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We propose three biometric systems for performing 1) Multi-modal Three-

Dimensional (3D) ear + Two-Dimensional (2D) face recognition, 2) 3D face recog-

nition, and 3) hybrid 3D ear recognition combining local and holistic features. For

the 3D ear component of the multi-modal system, uncalibrated video sequences

are utilized to recover the 3D ear structure of each subject within a database.

For a given subject, a series of frames is extracted from a video sequence and the

Region-of-Interest (ROI) in each frame is independently reconstructed in 3D us-

ing Shape from Shading (SFS). A fidelity measure is then employed to determine

the model that most accurately represents the 3D structure of the subject’s ear.

Shape matching between a probe and gallery ear model is performed using the

Iterative Closest Point (ICP) algorithm. For the 2D face component, a set of facial

landmarks is extracted from frontal facial images using the Active Shape Model

(ASM) technique. Then, the responses of the facial images to a series of Gabor

filters at the locations of the facial landmarks are calculated. The Gabor features

are stored in the database as the face model for recognition. Match-score level

fusion is employed to combine the match scores obtained from both the ear and

face modalities. The aim of the proposed system is to demonstrate the superior

performance that can be achieved by combining the 3D ear and 2D face modalities

over either modality employed independently.

For the 3D face recognition system, we employ an Adaboost algorithm to build



a classifier based on geodesic distance features. Firstly, a generic face model is

finely conformed to each face model contained within a 3D face dataset. Secondly,

the geodesic distance between anatomical point pairs are computed across each

conformed generic model using the Fast Marching Method. The Adaboost algo-

rithm then generates a strong classifier based on a collection of geodesic distances

that are most discriminative for face recognition. The identification and verifica-

tion performances of three Adaboost algorithms, namely, the original Adaboost

algorithm proposed by Freund and Schapire, and two variants – the Gentle and

Modest Adaboost algorithms – are compared.

For the hybrid 3D ear recognition system, we propose a method to combine

local and holistic ear surface features in a computationally efficient manner. The

system is comprised of four primary components, namely, 1) ear image segmenta-

tion, 2) local feature extraction and matching, 3) holistic feature extraction and

matching, and 4) a fusion framework combining local and holistic features at the

match score level. For the segmentation component, we employ our method pro-

posed in [111], to localize a rectangular region containing the ear. For the local

feature extraction and representation component, we extend the Histogram of Cat-

egorized Shapes (HCS) feature descriptor, proposed in [111], to an object-centered

3D shape descriptor, termed Surface Patch Histogram of Indexed Shapes (SPHIS),

for surface patch representation and matching. For the holistic matching compo-

nent, we introduce a voxelization scheme for holistic ear representation from which

an efficient, element-wise comparison of gallery-probe model pairs can be made.

The match scores obtained from both the local and holistic matching components

are fused to generate the final match scores. Experimental results conducted on

the University of Notre Dame (UND) collection J2 dataset demonstrate that the



proposed approach outperforms state-of-the-art 3D ear biometric systems in both

accuracy and efficiency.
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Chapter One
Introduction

Confirming a person’s identity is an important element of any security system.

Biometrics – the use of unique human characteristics to positively identify a person

– offers the most reliable technique to answer this enormous need in society today.

But the search continues for the best approach to biometric identity confirmation

that offers the combination of total reliability, speed and ease of use. Ear and face

biometrics may offer that solution.

The face possesses several inherent characteristics that render it a preferred

biometric. An advantage of employing the face as a biometric is that its acquisition

is non-intrusive, meaning an individual can be scanned and their identity confirmed

without the subject actively engaging the device, as is required to use an iris or

fingerprint. Additionally, the face contains prominent features, such as the eye and

mouth corners, which can be robustly localized using their distinctive shape and

texture properties. These qualities have enticed researchers and has inspired more

than three decades of work in the area of face recognition [46].

The majority of the work in face recognition has been conducted in the 2D do-

main. 2D face recognition methods have been broadly divided into three categories

– holistic, feature-based, and hybrid methods – which are based on guidelines sug-

gested by psychological studies of how humans utilize holistic and local features

[109]. Holistic methods treat facial images as vectors of a multidimensional Eu-

clidean space and use standard dimensionality reduction techniques to construct

a representation of the face. One of the most widely used representations of the

1
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facial region is based on Principal Components Analysis (PCA) and is known as

the Eigen-Faces approach, proposed in [92]. In contrast, feature-based methods

utilize the locations and statistics (geometric and/or appearance) of local facial

features to construct a classifier for face recognition. Hybrid methods attempt to

emulate the human visual perception system by employing both holistic and local

features to discriminate between subjects. One can argue that hybrid methods

could potentially offer the best of both holistic and feature-based methods.

Despite the efforts made in 2D face recognition, it is not yet ready for real

world applications as a uni-modal biometric system. Most systems perform well

only under constrained conditions (i.e., homogeneous lighting conditions), even re-

quiring that the subjects be highly cooperative (maintaining frontal head pose and

neutral facial expression) during acquisition. Furthermore, it has been observed

that the variations between the images of the same face due to illumination and

viewing direction are often larger than those caused by changes in face identity

[2]. The introduction of the 3D face modality alleviates some of these challenges

by introducing a depth dimension that is invariant to both lighting conditions and

head pose.

3D face recognition has the potential to achieve better performance than its

2D counterpart by exploiting the 3D geometrical properties of rigid features on the

facial surface. Advances in 3D range scanning technology has enabled the simul-

taneous capture of aligned 2D color images and 3D depth images. Consequently,

3D facial data can be used to improve the accuracy of 2D image based recognition

by synthesizing the 2D facial region into a normalized frontal pose. Additionally,

3D data eliminates ambiguity in the size of the facial region usually present in

the 2D modality. Unlike 2D images, where the unspecified distance between the
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individual and the camera can lead to differently sized facial regions, 3D facial

data is metrically accurate.

Like face recognition, recent work in ear biometrics has demonstrated the

promising potential of the ear as a viable passive biometric marker. Yet ears may

be much more reliable than a face, which research has shown is prone to erroneous

identification because of the ability of a subject to change their facial expression

or otherwise manipulate their visage.

The ear, initial case studies have suggested, has sufficient unique features to

allow a positive and passive identification of a subject [43]. Furthermore, the ear

is known to maintain a consistent structure throughout a subject’s lifespan [43].

Medical literature has shown proportional ear growth after the first four months of

birth [43]. However, there are drawbacks inherent to ear biometrics. For instance,

the ear is prone to self-occlusion because of its prominent ridges. For this reason,

ear recognition systems are typically sensitive to ear pose. Additionally, a drawback

that poses difficulty to the feature extraction process is occlusion due to hair or

jewelery (e.g., earrings or the arm of a pair of eyeglasses).

It is important to justify the use of the ear and face modalities over mature

biometric mainstays such as the iris and fingerprint. Through Facial Recognition

Vendor Test (FRVT) 2006 [70], National Institute of Standards and Technology

(NIST) conducted a comprehensive biometric evaluation of the 2D face, 3D face,

and iris modalities, and provided a performance comparison between each. It was

concluded from this evaluation that the performance of the State-of-the-Art (SOA)

in 2D and 3D face recognition improved by more than an order of magnitude

from the previous FRVT assessment in 2002. Furthermore, the performance rates

obtained from the SOA of each modality were found to be comparable. It was also

noted that the bottleneck in performance for the 3D face modality is in the lack
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of maturity of the 3D acquisition technology relative to that of iris and 2D face.

The acquisition time of 3D face sensors is slower than that of iris and 2D face.

It is presumed that as the acquisition technology used to acquire 3D biometric

data improves so will the performance of 3D biometric systems. In addition to the

comparable performance of the face to the iris, both face modalities, as noted in

the FRVT 2006 report, require less cooperation from the user during acquisition

than is required for the iris. Although an official evaluation, such as FRVT, has

yet to be conducted for the ear modality, we expect similar findings because of the

inherent similarities between the face and ear.

The objective of this dissertation is to introduce novel methods for 3D ear and

face recognition. Previous studies conducted in 3D ear recognition have primarily

employed 3D range data as the input medium. Our work uses uncalibrated video

sequences to obtain 3D structure. Video is more desirable than range data due

to the feasibility in acquiring it. 3D range data requires an expensive scanner

while video can be captured using a relatively inexpensive camera. Furthermore,

utilizing 3D range scanners renders a biometric system intrusive because the data

acquisition process requires the user to maintain a relatively still pose for several

seconds; such is the case with the widely-used Minolta Vivid 910 which requires

an acquisition time of 2.5 seconds. Although the experimental setups described

here require user cooperation, the use of a camera as an acquisition device has

the potential to be used for non-intrusive applications due to its nearly realtime

acquisition speeds and retrieval of 3D structure.

In Chapter 2, we describe a novel approach for 3D ear biometrics using un-

calibrated video sequences. A series of frames is extracted from a video clip and

the Region-Of-Interest (ROI) in each frame is independently reconstructed in 3D

using SFS. The resulting 3D models are then registered using the Iterative Closest
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Point (ICP) algorithm. We iteratively consider each model in the series as a ref-

erence model and calculate the similarity between the reference model and every

model in the series using a similarity cost function. Cross validation is performed

to assess the relative fidelity of each 3D model. The model that demonstrates the

greatest overall similarity is determined to be the most stable 3D model and is

subsequently enrolled into the database. Experiments are conducted on the West

Virginia University (WVU) dataset, which is comprised of a 462 video clips belong-

ing to 402 subjects (60 subjects appear twice in the dataset). The experimental

results (95.0% rank-one recognition rate and 3.3% Equal Error Rate (EER)) in-

dicate that the proposed approach can produce recognition rates comparable to

systems that use 3D range data.

In Chapter 3, we describe a multi-modal ear and face biometric system. The

objective of this work is to demonstrate that superior performance can be achieved

by combining the ear and face modalities over employing either modality indepen-

dently. The system is comprised of two components: a 3D ear recognition compo-

nent and a 2D face recognition component. For the 3D ear recognition component,

we employ the method presented in Chapter 2. For the 2D face recognition com-

ponent, a set of facial landmarks is extracted from frontal facial images using the

Active Shape Model (ASM) technique. Then, the responses of the facial images

to a series of Gabor filters at the locations of the facial landmarks are calculated.

The Gabor features (attributes) are stored in the database as the face model for

recognition. The similarity between the Gabor features of a probe facial image

and the reference models are utilized to determine the best match. The match

scores of the ear recognition and face recognition modalities are fused to boost the

overall recognition rate of the system. Experiments are conducted on the WVU
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database. As a result, a rank-one identification rate of 100% was achieved using

the weighted sum technique for fusion.

In Chapter 4 we present a novel method for 3D face recognition that employs

an Adaboost algorithm to build a classifier based on geodesic distance features.

Firstly, a generic face model is finely conformed to each face model contained

within a 3D face dataset. Secondly, the geodesic distance between anatomical

point pairs are computed across each conformed generic model using the Fast

Marching Method. The Adaboost algorithm then generates a strong classifier

based on a collection of geodesic distances that are most discriminative for face

recognition. Experiments are conducted on the Face Recognition Grand Challenge

(FRGC) v1.0 2D + 3D frontal face database D collection, which is comprised

of 953 registered 2D + 3D images of 277 human subjects. The identification

and verification performances of three Adaboost algorithms, namely, the original

Adaboost algorithm proposed by Freund and Schapire, and two variants – the

Gentle and Modest Adaboost algorithms – are compared. Experimental results

indicate that the Gentle Adaboost algorithm yields the best performance, achieving

a 95.68% rank-one identification rate and an Equal Error Rate (EER) of 4.31%

using 553 geodesic distance features.

In Chapter 5, we propose a complete 3D ear recognition system combining

local and holistic features in a computationally efficient manner. The system is

comprised of four primary components: 1) ear image segmentation, 2) local fea-

ture extraction and matching, 3) holistic feature extraction and matching, and 4)

a fusion framework combining local and holistic features at the match score level.

For the segmentation component, we introduce a novel shape-based feature set,

termed the Histogram of Categorized Shapes (HCS) [111], to localize a rectangu-

lar region containing the ear. For the local feature extraction and representation
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component, we extend the HCS feature descriptor to an object-centered 3D shape

descriptor, termed Surface Patch Histogram of Indexed Shapes (SPHIS), for sur-

face patch representation and matching. For the holistic matching component,

we introduce a voxelization scheme for holistic ear representation from which an

efficient, voxel-wise comparison of gallery-probe model pairs can be made. The

match scores obtained from both the local and holistic matching components are

fused to generate the final match scores. Experimental results conducted on the

University of Notre Dame (UND) collection J2 dataset, containing range images

of 415 subjects, yielded a rank-one recognition rate of 98.6% and an EER of 1.6%.

These results demonstrate that the proposed approach outperforms state-of-the-

art 3D ear biometric systems. The proposed approach takes only 0.02 seconds to

compare a gallery-probe pair. This is approximately two orders of magnitude faster

than existing approaches, indicating that the proposed system is computationally

efficient as well.

1.1 Related Work

The remainder of Chapter 1 provides a literary review of methods in ear recognition

and 3D face recognition. It is worth noting that a direct comparison between the

performances of different systems is difficult and can at times be misleading. This

is due to the fact that datasets may be of varying sizes, the image resolution and

the amount of occlusion contained within the ROI may be different, and some may

use a multi-image gallery for a subject while others use a single-image gallery.

1.1.1 3D Ear Recognition

3D ear biometrics is a relatively new area of research. There have been relatively

few studies conducted, and as previously mentioned, the majority of the related

work has been based on ear models acquired by 3D range scanners. To the best
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of our knowledge, we are the first to develop a 3D ear recognition system that

obtains 3D ear structure from an uncalibrated video sequence. In this section, we

will review the literature on 3D ear reconstruction from multiple views, 2D ear

recognition and 3D ear recognition.

Liu et al. [55] describe a 3D ear reconstruction technique using multiple views.

This method uses the fundamental matrix and motion estimation techniques to

derive the 3D shape of the ear. The greatest difficulty to this approach is obtaining

a set of reliable feature point correspondences due to the lack of texture on the

ear surface. They first use the Harris corner criteria to detect salient features

in each image and apply correlation matching. Then, they use Random Sample

Consensus (RANSAC) [34] to eliminate outliers from the set of detected features.

They report that automatically extracting feature points in this way yields poor

results. Therefore, a semi-automatic approach is taken that allows the user to

manually relocate feature points that are poorly matched.

Burge et al. [13, 14] presented one of the first approaches in 2D ear biometrics.

They used graph matching techniques on a Voronoi diagram of curves extracted

from a Canny edge map to perform subject identification. Hurley et al. proposed

a method for performing ear recognition by detecting ear wells and channels from

a 2D intensity image [41]. They state that each person’s ear contains wells and

channels that are unique to each individual. By utilizing the locations of these

regions one can successfully perform subject recognition. Chang et al. used PCA,

i.e., “Eigen-Ear”, to perform recognition [18]. They reported a rank-one recogni-

tion rate of 71.6%. Moreno et al. experimented with three different techniques:

identification using feature points, identification using morphology, and identifi-

cation using compression networks [62]. Their gallery and probe sets consisted

of 28 and 20 ear models from unique subjects, respectively. The neural network
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approach, using a compression network, yielded the best result of 93% rank-one

recognition. Yuizono et al. developed an ear recognition system that uses a genetic

local search algorithm [107]. Their gallery consisted of three separate images for

each of 110 unique individuals. In addition, their probe set was comprised of three

different images for each of the 110 unique subjects. They reported that their

system yielded approximately 100% rank-one recognition as well as 100% rejection

for unknown subjects. Abdel-Mottaleb and Zhou presented a 2D ear recognition

system using profile images obtained from still cameras [1]. They extracted ridges

and ravines, such as the ear helix, for recognition purposes. The ridges identified

in a probe are then compared to those found in the gallery models. Alignment

between a probe and a gallery model is performed using Partial Hausdorff Dis-

tance. A gallery, consisting of a single image from each of 103 subjects, was used.

Of those 103 subjects, 29 of them had second and third images that were used as

probes. They reported that out of 58 queries 51 resulted in rank-one recognition

and 4 of the remaining 7 queries were within the first three matches. Mu et al.

[64] described a geometrical approach to 2D ear biometrics. They use a shape

feature vector of the outer ear and the structural feature vector of the inner ear

to represent a subject. They reported an 85% rank-one recognition rate using this

approach.

Chen and Bhanu [21, 22] proposed some of the earliest approaches in 3D ear

detection and recognition based on range profile images. In [21], a method for

detecting an ear region from a profile range image is introduced. Their algorithm

is based on a two-step system including model template building and on-line detec-

tion. The model template is obtained by averaging the shape index histograms of

multiple ear samples. The on-line detection process consists of four steps, namely,

step edge detection and thresholding, image dilation, connected-component label-
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ing, and template matching. The authors reported a 91.5% correct detection rate

with a 2.52% false positive rate. In [22], Chen and Bhanu developed a two-step

ICP approach for 3D ear matching from range images. The first step includes

detecting and aligning the helixes of both the gallery and probe ear models. Sec-

ondly, a series of affine transformations is applied to the probe model to optimally

align the two models. The Root-Mean-Square Distance (RMSD) is employed to

measure the accuracy of the alignment. The identity of the gallery model that

has the smallest RMSD value to the probe model is declared the identity of the

probe model. The authors report that out of a database of 30 subjects, 28 of

them were correctly recognized. In [23], Chen and Bhanu also propose two shape

representations of the 3D ear, namely, a local surface patch (LSP) representation

and a helix/antihelix representation, in an automatic ear recognition system. Both

shape representations are used to estimate the initial rigid transformation between

a gallery-probe pair. A modified ICP algorithm is then used to iteratively refine the

alignment in a least RMSD sense. Experiments were conducted on 3D ear range

images obtained from the University of California at Riverside (UCR) dataset as

well as the UND collection F dataset. The UCR collection is comprised of 902

images of 155 subjects, while the UND collection F dataset contains 302 subjects.

The authors report rank-one recognition rates of 96.4% and 94.8% on the UND

and UCR datasets, respectively.

In [103], Yan and Bowyer explored several different approaches including the

Eigen-Ear method using 2D intensity images as input, PCA applied to range im-

ages, Hausdorff matching of depth edge images derived from range images, and

ICP-based matching of 3D ear models. In their study, the ear region of each range

image is firstly cropped and the background is blocked out using manually labeled

ear landmarks. Secondly, landmarks located on the Triangular Fossa and Incisure
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Intertragica are utilized to align the images for the PCA-based and edge-based

algorithms, and the two-line landmark (one line is along the border between the

ear and the face, and the other is from the top of the ear to the bottom) is used

to align the range images for the ICP-based algorithm. Experiments conducted on

the FRGC collection F dataset yielded a 63.8% rank-one recognition rate for the

Eigen-Ear method, 55.3% for the PCA-based method, 67.5% for the Hausdorff dis-

tance approach, and 98.7% for the ICP-based method. In their latest work [104],

the authors propose a fully automatic 3D ear recognition system and improve upon

the automation of the ear detection module using multi-modal range and 2D color

image information in a heuristic manner. Three ICP-based shape matching algo-

rithms, including point-to-point, point-to-surface and a mixed point-to-point and

surface-to-point matching are explored. To eliminate outlier matches, only points

contained within the lower 90th percentile of distances are used to calculate the

mean distance as the final error metric. The best experimental results of this study

are a 97.6% rank-one recognition rate on the UND collection G dataset, consisting

of 415 subjects, and a 94.2% rank-one recognition rate on the subset of subjects

wearing earrings.

In [90], Theoharis et al. extend their 3D deformable model-based face recog-

nition approach in [48] by adapting their Annotated Face Model (AFM) for ear

modeling, and develop a semi-automatic multi-modal 3D face and ear recognition

system. The system processes each modality separately and the final recognition

decision is made based on the weighted summation of two of the similarity measures

from the face and ear modalities. For the 3D ear modality, firstly, at the model

creation stage, an annotated deformable ear model is constructed using only the

inner area of the ear due to the fact that the outer part of the ear is usually oc-

cluded. Then, at the model fitting stage, the AFM is fitted to the new 3D data set,
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comprised of the manually cropped inner ear regions, using a subdivision-based de-

formable framework. Subsequently, the so-called geometry images of the deformed

model, which encode geometric information (x, y and z components of a vertex

in R3) and the surface normals, are computed and a set of wavelet coefficients is

extracted from them. These coefficients form a 3D ear biometric signature. The

method is evaluated on the UND collection G dataset and achieves a 95% rank-one

recognition rate.

