . . . , EN) ,

D = diag (d1, . . . , dN) , G = diag (g1, . . . , gN)

with B̃i =

[
Bi 0

]
and Ei =

[
0 σηi

]
. From (2.12), it is clear that the power network

topology induces a graph on the measurement equation.

Estimation

We propose the following modified version of the distributed estimator introduced in [72]

x̂i(k + 1) = Aix̂i(k)−Ki (ŷi(k)− yi(k))

θ̂i(k) = Cix̂i(k), (2.13)

where {Ki} are state estimation gains. We will show later that this proposed estimator

requires gi 6= 0 for only one i. Physically, this means that we require that only one device be

able to measure its own phase angle, but the power measurements {Pi} are available for all

i.

To design the estimator gain, we shall study the error difference signal between the esti-

mated and actual agent state. Set ei(k) = x̂i(k)− xi(k) as the error signal and

e(k) =

[
e1(k) · · · eN(k)

]′
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that is the collective error signal. Denote M = DL +G. After some algebra, we obtain the

collective error dynamics

e(k + 1) = (A−KMC) e(k)− (B −KDE)w(k) (2.14)

where D = diag (d1, . . . , dN), G = diag (g1, . . . , gN), and K = diag (K1, . . . , KN). Estimation

is aimed at designing the gain matrix K that stabilizes the error dynamics and minimizes the

estimation error variance. Because the Laplacian matrix is not diagonal, {ei(k)} are coupled

and thus minimization of the estimation error variance is difficult to achieve considering

that the grid size N can be prohibitively large. As an alternative we will seek to stabilize the

error dynamics and minimize the error dynamics locally and distributively. The following

two lemmas are useful.

Lemma 3. Let L be the Laplacian associated with G. There exist diagonal matrices D > 0

and G ≥ 0, with rank of G equal to 1, such that

(DL+G) + (DL+G)′ > 0 (2.15)

if and only if G is connected, and

rank








L ei

−e′i 0








= N + 1.

for at least one i ∈ N .

For a proof of this result, see the proof of Lemma 1 in [73]. The next result is established

for the multivariable systems, although its application to dynamic state estimation for smart

grid involves only single-input/single-output agents.

Lemma 4. Let Ti(z) = Ji+Ci (zI −Ai)
−1Ki be a square transfer matrix with no eigenvalues

of Ai strictly outside the unit, those on the unit circle being simple, and Ji > 0 a positive

diagonal matrix. Then there exists an estimation gain Ki such that (Ai −KiCi) is a Schur

stability matrix and Ti(z) is strict positive real.
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Proof. Without loss of generality we assume that

Ai = diag(Ai1 , Ai2)

with Ai1 having all simple eigenvalues on the unit circle and Ai2 being a Schur stability

matrix. Partition Ci and Ki compatibly as

Ci =

[
Ci1 Ci2

]
, Ki =




Ki1

Ki2


 .

Hence Ti(z) = Ti1(z) + Ti2(z) with

Tij (z) = Jij + Cij

(
zI −Aij

)−1
Kij

for j = 1, 2 and Ji = Ji1 + Ji2. We will show that Ji1 = Ji, Ji2 = 0, and Ki2 = 0 provide a

possible candidate, and we thus need only to design Ki1 to render Ti(z) SPR. Since Ai1 has

only simple eigenvalues on the unit circle, it has the form

Ai1 = diag


1,−1,




cosϕ sinϕ

− sinϕ cosϕ


 , · · ·


 .

For this reason, Ti1(z) being SPR, if and only if

Ai1A
′
i1
= I, Ki1 = Ai1C

′
i1
,

and 2Ji1 −Ci1C
′
i1 > 0 in light of Corollary 1. For Ti2(s) to be positive real, it is equivalent to

T̂i2(z) := (2Ji2)
−1/2Ti2(z)(2Ji2)

−1/2

=
1

2
I + Ĉi2(zI −Ai2)

−1K̂i2

being positive real, where K̂i2 = Ki2(2Ji2)
−1/2 and Ĉi2 = (2Ji2)

−1/2Ci2 . In accordance with

Lemma 2, T̂i2(z) is positive real, if and only if the ARE

Zi = Ai2ZiA
′
i2 + (K̂i2 −Ai2Zi2Ĉ

′
i2)(I − Ĉi2Zi2Ĉ

′
i2)

−1(K̂i2 − Ai2Zi2Ĉ
′
i2)

′
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has a solution Zi ≥ 0 satisfying I − Ĉi2ZiĈ
′
i2 > 0. Now setting K̂i2 = 2Ai2Zi2Ĉ

′
i2, the above

ARE is equivalent to a new ARE

Zi = Ai2ZiA
′
i2
+ Ai2ZiĈ

′
i2
(I − Ĉi2ZiĈ

′
i2
)−1Ĉi2ZiA

′
i2

having a solution Zi ≥ 0 satisfying I− Ĉi2ZiĈ
′
i2
> 0. In light of Lemma 1 and its subsequent

discussion, Ĝi(z) = Ĉi2(zI − Ai2)
−1Bi2 has H∞ norm ‖P̂i‖∞ < 1, if and only if

Yi = Ai2YiA
′
i2
+BiB

′
i + Ai2YiĈ

′
i2
(I − Ĉi2YiĈ

′
i2
)−1Ĉi2YiA

′
i2

has a solution Yi ≥ 0 satisfying I− Ĉi2YiĈ
′
i2
> 0. Because the above is equivalent to ARE for

Zi by taking Bi = 0, ‖Ĝi‖∞ < 1 always holds when Bi = 0. In fact Zi = 0 is the stabilizing

solution by the Schur stability of Ai2, leading to K̂i2 = 0. This concludes the proof.

With these results in place, we now provide a method to construct the estimator gain K

in the following theorem.

Theorem 1. There exists a stabilizing estimation gain K to (2.14), if the underlying smart

grid topology, G, is connected.

Proof. Assume G is connected. Let M = DL + G with D and G as in (2.14). Since gi 6= 0

for only one i, G is a rank one diagonal matrix and by Lemma 4, M +M′ > 0. Note that

the error dynamics (2.14) are stable if

det(zI − A+KMC) 6= 0 ∀ |z| ≥ 1, (2.16)

i.e., A−KMC has no eigenvalues outside and on the unit circle. Since M+M′ > 0, there

exists J = diag(J1, . . . , JN) with Ji > 0 diagonal and invertible such that

M+M′ −M(J + J ′)M′ > 0. (2.17)

Note that (2.17) is a linear matrix inequality (LMI). So J can easily be computed with an

LMI solver. In addition the existence of such a J is clear: by taking J → 0, the above strict
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inequality holds. Hence sufficiently small J satisfies the strict inequality (2.17). It is now

noted that (2.17) is equivalent to

(I −MJ)M′ +M(I − J ′M′) > 0.

Multiplying the above by (I − J ′M′)−1 from right and (I −MJ) from left yields

M′(I − J ′M′)−1 + (I −MJ)−1M > 0.

Since J can be taken sufficiently small, (I −MJ)−1 exists. Define

Π = (I −MJ)−1M ⇐⇒ M = Π(I + JΠ)−1

where “⇐⇒” stands for the equivalence relation. Then inequality (2.17) holds if and only if

Π + Π′ > 0.

Upon substitution of M = Π(I + JΠ)−1, the stability condition (2.16) is equivalent to

λ(z) := det(zI − A+KΠ(I + JΠ)−1C) 6= 0 ∀ |z| ≥ 1. (2.18)

Denote Ti(z) = Ji + Ci(zI −Ai)
−1Ki and

T (z) = diag(T1(z), . . . , TN(z)) = J + C(zI − A)−1K.

In light of Lemma 3, Ki exists for each i such that Ti(z) is positive real. Combined with

Π + Π′ > 0, it implies that [73]

det[I +ΠT (z)] 6= 0 ∀ |z| ≥ 1. (2.19)

By the root locus argument, the above is equivalent to

det[T (z)−1 +Π] 6= 0 ∀ |z| ≥ 1.

Substitution of the realization of T (z) yields

det[T (z)−1 +Π] = det[J−1 +Π− J−1C(zI − A+KJ−1C)−1KJ−1].
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Hence the inequality (2.19) is in turn equivalent to

det[I + JΠ− C(zI − A+KJ−1C)−1KJ−1] 6= 0

∀|z| ≥ 1. That is, the inequality (2.19) holds if and only if

det[I − (I + JΠ)−1C(zI − A+KJ−1C)−1KJ−1] 6= 0

for all |z| ≥ 1. On the other hand the stability condition (2.18) is equivalent to

λ(z) = det[zI − A+KJ−1JΠ(I + JΠ)−1C]

= det[zI − A+KJ−1(I − (I + JΠ)−1)C]

= det[zI − A+KJ−1C −KJ−1(I + JΠ)−1)C]

6= 0 ∀ |z| ≥ 1.

Again by the root locus argument, the above is equivalent to

λ̃(z) := det[I −KJ−1(I + JΠ)−1C(zI − A+KJ−1C)−1]

= det[I − (I + JΠ)−1C(zI − A+KJ−1C)−1KJ−1]

6= 0 ∀ |z| ≥ 1

where we used the fact that det(I+AB) = det(I+BA). The above is identical to inequality

(2.19), and thus there indeed exist {Ki}Ni=1 such that (2.16) is true.

Under the stability assumption for (A−KMC), the steady-state estimation error covari-

ance Σ = E{e(k)e(k)′} for (2.14) satisfies the Lyapunov equation

Σ = (A−KMC)Σ(A−KMC)′ + (KDE − B)(KDE − B)′. (2.20)

In addition the steady-state estimation error covariance for θ can be obtained as

Σθ = CΣC ′ + Ση (2.21)

with Ση as the covariance of the measurement noise vector.
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Remark 1. It is important to note that our proposed estimator is distributed, in the sense

that each individual estimation gain Ki is designed based on the solution of an ARE of

order ni. This is certainly desirable since the collective state vector may be of a very large

dimension, making controller design computationally prohibitive. Also, due to Lemma 4, we

require only one gi to be nonzero. Recall that we require diagonal G ≥ 0 with rank of G equal

to 1. Loosely speaking, we require only one agent estimator to be placed on a connected bus

of the power system.

Determination of Phase Angle Dynamics

We now consider identification of the realization matrices (Ai, Bi, Ci) based on phase

angle measurement data. Recall that these matrices model the behavior of the bus voltage

phase angles when the power system is operating in a quasi-steady state. According to the

dynamical equation (2.8), θi(k) is a sequence of continuous random variables with a power

spectral density (PSD) Φθi(ω). The PSD is defined as the discrete time Fourier transform

(DTFT) of the ACS Rθi(k),

Φθi(ω) =
∞∑

k=−∞

Rθi(k)e
−jωk (2.22)

and admits the spectral factorization in form of

Φθi(ω) = Θi(e
jω)Θi(e

jω)∗ (2.23)

where Θi(z) is stable. If Φθi(ω) > 0 for all ω ∈ R, then Θi(z) also has all its zeros strictly

inside the unit circle. Computation of approximate Θi(z) based on {θ̂i(k)}, measurements

of {θi(k)}, has been well studied in the literature. We refer readers to the book [74]. It is

emphasized that many algorithms can be carried out to estimating an approximate PSD of

θi(k). A simple way is based on

Φ
(n)
θi

(ω) = E

{
1

n

(
n−1∑

k=0

θ̂i(k)e
−jωk

)(
n−1∑

τ=0

θ̂i(τ)e
−jωτ

)∗}
.
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In practice expectation can be replaced by average of the measured data over more than one

time horizon of interval length n. Since the above can be computed via the use of the fast

Fourier transform (FFT) algorithm, its numerical efficiency and reliability are well-known.

Various estimation algorithms from [75] can be used to identify Θi(z). Once Θi(z) is obtained

for i ∈ N , its realization matrices {Ai, Bi, Ci} can be easily determined.

A serious problem for identification of {Θi(z)} based on data {θ̂i(k)} is that these mea-

surements are not directly available. Indeed the measurement model in (2.10) implies that

P (k) = Lθ(k) where L is the Laplacian matrix associated with coupling coefficients {aij},

and

P (k) =




P1(k)

...

PN(k)



, θ(k) =




θ1(k)

...

θN(k)




are collective bus powers and phase angles, respectively. Since the Laplacian matrix L has

a zero eigenvalue, power measurements cannot be used to estimate the phase angles at each

time instance. In fact even if we collect the noise-free measurements of {Pi(k)} over many

time samples and assume that the phase angles are time invariant over the given time interval,

the phase angles are still not uniquely determined. Hence an alternative has to be sought.

