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ABSTRACT 
 

 
Fault observability as well as fault location algorithms in distributed power system are 

studied in this thesis. The importance of finding the fault location in a distribution system with 

the purpose of increasing reliability and decreasing the maintenance time and cost is discussed. 

Then, different existing fault location algorithms and approaches in the literature are introduced 

and compared.     

Subsequently, a new strategy to achieve fault observability of power systems while aiming 

minimum required number of Phasor Measurement Units (PMUs) in the network is proposed. The 

method exploits the nodal voltage and mesh current analyses where the impedance and 

admittance matrices of the network and its dual circuit are developed and utilized for fault 

location. The criterion of determining the number and the places of PMUs is that the fault location 

and impedance can be obtained in a unique manner without multi estimation. In addition, the 

method considers faults along the lines as opposed to the faults only on system buses available in 

the literature. The proposed approach provides an economical solution to decrease measurement 

costs for large power networks, distributed generation networks, and micro grids. Simulation 

results for IEEE 7-bus, 14-bus, and 30-bus systems verify the effectiveness of the proposed 

approach. 
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1. INTRODUCTION 

 

 
1.1 Importance of Fault Observability in Distribution System 

 
The energy chain contains producing the energy, its transmission, and delivering the 

energy to the costumer where the distribution feeders are the last nuts of this chain. The 

importance of the latter part is no less than the former parts in the electrical power system if not 

higher. Thus, many commercial experts believe that the distribution system should be taken into 

consideration more seriously as all the efforts to generate electrical power is with the purpose of 

delivering it to the customer [1].  

One of the challenging and important issues for the customer is the reliability of the 

provided electrical energy. At the same time electric utilities wish to reduce the revenue loss 

caused by outage. For this purpose, the distribution system has to be highly reliable and efficient 

under not only normal condition but also emergency conditions. Customer Average Interruption 

Duration Index (CAIDI) caused by weather condition, human error, or equipment aging in the 

system is one of the factors that affect the reliability index [2]. Under the situation that 

distribution system consisting of a number of radial feeders are always subject to the various 

types of fault caused by storms, lightning, snow, freezing, rain, insulation breakdown, and short 

circuits caused by birds and other external objects, desired reliability cannot be achieved very 

easily. In order to improve the reliability, utility should be able to detect and recognize the fault 

location and type immediately after fault occurs. The faster the fault location is identified or at 

least estimated with reasonable accuracy, the more accelerated the maintenance time to restore 

normal energy supply.   

In traditional methods, customers’ calls are the base of outage troubleshooting. That is, 
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usually the utility starts to identify faults when they are informed by consumers about a fallen 

electric pole, broken cable, or when they receive complains about the cut in power supply [3]. In 

order to specify the exact location of the fault there has to be a precise overlap between the 

geographic location of the caller and the connectivity of the distribution network. In addition, if 

the fault occurs during the night-time, the utility might not receive any calls, which poses a 

problem for the operator in locating the fault. Also, barriers such as practical difficulties to 

install the measurement devices at each distribution system bus or problems such as 

communication failures limit the possibility of measuring currents in the lines and voltages at 

the distribution transformers.  

In some rural distribution systems, basic approaches such as visual inspection, switching 

procedure or using fault indicators, are employed to locate a fault. Although these approaches are 

time consuming, lack of advance monitoring equipment such as SCADA system in rural 

distribution systems results in these methods being still in practice. From practical aspect it is 

really important that the exact location of fault can be assessed only with limited available 

measurements and with lowest human interaction around the substation. Therefore, an automatic 

fault-locator is an essential and unavoidable component of a distribution system. 

Fault locating in power systems has been a major subject for power and protection 

engineers in recent years for the reason of system reliability. Power engineers devote a lot of time 

to develop different fault locating algorithms in order to overcome this challenge in power 

system. However, it should be mentioned that in distribution systems, due to large variations of 

fault impedance, fault location problem has more complications than in transmission and 

generation systems [4]. Furthermore, it is not economically viable to equip distribution networks 

with advanced high-cost protection equipment.  
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In recent years, the presence of distribution generation (DG) and utilizing renewable 

energy sources in distribution networks have been attracted much attention. DGs can use clean 

and environmentally compatible energy resources to generate electricity with lower operational 

capacity in comparison with large power plants. Therefore, they are considered as small 

generation units.  Due to small generation capacity of DGs, the energy produced by them is not 

transferred through the power transmission lines. Instead, DGs generally support the distribution 

systems loads [5], [6]. Connection of DGs to distribution systems has not only changed the 

simple and conventional radial configuration of the distribution network but also makes their 

operation, control and protection more complicated. Consequently, identifying the exact location 

of occurred faults will be more important and complicated in distribution systems including DGs 

compared with transmission systems [7]. 

Usually, in high voltage transmission lines, faults have low impedance. Therefore, it is 

not so complicated a task to find the fault location that can be accomplished simply by distance 

relays. In contrast, distribution systems encounter various and relatively large impedance (low 

current) faults which occur in residential urban and rural regions. Consequently, the available 

classic fault location methods will not suit to identify the fault location in distribution systems 

due to the variety and wide range of fault impedances in such systems [4]. 

Outage time reduction in distribution systems can be attained through introducing 

condition-based maintenance in asset management, and developing fault location algorithms. 

That is, system reliability can be improved by utilizing an accurate fault location program which 

leads to reduce the average time for the field crew to find and isolate the faults more efficiently. 

In other words, the accuracy of fault location algorithms may have a huge impact on system 

reliability by reducing the duration of unexpected outages (outage caused by faults) and 
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narrowing the search for faults within a relatively small area [8]. 

In brief, the following benefits can be achieved by having a fast and efficient fault 

location scheme: 

• Fault location algorithm assists to accelerate the restoration process 

• By specifying the faulted node location there is the chance to reduce the affected area 

through implementing sectionalize switching operations 

• By locating permanent faults it is possible to plan for preventive maintenance tasks and 

avoid future faults [2]. 

 Once a fault has been located in the system, a maintenance engineer is able to figure out 

the fault causes by checking the location of the fault. Moreover, a prevention plan can be 

scheduled to avoid the same fault problem in the future. Thus, the reliability of the system can be 

improved. 

1.2 Barriers of Fault Location in Distribution Systems 

 

Although, in distribution system the basic approach to calculate the fault location using 

voltage and current measurement is still the same as in the transmission system case, fault 

locating in the distribution system is not an easy task because of its high complexity and 

difficulty caused by the non-homogeneity of lines, fault resistances, load uncertainty, and phase 

imbalance [9],[10]. 

The major bottlenecks in fault location, particular to distribution systems are: 

• Limited number of measurement devices along the distribution feeder  

• Lack of advanced protection data such as circuit breaker (CB) and relay statuses, as well 

as measurements of multiple line segment, dissimilar to transmission system 

• Presence of DG and changing the number of generators in operation throughout the day 
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that makes the fault measurement and location depend on time [3]. 

1.3 Thesis Subject 

 
The subject of this thesis is t o  propose a novel algorithm to identify the fault location 

and impedance based on optimal Phasor Measurement Unit (PMU) placement in the distribution 

power system. 

1.4 Thesis Objective and Approach 

 
In this work the concept of fault observability is applied via the condition that the location 

and impedance of faults are detected uniquely. In other words, if with limited number of 

measurements, fault location and impedance can be uniquely determined in the entire network, 

the chosen measurement nodes are adequate for full fault observability. That is, the uniqueness of 

the fault location and impedance makes an appropriate solver to find the fault location and 

impedance from the measured data. In this work the minimum number of measurement units 

accompanied by their best locations are targeted I the distribution network. The PMU is able to 

measure the current phasor as well as the voltage phasor; an added capability that could help to 

decrease the number of PMUs for fault observability. Thus, here voltage and current 

measurements are utilized to enhance fault observability and reduce the number of PMUs. In this 

method the power system is first used to find the impedance matrix of the system. Then, by 

employing the concept of duality, the dual circuit of the network is obtained followed by its 

impedance matrix. By using the impedance matrix as a powerful tool for fault analysis, the 

voltage changes in the dual network represent current changes in the actual network. When a 

fault occurs in the system, these matrices will change according to the place and impedance of 

the fault. Therefore, the impedance, which is a function of the fault location and fault impedance 

is obtained. Using the Impedance functions of the actual network and its dual, the effect of each 
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fault on the voltage and current phasors recorded by PMUs at the measurement points can be 

calculated.  The goal is the placement of the PMUs in certain nodes that provide a unique set of 

voltages and currents for any given fault in the network. In this thesis three-phase symmetrical 

faults are analyzed; however, the proposed method can be easily utilized for other types of faults. 
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2. VARIOUS FAULT LOCATION METHODS 

 
 

2.1 Introduction 

 
Over The past fifty years the number of customers who benefit from the electrical energy 

has increased significantly. Consequently, in order to meet this demand electric power systems 

have grown rapidly by largely increasing the power lines as well as employing new energy 

sources such as renewable energy and distribution generation.  The problem arises when these 

lines experience faults in their operation which happens with high probability due to the large 

length of lines. In most cases, the major effects of electrical faults appear in the form of 

mechanical damage, which must be repaired before returning the line to service. For this reason 

the presence of a fault location algorithm can accelerate the restoration procedure when the 

location of the fault is either known or can be estimated with reasonable accuracy. 