In [44], Islam et al. adapt the face recognition work in [60] and develop a

combined local and global approach for 3D ear recognition. Firstly, a set of local

features are constructed from distinctive locations in the 3D ear data by fitting

surfaces to the neighborhood of these locations and sampling the fitted surfaces on

a uniform grid. Features from a probe and gallery ear model are then projected

to the PCA subspace and matched. The set of matching features are then used to

establish the correspondences between the probe and gallery models from which

the two models are subsequently aligned. The established correspondences of the

coarsely aligned models are used as input to an ICP matching stage, which refines

the alignment and computes the final distance between the models. Experiments

conducted on a subset of the UND dataset collection F, consisting of 100 subjects,

achieves a 84% rank-one recognition rate for the local feature matching component

and a 90% rank-one recognition rate on a combination of the local feature and ICP

matching components.

For a further review of studies conducted in ear recognition refer to [46, 42].

1.1.2 3D Face Recognition

Recent improvements in 3D range scanning technology has enabled the acquisition

of high-resolution 3D facial data. As a result, there has been a steady increase in
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the performance of 3D face recognition systems over recent years. The following

section briefly outlines some of the prominent works presented in the literature.

Moreno et al. [61] presented a 3D face recognition system that utilizes feature

vectors constructed from segmented facial regions to discriminate between subjects.

The segmentation algorithm classifies and aggregates vertices based on Gaussian

and mean curvature properties. The feature vectors are comprised of statistical

and geometrical measures of the segmented surface regions including the area of

the regions, the mass centers of the regions, and the intra-region variations of cur-

vature. The authors report results on a dataset of 420 face meshes representing

60 different subjects, including samplings of different facial expressions and head

poses for each subject. The experimental results yielded a 78% rank-one recogni-

tion rate on the subset of frontal views, and an overall rank-five recognition rate

of 93%.

Chang et al. [20] describe a 3D face recognition method that incorporates three

facial regions (the eye cavities, nose tip, and nose bridge) into a match-score fusion

scheme. An independent match score is derived for each facial region using the

RMSD between a probe and gallery model after applying the ICP algorithm. The

independent match scores are subsequently combined using a voting rule. The

experimental evaluation is conducted on the Face Recognition Grand Challenge

(FRGC) v2.0 dataset representing over 4000 images from over 400 subjects. In

an experiment in which one neutral-expression image for each subject is enrolled

into the gallery, and all subsequent images (of varied facial expressions) are used

as probes, a rank-one recognition rate of 92% is reported.

Russ et al. [79] developed an approach that utilizes Hausdorff distance to

derive a match score between range image representations of 3D facial data. An

iterative registration procedure similar to that of ICP is used to refine the alignment
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between a probe and gallery range image. Various means of reducing the space

and time complexity of the matching procedure are investigated. Experiments

are conducted on a portion of the FRGC v1.0 data set, employing one probe per

subject. Experimental results yielded rank-one recognition rates as high as 98.5%.

Kakadiaris et al. [48] describe an approach to 3D face recognition that uses an

annotated deformable model. A 3D face model is initially aligned into a unified

coordinate system using a scheme that combines spin images, ICP, and a local

search by simulated annealing. An annotated face model is then conformed to the

normalized 3D facial data by mapping corresponding landmarks that are selected

based on descriptions by Farkas [32]. Geometry and normal map images are sub-

sequently derived from the fitted model, and wavelet analysis is applied to extract

a reduced set of coefficients as metadata. Experiments conducted on the FRGC

v2.0 database resulted in a rank-one recognition rate of 97.3%.

Heseltine et al. [40] presented a method for 3D face recognition based on a set

of seventeen feature maps including the raw depth map, the horizontal and vertical

gradient maps, and the curvature magnitude map. The Fishersurface method is

then applied in order to reduce the dimensionality of the feature maps. The most

discriminative components of these reduced feature maps are then identified and

subsequently used to construct a feature vector for recognition. The match score

between a probe and gallery model is computed based on the cosine distance

between their respective feature vectors. Experiments are conducted on a dataset

of 1770 3D face models representing 280 subjects. Experimental results yielded an

EER of 9.3%.

Queirolo et al. [74] proposed a 3D face recognition system that utilizes the sim-

ulated annealing algorithm to align 3D face models and to derive a corresponding

match score. The registration process, comprised of an initial, coarse, and refined
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alignment, minimizes the distance between two 3D face models by maximizing a

surface interpenetration measure using simulated annealing. The match score is

obtained by combining the surface interpenetration values of four facial regions,

namely, the circular and elliptical areas around the nose, the forehead and the

entire facial region using the sum rule. Experiments conducted on the FRGC v2.0

resulted in a rank-one recognition rate of 98.4%

We refer the interested reader to [10] for a comprehensive survey of methods

in 3D face recognition.



Chapter Two
3D Ear Modeling and Recognition from

Video Sequences using Shape from Shading

It is well-known that the SFS problem is an ill-posed problem even when we as-

sume complete control of the experimental setup [72]. This fact is evident even

when comparing the 3D reconstructions obtained from two images with significant

overlap, such as in neighboring frames of a video sequence.

The SFS technique is highly sensitive to lighting variations as it is essentially

based on deriving a 3D structure from illumination and reflectance properties of a

scene. When only a single image of a scene is available and the albedo and light

source direction of the imaged object are unknown the resulting 3D reconstruc-

tion may be drastically different from the ground truth [72]. However, when more

than one image of the scene is available, such as in a video sequence, it is possible

to combine multiple sources of information to enhance the fidelity of a 3D recon-

struction. We propose a novel approach for assessing the fidelity of a 3D model

by incorporating a set of independent 3D reconstructions derived from a series of

neighboring video frames.

This chapter is organized as follows: Section 2.1 describes the system approach

and all of its processes. Section 2.2 gives details on the experimental setup. Section

2.3 reports experimental results. Lastly, conclusions and future work are provided

in Section 2.4.

16
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2.1 System Approach

We present a novel approach for assessing the fidelity of a 3D reconstruction based

on a similarity cost function that compares the angle between normals, the differ-

ence between curvature shape index, and Euclidean distance between a reference

model and every model within a set. The overall fidelity of a 3D model is repre-

sented in the form of a Similarity Accumulator. First, a set of frames is extracted

from a video clip. The ear region contained within each frame is localized and

segmented. The 3D structure of each segmented ear region is then derived, and

all resulting models are globally aligned. The similarity between a model and all

remaining models within the set is computed based on the aforementioned cost

function. The 3D model that exhibits the greatest overall similarity is determined

to be the most stable model in the set and is subsequently enrolled in the database.

Lastly, a recognition system is developed to test the viability of our approach.

2.1.1 Video Frames Independently Reconstructed in 3D using SFS

A video is comprised of a sequence of image frames where, typically, there is little

content variation between neighboring frames. This redundancy can be utilized

to assess the quality of a video frame with respect to its neighboring frames. We

obtain an independent 3D reconstruction of the ear from each frame in a sequence

of frames. An SFS algorithm, developed by Tsai and Shah [91] is used to obtain

the 3D shape of the object from each video frame. The ill-posed nature of the

SFS algorithm is apparent even between the 3D shapes derived from a pair of

images with high redundancy, such as in neighboring video frames. These shape

variations can be caused by a variety of factors including compression artifacts and

changes in illumination. Our objective is to determine which of the independent

3D reconstructions is most reliable and exhibits the greatest fidelity.
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Prior to acquiring the 3D structure for each frame in the set, a series of pre-

processing steps is performed. Firstly, the ear region is segmented from each video

frame with a spatial resolution of 640 × 480 pixels. The segmentation algorithm,

presented in [80], initially applies the opening top hat morphological operation

to the raw profile facial image. The opening top hat transformation effectively

enhances the ear region by suppressing dark and smooth regions such as the sur-

rounding hair (i.e., dark) and cheek (i.e., smooth) regions. K-means clustering

(K = 2) is then employed to separate the pixels contained within the filtered im-

age as either low or high intensity, resulting in a binary image. Candidate ear

regions in the binary image are identified using connected components labeling.

Detected regions with an area below a fixed threshold are discarded. The geomet-

ric properties, including the position and dimension, of the remaining candidate

ear regions are analyzed to determine the true ear region. Lastly, the convex hull

of the detected ear region is computed, resulting in the segmented ear. Figure 2.1

illustrates each step of the ear segmentation algorithm.

(a) (b) (c) (d) (e)

Figure 2.1

2.1.2 Linear Shape from Shading

SFS aims to derive a 3D scene description from a single monocular image. The

recovered shape can be expressed in several ways including surface normals N =

(x, y, z)T and depth Z(x, y). The surface normal (formulated in Appendix 1) is a

unit vector that is perpendicular to the tangent plane at a vertex on the surface.
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Depth can be considered to be the relative distance from the camera to the imaged

surface, or the relative height of the surface from the xy-plane.

SFS techniques can generally be categorized into three classes: 1) methods of

resolution of Partial Differential Equation (PDE), 2) methods using minimization,

and 3) methods approximating the image irradiance equation also known as linear

methods. PDE methods set out to directly solve the exact SFS PDE [71]. In the

minimization methods, shape is recovered by minimizing a cost function involving

certain constraints such as smoothness. Linear methods are simple but provide only

approximate shape estimates. PDE and minimization methods are significantly

more computationally complex than linear methods but generally provide more

accurate results.

In a biometric setting, for obvious reasons, it is crucial to acquire a represen-

tation of the biometric marker as quickly as possible. For this reason, we have

selected the computationally-efficient, linear SFS method to derive a 3D structure

of the ear. Among the linear SFS methods, the one proven most successful is Tsai

and Shah’s method [91].

Here we assume that the ear surface exhibits Lambertian reflectance. A Lam-

bertian surface is defined as a surface in which light falling on it is scattered such

that the apparent brightness of the surface to an observer is the same regardless

of the observer’s angle of view. The brightness of a vertex (x, y) on a Lamber-

tian surface is related to the gradients p and q by the following image irradiance

equation:

I (x, y) = aR [p(x, y), q(x, y)] (2.1)

where R is a reflectance map that is dependent on the position of the light source,

p and q are partial derivatives of the surface in the x- and y- directions, and a

is a constant that depends on the albedo of the surface. The albedo of a surface



20

is defined as the fraction of incident light that is reflected off of the surface. An

object that reflects most of its incoming light appears bright and has a high albedo

while a surface that absorbs most of its incoming light appears dark and has a low

albedo. For a Lambertian surface, the reflectance map can be expressed as:

R (p, q) =
− (psp+ qsq + 1)

√

p2s + q2s + 1
√

p2 + q2 + 1
(2.2)

where the incident light direction is
[

ps qs 1
]

.

Tsai and Shah’s method sets out to linearize the reflectance map by approxi-

mating p(x, y) and q(x, y) directly in terms of the depth, Z, using finite differences:
{

p (x, y) = Z(x,y)−Z(x−1,y)
δ

q (x, y) = Z(x,y)−Z(x,y−1)
δ

(2.3)

where δ is typically set to 1.

Using the discrete approximations of p and q, the reflectance equation can be

rewritten as:

0 = f (I(x, y), Z(x, y), Z(x− 1, y), Z(x, y − 1))
= I(x, y)− R (Z(x, y)− Z(x− 1, y), Z(x, y)− Z(x, y − 1))

(2.4)

In (2.4), For a pixel position (x, y), the Taylor series expansion up to the first

order terms of function f about a given depth map Zn−1 can be expressed as:

0 = f (I(x, y), Z(x, y), Z(x− 1, y), Z(x, y − 1)) = F

≈ F +

(

Z (x, y)−
n−1

Z (x, y)

)

∂
∂Z(x,y)

F+
(

Z (x− 1, y)−
n−1

Z (x− 1, y)

)

∂
∂Z(x−1,y)

F+
(

Z (x, y − 1)−
n−1

Z (x, y − 1)

)

∂
∂Z(x,y−1)

F

(2.5)

For an M ×N image, there will be an MN number of such equations, forming

a linear system. This system can easily be solved by using the Jacobi iterative

scheme, simplifying (2.5) into the following equation:

0 = f (Z (x, y)) ≈ f

(

n−1

Z (x, y)

)

+

(

Z (x, y)−
n−1

Z (x, y)

)

d
dZ(x,y)

f

(

n−1

Z (x, y)

) (2.6)
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Then, for Z (x, y) =
n

Z (x, y), the depth map for the nth iteration can be solved for

directly as follows:

n

Z (x, y) =
n−1

Z (x, y)+

−f
(

n−1

Z (x, y)

)

d
dZ(x,y)

f

(

n−1

Z (x, y)

) (2.7)

Note that for the initial iteration the depth map,
0

Z (x, y), should be initialized

with zeros.

To reduce the blocky artifacts present in the video frames, which are primarily

caused by compression, a median filter (of size 7 x 7) is applied to each video frame.

The median filter smoothes an image by replacing a pixel’s value by the median

of the values of the pixels surrounding it. By reducing the amount of noise in the

video frame, the 3D reconstruction of the object will result in a much smoother

surface. Figure 2.2 illustrates the difference between the surface of a 3D model that

was reconstructed from an image without filtering and one with filtering. From

(a) (b)

Figure 2.2

Figure 2.2, it is apparent that the 3D surface after filtering has a substantially

smoother appearance.
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Figure 2.3

Figure 2.3 illustrates a set of sample ear images and their corresponding 3D

reconstructions using SFS.

2.1.3 3D Model Registration

After obtaining the 3D reconstruction of each video frame within the series, the

resulting 3D models are globally aligned using the ICP algorithm. Figure 2.4

illustrates the 3D reconstruction and global registration processes. To facilitate

the visualization of the global registration in Figure 2.4 (rightmost 3D ear models),

only the first two 3D ear models are globally aligned.

2.1.4 Similarity Accumulator

The 3D models independently derived from a set of video frames generally share

surface regions that consist of the same shape. However, there are other surface

regions that differ. We devised a method for determining which 3D model shares

the greatest shape similarity with respect to the rest of the 3D models in the set.

A reference model, mR, is first selected from the model set and all other models

are globally aligned to it. Suppose the model set, M , consists of n models given

by M = {mi}ni=1. Initially, mR is set equal to m1. The similarity between a
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Figure 2.4

reference model mR and mi, {i = 1, 2, . . . , n; i 6= r} is computed using a similarity

cost function. The cost function, given by:

S = −αDis− βNorm− γCur (2.8)

is comprised of three weighted terms that consider the Euclidean distance between

vertices, the difference in angle between normals (Norm), and the difference be-

tween curvature shape index (Cur) [59]. The weighting coefficients (α, β, and γ)

sum to one. The optimal set of weights, determined empirically, are α = 0.11,

β = 0.55, and γ = 0.34. The Norm and Cur terms in (2.8) are further defined as:

Norm =
cos−1 (normal1 • normal2)

π
(2.9)

Cur =

∣

∣

∣

∣

1

π

{

atan

(

k1r + k2r
k1r − k2r

)

− atan

(

k1i + k2i
k1i − k2i

)}
∣

∣

∣

∣

(2.10)

In (2.8), the Dis term is the Euclidean distance between the tentative similar

vertices on mi and the vertex on mR; r is the radius of the search space around

the tentative similar vertices on mi. The Norm term computes the angle between
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normal1 (normal of vertex on mR) and normal2 (normal of vertex on mi). The

’•’ denotes the dot product between the normals. The Cur term is a quantitative

measure of the shape of a surface at a model vertex. kjR, k
j
i , j = 1, 2 are the

maximum and minimum principal curvatures (formulated in Appendix 1) of the

vertices onmR andmi, respectively. In (2.8), it is apparent that each term is always

negative; therefore, values that are closer to zero signify greater similarity, and a

value of zero signifies an identical match. Figure 2.5 illustrates the maximum and

minimum principal curvatures as well as the normals of a sample 3D ear model.

(a) (b)

(c)

Figure 2.5

The similarity between a vertex on mR and every vertex in mi contained within

a search window is computed (illustrated in Figure 2.6). The vertex on mi that
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Figure 2.6

shares the greatest similarity value with the vertex on mR is determined to be its

most similar vertex and its similarity value is stored. This process is then repeated

for all vertices contained in mR. Surface regions that share similar shape and

position will result in higher similarity values than surface regions that differ. Then,

the similarity between mR and the remaining models in the set is computed. The

resulting similarity matrices are summed together to form the so called Similarity

Accumulator (SA). The SA indicates the fidelity of the reference model’s shape.

Figure 2.7 illustrates this process. In this figure, the lighter pixels of the SA

denote lesser similarity, which normally correspond to ridges and dome regions,

while darker pixels denote greater similarity, which normally correspond to valley

and cup regions.

2.1.5 3D Model Selection

Once an SA has been computed for the initial reference model, e.g., m1, then

the second model, m2, is designated as being the reference model. The SA is



26

Figure 2.7

then computed for the new reference model and the next model in the set is then

designated as being the reference model. This process is repeated until all nmodels

have an SA associated with them.

The most stable 3D reconstruction is determined to be the 3D model that

exhibits the greatest cumulative similarity. The mean value of each SA is computed

using the following equation:

Mean(mR) =

cols
∑

x=1

rows
∑

y=1

SA(x, y)

n
(2.11)

where n denotes the number of pixels that are contained within the valid ear region.

In Figure 2.7, regions in dark blue are not contained within the valid ear region and

are therefore not considered when computing (2.11). The 3D model that results

in the greatest mean similarity, given by:

argmax
mR∈[m1,m2,··· ,mn]

Mean(mR) (2.12)
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is declared the most stable model in the set and is subsequently enrolled in the

database.

In summary, Algorithm 1 describes the process taken to achieve this result.

Algorithm 1 Fidelity Assessment Algorithm

1: for i = 1 to N do

2: [mi.x,mi.y,mi.z]⇐ SFS(Ii)
3: [mi.Nx,mi.Ny,mi.Nz]⇐ find normals(mi)
4: [mi.Pmax,mi.Pmin]⇐ find curvature(mi)
5: end for

6: for i = 2 to N do

7: [mi.x,mi.y,mi.z]⇐ ICP (mi, m1)
8: end for

9: for i = 1 to N do

10: mR ⇐ mi

11: k ⇐ 1
12: for j = 1 to N do

13: if i 6= j then
14: S(k)⇐ find similarity(mR, mj)
15: SA(i)⇐ SA(i) + S(k)
16: k ⇐ k + 1
17: end if

18: end for

19: SA mean(i)⇐ find mean(SA(i))
20: end for

21: [value, index]⇐ find max(SA mean)
22: stablest model ⇐ mindex

2.1.6 Recognition Process

The process described in the previous section enables us to acquire the most stable

3D ear model for each subject in a gallery and probe set, respectively. To iden-

tify the gallery model that most closely corresponds to a probe model (subject

recognition) a shape matching technique is employed. A probe model, X , is glob-

ally aligned to a gallery model, X ′, using ICP. Then, the RMSD between the two
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models, given by:

De =

√

√

√

√

1

N

N
∑

i=1

(xi − x′i)2 (2.13)

is computed, where {xi}Ni=1 ∈ X , {x′i}Ni=1 ∈ X ′, and x′i is the nearest neighbor

of xi on X ′. To minimize the effects of noise and partial information (due to

occlusion) in the 3D models, only a certain percentage of vertices contribute to

(2.13). The distances between the vertex set X and their nearest neighbors in

the vertex set of the gallery model are sorted in ascending order and only the top

90% are considered. This process of aligning the probe model to a gallery model

and computing the distance is then repeated for all other 3D models enrolled in

the gallery. The identity of the gallery model that shares the smallest distance in

(2.13) with the probe model is declared the identity of the probe model.

2.2 Experimental Setup

We used a dataset of 462 video clips, collected by WVU, where in each clip the

camera moves in a circular motion around the subject’s face. The video clips were

captured in an indoor environment with controlled lighting conditions. The camera

captured a full profile of each subject’s face starting from the left ear and ending

on the right ear by moving around the face while the subject sits still in a chair.

The video clips have a frame resolution of 640× 480 pixels and are encoded using

the Ulead MCMP/MJPEG encoder [89].

402 video clips contain unique subjects, while the remaining 60 video clips

contain repeated subjects. Repeated video clips (multiple video clips of the same

subject) were all acquired on the same day. The 402 video clips were enrolled in

the gallery and the 60 video clips were used as probes.



29

In the dataset used, there are 135 gallery video clips that contain occlusions

around the ear region. These occlusions occur in 42 clips where the subjects are

wearing earrings, 38 clips where the upper half of the ear is covered by hair, and

55 clips where the subjects are wearing eyeglasses.

2.3 Experimental Results

We conducted a series of experiments to evaluate the performance of the system

described above. First, we present our results and then we compare them to other

state-of-the-art 3D ear biometric systems. As mentioned earlier, to the best our

knowledge, we are the only group to utilize uncalibrated video sequences to obtain

3D ear structure. The majority of other works use a 3D range scanner in their

acquisition stage.