Recall our dynamic state estimation algorithm proposed in (2.13). The fact that measure-

ments of one of the phase angles are available, prompts us to use measurement equation

(2.9):

yi(k) = diPi(k) + giθi(k) + ηi(k)

over some time interval. In the measurement equation, di > 0 for each i but gi > 0 for

only one i ∈ N , and {ηi(k)} are measurement noises. That is, we need measurements of one
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phasor with the rest relative measurements. Denote collective measurements and noises as

y(k) =




y1(k)

...

yN(k)



, η(k) =




η1(k)

...

ηN(k)



,

respectively. Then the measurement equations in (2.9) for 1 ≤ i ≤ N can be packed into the

following collective representation:

y(k) = (DL+G)θ(k) + η(k)

at each given time sample. Lemma 3 indicates that diagonal D > 0 and diagonal G ≥ 0 with

rank 1 exist such that

(DL+G) + (DL+G)′ > 0.

Hence M = (DL+G) is a full rank matrix, and

θ̂(k) = (DL+G)−1y(k)

is the maximum likelihood (ML) estimate of θ(k), provided that η(k) is a vector-valued

temporally white process with mean zero and covariance Ση, which holds in practice. Clearly

θ̂(k) is an unbiased estimate of θ(k) with error covariance given by

E
{
[θ(k)− θ̂(k)][θ(k)− θ̂(k)]′

}
= M−1ΣηM′−1.

Denote Σvθ = M−1ΣηM′−1. Then θ̂(k) = θ(k) + vθ(k) with vθ(k) a white process of mean

zero and covariance Σvθ .

It is important to note that the voltage phase angles may not be decoupled, i.e., the cross

product terms may not be negligible. This will affect the estimate of the PSD and in turn

negatively affect the model that generates the phase angles. However we believe that the

couplings among different phase angles are weak in normal operation of the power grid. In

the least we can assume that the phase angles are approximately decoupled over each time

interval. The cross coupling takes place only at some discrete time samples. For this reason,

our proposed distributed estimation algorithm has its merit.
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2.3 Secure Smart Grid

This section will develop a novel detection method for unobservable attacks widely known

for state estimation in power systems. We will demonstrate that our results on distributed

dynamic state estimation obtained in the previous section can be used to develop a new

detection algorithm that is especially effective for unobservable attacks.

2.3.1 A novel detection algorithm

Prior to presenting our new detection algorithm, a conventional anomaly detector, dis-

cussed in Chapter 1, will be presented first. Such a conventional approach can detect only

observable attacks.

Conventional Approach

Recall the power measurement model that can be written as

y(k) = (DL+G)Cx(k) + Ew(k) (2.24)

= Mθ(k) + Ew(k), (2.25)

θ(k) = Cx(k). (2.26)

When there is an attack vector a, the measurement equation becomes

ya(k) = Mθ(k) + Ew(k) + a, (2.27)

For an observable attack, it changes the measurement residual defined as

‖ya(k)− ŷa(k)‖ = ‖Mθ(k) + Ew(k) + a−Mθ̂‖

= ‖y(k)− ŷ(k) + a‖.

Hence the residual increases due to presence of the attack vector a, which is indeed the case

when the adversary has no knowledge of the topology of the grid. However when adversaries

have knowledge of the topology of the grid, they can find θa ∈ Rn, such that the attack
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a = Mθa, and it becomes unobservable, because such an attack vector a does not alter the

residual as shown next:

‖ya(k)− ŷa(k)‖ = ‖Mθ(k) + Ew(k) +Mθa(k)−M(θ̂(k) + θa(k))‖

= ‖y(k)− ŷ(k)‖.

That is, the attack a becomes a part of the parameter vector θ. As a result when the attack

is unobservable, it can bypass the residual test, which renders the conventional approach

unsuitable for detecting the unobservable attacks.

A New Approach

As explained earlier, conventional ways for detect the malicious attack are based on system

measurement data as well as statistical information of the measurement model. When attacks

or anomalies exist, and the measurements and the statistical model do not match each

other, then attacks or anomalies can be detected. But if the attack has knowledge of the

grid topology, i.e., the measurement model, then the attacker will be able to bypass the

residue test by constructing the attack vector in the range space of the measurement model.

So it becomes a part of the parameter vector and is thus termed as unobservable. Many

research papers are devoted to tackle such a difficult detection problem [29, 4, 31, 28, 76,

77]. Fortunately the dynamic state estimation as presented in the previous section can be

used to derive a new detector, and the consensus approach can be implemented to detect

unobservable attack.

According to the previous discussion on real power flow model and state estimation, the

discrete-time static measurement equations in (2.12) are the same as

y(k) = Mθ(k) + Ew(k), θ(k) = Cx(k), (2.28)

x(k + 1) = Ax(k) +Bw(k), θ̂(k) = M−1y(k), (2.29)

41



where θ̂(k) is the phasor angle vector calculated directly from the power measurement vector

y(k). The static estimate θ̂(k) has N components denoted as

θ̂(k) =




θ̂1(k)

...

θ̂N (k)



.

For the dynamic state estimator in (2.13), estimation equations can be written as

ŷ(k) = Mθ̂(k), (2.30)

θ̂(k) = Cx̂(k) = M−1ŷ(k), (2.31)

x̂(k + 1) = Ax̂(k)−DK[ŷ(k)− y(k)]−GK[θ̂(k)− θ(k)] +KDEw(k), (2.32)

= (A−KMC)x̂(k) +KMCx(k) +KDEw(k), (2.33)

Recall the output residual defined as

ey(k) := y(k)− ŷ(k). (2.34)

Since the output residual can not tell which bus is under attack, we modify the above

equation by multiplying it with M−1 from left. This results in the output angle residual as

eθ = M−1ey(k) = θ̂(k)− θ̂(k), (2.35)

Thus, by monitoring the angle residual, it is possible to determine which bus is under attack.

Under the normal operating condition, i.e., in absence of attack and fault of the power grid,

the residuals are very small due to

‖θ̂(k)− θ̂(k)‖ = ‖[θ(k)− θ̂(k)] +M−1η‖, (2.36)

E{[θ̂(k)− θ̂(k)][θ̂(k)− θ̂(k)]′} = CΣC ′ + Ση +M−1ΣηM′−1 (2.37)
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in light of (2.21). If there is an attack, the residual will significantly increased. Specifically

the state space model under attack can be described as

ya(k) = Mθ(k) + Ew(k) + a, (2.38)

x(k + 1) = Ax(k) +Bw(k), (2.39)

where a is the attack vector. For observable attacks, the residual is

‖θ̂(k)− θ̂(k)‖ = ‖[θ(k)− θ̂(k)] +M−1(η + a)‖, (2.40)

E{[θ̂(k)− θ̂(k)][θ̂(k)− θ̂(k)]′} = CΣC ′ + Ση +M−1(Ση + Σa)M′−1. (2.41)

In the case of unobservable attacks, adversaries can find θa ∈ Rn such that a = Mθa. Then

the residual is given by

‖θ̂(k)− θ̂(k)‖ = ‖[θ(k)− θ̂(k)] +M−1η + θa‖, (2.42)

E{[θ̂(k)− θ̂(k)][θ̂(k)− θ̂(k)]′} = CΣC ′ + Ση +M−1ΣηM′−1 + Σa. (2.43)

The above shows that no matter what the attack is (observable or unobservable), the resid-

ual always includes the attack component. Therefore the residual increases if the attack is

present. For this reason, our new approach is capable of detecting the attack by examining

the distribution of the output residual sequence, and compare the residual ‖θ̂(k) − θ̂(k)‖

with a threshold τ . An attack exists, if

‖θ̂(k)− θ̂(k)‖ > τ. (2.44)

2.3.2 Simulation studies

To illustrate our proposed detection approach, we carried out a simulation study for the

IEEE 14-bus test system. The configuration data of the test systems is obtained from the

data sheet of IEEE 14-bus [78]. To reduce the calculation complexity, all the generators are

removed. In this system, we set bus-1 as the slack bus with its power angle being always
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equal to 0o. Under the normal operation, a power system operates in a quasi-steady-state.

The bus loads are constant over short time intervals. The customer activities are modeled as

a wide-sense stationary (WSS) random process, denoted as v(k). As convention, we assume

that v(k) ∼ N (0, σ2
v) is an independent process. Each bus is assumed to be described by the

following random walk Gauss-Markov equation

xi(k + 1) = xi(k) + vi(k) (2.45)

where the initial condition xi(0) = xi0 a Gauss random variable, independent of {vi(k)}

for all i. Hence xi(k) is also a normal process. The variance of the process noise is set as

σv = 0.01 in order to model slow variation of the phasor angle due to power consumers,

considering that the sampling rate for a typical SCADA system in a power grid is about 100

∼ 200 Hz [3, 54]. The following figure shows a typical power angle θi on bus-8 under the

normal condition. In this case, on bus-8 a typical power angle θi fluctuates around −20o:
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Figure 2.1: Typical power angle plot

For the measurement equation, the signal to noise ratio (SNR) is set to be 10dB. That

is, ση = σy/
√
10 with σ2

y as the variance of the measurement signal. By convention, η(k) ∼

N (0, ση
2) is an independent Gaussian noise process. In the simulation, a total of 2000 samples

is taken. Both the conventional approach and the consensus approach are used under both
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observable and unobservable attacks. The next figure shows the residual responses when the

attack is absent in the system.
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Figure 2.2: Angle residual (consensus approach, no attack)

The method used in estimation is the consensus approach, based on local and distributed

measurements, and random walk Markov Gauss dynamic state space models. It is seen that

the estimation error is quite small. We also simulated the conventional approach to estimating

the power phaser angles, without using dynamic state space models, and the replay attack

is absent. In fact the same data as from the previous figures is used. The error residual is

very close to that used in the consensus approach. These two results seem to admit similar

estimation performance.
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Figure 2.3: Angle residual (conventional approach, no attack)
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Next we consider malicious attacks in the form of observable attacks. We assume that the

attack vector a as a constant vector by simply setting its ith component ai = 1, and the

attack starts at the 500th time sample. The residual responses are shown in the next figure.

The sudden jump in the error response plot indicates the presence of the attack.
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Figure 2.4: Angle residual (consensus approach, observable attack)

We comment that the reason for the delectability lies in the fact that the dynamic state

space model is used and consensus estimation approach is adopted, and thus the estimated

angle cannot change abruptly as the actual angle change due to the attack. Hence the esti-

mation error increases right away. It needs to be pointed out that the conventional approach

can also detect the observable attack as illustrated by the angle residual plot next.
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Figure 2.5: Angle residual (conventional approach, observable attack)
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The more interesting case is when unobservable attacks exist. We suppose that there is

only one attack on the bus-8 starting at the 500th sample. The attack vector can be set

as a = Mθa with only θa8 = 1, resulting in an unobservable attack. Using the consensus

approach, the residual responses are shown in the next figure.
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Figure 2.6: Angle residual (consensus approach, unobservable attack)

Even though the attack on the bus-8 has a small amplitude, the residual shows clearly a

significant increase in the estimation error for the phasor angle of the bus-8. The underlying

reason for the detectability is the same as the case of observable attack. The next figure

shows the averaged error residual with the same window size.
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Figure 2.7: Averaged angle residual (consensus approach, unobservable attack)
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However when the conventional approach is taken, the situation is rather different as

illustrated next by the angle residual.
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Figure 2.8: Angle residual (conventional approach, unobservable attack)

It shows that under the unobservable attack, the residual obtained from conversional

approach has no significant change. The next figure shows the estimated angle for both the

conventional (red) and consensus (blue) approaches.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−20

−19.5

−19

−18.5

−18

−17.5

−17

−16.5

−16
power angle estimation

Time(k)

P
ow

er
 a

ng
le

(°)

Figure 2.9: Estimated angle (conventional and consensus approach, unobservable attack)

The above simulation studies demonstrated that our proposed consensus approach is capable

of detecting both the observable and unobservable attack, while the conventional approach

fails.
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We also provide our simulation study for the detection rate when the unobservable attacks

are present with different attack amplitudes. The following figure shows the detection rate

when the false alarm rate is kept at 5% using the consensus approach.
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Figure 2.10: Detection rate under different attack magnitudes

In the above figure, we set the window size equals to 5, and the attack magnitudes vary.