Temporary faults caused by trees penetration or insulators degradations known as high 

resistance faults are difficult to detect as they do not result in breaker operations and mainly 

cause minor damage that is not easily visible in inspection. Thus, a fault locator that is able to 

estimate both sustained and transient faults is necessary [11].  

The research that has been done so far mostly focuses on finding the locations of 

transmission line faults. The reason is mainly the time required to physically check the lines in 

transmission system that is much more than in the distribution systems.  However, nowadays the 

location of faults on distribution systems has taken more attention because recent deregulation in 

utility industry has forced power distribution companies to supply reliable and quality power at 

minimum cost to customers.  

Distribution system contributes towards most number of disturbances experienced by 
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customers and major revenue loss to utilities on account of lost business opportunities and repair 

cost. In spite of major technological advances and widespread use of Intelligent Electronic 

Devices for measurement and monitoring, accurate fault location in distribution lines is still a 

challenge and considerable interesting to electric power utility engineers and researchers for over 

twenty years. Fault location accuracy in distribution lines varies vastly because of 

nonhomogeneous nature of distribution network as opposed to transmission lines. 

The history of fault location methods starts from visual inspection in rural area to using 

voltages and currents measured at one or both terminals of a line which contains of methods that 

are based on traveling waves, methods based on high frequency components of currents and 

voltages and, methods that use the fundamental frequency voltages and currents measured at the 

terminals of a line [11].  

Although there is a big archive of methods for identifying or estimation of fault locations 

in radial transmission lines, some features of distribution system such as non-homogeneity of 

lines, presence of 'laterals', load taps, and DGs cause a significant error when these methods are 

applied for distribution lines [12],[13]. The available fault location methods in literature can be 

categorize in five major groups which each of them has their own advantages and disadvantages 

[14], [15]. This chapter reviews selected fault location techniques proposed for distribution 

systems. 

2.2 Classification of Fault Location Methods 

 

Fault location methods use different measurements and techniques as follows: 

 Impendence method 

 Traveling wave method 

 Signal injection method 
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 The zero sequence component based method 

 Composite location method 

 

2.2.1 Impedance Method  

 

When a fault occurs in the system by assuming that the line is uniform and based on 

measured voltage and current at the measurement point the impedance of fault loop can be 

calculated. Since the calculated impedance is proportional to the line length, distance between 

measured point of device and fault location can be reached. This principle is used in relays such as 

distance relays. 

Double-end impedance method is utilized to increase the accuracy of fault location. The 

basis of the analysis in this method is impedance. Also, there is no need for the data 

synchronization. In addition, this method can cover the effect of line parameters [14]. In brief, the 

advantages and disadvantages of this method include: 

 Characterized by simple calculation, 

 Easy to program, 

 Easily realized with a mass of existing devices and less hardware investment, and 

 Only realizes fault location without branch in line. 

 

2.2.2 Travelling Wave Method 

 

  Travelling wave method is defined as a fault location method in which the phenomenon of 

traveling wave is employed. Reflected traveling wave difference, between healthy phase and 

faulted phase of traveling wave can be used for fault location. In literature there are different 

approaches based on this method to calculate the distance; namely, A, B, C, D, E and F. Among 
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these methods only C-Traveling method is utilized in distribution networks with multi-terminal, 

usually called single-ended injection traveling wave method. This method is based on sending 

pulse to healthy and faulted phases and records the reflected waveforms. By comparing 

waveforms of healthy and faulted phase and wave characteristic at fault point the fault area can be 

estimated. In brief, the advantages and disadvantages of this method include: 

 High ranging precision,  

 Matching application prospect in power system, 

 Lack of solution for the problems of white noise in actual line and waveform distortion, 

 Impaired return signal of traveling wave due to more complex structures and more 

branches as well as high grounding resistance in low voltage distribution network, and 

 Requirement of a high technology on data processing and time synchronization. 

 

2.2.3 Signal Injection Method 

In this method particular frequency of current is injected through bus PT to ground circuit. 

When a fault occurs, the injected signal flows into the earth along the faulted line and grounded 

point. Then, a signal detector is employed to detect the faulted line while injected signal flows 

through it. Finally, the location of the fault can be obtained by signal tracking along the line using 

portable detector.  Injection method is the short term of “injecting signal tracing method.” 

It has been proved that to reduce the influence of capacitance to ground and high grounding 

resistance on the accuracy of this method, the frequency of the injected signal should be reduced 

to decrease the circuit distributary of ground reactance and increase the circuit reactance of faulted 

phase [14]. In brief, the advantages and disadvantages of this method include: 
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 Effective in locating single-phase to ground fault in distribution network, 

 Not effective with overlong lines and oversize grounding resistance, 

 Difficult fault location when complex structures and too many branches exist. 

 

2.2.4 Zero Sequence Component Based Method 

In this method by considering the appropriate reference direction where the direction of 

line head end to load terminal is the positive direction, the phase of zero-sequence current in the 

faulted line (before fault point) lags behind zero-sequence voltage around 90° while the phase of 

zero-sequence current in healthy line (healthy branch, after fault point) leads zero-sequence 

voltage around 90°. If the phase angle of zero-sequence voltage is considered as the reference 

phase angle, then zero-sequence current phase in faulted line is opposite to it in healthy line. 

Moreover, the maximum amplitude of zero-sequence current along the fault path happens in the 

fault point. 

This method has been proposed for single-phase to ground fault and the recorded current 

waveform is analyzed after determination of the fault region by inquiring the current transformers 

(CTs) installed nearby the sectionalized switches. In brief, the advantages and disadvantages of 

this method include: 

 Has high accuracy and good prospect for application, 

 Needs to install a certain number of zero-sequence CT. 

2.2.5 Compositive Location Method 

  Complexity of recent distribution networks has increased the necessity of using an 

approach which is able to locate the fault precisely. Therefore, the research on a comprehensive 

location method is one of power engineers concerns recently. The basic idea of this method is 
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employing two different methods in principle for fault location which can effectively compensate 

the shortage of using any each method alone, and benefiting from advantages of both to improve 

the accuracy of fault location. 

 

2.3 Impedance Based Fault Location Method 

 

Impedance based fault location method is more suitable and widely used than the other 

methods since it relies on minimum data and does not require costly hardware. Also, it uses simple 

algorithm and no communication is required [14]. Therefore, the proposed method in this thesis is 

based on impedance approach.  

Impedance-based methods require the following steps: 

 Measure the voltage and current phasors, 

 Extract the fundamental components, determine the phasors and fault type, and 

 Apply impedance algorithm. 
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3. PROPOSED ALGORITHM 
 
 

3.1 Introduction 

 
Faults and device failures affect the power quality in power systems and cause losses for 

both electric utilities and customers.  In distributed generation, safety and secure operation of the 

system highly rely on the level of power system operating condition monitoring. In traditional 

approaches the measurements provided by the remote terminal units (RTU) at the substations are 

sent to the control center. This data include real/reactive power in different lines as well as bus 

voltages and branch currents. The unmeasured states of the system are then estimated by state 

estimators that reside in the control center. Recently, PMUs are proposed and used at substations 

in power systems to record operational data. PMUs employ global positioning system (GPS) 

signals to provide synchronized measurements of real time phasors of voltages and currents and 

provide a significant improvement in monitoring and control of power systems over the 

traditional instruments through accurate and synchronized measurement of the system states. 

PMUs are utilized in various applications [16]-[25] such as static analysis, recording dynamics 

of the power network and post-contingency analysis, identifying and calibrating the dynamic 

models of power system, transient stability prediction and control, voltage and frequency 

stability monitoring and control, analyzing and damping the low frequency oscillations, global 

feedback control, parameter measurement of transmission line, fault location, etc. 

