
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2014

A Virtual Testbed for Embedded Systems
Shrikant Labade
Louisiana State University and Agricultural and Mechanical College, shrilabade1@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Labade, Shrikant, "A Virtual Testbed for Embedded Systems" (2014). LSU Master's Theses. 1952.
https://digitalcommons.lsu.edu/gradschool_theses/1952

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/1952?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1952&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

A VIRTUAL TESTBED FOR EMBEDDED SYSTEMS

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agriculture and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master of Science

 in

The Department of Electrical and Computer Engineering

by

Shrikant D Labade

M.Sc., University of Pune, India 2007

May 2014

ii

To my Family and Friends back in India

iii

ACKNOWLEDGMENTS

I take pleasure in submitting herewith the report on “A Virtual Testbed for Embedded

Systems” in partial fulfillment of the requirements for the degree of Master of Science in Electrical

and Computer Engineering.

I am grateful to my co-advisor Dr. Gerald Baumgartner for his wholehearted support and

valuable suggestions without which I would not have been able to complete my thesis. His deep

knowledge and keen interest in the field encouraged and motivated me to come up with the present

work. Thanks for explaining the concepts again and again and being patient. Our weekly meeting

has really helped to get that fuel to work regularly on my thesis and imparted me with a knowledge

that will help me in other walks of life as well.

I would like to offer my most sincere thanks to my co-advisor Dr. J. Ramanujam for his

constant suggestions and the knowledge he bestowed upon me in and out of the class.

I am very thankful to the College of Humanities and Social Sciences at LSU for providing

me the financial help during my Masters. I would like to take this opportunity to thank my

manager Mr. Mark Hovey for his constant support. Working with Mr. Mark was a great experience

which taught me a great deal. The flexibility you gave me at work was truly beneficial in that it

allowed me to concentrate on academic activity.

I would also like to thank my committee member Dr. Suresh Rai for graciously agreeing to

be on my thesis committee.

I am thankful to Newton Odgen for his help in the initial development of device drivers. I

am also thankful to Ajay Panyala for his help with measurements.

I sincerely thank Kevin Hartline for proof-reading my thesis and suggesting valuable

changes.

iv

I am very grateful to my family for their constant moral support and belief in me. You’re

love gave me the courage to strive and succeed in all my endeavors.

I sincerely thank the Department of Electrical and Computer Engineering for allowing me

to use the resources to complete my thesis.

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iii

ABSTRACT ... vii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. RELATED WORK ... 6

2.1 Hardware-In-the-Loop (HIL) Simulation .. 6

2.2 Software-In-the-Loop (SIL) Simulation .. 7

2.3 Instruction-Set-Simulation (ISS).. 8

2.4 Validator Simulation .. 11

2.5 Full System Simulation .. 12

2.6 Hardware-In-the-Loop with Network Link Simulation (Our Approach) ... 13

CHAPTER 3. DESIGN .. 15

3.1 System Setup .. 15

3.2 Architecture of the Embedded Processor ... 16

3.3 Architecture of the System ... 18

3.4 System Behavior .. 22

CHAPTER 4. IMPLEMENTATION ... 24

4.1 Porting Software onto a 32-bit DSP ... 24

4.2 Device Drivers ... 25

4.3 Simulator .. 34

CHAPTER 5. MEASUREMENTS .. 40

5.1 Different Test Cases ... 40

5.2 Measurements .. 44

CHAPTER 6. CONCLUSION AND FUTURE WORK ... 49

vi

REFERENCES .. 52

VITA .. 56

vii

ABSTRACT

Hardware-In-the-Loop (HIL) Simulation is a simulation approach in which a hardware embedded

processor is connected to the simulation computer that simulates the electrical/mechanical devices

controlled by the embedded processor. By using a real-time simulation computer and special-

purpose hardware for connecting to the embedded processor, this method of simulation can be very

precise but is costly. We are proposing an alternative method, HIL simulation with a network link,

in which the device under test (the embedded processor) communicates with the simulation

computer over a network connection (in our case a serial line) instead of through special-purpose

hardware. We present an abstraction layer that facilitates the simulation of external devices. An

earlier prototype had been developed for a 16-bit TMS320LF2407A DSP from Texas Instruments.