The vertical axis represents the detection rate while the horizontal axis giving the time

samples. The red dash line with ◦ shows the detection rate when the attack amplitude is

5% of the actual power angle; The blue dot line with ✷ shows the detection rate when the

attack amplitude is 4% of the actual power angle; The detection rate curves for 3%, 2%, 1%,

and 0.5% of the attack amplitude shown in black dot dash line with ×, pink solid line with

+, green solid line with ∆, and purple solid line, respectively.

The detection rate curves in Figure 2.10 are results of the average of 10,000 ensemble

experiments. To reduce the calculation time, we set the time sample size of each trial to 20.

The unobservable attack start at time sample 10. Hence, each curve start at time sample 9

and with false alarm rate equal to 5%. Note that the detection rate decreases as the attack

magnitude reduces, considering that as the attack amplitude decreases, it will be submerged

into the noise, and thus becomes undetectable.
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The simulation study in Figure 2.10 is carried out with a window size fixed to be 5. In

practice we also want to detect the attack as quickly as possible after the attack is launched.

Thus the window size can not be too large. For this reason, we now fix the attack magnitude

to 2% and compare the detection rate of different window size when the false alarm rate is

still fixed at 5% with the attack starting at time sample 10.

Fig. 2.11 shows the detection rate curve under 5% false alarm rate when the window sizes

vary. In the above figure, the blue solid line with ◦) corresponds to the window size of 7, the

red dash line with ✷ to the window size of 6, the black dot dash line with × to the window

size of 5, the pink dot line with ⋄ to the window size of 4, the green solid line with ∆ to the

window size of 3, the purple solid line ⋆ to the window size of 2, and the blue solid line to

the window size of 1.

It is worth to noticing that reducing window size increases the sensitivity of the detector.

However it also reduces the steady-state detection rate. On the other hand increasing the

window size improves the steady-state detection rate, but the latency is also increased. So

there is a tradeoff between the window size and detection rate versus the sensitivity. The

choice of window size depends on the power system protection settings.
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Figure 2.11: Detection rates for different window sizes
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2.4 Conclusion

We have proposed a viable distributed dynamic state estimator based on the multi-agent

system (MAS) framework, assuming the availability of SCADA systems. A useful result from

[73] is employed to model the phasers as WSS processes, and to develop a viable dynamic

state estimator. We have assumed that the power system is described by a linear DC power

flow model and is operating in a quasi-steady state. Conditions on the existence of a a dis-

tributed estimator were derived and a solution was proposed to construct the distributed

estimation gains. Stability of the distributed state estimator was shown to hold. Although

we assumed that the phase angles are approximately decoupled, the results presented in

this chapter provides an initial attempt to tackle the dynamic estimation problem for the

power grid, and can be valuable to future research in this important research problem area.

More importantly with the dynamic state estimator and DC power flow model, we proposed

a consensus approach to detecting malicious attacks. While both the conventional and our

proposed approaches are effective for observable attacks, it is not the case for the unobserv-

able attacks. In fact the conventional approach fails utterly. On the other hand our proposed

approach is capable of detecting the unobservable attacks, verified by our simulation studies.
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3 Whitening Filter Approach

Recently replay attack has become a serious threat to the SCADA system. Adversaries record

a sequence of sensor measurements and replay the sequence afterwards while conducting

attacks on the system [2, 34, 79]. A well known replay attack is launched by the Stuxnet

malware. It is a computer worm virus that was discovered in June 2010 designed to attack

Siemens Step 7 software allegedly which is a widely used software for PLC programming. It

allegedly attacked the Iran’s uranium enrichment plant at Natanza in mid to late 2009 and

caused 984 which is one fifth of the centrifuges damaged. Stuxnet virus secretly recorded

the normal operations status readings when the system runs under normal condition, and

then played those readings back to the system operators when the systems failed. It is like

many Hollywood movies that bad guys play the pre-recorded security tape when they rob the

bank. Thus, it would appear to the operator that everything was running smoothly while

the system was already damaged. That prevents a safety system from doing some action

to prevent abnormal operation. As the PLC is used in most of the industry infrastructures,

especially in power grid, the replay attacks entice vulnerability of the power devices. Recently

investigation and report by a computer security software maker Symantec Corporation show

that they catched the Stuxnet in a global malware collection system. The Stuxnet has already

begun to spread around the globe. Not only in Iran, but also in India, Indonesia and other

countries have spotted this kind of worm . No one knows whether their systems have been

infected of such a worm, and when it starts attacking their systems. This is thus an urgent

call to all of us to develop methods to protect against replay attack [60, 33].
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This chapter will study the detection problem of the replay attack, and is endeavored to

contribute to this emerging research area. A whitening filter approach is proposed and shown

to be effective. We begin our chapter with the literature survey, followed by presentation of

the background material. Our proposed detection method based on whitening filters will be

detailed together with the computation aspect. The chapter will be concluded with simulation

studies.

3.1 Literature Survey

Mo and Sinopoli are the first [2] to consider the replay attack, one year before the Stuxnet

was reported in the news media. Their proposed method is quite simple. Its basic idea is

to inject a Gauss random noise in the control input, and test the estimation residue for

the output estimation error of the Kalman filter. They assume that the control system is a

discrete time linear time invariant (LTI) Gaussian with an infinite horizon Linear Quadratic

Gaussian (LQG) controller in which a Kalman filter is employed to estimate the system’s

state. A χ2 failure detector is used to detect the presence of the replay attack. Because the

added white noise is known to the controller, it is canceled in the Kalman filter if the replay

attack is absent. However when the replay attack is present, then the added white noise at

the control input cannot be canceled, resulting in higher output estimation error. For this

reason the added white Gauss noise serves a time stamp.

To be specific, the LTI system state dynamics are described by

xk+1 = Axk +Buk + wk,

yk = Cxk + vk,

with xk ∈ Rn is the state variable, uk is the control input, and yk ∈ Rm is the output

measurement at time k. The initial condition of the state vector x0 ∼ N (x̄0,Σ). The vector

signals wk ∈ Rn is the process noise with Gaussian distribution wk ∼ N (0, Q), and vk is the

measurement noise with Gaussian distribution vk ∼ N (0, R).
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The LQG controller consists of the Kalman filter and state feedback gain. Assumed that

the LQG system is in the steady-sate. Denote x̂k|i as the optimal estimate for xk conditioned

on all the measurements up to time index i. The Kalman filter computes the optimal state

estimate recursively according to

x̂k|k = (I −KC)x̂k|k−1 +Kyk, x̂k+1|k = Ax̂k|k

K = PC ′(R + CPC ′)−1,

P = APA′ −APC ′(R + CPC ′)−1 +Q,

initialized with x̂0|−1 = x̄0. By using the state estimate x̂k|k, the LQG control input has the

state feedback form, given by

uk = u⋆
k = Lx̂k|k, L = −(U +B′SB)−1B′SA,

where S is the stabilizing solution to the following algebraic Riccati equation (ARE):

S = A′SA+W − A′SB(B′SB + U)−1B′SA.

For LQG control, the one-step prediction output error yk − Cx̂k|k−1 is white, which is an

important property of the Kalman filter. Its covariance is given by

E{(yk − Cx̂k|k−1)(yk − Cx̂k|k−1)
′} = R + CPC ′ =: P.

Hence the normalized output error variance satisfies the following equation:

E{‖P−1/2(yk − Cx̂k|k−1)‖2} = E{(yk − Cx̂k|k−1)
′
P

−1(yk − Cx̂k|k−1)} = m.

It is important to note that the normalized output error

(yk − Cx̂k|k−1)
′
P

−1(yk − Cx̂k|k−1)

has a χ2 distribution, and χ2 detector is often employed to detect any anomalies of the

feedback control system. However it does not help for detection of the replay attack.
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Supposed that the attacker knows all sensor readings and can record and replay them.

Denote the modified reading as ỹk with ỹk = yk−T for some large integer T > 0. It is proven

in [2] that under the replay attack the residues ỹk − Cx̂k|k−1 will converges to the same

distribution as of yk − Cx̂k|k−1, i.e.,

E[(ỹk − Cx̂k|k−1)
′
P

−1(ỹk − Cx̂k|k−1)] = E[(yk − Cx̂k|k−1)
′
P

−1(yk − Cx̂k|k−1)] = m.

Thus the conventional χ2 detector is useless in detecting the replay attack.

To remedy the above problem, Mo and Sinopoli [2] propose to redesign the controller by

adding a Gauss white noise signal to the control input, leading to

uk = u∗
k +∆uk, ∆uk ∼ N (0,L ),

where u∗
k is the original optimal LQG control signal, and u∗

k and ∆uk are independent of each

other. In this case the residues {ỹk − Cx̂k|k−1} do not converges to the same distribution as

yk − Cx̂k|k−1. To be specific, in absence of attack,

E[(yk − Cx̂k|k−1)
′
P

−1(yk − Cx̂k|k−1)] = m,

Under the replay attack, there holds

E[(ỹk − Cx̂k|k−1)
′
P

−1(ỹk − Cx̂k|k−1)] = m+ 2Tr(C ′
P

−1CU ),

where Tr(·) denotes trace, and U satisfies the following Lyapunov equation

U −BLB′ = A U A
′.

with A , (A+BL)(I −KC). As a result the replay attack is can be detected using the χ2

detector at each time index k in the following form

gk =
k∑

i=k−T +1

(yk − Cx̂k|k−1)
′
P

−1(yk − Cx̂k|k−1) ≶ threshold

where T is the window size to estimate the expectation, which means that gk is χ
2 distributed

with T degrees of freedom.
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The threshold depends on the requirement of detection rate versus false alarm rate. In

addition the greater the covariance L of ∆u is, the higher the detection rate and also the

greater loss of system performance will be. As shown in [2] for a particular example, this

method achieves the detection rate achieves 35% with the covariance L = 0.6, but at the

same time the LQG performance is lost 91% with respect to the optimal LQG cost. There

thus exists a tradeoff between the detection rate and control performance.

To reduce the loss of performance, [1] applies a game theoretic method to detection of

the replay attack. Based on the method of Mo and Sinopoli, [1] also considers the LTI

plant using the Kalman filter, optimal LQG controller, and χ2 detector. The difference

lies in employment of a finite horizon, zero-sum, non-stationary stochastic game approach

to reduce the control and detection cost. The authors of [1] use switching between two

different controllers according to the system dynamics. One is the secure controller (capable

of detecting the replay attack but with suboptimal cost) designed by Mo and Sinopoli with

the control input signal uk = u∗
k+∆uk. The other one is the optimal controller (incapable of

detecting detect replay attack) with no additional noise signal ∆uk being added to the control

input signal. An optimal control policy is developed based on the game theory framework by

switching between the two controllers shown in Fig. 3.1. The simulation results show thatthe

system performance loss is reduced half while detection rate is only reduced 5 percent.

Figure 3.1: Block Diagram of switching controller [1]
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To reduce the system performance loss, Tran and Shin [80] also designed a new detection

scheme based on the method provided by Mo and Sinopoli [2]. Instead of adding random

signal ∆uk to control input signal continuously through the whole control process, they

modified the way by adding the random signal ∆uk periodically only for small time duration

with the period T . So the system will operate normally in the remaining time. By adjusting

the period T of adding ∆uk, the detection rate can be guaranteed and the system performance

loss will also be reduced. The simulation results show that the system performance loss can

be reduced when there is no attack, while providing an adjustable detection rate for the

replay attack [80].

The method of Mo and Sinopoli provides a basic way of detecting the replay attack at

the expense of losing some control performance. The second and third methods are able to

reduce the system control performance loss by sacrificing the detection rate. Although these

methods are all effective, they can not eliminate the injection of the random noise to the

control signal. In addition the exiting detection methods are all based on the LQG controller.

The applicability to those non-LQG feedback control systems is questionable. In this chapter

and the next, we will propose two different new approaches without adding the Gauss white

noise to the control input by recognizing that the use of network and digital channels in

SCADA systems, the communication noises can be used to detect the replay attacks.

3.2 Main Results

This section presents our whitening filter approach to detection of the replay attack. The

first subsection will prepare the background material prior to presentation of our proposed

detection method. Computational issues will be studied in the third subsection.

3.2.1 Preliminaries

A SCADA system is also a networked control system (NCS) that has the feedback con-

troller situated in a different physical location from that of the plant, and it communicates
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with the plant via a (often wireless) network. The use of networks in feedback control systems

thus creates a vulnerability for malicious attacks which seek to destabilize and damage the

physical system. Specifically consider the discrete-time feedback control system in the block

diagram next where the time index k is integer-valued.

✲ ♠ ✲ P (z)

❄♠✛✛−K(z)

✻

d(k) u(k) y(k)

η(k)w(k)v(k)

Figure 3.2: Networked feedback control system

In Fig. 3.2, the steady-state responses of the input and output are removed in order to

understand better the real issue in secure feedback control. Let q−1 be the unit delay operator.