The current and potential applications of PMUs in power system enhance normal 

observability and fault observability.  Normal observability in power system is defined as 

knowing the voltage phasors of all the buses [26]. However, the voltage phasors at many buses 

can be calculated by a limited number of measured voltages in the system along with the 
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parameters of the network and the load information of other buses. Fault observability, on the 

other hand, is defined such that a system becomes fault observable when the voltage at two ends 

of each line and the current at any end of the line are determinable [26]. In general, a system, 

which is observable in the normal condition, may not be observable for the fault condition. In 

this thesis the application of PMUs in fault location is investigated and a method is proposed to 

effectively reduce the number of required PMUs while retaining the accuracy of fault location. 

Thus, fault observability is the main focus in this work. 

Different algorithms are proposed to minimize the number of PMUs required for fault 

observability. However, available methods still require a lot of PMUs in the system to measure 

and/or estimate all the voltages, which cause both high initial cost and communication problems. 

Unlike normal observability [27]-[32], the optimal or minimum number of PMUs for fault 

observability in the power system has not been studied as extensively. Moreover, in the past 

studies, it is usually assumed that faults occur on network buses. The work of [33] and [34] have 

described one-bus-spaced strategy for PMU placement as well as fault location by measuring the 

fault current and voltage phasors at the two ends of the faulted line. The results show that the 

number of required PMUs is about one third of buses. In [26] the authors minimized the number 

of PMUs by utilizing available flow measurements; the drawback is that not all conventional 

devices employ high resolution and synchronized data collection. Reference [35] proposed a 

method to minimize the PMUs allocation based on avoiding same measurements for different 

faults, taking into account faults on buses only, while multi estimation caused by line faults is 

not addressed. In the algorithm presented in [36] the objective function for minimization is 

based on voltage change while considering faults on the network busses only.  

By contrast, in this work fault observability is defined and applied such that it ensures the 
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location and impedance of faults are detected uniquely. In other words, if with limited number 

of measurements, fault location and impedance can be uniquely determined in the entire 

network, the chosen measurement nodes are adequate for full fault observability. That is, the 

uniqueness of the fault location and impedance help an appropriate solver find the fault location 

and impedance from the measured data. The PMU is able to measure the current phasor as well 

as the voltage phasor; an added capability that could help decrease the number of PMUs for fault 

observability. Thus, in this work voltage and current measurements are utilized to enhance fault 

observability and reduce the number of PMUs. In this method the power system is first used to 

find the impedance matrix of the system. Then, by employing the concept of duality, the dual 

circuit of the network is obtained followed by its impedance matrix. By using the impedance 

matrix as a powerful tool for fault analysis, the voltage changes in the dual circuit represent 

current changes in the actual network. When a fault occurs in the system, these matrices change 

according to the place and impedance of the fault. Therefore, impedance matrices elements, 

which are functions of the fault location and impedance, are obtained. These functions of the 

network and its dual can be utilized to calculate the effects of each fault on the voltage and 

current phasors recorded by PMUs at measurement points.  The goal is the placement of the 

PMUs in certain nodes such that a unique fault is identified in the network for the given set of 

measured voltages and currents. In this work three-phase symmetrical faults are analyzed; 

however, the proposed method can be easily utilized for other types of faults. 

The rest of the chapter is organized as follows. In Section 3.2, the principles of the 

proposed algorithm on the basis of the multi-estimation problem in fault location are described. 

Then, the functions of voltage and line current changes due to fault are developed. Next, in 

Sections 3.3, simulation results obtained from applying the proposed algorithm on IEEE 7-bus, 
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14-bus and 30 bus systems and comparison with previous works are provided. Finally, 

concluding remarks are in Sections 3.4. 

3.2 Methodology 

PMU placement at each bus helps measure the voltage phasor at that bus and the current 

phasors in all the branches connected to that bus. When a fault occurs in the system, according 

to the location and impedance of the fault all voltages and currents of the network change 

including at PMU nodes (busses.) But the problem arises when more than one fault (with 

possibly different impedances and locations) cause the same change in the voltages and currents 

at PMU busses. This problem is called multi estimation. The focus of this thesis is to find the 

proper locations for PMUs that reduce multi estimation when faults occur, and to use measured 

voltage and current changes at the PMU locations to uniquely identify a fault as opposed to the 

available methods that only rely on voltage measurement/estimation. Introducing current 

measurement can reduce the number of required PMUs. 

Having the impedance matrix of the system, namely Z, makes it easy to calculate the 

voltage change at each bus caused by the fault [37]. However, the impedance matrix of the 

system does not provide any useful information regarding current changes. Note that, the 

conventional admittance matrix can be utilized to obtain nodal voltages based on nodal 

equations using lines and load admittances as well as the current sources feeding the network. 

This work proposes a novel method to calculate the effect of the faults on the line currents. 

Here, the concept of “mesh impedance,” namely Z  , matrix is developed and the mesh 

equations of the network are obtained. That is meshs IZV   where sV  is the vector of voltage 

sources feeding the network and meshI  is the vector of mesh currents. Then, the network mesh 
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currents are obtained from the inverse of Z  , namely “mesh admittance matrix”  Y  , using line 

and load impedances as well as the voltage sources feeding the network.                

3.2.1 Problem Statement 

Suppose that pair ),( hPhPhP IVm   represents the measured changes in the voltage and 

current at PMU bus h due to the fault P where P, defined as ),,,( fRDkjP   contains the 

location and impedance of the fault where k and j are sending and receiving end buses of the 

faulted line, respectively, D is percent distance from the sending end bus, and Rf is the fault 

impedance. Define   fhP RDNkjhm ,10,,,1   as a set of all possible 

pairs hPm , with N being the total number of network busses. Also, define lM , with l1 an 

integer, a subset of  that can uniquely identify all faults (location and impedance) in the 

network. That is, for any two different faults P1 and P2 where lhPhP Mmm 
21

& one has 

21 hPhP mm  for some h. A trivial solution for most networks occurs when lM . In other 

words, placing PMUs on all the network busses uniquely identifies all faults. Once subset lM , 

when exists, is identified, fault location and impedance can be found using lM and available 

methods with no possibility of multi estimation. Thus, the target is to find the smallest subset 

lM (that might not be unique.)  

3.2.2 Change in the Measured Voltage  

The power system fault analysis benefits from the impedance matrix based on nodal 

analysis. Although impedance matrix can be obtained by inverting the admittance matrix, in the 

case of large-scale and/or distributed power systems with large number of nodes, it imposes a 

significant computational burden and error, and thus, direct development of impedance matrix 
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[37] is preferred. As a result, by having the impedance matrix before the fault, the impedance 

matrix after the fault can be calculated avoiding the matrix inversion.  

Figure 1 shows single-line diagram of the part of system before and after fault occurs at 

point p on the line connecting buses j and k. When a fault occurs on the line between buses j and 

k, the point of fault on the line can be assigned a new bus number. Subsequently, Z from pre-

fault condition can be modified to accommodate the new bus. 

The line has series impedance zb while the percent distance of the fault to the sending-

end is D. The following steps are required to modify the existing impedance matrix Z [37] to 

reflect the new condition:   

 Remove the line between bus j and bus k by adding line impedance –zb between those two 

buses which can be formulate as follows [37]: 

bjkkkjj

kijihkhj

hihi
zzzz

zzzz
zz






)0()0()0(

)0()0()0()0(

)0()1(
2

))((
                                                                                                (1) 

where )1(hiZ  is the element of row h and column i of modified impedance matrix Z while index (1) 

shows the level of modification which is the first step and )0(hiZ is the same element but before 

modification. 

 Add D×zb from a new bus p  to an existing bus j which leads to adding a new row and 

column to Z  as follows:[37] 

)1()2( jipi zz                                                                                                                                       (2) 

)1()2( hjhp zz                                                                                                                                       (3) 

bjjpp Dzzz  )1()2(                                                                                                                            (4) 

 Add (1-D)×zb between the new bus p and existing bus k  which new elements calculated 
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as:[37] 

bpkkkpp

kipihkhp

hihi
zDzzz

zzzz
zz

)1(2

))((

)2()2()2(

)2()2()2()2(

)2()3(



                                                                                                    (5) 

where )3(hiz  and )2(hiz  are the element of row h and column i of modified impedance matrix Z at 

third and second step respectively.                                                                                                        

 

Figure 3.1 Power Network a) before the Fault b) after the Fault on Point p 

.  According to the standard fault analysis [37], by knowing the elements of the modified 

impedance matrix, the change in the bus h voltage due to the fault current at bus p can be 

obtained as:    

fnewhphp IzV  )(                                                                                                                          (6) 

where zhp(new) is the element in row h and column p of modified matrix Z ( )3(hpz ), 

fnewpp

ppref

f
Rz

V
I




)(

)(
, Rf is fault resistance, Vpref(p) is the pre-fault voltage at point p and zpp(new) is 

the diagonal entry in row p and column p of modified matrix Z ( )3(ppz ),  which is equal to 

Thevenin impedance at bus p [37].  