We conducted an experiment to compare the recognition performance when

using 3D models that are selected arbitrarily and models that are selected using

the fidelity assessment method described in previous sections. First, we establish a

set of video frames that will be used for the 3D reconstruction. In our experiments,

we sampled six frames at intervals of 10 frames, where each frame has a clear view

of the ear region. Since the camera’s movement around each subject’s head was

the same and the initial head pose was the same across all captured videos, it was

sufficient to select a general frame range (frames 375–425) where it is certain that

the ear was at a frontal pose. We denote the frameset by:

F = [fA, fB, fC , fD, fE , fF ] (2.14)

In the first experiment, we tested the identification performance of the proposed

approach. A series of six datasets are constructed, where each dataset corresponds

to a frame in F . All gallery and probe models for a given dataset are constructed

from their corresponding frame. For instance, in dataset 1, all gallery and probe



30

models are generated by three-dimensionally reconstructing frame fA. For dataset

2, all models are constructed from frame fB. This process is then repeated for

all remaining frames in frameset F . Presently, the datasets are each comprised

of models that were reconstructed from a single frame in F . The selection of an

arbitrary frame is the simplest method because it requires no analysis. A seventh

dataset, denoted by SA, is then added, which utilizes the proposed method to

select an optimal frame from F for each subject. That is, in dataset SA, unlike

the initial six datasets, the selected frame in F may vary across subjects. Seven

datasets have now been created, where each dataset is comprised of a gallery

and probe set. These seven datasets, cumulatively labeled as dataseries 1, are all

created from frames that are contained within the frontal ear pose frame range

(stated earlier as frames 375–425). Then, for only the probe sets, a dataseries for

each of five off-axis poses (relative to the ear) – 5 ◦, 10 ◦, 15 ◦, 20 ◦, 25 ◦ – is created

using the same procedure as the one previously described, while the corresponding

gallery sets are maintained at a frontal ear pose. These poses translate to video

frames 375–425, 442–492, 509–559, 576–626, 643–693, and 710–760, respectively.

This results in six dataseries, where each dataseries corresponds to a particular

off-axis pose plus the 0 ◦ pose.

To assess the identification performance of the proposed method, a series of

Cumulative Match Characteristic (CMC) curves are constructed from the datasets.

For instance, a CMC curve for fA is computed from each of the six dataseries.

These six CMC curves are averaged and a mean CMC curve for fA is obtained. A

mean CMC curve is then constructed for each of the remaining frames in frameset

F , including SA, using the same procedure. Figure 2.8 illustrates the results that

were obtained.
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Figure 2.8

Clearly, the mean CMC curve for the fidelity assessment approach yields an

overall higher recognition rate than arbitrarily selecting a frame. The results ob-

tained from our experiments demonstrate that selecting a 3D model to enroll into

the database using the proposed method can result in higher recognition rates than

selecting a model arbitrarily.

We now present the off-axis ear pose recognition rates with all gallery and probe

sets obtained from models that were selected using the proposed method. In each

trial, we maintained our gallery set at the frontal ear pose while the probe set

contained models that were reconstructed from off-axis ear poses of 0 ◦, 5 ◦, 10 ◦,

15 ◦, 20 ◦, and 25 ◦. Figure 2.9 illustrates the varying ear poses for a subject in our

database. Table 2.1 presents the results that were obtained.

The results in Table 2.1 indicate that the system is quite robust to varying

head poses. The rank-one recognition rates show 95% when the gallery and probe

sets are both composed of 3D models reconstructed from a frontal ear pose, and

85% when the probe 3D models are reconstructed from an off-axis ear pose of 15 ◦.
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(a) (b) (c)

(d) (e) (f)

Figure 2.9

Table 2.1

Degrees off-axis
Rank 0 ◦ 5 ◦ 10 ◦ 15 ◦ 20 ◦ 25 ◦

1 95.00% 93.33% 91.67% 85.00% 63.33% 48.33%

5 96.67% 96.67% 96.67% 88.33% 80.00% 56.67%

10 96.67% 98.33% 96.67% 93.33% 83.33% 70.00%

15 98.33% 98.33% 98.33% 93.33% 83.33% 73.33%

20 98.33% 98.33% 98.33% 93.33% 85.00% 75.00%

25 98.33% 100.0% 98.33% 93.33% 85.00% 76.67%

For our next experiment, we constructed an Receiver Operating Characteristic

(ROC) curve for the datasets created using the proposed method. Six ROC curves

were constructed, each of which corresponds to a different ear pose. Table 2.2

presents the EER for each ear pose. The results demonstrate that an EER of

3.3% is attained when the difference in pose between the gallery and probe sets

are either 0 ◦ or 5 ◦. Furthermore, there is a graceful degradation in the EER as

the pose difference between the gallery and probe set increases.
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Table 2.2

Ear Pose EER

0 ◦ 3.3%
5 ◦ 3.3%
10 ◦ 5.0%
15 ◦ 6.7%
20 ◦ 11.6%
25 ◦ 14.0%

There are eight probe video clips that contain occlusions in the ear region. The

segmentation algorithm successfully segmented seven, or 87.5%, of those video

clips. In the entire probe set, 53/60 = 88.33% of the video clips were success-

fully segmented, while the remaining seven of the video clips were partially seg-

mented. When constructing both the probe and gallery sets from frontal ear poses,

these seven partially–segmented probe video clips yielded a 100% rank-one recog-

nition rate. Figure 2.10 provides an example of a probe model that was partially

segmented. We now compare the results obtained from our experiments against

(a) (b)

Figure 2.10



34

current state-of-the-art 3D ear biometric systems. As mentioned in Chapter 1, a

direct comparison between the performances of different systems is difficult and

can at times be misleading due to a number of factors related to the difficulty of

the databases used. Nevertheless, we compare against two systems that use range

images as their input. The public datasets used for the two other approaches are

the Notre Dame Collection F and G and the UCR Collection. The ND Collection

F consists of a pair of range images for 302 subjects [9]. One pair is enrolled

in the gallery while the other is used as a probe. The Notre Dame Collection G

is comprised of 415 subjects in which 302 subjects are from Collection F . The

UCR collection consists of 592 probe and 310 gallery range images [66]. The WVU

Collection used in our experiments consists of 60 and 402 probe and gallery video

clips, respectively. The comparison can be found in Table 2.3. It demonstrates

that a comparable rank-one recognition rate and EER is attainable using video

frames as the modality.

Table 2.3

Cadavid and
Abdel-
Mottaleb’s
approach
(This
chapter)

Chen and Bhanu’s
approach [23]

Yan and Bowyer’s
Approach
[102, 104]

Results
Identification 95% rank-1

recognition
rate on the
WVU Ear
Video
Collection

96.4% rank-1, 98.0%
rank-2 recognition rate
on Collection F, 94.4%
rank-1 recognition rate
on the UCR dataset
ES2

98.7% rank-1
recognition rate on
Collection F,
97.6% rank-1
recognition rate on
Collection G

Verification EER =
0.033 on the
WVU Ear
Video
Collection

EER = 0.023 on
Collection F and EER
= 0.042 on the UCR
dataset ES2

EER = 0.012 on
Collection G
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2.4 Conclusion

This chapter presented a 3D ear biometric system using an uncalibrated video

sequence as input. An SFS method is used to obtain the 3D structure of an ear

from a video clip. The video frame to undergo 3D reconstruction is automatically

selected using a fidelity assessment method. To validate our proposed approach, we

tested our system on an ear video database consisting of a gallery set of 402 unique

subjects and a probe set of 60 subjects. The results obtained with the proposed

method achieved higher recognition rates than any result obtained from selecting

an arbitrary image. In addition, this method can be used for any application that

requires selecting an image from a series of images to undergo 3D reconstruction

using SFS.

We then conducted an experiment to test the system’s robustness to ear pose

variations. We maintained our initial gallery set of frontal ear poses, and recon-

structed our probe set from video frames containing off-axis ear poses. We varied

the off-axis angle between 0 ◦ (frontal ear pose) and 25 ◦. The experimental results

indicate that the system is, to some degree, robust to pose variations. As the

off-axis angle becomes greater, the recognition performance gracefully degrades.

The 3D ear reconstruction approach presented in this chapter, although not

as accurate as 3D range data, does produce 3D models that achieve recognition

results comparable to those of the state-of-the-art. Although the experimental

setup presented here does require user cooperation, there is potential for developing

a non-intrusive biometric system based on the proposed approach. Furthermore,

the cost of acquiring images or video is substantially lower than the cost of acquiring

3D range imagery.

The proposed fidelity assessment method for 3D models can be extended for use

in other applications. Given an image sequence of a rigid object, it is possible to use
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this method. As explained in Section 5.2.1, the first stage involves segmenting and

preprocessing the ROI in each image of the sequence. Naturally, an alternative

segmentation algorithm will need to be developed for the particular object, or

simply manual segmentation can take place. Then, the remainder of the process

is the same as described earlier.

In the future, we will further improve our system’s robustness to pose variations.

Each 3D model produced by our system is derived from a single video frame. In

actuality, our 3D representations are 2.5D models because they capture the depth

information from just a single view. Further improvements will include registering

and integrating multiple 2.5D views to construct the final 3D model [29].



Chapter Three
Multi–modal Ear and Face Modeling and Recognition

3.1 Summary

Biometric systems deployed in current real-world applications are primarily uni-

modal – they depend on the evidence of a single biometric marker for personal

identity authentication (e.g., ear or face). Uni-modal biometrics are limited, be-

cause no single biometric is generally considered both sufficiently accurate and

robust to hindrances caused by external factors [76].

Some of the problems that these systems regularly contend with include: (1)

Noise in the acquired data due to alterations in the biometric marker (e.g., surgically-

modified ear) or improperly maintained sensors. (2) Intra-class variations that

may occur when a user interacts with the sensor (e.g., varying head pose), or with

physiological transformations that take place with aging. (3) Inter-class similar-

ities, arising when a biometric database is comprised of a large number of users,

which results in an overlap in the feature space of multiple users, requires an in-

creased complexity to discriminate between the users. (4) Non-universality – the

biometric system may not be able to acquire meaningful biometric data from a

subset of users. For instance, in face biometrics, a face image may be blurred due

to abrupt head movement or partially occluded due to off-axis pose. (5) Certain

biometric markers are susceptible to spoof attacks – situations in which a user

successfully masquerades as another by falsifying their biometric data.

Several of the limitations imposed by uni-modal biometric systems can be over-

come by incorporating multiple biometric markers for performing authentication.

37



38

Such systems, known as multi-modal biometric systems, are expected to be more

reliable due to the presence of multiple, (fairly) independent pieces of evidence

[51]. These systems are capable of addressing the aforementioned shortcomings

inherent to uni-modal biometrics. For instance, the likelihood of acquiring viable

biometric data increases with the number of sensed biometric markers. They also

deter spoofing since it would be difficult for an impostor to spoof multiple biomet-

ric markers of a genuine user concurrently. However, the incorporation of multiple

biometric markers can also lead to additional complexity in the design of a biomet-

ric system. For instance, a technique known as data fusion must be employed to

integrate multiple pieces of evidence to infer identity. In this chapter, we present

a method that fuses the 3D ear and 2D face modalities at the match score level.

Fusion at this level has the advantage of utilizing as much information as possible

from each biometric modality [86].

There are several motivations for a multi-modal ear and face biometric. Firstly,

the ear and face data can be captured using conventional cameras. Secondly, the

data collection for face and ear is non-intrusive (i.e., requires no cooperation from

the user). Thirdly, the ear and face are in close physical proximity to each other

and when acquiring data of the ear (face) the face (ear) is frequently encountered

as well. Oftentimes, in an image or video captured of a user’s head, these two

biometric markers are jointly present and are both available to a biometric system.

Thus, a multi-modal face and ear biometric system is more feasible than, say, a

multi-modal face and fingerprint biometric system.

For more than three decades, researchers have worked in the area of face recog-

nition [46]. Despite the efforts made in 2D and 3D face recognition, it is not

yet ready for real world applications as a uni-modal biometric system. Yet the
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face possesses several qualities that make it a preferred biometric including being

non-intrusive and containing salient features (e.g., eye and mouth corners).

The ear, conversely, is a relatively new area of biometric research. There have

been a few studies conducted using 2D data (image intensity) [13, 14, 18, 1, 104]

and 3D shape data [1, 15]. Initial case studies have suggested that the ear has

sufficient unique features to allow a positive and passive identification of a subject

[43]. Furthermore, the ear is known to maintain a consistent structure throughout

a subject’s lifespan. Medical literature has shown proportional ear growth after

the first four months of birth [43]. Ears may be more reliable than faces, which

research has shown is prone to erroneous identification because of the ability of

a subject to change their facial expression or otherwise manipulate their visage.

However, there are drawbacks inherent to ear biometrics. One such drawback,

that poses difficulty to the feature extraction process, is occlusion due to hair or

jewelery (e.g., earrings or the arm of a pair of eyeglasses).

Based on the above discussion, we present a multi-modal ear and face biometric

system. For the ear recognition component, first, a set of frames is extracted

from a video clip. The ear region contained within each frame is localized and

segmented. The 3D structure of each segmented ear region is then derived using

a linearized SFS technique [91], and each resulting model is globally aligned. The

3D model that exhibits the greatest overall similarity to the other models in the

set is determined to be the most stable model in the set. This 3D model is stored

in the database and is utilized for 3D ear recognition.

For the face recognition component, we utilize a set of Gabor filters to extract

a suite of features from 2D frontal facial images [57, 58]. These features, termed

attributes, are extracted at the location of facial landmarks, which have been
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extracted using the ASM [56]. The attributes of probe images and gallery images

are employed to compare facial images in the attribute space.

In this chapter, we present a method for fusing the ear and face biometrics at

the match score level. At this level, we have the flexibility to fuse the match scores

from various modalities upon their availability. Firstly, the match scores of each

modality are calculated. Secondly, the scores are normalized and subsequently

combined using a weighted sum technique. The final decision for recognition of a

probe face is made upon the fused match score.

The remainder of this chapter is organized as follows: Section 3.2 discusses

previous work in multi-modal ear and face recognition. Section 3.3 presents our

approach for 2D face recognition using Gabor filters. Section 3.4 describes the

technique for data fusion at the match score level. Section 3.5 provides the exper-

imental results using the WVU database to validate our algorithm and test the

identification and verification performances. Lastly, conclusions and future work

are given in Section 3.6. We refer the reader to Chapter 2 for a detailed description

of the 3D ear recognition system employed in this work.

3.2 Related Work in Multi-modal Ear and Face Recognition

In [106], Yuan et al. propose a Full-Space Linear Discriminant Analysis (FSLDA)

algorithm and apply it to the ear images of the University of Science and Tech-

nology Beijing (USTB) ear database and the face images of the Olivetti Research

Laboratory (ORL) face database. The database used is composed of four images

for each of 75 subjects, where three of the ear and face images for each subject

comprise the gallery set and the remaining image comprises the probe set. An
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image level fusion scheme is adopted for the multi-modal recognition. The authors

report a rank-one recognition rate as high as 98.7%.

In [18], Chang et al. utilize the Eigen-Face and Eigen-Ear methods to represent

the 2D ear and 2D face biometrics, respectively. The authors then combine the re-

sults of the face and ear recognition components to improve the overall recognition

rate.

In [90], Theoharis et al. present a method to combine 3D ear and 3D face

data into a multi-modal biometric system. The raw 3D data of each modality is

registered to its respective annotation model using an ICP algorithm and energy

minimization framework. The annotated model is then fitted to the data, and

subsequently converted to a so-called geometry image. A wavelet transform is

then applied to the geometry image (and derived normal image) and the wavelet

coefficients are stored as the feature representation. The wavelet coefficients are

fused at the feature level to infer identity.

In [68], Pan et al. present a feature fusion algorithm of the ear and face based

on kernel Fisher discriminant analysis. With this algorithm, the fusion discrimi-

nant vectors of the ear and profile face are established and nonlinear feature fusion

projection can be employed. Their experimental results on a database of 79 sub-

jects demonstrate that the method is efficient for feature-level fusion. Additionally,

it is shown that the ear- and face-based multi-modal recognition system performs

better than either the ear or profile face uni-modal recognition system.

In [101], Xu et al. have proposed a multi-modal recognition system based on

2D ear and profile facial images. An ear classifier and a profile face classifier are

both constructed using Fisher’s Linear Discriminant Analysis (FLDA). Then, the

decisions made by the two classifiers are combined using different combination

methods such as product, sum and median rules, and a modified voting rule.
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3.3 2D Face Recognition Using Gabor Features

For 2D face modeling and recognition, facial images are represented by a set of

features extracted using Gabor filters (Gaussian-modulated complex exponentials)

[57]. Unlike the ear recognition component of this work, we model the face in the

2D domain instead of 3D. This is due to the fact that the database used to validate

our approach has an exceptionally large number of subjects containing facial hair

and/or eyeglasses (39.1% of the gallery), rendering the 3D reconstruction of the

face surfaces difficult.

Gabor filters represent a popular choice for obtaining localized frequency infor-

mation and are defined as follows:

W (x, y, θ, λ, φ, σ, γ) = exp(− x́
2 + γ2ý2

2σ2
).exp[j(

2πx́

λ
+ φ)]

x́ = xcosθ + ysinθ and ý = −xsinθ + ycosθ (3.1)

where θ specifies the orientation of the wavelet, λ is the wavelength of the sine wave,

σ is the radius of the Gaussian, φ is the phase of the sine wave, and γ specifies

the aspect ratio of the Gaussian. The kernels of the Gabor filters are selected at

eight orientations (i.e., θ ∈ {0, π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, 7π/8}) and five

wavelengths (i.e., λ ∈ {1,
√
2, 2, 2

√
2, 4}). In order to prevent the filters from

having a DC response, we normalize the local intensity of the image such that the

DC response becomes zero.

In this work, we calculate the response of a set of Gabor filters (i.e., eight

orientations and five wavelengths) applied to the facial image intensity variations;

these features are called attributes and are used to model the local structure of

the facial image around a number of facial landmark points. We initially extract

75 landmark points using the improved ASM technique presented in [56] (we refer

the reader to Appendix 2 for a description of the ASM technique). We then use
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a standard template comprising of 111 vertices to include more landmark points

at certain positions of the face, such as the cheek and the points on the ridge of

the nose. Extracting these points using the ASM technique is difficult because of

the lack of texture in these regions. Figure 3.1 shows a sample face in the gallery

along with the points for extracting the Gabor features.

Prior to extracting the attributes, the raw 2D facial images are processed to

normalize the image variations due to the effect of lighting and head pose. For

lighting normalization, first the contrast of the images is normalized using his-

togram equalization. Then the intensity values of each image are normalized to

have zero mean and unit variance. For pose and scale normalization, eye coordi-

nates are used to align the faces such that the coordinates of the two centers of the

eyes in each individual image are registered to the fixed locations with coordinate

values (35, 40) and (95, 40) for the right eye and the left eye, respectively. The co-

ordinates of the centers of the eyes are obtained automatically by averaging values

of the points surrounding each eye (the surrounding points of each eye are pro-

vided by ASM). This alignment is achieved by applying a 2D transformation (i.e.,

scale, translation and rotation), where the parameters of the transformation are

estimated by Procrustes analysis. For face matching and recognition, the distance

Figure 3.1
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between two given facial images is defined as the distance between their attributes

as follows:

Df =

∑N
j=1 aj áj

√

∑N
j=1 a

2
j

∑N
j=1 á

2
j

(3.2)

where aj is the magnitude of the set of complex coefficients of the Gabor attributes,

obtained at the jth landmark point. The identity of the gallery image that shares

the smallest distance in (3.2) with the probe image is declared the identity of the

probe model.

3.4 Data Fusion

We combine the ear and face modalities at the match score level. At the match

score level, we have the flexibility of fusing the match scores from various modalities

upon their availability. We use the weighted sum technique to fuse the results at the

match score level. This approach is in the category of transform-based techniques

(i.e., based on the classification presented in [77]). In practical multi-biometric

systems, a common fusion method is to directly combine the match scores pro-

vided by different matchers without converting them into posteriori probabilities.

However, the combination of the match scores is meaningful only when the scores

of the individual matchers are comparable. This requires a change of the location

and scale parameters of the match score distributions at the outputs of the indi-

vidual matchers. Hence, the Tanh-estimators score normalization [77], which is

an efficient and robust technique, is used to transform the match scores obtained

from the different matchers into a common domain. It is defined as follows:

snj =
1

2

{

tanh

(

0.01

(

sj − µGH
σGH

))

+ 1

}

(3.3)
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where sj and s
n
j are the scores before normalization and after normalization. The

µGH and σGH are the mean and standard deviation estimates, respectively, of the

genuine score distribution as given by Hampel estimators [38]. Hampel estimators

are based on the following influence (ψ)-function:

ψ(u) =















u 0 ≤ |u| < a,
a ∗ sign(u) a ≤ |u| < b,

a ∗ sign(u) ∗ ( c−|u|
c−b

) b ≤ |u| < c,

0 |u| ≥ c,

(3.4)

where sign(u) = +1 if u ≥ 0, otherwise sign(u) = −1. The Hampel influence

function reduces the influence of the scores at the tails of the distribution (identified

by a, b, and c) during the estimation of the location and scale parameters.