In accordance with the block diagram in Fig. 3.2, there holds



v(k)

w(k)


 =




v(k)

y(k)


+




0

η(k)




=




0 −K(q)

P (q) 0







u(k)

w(k)


+




0

η(k)




=




0 −K(q)

P (q) 0







v(k)

w(k)


+




0

P (q)d(k) + η(k)




=




I K(q)

−P (q) I




−1 


0

P (q)d(k) + η(k)




=




−K(q)

I


 [I + P (q)K(q)]−1

[
P (q) I

]



d(k)

η(k)


 .

The above indicates that the closed-loop transfer matrix from the exogenous inputs {d(k)}

and {η(k)} to {w(k)} and {v(k)}, the input/output signals of the feedback controller −K(z),
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is given by

TK(z) =




−K(z)

I


 [I + P (z)K(z)]−1

[
P (z) I

]
. (3.1)

A similar derivation yields



u(k)

y(k)


 =




I

P (q)


 [I +K(q)P (q)]−1

[
I −K(q)

]



d(k)

η(k)


 .

Thus the closed-loop transfer matrix from the exogenous inputs {d(k)} and {η(k)} to {u(k)}

and {y(k)}, the input/output signals of the plant model P (z), given by

TP (z) =




I

P (z)


 [I +K(z)P (z)]−1

[
I −K(z)

]
. (3.2)

Without loss of generality the plant model P (z) with m-input/p-output is assumed to

admit a stabilizable and detectable state-space realization. Its transfer matrix is given as

P (z) = D + C(zI − A)−1B :=




A B

C D


 . (3.3)

As a result a stabilizing state feedback gain F and a stabilizing state estimation gain L exist

such that (A + BF ) and (A + LC) are both Schur stability matrix. It is well known that

P (z) admits left/right coprime factorizations (LCF/RCF)

P (z) = M̃(z)−1Ñ(z) = N(z)M(z)−1 (3.4)

with {M̃(z), Ñ(z),M(z), N(z)} all stable transfer matrices. Assume that the feedback sys-

tem in Fig. 1 is internally stable. Then the controller K(z) admits left and right coprime

factorizations

K(z) = Ṽ (z)−1Ũ(z) = U(z)V (z)−1 (3.5)

with {Ṽ (z), Ũ(z), V (z), U(z)} all stable transfer matrices satisfying the Bezout identity



Ṽ (z) Ũ(z)

−Ñ(z) M̃(z)







M(z) −U(z)

N(z) V (z)


 = Im+p ∀ |z| ≥ 1. (3.6)
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It is emphasized that the LCF and RCF for the plant model and for the stabilizing con-

troller always exist and satisfy the Bezout identity in (3.6). The computation of such LCF

and RCF for the plant and controller can be simplified for the observer-based controller

Ko(z) = F (zI − A− BF − LC − LDF )−1L. (3.7)

Recall that (A+BF ) and (A+LC) are both stability matrix. In this case Ko(z) admits left

and right coprime factorizations

Ko(z) = Ṽo(z)
−1Ũo(z) = Uo(z)Vo(z)

−1

with realizations of its coprime factors together with those of coprime factors of P (z) specified

as




Ṽo(z) Ũo(z)

−Ñ(z) M̃(z)


 =




A+ LC −(B + LD) L

F Im 0

Ω−1C −Ω−1D Ω−1



, (3.8)




M(z) −Uo(z)

N(z) Vo(z)


 =




A+BF B −LΩ

F Im 0

C +DF D Ω




(3.9)

for any Ω that is nonsingular. The above is a slight modification from the existing literature.

Then any stabilizing controller K(z) for the feedback system in Fig. 1 has the form

K(z) =
(
Ṽo + JÑ

)−1 (
Ũo − JM̃

)
= (Uo −MJ) (Vo +NJ)−1 (3.10)

for some stable J(z). It follows that the coprime factors of K(z) in (3.5) given by

V (z) = Vo(z) +N(z)J(z), U(z) = Uo(z)−M(z)J(z), (3.11)

Ṽ (z) = Ṽo(z) + J(z)Ñ(z), Ũ(z) = Ũo(z)− J(z)M̃(z), (3.12)

satisfy the Bezout identity (3.6). Conversely if the LCF/RCF of K(z) in the above are

available, then J(z) can be obtained as

J(z) = Ũ0(z)V (z)− Ṽ0(z)U(z) = Ṽ (z)U0(z)− Ũ(z)V0(z). (3.13)
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Normally the exogenous inputs {d(k)} and {η(k)} are unknown disturbances and measure-

ment noises, respectively. They are often white wide-sense stationary (WSS) random pro-

cesses. However when attacks are present, {d(k)} and {η(k)} are replaced by {αu(k)+ d(k)}

and {αy(k) + η(k)}, respectively, as shown next.

✲ ♠ ✲ P (z) ✲ ♠✛

❄♠✛✛−K(z)✛♠✲

✻

d(k) u(k) y(k) η(k)

αy(k)w(k)v(k)αu(k)

Figure 3.3: Feedback control system under attack

It is assumed that the signals available for monitoring are at the controller site, and hence

{v(k), w(k)} can be logged by the controller, while the most valuable data {u(k), y(k)} from

the physical system are unavailable. In fact only {w(k)} need be collected for monitoring

the underlying feedback control system, in light of the fact that {v(k)} can be computed

based on {w(k)} and the controller model K(z). In order to conceal the attack and induce

damages, it is very likely that {αu(k)} are unbounded, but {αy(k)} are bounded. Even

if bounded αu(k) is used for malicious attack, it can be very irregular and disruptive in

order to cause hardware damage of the physical system. As a result {αu(k)} and {αy(k)},

injected by malicious attacks at the receiver end of the network, have different objectives:

the former is aimed at replacing u(k) so to damage the physical system while the latter is

aimed at concealing the true output y(k). For this reason early detection of the presence of

the malicious attacks based on {v(k), w(k)} becomes a very challenging problem facing the

NCS control community.

This chapter will be focused on the replay attack studied initially in [2]. The notorious

Stuxnet worm is an example of such an attack. It fits to the framework in Fig. 2 by taking

αy(k) = (q−τα − 1)[y(k) + η(k)] =⇒ w(k) = y(k − τα) + η(k − τα) (3.14)
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for k ≥ kα, assuming that the replay attack takes place at time kα aimed at replaying the

output τα samples before. This way conceals the real-time output of the plant and is probably

the easiest way to fake the plant normal output. With τα >> 1, the catastrophic result of

y(k) under unbounded attack αu(k) is not observed at the controller site until a very long

time later.

Under the replay attack, αy(k) = −[y(k) + η(k)] + α0(k) with

α0(k) = y(k − τα) + η(k − τα) = P (q)u(k − τα) + η(k − τα)

= P (q)[v(k − τα) + d(k − τα)] + η(k − τα).

There thus holds w(k) = α0(k) in light of (3.14). The replay attack results in

w(k) = P (q)[v(k − τα) + d(k − τα)] + η(k − τα) (3.15)

for k ∈ [kα, kα + τα). The above contrasts to the case in absence of attacks:

w(k) = P (q)[v(k) + d(k)] + η(k). (3.16)

The replay attack is very effective so long as the feedback controller K(z) is stable, by

the fact that w(k) in absence of attacks is statistically no different from that in presence

of attacks. It is thus difficult to detect the presence of replay attacks. On the other hand

when the feedback controller K(z) is unstable, its output v(k) diverges under the replay

attack due to lack of real time information from the feedback measurements. Unfortunately

many feedback controllers in engineering practice are stable. Mo and Sinopoli in [2] (see also

[9])propose a smart strategy by injecting a random noise at the control input, which serves as

a time stamp. While being effective, the injected noise degrades the control performance. In

addition the results in [2] are restricted to LQG control systems. A true challenge for replay

attack lies in its detection without injecting noises, applicable to commonly used control

systems other than LQG, which will be studied in next subsections.
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3.2.2 Detection algorithm

Detection of replay attacks is a very challenging problem. Injection of a random noise is

effective to detect if a replay attack is present. However the noise injected at the plant input

has to be large enough in order to achieve good detection performance, which deteriorates

the control system performance. So there is a tradeoff between detection performance and

control performance. An interesting problem is whether or not the communication noises

present in the NCS can be used for detection of replay attacks without injecting noises. In

this chapter the underlying NCS is assumed to employ network communications between

the plant out and controller input over an additive white Gauss noise (AWGN) channel, and

thus η(k) present at the controller input has the form

η(k) = ηo(k) + ηc(k) (3.17)

with ηo(k) for the measurement error and ηc(k) for the communication error induced by the

AWGN channel. Both are i.i.d. random noises. It will be shown that the AWGN channel,

while introducing information distortion, can help detection of the replay attack without

injecting noise at the plant input, provided that the noise power due to the AWGN channel

is not too small. This section consider the whitening filter approach. The following result is

useful.

Lemma 5. Assume that the plant model P (z) in (3.3) admits a stabilizable and detectable

realization, and {d(k), η(k)} are both temporal white processes with covariance Qd and Qη,

respectively. Let Yn ≥ 0 be the stabilizing solution to the discrete-time algebraic Riccati

equation (DARE):

Yn = AYnA
′ − (AYnC

′ +BQdD
′)Z−1

n (AYnC
′ +BQdD

′)′ +BQdB
′ (3.18)

63



where Zn = Qη +DQdD
′ + CYnC

′. Then with L = Ln := −(AYnC
′ + BQdD

′)Z−1
n , and the

left coprime factors {M̃(z), Ñ(z)} of P (z) in (3.8) replaced respectively by

[
M̃n(z) Ñn(z)

]
=




A+ LnC Ln (B + LnD)

Z
−1/2
n C Z

−1/2
n Z

−1/2
n D


 , (3.19)

P (z) = M̃n(z)
−1Ñn(z), and {M̃n(z), Ñn(z)} satisfy the normalization condition

Ñn(z)QdÑn(z)
∗ + M̃n(z)QηM̃n(z)

∗ = I ∀ |z| = 1. (3.20)

Proof: It is noted that the DARE in (3.18) can be written into the form of the discrete-time

Lyapunov equation

Yn = (A + LnC)Yn(A+ LnC)′ + LnQηL
′
n + (B + LnD)Qd(B + LnD)′. (3.21)

With Zn = Qη +DQdD
′ + CYnC

′, it can be verified that

(A + LnC)YnC
′ + LnQηL

′
n + (B + LnD)QdD

′ = 0. (3.22)

Denote G̃(z) =

[
M̃n(z)Q

1/2
d Ñn(z)Q

1/2
η

]
. There holds

G̃(z)G̃(z)∗ = Z−1/2
n (Qd +DQηD

′ + CYnC
′)Z−1/2

n = I

for all |z| = 1 in light of (3.22) from which the normalized left coprime condition in (3.20)

follows. ✷

Lemma 5 indicates that

N (k) = Ñn(q)d(k) + M̃n(q)η(k) (3.23)

is a white process with mean zero and covariance identity. That is, the power spectral density

(PSD) of N (k) is identity at all frequencies.

Assume that the feedback controller K(z) is stabilizing. Then K(z) = Un(z)Vn(z)
−1 is an

RCF for some stable and proper Vn(z) and Un(z) by taking V (z) = Vn(z) and U(z) = Un(z)

64



in (3.5). Note that K(z) may not be an observer-based controller. In fact it can be PID or

lead/lag compensator, provided that it stabilizes the feedback system in Fig. 1 or 2. Now

we can choose L = Ln so that Ñ(z) = Ñn(z), and M̃(z) = M̃n(z). The fact that K(z) is

stabilizing implies that Vn(z) and Un(z) can be chosen such that

Vn(z) = Vo(z) +N(z)J(z), Un(z) = Uo(z)−M(z)J(z),

for some stable J(z) in light of (3.10) by simply setting V (z) = Vn(z) and U(z) = Un(z).

Recall that L = Ln is used at present. In addition there holds

M̃n(z)Vn(z) + Ñn(z)Un(z) = I ∀ |z| ≥ 1. (3.24)

The right coprime factorization of P (z) = N(z)M(z)−1 can be obtained by taking some

stabilizing state feedback gain F , and thus Vo(z), Uo(z), and Ṽo(z), Ũo(z) are also available

using L = Ln and chosen stabilizing state feedback gain F .