It is reasonable to assume that the voltage drop is linear along the line. Also, for 
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simplicity, the capacitive effects of the power lines can be ignored especially for small- and 

medium-size distributed generation networks. The pre-fault voltage at point p between bus j and 

k can be calculated as follows: 

)()1()( kjkppref VVDVV                                                                                                     (7) 

By combining equations (1), (2) and modified )(newppz and )(newhpz , the voltage change 

measured at bus h due to the fault located at point p is obtained. The fault is specified by 

knowing the faulted line receiving and sending end buses j and k, the distance from bus j (D), 

and fault impedance fR . The relationship for voltage change based on fault location and fault 

impedance can be given as 

f

hp
RDD

DD
V

432

2

1

32

2

1








                                                                                                (8) 

where 4321321 ,,,,,,   are coefficients which are calculated for each line and are 

functions of elements of pre- fault impedance matrix and two end voltages of that line (the 

calculations can be found in Appendix A.)  

3.2.3 Line Current Change Formulation Using Network Dual Circuit 

In this section a method based on mesh current analysis is proposed for line current 

measurement. Here, the main problem is that there is no systematic approach for modifying 

mesh-admittance matrix Y  , unlike with its counterpart Z . The proposed solution is to find the 

dual circuit of the network where the nodal equations in the dual circuit are the same as mesh 

equations in the original circuit. The crucial task is to find the changes in the dual circuit after 

occurrence of a fault and to apply those changes to the nodal-impedance matrix Ẑ of the dual 

circuit.  
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Adding a new bus, which is connected to the ground by the fault impedance, in the line 

between buses j and k provides the system configuration of the original network after the fault as 

shown in Fig. 1. Comparing the dual circuit before and after the fault helps find the required 

steps to modify the nodal-impedance matrix of the dual circuit.   

Figure 2 shows a part of the network of the dual circuit before and after the fault occurs 

at point p, which is the dual of the circuit shown in Fig. 1. The faulted line has series impedance 

zb while the percent distance of the fault to sending-end is assumed as D. The following steps are 

required to reflect the new condition in the dual circuit where the dual values are represented by 

a hat sign “^”:   

 Omit impedance bŷ1  where bb zy ˆ between bus j  and ground (adding the impedance 

bŷ1  between bus j   and ground,) 

b

jj

ijjh

hihi

y
z

zz
zz

ˆ

1
ˆ

)ˆˆ(
ˆˆ

)0(

)0()0(

)0()1(







                                                                                                                               (9)    

 Remove the impedance Lkŷ1 where  LkLk zy ˆ between bus j   and k   (adding the 

impedance Lkŷ1 between bus j   and k  ) 

Lk

kjkkjj

ijikjhkh

hihi

y
zzz

zzzz
zz

ˆ

1
ˆ2ˆˆ

)ˆˆ)(ˆˆ(
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)0()1()1(

)1()1()1()1(

)1()2(








                                                                                                      (10) 

 Add a new bus p  connected to bus j   through conductance Gf, 

)2()3(
ˆˆ

ijip zz                                                                                                                                                  (11) 

)2()3(
ˆˆ

jhph zz                                                                                                                                                   (12) 

f

jjpp
G

zz
1

ˆˆ
)2()3(                                                                                                                                      (13) 
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 Add impedance Lkŷ1 where LkLk zy ˆ between new bus p  and k  ,  

Lk

pkppkk

ipikphkh

hihi

y
zzz

zzzz
zz

ˆ

1
ˆ2ˆˆ

)ˆˆ)(ˆˆ(
ˆˆ

)0()3()3(

)3()3()3()3(

)3()4(









                                                                                       (14) 

 Add impedance by ˆ1 where bb yDy ˆ)1(ˆ  between bus p  and ground, and 
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 Add impedance byˆ1 where bb yDy ˆ.ˆ  between bus j   and ground. 
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)5()6(                                                                                                                     (16) 

where in (9)-(16) )(
ˆ

xhiz  is the element of row h and column i of the modified impedance matrix Ẑ  

while index (x) shows the level of modification. x=0 means the original element before 

modification. 

 

Figure 3.2 Part of Dual Circuit of the Power System a) before the Fault b) after the Fault on Point p 
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The modified impedance matrix Ẑ  of the dual circuit is the same as the modified mesh 

admittance matrix 1)(  ZY of the original circuit; i.e., ZY ˆ .  

In the dual circuit, one can calculate the nodal voltages from the current sources feeding 

the nodes as  sIZV ˆ.ˆˆ   where sÎ is the vector of current sources feeding the dual network. 

Since the nodal voltages in the dual circuit are the same as mesh currents in the original 

circuit, one can conclude that  

smesh VYI .                                                                                                                          (17) 

where T

Wmesh IIII ][ 21  is the vector of mesh currents, T

sWsss VVVV ][ 21   is the vector of 

mesh voltage sources, ZY ˆ , and W is the number of meshes in the original circuit. 

As depicted in Fig. 1, when a fault happens a new loop is added to the original network. 

The faulted node can be modeled by a voltage source which connects that node to the ground 

and its value is equal to the fault impedance multiplied by the fault current. Since this branch is 

common between two loops the voltage source for both loops are affected as 
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According to (18), the change in the corresponding mesh current at bus h (measured by 

PMU at bus h) due to the fault at point p between loops l and m is calculated as 
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fnewhmnewhlhp VYYI  )( )()(                                                                                              (19) 

where f

fnewpp

ppref

fff R
Rz

V
RIV




)(

)(
, Rf is the fault resistance, Vpref(p) is pre-fault voltage at 

point p and zpp(new) is the diagonal entry in row p and column p of modified matrix Z which is 

equal to Thevenin impedance at bus p [37], )(newhlY   and )(newhmY  are developed mesh admittance 

matrix Y   elements and equal to )6(
ˆ

jhz   and )6(
ˆ

phz   respectively . Considering linear voltage change 

along the power lines, one can calculate the pre-fault voltage at point p between bus j and k 

using (7). Next, by using equation (19), the current change measured at bus h due to the fault at 

point p is obtained.  

3.2.4 PMU Allocation Optimization Algorithm 

In this section, the proposed algorithm to find the best place by minimum number of 

PMUs to achieve fault observability is described. Given two faults at locations p1 and p2 with 

impedances 1fR  and 2fR , it is desirable to have the conditions 

21

21

hphp

hphp

II

VV




                                                                                                                         (20) 

as a result of proper placement of PMU where 
1hpV , 2hpV , 

1hpI , and 2hpI are defined in (6) 

and (19). The proposed placement algorithm includes the following general steps: 

1) By using (6) and (19), develop the voltage and current change functions for the 

specific measurement (PMU) point and fault (location and impedance)  

2) Create “sectors” comprising any two lines of the network; for instance, lines 1 and 2, 

1 and 3, 1 and 4, 2 and 3, 2 and 4, etc. 

3) For each possible measurement point (PMU buses) check if conditions (20) are 
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violated in any “sector” comprised of any two power lines; that is, two faults on two 

different lines cause equal voltage and current phasor changes at the selected 

measurement point (PMU bus)  

4) Sort the measurement points according to the number of the undesired “sectors”; that 

is, “sectors” that violate (20). The measurement point (bus) that has the minimum 

undesired “sectors” is chosen as the first place for the PMU placement This approach 

can be continued by adding more PMUs under the condition that the undesired 

sectors for any new PMU has minimum overlap with those of the previous ones until 

the intersection of all undesired sectors of all utilized PMUs becomes an empty set 

where the required level of observability is reached.  