One of the well known fusion techniques used in biometrics is the weighted sum

technique:

Sf =
R
∑

j=1

wj ∗ snj (3.5)

where snj and wj are the normalized match score and weight of the jth modality,

respectively, with the condition
∑R

j=1wj = 1. In our case, the weights wi, i = 1, 2

are associated with the ear and face, respectively.

The weights can be assigned to each matcher by exhaustive search or based on

their individual performance [77]. In this work, we empirically choose the weights

for each matcher such that the maximum recognition rate is achieved.

3.5 Experiments and Results

We used a dataset of 462 video clips, collected by WVU, where in each clip the

camera moves in a circular motion around the subjects’ face. The video clips

and images of 402 unique subjects were used as the gallery and 60 video clips

are used as probes. The video clips were captured in an indoor environment with

controlled lighting conditions. The camera captured a full profile of each subject’s
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face starting with the left ear and ending on the right ear by moving around the

face while the subject sits still in a chair. The video clips have a frame resolution of

640× 480 pixels. A frontal facial image from each video clip is extracted and used

for 2D face recognition. There are 135 gallery video clips that contain occlusions

around the ear region. These occlusions occur in 42 clips where the subjects are

wearing earrings, 38 clips where the upper half of the ear is covered by hair, and

55 clips where the subjects are wearing eyeglasses. There are 23 frontal images

with facial expressions and 102 with facial hair. Figure 3.2 shows a set of sample

face and ear image pairs taken from the database.

Figure 3.2

We tested the performance of our approach for ear recognition and face recog-

nition separately and then fused the ear and face match scores using the weighted

sum technique. The results of our experiments are reported in terms of the CMC

for identification (see Figure 3.3). The results of rank-one identification for the

2D face recognition, 3D ear recognition, and the fusion are 81.67%, 95%, and

100%, respectively. As the figure shows, by fusing the face and ear biometric, the

performance of the system is increased to 100%.

Figure 3.4 illustrates the results of the verification experiments. The results

are presented as ROC for the two individual modalities along with the fusion of

the two modalities. As the ROC curve demonstrates, the ear and face modalities

have a verification rate of 95% and 75% at .01 False Acceptance Rate (FAR),
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respectively. The verification rate of the system after fusion is boosted to 100%.

The EER of the multi-modal system is also .01%.

To justify the use of the 3D domain to model the ear in this work, we compare its

performance to the well known 2D representation known as Eigen-Ear presented in

[18]. The rank-one recognition rate achieved using this method was 70%. Clearly,

the Eigen-Ear representation is outperformed by our 3D representation, which

yielded a rank-one identification rate of 95%.

We have also investigated the use of other techniques for data fusion (i.e., Max-

Score, Min-Score, Product-of-Score) and compared their results with the weighted

sum technique. Table 3.1 compares the rank-one identification rate, EER, and the

correct verification rate at .01% FAR of the other techniques for fusion 1. As this

Table illustrates, the weighted sum technique outperforms the other techniques for

data fusion.

1The Tanh-estimators score normalization method was used for all of the fusion techniques.
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Fusion Technique Rank-One EER (%) Correct Verification
Identification (%) (%) @ .01 FAR

Max-Score 95.0 3.5 96.4
Min-Score 81.7 6.5 76.2

Product-of-Score 98.3 1.4 98.3
Weighted-Sum 100 .01 100

Table 3.1
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3.6 Conclusions and Future Work

We have presented an approach for multi-modal face and ear recognition. The 3D

ear structure is reconstructed from a single image using SFS. These 3D ear models

were subsequently enrolled in a database and employed for biometric recognition.

For face recognition, Gabor filters were utilized to extract a set of features for

representing the 2D frontal facial images of the subjects. The extracted Gabor

features were then used to calculate the similarity between facial images. This

resulted in a match score for each modality that represents the similarity between

a probe image and a gallery image. The match scores obtained from the two

modalities (ear and face) were fused at the match score level using the weighted

sum technique.

Our experiments on a database of 402 subjects show significant improvement

in identification and verification rates (the result after fusion is 100%). The sig-

nificant improvement in performance when combining modalities is primarily due

to an increased robustness to occlusion. The database contains a large number

of subjects possessing facial hair and/or eyeglasses (39.1% of the gallery). The

registration accuracy of the ASM in the face recognition component degrades in

the presence of occlusion. This is due to the increased likelihood of mesh nodes

getting stuck at local minima during the optimization. The performance short-

comings of the ear recognition component, on the other hand, was primarily due

to a few images where the ear region was only partially segmented. There are

eight subjects contained within the probe set that possessed occlusions in the ear

region. The segmentation was successful for seven, or 87.5%, of those subjects. In

the entire probe set, 88.33% of the video clips were successfully segmented. Com-

bining modalities improves the robustness to occlusion because of the increased

likelihood of acquiring viable biometric data from at least one modality.
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The proposed system can be applied in settings where quasi-frontal face and

ear images are acquirable. An acquisition setup would require two cameras with

optical axes that are perpendicular to each other to enable capture of frontal and

profile facial images. Such a setup would be realizable at access control checkpoints.

Future work will include the employment of 3D face recognition in combination

with 3D ear recognition. The use of the 3D modality for both biometric markers

will lead to an increase in the robustness to both illumination and pose variations.

In addition, we will extend this technique to recognize faces using profile images.



Chapter Four
Determining Discriminative Anatomical Point Pairings using
AdaBoosted Geodesic Distances for 3D Face Recognition

4.1 Motivation

Face recognition has attracted much attention due to its theoretical merits as well

as its potential in a broad range of applications including public security, law en-

forcement and video surveillance. Relevant research activities have significantly

increased, and much progress has been made in recent years [110]. However, most

current systems perform well only under constrained conditions, even requiring

that the subjects be highly cooperative. Furthermore, it has been observed that

the variations between the images of the same face due to illumination and viewing

direction are often larger than those caused by changes in face identity [2]. The

introduction of the 3D face modality alleviates some of these challenges by intro-

ducing a depth dimension that is invariant to both lighting conditions and head

pose.

As a typical pattern recognition problem, the performance of a face recognition

system primarily depends on two factors: 1) determining an adequate representa-

tion of the face patterns and 2) deriving a classifier by which to classify a novel

face image based on the chosen representation. Generally speaking, a good rep-

resentation should possess such characteristics as small intra-class variation, large

inter-class variations, and being robust to transformations without changing the

class label. Furthermore, its extraction should not heavily depend on manual op-

eration.

51
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Several representation approaches have been proposed for 3D face recognition,

a subset of which may be categorized as global and local surface-based represen-

tations. Global surface-based representations utilize characteristics of the entire

facial region as input to a recognition system. For instance, in the Extended Gaus-

sian Image (EGI), surface normals of a 3D model are mapped to the normals on

the surface of a Gaussian sphere [98]. The Gaussian sphere is divided into regular

cells, which are subsequently counted to form a histogram feature vector.

Local surface-based representations are based on local measures of the 3D face

images. These representations have been found to be more robust to both facial

expressions and small amounts of noise than global representations. Some local

representations include Gaussian and mean curvatures [87, 37, 61, 31], Gaussian-

Hermite moments [100], point signatures [26, 25], Gabor filters [97], the Paquet

shape descriptor [75], and geodesic distance [4, 67].

Geodesic distance, which is the local representation employed in this work, is

the distance of shortest path from a source vertex to a destination vertex along a

surface. The use of distances to capture 3D facial information is directly motivated

by the relevance that metrology has in face anthropometry – the biological science

dedicated to the measurement of the human face. This field has been largely

influenced by the seminal work of Farkas [32]. In his work, Farkas proposed a total

of 47 landmark points on the face, with a total of 132 measurements (comprising

Euclidean, geodesic and angular distances) on the face and head. Until recently, the

measurement process could only be carried out by experienced anthropometrists by

hand. However, recent advancements in 3D scanning technology and techniques

for computing geodesic distances across triangulated domains have enabled this

process to be carried out automatically.
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To consider the geodesic distances between an exhaustive pairing of vertices

would be computationally infeasible, as it would result in CN
2 pairings (where N

denotes the number of vertices comprising a 3D face model). The question then

arises of how many geodesic distances (and which ones) would suffice for accurate

face recognition. This problem has been investigated in 2D face recognition pri-

marily for determining the most discriminative Gabor filters of a Gabor filter bank

[84, 105, 108]. These methods deploy the magnitude and/or phase responses of

Gabor filters in varying orientations and scales as weak classifiers to an Adaboost

algorithm. The AdaBoost algorithm [35] provides a simple yet effective stagewise

learning approach for feature selection and classification.

In this chapter, we propose a method using AdaBoost to determine the geodesic

distances between anatomical point pairs that are most discriminative for 3D face

recognition. Firstly, a generic 3D face model is registered to each 3D face model

(termed scanned models) contained within a database. This results in a conformed

model instance for each scanned model. The conformed model instances provide a

one-to-one correspondence between the vertices of the scanned models. Secondly,

the geodesic distances between a subset of vertex pairings are computed across

all conformed model instances. Thirdly, weak classifiers are formed based on the

geodesic distances and are used as input to an Adaboost algorithm, which con-

structs a strong classifier based on a collection of weak classifiers. The verification

and identification performances of three Adaboost algorithms, namely, the origi-

nal Adaboost algorithm [35] and two variants - the Gentle and Modest Adaboost

algorithms [36, 95] - are then compared.

The remainder of this chapter is organized as follows: Section 4.3 details the

method for conforming the generic model onto the scanned models. Sections 4.4

and 4.5 describe the geodesic distance features and the Adaboost processes, re-
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spectively. Section 4.6 provides a description of the experimental setup. Section

4.7 reports experimental results. Lastly, conclusions and future work are given in

Section 4.8.

4.2 Related Work in the Application of Geodesic Distance Features

to 3D Face Recognition

As mentioned in the previous section, a wide variety of local features have been

employed for 3D face recognition. Several of these features when applied to a

dataset that contains faces exhibiting facial expressions perform poorly for recog-

nition because of the intra-subject variation that is introduced. This variance is

typically caused by the deformations that the facial surface undergoes when per-

forming an expression. It has been shown that variety of facial expressions can

be classified as isometric deformations [63] - deformations of the surface without

tearing or stretching. It is well known that the geodesic distance between any

two points on a surface is invariant to isometric deformations. This invariance has

brought about an extensive body of investigations of the applicability of geodesic

distances as features for 3D face recognition, including the work proposed here.

3D face recognition approaches employing geodesic distance features can be

broadly categorized as 1) methods that explicitly compare geodesic distances [33,

69, 45, 5, 82] and 2) methods that use geodesic distances to derive expression-

invariant facial representations [63, 12, 53, 85]. The methods in the first category

extract geodesic distances and use them directly as features for recognition. An

example of this would be in extracting iso-geodesic curves and computing a cor-

relation between them for matching. The second set of methods utilize geodesic

distances as an intermediary process to generate an expression-invariant represen-

tation of the 3D face model. The remainder of this section will provide a brief

overview of some of the prominent studies employing both of these methodologies.
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4.2.1 Methods that Explicitly Compare Geodesic Distances

The majority of existing 3D face recognition methods that explicitly compare

geodesic distances employ iso-geodesic curves as features. An iso-geodesic curve

of a surface is obtained by firstly computing the geodesic distances (described in

Section 4.4.1) from a source surface point to every point on the surface. The ob-

tained geodesic distances form a geodesic distance map (an example illustration

of which can be found in Figure 4.5(b)). An iso-geodesic curve is defined as the

curve that results from connecting all surface points that are equidistant (in the

geodesic distance sense) from a source point. Therefore, a curve is parameterized

by a center point and a radius. Given this, an iso-geodesic curve can be extracted

by directly referring to the geodesic distance map.

The two distinguishing factors between methods employing iso-geodesic curves

is in the curve normalization and matching components for recognition. In its raw

form, an iso-geodesic curve is often referred to as a space curve. Space curves un-

dergo transformations, which renders direct comparison between them unreliable.

Therefore, it is necessary to normalize the curves by either registering them to each

other or to a common orientation prior to matching. In [33], each curve in a set is

abstracted into a Euclidean invariant integral signature. This signature provides a

pose-invariant representation of the curve that is robust to noise. The matching is

then performed by computing the cosine similarity between the signatures. Simi-

larly, in [69], corresponding curves between a gallery and probe model are aligned

by applying one-dimensional cross correlation. A peak correlation between the

curves indicates the optimal alignment. Furthermore, the peak correlation value

is employed as the similarity score between the corresponding curves. In [45], five

shape descriptors, namely the convexity, ratio of principal axes, compactness, cir-

cular variance, and elliptic variance, are utilized to encode an iso-geodesic curve.
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From these descriptors a feature vector is formed. These feature vectors are then

employed to train a multi-class Support Vector Machine (SVM) classifier for recog-

nition. In [5], similarly to the concept of iso-geodesic curves, the authors extract

iso-geodesic stripes. Instead of extracting points from a surface that are equidis-

tant from the source point (as is done in curves), iso-geodesic stripes incorporate

all surface points that are within a predefined range of geodesic distance from the

source point. The facial information captured by these stripes is then represented

in compact form by extracting the basic 3D shape of each stripe and evaluating

the spatial relationships between every pairs of stripes. Finally, surfaces and their

relationships are cast to a graph-like representation, where graph nodes are the

representations of the stripes, and graph edges are their spatial relationships. The

similarity between two model representations is established using a graph similar-

ity metric. In [82] the set of iso-geodesic curves are compared using the Euclidean

distance.

4.2.2 Methods that use Geodesic Distances to Derive Expression-

Invariant Facial Representations

The other class of methods encountered in the literature utilize geodesic distances

taken from the facial surface to generate an isometric-invariant representation. In

general, these techniques also extract iso-geodesic curves in the process of con-

structing a representation for recognition.

In [85], The geodesic distances between an exhaustive pairing of surface points

is computed and are used to populate a geodesic distance matrix. The singular

values of the geodesic distance matrix after undergoing Singular Value Decomposi-

tion (SVD) are utilized to form a feature vector. For recognition, the dissimilarity

between feature vectors is computed using the mean normalized Manhattan dis-

tance. In [12], the authors embed a face model into a expression-invariant, low
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dimensional space using techniques in multi-dimensional scaling, and term this

representation a canonical form. Canonical forms can then be directly compared

using the method of moments. In [63], the authors propose a face recognition

method, which is based on an isometric deformation model using the geodesic

polar representation. Instead of calculating pairwise geodesic distances, geodesic

distances from the nose tip to all other points are calculated to construct a geodesic

polar parameterization. In [53], a set of iso-geodesic curves is extracted from a 3D

face model. Surface points along the curves are sampled at regular angular inter-

vals. A feature vector representing the model is formed from the intensity values

of a registered 2D image at the sample locations. A similarity score between the

feature vectors is then computed using the cosine distance.

4.2.3 Contribution

Note that the methods described in Section 4.2 employ geodesic representations

that are in some capacity derived from the nose tip. For instance, iso-geodesic

curves and stripes are extracted from geodesic distance maps that are generated

by utilizing the nose tip as a source surface point. The motivation behind using

the nose tip is that it can be robustly localized in a range image due to its distinct

shape properties. However, such approaches are limited in the geodesic paths

that can be extracted from a facial surface. The motivation underlying this work

is in developing a framework that allows for the reliable extraction of geodesic

paths that do not necessarily originate in some capacity from the nose tip. Such a

framework enables the evaluation of the discriminative potential of a larger set of

geodesic paths.

The objective of this work is to determine the most discriminative geodesic

paths for face recognition. This method, however, is generalizable to any distance
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metric. These obtained geodesic paths can be extracted and utilized to reduce the

facial surface considered for recognition.

4.3 Construction of Dense Correspondences

Here, we consider the variations in facial structure across subjects contained within

a 3D face database. Our objective is to attain a precise conformation between

a generic model and each scanned model within the database. This enables us

to establish a one-to-one correspondence between the vertices of each conformed

instance of the generic model.

4.3.1 Global Mapping

The Thin Plate Spline (TPS) method is applied to a set of control points in order

to coarsely register the generic model onto a scanned model. This set of control

points, consisting of 19 facial landmarks, have been semi-automatically labeled on

both the generic and scanned models using a statistical approach described in [81].

This approach is based on a Mixture of Factor Analyzers (MoFA) and utilizes both

the 3D range image and a registered 2D image for feature localization. The facial

landmarks, shown in Figure 4.1(a), include the inner and outer eye corners, tip

and bridge of the nose, lip corners, upper and lower lip, chin, hairline center, and

the upper and lower connections of the ears to the face. It is worth noting that a

minimum of three landmarks are required for the global mapping process described

in this section, however, its performance enhances with the number of initial corre-

spondences. Facial landmarks that are not accurately localized automatically are

manually labeled so not to affect subsequent stages of the proposed method.

The TPS method fits a mapping function between the corresponding control

points {ci}Ni=1 and {yi}Ni=1 of the generic and scanned models, respectively, by
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minimizing the following energy functional, known as the bending energy:
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The mapping function, f(·), maps each vertex of the generic model’s surface into

a new location, represented by,

f(ci) = yi; i = 1, . . . , N (4.1)

f(p) = α0 + αxx+ αyy + αzz +

N
∑

i=1

wiϕ(p− ci) (4.2)

where ϕ (·) = ‖·‖3 is the kernel function, the vertex p = (1, x, y, z), and α0, αx,

αy, αz are the parameters of f(·) that satisfy the condition of bending energy

minimization [8]. The generic and scanned models before and after the global

mapping are illustrated in Figure 4.1 (a) and (b), respectively.

(a) (b)

Figure 4.1

4.3.2 Local Conformation

The aforementioned global mapping process is effective in providing a coarse reg-

istration between the generic and scanned models. However, the accuracy of con-
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formation must be much higher for facial structure analysis. Although the control

points of the generic model map to the exact locations of their scanned model coun-

terparts, surrounding surface regions still demonstrate inadequate disparities. To

refine the conformation, a local deformation process, similar to the one presented

in [59], is employed.

Firstly, both the generic and scanned models are sub-divided into regions based

on their respective control points. A Voronoi tesselation, illustrated in Figure 4.2,

is constructed from the control points of the scanned model. This essentially par-

titions the models into 19 corresponding regions. Secondly, point correspondences

are established between each pair of corresponding facial regions. A vertex, pi, on

the generic model is compared against all vertices on the scanned model that are

contained within pi’s counterpart region. The correspondence is established based

on the similarity measure defined in (2.8).

(a) (b) (c)

Figure 4.2

4.3.3 An Extension of the Bentley-Ottman Algorithm

The correspondence mapping described in Section 4.3.2 results in a correspon-

dence for each vertex on the generic model with a vertex on the scanned model.
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Some of these correspondences (which are analogous to line segments with corre-

sponding vertices as endpoints) may intersect with neighboring correspondences

as illustrated in Figure 4.3. It can be seen from the figure that these intersections

may cause irregularities on the conformed surface when mapping the generic model

onto the scanned model. For instance, the correspondence assignment in Figure

4.3(b) may lead to the surface folding over itself, as illustrated in Figure 4.3(d),

since vertices A and B are being driven along intersecting trajectories. Therefore,

it is important to uncross intersecting correspondences prior to conformation.

In computational geometry, the Bentley–Ottmann (BA) algorithm is a sweep

line algorithm for listing all intersections in a set of 2D line segments. We ex-

tend this algorithm to detect correspondences that intersect in a minimum of two

Cartesian subspace projections. The BA algorithm utilizes a sweep line approach,

in which one considers the intersections of the input line segments with a vertical

line, L, that traverses from left to right across the horizontal axis. In our case,

correspondences contained within a given voronoi tessellation (Section 4.3.2) are

considered separately from the remainder of the model’s correspondences. Since

the correspondences are defined within the 3D domain, and the BA algorithm is

only applicable in the 2D domain, it is necessary to project the correspondences

into the xy, xz, and yz subspaces and apply the BA algorithm to each. A pair

of correspondences that intersect in a minimum of two subspaces are designated

as intersecting and must subsequently undergo uncrossing. An outline of the al-

gorithm is given in Algorithm 2. For simplicity, a correspondence is referred to

as a line segment in Algorithm 2. This process is then iterated until there are no

intersecting correspondences within the tessellation.
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Algorithm 2 An extension of the Bentley-Ottman algorithm

1: repeat

2: for φ ∈ {xy, xz, yz} subspace projections do
3: Initialize a priority queue Q of potential future events, each associated

with a point in the subspace and prioritized by the horizontal-coordinate
of the point. Initially, Q contains an event for each of the endpoints of
the input line segments.