We generalized the approach to the more advanced 32-bit TMS320F28335 DSP. We have made

the changes in the DSP abstraction layer to enable more features and provide more flexibility to

the programmer. For example, we introduced a shadow interrupt vector to make the simulation

layer more general. We developed various scenarios to measure the performance of the system. In

particular, we measure round-trip time and through-put for the communication between the

simulator and the DSP. Also we rewrote the serial line drivers on the DSP to incorporate different

working scenarios and to invoke the timers on the DSP for measuring the execution time. Our

work helps to judge the performance of the system and to identify the application domains for this

approach.

1

CHAPTER 1. INTRODUCTION

An embedded system is a computer system that performs a task using dedicated hardware

in real-time. An embedded system repeatedly communicates with its surroundings through sensors

and then responds to the surrounding using actuators. For example, in a temperature control

application an embedded system reads the temperature sensor and then decides whether to turn on

the air conditioner or not. An embedded system has either a Microcontroller or higher power

Digital Signal Processor (DSP) as a processing core based on the application the embedded system

is supposed to perform. For example, an embedded system designed to control an elevator will

have a DSP, as it has to process large amount of data to control the motor driving the elevator; on

the other hand an embedded system designed to control lights will have a Microcontroller since it

just has to read the sensor and activate the actuator to turn on the lights. Figure 1 shows the block

diagram of a general embedded system.

Fig 1: Basic Block Diagram Embedded System [19]

Processor

On Chip

Memory

Power

Supply

Input Output

2

Today, embedded systems are rapidly becoming ubiquitous and more complex in nature.

We can find applications for an embedded system in almost every field. Embedded systems can be

found in the operation room in the form of a patient monitoring system to assist the surgeon in the

surgery. They are also used to remotely control certain toys, such as cars or helicopters. Some

interesting statistics state that the average consumer now interacts with embedded microprocessors

up to 300 times per day and today, on an average, we have as many as 50 embedded processors in

an automobile. However, the development of embedded systems is a tedious job, as they have a

number of constraints. Some of these constraints include real-time operation, processing power,

size, weight, power consumption, reliability and cost. Also, experts from various fields of

electrical and computer engineering are needed to design electrical and computation parameters of

the system as well as experts from mechanical engineering are required to design the enclosure and

internal arrangement of various parts of the system. Using simulation will be a great help in

embedded system design.

Simulation is used in every field to aid the process of development. For example it is used

to simulate flight, automobiles, and bridges in civil engineering; it is also used to train pilots.

Simulation is used when the system under development is complicated to design, hazardous and/or

difficult to test, or expensive. Simulation is also used to study various parameters of the system, to

check the performance of the system, to understand operation of the system and to train various

personnel. Simulation can also help lower the development cost and lead time.

Several simulation approaches have been proposed for the development of embedded

system software such as, Hardware-In-the-Loop Simulation (HIL), Instruction-Set-Simulation

(ISS) and Software-In-the-Loop Simulation (SIL). In her thesis, Jing Liu has described a hardware

in-the-loop simulation approach with a network link. The prototype had been developed with a

3

TMS320LF2407A DSP from Texas Instruments that simulates external electrical and mechanical

signals that are controlled by the embedded processor. She had developed device drivers that

allowed to access either the hardware or to communicate with the simulator. This system was

developed to provide a design and development environment for embedded software that would be

as realistic as possible [15].

Liu’s design of the device drivers was not general enough to work for all device registers.

Medavarapu [6] generalized this approach for all device registers and developed abstraction layers

for both DSP and the PC side of the system. These abstraction layers helped test both the real and

simulated hardware connected to the DSP. He modified the serial line driver to utilize the serial

line bandwidth to allow using the system in an application that requires signal processing and

voice [6].

This thesis is based on the work done by both Liu and Medavarapu. We have ported the

software to a more advanced embedded processor. The system was originally developed on the

TMS320LF2407A DSP, which is a 16-bit processor. We ported the system to the 32-bit

TMS320F28335 DSP, which provides more functionality but also makes it more challenging to

design the network communication between the DSP and the simulator. We also wrote shadow

interrupts to enhance the simulation and invoked the timers on the embedded processor/DSP to

measure different attributes of the system. The logic for serial line has also been changed to allow

measurements for different cases. Also, we made the software more users friendly. For example,

we added generic SET/GET functions to write to and read from the low-level device drivers,

developed logic to select and determine the mode of operation, (for example, hardware, simulation

and hardware and simulation mode), developed the logic to write either to the physical registers or

shadow registers based on the mode of operation. Also, we introduced various test cases to

4

measure the performance of the system. The work we have done is intended to help determine the

performance of the system for different cases and to identify the area where this system can be

used to enhance the process of development and to enhance the productivity and lead time for

development.