In step 3, using the calculated voltage change functions in step 1, the function 

21 hphp VVf                                                                                                                          (21) 

is defined where h is the measurement point and p1 and p2 are two different fault locations. If 

(21) becomes zero it implies that there are two different faults (locations and impedances) that 

provide the same voltage change on a selected measurement point (h); that is, a multi estimation 

has occurred. Consequently, the goal is to find all two lines (“sectors”) per each measurement 

point (PMU bus) for which there is potential multi estimation. For this purpose the equation 

0f  is solved for all “sectors”. Since each two lines create a “sector” and the number of lines 

is considered as L there would be 2/)1()2,(  LLLC  sectors. The next criterion is the 

equality in the measured current change; that is, 

0
21
 hphp IIg                                                                                                                   (22) 

If the roots of 0f  satisfy (22) in a sector, the sector is considered as undesired and 
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causes multi estimation. The novelty of this algorithm is to use the current criterion as well as 

voltage to minimize the number of PMUs and solving the multi estimation problem by applying 

the obtained current and voltage change functions for the entire network and for a large range of 

fault impedance. This algorithm specifies the best measurement points to identify the faults 

uniquely on the basis of the number of undesired sectors for each measurement point (PMU 

bus.) Finding the roots of 0f  leads to solving the nonlinear equations with 4 unknowns 

121 ,, fRDD  and 2fR . These equations can be solved by minimizing the 2f  through Levenberg-

Marquardt algorithm. Once the solutions of 0f is found, they are checked in (22). 

The procedure of the entire algorithm is shown in Fig. 3.    

3.3 Simulation Results 

The IEEE 7-bus, 14-bus and 30-bus benchmarks are considered as the case studies as 

shown in Figs. 4, 5 and 6.  

The proposed algorithm is applied to all networks to find the optimum number of PMUs 

besides the best place for them. The results are shown separately in Table I. As illustrated in 

Table 3.1, for 7-bus system after solving equation (8), 30 undesirable sectors are found where 

each measurement point on buses contains at least one undesired sector. However, when the 

current criterion is taken into the account those 30 sectors reduce to 2 undesired sectors. 

Nevertheless, there are measurement points (PMU buses) in the network that do not experience 

any undesired sectors, and thus, can be considered as the best places for PMU. As a result, by 

using this approach for 7-bus system only one PMU is needed for fault observability on bus 1 or 

2 or 4 or 5 or 7.  
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Figure 3.3 Algorithm of Finding the Best PMU Placement 
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Next, the proposed approach is applied to the IEEE 14-bus system. Again, the proposed 

algorithm reduces the undesired sectors from 115 to 40 when current change criterion is utilized 

along with the voltage change. Also, the minimum number of PMUs is determined to be one and 

appropriate locations are on bus 1or 2 or 4 or 5, where no multi estimations occur (no undesired 

sectors.) 

Finally, the IEEE 30-bus system is tested. It can be seen the undesired sectors are 

reduced from 405 to 162 when current change criterion is utilized along with the voltage change. 

Also, the minimum number of PMUs is determined to be 2 and appropriate locations are on 

buses 10 and 25. 

 

Fig. 3.4 

Figure 3.4 7 Buses IEEE Benchmark 

 

Figure 3.5 14 Buses IEEE Benchmark 
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Figure 3.6 30 Buses IEEE Benchmark 

The results are compared with available approaches in literature [26] and [38] and are 

shown in Table 3.2 where the effectiveness of the proposed algorithm is shown by reducing the 

number of PMUs from 5 to 1 for IEEE 7-bus, 8 to 1 for IEEE 14-bus and 17 to 2 for IEEE 30-

bus networks. 

 The proposed algorithm is also capable of considering a desired range for voltage and 

current measurement error. In this simulation this error is assumed to be as 1e-5 which is about 

1mV error in 100V. By assuming higher measurement error, more undesired sectors are likely to 

appear leading to more number of required PMUs. For instance, if  the error increases to 1e-4, in 

case of IEEE 7-bus, it leads to 7 undesired sector instead of 2 but still one PMU on bus B1 or B2 

or B7 could solve the multi estimation problem. However for IEEE 14-bus the consequence of 

the same simulation is two required PMUs instead of one and 56 undesired sectors instead of 40.  

Although the suggested number of PMUs satisfies the theoretical requirement, more number 

may be desirable to provide required robustness. 

 

 



30 

 

Table 3.1 Results of Applying Proposed Approach 

Test 

System 

Based on Voltage change only Based on both Voltage and current change  

# undesired sectors # undesired sectors # PMUs Location 

IEEE 7 

Bus 
30 2 1 B1 or B2 or B4 or B5 or B7 

IEEE 14 

bus 
115 40 1 B1 or B2 or B4 or B5 

IEEE 30 

bus 
405 162 2 B10 and B25 

 

Table 3.2 Comparison between Proposed and Prior Approaches 

Test 

System 

Number of PMUs 

Prior Approach Proposed Approach 

IEEE 7 Bus 5 1 

IEEE 14 bus 8 1 

IEEE 30 bus 17 2 

 

3.4 Summary 

In this chapter, a new method for fault analysis is developed based on mesh equations. 

This method allows calculating the line current change when a fault occurs in the system. Then, 

the voltage and current changes are formulated for the entire system in the form of functions of 

fault location and impedance. Subsequently, the network is tested for all possible PMU locations 

and faults to reduce multi estimation. It is shown that by utilizing the voltage change criterion 

along with the current change criterion at the PMU buses, the likelihood of multi estimation is 

greatly lowered. In addition, the required number of the PMUs for fault observability is 

significantly reduced compared to the past work. 
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4. CONCLUSION 

The fault location in the distribution system has been a controversial issue because of the 

complexity of such a system caused by: 

1. System imbalance due to existence of unbalanced loads, 

2. Different types of load include resistive, inductive or dynamic loads, 

3. Presence of laterals along the main feeder, 

4. Presence of the load taps along the main feeder and laterals, 

5. Heterogeneity of feeders caused by different cable size and length as well as presence of 

overhead and underground lines, and 

6. Presence of the renewable energy and DGs. 

As a result, recently there have been a lot of research and effort to propose an efficient 

fault location algorithm in order to improve the reliability of the distribution system by reducing 

duration of unexpected outages (outage caused by faults) and confining the search for faults 

within a relatively small area. Although there are different approaches to solve the multi 

estimation problem for fault location in the literature, just a few of them focus on optimal PMU 

placement to achieve fault observability in the given distribution system. 

In this thesis a novel approach is proposed to find the minimum number and best places 

of Phasor Measurement Units in the distribution system based on voltage and current 

measurement. In order to develop the approach the concepts of mesh-impedance matrix and 

mesh-admittance matrix in the network are introduced to calculate the current changes at the 

points of measurements as well as voltage drops caused by occurred fault.  Finally, the minimum 

required number of PMUS and the best place of them are specified so that measured voltages 

and currents provide a unique location for the happened fault.        
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APPENDIX A: FORMULA DEVELOPMENT 
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Substituting (2)-(5) in (1), one can have:      

f

bpkkkpp

kppppkpp

pp

kjj

bpkkkpp

kppphkhp

hp

fnewpp

ppref

newhphp

R
zDzzz

zzzz
z

VVDV
zDzzz

zzzz
z

Rz

V
zV


















)1(2

))((

))()1((
)1(2

))((

)2()2()2(

)2()2()2()2(

)2(

)2()2()2(

)2()2()2()2(

)2(

)(

)(

)( (6) 

where 

bjkkkjj

kkjkhkhj

hkhkhk
zzzz

zzzz
zzz






)0()0()0(

)0()0()0()0(

)0()1()2(
2

))((
                                                                          (7) 

bjkkkjj

kkjkkkkj

kkkkkk
zzzz

zzzz
zzz






)0()0()0(

)0()0()0()0(

)0()1()2(
2

))((
                                                                           (8) 

bjkkkjj

kjjjkkkj

kjkjkp
zzzz

zzzz
zzz






)0()0()0(

)0()0()0()0(

)0()1()2(
2

))((
                                                                           (9) 

bjkkkjj

kkjkjkjj

jkjkpk
zzzz

zzzz
zzz






)0()0()0(

)0()0()0()0(

)0()1()2(
2

))((
                                                                         (10)                                                                                                                       

bjkkkjj

kjjjhkhj

hjhjhp
zzzz

zzzz
zzz






)0()0()0(

)0()0()0()0(

)0()1()2(
2

))((
                                                                         (11)                                                                                                                  

b

bjkkkjj

kjjjjkjj

jjbjjpp Dz
zzzz

zzzz
zDzzz 






)0()0()0(

)0()0()0()0(

)0()1()2(
2

))((
                                                       (12) 



36 

 

Equation (6) can be rewritten by substituting (7)-(12) in it as follows: 
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hp
RDD
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where 
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Note that )2(hkz , )2(kkz , )2(kpz , )2(pkz , )2(hpz , and )2(ppz can be calculated from (7), (8), (9), (10), (11), 

and (12) respectively. 