Consider the first case of no attack. There holds

TK(z) =




−Un(z)

Vn(z)



[
Ñn(z) M̃n(z)

]
. (3.25)

Stability of K(z) implies that Vn(z)
−1 is also a stable and causal transfer matrix. It follows

that w(k) = Vn(q)N (k) by (3.1), (3.25), and by the definition ofN (k) in (3.23). Then Vn(z)
−1

represents a whitening filter in the sense that the filtered signal

s(k) = Vn(q)
−1w(k) = N (k) (3.26)

is a white process with covariance identity, in light of the normalized left coprime factorization

in (3.20) for the plant model P (z) and the discussion after Lemma 5. Consequently the PSD

of s(k) is given by Φs(ω) = I for all ω.

Suppose that the replay attack takes place at k = kα for the duration of τα >> 1. In this

case under the hypothesis of (3.17), the noise η(k) corrupted at the controller input consists
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of two parts with ηo(k) from the output measurement error, and ηc(k) from the error induced

by the communication network. In absence of replay attacks, there is no need to separate

ηo(k) and ηc(k). However in presence of replay attacks, the communication error ηc(k) plays

a crucial role in detection of the replay attack. The PSD Φw(ω) for w(k) is given in the

following result.

Proposition 1. Suppose that ηo(k) and ηc(k) are assumed to be independent white processes

for all k. Let {M̃n(z), Ñn(z)} in (3.19) be LCF of P (z) satisfying (3.20), and {Vn(z), Un(z)}

be RCF of the stabilizing controller satisfying (3.24). Under the replay attack, the PSD of

w(k) is given by

Φw(ω) = Vn(e
jω)
[
I − M̃n(e

jω)QηcM̃n(e
jω)∗

]
Vn(e

jω)∗

+N(ejω)Ũ(ejω)QηcŨ(ejω)∗N(ejω)∗ +Qηc

where Qηc is the covariance of ηc(k).

Proof: Suppose that k > kα. Denote

Nα(k) = N (k − τα) = Ñn(q)d(k − τα) + M̃n(q)η(k − τα). (3.27)

Recall N (k) in (3.23). Over the time interval of [kα, kα + τα),

w(k) = wα(k) = y(k − τα) + ηo(k − τα) + ηc(k)

= w(k − τα)− ηc(k − τα) + ηc(k)

= Vn(q)Nα(k)− ηc(k − τα) + ηc(k)

= Vn(q)
[
Ñn(q)d(k − τα) + M̃n(q)ηo(k − τα)

]

−
[
I − Vn(q)M̃n(q)

]
ηc(k − τα) + ηc(k).

The Bezout identity in (3.6) can also be written as



M(z) −Un(z)

N(z) Vn(z)







Ṽ (z) Ũ(z)

−Ñn(z) M̃n(z)


 = Im+p ∀ |z| ≥ 1. (3.28)
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The above implies I − Vn(z)M̃n(z) = N(z)Ũ (z), leading to

wα(k) = Vn(q)
[
Ñn(q)d(k − τα) + M̃n(q)ηo(k − τα)

]
−N(q)Ũ(q)ηc(k − τα) + ηc(k). (3.29)

The expression of wα(k) is different from w(k) prior to kα. As a result s(k) = Vn(q)
−1wα(k)

is not a white process in general. Since the four terms in (3.29) are all uncorrelated, the

PSD of w(k) over [kα, kα + τα) can be easily obtained as in the proposition in which the

normalization property (3.20) is used in obtaining the PSD expression. ✷

Proposition 1 can be used to derive the PSD for

s(k) = sα(k) = Vn(q)
−1wα(k) (3.30)

in presence of attacks. It can be easily seen that the PSD of s(k) is given by

Φs(ω) = I − M̃n(e
jω)QηcM̃n(e

jω)∗ (3.31)

+ Vn(e
jω)−1

[
N(ejω)Ũ(ejω)QηcŨ(ejω)∗N(ejω)∗ +Qηc

]
Vn(e

jω)∗−1.

Hence if ‖Φs(ω)− I‖ is significantly greater than zero in most of the frequency range, then

successful detection of presence of replay attacks will have high probability.

The above analysis shows that detection of replay attack is equivalent to detecting whether

or not s(k) is white, assuming that s(k) deviates from white noise significantly under replay

attacks. Although several schemes exist, we adopt the χ2 detector in this chapter.

3.2.3 Computational issues

This section is focused on the computation of the transfer matrix Vn(z) that whitens the

observed signal w(k) by the fact that s(k) = Vn(q)w(k) is white. The computation can be

complicated for a general stabilizing controller. Two different cases will be considered.

Observer-based controller

If we assume an observer-based controller, then

K(z) = F (zI − A− BF − LC)−1L (3.32)
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where L 6= Ln in general. In this case, denote

Ko(z) = F (zI − A−BF − LnC)−1Ln 6= K(z). (3.33)

The LCF, and RCF of Ko(z) have realizations specified as in (3.8), and (3.9), respectively

with L replaced by Ln. Then realization of Vn(z) can be obtained in closed form. The general

form for any stabilizing controller K(z) = Un(z)Vn(z)
−1 in (3.5) gives




Un(z)

Vn(z)


 =




Uo(z)

Vo(z)


+




−M(z)

N(z)


 J(z). (3.34)

Multiplying

[
−Ṽo(z) Ũo(z)

]
from left and using Ko(z) = Uo(z)Vo(z)

−1 = Ṽo(z)
−1Ũo(z)

yield

J(z) =

[
Ṽo(z) Ũo(z)

]



−Un(z)

Vn(z)


 (3.35)

by the Bezout identity Ṽo(z)M(z) + Ũo(z)N(z) = I. It follows that

J(z) =




A+ LnC −(B + LnD) Ln

F I 0







A +BF −L

F 0

C +DF I



=




A+ LnC Ln − L

F 0


 .

(3.36)

Substituting the above back to (3.34) gives the realization of Vn(z) as

Vn(z) =




Avn Bvn

Cvn Dvn


 :=




A+ LnC 0 Ln − L

BF A+BF −Ln

DF C +DF I



. (3.37)

Since PSD Φs(ω) or Φw(ω) also requires knowledge of N(z) and Ũ(z) that are given next:

N(z) =




A+BF B

C +DF D


 , Ũ(z) = Ũo(z)− J(z)M̃n(z),

Ũo(z) =




A+ LnC Ln

F 0


 .
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More general types of controllers

In the case when the feedback controller is neither in observer form, nor in Kalman filter

form, then computation of Vn(z) becomes more complex. Since K(z) is stable for our replay

attack problem, we have that

R̃(z) = M̃n(z) + Ñn(z)K(z)

is both stable and admits stable inverse. Hence RCF K(z) = Un(z)Vn(z)
−1 can be obtained

as

Vn(z) = R̃(z)−1, Un(z) = K(z)R̃(z)−1,

satisfying the Bezout identity

M̃n(z)Vn(z) + Ñn(z)Un(z) = I ∀ |z| ≥ 1.

If K(z) admits realization (AK , BK , CK, DK), then

R̃(z) = M̃n(z) + Ñn(z)K(z) =

[
M̃n(z) Ñn(z)

]



I

K(z)




=




A+ LnC Ln (B + LnD)

Z
−1/2
n C Z

−1/2
n Z

−1/2
n D







AK BK

0 I

CK DK




=




AK 0 BK

(B + LnD)CK A + LnC Ln + (B + LnD)DK

Ω−1DCK Ω−1C Ω−1(I +DDK)




where Ω = Z
1/2
n . Hence Vn(z) = R(z)−1 can be obtained as

Vn(z) =




AK − BK(I +DDK)
−1DCK −BK(I +DDK)

−1C BK(I +DDK)
−1Ω

(B + LnD)CK − ΠDCK A+ LnC − ΠC ΠΩ

−(I +DDK)
−1DCK −(I +DDK)

−1C (I +DDK)
−1Ω




(3.38)
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with Π = [Ln + (B + LnD)DK ](I +DDK)
−1. The above Vn(z) has much more complicated

expression compared to the previous type of stabilizing controllers.

The computation of Ũ(z) is more involved. Let P (z) = N(z)M(z)−1 be RCF with realiza-

tion in (3.9) where F is a stabilizing state feedback gain. Then the stabilizing assumption

for K(z) implies that

R(z) = M(z) +K(z)N(z)

has a stable and proper inverse. In this case the LCF K(z) = Ṽ (z)−1Ũ(z) can be obtained

as

Ṽ (z) = R(z)−1, Ũ(z) = R(z)−1K(z),

satisfying the Bezout identity

Ṽ (z)M(z) + ŨN(z) = I ∀ |z| ≥ 1.

Again let (AK , BK , CK , DK) be realization of K(z). Direct calculation gives

R(z) = M(z) +K(z)N(z) =

[
I K(z)

]



M(z)

N(z)




=




AK 0 BK

Ck I DK







A+ BF B

F I

C +DF 0




=




A+BF 0 B

BK(C +DF ) AK BKD

F +DK(C +DF ) CK I +DKD



.

Denote Π̃ = (I +DKD)−1[F +DK(C +DK)]. The inverse of R(z) is obtained as

Ṽ (z) = R(z)−1 =




A +BF −BΠ̃ −B(I +DKD)−1CK B(I +DKD)−1

BK(C +DF )−BKDΠ̃ AK − BKD(I +DKD)−1CK BKD(I +DKD)−1

−Π̃ −(I +DKD)−1CK (I +DKD)−1



.
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Assume that p = m. If p 6= m, then additional rows or columns can be appended to K(z)

and N(z), respectively, to satisfy p = m. After Ũ(z) is obtained, these appended rows and

columns can be annihilated by taking limit to zero. The square assumption implies that

Ũ(z) = R(z)−1K(z) = [M(z) +N(z)K(z)]−1K(z) = [K(z)−1M(z) +N(z)]−1.

For the same reason, DK can be assumed to be nonsingular. Otherwise small perturbation

can be introduced to DK to satisfy the non-singularity condition. The limit to zero can then

be taken for the perturbation. Hence

K(z)−1M(z) +N(z) =

[
K(z)−1 I

]



M(z)

N(z)




=




AK −BKD
−1
K CK BKD

−1
K 0

−D−1
K CK D−1

K I







A+BF B

F I

C +DF 0




=




A+BF 0 B

BKD
−1
K F AK − BKD

−1
K CK BKD

−1
K

C +DF +D−1
K F −D−1

K CK D +D−1
K



.

Let {ÃU , B̃U , C̃U , D̃U} be realization of Ũ(z) = [K(z)−1M(z)+N(z)]−1. The above realization

gives

D̃U = (D +D−1
K )−1 = DK(I +DDK)

−1,

C̃U =

[
C̃U1 C̃U2

]
:= −D̃U

[
C +DF +D−1

K F −D−1
K CK

]

= −(I +DKD)−1

[
DKC + (I +DKD)F −CK

]

=

[
−F − (I +DKD)−1DKC (I +DKD)−1CK

]
,

B̃U =




B̃U1

B̃U2


 :=




B

BKD
−1
K


 D̃U =




BDK(I +DDK)
−1

BK(I +DDK)
−1


 .
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For ÃU , partition it into 2 × 2 sub-blocks compatible with the above, denoted by {ÃUij}.

Then

ÃU11 = A +BF −BD̃U(C +DF +D−1
K F )

= A +BF −B[F + (I +DKD)−1DKC]

= A−B(I +DKD)−1DKC,

ÃU12 = BD̃UD
−1
K CK = B(I +DKD)−1CK ,

ÃU21 = BKD
−1
K F −BKD

−1
K D̃U(C +DF +D−1

K F )

= BKD
−1
K F −BKD

−1
K [F + (I +DKD)−1DKC]

= −BK(I +DDK)
−1C,

ÃU22 = AK − BKD
−1
K CK +BKD

−1
K D̃UD

−1
K CK

= AK − BKD
−1
K CK +BKD

−1
K (I +DKD)−1CK

= AK − BKD
−1
K [I − (I +DKD)−1]CK

= AK − BKD(I +DKD)−1CK .

The above derivation yields the realization of Ũ(z) as

Ũ(z) =




A−B(I +DKD)−1DKC B(I +DKD)−1CK BDK(I +DDK)
−1

−BK(I +DDK)
−1C AK − BKD(I +DKD)−1CK BK(I +DDK)

−1

−F − (I +DKD)−1DKC (I +DKD)−1CK DK(I +DDK)
−1



.