This approach can be useful for teaching embedded systems and is more cost effective than

the traditional teaching methods, as it does not require actual hardware devices but only a

conventional PC and a DSP evaluation board. Also, a course based on the virtual testbed can be

scaled to a larger number of students because it is not necessary to have a supervisor monitor the

students in the as there is no danger of damage to the laboratory property because of the faulty

software. This approach will also be useful in rapid prototyping since the software engineer can

start the software development even if the hardware is not ready. This will help to develop both the

software and the hardware simultaneously. For example, a company developing a washing

machine can have the simulation library ready for almost all components of the washing machine.

When they want to develop a new advanced washing machine, they can use the simulation library

to develop the washing machine simulator in less time and start the development process thereby

considerably reducing the development time.

Another useful application area is unit testing. In unit testing, the different components of a

system are tested independently allowing the testing to be more rapid and less complicated. The

simulator we are proposing can be used as a test harness, simulating some of the components of a

larger system that communicate with the hardware under test. For example, the engineer testing the

safety features of an automobile can simulate components such as the anti-braking system or

steering control system of the automobile and connect the simulator to the actual hardware for

5

safety features. This allows individual testing and development of the entire system making the

development process faster.

This approach can also be used for monitoring purposes to log all the events on the

boundary between the embedded processor and the outside world. For example, if the whole

system is ready and running, a device driver can be developed that will send the data over the

serial link to the simulator to be recorded for maintenance purposes. This stored data can be

helpful to study the system behavior for improving the performance of the system or for

identifying potential hazards and implement measures to avoid them. It will also be helpful for

education purposes.

The thesis is structured as follows. In Chapter 2, we discuss the existing work done in this

area. We mention several simulation approaches proposed and used in industry and compare the

advantages and disadvantages. After that, we provide details of Jing Liu’s approach and compare it

with other existing methods. Also, we will talk about the work done by Medavarapu to make the

system more realistic and user friendly. Then, we will talk about our work and how it is helpful to

measure the performance of the system to determine its advantages and disadvantages over the

others. In Chapter 3, we discuss the overall design of the system and provide the details of the

protocol used in the system. In Chapter 4, we present the implementation details. In Chapter 5, we

provide the measurements for different test cases to evaluate the performance of the system.

Chapter 6 concludes our work and discusses future work.

6

CHAPTER 2. RELATED WORK

2.1 Hardware-In-the-Loop (HIL) Simulation

Over time, several methods for simulating embedded systems have been proposed. HIL

simulators are one of the most used simulators in the industry. A HIL simulation has the embedded

system under consideration connected to the hardware simulation computer. A HIL simulation can

be very costly as it often requires dedicated hardware. Figure 2 shows the basic block diagram of a

typical HIL simulator.

 Figure 2: Block Diagram of a HIL Simulation [6]

A HIL simulation can be very useful in measuring the timing aspects of the electrical signals as the

actual hardware is being used [18], [26]. A HIL simulation can be used only when the embedded

hardware is ready; hence, it can be the last stage in the development process when checking the

performance of the system. A HIL simulation is very precise but tedious to implement. P. Baracos

7

et al. are using PC based HIL simulation for automotive applications [27]. M. D. Jokie and et al.

are developing “Tethered Satellite System Models” to be used in HIL simulations [20]. Refer to

[2], [4], [7], [12], [13], [17], [18], [21], [26], [28] for some more applications of HIL simulation.

2.2 Software-In-the-Loop (SIL) Simulation

SIL is one of the most used and reliable methods for testing real time embedded systems.

As the name suggests, the embedded software is executed on a processor different than the target

processor, in close loop with the model of the plant. Normally, a PC is used to run both the

embedded software and the plant model. A SIL is achieved by running an abstraction of the

targeted embedded processor on the host computer. A SIL simulation is easy to implement and

cost effective, as it can be executed on a regular PC and does not require any dedicated hardware.

Figure 3, shows the basic block diagram of Software-In-the-Loop Simulation.