Finally 
21 hphp VVf  can be calculated from: 
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where 4321321 ,,,,,,   are coefficients which are calculated for fault occurs at point p1 and 

4321321 ,,,,,,    are coefficients which are calculated for fault occurs at point p2  
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APPENDIX B: MATLAB CODE FOR OPTIMAL PMU PLACEMENT 
 

% PROGRAM TO MAKE THE DESIRED BUS AND LINE MATRICES ACCORDING TO BUS AND LINE 

INFORMATION OF IEEE 30-BUS 

 

bus=[  

1  1.06   0   0   0   0.000   0.000   0   0   1 

2  1.043  0   0.4 0   0.217   0.127   0   0   2 

3  1      0   0   0   0.024   0.012   0   0   3 

4  1      0   0   0   0.076   0.016   0   0   3 

5  1.01   0   0   0   0.942   0.190   0   0   2 

6  1      0   0   0   0.000   0.000   0   0   3 

7  1      0   0   0   0.228   0.109   0   0   3 

8  1.01   0   0   0   0.300   0.300   0   0   2 

9  1      0   0   0   0.000   0.000   0   0   3 

10 1      0   0   0   0.058   0.020   0  0.19 3 

11 1.082  0   0   0   0.000   0.000   0   0   2 

12 1      0   0   0   0.112   0.075   0   0   3 

13 1.071  0   0   0   0.000   0.000   0   0   2 

14 1      0   0   0   0.062   0.016   0   0   3 

15 1      0   0   0   0.082   0.025   0   0   3 

16 1      0   0   0   0.035   0.018   0   0   3 

17 1      0   0   0   0.090   0.058   0   0   3 

18 1      0   0   0   0.032   0.009   0   0   3 

19 1      0   0   0   0.095   0.034   0   0   3 

20 1      0   0   0   0.022   0.007   0   0   3 

21 1      0   0   0   0.175   0.112   0   0   3 

22 1      0   0   0   0.000   0.000   0   0   3 

23 1      0   0   0   0.032   0.016   0   0   3 

24 1      0   0   0   0.087   0.067   0 0.043 3 

25 1      0   0   0   0.000   0.000   0   0   3 

26 1      0   0   0   0.035   0.023   0   0   3 

27 1      0   0   0   0.000   0.000   0   0   3 

28 1      0   0   0   0.000   0.000   0   0   3 

29 1      0   0   0   0.024   0.009   0   0   3 

30 1      0   0   0   0.106   0.019   0   0   3 

]; 

  

  

  

  
line=[ 
%From To R           X       B  
1  2  0.019200 0.057500 0.026400 1.00  0.00 
1  3  0.045200 0.185200 0.020400 1.00  0.00 
2  4  0.013200 0.037900 0.004200 1.00  0.00 
2  5  0.047200 0.198300 0.020900 1.00  0.00 
2  6  0.058100 0.176300 0.018700 1.00  0.00 
4  6  0.011900 0.041400 0.004500 1.00  0.00 
5  7  0.046000 0.116000 0.010200 1.00  0.00 
6  7  0.026700 0.082000 0.008500 1.00  0.00 
6  8  0.012000 0.042000 0.004500 1.00  0.00 
6  9  0.000000 0.208000 0.004500 0.978 0.00 
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6  10 0.000000 0.556000 0.004500 0.969 0.00 
9  11 0.000000 0.208000 0.004500 1.00  0.00 
9  10 0.000000 0.110000 0.004500 1.00  0.00 
4  12 0.000000 0.256000 0.004500 0.932 0.00 
12 13 0.000000 0.140000 0.004500 1.00  0.00 
12 14 0.123100 0.255900 0.004500 1.00  0.00 
12 15 0.066200 0.130400 0.008500 1.00  0.00 
12 16 0.094500 0.198700 0.018700 1.00  0.00 
14 15 0.221000 0.199700 0.010200 1.00  0.00 
16 17 0.082400 0.192300 0.010200 1.00  0.00 
15 18 0.107000 0.218500 0.010200 1.00  0.00 
18 19 0.063900 0.129200 0.010200 1.00  0.00 
19 20 0.034000 0.068000 0.010200 1.00  0.00 
10 20 0.093600 0.209000 0.010200 1.00  0.00 
10 17 0.032400 0.084500 0.010200 1.00  0.00 
10 21 0.034800 0.074900 0.010200 1.00  0.00 
10 22 0.072700 0.149900 0.020900 1.00  0.00 
21 22 0.011600 0.023600 0.020900 1.00  0.00 
15 23 0.100000 0.202000 0.020900 1.00  0.00 
22 24 0.115000 0.179000 0.021400 1.00  0.00 
23 24 0.132000 0.270000 0.021400 1.00  0.00 
24 25 0.188500 0.329200 0.021400 1.00  0.00 
25 26 0.254400 0.380000 0.021400 1.00  0.00 
25 27 0.109300 0.208700 0.021400 1.00  0.00 
27 28 0.000000 0.396000 0.021400 0.968 0.00 
27 29 0.219800 0.415300 0.021400 1.00  0.00 
27 30 0.320200 0.602700 0.021400 1.00  0.00 
29 30 0.239900 0.453300 0.021400 1.00  0.00 
8  28 0.063600 0.200000 0.021400 1.00  0.00 
6  28 0.016900 0.059900 0.006500 1.00  0.00 
];     
  
[br,bc]=size(bus); 

for i=1:br 

    if bus(i,10)==3; 

        bus(i,6)=(bus(i,6)-bus(i,4)); 

        bus(i,4)=0; 

        bus(i,7)=(bus(i,7)-bus(i,5)); 

        bus(i,5)=0; 

    else 

        bus(i,4)=(bus(i,4)-bus(i,6)); 

        bus(i,6)=0; 

        bus(i,5)=(bus(i,5)-bus(i,7)); 

        bus(i,7)=0; 

    end 

end 

  

bus2=bus; 

line2=line; 

  

bus2=[bus2,bus(:,1)]; 

line2=[line2,line(:,1:2)]; 
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%this part place the slack Gens in the first row 

[lr,lc]=size(line); 

for i=1:br 

    if bus2(i,10)==1 

       Bus_temp=bus2(1,:); 

       bus2(1,:)=bus2(i,:); 

       bus2(i,:)=Bus_temp; 

       bus2(1,1)=1; 

       bus2(i,1)=i; 

  

        

       for j2=1:lr 

                if line2(j2,1)==1 

                    line2(j2,1)=i; 

                elseif line2(j2,1)==i 

                    line2(j2,1)=1; 

                end 

            

                if line2(j2,2)==1 

                    line2(j2,2)=i; 

                elseif line2(j2,2)==i 

                    line2(j2,2)=1; 

                end 

                 

       end 

    end 

end 

  

  

%this part place the Gens in the first rows after slack 

j1=2; 

for i=1:br 

    if bus2(i,10)==2 

       Bus_temp=bus2(j1,:); 

       bus2(j1,:)=bus2(i,:); 

       bus2(i,:)=Bus_temp; 

       bus2(j1,1)=j1; 

       bus2(i,1)=i; 

        

  

       for j2=1:lr 

                if line2(j2,1)==j1 

                    line2(j2,1)=i; 

                elseif line2(j2,1)==i 

                    line2(j2,1)=j1; 

                end 

            

                if line2(j2,2)==j1 

                    line2(j2,2)=i; 

                elseif line2(j2,2)==i 
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                    line2(j2,2)=j1; 

                end 

        end 

       j1=j1+1;  

    end 

end 

  

bus=bus2(:,1:bc); 

line=line2(:,1:lc); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

b=size(line); 

b=b(1,1); 

clear b 

clear bus1 

  

bus2; 

line2; 

  

busINIT = bus; 
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% PROGRAM IN MATALB TO CALCULATE 
21 hphp VVf   FOR EACH SECTION 

function F=myfun30(x) 

global h l1 l2; 

BusLine30; 

nn=size(bus,1); 

mm=size(line,1); 

 [Y,nSW,nPV,nPQ,SB] = ybus(bus,line); 

   Y_bus=full(Y); 

   Z0=Y_bus\eye(nn); 

   [bus_sol,line_flow]=loadflow(bus,line,1e-11,100,0,2,1,'n',1); 

   p=nn+1; 

   Final_R=[]; 

  

           k=line(l1,1); 

           j=line(l1,2); 

           Z2=zeros(nn+1,nn+1); 

           Vk=bus_sol(k,2)*exp(sqrt(-1)*bus_sol(k,3)*pi/180); 

           Vj=bus_sol(j,2)*exp(sqrt(-1)*bus_sol(j,3)*pi/180); 

           Zjk=-1/Y_bus(j,k); 

            Z2(j,j)=Z0(j,j)-(Z0(j,j)-Z0(j,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(j,p)=Z0(j,k)-(Z0(j,j)-Z0(j,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(p,j)=Z2(j,p); 