(3.39)

For completion we will also provide the expression for realization of

Un(z) = K(z)[M̃n(z) + Ñn(z)K(z)]−1 = [M̃n(z)K(z)−1 + Ñn(z)]
−1.
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With {AK , BK , CK , DK} as realization of K(z), there hold

M̃n(z)K(z)−1 + Ñn(z) =

[
M̃n(z) Ñn(z)

]



K(z)−1

I




=




A+ LnC Ln (B + LnD)

Z
−1/2
n C Z

−1/2
n Z

−1/2
n D







AK − BKD
−1
K CK BKD

−1
K

−D−1
K CK D−1

K

0 I




= Z−1/2
n




AK − BKD
−1
K CK 0 BKD

−1
K

−LnD
−1
K CK A+ LnC B + Ln(D +D−1

K )

−D−1
K CK C D +D−1

K




It follows that Un(z) = [M̃n(z)K(z)−1 + Ñn(z)]
−1 can be computed based on the above

expression. For simplicity purpose, define

Un(z) = Z1/2
n

[
DU + CU(zI − AU)

−1BU

]
.

Then {AU , BU , CU , DU} does not involve Z
1/2
n . Direct calculation yields

DU = (D +D−1
K )−1 = DK(I +DDK)

−1,

CU = −DU

[
−D−1

K CK C

]

=

[
(I +DDK)

−1CK −DK(I +DDK)
−1C

]
,

BU =




BKD
−1
K

B + Ln(D +D−1
K )


DU =




BK(I +DDK)
−1

Ln +BDK(I +DDK)
−1


 .
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Again partition AU into 2× 2 blocks, denoted as {AUij} with compatible partitions. Then

AU11 = AK − BKD
−1
K CK +BKD

−1
K DUD

−1
K C

= AK − BKD
−1
K CK +BK(I +DDK)

−1D−1
K CK

= AK − BK [I − (I +DDK)
−1]D−1

K CK

= AK − BK(I +DDK)
−1DCK,

AU12 = −BKD
−1
K DUC = −BK(I +DDK)

−1C,

AU21 = −LnD
−1
K CK + [B + Ln(D +D−1

K )]DUD
−1
K CK

= BDUD
−1
K CK = B(I +DKD)−1CK ,

AU22 = A+ LnC − [B + Ln(D +D−1
K )]DUC

= A− BDUC = A− BDK(I +DDK)
−1C.

The above provides realization for Un(z) given by

Un(z) =




AK − BK(I +DDK)
−1DCK −BK(I +DDK)

−1C BK(I +DDK)
−1

B(I +DKD)−1CK A− BDK(I +DDK)
−1C Ln +BDK(I +DDK)

−1

Z
1/2
n (I +DKD)−1CK −Z

1/2
n DK(I +DDK)

−1C Z
1/2
n DK(I +DDK)

−1




3.3 Simulation Results and Concluding Remarks

In the first example, we consider a typical plant model given by

P (z) =
0.03(z + 1)2

(z − 1)(z2 − 0.03z + 0.8)
.

with variance Qd = 0.01, Qηo = 0.01 and Qηc = 0.01. Often industrial control systems use

lead/lag compensators to correct the bad behaviors. In this example, we assume that the

feedback controller has a lead/lag form given by

K(z) =
2(z − 0.931)(z − 0.89)

(z − 0.985)(z − 0.81)
.

In terms of the step response, the closed-loop system admits 12% for overshot, 13Ts for rise

time, and 75Ts for settling time where Ts is the sampling period. In our simulation study,
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we assume that the system is in the steady-state prior to the replay attack, and we assume

that the replay attack is launched at time k = 250Ts.
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Figure 3.4: feedback signal w(k) under replay attack

The above figure shows the received signal w(k) at the controller site prior and after the

replay attack. Although this is one simulation result, but it is very typical. Usually we do

not see the difference from w(k) between absence of the replay attack and presence of the

replay attack. Indeed the signal w(k) has no significant difference after 250Ts than before

250Ts.

We also applied the whitening filter Vn(q)
−1 to the feedback signal w(k) to obtain the

filtered signal s(k) = Vn(q)
−1w(k).
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Figure 3.5: Filtered signal s(k) under replay attack

The above figure shows that the filtered signal s(k) shows some changes after 250Ts,

although the changes are not as significant as we want. In fact the simulation results are

random. Sometimes the changes are more obvious than others. We used χ2 detector to

analysis s(k) by setting up the window size to be 5 and the false alarm rate at 5%. The

detection rate for this example is shown next.
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Figure 3.6: detection rate for replay attack

The detection rate is obtained by taking the average of 10000 experimental ensembles.

The replay attack starts at time k = 250Ts. The above figure shows that the detection rate

curve begins at below 5% at time k = 250Ts. The detection rate grows as time increases.

It can reach more than 50% detection rate after a latency of about 200Ts. Although 50%

detection rate is better than the one in [2], the latency can be a problem.

A second example considers the plant model given by

P (z) =
0.004837(z + 0.9673)

(z2 − 1.905z + 0.905)
.

with the same variance Qd, Qηo and Qηc are used. The feedback controller is a lead compen-

sator given by

K(z) =
56.63(z − 0.8533)

(z + 0.03108)
.

In terms of step response, the closed-loop system admits 13% for overshot, 3Ts for rise time,

and 18Ts for settling time. We assume that the system is already in the steady state prior to

the replay attack, and the replay attack is lunched at time k = 50Ts. The signal w(k) and

its filtered version s(k) are shown in the next two figures separately.
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Figure 3.7: Signal w(k) prior and post replay attack
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Figure 3.8: Filtered signal s(k) prior and post replay attack

It shows that under the replay attack the filtered signal s(k) contains more information

on the replay attack than the signal w(k). However both are less informative than those in

the previous example, respectively. The corresponding detection rate is shown below.
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Figure 3.9: detection rate for replay attack

The detection rate is obtained by taking the average of 10000 experiments under the 5%

false alarm rate. The replay attack starts at time k = 50Ts. Fig. 3.9 shows the line start at

5% at time k = 50Ts. The detection rate grows as time increases and it can reach to about
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25% detection rate with a shorter latency compared to the previous example. However the

detection rate is much smaller.

The two numerical examples demonstrate that the whitening filter approach is effective

to detect the replay attack. However the detection performance is not very stable and varies

as the underlying plant models and feedback controllers change. The problem lies in the

χ2 detector that computes the variance of the signal. Recall that the variance is the same

as integral of the spectral density over all the frequencies. Because the signal w(k) or s(k)

exhibits different behaviors at different frequencies, χ2 detector may not be the right detector.

For instance w(k) or s(k) can behave vary differently in some particular frequencies when

the replay attack exists compared to the case when the replay attack is absent. Hence a

spectral estimator at some special frequencies can serve a better detector. This problem will

be studied in the next chapter.

To recap, we introduced the replay attack model and existing detection methods in this

chapter. Since the existing detection methods are based on LQG controller and requires to

inject noise to the system control signal, the existing χ2 detector may not effective to detect

the replay attack. For this reason, we proposed a whitening filter approach without injecting

noises to the feedback control system thereby preserving the control performance. Our results

show that by employing a whitening filter to the feedback signal between the plant output

and controller input, the filtered signal will not be the white noise process anymore after

a replay attack is launched. Our simulation examples demonstrate the effectiveness of this

whitening filter approach. However latency exists and the detection rate may not be as good

as what we desire especially when the false alarm rate is kept to a small number such as

5%. Hence further work and new approaches are needed, which will be studied in the next

chapter.
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4 Spectrum Estimation Approach

The previous approach fails if ‖Φs(ω)− I‖ is small over majority of the frequency samples

when a replay attack takes place. In this case Φs(ω) is not far away from being white, and

thus detection of whiteness may result in high probability of errors. On the other hand, it

is possible that the PSD of s(t) is far away from unity at some specific frequency samples.

This fact motivates us to examine the spectral content of the signal s(t) or w(t) defined in

the previous chapter, and consider a spectrum estimation method to tackle the detection

problem for the replay attack. Our work in this chapter shows that the spectrum estimation

method provides a viable alternative to detection of the replay attack.

An important assumption for the spectrum estimation method is that Φs(ω) is far away

from the identity at some frequency samples although it is close to being white over majority

of the frequency samples. Hence detection of replay attacks can be accomplished by spectrum

estimation for Φs(ω) at those frequency samples it is far away from the identity after the

replay attack takes place. A threshold can be set up for the resulting spectrum estimates

based on the a priori information to determine the existence of the replay attack. However

this spectrum estimation method can be very sensitive to the variation of the variances of the

input disturbance, and output noises, including both the measurement and communication

noises. The reason lies in the fact that the left coprime factorization such as the one in (3.20)

makes use of the a priori knowledge of these variances. The mismatch between these true

variances and those used in computing the coprime factorization in (3.20), respectively may

lead to failure of the detection for replay attacks. For this reason we focus on a different
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way to compute the left coprime factorization in this chapter, which avoids the use of both

disturbance and noise variances in our detection algorithm.

4.1 Spectrum Estimation Approach

The spectrum estimation approach is motivated by the fact that a typical feedback control

system has all singular values of P (ejω) or K(ejω) tending to large in the vicinity of some

frequency ω = ωh. An asymptotic case is when the gain approaches infinity at ω = ωh. In

practice the gain greater than 30 ∼ 40 dB can be regarded as adequately large.

Let us consider the first case when all singular values of P (ejω) approach infinity at ω = ωh.

A different left coprime factorization of P (z) from that in (3.20) is used in this section. We

again assume white disturbance, white measurement noise, and white communication noises.

It is known that left coprime factors of P (z) can be obtained by taking a stabilizing state

estimation gain. In this chapter the stabilizing state estimation gain for the chosen left

coprime factors of P (z), denoted by P (z) = M̃0(z)
−1Ñ0(z), are computed according to

L = L0 := −(AY0C
′ +BD′)(I +DD′ + CY0C

′)−1 (4.1)

where Y0 ≥ 0 is the stabilizing solution to DARE

Y0 = AY0A
′ − (AY0C

′ +BD′)(I +DD′ + CY0C
′)−1(CY0A

′ +DB′) +BB′. (4.2)

That is, realization of the left coprime factors are given by

[
M̃0(z) Ñ0(z)

]
=




A+ L0C L0 (B + L0D)

Z
−1/2
0 C Z

−1/2
0 Z

−1/2
0 D


 , (4.3)

with Z0 = I +DD′ + CY0C
′. This is also called normalized left coprime factors satisfying

Ñ0(z)Ñ0(z)
∗ + M̃0(z)M̃0(z)

∗ = I ∀ |z| = 1. (4.4)

Note the difference between the above equality and (3.20), especially the missing of the co-

variances Qd, Qηc and Qηo . For this reason, the spectrum estimation approach is more robust
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than the white noise approach studied in the previous chapter. Let K(z) = U(z)V (z)−1 be

a given stabilizing controller. Then in light of the parameterization of stabilizing controllers,

V (z) = Vo(z) +N(z)J(z), U(z) = Uo(z)−M(z)J(z)

for some stable and proper J(z). It follows from P (z) = M̃0(z)
−1Ñ0(z) that TK(z) in (3.25)

becomes

TK(z) =




−U(z)

V (z)



[
Ñ0(z) M̃0(z)

]
. (4.5)

The next result provides the PSD of w(k) at high-gain frequency ωh with high-gain ap-

proaching infinity asymptotically.

Theorem 2. Suppose that the input noise d(t) is a white process with covariance Qd = σ2
dI,

and the AWGN noise have covariance Qηc = σ2
ηcI. Assume that P (ejω) has infinity gain at

ω = ωh. Let Φw(ω) be the PSD for w(t). In absence of replay attacks,

Φw(ωh) = σ2
dV (ejωh)V (ejωh)∗. (4.6)

In presence of replay attacks,

Φw(ωh) = σ2
dV (ejωh)V (ejωh)∗ + 2σ2

ηcI. (4.7)

Proof: Under the assumption that all singular values of P (ejω) tend to infinity as ω → ωh,

M̃0(e
jω)M̃0(e

jω)∗ → 0, Ñ0(e
jω)Ñ0(e

jω)∗ → I, (4.8)

as ω → ωh in light of (4.4). It follows that w(k) now has an expression

w(k) = V (q)
[
Ñ0(q)d(k) + M̃0(q)η(k)

]
(4.9)

in absence of attacks. There thus holds V (ejω)M̃0(e
jω) → 0 as ω → ωh. We can now conclude

that the PSD of w(k) at ω = ωh is given by

Φw(ωh) = V (ejωh)Ñ0(e
jωh)QdÑ0(e

jωh)∗V (ejωh)∗ = σ2
dV (ejωh)V (ejωh)∗ (4.10)
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if Qd = σ2
dI that verifies (4.6). In addition the identity (3.28) holds for the case when M̃n(e

jω)

and Ñn(e
jω) are replaced by M̃0(e

jω) and Ñ0(e
jω), respectively, and Vn(z), Un(z), are replaced

by V (z) and U(z), respectively. As a result,

I − V (z)M̃0(z) = N(z)Ũ (z) ∀ |z| ≥ 1 =⇒ N(ejωh)Ũ(ejωh) = I.