Figure 3: Block Diagram Software-In-the-Loop Simulation [6]

8

A SIL does not represent the timing of an actual embedded processor; hence, it is less

precise [15]. The abstraction can be very basic, simply to check the functionality of the software,

or full-fledged to simulate the actual embedded processor.

2.3 Instruction-Set-Simulation (ISS)

In this approach, the behavior of the targeted embedded processor is simulated on the host

computer [5]. As the name implies this simulation simulates the computations corresponding to

each instruction of the processor. The precision of the simulation can be either cycle-level-accurate

or function-level-accurate. In the function-level-accurate simulation the main focus is to evaluate

the functional capability of the processor. In this case, the instruction pipeline of the processor is

coarsely modeled. This type of ISS is fast but not accurate. In cycle-level-accurate simulation, the

instruction pipeline and data path of the processor is closely modeled. This type of simulation is

very precise but has the limitation of slow simulation speed [1]. An ISS could be implemented in

several ways. Figure 4 shows the general sequence of ISS.

 Figure 4: ISS Software Flow [1]

9

a. Interpretive Simulation:

 These simulators interpret the targeted processor instructions. Each instruction is

fetched from the memory of the host machine. The instruction is then decoded and

executed. Figure 5 shows the sequence of operation.

Figure 5: Interpretive Simulation [5]

This kind of simulation module is easy to implement and flexible, but has the drawback of

slow speed. This slowness is caused, by the time taken to decode and execute the

instructions. The speed can be enhanced by storing the decoded instructions in the decode

buffer, similar to cache in computers, so that they do not have to be decoded again if they

are reused. Refer to GDB [10] and TRAP [34].

b. Compiled Simulation/Static Translation:

 In these simulations, the application program is translated into a new program for

the host machine at the preliminary stage of compilation. This is done in order to save time

spent fetching, decoding and executing operations. This simulation has a disadvantage of

not simulating the processor conceptually. This simulation is also not as flexible since the

entire program has to be known at compile time. This simulation also does not allow the

10

program to be changed at run time. Hence this method is not suitable for applications

which require dynamic modification of the program. Figure 6 shows the block diagram for

compiled simulation. Refer to [3], [24] and [25] for techniques to improve compiled

simulation.

Figure 6: Compiled Simulation [5]

c. Dynamic Translation:

This simulation overcomes the disadvantage of not being allowed to change the

program at run time that plagues compilation based simulation. Like interpretive

simulation, the targeted instruction is fetched from the memory at run time. The

instructions are then decoded on their first execution. Once the instruction is decoded, the

simulator translates the instruction into a different representation and stores it in cache. If

the instruction needs to be executed again, it is fetched from cache. If the program is

modified at run time, the cache is discarded and the changes are incorporated [5]. In

interpretive simulation, the slowness is caused by fetch, decode and execution operations

for each instruction. This is overcome in dynamic simulation by using cache for repeated

instructions. This type of ISS combines the advantages of both interpretive and compiled

simulation. Figure 7 shows the general block diagram for dynamic simulation.

11

Figure 7: Dynamic Simulation [5]

2.4 Validator Simulation

 The validator simulation engine is a discrete event simulator that models the operations of

the system under test as discrete events in time and also takes the platform specifications into

account. The platform specifications, such as operating system (OS), timers and the

communication bus are the plug-ins of the validator simulation. As in SIL simulation, the validator

also does not require a target platform for execution of the embedded software. It also keeps the

simulation of the embedded system that is run on a dedicated hardware in HIL and the controller

task that is run on actual embedded system in HIL simulation, separate. This simulation fills the

gap between SIL simulation and HIL simulation by offering accuracy as good as that of a HIL

simulation and cost and speed advantages of a SIL simulation [15]. Both of the simulations can

either run on the same computer or on different cores or on different computers.

The Validator tool performs time-functional simulation of control software and its

execution platform in closed-loop with Simulink plant models. This tool is based on a discrete

event simulator, it executes the application software on a host platform simulating the passage of

time according to execution times of the application code and communication times pertaining to a

12

given embedded processor. It also simulates the functional behavior of the operating system and

hardware components to the level of abstraction this enables capturing significant timing aspects

without executing detailed hardware models. Figure 8 shows the architecture of the Validator

simulator.