            Z2(h,p)=Z0(h,k)-(Z0(h,j)-Z0(h,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(h,j)=Z0(h,j)-(Z0(h,j)-Z0(h,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(k,k)=Z0(k,k)-(Z0(k,j)-Z0(k,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

             m=Z2(j,j)*Z2(h,p)-Z2(j,p)*Z2(h,p)-Z2(h,j)*Z2(j,p)+Z2(h,j)*Z2(k,k)+Z2(h,p)*Zjk; 

             n=(Z2(h,j)-Z2(h,p))*Zjk; 

             M=-m*Vk; 

             N=-(m*Vj-m*Vk+n*Vk); 

             Q=-n*(Vj-Vk); 

             Mp=Z2(k,k)*Z2(j,j)-Z2(p,j)^2+Z2(k,k)*Zjk; 

             Xp=Z2(k,k)+Z2(j,j)-2*Z2(p,j)+Zjk; 

             Np=(Z2(j,j)-Z2(j,p)+Zjk)*Zjk; 

             Qp=Zjk; 

  

              

           k=line(l2,1); 

           j=line(l2,2); 

           Z2=zeros(nn+1,nn+1); 

           Vk=bus_sol(k,2)*exp(sqrt(-1)*bus_sol(k,3)*pi/180); 

           Vj=bus_sol(j,2)*exp(sqrt(-1)*bus_sol(j,3)*pi/180); 

            Zjk=-1/Y_bus(j,k); 

            Z2(j,j)=Z0(j,j)-(Z0(j,j)-Z0(j,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(j,p)=Z0(j,k)-(Z0(j,j)-Z0(j,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(p,j)=Z2(j,p); 

            Z2(h,p)=Z0(h,k)-(Z0(h,j)-Z0(h,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(h,j)=Z0(h,j)-(Z0(h,j)-Z0(h,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(k,k)=Z0(k,k)-(Z0(k,j)-Z0(k,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

             s=Z2(j,j)*Z2(h,p)-Z2(j,p)*Z2(h,p)-Z2(h,j)*Z2(j,p)+Z2(h,j)*Z2(k,k)+Z2(h,p)*Zjk; 
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             t=(Z2(h,j)-Z2(h,p))*Zjk; 

             S=-s*Vk; 

             T=-(s*Vj-s*Vk+t*Vk); 

             R=-t*(Vj-Vk); 

             Sp=Z2(k,k)*Z2(j,j)-Z2(p,j)^2+Z2(k,k)*Zjk; 

             Tp=(Z2(j,j)-Z2(j,p)+Zjk)*Zjk; 

             Yp=Z2(k,k)+Z2(j,j)-2*Z2(p,j)+Zjk; 

             Rp=Zjk;             

            

F=((M+N*x(1)+Q*(x(1).^2))./(Mp+Np*x(1)+Qp*(x(1).^2)+Xp*x(3))-

(S+T*x(2)+R*(x(2).^2))./(Sp+Tp*x(2)+Rp*(x(2).^2)+Yp*x(4))); 

  

end 
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% PROGRAM IN MATALB TO SOLVE THE EQUATION 
21 hphp VVf  AND CHECK ITS ROOT IN 

THE EQUATION 0
21
 hphp IIg  

clear all 

clc 

    Result_F=[]; 

    Result=[]; 

    Result_t=[]; 

    lb=[]; 

    ub=[]; 

    global h l1 l2 

    options = optimset('Algorithm','levenberg-marquardt'); 

    tic 

for h=1:30 

    for l1=1:40 

        for l2=l1+1:40 

             [h l1 l2]      

for I=0:.5:.5 

      for J=0:0.5:.5 

           for K=0:.5:.5 

               for M=0:.5:.5          

x0=[rand*.5+I; rand*.5+J; rand*.5+K; rand*.5+M]; 

[x,resnorm,residual] = lsqnonlin(@myfun30,x0,lb,ub,options); 

realx=real(x); 

imagx=imag(x); 

if abs(imagx(1:2,1))<=.001  

    if abs(imagx(3:4,1))<=.01 

      if realx>=0 

        if residual<=1e-4 

Result=[Result,[x;h;l1;l2]]; 

D1=x(1); 

D2=x(2); 

R1=x(3); 

R2=x(4); 

Best_PMU_Place_Voltage_F_30 

Best_PMU_Place_Current_F_30 

if abs(E*Vf*R1/(Zpp+R1)-Ep*Vfp*R2/(Zppp+R2))<1e-4 

    Result_F=[Result_F,[D1;D2;R1;R2;h;l1;l2]]; 

end 

                    end 

              end 

       end 

end 

  

               end 

           end 

     end 

end 

           end 

    end 
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end  

t=toc 

Result 

Result_F 

  

save Result_sol_30_VC4 Result_F Result 
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% PROGRAM IN MATALAB TO CALCULATE THE PARAMETERS OF 
21 hphp IIg  FOR EACH 

SECTION 

 

 

BusLine30   

nn=size(bus,1); 

mm=size(line,1); 

 [Y,nSW,nPV,nPQ,SB] = ybus(bus,line); 

   Y_bus=full(Y); 

   Z0=Y_bus\eye(nn); 

   [bus_sol,line_flow]=loadflow(bus,line,1e-11,100,0,2,1,'n',1); 

   p=nn+1; 

   Final_R=[]; 

   

           k=line(l1,1); 

           j=line(l1,2); 

           Z2=zeros(nn+1,nn+1); 

           Vk=bus_sol(k,2)*exp(sqrt(-1)*bus_sol(k,3)*pi/180); 

           Vj=bus_sol(j,2)*exp(sqrt(-1)*bus_sol(j,3)*pi/180); 

           Zjk=-1/Y_bus(j,k); 

            Z2(j,j)=Z0(j,j)-(Z0(j,j)-Z0(j,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(j,p)=Z0(j,k)-(Z0(j,j)-Z0(j,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(p,j)=Z2(j,p); 

            Z2(h,p)=Z0(h,k)-(Z0(h,j)-Z0(h,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(h,j)=Z0(h,j)-(Z0(h,j)-Z0(h,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(k,k)=Z0(k,k)-(Z0(k,j)-Z0(k,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Zpp=Z2(k,k)+D1*Zjk-(Z2(p,j)-Z2(k,k)-D1*Zjk)*(Z2(j,p)-Z0(k,k)-D1*Zjk)/(Z2(j,j)+Z0(k,k)-

2*Z0(j,k)+Zjk); 

             m=Z2(j,j)*Z2(h,p)-Z2(j,p)*Z2(h,p)-Z2(h,j)*Z2(j,p)+Z2(h,j)*Z2(k,k)+Z2(h,p)*Zjk; 

             n=(Z2(h,j)-Z2(h,p))*Zjk; 

             M=-m*Vk; 

             N=-(m*Vj-m*Vk+n*Vk); 

             Q=-n*(Vj-Vk); 

             Mp=Z2(k,k)*Z2(j,j)-Z2(p,j)^2+Z2(k,k)*Zjk; 

             Xp=Z2(k,k)+Z2(j,j)-2*Z2(p,j)+Zjk; 

             Np=(Z2(j,j)-Z2(j,p)+Zjk)*Zjk; 

             Qp=Zjk; 

             Vf=(1-D1)*Vk+D1*Vj; 

             

        

            A=(M+N*D1+Q*(D1.^2))./(Mp+Np*D1+Qp*(D1.^2)); 

            C=(m+n*D1)./(Mp+Np*D1+Qp*(D1.^2)); 

              

           k=line(l2,1); 

           j=line(l2,2); 

           Z2=zeros(nn+1,nn+1); 

           Vk=bus_sol(k,2)*exp(sqrt(-1)*bus_sol(k,3)*pi/180); 

           Vj=bus_sol(j,2)*exp(sqrt(-1)*bus_sol(j,3)*pi/180); 

            Zjk=-1/Y_bus(j,k); 

            Z2(j,j)=Z0(j,j)-(Z0(j,j)-Z0(j,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 
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            Z2(j,p)=Z0(j,k)-(Z0(j,j)-Z0(j,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(p,j)=Z2(j,p); 

            Z2(h,p)=Z0(h,k)-(Z0(h,j)-Z0(h,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(h,j)=Z0(h,j)-(Z0(h,j)-Z0(h,k))*(Z0(j,j)-Z0(k,j))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