4: Initialize a binary search tree T of the line segments that cross the sweep
line L, ordered by the vertical-coordinates of the crossing points. Initially,
T is empty.

5: While Q is nonempty, find and remove the event from Q associated with
a point p with minimum horizontal-coordinate. Determine what type of
event this is and process it according to the following case analysis:
• If p is the left endpoint of a line segment `s, insert `s into T . Find
the segments `r and `t that are immediately below and above `s in T
(if they exist) and if their crossing forms a potential future event in the
event queue, remove it. If `s crosses `r or `t, add those crossing points as
potential future events in the event queue.
• If p is the right endpoint of a line segment `s, remove `s from T . Find
the segments `r and `t that were (prior to the removal of `s) immediately
above and below it in T (if they exist). If `r and `t cross, add that crossing
point as a potential future event in the event queue.
• If p is the crossing point of two segments `s and `t (with `s below `t to
the left of the crossing), store line segments `s and `t in memory location
Mφ. Then, swap the positions of `s and `t in T . Find the segments `r
and `u (if they exist) that are immediately below and above `s and `t
respectively. Remove any crossing points rs and tu from the event queue,
and, if `r and `t cross or `s and `u cross, add those crossing points to the
event queue.

6: end for

7: Find the intersecting line segments common to a minimum of two subspace
memory locations Mφ, φ ∈ {xy, xz, yz}, and store them in memory location
ψ.

8: for all intersecting line segments in ψ do

9: Swap the endpoints (scanned model vertices) of a pair of intersecting line
segments (correspondences) in ψ.

10: end for

11: until ψ is empty
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(a) (b)

(c) (d)

Figure 4.3

4.3.4 Generic Model Conformation

To complete the refined conformation of the generic model onto the scanned model,

an energy minimization functional, E, is applied. The energy functional is calcu-

lated from the point correspondences established in the previous section, and is

given by:

E = Eext + λEint (4.3)

where Eext and Eint denote the external and internal energies, respectively, and λ

is a weighting coefficient that dictates the contribution of the internal energy term.

The external energy term, Eext, drives the vertices of the generic model to the

location of their counterparts on the scanned model, and is given by:

Eext =
N
∑

i=1

wi ‖pi − p̃i‖2 (4.4)

where {wi}Ni=1, are weighting coefficients associated with the correspondences (in
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our experiments all weights were set to 1), and {pi}Ni=1 and {p̃i}
N
i=1 are the generic

model vertices and their scanned model counterparts, respectively.

The internal energy term, Eint, impedes the movement of the vertices on the

generic model from their initial arrangement. It is given by:

Eint =

N
∑

i=1

∑

j∈KNN

(

‖pi − pj‖ −
∥

∥p0
i − p0

j

∥

∥

)2
(4.5)

where pj is the j
th nearest neighbor of pi (in our experiments we consider theK = 4

nearest neighbors) in the initial arrangement of the vertices, and p0
i , p

0
j denote the

vertices’ initial locations. Since the energy functional in (4.3) is quadratic with

respect to pi the multivariate equation can be reduced to a sparse set of linear

equations, and can be efficiently solved using a quadratic programming method

such as the conjugate gradient method [73].

The generic model conformation process is repeated for all scanned models

within the database. This results in a conformed instance of the generic model

for each scanned model within the database. Figure 4.4(d) illustrates an example

conformed generic model after local mapping.

It is also worth noting that the FRGC v1.0 database consists of frontal views

for all subjects, however, there is a scale ambiguity due to the acquisition device

not being at a fixed distance away from the subjects. We applied the Procrustes

analysis method [49] to the 19 control points of both the initial generic model

(prior to conformation) and the conformed generic model to derive a scale factor.

This scale factor is then applied to the conformed generic model for normalization.

4.4 Computing Geodesic Distances Between Anatomical Point Pairs

Geodesic distance is the distance of shortest path from a source vertex, pi, to a

destination vertex, pj , along a surface. We utilize the geodesic distances between
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(a) (b)

(c) (d)

Figure 4.4
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vertex pairs of the conformed generic model to construct a set of weak classifiers

for face recognition.

4.4.1 The Fast Marching Method on Triangulated Domains

The Fast Marching Method (FMM), proposed by Sethian in [83], is a technique

for computing geodesic distances across a triangulated surface. The FMM is a

method for tracking the evolution of an expanding front. It computes the arrival

time of a front at the vertices of a discrete lattice. Given a surface, the FMM can

be used to compute its distance field, since, if the front evolves at unit speed, the

arrival time corresponds to the distance.

The front expands in the direction of the surface normals. At a given point,

the motion of the front is described by the Eikonal equation:

‖∇T‖F (x, y) = 1 (4.6)

where T and F (x, y) ≥ 0 are the arrival time and the speed of the front at point

(x, y), respectively.

The aim of the FMM is to expand the front from a starting vertex. Say we

are computing the distance field from a vertex, p. In this case, p would be used

as the starting vertex of the expanding front. The starting vertex is tagged as

frozen, and distances are computed at its neighbors. Vertices that have computed

distances but are not yet frozen are designated as narrow band vertices. For each

iteration of the method, the narrow band vertex having the smallest distance value

is frozen, and distances are computed at its neighbors. Frozen vertices are utilized

to compute the distance values of other vertices but are never computed again.

Thus, the method propagates a front of narrow band points from the starting

vertex, freezing points as it traverses the surface.
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Distances are computed by solving the Eikonal equation. The distance value

for a narrow band vertex is obtained such that the estimated length of the gradient,

‖∇T‖, is equal to 1/F .

‖∇T‖ = 1/F (4.7)

Sethian proposes the following formula (taken from the field of hyperbolic conser-

vation laws) for the squared length of the gradient:

‖∇T‖2 =







max (V1 − V2, V1 − V3, 0)2+
max (V1 − V4, V1 − V5, 0)2+
max (V1 − V6, V1 − V7, 0)2

(4.8)

where V1 is the unknown distance value and {Vi}7i=2 are the distance values at

the neighboring vertices (in the six-connected neighborhood) illustrated in Figure

4.5(a).

Equation (4.7) is then substituted into (4.8), which leads to the following equa-

tion:

1/F 2 =







max (V1 − V2, V1 − V3, 0)2+
max (V1 − V4, V1 − V5, 0)2+
max (V1 − V6, V1 − V7, 0)2

(4.9)

In (4.9), terms that do not contain a minimum of one frozen vertex are discarded

from the equation.

Assuming V2 < V3, V5 < V4, V6 < V7 and that V2, V5, and V6 are frozen, the

following quadratic equation is formed:

(V1 − V2)2 + (V1 − V5)2 + (V1 − V6)2 = 1/F 2 (4.10)

The largest solution to this equation is the one sought. This follows from the fact

that V1 must be greater than the three known values (since they are frozen). The

interested reader is referred to [3] for a more detailed description of the method.

Figure 4.5(b) illustrates several geodesic distances that have been computed for a

sample 3D face model.
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Figure 4.5

4.4.2 Implementation

In our experiments, we use the geodesic distances from a set of source vertices

to a subset of their surrounding vertices as features. Since there is a one-to-one

correspondence between the vertices of the conformed generic model instances,

the same index map applies to all models. There is a total of 328 source vertices

that are uniformly distributed across the facial region and are localized on the

index map, as shown in Figure 4.6(a). The destination vertices for a given source

vertex (shown in Figure 4.6(d)), psrc = (x, y), are computed on the index map as

pdes = (x+ r cos θ, y + r sin θ), where four distances, r ∈ {15, 30, 40, 60}, and 24

orientations, θ ∈
{

0, 1
2π
, 2
2π
, · · · , 23

2π

}

, are used. The projection of these points from

the index map onto the 3D face models is illustrated in Figure 4.6(b,c,e,f).

4.5 Learning the Most Discriminant Geodesic Distances Between
Anatomical Point Pairs by AdaBoost

We construct a set of weak classifiers for face recognition using the geodesic dis-

tances described in the previous section. We use the Adaboost learning algorithm,

formulated by Freund and Schapire [35], to train a strong classifier based on a
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Figure 4.6
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weighted selection of weak classifiers. The performances of three Adaboost algo-

rithms, namely, the original Freund and Schapire method termed Real Adaboost,

and two variants, Gentle Adaboost and Modest Adaboost, are investigated. The

various AdaBoost algorithms presented here primarily differ in the update scheme

of the weights. The following section will describe these Adaboost methods as

well as the method of constructing the weak classifiers known as classification and

regression trees.

4.5.1 Real Adaboost

Boosting is a method of obtaining a highly accurate classifier by combining many

weak classifiers, each of which is only moderately accurate. The following briefly

describes the original Adaboost algorithm, proposed by Freund and Schapire [35],

which we term Real Adaboost. Let S = {(xi, yi)}Mi=1 be a sequence of M training

examples where sample xi ∈ <N belongs to a domain or sample space χ, and

each label yi belongs to a binary label space Υ = {−1,+1}. Each sample xi is

comprised of a set of N features, such as the geodesic distances between a set

of anatomical point pairings employed in this work. A weak classifier is used

to generate a predicted classification for a sample based on the value of a single

feature. The weak classifiers in this work are constructed using the Classification

and Regression Trees (CART) method, which is described in Section 4.5.4.

The idea of boosting is to use a set of weak classifiers to form a highly accurate

classifier by calling the weak classifiers repeatedly with different weighting distri-

butions over the training examples. Boosting is comprised of three key steps: 1)

computing the weight distribution, 2) training the weak classifier and 3) comput-

ing a real-valued function, ft. The AdaBoost algorithm runs for T iteration, where

each sample xi is assigned a weight wt(i) at each iteration t = {1, . . . , T}. Initially,

all weights are set equally, and are redistributed at each iteration in order to ma-
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nipulate the selection process. At each iteration t, the weak classifier produces a

mapping ht (x) : χ 7→ <, where the sign of ht (x) provides the classification, and

|ht (x)| is a measure of the confidence in the prediction. The class predictions are

then used to construct a weighted class probability estimate given by:

pt (x) = P̂w (y = +1|x) ∈ [0, 1] (4.11)

The weights are then redistributed and normalized as follows:

wt+1 (i) =
wt (i) exp (−yiht (xi))

Zt
(4.12)

Increasing the weights of samples that are misclassified by ht, in the next iteration,

favors the weak classifiers that handle correctly these difficult samples. Zt denotes

the normalization factor which ensures that the sum of all weights equals 1. The

contribution to the final classifier is the logit-transform of the class probability

estimate given by:

ft (x) =
1

2
log

(

pt (x)

1− pt (x)

)

(4.13)

A pseudocode outline of the Real Adaboost method is given in Algorithm 3.

Algorithm 3 The Real Adaboost Algorithm

1: Given M training samples {(xi, yi)}Mi=1 , xi ∈ <N , yi ∈ {−1,+1}
2: Initialize weights w1 (i) = 1/M
3: for t = 1, . . . , T do

4: Train the weak classifier, ht (x), and compute the class probability estimate,
pt (x) = P̂w (y = +1|x) ∈ [0, 1], using weight distribution wt

5: Compute ft (x) =
1
2
log
(

pt(x)
1−pt(x)

)

6: Update wt+1 (i) =
wt(i) exp(−yiht(xi))

Zt

7: end for

8: Strong classifier: sign (F (x)) = sign
(

∑T
t=1 ft (x)

)

4.5.2 Gentle Adaboost

The main difference between the Gentle Adaboost method (proposed by Friedman

et al. in [36]) and the Real Adaboost method is how it uses its weighted class
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probabilities, pt (x), to compute the real-valued function, ft (x). Here the equation

is given as ft (x) = Pw (y = +1|x) − Pw (y = −1|x), rather than half the log–

ratio as in (4.13). It has been shown that log–ratios can be numerically unstable

[36], leading to very large update values, while the update here lies in the range

[−1,+1]. Additionally, fitting of the weak classifier is performed using weighted

least squares, given by:

ht = argmin
h

(

M
∑

i=1

wt (i) · (yi − h (xi))2
)

(4.14)

An outline of the Gentle Adaboost method is given in Algorithm 4.

Algorithm 4 The Gentle Adaboost Algorithm

1: Given M training samples {(xi, yi)}Mi=1 , xi ∈ <N , yi ∈ {−1,+1}
2: Initialize weights w1 (i) = 1/M
3: for t = 1, . . . , T do

4: Fit the weak classifier, ht (x), by weighted least squares of yi to xi and
compute the class probability estimate, pt (x) = P̂w (y = +1|x) ∈ [0, 1]

5: Compute ft (x) = pt (x)− (1− pt (x))
6: Update wt+1 (i) =

wt(i) exp(−yift(xi))
Zt

7: end for

8: Strong classifier: sign (F (x)) = sign
(

∑T
t=1 ft (x)

)

4.5.3 Modest Adaboost

The Modest Adaboost algorithm, proposed by Vezhnevets and Vezhnevets in [95],

has shown in certain instances to generalize better than the previously mentioned

methods, sometimes at the cost of higher training error. Another advantage of the

method is a natural stopping criterion, which other boosting techniques lack.

Similarly to the previous two methods, we compute the values p+1
t (x) =

P̂w (y = +1 ∩ ht(x)) and p−1
t (x) = P̂w (y = −1 ∩ ht(x)), which are measurements

of the classification accuracy of the current weak classifier, weighting higher sam-

ples that have been misclassified. In contrast, the additional values p̄+1
t (x) =
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P̂w̄ (y = +1 ∩ ht(x)) and p̄−1
t (x) = P̂w̄ (y = −1 ∩ ht(x)) are measurements of the

classification accuracy, weighting higher samples that have been correctly classified.

The Modest Adaboost algorithm sets ft (x) =
(

p+1
t

(

1− p̄+1
t

)

− p−1
t

(

1− p̄−1
t

))

(x)

in order to decrease the contribution of weak classifiers that perform ”too well” in

classifying data that has already been correctly classified with high margin; Thus,

the name Modest Adaboost. An outline of the Modest Adaboost method is given

in Algorithm 5.

Algorithm 5 The Modest Adaboost Algorithm

1: Given M training samples {(xi, yi)}Mi=1 , xi ∈ <N , yi ∈ {−1,+1}
2: Initialize weights w1 (i) = 1/M
3: for t = 1, . . . , T ∩ while ht 6= 0 do

4: Fit the weak classifier, ht (x), by weighted least squares of yi to xi
5: Compute the inverted weight distribution

w̄t (i) = (1− wt (i)) · Z̄t
6: Compute the class probability estimate

p+1
t (x) = P̂w (y = +1 ∩ ht(x)) ∈ [0, 1]
p̄+1
t (x) = P̂w̄ (y = +1 ∩ ht(x)) ∈ [0, 1]
p−1
t (x) = P̂w (y = −1 ∩ ht(x)) ∈ [0, 1]
p̄−1
t (x) = P̂w̄ (y = −1 ∩ ht(x)) ∈ [0, 1]

7: Compute ft (x) =
(

p+1
t

(

1− p̄+1
t

)

− p−1
t

(

1− p̄−1
t

))

(x)

8: Update wt+1 (i) =
wt(i) exp(−yift(xi))

Zt

9: end for

10: Strong classifier: sign (F (x)) = sign
(

∑T
t=1 ft (x)

)

4.5.4 Classification and Regression Trees

CART, proposed by Breiman et al. [11], is a decision tree learning method that

is typically used to generate weak classifiers for the AdaBoost algorithm. The

objective is to construct a model that predicts the value or class of a target variable

based on one or more input variables.

CART is a form of binary recursive partitioning. The term binary implies that

each tree node, containing a decision rule, can only be split into two decisions.
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Thus, each node can be split into two child nodes, in which case the original node

is called a parent node. The term recursive refers to the fact that the binary

partitioning process can be applied repeatedly. Thus, each parent node can give

rise to two child nodes and, in turn, each of these child nodes may themselves be

split, forming additional children. The term partitioning refers to the fact that the

dataset is split into subsets or partitioned. At the end of each tree path is a leaf

node that contains the predicted class label or value of its subset. The recursion

process is completed when all variables contained in a node have the same value

of the target variable, or when splitting no longer adds value to the predictions.

In our algorithm, we select decision stumps as weak classifiers. A decision

stump is a decision tree with a root node and two leaf nodes. For each feature

in the input data, a decision stump is constructed. The following points support

our selection of decision stumps as the weak classifiers: 1) the model that decision

stumps use is very simple and 2) there is only one matching operation in each

decision stump for testing a sample; thus, the computational complexity of each

decision stump is very low.

4.5.5 Intra-Class and Inter-Class Space

The Adaboost algorithm works with binary (two-class) classifiers, and face recog-

nition is effectively a multi-class problem. Therefore, the face recognition prob-

lem must be transformed from a multi-class problem to a two-class problem.

We employ a statistical approach to construct two classification spaces, namely,

the intra-class space and the inter-class space [78]. The intra-class space, CI, is

formed by analyzing the variations in geodesic distances between the conformed

generic model instances of an individual. Conversely, the inter-class space, CE, is

formed by analyzing the variations in geodesic distances between the conformed

generic models of different individuals. Firstly, let the set of geodesic distances
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extracted from a given conformed generic model, M, be denoted by G (M) =

{D (pi,pj) |i ∈ [1, . . . , Nsrc] , j ∈ [1, . . . , des(pi)]} whereD (·, ·) represents the geodesic

distance, Nsrc is the number of source vertices, and des(pi) denotes the number

of destination vertices associated with source vertex pi. The intra-class and inter-

class spaces are respectively defined as:

CI = {|G (Mp)−G (Mq)| , {Mp,Mq} ∈ Ai} (4.15)

CE = {|G (Mp)−G (Mq)| ,Mp ∈ Ai,Mq ∈ Aj} (4.16)

where Mp and Mq are the conformed generic models taken from subject p and q,

respectively. In the CI case, Mp and Mq are two model instances that belong to

the same subject class Ai. Conversely, in the CE case, Mp and Mq are two model

instances that belong to different subject classes Ai and Aj , where ∩Ci=1Ai = ∅ (C

denotes the number of subject classes). Samples of class CI are designated with

label +1 and samples of class CE with −1.

4.5.6 Implementation

Given a training set that includes N images for each of K individuals, the total

number of image pair combinations is CKN
2 , where the majority of pairs belong to

the CE class and a small minority of K×CN
2 pairs belong to the CI class. In order

to select a subset of samples to represent the overwhelmingly large number of CE

samples, and to manage the imbalance between CI and CE samples, we employ the

re-sampling scheme proposed in [105]. Algorithm 6 outlines the training process.

The final classifier, F (x), is the summation of a set of strong classifiers, Fq (x) =

∑T
t=1 ft (x), where each Fq (x) is a collection of weak classifiers obtained from

the qth iteration’s training samples. After each iteration, a re-sampling scheme

is employed to replace CE samples for the subsequent iteration. Because of the

limited number of CI samples, all CI samples are retained in each iteration, and
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Algorithm 6 Training process with re-sampling scheme

1: Given the labeled training set X, include all CI samples and select CE samples
randomly at the rate of 1:2 to generate a training subset x ∈ X.

2: for q = 1, . . . , Q do

3: Perform AdaBoost on x for t = {1, . . . , Tq} iterations such that FAR ≤
2%, FRR = 0%. This produces a collection of weak classifiers Fq (x) =
∑Tq

t=1 ft (x)
4: Replace the CE samples of x; if sign (Fq(xi)) 6= yi, add it to the training

subset, x.
5: end for

6: Final classifier: sign (F (x)) = sign
(

∑Q
q=1 Fq (x)

)

only CE samples are re-sampled. If at iteration q, a CE sample, xi, is misclassified

by the strong classifier, Fq (x), xi is added to the set of training samples for iteration

q+1. The number of Adaboost iterations, T , is contingent on the strong classifier,

Fq (x), achieving an acceptable false positive and false negative classification rate.

Each iteration of the training process has a False Acceptance Rate (FAR) of 2%

and a False Rejection Rate (FRR) of 0%, ensuring that the trained classifier is

capable of separating the CI samples from the CE samples. The ratio of CI

samples to CE samples is maintained at 1:2 due to the imbalance between CI and

CE samples.

4.6 Experimental Setup

We evaluated the proposed method on the FRGC v1.0 2D + 3D frontal face

database D collection, which is comprised of 953 registered 2D + 3D images of

277 human subjects [19]. These images were acquired at the University of Notre

Dame between January and May 2003. Two four-week sessions were conducted

for data collection, approximately six weeks apart. Subjects participated in one or

more acquisitions, with a minimum of one week between successive acquisitions.