Figure 8: Architecture of the Validator Simulator [29]

2.5 Full System Simulation

Full system simulation is valuable to product developers since it is capable of running the

exact binary embedded software, including the operating system, on a fully simulated hardware

platform. Most simulation environments do not provide full system simulation nor do they support

hardware simulation. Full system simulation helps to get rid of cycle accurate simulation, which is

very slow. SimSoC is a simulation software tool developed on the concept for full system

simulation [5]. It makes use of SystemC to model different hardware components in the targeted

hardware and Transaction Level Modeling (TLM) abstractions to model the communications.

Refer to [30] and [8] for SystemC and TLM. Figure 9 shows the architecture for SimSoc

Simulation.

13

Figure 9: SimSoc Architecture [5]

2.6 Hardware-In-the-Loop with Network Link Simulation (Our Approach)

This approach fills in the gap between the HIL and SIL simulation. This approach is

cheaper than traditional HIL simulation and ISS simulation, while being significantly more

accurate than SIL simulation and the Validator approach. We are using a serial line communication

between the embedded processor and host PC as a network link. The application code runs on the

actual embedded processor and the simulation of the peripheral electrical/mechanical devices runs

on the host PC.

A virtual testbed approach was proposed by A. Keyhani for the design of a permanent

magnet machine. The software uses a combination of lecture notes and computer aided design

(CAD) [2]. G. Baumgartner and A. Keyhani proposed a virtual testbed for the instruction and

design of embedded systems [9]. The prototype was developed by Jing Liu [15] and consisted of a

14

PC running on Windows XP and Texas Instrument’s DSP TMS320LF2407A. She had developed

two HIL simulators for teaching purposes, one for a traffic light and one for an answering

machine. The simulators talked to the DSP over a serial line. Medavarapu [6] further developed the

protocol and the software to make it easier to use by developing more sophisticated device drivers

for all devices on the DSP. For example, Medavarapu improved the communication between the

PC and the DSP. Our thesis is an extension of Liu and Medavarapu’s work. We ported the

existing software over to a more advanced DSP from Texas Instruments to take advantage of the

improved hardware. The earlier processor was 16-bit DSP, while we are now using a 32-fbit

floating-point DSP. We provided more features and took measurements to demonstrate the

performance of the system.

15

CHAPTER 3. DESIGN

3.1 System Setup

Figure 10: Block Diagram of System Setup (modified from [6])

As shown in the above figure, the system consists of a PC running on Windows 7 and

evaluation module (ezDSP) for TMS320F28335 from Spectrum Digital Inc. This module allows

developers to evaluate the performance of the DSP for their application. This module facilitates

interfacing various devices to the DSP. This module has an onboard JTAG connector to provide

the interface to emulators with assembly language and ‘C’ language. A Mini USB to USB cable is

used to connect the evaluation module to the PC. The Serial port on the DSP is connected to the

16

PC’s COM port 1 using a serial cable. Code Composer Studio (CCS) of Texas Instruments is used

to program the DSP and to debug the software. The simulator, which is a GUI application, is

developed using C# and runs on the PC. Figure 11 shows the actual set up of the virtual testbed

system.

Figure 11: System Setup for Virtual Testbed

3.2 Architecture of the Embedded Processor

The embedded processor TMS320F28335 is a 32-bit floating point DSP. It offers highly

integrated, high-performance solutions for demanding control applications. It can operate up to

150 MHz and has 88 general purposes input/output. This DSP has three 32-bit timers with pre-

settable periods and with 16-bit clock pre-scaling. Also, it has two serial line interfaces with 64K

programmable baud rates. The DSP has eight masked external interrupts; this enables it to address

multiple asynchronous events. The fast interrupt response with automatic context saving of critical

17

registers reduces the latency for asynchronous events [31]. The DSP features 68K bytes of on-chip

RAM and 512K bytes of on-chip Flash Memory. The code module security (CSM) feature

prevents access/visibility to on-chip memory to unauthorized persons. The DSP uses multiple

buses to move data between memory and peripherals and the CPU. The multiple bus architecture

allows the DSP to fetch an instruction, read a data value and write a data value in a single cycle

[31]. Figure 12 shows the functional block diagram for TMS320F28335 DSP.

Figure 12: Functional Block Diagram of TMS320F28335 [31]

18

3.3 Architecture of the System

As previously stated, the system is analogous to HIL with an addition of a network link.