            Z2(k,k)=Z0(k,k)-(Z0(k,j)-Z0(k,k))*(Z0(j,k)-Z0(k,k))/(Z0(j,j)+Z0(k,k)-2*Z0(j,k)-Zjk); 

             s=Z2(j,j)*Z2(h,p)-Z2(j,p)*Z2(h,p)-Z2(h,j)*Z2(j,p)+Z2(h,j)*Z2(k,k)+Z2(h,p)*Zjk; 

             t=(Z2(h,j)-Z2(h,p))*Zjk; 

             S=-s*Vk; 

             T=-(s*Vj-s*Vk+t*Vk); 

             R=-t*(Vj-Vk); 

             Sp=Z2(k,k)*Z2(j,j)-Z2(p,j)^2+Z2(k,k)*Zjk; 

             Tp=(Z2(j,j)-Z2(j,p)+Zjk)*Zjk; 

             Yp=Z2(k,k)+Z2(j,j)-2*Z2(p,j)+Zjk; 

             Rp=Zjk; 

             Vfp=(1-D2)*Vk+D2*Vj; 

             

           

             

             Ap=(S+T*D2+R*(D2.^2))./(Sp+Tp*D2+Rp*(D2.^2)); 

             Cp=(s+t*D1)./(Sp+Tp*D2+Rp*(D2.^2)); 

             Zppp=Z2(k,k)+D1*Zjk-(Z2(p,j)-Z2(k,k)-D1*Zjk)*(Z2(j,p)-Z0(k,k)-D1*Zjk)/(Z2(j,j)+Z0(k,k)-

2*Z0(j,k)+Zjk); 
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BusLine30 

Mesh_find; 

nn=size(line,1); 

 

   YY_bus=YY; 

   Z0=YY_bus\eye(nn); 

   

   p=nn+1; 

   Final_R=[]; 

  

           l=line(l1,1); 

           m=line(l1,2); 

           Z2=zeros(nn+1,nn+1); 

           Zml=-1/YY_bus(m,l); 

           Yl=Zml;  

           Yml=LL(m); 

           RF=0; 

           Z1(h,l)=Z0(h,l)-(Z0(h,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(h,m)=Z0(h,l)-(Z0(h,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

           Z1(m,l)=Z0(m,l)-(Z0(m,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(l,l)=Z0(l,l)-(Z0(l,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(m,m)=Z0(m,l)-(Z0(m,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

  

           Z2(h,l)=Z1(h,l)-(Z1(h,m)-Z1(h,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(h,m)=Z1(h,m)-(Z1(h,m)-Z1(h,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(m,l)=Z1(m,l)-(Z1(m,m)-Z1(m,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(l,l)=Z1(l,l)-(Z1(l,m)-Z1(l,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(m,m)=Z1(m,m)-(Z1(m,m)-Z1(m,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

            

           Z4(h,l)=Z2(h,l)-(Z2(h,m)-Z2(h,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(h,p)=Z4(h,l); 

           Z4(p,l)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(p,p)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

            

           Z5(h,l)=Z4(h,l)-(Z4(h,p)*Z4(p,l))/(Z4(p,p)+1/((1-D1)*Yl)); 

           Z5(l,l)=Z4(l,l)-(Z4(l,p)*Z4(p,l))/(Z4(p,p)+1/((1-D1)*Yl)); 

            

           Z6(h,l)=Z5(h,l)-(Z5(h,l)*Z5(l,l))/(Z5(l,l)+1/(D1*Yl)); 

           %---------------------------------------------------------------------------------------------------------% 

            

           Z1(h,l)=Z0(h,l)-(Z0(h,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(h,m)=Z0(h,l)-(Z0(h,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

           Z1(m,l)=Z0(m,l)-(Z0(m,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(l,l)=Z0(l,l)-(Z0(l,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(m,m)=Z0(m,l)-(Z0(m,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

  

           Z2(h,l)=Z1(h,l)-(Z1(h,m)-Z1(h,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(h,m)=Z1(h,m)-(Z1(h,m)-Z1(h,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(m,l)=Z1(m,l)-(Z1(m,m)-Z1(m,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(l,l)=Z1(l,l)-(Z1(l,m)-Z1(l,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 
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           Z2(m,m)=Z1(m,m)-(Z1(m,m)-Z1(m,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

            

           Z4(h,l)=Z2(h,l)-(Z2(h,m)-Z2(h,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(h,p)=Z2(h,l)-(Z2(h,m)-Z2(h,l))*(Z2(m,l)-Z2(l,l)-RF)/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(p,l)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(p,p)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

            

           Z5(h,p)=Z4(h,p)-(Z4(h,p)*Z4(p,p))/(Z4(p,p)+1/((1-D1)*Yl)); 

           Z5(p,l)=Z4(p,l)-(Z4(p,p)*Z4(p,l))/(Z4(p,p)+1/((1-D1)*Yl)); 

            

           Z6(h,p)=Z5(h,p)-(Z5(h,l)*Z5(p,l))/(Z5(l,l)+1/(D1*Yl)); 

            

           E=(Z6(h,l)-Z6(h,p)); 

             

           l=line(l2,1); 

           m=line(l2,2); 

           Z2=zeros(nn+1,nn+1); 

            Zml=-1/YY_bus(m,l); 

            Yl=Zml;  

           Yml=LL(m); 

           Z1(h,l)=Z0(h,l)-(Z0(h,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(h,m)=Z0(h,l)-(Z0(h,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

           Z1(m,l)=Z0(m,l)-(Z0(m,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(l,l)=Z0(l,l)-(Z0(l,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(m,m)=Z0(m,l)-(Z0(m,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

  

           Z2(h,l)=Z1(h,l)-(Z1(h,m)-Z1(h,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(h,m)=Z1(h,m)-(Z1(h,m)-Z1(h,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(m,l)=Z1(m,l)-(Z1(m,m)-Z1(m,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(l,l)=Z1(l,l)-(Z1(l,m)-Z1(l,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(m,m)=Z1(m,m)-(Z1(m,m)-Z1(m,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

            

           Z4(h,l)=Z2(h,l)-(Z2(h,m)-Z2(h,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(h,p)=Z4(h,l); 

           Z4(p,l)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(p,p)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

            

           Z5(h,l)=Z4(h,l)-(Z4(h,p)*Z4(p,l))/(Z4(p,p)+1/((1-D2)*Yl)); 

           Z5(l,l)=Z4(l,l)-(Z4(l,p)*Z4(p,l))/(Z4(p,p)+1/((1-D2)*Yl)); 

            

           Z6(h,l)=Z5(h,l)-(Z5(h,l)*Z5(l,l))/(Z5(l,l)+1/(D2*Yl)); 

            

           Z1(h,l)=Z0(h,l)-(Z0(h,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(h,m)=Z0(h,l)-(Z0(h,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

           Z1(m,l)=Z0(m,l)-(Z0(m,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(l,l)=Z0(l,l)-(Z0(l,l)*Z0(l,l))/(Z0(l,l)-1/Yl); 

           Z1(m,m)=Z0(m,l)-(Z0(m,l)*Z0(l,m))/(Z0(l,l)-1/Yl); 

  

           Z2(h,l)=Z1(h,l)-(Z1(h,m)-Z1(h,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(h,m)=Z1(h,m)-(Z1(h,m)-Z1(h,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 
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           Z2(m,l)=Z1(m,l)-(Z1(m,m)-Z1(m,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(l,l)=Z1(l,l)-(Z1(l,m)-Z1(l,l))*(Z1(m,l)-Z1(l,l))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

           Z2(m,m)=Z1(m,m)-(Z1(m,m)-Z1(m,l))*(Z1(m,m)-Z1(l,m))/(Z1(l,l)+Z1(m,m)-2*Z1(m,l)-1/Yml); 

            

           Z4(h,l)=Z2(h,l)-(Z2(h,m)-Z2(h,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(h,p)=Z2(h,l)-(Z2(h,m)-Z2(h,l))*(Z2(m,l)-Z2(l,l)-RF)/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(p,l)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

           Z4(p,p)=Z2(l,l)-(Z2(m,l)-Z2(l,l))*(Z2(m,l)-Z2(l,l))/(Z2(l,l)+RF+Z2(m,m)-2*Z2(m,l)-1/Yml); 

            

           Z5(h,p)=Z4(h,p)-(Z4(h,p)*Z4(p,p))/(Z4(p,p)+1/((1-D2)*Yl)); 

           Z5(p,l)=Z4(p,l)-(Z4(p,p)*Z4(p,l))/(Z4(p,p)+1/((1-D2)*Yl)); 

            

           Z6(h,p)=Z5(h,p)-(Z5(h,l)*Z5(p,l))/(Z5(l,l)+1/(D2*Yl)); 

            

           Ep=(Z6(h,l)-Z6(h,p)); 
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