Among 277 subjects, 200 participated in more than one acquisition. The range
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scans of 15 subjects are either misaligned with their corresponding 2D images

or contain occlusions within the facial region and have been excluded from our

experiments.

In each acquisition session, subjects were imaged using a Minolta Vivid 900

range scanner. Subjects stood approximately 1.5 meters from the camera, against a

homogeneous background, with one front-above-center spotlight illuminating their

face. They were instructed to maintain a neutral facial expression and to look di-

rectly at the camera. The Minolta Vivid 900 uses a projected light stripe to acquire

triangulation-based range data. It also captures a color image near-simultaneously

with the range data capture. The result is a 640 × 480 sampling of range data

and a registered 640 × 480 color image.

4.7 Experimental Results

For the following experiments, the database was split into a training set and a

testing set. The range image of subjects possessing a single range image is au-

tomatically enrolled in the training set. Subjects who underwent more than one

acquisition have two of their range images enrolled in the testing set and the re-

mainder in the training set. Subjects possessing two range images have them both

enrolled in the testing set. This resulted in a training set consisting of 525 range

images of 233 subjects and a testing set of 370 range images of 185 subjects. The

testing set was further subdivided into a probe and gallery set, enrolling one range

image of each subject into each set.

The training set yielded 627 and 136,923 intra-class and inter-class range image

pairs, respectively. At any given training iteration, all 627 intra-class pairs and

1,254 inter-class pairs are used, resulting in a training subset consisting of 1,881

samples.
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The method described in Section 4.4 resulted in 24, 158 geodesic distance fea-

tures per conformed generic model instance. A training process was performed

using each of the Adaboost algorithms described in Section 4.5. For each training

process, the same initial conditions were given, such as identical initial training

subsets as well as the same number of re-sampling iterations. Intermediary con-

ditions, such as the samples selected in the re-sampling scheme, differed amongst

the algorithms as these conditions are algorithm-specific. Each training process

iterated through 8 stages, and generated a final classifier consisting of 471, 553,

and 378 weak classifiers for the Real Adaboost, Gentle Adaboost, and Modest

Adaboost algorithms, respectively.

To evaluate the performance of the proposed method, we applied the final

classifiers obtained from each of the Adaboost algorithms to the probe and gallery

sets of the testing set. Intra-class and inter-class pairs were constructed between

a probe image and all images contained within the gallery. This resulted in one

intra-class pair and 184 inter-class pairs for each subject in the probe set. The

Adaboost classifiers were then applied to the sample set of each subject to produce

the class predictions. As mentioned in Section 4.5.1, the sign of the classifier output

provides the classification, and the absolute value is a measure of the confidence

in the prediction. Therefore, a match score can be derived based on the absolute

value of the classifier output, and since intra-class pairs are labeled as positive,

the maximum match score would be the rank-one result. Algorithm 7 outlines the

recognition process.

The CMC curve, which illustrates the probability of identification against the

returned 1:N candidate list size, is provided in Figure 4.7. The faster the CMC

curve approaches 1, indicating that the subject always appears in the candidate

list of specified size, the better the matching algorithm. It can be seen from this



79

Algorithm 7 Recognition Process

1: gallery samples (xgi , y
g
i ), i = 1, 2, . . . ,M, xgi ∈ RN

2: probe samples (xpi , y
p
i ), i = 1, 2, . . . , L, xpi ∈ RN

3: for u = 1, . . . , L do

4: for v = 1, . . . ,M do

5: Fv (x
p
u) =

∑

t ft (|xpu − xgv|)
6: end for

7: ypu = ygi , i = argmax
v=1,...,M

Fv (x
p
u)

8: end for

figure that the Gentle Adaboost algorithm, achieving a rank-one recognition rate

of 95.69%, outperforms both the Real Adaboost and Modest Adaboost algorithms,

achieving rank-one recognition rates of 94.59% and 91.89%, respectively.
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Figure 4.7

To assess the verification performance of the Adaboost algorithms, the ROC

curves have been generated and are provided in Figure 4.8. An ROC curve plots,

parametrically as a function of the decision threshold, the rate of false positives

(i.e., impostor attempts accepted) on the x-axis, against the corresponding rate of

true positives (i.e., genuine attempts accepted) on the y-axis. The Gentle Adaboost
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algorithm, achieving a correct verification rate of 86.49% at a False Acceptance

Rate (FAR) of 0.01 and an EER of 4.31%, outperforms both the Real and Modest

Adaboost algorithms, achieving correct verification rates of 83.24% and 83.24% at

a FAR of 0.01 and EERs of 4.71% and 4.87%, respectively.
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Table 4.1

Authors, reference Subjects Images Matching algorithm Rank-1 Rate

Kakadiaris et al., [47] 275 943 Deformable model 99.3%
Russ et al., [79] 200 398 Hausdorff distance 98.5%
Lin et al., [54] 275 943 Summation-invariant

features
Ver.: 97.2% @
0.1% FAR

Tang et al., [88] N/A N/A Profile curve EER: 5.5%
Berretti et al., [6] 275 943 SIFT 70%
proposed approach 262 894 Geodesic distance 95.7%

For the remainder of the experiments, we only report the results of the Ad-

aboost algorithm that demonstrated the highest rank-one identification and ver-

ification performance – the Gentle Adaboost algorithm. In Figure 4.9, a plot of

the rank-one identification rate as a function of the number of weak classifiers
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comprising the final classifier is provided. As shown, the rank-one recognition rate

improves from 40.54% with 60 weak classifiers to 95.68% with 553 weak classifiers.
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Figure 4.9

The weighted distribution of geodesic distance endpoint features contributing

to the weak classifiers selected by the Gentle Adaboost algorithm is illustrated in

Figure 4.10. Both the source and destination vertices of each contributing feature

are accounted for in constructing an accumulator of size 640 × 480 (e.g., the dimen-

sions of a range image). For instance, if the classifier contains a geodesic distance

feature comprised of source vertex psrc and destination vertex pdes, the index po-

sitions of the accumulator corresponding to both psrc and pdes will be incremented

by the weight associated with the feature. A 10 × 10 Gaussian low-pass filter with

a variance of 2.0 is subsequently applied to smoothen the accumulator. The colors

of the map represent the weighted proportion of selected features associated with

a vertex; dark blue and dark red indicating maximal and minimal contributions,

respectively. This illustrates that the most discriminant facial regions are the areas
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around the nose, eye brows, mouth, and chin (e.g., high curvature regions) when

using geodesic distance features.

Figure 4.10

In Table 4.1, we compare our results with the most notable systems [79, 47]

systems applied to this dataset. Although the rank-one recognition rate reported

here is less than those reported in [79, 47], the advantage of our approach is in the

computational efficiency of the matching process. As discussed in Section 4.5.4,

there is only one matching operation in each decision stump for testing a sample;

thus, the computational complexity for each decision stump is extremely low. The

final classifier is a weighted collection of decision stumps. As there are n weak

classifiers comprising the final classifier, the computational complexity of testing a

sample is O(n). In the case of the Gentle Adaboost algorithm, which generated a

strong classifier based on a collection of 553 weak classifiers, the matching process

requires 553 steps. The computational complexity reported in [79] is O(N), where

N is approximately equal to K · 30, 000 vertices and K ≤ 20 denotes the number

of iterations used for fine-tuning the face model registration; this results in a time

complexity of approximately 30,000 × 20 = 600,000 steps (the proposed matching

process is 1,084.88 times faster). The matching process proposed in [47] consists

of computing the L1-norm distances between 1-channel and 3-channel deformation
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images of a probe and gallery subject. The computational complexity of this

method is O(N), where N denotes the number of vertices in the facial region. In

the case that N = 4 ·30, 000 vertices, the computational complexity of this method

is 120,000 steps (the proposed matching process is 217 times faster). The methods

presented in [54, 88, 6] are also applied to the FRGC v1.0 dataset, however, the

authors do not provide a computational complexity analysis.

4.8 Conclusion

In this chapter, we have presented a method for 3D face recognition using ad-

aboosted geodesic distance features. Experiments were conducted on the publicly-

available FRGC v1.0 2D + 3D frontal face database D collection. The classification

performances of three Adaboost algorithms – namely, the Real, Gentle, and Modest

Adaboost algorithms – were assessed on a gallery and probe set each consisting of

185 subjects. Experimental results indicate that the Gentle Adaboost algorithm

outperforms the Real and Modest Adaboost algorithms in both the identifica-

tion and verification tasks. The Gentle Adaboost algorithm achieved an 95.68%

rank-one recognition rate and an EER of 4.31% based on a classifier containing

553 geodesic distance features. The geodesic distances selected by the Gentle Ad-

aboost algorithm are contained primarily within the regions of the nose, eye brows,

mouth, and chin. These salient facial regions are consistent with those reported in

psycho-visual analyses of human face perception and recognition [39].

Conventional shape matching methods commonly used in 3D face recognition

are time consuming. Such is the case with the Iterative Closest Point ICP [7]

method, which has a computational complexity of O (N2), where N denotes the

number of vertices comprising the 3D surfaces. The proposed approach can be

applied as a data reduction technique to reduce the number of vertices consid-
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ered when matching 3D facial data; effectively increasing computational efficiency

(executes in linear time) while maintaining an acceptable recognition rate.

In this work we directly used the geodesic distance between a source and des-

tination vertex as a feature. We acknowledge that these features are not robust to

surface noise, and do not incorporate information about the shape of the geodesic

curve. Future work will include investigating the use of integral invariant signa-

tures [33] to represent the geodesic paths. These features are more robust to surface

noise and incorporate shape information about the geodesic paths. To extend the

proposed method to faces demonstrating facial expressions, future work will also

include generating a bending-invariant canonical representation of the facial sur-

face, as proposed in [12], prior to performing the surface registration described in

Section 4.3. This representation, obtained by Multi-Dimensional Scaling (MDS),

is invariant to isometric transformation of the surface, which a variety of facial

expressions has been shown to adhere to [12]. The transformation of the facial

surface into a bending-invariant canonical representation effectively reduces the

non-rigid registration of two surfaces demonstrating different expressions into a

rigid registration problem, to which the proposed method can be applied.



Chapter Five
A Computationally Efficient Approach to 3D Ear Recognition

Employing Local and Holistic Features

5.1 Overview

3D object recognition is an attractive field of research because of its theoretical

merits as well as its usability in a broad range of applications. A 3D object

can be represented by a complimentary set of local and holistic features. Local

features are robust to clutter and small amounts of noise. In contrast, holistic

features are easier to construct and retain more information about an object than

local features. The majority of 3D object recognition systems focus solely on

one feature category [16]. However, the use of a single feature category may be

insufficient when recognizing highly similar objects. It is therefore desirable in

these scenarios to develop a system that incorporates local and holistic features in

a scalable and efficient manner.

In this chapter, we present a 3D object recognition system capable of discrimi-

nating between highly similar 3D objects. An evaluation of the proposed system is

conducted on a 3D ear recognition task. The ear provides a challenging case study

because of its high degree of inter-subject similarity. The system is comprised of

four primary components: 1) object segmentation, 2) local feature extraction and

matching, 3) holistic feature extraction and matching, and 4) a fusion framework

combining local and holistic features at the match score level. For the segmenta-

tion component, we employ the method presented in [111]. For the local feature

extraction and representation component, we extend the Histogram of Indexed

85
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Shapes (HIS) feature descriptor, proposed in [111], to an object-centered 3D shape

descriptor, termed SPHIS, for surface patch representation and matching. For

the holistic feature extraction and matching component, we propose voxelizing

the object surface to generate a representation from which an efficient, voxel-wise

comparison of gallery-probe model pairs can be made. The match scores obtained

from both the local and holistic matching components are fused to generate the

final match scores. An overview of our system is provided in Figure 5.1.

The remainder of this chapter is organized as follows: Sections 5.2 and 5.3

present the local and holistic feature extraction and matching components, respec-

tively. Section 5.4 details the match score level fusion framework used. Section 5.5

provides the experimental results obtained from an identification and verification

task. Lastly, conclusions and future research directions are discussed in Section

5.6.

5.2 Local Feature Representation

5.2.1 Preprocessing

Prior to extracting the local feature representation from a range image, a series of

preprocessing steps is performed. Firstly, we apply the 3D ear detection system

proposed in [111]. This system outputs a Bounding Box (BB) from which the ROI

can be cropped and used as input for the feature extraction stage.

Secondly, to reduce noise in the input image (e.g., spikes and holes), prepro-

cessing is also necessary before performing the feature extraction. The data pre-

processing in our implementation consists of three successive steps: 1) median
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Figure 5.1



88

filtering to remove spikes, 2) cubic interpolation to fill the holes in the data, and

3) a Gaussian filter to smooth the data.

Thirdly, the surface is normalized to a standard pose. The centroid of the sur-

face is firstly mapped to the origin of the coordinate system. Then, the principal

components corresponding to the two largest eigenvalues of the surface are cal-

culated. The surface is then rotated such that the two principal components are

aligned with the x and y axes of the coordinate system. The utility of the pose

normalization becomes evident in Section 5.3.1.

5.2.2 Histogram of Indexed Shapes (HIS) Feature Descriptor

Objects can be characterized by their distinct 3D surface shapes. The human ear,

for instance, contains areas around the helix ring and anti-helix that possess both

prominent saddle and ridge shapes, while the inner ear regions are comprised of

rut and trough shapes.

5.2.3 Shape Index and Curvedness

A quantitative measure of the shape of a surface at a point p, called the shape

index SI , is defined as [30]:

SI (p) =
1

2
− 1

π
arctan

(

kmax (p) + kmin (p)

kmax (p)− kmin (p)

)

(5.1)

where kmax and kmin are the principal curvatures of the surface at point p, with

kmax > kmin defined as:

kmax (p) = H (p) +
√

H2 (p)−K (p) (5.2)

kmin (p) = H (p)−
√

H2 (p)−K (p) (5.3)

where H (p) and K (p) are the mean and Gaussian curvatures, respectively.

Note that with the definition of SI in equation (5.1), all shapes can be mapped

on the interval SI = [0, 1]. Every distinct surface shape corresponds to a unique
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value of SI , except for the planar shape. Vertices on a planar surface have an

indeterminate shape index, since kmax = kmin = 0. The shape index value captures

the intuitive notion of the “local” shape of a surface. Nine well-known shape

categories and their corresponding shape index values are shown in Table 5.1 [30].

Table 5.1

Shape category SI Shape category SI

Spherical cup (0, 1/16) Spherical cap (15/16, 1)
Trough (1/16, 3/16) Dome (13/16, 15/16)
Rut (3/16, 5/16) Ridge (11/16, 13/16)

Saddle Rut (5/16, 7/16) Saddle Ridge (9/16, 11/16)
Saddle (7/16, 9/16)

The shape index of a rigid object is not only independent of its position and

orientation in space, but also independent of its scale. To encode the scale infor-

mation, we utilize the curvedness, which is also known as the bending energy, to

capture the scale differences [30]. Mathematically, the curvedness of a surface at

a point p is defined as:

Cv (p) =

√

k2max (p) + k2min (p)

2
(5.4)

It measures the intensity of the surface curvature and describes how gently or

strongly curved a surface is.

5.2.4 HIS Descriptor

To build the histogram descriptor, firstly, the curvedness and shape index values

are computed at each point contained within the surface region to be encoded.

Each point contributes a weighted vote for a histogram bin based on its shape

index value, with a strength that depends on its curvedness. The votes of all
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points are then accumulated into the evenly spaced shape index bins forming the

HIS descriptor. The HIS descriptor is normalized with respect to its total energy.

5.2.5 3D Keypoint Detection

To generate the set of local features, the input image is initially searched to identify

potential keypoints that are both robust to the presence of image variations and

highly distinctive, allowing for correct matching. The keypoint detection method

proposed here is inspired by the 3D face matching approach proposed by Mian et

al. in [60], but with significant enhancements tailored towards improved robustness

and applicability to objects with salient curvature, such as the ear. In the method

presented by Mian et al., the input point cloud of the range image is sampled

at uniform intervals. By observing 3D ear images, we found that the majority

of these salient points are located in surface regions containing large curvedness

values. This signifies that sampling in regions containing large curvedness values

will result in a higher probability of obtaining repeatable keypoints.

Instead of uniformly sampling the range image to obtain the candidate key-

points, we propose using a local b × b (b = 1mm in our case) window to locate

the candidate keypoints; the center point of the window is marked as a candidate

keypoint only if its curvedness value is higher than those of its neighbors in the

window. The keypoint repeatability experiment presented at the end of this sec-

tion will demonstrate that by enforcing the keypoints to have a locally maximum

curvedness value, more repeatable keypoints can be found.

Once a candidate keypoint has been located, a local surface patch surrounding

the candidate keypoint is cropped from the ear image using a sphere centered at

the candidate keypoint. The purpose of examining its nearby surface data is to

further reject candidate keypoints that are less discriminative or less stable due to

their location in noisy data or along the image boundary. If the cropped surface
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data contains boundary points, the candidate keypoint is automatically rejected

as being close to the image boundary. Otherwise, PCA is applied to the cropped

surface data, and the eigenvalues and eigenvectors are computed to evaluate its

discriminative potential.

A candidate keypoint is kept only if the eigenvalues computed from its associ-

ated surface region satisfy the following criteria:

λ3/

3
∑

i=1

λi > t1 and λ1/

3
∑

i=1

λi < t2 (5.5)

where λ1 and λ3 are the largest and smallest eigenvalues. The threshold t1 ensures

that the cropped region associated with a keypoint has a certain amount of depth

variation. Similarly, the threshold t2 ensures that the keypoint is not located in

a noisy region or edge where the data variation is mostly carried by one principal

direction. In our implementation, t1 and t2 are chosen as t1 = 0.01 and t2 = 0.8.

Figure 5.2 provides an overview of the keypoint detection procedure. Firstly, a

set of candidate keypoints are sampled on the surface based on their curvedness

values as shown in Figure 5.2(b). Secondly, PCA is performed on these keypoints’

neighboring points to reject inadequately distinctive and noisy candidate keypoints.

Figure 5.2(c) demonstrates this PCA step, where the example candidate keypoints

1 (a less distinctive point) , 2 (a noisy point) and 3 (a boundary point) are rejected,

and the retained keypoints are shown in Figure 5.2(d).

To demonstrate the effectiveness of our keypoint detection algorithm, a re-

peatability experiment is performed on the keypoints extracted from 200 3D ear

images of 100 individuals in which each subject has a pair of ear images. Since the

range images contain real data, the ground truth correspondences of the keypoints

are unknown. In this experiment, an approximation of the ground truth corre-

spondences is obtained using an ICP-based registration algorithm as suggested in

[60]. The pair of ear models from the same subject is firstly registered using all
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Figure 5.2
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of the points comprising the models. A keypoint’s nearest neighboring keypoint

in the counterpart image is considered as its correspondence after the alignment.

When the correspondence is located within a distance of the keypoint, it is consid-

ered as a repeatable keypoint. Figure 5.3 illustrates the cumulative repeatability

percentage as a function of the increasing distance of the correspondences, where

the line represents the mean performance across the dataset and the bars indicate

a 90% confidence range. The repeatability reaches 28.6% at 1mm by sampling

points with locally maximum curvedness values, compared to 20.1% obtained by

a uniform sampling method. Notice that we only consider the repeatability at dis-

tances within the resolution of the data. Overall, our keypoint detection algorithm

achieves a higher repeatability by sampling points possessing larger curvedness

values.
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5.2.6 Local Feature Representation

The locations of the detected keypoints provide repeatable local 3D coordinate

systems to describe the local ear surfaces. The next step is to construct a feature

descriptor to represent the local ear surface that is highly distinctive while remain-

ing invariant to other changes, such as pose, background clutter and noise. Our

local feature representation described below is an extension of the Histogram of

Indexed Shapes (HIS) feature introduced in Section 5.2.4. The extension includes

a different computational mechanism that renders the feature representation more

accurate and informative, allowing for the capture of more subtle inter-ear shape

variations among different subjects.

5.2.7 Surface Patch Histogram of Indexed Shape (SPHIS) Descrip-

tor

As mentioned in Section 5.2.4, the HIS descriptor can be used to encode shape

information of any surface region. In addition, we can form a HIS of arbitrary

size by uniformly spacing the shape index values over the range [0, 1]. The larger

the dimensionality of the HIS, the more descriptive it is. However, too large of

a descriptor may be sensitive to noise. Based on the HIS descriptor, the SPHIS

descriptor is employed to represent the keypoint, and is built from the surface

patch surrounding it. Figure 5.4 illustrates the procedure for constructing the

SPHIS feature descriptor. Firstly, the surface patch surrounding a keypoint is

cropped using a sphere cut that is centered on the keypoint with a radius r. The

value of r determines the locality of the surface patch representation and offers

a trade off between its distinctiveness and robustness. The smaller the value is,

the less distinctive the surface patch while more resistant to pose variation and

background clutter. Thus, the choice of r is dependent on the applied object. In
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our 3D ear recognition implementation, the radius is set to r = 14mm, which is

empirically determined based on the size of the human ear.