Here the hardware is the evaluation module (EVM) for the embedded processor. The EVM is

connected to the conventional PC using a serial cable. The embedded processor does not run any

operating system, whereas the PC runs an operating system. Code Composer Studio and the

simulator that simulates the external devices connected to the DSP runs on the PC. The status of

the simulated devices is sent to the DSP over the serial line. The DSP then runs the control logic

and sends the updated values for the simulated devices to the simulator running on the host PC.

Users can set the mode of operation to hardware or simulation mode or both. If simulation mode is

enabled, the DSP updates the values of the shadow registers; if hardware mode is enabled it

updates the physical registers on the DSP. Figure 13 shows the layered architecture of virtual

testbed.

Figure 13: Layered Architecture of Virtual Testbed

19

As the embedded processor does not run any operating system and the host PC does run an

operating system (Windows), this system is a cross platform network system. We have organized

the network link between the embedded processor and the host PC into a layered hierarchy. We

have two layers: the physical link layer and the device register communication layer. Ideally, to

check the real time performance of an HIL simulation, we should use a high performance

computer system. However, due to the limited availability of equipment we used a conventional

PC running a non-real-time operating system. Such a system has a low cost; it is relatively easy

and quick to build and run a valid and useful HIL simulation for embedded system with low I/O

rates with a less complicated simulation environment.

The access of the external devices by the embedded processor is intercepted and forwarded

to the simulator running on the PC to make the programming of the embedded processor as

realistic as possible. To achieve this, we developed a library of device drivers instead of accessing

the device registers directly. The drivers then can be configured to either access the devices on the

physical embedded processor or to communicate with the simulator running on the host computer.

Other approaches such as running simple device simulators directly on the embedded processor or

using the debug mode on the embedded processor can be used to intercept the direct access to the

device registers. However, these solutions are not easily portable to other embedded processors

and limit the system to a specific application.

The easiest way to communicate with the host computer is through a serial port. Each

access to the device is encapsulated in a packet mentioning the address of the device and operation

to be performed on that device. This packet is then sent over the serial line to the host computer,

which forwards it to the pertinent device simulator. Similarly, if an interrupt is generated by any

device simulator, the DSP control engine on the host computer sends a packet over the serial line

20

mentioning the source of interrupt. The interrupt handler on the DSP then decodes the packet and

forwards the interrupt to the user defined interrupt handler.

To facilitate the use of the virtual testbed in a laboratory environment, we provide a

mechanism for controlling the device drivers while the user code is running on the DSP. This is

done by allowing the user to switch between accessing actual hardware devices and forwarding

requests to the simulators. This will help debug the device simulators by running the simulation in

parallel with external hardware devices and comparing the result of the simulation with the results

obtained from the hardware devices. The processor abstraction of the simulator is simply an

abstraction of the registers and other devices that are present on the embedded processor. This

abstraction provides easy access to various devices and their data on the embedded processor for

the simulation core. The updates of the values sent to processor abstraction from the EVM are

transparent to the simulation core. Figure 14 shows the hardware and software layers on the

embedded processor.

Figure 14: Hardware and Software Layers on the Embedded Processor (modified from [9])

21

Figure 15 shows the detailed architecture of a virtual testbed. Underlying Windows serial

port drivers are not shown to make the diagram less complex. The simulator is connected to the

EVM using a serial cable. We can disconnect the simulator and the EVM; in this case the EVM

can only be connected to the physical external devices. This system can no longer be called HIL

simulation, since we do not have a computer connected to the system. If we disconnect external

devices from the EVM as well, then the system resembles a rapid prototyping system. If we have

both simulator and the external devices connected to the system then the system can be used to

monitor the output on the simulator. This will help to understand the system behavior and can be

used for study purposes.

Figure 15: Detailed Architecture of Virtual Testbed [6]

22

3.4 System Behavior

 This section explains the general behavior of the system. As explained earlier the simulator

has two components, an EVM and a host PC that runs the simulator. The simulator runs the code

that simulates the traffic, displays the traffic light, simulates the street sensors and sends messages

to the EVM over the serial line based on the events. The simulator simulates two streets named

Main Street and Side Street. The traffic on Main Street is simulated by entering a numeric value

into a textbox that is treated as the number of vehicles per minute, for Main Street. The traffic for

Side Street traffic is generated by pressing one of the Side Street buttons. The simulator listens

over the serial line using a .NET component. We used Code Composer Studio to write the code in

C, to compile the code and to load the code into the embedded processor. The EVM has a built-in

IEEE JTAG emulation mini-USB connector, which is used to download the compiled program into

the embedded processor and to run, halt and debug the program.