If the replay attack is present, then Φw(ωh) changes its value. Specifically (3.29) is modified

into

wα(k) = V (q)
[
Ñ0(q)d(k − τα) + M̃0(q)ηo(k − τα)

]
−N(q)Ũ(q)ηc(k − τα) + ηc(k). (4.11)

The results in (4.8) and (4.10) then lead to

Φw(ωh) = σ2
dV (ejωh)V (ejωh)∗ + 2Qηc

that verifies the expression of Φw(ωh) in (4.7), if in addition Qηc = σ2
ηcI. ✷

Corollary 2. Under the same hypotheses of Theorem 2 and let s(k) = V (q)−1w(k), then

the PSD of s(k) at ω = ωh is given by

Φs(ωh) = σ2
dI. (4.12)

in absence of attacks. In presence of replay attacks, there holds

Φsα(ωh) = σ2
d + 2σ2

ηcV (ejωh)−1V (ejωh)∗−1. (4.13)

Since the proof follows from Theorem 2, it is omitted. It is important to observe that

entries of V (ejωh) do not have large value. Indeed

Ñ0(z)U(z) + M̃0(z)V (z) = I =⇒ Ñ0(e
jωh)U(ejωh) = I

by the argument earlier. Since Ñ0(e
jωh)Ñ0(e

jωh)∗ = I by (4.8), U(ejωh) is a unitary matrix

as well, if the plant has an equal number of inputs and outputs. The above implies that

singular values of the controller K(ejωh) are the same as those of V (ejωh)−1 by

σi[K(ejωh)] = σi[V (ejωh)−1] ∀ i.
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Therefore Φsα(ωh) differs from Φs(ωh) significantly provided that K(ejω) has high gain or

equivalently V (ejω) has small gain at ω = ωh.

Remark 2. If the control systems are designed based on the classic Bode method or based

on H∞ loop-shaping, then K(ejω) = U(ejω)V (ejω)−1 cannot have small gain over those

frequencies at which the plant P (ejω) has high gains. For instance many practical control

systems are required to have infinity gain at ωh = 0 in order to have zero steady-state error

for tracking step inputs, and a lag compensator is often employed as part of the feedback

controller. It follows that K(ejωh) has large gain. In the case when ωh 6= 0, a notch filter is

often employed as part of the feedback controller to boost the gain at frequency ωh. Since

U(ejωh) is unitary, V (ejωh)V (ejωh)∗ has very small gain. This shows that Φw(ωh) and Φs(ωh)

under replay attacks can be significantly different from those in absence of replay attacks. ✷

A dual case is when K(ejωh) has large gain or asymptotically approaches infinity. A similar

derivation can be carried out to conclude the same results in Theorem 2 and Corollary 2,

provided that P (ejωh) has a relatively large gain. The detail is omitted.

4.2 Detection Algorithms

This section is focused on detection algorithms for replay attacks using the spectrum

estimation approach. For this reason, several popular spectrum estimation algorithms [81]

will be reviewed first prior to developing the detection algorithm for replay attacks.

4.2.1 Spectrum estimation methods

Nonparametric estimation

For a given signal samples {s(k)}N−1
k=0 , the simplest method to estimate its PSD at frequency

ωh is to set

Φ̂s(ωh) =
1

N

∣∣∣∣∣
N∑

k=1

s(k)e−jωhk

∣∣∣∣∣

2

.
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Let R̂s(τ) be the estimated autocorrelation sequence (ACS) defined by

R̂s(τ) =
1

N

N∑

k=τ+1

s(k)s(k − τ)′, 0 ≤ τ < N. (4.14)

The above estimate is biased, but satisfies the relation [81]

Φ̂s(ωh) =

N−1∑

τ=−(N−1)

R̂s(τ)e
−jωhτ .

Let Rs(τ) = E{s(k)s(k − τ)′}. Then there holds

E{Φ̂s(ωh)} =

N−1∑

τ=−(N−1)

(
1− |τ |

N

)
Rs(τ)e

−jωhτ .

So the biased ACS estimate has a windowing effect on average.

The unbiased ACS estimate has a different form given by

R̂s(τ) =
1

N − τ

N∑

k=τ+1

s(k)s(k − τ)′, 0 ≤ τ < N. (4.15)

The use of unbiased ACS estimate suggests a more sophisticated estimation method that

introduces the windowing technique by taking the PSD estimate at frequency ωh as

Φ̂s(ωh) =
N−1∑

τ=−(N−1)

win(τ)R̂s(τ)e
−jωhτ . (4.16)

The above covers the case of the biased ACS estimate in a special case in the average

sense. Commonly used windows include Barlett, Hanning, Hamming, Blackman, and Kaiser

windows. Each has its advantages and disadvantages, which will not be discussed here.

Capon algorithm

Capon algorithm is more sophisticated than the nonparametric method for spectrum es-

timation in that a specific optimization is carried out in the estimation process. Assume

that the value of Φw(ωh) in (4.6) is very different from that in (4.7). Quite a few spectrum

estimation methods can be employed to estimate Φw(ωh). The one attracting our attention

is the Capon algorithm [82]. Our description in this subsection is based on the book [81]

(page 232 - 238).
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For convenience assume that s(k) has dimension 1 at each time index k. Denote

a(ω) =




1

e−jω

...

e−jℓω




, s(k) =




s(k)

s(k − 1)

...

s(k − ℓ)




, h =




h0

h1

...

hℓ




where (ℓ+1) is the window size. Let Rs = E{s(k)w(k)′}. Then the Capon algorithm seeks to

synthesize the estimate of PSD Φs(ω) through solving the following optimization problem:

min
h

h′Rsh subject to h′a(ω) = 1. (4.17)

It can be easily seen that

sF (k) =

ℓ∑

i=0

his(k − i) = h′s(k).

It admits the mean power E{|sF (k)|2} = h′Rsh. The constrained minimization in (4.17)

seeks to minimize the total power subject to the constraint that the filter pass the frequency

ω undistorted.

For its application to our problem, ω = ωh and Rs can be estimated via

Rs ≈ Rk0 :=
1

N + 1

k0∑

k=k0−N

s(k)s(k)′

at time k where N > ℓ. That is, the sample size for estimating covariance Rs needs to be

greater than the window size. Two versions of the Capon estimator (CM) are given by

CM1 : Φ̂s(ωh) =
ℓ+ 1

a(ωh)∗R
−1
k0
a(ωh)

,

CM2 : Φ̂s(ωh) =
a(ωh)

∗R−1
k0
a(ωh)

a(ωh)∗R
−2
k0
a(ωh)

.

Note that the covariance matrix R can also be calculated based on the a priori information

on d(k), η(k), and the models of P (z) and K(z). Extension to the vector case or m > 1 can

take each entry of a(ω) multiple of identity of dimension m and replacing the inverse in CMi

by matrix inverse.
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A disadvantage of the Capon algorithm is that the spectrum estimation is a nonlinear

function of the signal w(k), and thus distribution of w(k) is more difficult to analyze. How-

ever it often outperforms the nonparametric method due to its optimization nature. More

importantly it has very close relation to other widely used methods such as autoregressive

(AR) method (CM1). Its weakness in resolution is not of great concern to us because the

frequency ωh is already known to us.

4.2.2 Detection algorithm

As discussed above, at frequency wh, the PSD can be significantly different from that in

absence of replay attack. So, it is possible to improve the detect rate of the replay attack by

analyze the PSD at frequency wh. As many practical control systems are required to have

infinity gain at wh = 0 in order to have zero steady-state error for tracking step inputs, we

will focus on analyzing the PSD at zero frequency wh = 0. Thus, for the given signal samples

{s(k)}, the simplest way to estimate the PSD at zero frequency with a specified window size

(ℓ+ 1) at time k becomes

Φ̂s(0; k) =
1

ℓ+ 1

∣∣∣∣∣
k∑

i=k−ℓ

s(i)

∣∣∣∣∣

2

=

∣∣∣∣∣
1√
ℓ+ 1

k∑

i=k−ℓ

s(i)

∣∣∣∣∣

2

. (4.18)

Because all exogenous signals {d(k), ηo(k), ηc(k)} are AWGN, the random variable

sℓ(k) =
1√
ℓ+ 1

k∑

i=k−ℓ

s(i)

is also Gauss distributed with the same mean and covariance as s(k). Hence the PSD estimate

for ωh = 0 at time index (k +N) is given by

Φ̂s(0; k) = |sℓ(k)|2

and has a Rayleigh distribution. Let the hypothesis H0 be the case in absence of the replay

attack, and the hypothesis H1 be the case in presence of the replay attack. Then the detection
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algorithm is given by

H0 : Φ̂s(0) < τ,

H1 : Φ̂s(0) > τ,

for some threshold τ > 0. If the variance of s(k) is known for both the case of the absence

and presence of the replay attack, then τ can be determined to satisfy the given false alarm

rate.

To improve the detection rate, the Capon algorithm can be implemented to estimate the

PSD of {s(k)}. Thus at frequency wh = 0, we have

a(0) =




1

1

...

1




, s(k) =




s(k)

s(k − 1)

...

s(k − ℓ)




, Rk :=
1

N + 1

k∑

i=k−N

s(i)s(i)′

where N ≥ ℓ. In this case the Capon estimator (CM) becomes

CM1 : Φ̂s(0) =
ℓ+ 1

a(0)∗R−1
k0
a(0)

, (4.19)

CM2 : Φ̂w(0) =
a(0)∗R−1

k0
a(0)

a(0)∗R−2
k0
a(0)

. (4.20)

Our simulation results in the next section show that the Capon estimator indeed improves

the detection rate for replay attacks.

4.3 Simulation and Conclusion

In this section we present some simulation results for detection of the replay attack using

the spectrum estimation method. The control system under consideration is the same as the

first system model in Chapter 3. Signal s(k) is used in this simulation study. We use the

conventional method (4.18) and the Capon method (4.19) to estimate the PSD of s(k) at

ωh = 0. We again assume that the feedback system is in the steady-state prior to the replay
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attack, and the replay attack is launched at k = 250Ts. For the conventional method, fix the

false alarm rate at 5%, and use different window size by set (ℓ+ 1) = 5, 10, 20 and 50. The

resulting detection rate is shown next.
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Figure 4.1: Detection rate by using conventional method with different window size

In the above figure, we set the window sizes equal to 5, 10, 20 and 50, respectively. The

vertical axis represents the detection rate while the horizontal axis giving the time samples.

The red solid line shows the detection rate when the window size is equal to 5; The blue dash

dot line shows the detection rate when the window size is 10; The black dot line shows the

detection rate when the window size is equal to 20; The purple dash line shows the detection

rate when the window size is equal to 50.

The detection rate is obtained by taking the average of 10,000 ensembles under the false

alarm rate of 5%. The detection rate varies for different window sizes. It grows as the window

size increases. For each window size, the detection rate grows as time increases. The detection

rate curve start at 250Ts with 5% detection rate. The detection latency is about 200Ts that

seems to be constant with respect to the window size. When the window size is equal to 5,

the curve reaches 19% detection rate; When the window size is equal to 10, the detection

rate increases to 29%; When the window size is equal to 20, the detection rate reaches 43%;

When the window size is equal to 50, the detection rate reaches 63%.
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To improve the detection rate and shorten the latency, we scale the system by set P (z) =

P (z)/5 and K(z) = 5K(z) separately. This is commonly used in engineering practice and

does not change the system performance. The detection rate for the scaled system is shown

below.
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Figure 4.2: Detection rate of scaled system by using conventional method

In the above figure, we again set the window sizes equal to 5, 10, 20 and 50, respectively.

The vertical axis represent the detection rate while the horizontal axis giving the time sam-

ples. The red solid line shows the detection rate when the window size is equal to 5; The

blue dash dot line shows the detection rate when the window size is 10; The black dot line

shows the detection rate when the window size is equal to 20; The purple dash line shows

the detection rate when the window size is equal to 50.