Figure 5.4

Secondly, the points contained within the cropped surface patch are further

divided into four subsets using three additional concentric sphere cuts with radii

of ri =
i×r
4
, i = 1, 2, 3, which are all centered on the keypoint, forming four sub-

surface patches as shown in the second and third rows of Fig 5.4. The motivation

behind dividing the cropped surface patch into sub-surface patches is to derive

spatial information of the surface patch.

After forming the four adjacent sub-surface patches, a HIS descriptor is built

from each of the four sub-surface patches by voting their points’ curvedness values

into the shape index bins as described in Section 5.2.4. The SPHIS descriptor

construction generates an array of 1× 4 HIS descriptors with 16 bins (16 indexed

shapes) from the four sub-surface patches, where the length of each bin corresponds

to the magnitude of that histogram entry. This histogram is shown in the forth

row of Figure 5.4. The four HIS descriptors are then concatenated to form a
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64-dimensional feature vector. Lastly, the shape index value of the keypoint is

appended to the feature vector to increase its discriminative potential and reduce

the probability that keypoints exhibiting different shape types are matched in the

feature matching stage. This results in a 4×16+1 = 65 dimensional feature vector

used to represent a local surface patch.

5.2.8 Local Surface Matching Engine

In our local feature representation, a 3D ear surface is described by a sparse set

of keypoints, and associated with each keypoint is a descriptive SPHIS feature

descriptor that encodes the local surface information in an object-centered coordi-

nate system. The objective of the local feature matching engine is to match these

individual keypoints in order to match the entire surface.

To allow for efficient matching between gallery and probe models, all gallery

images are first processed. The extracted keypoints and their respective SPHIS

feature descriptors are stored in the gallery. Each feature represents the local

surface information in a manner that is invariant to surface transformation. A

typical 3D ear image will produce approximately 100 overlapping features at a wide

range of positions that form a redundant representation of the original surface.

In the local feature matching stage, given a probe image, a set of keypoints

and their respective SPHIS descriptors are extracted using the same parameters

as those used in the feature extraction of the gallery images. For every feature

in the probe image, its closest feature in the gallery image is determined based

on the L2 distance between the feature descriptors. A threshold t (t = 0.1 in our

implementation) is then applied to discard the probe features that do not have an

adequate match. This procedure is repeated for every probe keypoint, resulting

in a set of initial keypoint correspondences. Outlier correspondences are then

filtered using geometrical constraints. We apply the iterative orthogonal Procrustes
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analysis method, described in Algorithm 8, to align the two sets of keypoints and

eliminate outlier correspondences by assessing their geometric consistency. After

applying this method, the local surface matching engine outputs the number of

matched keypoints M for every probe-gallery pair as the similarity score. Figure

5.5 illustrates an example of recovering the keypoint correspondences from a pair

of gallery and probe ear models.

Algorithm 8 Iterative orthogonal Procrustes analysis for removing outliers

1: Given a set of M initial keypoint correspondences. Let gallery points gi =
(xgi , y

g
i , z

g
i )
T and probe points pi = (xpi , y

p
i , z

p
i )
T , where i = 1, 2, . . . ,M

2: repeat

3: Align the keypoints of the gallery and probe models
• Calculate the centroids of the probe and gallery keypoints: gc =
1
M

∑M
i gi,pc =

1
M

∑M
i pi

• Find the rotation matrix R using singular value decomposition: C =
1
M

∑M
i (pi − pc)(gi − gc)

T , C = UΛVT , R = VUT

• Derive the translation vector t = gc −Rpc

• Align the keypoints of the gallery and probe models using R, t: p′
i
=

Rpi + t

• Update the keypoint distances: di = ‖gi − p′
i
‖2

4: Find the largest value in di. If dmax > 1.5mm, then the correspondence is
removed and set to M ←M − 1.

5: until dmax < 1.5mm or M < 3
6: Output M as the similarity match score.

5.3 Holistic Feature Extraction

5.3.1 Preprocessing

The preceding section described the method by which to establish correspondences

between a probe-gallery pair. The probe model is then registered onto the gallery

model by applying the transformation obtained in the local matching stage to

each point on the probe model. In the event that the number of established cor-

respondences is below three, we rely on the pose normalization scheme, described

in Section 5.2.1, for the model registration.
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5.3.2 Surface Voxelization

The holistic representation employed in this work is a voxelization of the surface.

The motivation behind using such a feature is to explore alternative methods that

are more efficient than computing the Mean Squared Error (MSE) between the

registered probe and gallery models. Although employing the MSE measure to

calculate surface similarity is often encountered in the literature [23, 104], it is

a computationally expensive technique because it requires obtaining the nearest

neighboring points of a surface on its counterpart (the complexity of a linear nearest

neighbor search is O(Ng · Np), where Ng and Np denote the number of points

comprising the gallery and probe models, respectively).

A voxelization is defined as a process of approximating a continuous surface

in a 3D discrete domain [96]. It is represented by a structured array of volume

elements (voxels) in a 3D space. A voxel is analogous to a pixel, which repre-

sents 2D image data in a bitmap. Advantages of such a representation include

a robustness to surface noise, which may occur when there is specularity on the

surface upon acquisition. Its robustness to noise is enabled by the flexibility to

vary the quantization step (i.e., the size of the voxel) used to discretize the surface.

Furthermore, a voxelization may provide a condensed representation of the surface

(depending on the size of the voxel used), which reduces the storage requirements of

the database. Thirdly, voxelization methods are capable of producing normalized,

fixed-sized representations across a set of varying objects. This enables efficient

voxel-wise comparisons between representations (e.g., computing the dot product

between them). Fourthly, it can encode attributes of a surface such as presence

(i.e., whether a point on the surface is contained within a voxel), density (i.e., the

number of points contained within a voxel), and surface characteristics (e.g., the

mean curvedness of points contained within a voxel).
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In this work, we propose to encode presence (a binary representation) to define

the surface voxelization and investigate its efficacy.

5.3.3 Binary Voxelization

The representation employed in this work is known as the binary voxelization. This

representation simply encodes the presence of a vertex within a voxel. A voxel that

has a point enclosed within it is assigned a value of ’1’ and ’0’, otherwise. Algo-

rithm 9 describes the voxelization process using this feature. The inputs of this

algorithm are the points of the surface to be voxelized, {pi}Ni=1, the voxel dimen-

sions, {rx, ry, rz}, and the spatial extent of the voxel grid, {xlo, ylo, zlo, xhi, yhi, zhi}.

The variable ε is used to ensure that points along the boundary of the voxel grid

are assigned to voxels. Its value should be greater than zero but less than the

minimum voxel dimension size (in our experiments, ε = 1× 10−15). A sample ear

Algorithm 9 Binary Voxelization

1: Given surface vertices {pi}Ni=1 = {xi, yi, zi}Ni=1, voxel dimensions {rx, ry, rz},
and spatial extents {xlo, ylo, zlo, xhi, yhi, zhi}

2: Initialize: V = [vi,j,k]sx×sy×sz = 0, where:

sx = d(xhi + ε− xlo)/rxe
sy = d(yhi + ε− ylo)/ry e
sz = d(zhi + ε− zlo)/rz e

3: for i = 1, . . . , N do

4: vψx(xi)
,ψy(yi),

,ψz(zi)
= 1, where:

ψx (xi) = b(xi − xlo)/rxc+1

ψy (yi) = b(yi − ylo)/ry c+1

ψz (zi) = b(zi − zlo)/rz c+1

5: end for

model before and after undergoing binary voxelization is illustrated in Figure 5.6.
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(a) (b)

(c) (d)

Figure 5.6
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5.3.4 Holistic Surface Matching Engine

In the gallery enrollment (offline) stage, for a given gallery model, a voxel grid

is constructed from the bounding box enclosing the model. The gallery model

is subsequently voxelized, and this representation is enrolled into the gallery. In

the online stage, the transformation used to register a probe-gallery model pair in

the local matching stage is applied to the bounding box of the probe model. The

joint spatial extent of the registered probe and gallery model bounding boxes is

computed. The voxel grid used to voxelize the gallery model is extended to enclose

both bounding boxes. This extended voxel grid is then used to voxelize the probe

model. Additionally, the voxelization representation of the gallery model is zero

padded to account for this extension. Notice that both models have been vox-

elized utilizing a common voxel grid. By voxelizing both models using a common

voxel grid and vectorizing the voxelizations, vectors of equal lengths are produced.

The similarity between these vectors is then calculated using the cosine similarity

measure, given by:

S (p, g) =
V̄p · V̄g

∥

∥V̄p

∥

∥ ·
∥

∥V̄g

∥

∥

(5.6)

where V̄p and V̄g denote the vectorized versions of matrix V (presented in Algo-

rithm 9) of the probe and gallery models, respectively. Notice that although many

voxels may be assigned values of zero, as is apparent in Figure 5.6, they do not

affect the calculation of (5.6).

Experiments were conducted on the dataset described in Section 5.2.5 to de-

termine the optimal voxel size for the binary voxelization representation. In these

experiments, only cubed voxels were considered. The results are given in Table

5.2.

A voxel size of 1.0mm yielded the best recognition performance from a range of

0.4mm to 1.8mm. For this reason, a voxel size of 1.0mm is used for all subsequent
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Table 5.2

Voxel Size 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Rank-1 (%) 94.0 94.0 95.7 96.2 95.9 95.9 95.2 94.7
EER (%) 3.82 3.27 2.84 2.61 2.70 2.84 2.60 3.12

experiments presented in this work.

5.4 Fusion

The local and holistic matching components result in independent similarity ma-

trices Si each of size P × G, where i ∈ {1, 2} denotes the matching engine and P

and G represent the number of probe and gallery models, respectively. We fuse the

local and holistic match scores using the weighted sum technique. This approach

is in the category of transform-based techniques (i.e., based on the classification

presented in [77]). However, the combination of the match scores is meaningful

only when the scores of the individual matchers are comparable. Hence, the sig-

moid function score normalization [17], which is proven as an efficient and robust

technique in [77], is used to transform the match scores obtained from the different

matchers into a common domain. It is defined as follows:

snj =







1

1+exp
(

−2
(

sj−τ

α1

)) sj < τ,

1

1+exp
(

−2
(

sj−τ

α2

)) otherwise,
(5.7)

where sj and s
n
j are the scores before normalization and after normalization, τ is

the reference operating point and α1 and α2 denote the left and right edges of the

region in which the function is linear. The double sigmoid normalization scheme

transforms the scores into the interval of [0 1], in which the scores outside the two

edges are non-linearly transformed to reduce the influence of the scores at the tails

of the distribution. In our implementation, we select τ , α1, and α2 such that τ ,

τ − α1, and τ + α2 correspond to the 60th, 95th, and 5th percentile of the genuine
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match scores, respectively [17]. The weighted sum of the normalized scores are

then used to generate the final match score:

Sf =
2
∑

j=1

wj ∗ snj (5.8)

where snj and wj are the normalized match score and weight of the jth modality,

respectively, with the condition
∑2

j=1wj = 1. The weights can be assigned to each

matcher by exhaustive search or based on their individual performance [77]. Other

methods adaptively set these weights by assessing the quality of each modality

[65]. In this work, we train for the weights, as will be described in Section 5.5.3.

5.5 Experimental Results

Experiments were conducted on the publicly-available UND database Collection

J2 to assess the efficacy of the proposed system. The experiments evaluated the

performance of two types of authentication methodologies: identification and veri-

fication. In an identification scenario, a biometric system establishes the identity of

a probe model by comparing it to the entire gallery set. The identity of the gallery

model that shares the greatest similarity with the probe model is declared the

identity of the probe model. The identification performance is represented by the

rank-one identification rate, and is defined as the number of correctly-identified

probe models divided by the total number of probe models. In a verification

scenario, the aim is to validate a user’s claimed identity. Two widely-used repre-

sentations of this performance is the EER and the verification rate achieved at a

predefined False Acceptance Rate (FAR). The FAR is the measure of the likeli-

hood that the system will incorrectly accept an access attempt by an unauthorized

user. When employing a 0% FAR, it is ensured that an unauthorized user will be

rejected by the system. The EER denotes the common error rate at which the
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false acceptance rate is equal to the false rejection rate. The lower the EER, the

higher the accuracy of a biometric system.

To emulate real-world database scenarios, different portions of the UND database

are used to construct four datasets for experimentation. These datasets, summa-

rized in Table 5.3, reproduce the scenarios of comparing a probe model of a given

subject to a gallery set comprised in part of 1) multiple models of the same subject

and 2) a single model of the same subject. In the experiments, these datasets are

utilized to generate more than 3.2 million gallery-probe model pair comparisons.

The remainder of this section provides a description of the experiments conducted

and a detailed analysis of the results.

Table 5.3

Dataset Description No. of models

All All models in the
database

1801

Single1 One model of the gallery-
probe model pair that re-
sults in the highest rel-
ative match score in the
All vs. All recognition ex-
periment for each subject

415

Single2 The remaining model of
the gallery-probe model
pair referenced in the de-
scription of Single1

415

Multi The models in the
database that are not
included in Single1

1386

5.5.1 Identification Scenario

To assess the identification performance of the proposed method, we conducted

three experiments utilizing the datasets described in Table 5.3. The first experi-
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ment, denoted by All vs. All, compares the All dataset against itself. That is, the

All dataset is defined as being both the probe and the gallery set in this recog-

nition experiment. In terms of the match score matrix, SP×G, where P and G

respectively denote the number of models comprising the probe and gallery sets

(in this experiment, P = G), this comparison will result in the largest match score

for a given row and column to reside along the diagonal (i.e., Si,i). This is due to

the fact that when comparing a dataset to itself, a diagonal element will represent

the match score between a given probe model and an identical copy of itself as the

gallery model. For this experiment, the results have been generated ignoring the

diagonal of the match score matrix.

For the second experiment, the Single1 and Single2 datasets are designated as

the gallery and probe sets, respectively. These datasets are derived from the match

scores obtained from the All vs. All experiment. After obtaining the match scores

of the first experiment, we determine for each subject the optimal gallery-probe

model pair utilizing the procedure:

1. obtain the n indices {(i`, j`)}n`=1 of S that correspond to a match between

the models of subject k.

2. Find the index (is, js) that yields the maximum value of the ratio, Si,j

/

max
k∈TNi

(Si,k),

where TNi denotes the indices of the true negative comparisons of the ith

row of S. This step provides the indices to the gallery-probe model pair that

yields the highest similarity score relative to the associated TNi.
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Subsequently, one of the models of the obtained pair is enrolled into the Single1

dataset, while the other model is enrolled into the Single2 dataset. In contrast to

the All vs. All experiment, this experiment employs a single model representing a

subject in the probe and gallery sets, respectively.

For the third experiment, the Single1 and Multi datasets are employed as the

gallery and probe sets, respectively. TheMulti dataset is composed of the models in

the UND database that are not contained in the Single1 dataset. This experiment

employs a single model representing a subject in the gallery set and multiple models

representing a subject in the probe set.

The results of these experiments are presented in the form of a CMC curve,

provided in Fig. 5.7, and the rank-one recognition rate, given in Table 5.4. A

CMC curve plots the probability of identification for a given range of ranks. The

left-most data point on the curve represents the rank one.

Table 5.4

Experiment Gallery Probe Rank-one

1 All All 98.11%
2 Single1 Single2 97.83%
3 Single1 Multi 97.83%

As will be discussed in Section 5.5.4, the proposed method outperforms the

SOA in the identification scenario.

5.5.2 Verification Scenario

The verification performance of the system is evaluated on the same three dataset

pairs used in the identification scenario. The results of the experiments are given

in the form of the EER and the verification rate at a FAR of both 0% and 0.1%.

These results, along with a plot of the verification rate as a function of the FAR,
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are provided in Table 5.5 and Fig. 5.8, respectively.

Table 5.5

Experiment EER VR @ FAR = 0% VR @ FAR = 0.1%

1 3.17% 66.02% 87.72%
2 1.96% 77.58% 93.49%
3 1.15% 88.21% 93.89%

Note that in the verification scenario, Experiments 2 and 3 outperforms the

other Experiment 1. The reason for this is that the datasets comprising Exper-

iments 2 and 3 are composed of the gallery-probe model pairs that have yielded

the highest relative match scores for their respective subjects. As will be discussed

in Section 5.5.4, the proposed method outperforms the SOA in the verification

scenario.
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5.5.3 Training of the Data Fusion Parameters

The data fusion scheme required the training of seven parameters, namely αl1,

αl2, τ
l, and wl, which are associated with the local feature modality and αh1 , α

h
2 ,

and τh which are associated with the holistic feature modality (wh is equal to

1 − wl). These parameters were obtained by minimizing the EER with respect

to the parameters. The constrained optimization was performed using the Glob-

alSearch framework provided by MatlabR©. The α1, α2, and τ parameters were

initialized to the 10th, 90th, and 50th percentiles of the match scores of their re-

spective modalities, and were bounded to the limits of
[

0th, 20th
]

,
[

70th, 100th
]

, and

the
[

20th, 70th
]

percentiles of the match scores of their respective modalities. Note

that the bounded ranges of the parameters do not overlap; wl was initialized to

0.5 with upper and lower bounds of 1.0 and 0.0, respectively.

The training was conducted separately for each of the three experiments de-

scribed in the previous two subsections. For the All vs. All experiment, 13-fold

cross validation was performed. That is, a thirteenth of the probe set is used for
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testing and the remainder is used for training. This process is repeated 13 times,

where in each iteration a distinct portion of the probe set is designated as the

testing set. Similarly, 3- and 10-fold cross validation is performed for the Sin-

gle1 vs. Single2 and Single1 vs. Multi experiments, respectively. This results in

approximately the same number of probe models (139) in the testing sets of each

experiment. The mean parameters obtained were αl1 = 2.95, αl2 = 14.64, τ l = 5.85,

αh1 = 0.06, αh2 = 0.24, τh = 0.12, and wl = 0.51.

The results presented in the previous two subsections are obtained by comput-

ing the mean performance across the K folds of the cross validation.

5.5.4 Comparison with Other Methods

In this subsection, we compare the identification and verification performances

achieved by the proposed system with the two SOA systems described in [104]

and [23]. In [104], the authors utilize the same database applied in this work,

namely the UND database Collection J2. As part of the experimental validation,

the authors conduct the Single1 vs. Multi experiment. It should be noted that

the models incorporated into each set may differ based on the selection process of

the respective authors. In [23], the authors employ the UND database Collection

F and a subset of Collection G, which are both subsets of the database employed

in this work (Collection J2). The probe and gallery sets used respectively consist

of a single model for each of 302 subjects. A comparison of these methods applied

to identification and verification scenarios are provided in Tables 5.6-5.9.

Table 5.6

Method Rank-one

Yan and Bowyer [104] 97.6%
This work 97.8%
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Table 5.7

Method EER

Yan and Bowyer [104] 1.2%
This work 1.15%

Table 5.8

Method No. of subjects EER

Chen and Bhanu [23] 302 96.36%
This work 415 97.83%

5.5.5 Similarity-based Classification

As indicated in the survey by Chen et al. [24], there has been a growth in interest in

similarity-based classification over recent years. Here, we apply some of the widely

used techniques in this field to the 3D ear recognition domain. Similarity-based

classifiers predict the class label of a test sample based on the similarity values

between the test sample and a set of training samples. A classifier is trained by

either employing similarity values as features or by generating a kernel from the

similarities. For recognition, such schemes do not require the direct comparison of

features extracted from the database models, as long as the similarity function is

well defined for any pair of samples. The remainder of this section will provide a

description of using similarities as features, similarities as kernels, and similarities

as weights for determining nearest neighbors. Furthermore, we discuss four pop-

ular similarity-based classification schemes, namely K Nearest Neighbors (KNN)

applied to similarity features, SVM-KNN employing a similarity kernel, SVM ap-

plied to similarity features and employing a similarity kernel, and a weighted KNN

approach, termed Kernel Ridge Regression (KRR)-KNN, that derives the weight

of each nearest neighbor using a similarity kernel. Experimental results on the
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Table 5.9

Method No. of subjects EER

Chen and Bhanu [23] 302 2.3%
This work 415 1.96%

datasets presented in Table 5.3 are then reported for each of these methods.

5.5.6 Similarities as Features

A similarity-based classifier can be trained in Euclidean space by employing the

pairwise similarity values between a probe model and a gallery set as features.