 Once the program in the embedded processor is running, it transmits the packets over the

serial line. The format of the packet and the protocol of this communication are discussed in detail

in the next section. Upon receiving a packet over the serial line, the simulator decodes the packet

and updates the traffic light as per the data in the packet. We have developed different cases to test

the system. The test case “TrafficLightCycler” keeps updating the traffic lights after a pre-

programed time. The test case “TestNetLink”, is used to check if the communication between the

EVM and simulator is working. The other test cases are explained in detail in Chapter 6, which

helps measure the performance of the system under different conditions. Figure 16 shows the

interface of the traffic light simulator.

23

Figure 16: The Interface of the Traffic Light Simulator

24

CHAPTER 4. IMPLEMENTATION

4.1 Porting Software onto a 32-bit DSP

 In the early phase of development we were using a 16-bit DSP, TMS320LF2407A. To

facilitate more features we changed to a more advanced 32-bit DSP, TMS320F28335. One of the

main tasks for us was to make the existing software compatible with the new DSP. Since the new

DSP is 32-bit, most of the registers on the DSP are also 32-bit; therefore, their structure is very

different from the previous DSP. For example, the new DSP has separate registers to set the

direction of the device and to read/write to the device, whereas, the previous DSP had a single

register to set the direction and to read/write to the device. Hence, we have to rewrite the device

drivers, taking the 32-bit structure of the registers in to account. Also, the hardware addresses and

the names of the device registers were different. For example, in the previous DSP the multiplexer

register for port A is named as MCRA, whereas in the present DSP it is divided into two registers,

each 16-bit and named GPAMUX1 and GPAMUX2. Also, the hardware address for the port A

data and direction register in the previous DSP is 7098(H) whereas in the present DSP, ths

hardware address is split into 6F8A for direction and 6FC0 (H) for data.

 The program is arranged in modular form to select the task to be performed. This is

achieved by developing different test cases. To make the program more users friendly, different

tasks are defined as variables, for example the test case to measure the round trip time is named

RTT, which is an abbreviation for round trip time. We also developed Get and Set functions to

receive and send data over the serial line. A function is developed to set the mode of operation for

all registers. The timers and external interrupts on the embedded processor were initialized to

facilitate the measurements. All of these are explained in detail in section 4.3.

25

4.2 Device Drivers

a. Serial Communication Interface Drivers

Figure 17: SCI CPU Interface [32]

 The above figure shows the interface between the CPU and the serial device. The serial

communication interface (SCI) is a two-wire asynchronous serial port commonly known as UART

which supports the digital communication between the CPU and other asynchronous peripherals.

The baud rate is programmable to 64K different speeds through a 16-bit baud-rate-select register.

The baud rate is determined by a low-speed peripheral clock (LSPCLK) and the baud-select

registers. The SCI asynchronous baud rate is given by the formula

 LSPCLK

 SCI Asynchronous Baud =

 (Baud Rate + 1) X 8

26

Where the LSPCLK can be set equal to the system clock or can be pre-scaled with respect to the

system clock. The maximum pre-scale value is 14. If we use a LSPCLK which has been made the

same as the system clock, then the maximum baud rate we can get is 18.7 Mbps and the minimum

baud rate is 20 bps. We are using 115 Kbps since this is the maximum that the serial device on the

host computer can handle. However, we were able to test the baud rate of 921.6 Kbps with the help

of a USB2SERIAL converter. We used HyperTeminal to receive the data transmitted by the DSP

over the serial line. Each frame has one STOP bit and one START bit.