The detection rate is again obtained by taking the average of 10,000 ensembles under

the false alarm rate of 5%. For different window sizes, the detection rate curves vary. The

detection rate curves start at 250Ts with 5% detection rate. The detection latency seems

to have increased more than 100Ts for all the cases. When the window size is equal to 5,

the detection rate reaches 57%; When the window size is equal to 10, the detection rate

reaches 71%; When the window size is equal to 20, the detection rate reaches 80%; When

the window size is equal to 50, the detection rate reaches 89%. Compare with the unscaled

system model, the detection rate is significantly improved.
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In comparison with the whitening filter approach with the window size equal to 5, the

detection rate is 14% higher than the result obatined using the whitening filter approach (Fig.

3.6) under the same detection latency. It also shows that the 40% detection rate is reached

with latency of 65Ts, which is 25% less than 100Ts using the whitening filter approach (Fig.

3.6).

We also used Capon algorithm for detection of the replay attack, which outperforms the

conventional non-parametric method as presented above. Our simulation result shows that

by using the scaled system model, it is possible to increase the detection rate and shorten

the latency further. Our simulation study is carried out for using the Capon algorithm with

the same fixed window size (ℓ+1) = 5 under the same false alarm rate of 5%. The detection

rate using the Capon method is shown next.
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Figure 4.3: Detection rate by using capon method

The detection rate is obtained by taking the average of 10,000 ensembles under the false

alarm rate of 5%. The detection rate curve starts with 5% at time = 250Ts at which the

replay attack is launched. After about latency of 150Ts, the detection rate reaches more than

60% that is 5% higher than that of the conventional method (Fig. 4.2), and 22% higher than

the whitening filter approach (Fig. 3.6). When the same detection rate reaches 40%, the

latency is 50Ts, which is 23% less than 65Ts by using conventional method (Fig. 4.2) and

50% less than 100Ts by using the whitening filter approach (Fig. 3.6).
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To compare our detection performance with the results in the existing literature [2], we

use both conventional and Capon methods to test the model in [2]. For the conventional

method, we assume that the replay attack is launched at 250Ts, and set up the window sizes

equal to 5, 10, 20 and 50, respectively. The simulation results of the detection rate are shown

next.
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Figure 4.4: Detection rate of model [2] by using conventional method

In the above figure, the vertical axis represents the detection rate while the horizontal axis

giving the time samples. The red solid line shows the detection rate when the window size

is equal to 5; The blue dash dot line shows the detection rate when the window size is 10;

The black dot line shows the detection rate when the window size is equal to 20; The purple

dash line shows the detection rate when the window size is equal to 50. The detection rate

is obtained by taking the average of 10,000 ensembles under the false alarm rate of 5%. The

curve starts at 250Ts with 5% detection rate. Let us examine the case of latency = 200Ts

next. When the window size is equal to 5, the detection rate reaches 63%; When the window

size is equal to 10, the detection rate reaches 78%; When the window size is equal to 20, the

detection rate reaches 86%; When the window size is equal to 50, the detection rate reaches

92%. For the case when the window size is equal to 5, the detection rate is almost 50% higher

than that obtained by using Mo and Sinopoli’s method [2]. To improve the detection rate,
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The Capon method is used for replay attack detection with window size (ℓ+ 1) = 5. The

detection rate curve is shown next.
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Figure 4.5: Detection rate of model [2] by using Capon method

The detection rate is obtained by taking the average of 10000 examples. The false alarm

rate is set to 5%, and replay attack is launched at 250Ts. The detection rate is 66%, which

is 5% more than that using the conventional method (figure 4.4). At 40% detection rate,

the latency is 11Ts, which is 21% smaller than the case of using the conventional method

(figure 4.4). In comparison with the result in [2], it shows that the latency by using the

spectrum estimation approach is greater. The reason lies in the fact the filter V (q)−1 in 4.13

is IIR filter which induces large time delay when filtering the signal. However the saturated

detection rate is is much higher than that in [2].

The results for the above example show that the spectrum estimation approach at some

special frequency is more effective than the whitening filter approach for replay attack detec-

tion. It significantly improves the detection rate and also shortens the latency. By using the

Capon estimator, the detection rate improves more than 30% compared to the result of the

whitening filter approach. Also the latency is reduced by half. Thus the spectrum estimation

approach is an effective way to improve the detection performance for replay attacks.

To recap this chapter, we introduced the spectrum estimation approach and proved that

at some specific frequency the PSD of filtered signal s(k) under replay attack is significantly
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different from that in absence of replay attacks. Motivated by this fact, both nonparametric

estimation method and the Capon method are employed to estimate the PSD for the detec-

tion of the replay attacks. Simulation results are presented to show that these two estimation

methods can effectively improve the detection rate and shorten the latency for replay attack

detection.
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5 Conclusion

SCADA system is widely used in many different industries. It is also an essential part and

plays a crucial role in monitoring and controlling the power grid. As the expansion of the

power grid, efficiency issue and high cost issue arise which require the power grid to evolution.

With the advent of the SCADA technology, it now is feasible to build the next generation

of power grid – smart grid. With the implement of the smart grid, it will improve the

power supply efficiency and reduce power lost, and make the power system more reliable and

greener. However due to many sites over large distance and use of information technology,

especially wireless communications and networking, SCADA systems give rise to the security

problem making the smart grid vulnerable to penetration and malicious attacks that become

a dominant research problem in developing the smart grid. Once the adversaries gain access

to the power control network, they can perform a wide range of attacks. Possible attack

actions can be separated into two groups and thus pose two major challenges. One is to take

control of the target region system for future crime actions. It is based on cyber system and

can be solved by the cyber security approach. The other one is to modify data or inject

malicious data into control systems overseen by the SCADAs. Such attacks can bypass the

cyber security, and poses more serious danger to the smart grid. This dissertation is focused

on the second type of attacks comprising in particular the unobservable attack, and the

replay attack. Although both are studied in the existing literature, the solutions are not

satisfactory which motivates this dissertation research, as presented in the previous three

chapters. Our results provide viable solution approaches to both the unobservable attack and
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the replay attack, validated by our simulation studies. This conclusion chapter summarizes

the contribution of this dissertation and in addition discusses the possible future research

directions on the security problem of the smart grid.

5.1 Dissertation Contributions

This dissertation is aimed at solving the detection problems for two major threads to

the smart grid: the unobservable attack and the replay attack, introduced and dwelled in

Chapter 1. Our contributions to these two detection problems are summarized next:

• In Chapter 2, we propose a consensus dynamic estimation approach. We assume that

the power system is described by a linear DC power flow model and is operating in a

quasi-steady state. Each bus load is considered as an individual agent with different

state-space model and state vector dimension. The simplest case is when the dynamic

model is described by the random walk Markov process. Then we formulate the detec-

tion problem into the dynamic estimation rather than static estimation problem, which

is in fact a distributed estimation problem in the sense of consensus. The reason lies

in the fact that the existing conventional detection methods are based on static state

estimation which is only related to the present measurement information. It can be

bypassed by unobservable attacks. In contrast the dynamic state estimation is related

to both the present measurement information and the past system states. It can help

to validate the data as the states are predicted one more time against the measurement

samples. The latest results from the consensus control and the positive real concept

are extended to discrete-time multi-agent systems, and a distributed estimation algo-

rithm is derived distributed estimation algorithm in this dissertation. The distributed

consensus estimation is developed based on the local dynamic model for each bus.

So it is possible to monitor the dynamic status in each bus. Contrasting to conven-

tional estimation method, the consensus method can not only detect the existence of
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unobservable attacks but also detect which agent data is modified by adversary. There-

fore by using the consensus dynamic approach, unobservable attacks can be effectively

detected, which are validated by our extensive simulation studies.

• This dissertation proposes two different new approaches to tackle the detection problem

for replay attacks. Contrasting to the existing methods that employ injection of white

Gauss noises to the control signal and deteriorate the control system performance,

we make use of the communication noise induced by the digital network and wireless

channels commonly seen in SCADA systems. Two different solution approaches are

proposed without injecting the white Gauss noises to the control signal, yet effective

for detecting the replay attacks. Our contributions are described next.

– In Chapter 3, we propose a whitening filter approach. Specifically the received

signal transmitted from the plant model to the controller has a smaller noise vari-

ance under the normal operation in absence of the replay attack than in presence

of the replay attack. The reason lies in the fact that the replayed signal contains

the channel noise in the past uncorrelated to the present channel noise. To high-

light this variance difference, a filter is employed to whiten the feedback signal

received at the controller input, assuming no replay attack. The filtered signal

becomes nonwhite with a greater variance when the replay attack is launched.

Hence we are able to detect the replay attack based on the whitening feedback

signal without sacrificing the control system performance compared to the exist-

ing results in the literature. In addition our approach is applicable to any stable

feedback control systems, because there is no assumed Kalman filter in the feed-

back controller as in the LQG control system although our results apply to the

LQG control system as well. The simulations shows that this solution approach
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is effective but it comes with large latency due to the use of the whitening filter

that is IIR in general.

Although the whitening filter approach works, it may fail if the PSD of filtered

signal is close to 1 over majority of the frequency samples when a replay attack

takes place. In this case the PSD of filtered signal is not far away from being

white, and may result in high probability of detection errors. On the other hand,

it is possible that the PSD of filtered signal is far away from unity at some specific

frequency samples. This fact motivates us to propose another detection method

as described next.

– In Chapter 4, we propose the spectrum estimation approach. First we analyze

the PSD of the feedback signal and its filtered version, and find some particular

frequency samples at which its PSD is small under the normal operation in ab-

sence of the replay attack but become large in presence of the replay attack. In

fact the PSD of the filtered signal at these frequency samples is unity in absence

of the replay attack and becomes significantly greater than the unity in presence

of the replay attack. The set of these frequency samples is not empty due to the

stability and performance requirement for the underlying control system. By es-

timating the PSD of the filtered signal at these frequency samples, we are able

to detect the presence of the replay attack by setting the appropriate threshold

determined by the false alarm rate. Both nonparametric estimation method and

the Capon method are employed to estimate the PSD at these frequency sam-

ples. Our simulation results show that the spectrum estimation approach at some

specific frequencies is more effective than the whitening filter approach in terms

of the detection rate for replay attacks. Both these two methods can effectively

improve the detection rate and shorten the latency for detection of the replay

attack.
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5.2 Future Direction

In this dissertation, we propose new solution approaches to the unobservable attack and

replay attack threatening the SCADA systems. These two approaches are shown effective,

validated by the simulation studies. However the work on security of the smart grid and

SCADA systems is far away from over. In the following, we highlight our point of views for

future research in security against the unobservable attack and replay attack.

Unobservable Attacks

Although our proposed solution approach is effective, there are still some inadequacies

that need to addressed in the future.

• This dissertation has assumed that the phase angles in the power system are approx-

imately decoupled in order to simply the problem. It is important to note that the

phase angles may not be decoupled, and the cross product terms may not be negligible

in practice. While we believe that the coupling among different phase angles are weak

during the normal operation of the power grid, further qualitative and quantitative

studies are necessary. If our intuition is correct, some analysis is needed to show the

approximate decoupling among the phase angles. Otherwise we need to find a remedy

to our assumption on the approximate decoupling.

• This dissertation has proposed consensus estimation used to detect the unobservable

attack and shown to be effective. However there is no optimal consensus estimation

is not studied. Since positive real property in the continuous-time case corresponds to

optimal estimation, it will be interesting to find out if there is a similar connection. In

the least current consensus estimation algorithm ensures only stability of the estima-

tor, which may be inadequate in many other applications. This can be a good future

research topic.

Replay Attacks
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For the replay attack, two effective approaches are proposed in this dissertation to detect

the replay attack. However the research work in this problem area is far from over due to the

imminent threat of the replay attack. We point out a few future directions in this problem

area next.

• Although additive white Gauss noise (AWGN) channels are widely used in wireless

communications, other network distortions also exist in the networked control systems

common in SCADAs. This dissertation has not studied other network distortions dif-

ferent than the AWGN channel. For instance, we are not sure if the packet drops and

quantization errors at the plant input and output can be effectively used for detection

of the replay attack. Both are difficult to analyze statistically, and are lack of the nice

features in the AWGN channel.

• Our two solution approaches reply on filtering of the feedback signal. Because the

filter has infinite impulse response (IIR) in general, it induces the latency causing the

time delay in detecting the replay attack. How to reduce the detection latency poses

a significant challenge. At present we are not sure if more advanced PSD estimation

methods can help to improve detection rate and shorten the latency.

The security problem in smart grid with SCADA system is complex and challenging. Our

proposed approaches are just only one of the initial attempts to tackle the attack detection

problems. We hope that our contributions in this dissertation speed up the research activity

and solving the security issues in smart grid security issues.
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