This can be achieved by constructing a match score matrix of size P × G, where

each row of the matrix is treated as a sample of G dimensions. The rationale

behind such schemes is that samples belonging to the same class will have similar

similarity values when matched against a dataset. However, similarity features my

not capture sufficient discriminative information to perform well under datasets

containing large intraclass variations [24] (as is often the case in biometric applica-

tions). We have conducted experiments on two techniques that can use similarities

as features, namely linear SVM classification and an SVM classifier employing an

Radial Basis Function (RBF) kernel, and KNN classification.

5.5.7 Similarities as Kernels

The role of a kernel in linear classification is to transform non-linearly-separable

samples to a space where linear separation is possible. A standard interpretation

of a kernel is the pairwise similarity (inner product) between two samples. Con-

sequently, researchers have suggested using similarity values to construct kernels,

and applying classification techniques that solely depend on inner products.
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A kernel must satisfy Mercer’s condition in order to ensure that there exists a

Reproducing Kernel Hilbert Space (RKHS) where a convex optimization formula-

tion can be derived so as to obtain an optimal solution [94]. Thus, the correspond-

ing similarity matrix SPG×PG must be Positive Semi-Definite (PSD): x∗Sx ≥ 0

for all non-zero x ∈ <PG, where x∗ is the conjugate transpose of x. The similarity

matrix S must also be symmetric. Therefore, we compute 1
2

(

S+ ST
)

to make S

symmetric.

Three “kernel tricks” for modifying similarities into kernels are investigated

in this work, namely the spectrum clip, spectrum flip, and spectrum shift [24].

For all three methods, the eigenvalue decomposition of S is performed resulting in

S = UTΛU, where U is an orthogonal matrix and Λ is a diagonal matrix of real

eigenvalues, Λ = diag
(

{λi}PGi=1

)

. The spectrum clip method converts S to PSD by

clipping all negative eigenvalues to zero such that Λclip = diag
(

{max (λi, 0)}PGi=1

)

and the modified PSD similarity matrix be Sclip = UTΛclipU. Some researchers

associate the negative eigenvalues of a similarity matrix to be caused by noise, and

view the clipping of these values to zero as a denoising procedure [99]. In contrast to

this notion, Laub et al. [52] demonstrate that the negative eigenvalues correspond

to useful information about the object classes and features, which is in accordance

with some prominent psychological studies [93]. To this end, Laub et al. proposed a

conversion of S to be PSD, termed the spectrum shift, that retains the information

of the negative eigenvalues by taking the absolute value of the eigenvalues in Λ such

that Λflip = diag
(

{|λi|}PGi=1

)

. Lastly, the spectrum shift method can be utilized to

convert a similarity matrix into a kernel matrix. In this method, the contents of

Λ is shifted by the absolute value of the smallest eigenvalue |λmin (S)|. That is, S

is converted to Sshift = UTΛshiftU, where Λshift = Λ+ |min (λmin (S) , 0)| I. Unlike
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the previous two methods, the spectrum shift method does not alter the relative

similarity between any two samples.

For experimentation, we utilize a SVM because it is a widely-used representa-

tive of kernel methods and offers a natural approach for similarity-based classifi-

cation. It is important to note that when employing such a classifier training and

testing samples should be treated in a consistent manner. That is, modifications

used to convert a similarity matrix, comprised of training samples, to a PSD kernel

matrix must also be applied to the testing samples. Ideally, if the testing samples

are available during training, the samples should be incorporated into the similar-

ity matrix during the conversion to a kernel matrix. In practice, though, this is

typically not the case and alternative methods have been developed to address this

issue [99]. However, in the experiments to follow, we assume the testing samples

are available during the training process, and are incorporated into the similarity

matrix prior to conversion. The testing samples are subsequently removed from

the augmented kernel matrix after conversion.

5.5.8 Similarity-Based Weighted Nearest Neighbors

Similarities can also be used to assign weights to samples in a KNN scheme. An

advantage of weighted KNN is in its task-flexibility because the weights can be

treated as probabilities as long as the weights are non-negative and sum to one

[24]. For this class of techniques, we must redefine S as the k×k matrix comprised

of the pairwise similarities between the k nearest neighbors (training samples) of

a test sample x, and s as a k × 1 vector of the similarities between the k nearest

neighbors and x. For each test sample, weighted KNN assigns a weight wi for

the ith nearest neighbor, where i = 1, . . . , k. The test sample is assigned the

label of the class demonstrating the largest cumulative sum of weights across the

k nearest neighbors. The KRR method can be used to compute the weights of the
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nearest neighbors with the equation w = (S+ λI)−1
s, where λ is a regularization

parameter.

5.5.9 Experimental Results

We compare four similarity-based classification techniques: 1) KNN applied to sim-

ilarity features: 2) SVM employing a similarity kernel, 3) SVM-KNN, which differs

from 2) in that the kernel is comprised only of the k nearest neighbors (training

samples) of the training sample, and 4) KRR-KNN, where training sample weights

are derived from similarities using the KRR method.

Experiments are conducted on the All vs. All dataset pairing, resulting in a

match score matrix of size 1801× 1801. For cross validation, 20% of the dataset is

used for testing while the remainder is used for training. This process is repeated

20 times, and the mean performance rates and standard deviations across the trials

is reported (shown in parentheses in Table 5.10). The results are evaluated over the

range of values for the input parameters k ∈ {1, 2, 4, 8, 32} (KNN, SVM-KNN, and

KRR-KNN), λ ∈ {10−3, 10−2, . . . , 10, } (KRR-KNN), C ∈ {10−3, 10−2, . . . , 105}

(SVM-KNN, SVM (Linear,RBF,Clip,Flip,Shift)), and γ ∈ {10−5, 10−4, . . . , 10}

(SVM (RBF)). The results, provided in Table 5.10, are reported only for the

optimal parameter values.

From these results it is evident that local (KNN-based) methods outperform

the global methods (SVM(Linear, RBF, Clip,Flip,Shift)). The reason for this is

that fewer classes are incorporated into the training set in local methods, and

typically the prevalent class label across the k nearest neighbors is the true class

label of the test sample. Moreover, the parameter that affected the performance

of the local methods most significantly is the number of neighbors k. Table 5.11

provides the performance rates of the local methods for different values of k.
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Table 5.10

Method Performance Rate

KNN (k = 1) 94.2% (1.1%)
KRR-KNN (Clip, k = 1, λ = 1) 94.2% (1.1%)
KRR-KNN (Flip, k = 1, λ = 1) 94.2% (1.1%)
KRR-KNN (Shift, k = 1, λ = 1) 94.2% (1.1%)
SVM-KNN (Clip, k = 1, C = 1) 94.2% (1.1%)
SVM-KNN (Flip, k = 1, C = 1) 94.2% (1.1%)
SVM-KNN (Shift, k = 1, C = 1) 94.2% (1.1%)

SVM (Clip, C = 1) 70.3% (1.9%)
SVM (Flip, C = 1) 58.2% (2.4%)
SVM (Shift, C = 1) 31.1% (2.3%)
SVM (Linear, C = 1) 67.4% (2.2%)

SVM (RBF, C = 1, γ = 0.1) 56.7% (1.8%)

Table 5.11

Method
Performance Rate

k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

KNN 94.2% 94.2% 90.4% 80.7% 69.0% 55.0%
KRR-KNN (Clip, λ = 1) 94.2% 82.5% 73.1% 56.0% 26.7% 9.2%
KRR-KNN (Flip, λ = 1) 94.2% 82.5% 73.1% 56.0% 26.8% 9.4%
KRR-KNN (Shift, λ = 1) 94.2% 82.5% 73.1% 56.0% 27.3% 9.8%
SVM-KNN (Clip, C = 1) 94.2% 82.5% 77.3% 69.2% 54.8% 35.3%
SVM-KNN (Flip, C = 1) 94.2% 82.5% 77.3% 69.2% 54.8% 35.1%
SVM-KNN (Shift, C = 1) 94.2% 82.5% 77.3% 69.2% 54.6% 33.3%

The results demonstrate that the best performance is achieved when k = 1,

and there is a decrease in performance whenever k is increased (with exception to

the KNN method, where k = 1, 2 yield the same result).

5.6 Conclusion and Future Work

We have presented a complete, automatic 3D ear biometric system using range

images. The proposed 3D ear surface matching approach employs both local and
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holistic 3D ear shape features. The experimental results demonstrate the accuracy

and efficiency of our novel 3D ear shape matching approach. The proposed system

achieves a recognition rate of 98.6% and an equal error rate of 1.6% on a time-

lapse data set of 415 subjects. Moreover, the proposed approach takes only 0.02

seconds to compare a gallery-probe pair. This is approximately 100 times faster

than existing approaches.

The emergence of real-time range image acquisition by adaptive structured light

[50] may potentially allow for the proposed system to be deployed in unconstrained

environments where a user is not required to hold a fixed head pose for several

seconds as is required by the device (Minolta Vivid) used to acquire the range

images in the UND datasets. Future work will include applying the proposed

approach to range images acquired by adaptive structured light.

We are currently developing a method to construct a voxel grid that is com-

prised of variable-sized voxels. The advantage of an adaptive resolution voxeliza-

tion scheme is that it emphasizes the surface based on the proximity to distinct

features (in our case, these distinct features are the keypoints described in Section

5.2.7). In contrast, the fixed resolution voxelization scheme presented in Section

5.3.3 uniformly partitions the 3D space without exploiting the discriminative re-

gions of the surface, resulting in a large, sparse binary representation (sparse be-

cause the majority of the voxels are empty). The adaptive resolution scheme can

yield a significantly smaller representation with a discriminative potential compa-

rable to that of its fixed resolution counterpart.

In the adaptive resolution scheme, the keypoints are firstly utilized to generate

a proximity map defined over the ear surface. The geodesic distance between a

given keypoint and each surface point is computed to form a geodesic distance map

associated with the keypoint. The inverse of the point-wise sum of the geodesic
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distance maps derived from the keypoints is employed as a discrete proximity func-

tion defined over the ear surface. This function captures the proximity of a surface

point to a keypoint; the function exhibits larger values closer to a keypoint. Since

the majority of the keypoints are generally contained with the ear region (as op-

posed to surrounding regions such as the hair, neck, and face regions), the majority

of the energy of the function is concentrated in the ear region. A triangulation of

the surface points then enables the conversion of the discrete proximity function

to a piecewise continuous one. An Octree - a tree data structure in which each

internal node has exactly eight children - is utilized to partition the 3D space by

recursively subdividing it into eight voxels. We propose an iterative framework for

recursively partitioning the ear surface using a technique that is reminiscent to the

Octree method. In the first iteration, a root voxel enclosing the entire ear surface

is subdivided into eight children voxels. For each child voxel, the area integral of

the proximity function [28] is evaluated over the surface region contained within

the voxel. Each voxel and its corresponding area integral value are then stored

in the voxel structure. All voxels with corresponding area integral values greater

than zero are also stored in a list. The voxel with the largest corresponding area

integral value in the list is subdivided into an additional eight children voxels,

which are subsequently added to the voxel structure. The subdivided voxel is then

discarded from the list, and its children voxels with corresponding area integral

values greater than zero are added to the list. This process is terminated when

a predefined number of voxels is contained within the voxel grid. The rationale

behind using this heuristic is that surface regions in close proximity to a keypoint

are further subdivided, resulting in a greater sampling rate (and thus a larger con-

tribution to the surface representation) in these discriminative regions. A voxel

grid is constructed for each gallery model using the aforementioned method. A
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gallery model is then binarized using its corresponding voxel grid. In the recog-

nition phase, when comparing a probe model to a given gallery model, the probe

model is firstly binarized using the voxel grid derived from the gallery model. The

binary representations of the gallery-probe model pair are then matched using a

method similar to that of Section 5.3.4.



Chapter Six
Concluding Remarks

6.1 Conclusion

In this dissertation, we have presented a series of novel biometric methods for

uni-modal ear, uni-modal face, and multi-modal ear and face recognition. The

motivating factors underlying the use of these related biometric markers are that

both can be passively acquired and are in close physical proximity to each other.

In addition, the complimentary qualities of each modality can provide an increased

robustness in the presence of covariate factors, such as occlusion, aging, acquisition

distance, and expression. The objectives of this concluding chapter are 1) to

summarize some of the specific challenges facing each modality that have been

described in previous chapters, 2) summarize the aforementioned complimentary

advantages and drawbacks of using the 2D and 3D modalities for both the ear

and face, and 3) summarize how the methods proposed in this dissertation have

advanced the State-Of-the-Art (SOA) in 3D face and 3D ear recognition.

The problem of occlusion is typically more prevalent in the ear domain than

it is in the face. This is due to the fact that it is common for an individual with

long hair to let their hair down and cover the ear region, and to wear head or

ear apparel that covers the ear region (e.g., ear muffs, hat, headphones). The ear

is also generally more prone to self-occlusion than the face because the ear is a

concave surface with a higher degree of curvature. The process of aging can produce

significant and complex alterations to both the appearance and texture of the facial

surface. the performance of a face recognition system will often decrease with a
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larger time lapse between the acquisitions of a probe and gallery set. In contrast,

the ear is known to maintain a consistent structure throughout the duration of

subject’s life [43]. The ear is inherently smaller than the face. Therefore, a subject

will need to be at a shorter stand-off distance from the acquisition device in order

for a high quality ear image to be captured than would be necessary for the face.

Lastly, one of the strongest arguments in favor of employing the ear over the face

in a biometric system is that the ear, unlike the face, is not prone to distortion

due to expression.

The majority of the methods presented in this dissertation employ 3D models

for the matching component (with exception of the face component of the multi-

modal system described in Chapter 3). 2D images and 3D models also provide

complimentary information of an object, namely its texture and shape. The ma-

jority of studies in ear and face biometrics have been conducted in the 2D domain.

However, 2D face and ear recognition systems suffer from performance degradation

in the presence of illumination and pose variation. The advantages of utilizing 3D

data is in the access to shape information as well as its invariance to both illumi-

nation and pose variations. Furthermore, current range scanner technology allows

for the concurrent capture of a 3D range image and a registered 2D texture image

as well. However, SOA range scanner devices (such as those used for acquiring

the datasets employed for the experimental validations of the proposed methods in

Chapters 4 and 5) are impractical in real-world settings because they are generally

expensive and require subjects to remain still for more than a second during acqui-

sition. To this end, we have investigated the use of SFS techniques to recover the

3D structure of the ear region in Chapter 2. The benefit of utilizing these methods

is that since the 3D structure is obtained from a single optical image 1) a relatively

inexpensive conventional camera (or in the case of Chapter 2, a video camera) can



122

be used as the acquisition device and 2) the subject is not required to cooperate

by remaining still for multiple seconds (the shutter speed of digital single-lens re-

flex cameras is approximately 1/16000 seconds), rendering the recognition system

passive and more amenable to real-world applications.

We commenced this dissertation by investigating the efficacy of employing 3D

reconstructions of the ear region obtained by SFS for recognition. As our primary

aim was to evaluate the viability of these 3D models, we applied the well-known

ICP technique for matching. Despite the accurate matching performance, achiev-

ing a recognition rate as high as 95% on a probe and gallery set consisting of 60

and 402 subjects, ICP has a computational complexity of O (Nlog (N)) for a single

iteration, where N is the number of points comprising each model being matched

(typically on the order of 30,000 points). In subsequent chapters, namely Chapters

4 and 5, our aim was to develop matching techniques with greater efficiency than

ICP. In Chapter 4, we developed a 3D face recognition system that determines

the set of weak classifiers derived from geodesic distance features that are most

discriminative for 3D face recognition. The resulting set of a relatively few weak

classifiers enabled an efficient comparison of a probe and gallery model pair in lin-

ear time, O (N), where N denotes the number of weak classifiers selected (in our

implementation, N = 553). In Chapter 5, we presented a voxelization framework

that executes in linear time, O (N), where N is the number of points comprising

a 3D model. Future work, will include applying the feature extraction and match-

ing methodologies in Chapter 5 to the 3D ear reconstructions of Chapters 2 and

3. This will result in a complete 3D ear recognition system that is efficient in its

acquisition time (a sequence of 2D face images) and its feature extraction (local

keypoint extraction and binary surface voxelization) and matching (dot product)

components.



Differential Geometry of Surfaces

1.1 Principal Curvature

Consider a plane containing a point P that is intersecting a 3D surface. Point P

resides along the planar curve that results from the intersection between the plane

and the surface. The curvature of the planar curve at point P is equal to the

reciprocal of the radius of the circle of best fit to the curve at P , r. The curvature

(a) (b)

Figure A1.1

of a planar curve relates arc length along the curve to the changes of tangent

vectors. The tangents TP and QT in Figure A1.1 subtend angles θ, θ + δθ with

the x-axis, so that δθ is the angle between the two tangents. If δs is the length of

the arc PQ along the curve, then δθ
δs

is the average curvature of the planar curve

along the arc PQ. The curvature at the point P is defined to be the limit of this

expression as Q approaches P, i.e. δθ
δs
.

If PQ is the arc of a circle of radius r, the angle δθ between the tangents at P

and Q is equal to the angle subtended at the center of the circle by the arc PQ,
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so that δs = rδθ, hence δθ
δs

= 1
r
. The curvature is constant at all points of a circle,

and the radius is equal to the reciprocal of the curvature. If the curve is described

in cartesian coordinates by a function y = y (x):

r = δs
δθ

= δs
δx

δx
δθ

= sec (θ) δx
δθ
; tan (θ) = δy

δx

sec2 (θ) δθ
δx

= δ2y
δx2

; r =

[

1+( δy
δx)

2
]3/2

δ2y

δx2

(A1.1)

The sign of the curvature signifies the convex or concave nature of the curve. It is

also related to the side of the curve at which the center of the circle of best fit is

located.

The curvature, k, is thus given by the expression:

k =
δ2y
δx2

[

1 +
(

δy
δx

)2
]3/2

(A1.2)

This curvature is equal to the value of the normal curvature, kn, at P in the

direction prescribed by the orientation of the plane. Now let the plane rotate

about the axis coincident with surface normal n at point P . The planar curves

produced by this rotation are all normal curvatures at P . Since these curvatures

are periodically varying they must attain minimum and maximum values. These

extremas are defined as the principal curvatures, k1 and k2, of the surface at point

P . The directions in which these values occur are referred to as the principal

directions. The principal curvatures can be combined to give two useful measures

of the curvature of the surface, the Gaussian curvature (K) and the mean curvature

(H):

K = k1k2
H = k1+k2

2

(A1.3)

1.2 Surface Normals

A surface normal is defined as a unit vector (of magnitude 1) which is perpendicular

to that surface. Consider two non-colinear tangent vectors, t1 and t2, to a point,
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p0, which can be expressed by the following point differences:

t1 = p1 − p0

t2 = p2 − p0
(A1.4)

The normal to point p0 can be found by computing the cross product between the

tangent vectors:

n = t1 × t2 (A1.5)

The normal is orthogonal to the tangent vectors at point p0 such that:

n · t = nTt = 0 (A1.6)



Active Shape Model

The Active Shape Model (ASM), introduced by Cootes et al. [27], is a statistical

approach for shape modeling and feature extraction. It has been subsequently

improved in recent years [56]. It represents a target structure by a parameterized

statistical shape model obtained from training. The location of n points, commonly

referred to as landmarks, are annotated on a set of training images by a human

expert. This set of landmarks is represented by a vector X = (x1, y1, . . . , xn, yn)
T

where xi and yi are the coordinates of the ith landmark. Then, by analyzing the

variations in shape over the training set, a model is built which can represent these

variations:

X ≈ X̄ + Pb (A2.1)

The vector X̄ contains the mean values of the coordinates of the annotated data,

P is a matrix of the first t eigenvectors of the covariance matrix of the data, and b

is a vector that defines the model parameters. The variance of the ith parameter,

Pi, across the training set is given by the corresponding eigenvalue λi. By limiting

the parameters bi in the range of ±3
√
λi, we ensure that the generated shape

is similar to those in the original training set. To apply the constructed shape

model to a given target, a transfer function is required to move from the model

coordinate system to the image coordinate system. Typically, this is achieved by

a Euclidean transformation defining the translation (Xt, Yt), rotation θ, and scale

s. The position of the landmarks, X , in the image are then given by:

X = TXt,Yt,θ,s(X̄ + Pb) (A2.2)
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For a given new image, the ASM is performed to find where the target object lies

on the image. Therefore, we need to find the optimum parameters of the ASM that

best fit the model to the target structure. Generally, this optimization problem is

solved iteratively. Firstly, the model is initialized by the mean shape. Secondly, a

region of the image around each feature point is examined to find the best nearby

match (i.e. searching along the profile line for the edge locations). Thirdly, the

parameters Xt, Yt, s, and θ are updated to best fit the new found landmarks.

Lastly, the constraint |bi| < 3
√
λi is applied to the parameters bi. These steps are

repeated until there is no significant change in the shape parameters.
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