 We developed two functions to handle the communication over the serial line namely Get

and Set. As the names suggest the get function is used to receive the packet over the serial line and

the set function is used to transmit data over the serial line. We have developed two types of

packets that take different measurements to test the performance of the system. For example, to

test round trip time (RTT) for different numbers of bytes, we send the word ‘VIRTUAL’, over the

serial line and replace a character with ‘E’ that makes the desired number of bytes. Let’s say we

want to measure the RTT for 6 bytes then we send ‘VIRTU’ and ‘E’ over the serial line as shown

in figure 18a. ‘E’ marks the end of the packet to stop the timer. To measure the simulation speed

we send a packet containing the register identifier (ID) and a value to be written to the register as

shown in figure 18b.

 a

b

Figure 18: Packet Formats

End of the Frame

27

 The following is how we are assigning the ID’s to the registers. The general purpose

input/output registers (GPIO) are located starting from the address 6F80 (H) to 6FE8 (H);

however, not all registers are adjacent. For example, the hardware address for GPIO A Pull UP

Disable Register (GPAPUD) is 0x6F8C and the next register, GPIO B Control Register

(GPBCTRL) has an address 0x6F90, that is the three addresses 0x6F8D, 0x6F8E and 0x6F8F are

not used. Also, some registers are 32-bit and some are 16-bit; hence, we are classifying the

register based on their size. We are using the distance of the register from the first GPIO register

and its size to calculate the ID of the register. For example, the ID for the GPBCTRL register will

be given by subtracting the address of the first GPIO register from the address of GPBCTRL

register (0x6F90 – 0x6F80 = 0x10 i.e. decimal 16). Now, as these registers are 32-bit, we divide

the subtraction by two to get the ID for the register GPBCTRL (16/2 = 8). If the register is 16-bit

then the ID is simply its distance from first GPIO register, for example, the ID of XINT2 GPIO

Input Select Register (GPIOXINT1SEL) is 97 (0x6FE1 - 0x6F80 = 0x61 that is decimal 97).

Upon receiving the packet from the serial line, action is taken depending upon the packet.

If the packet is to update a register then the register ID and value are forwarded to a function called

set to calculate the physical address of the register, if the mode of operation is hardware mode

then the contents are updated. As shown in figure 19, upon receiving the register and ID and

value, it first checks if the mode of operation is hardware or simulation mode. If the mode of

operation is hardware mode, the size of the register is checked. If the size of the register is 32-bit

then the register ID is multiplied by two and then ORed with 0x6F00 to get the memory address. A

pointer is then assigned to this address and the value is written to it. Let’s say the register ID is 32

then the hardware ID for this register will be 6FC0 ((32*2) + 128 = 192 = 0xC0 ORed 0x6F00 =

6FC0).

28

void set(register_code reg, long value)
 {
 int memory_add;
 int *memory_ptr;
 sim_mode reg_mode = mode(reg);
 if (reg_mode & HW_MODE)
 {
 if(reg_size == 32)
 {
 reg_size = 0;

 memory_add = (2 * reg) + 128;
 }
 else
 {
 reg_size = 0;
 memory_add = reg + 128;
 }

 memory_add = memory_add | 0x6F00;
 memory_ptr = (int*)memory_add;

 *memory_ptr = value;
 }
 if (reg_mode & SIM_MODE)
 {
 sim_write(reg, value);
 }

 }

Figure 19 Sample code to calculate the address for a register

b. Determining Mode of Operation for a Register

 We developed two functions, set_mode and sim_mode, to set and determine the mode

of operation for a register. We are using an integer array to store the mode of operation for each

register. The integer variable is 16-bit hence; each element of the array will hold the mode of

operation for eight registers if we assign two bits, one bit each for the two modes of operation, to

each registers. The first bit for a register is set if the mode of operation for that register is

simulation mode, similarly the second bit is set if the mode of operation is hardware mode. Figure

21 shows the flowchart for the sim_mode function. The register ID is passed to this function as

29

an argument and the function then returns the mode of operation. The variable index points to the

array element which has the mode of operation stored for the register. The variable offset,

points to the bits of the array element that stores the mode of operation. For example, if the register

ID is 40 then the index will be four and the offset will be eight, as the array index starts from

zero. The variable mask is also a 16-bit integer; we are using this variable to AND with the array

element that stores the mode of operation. Figure 20 shows a sample element of the mode array.

Figure 22 shows a piece of program demonstrating the function sim_mode.

Figure 20: Sample Mode Integer

30

Figure 21 Flowchart for “sim_mode” Function

reg. ID

<= 8

index = 1

offset = (reg. ID x 2) - 2

mask = 3 << offset

mode = modes [index] &

mask

mode = mode >> offset

return mode

Yes

reg. ID

divisible

by 8

NO

index = (reg. ID / 8) - 1

offset = [reg. ID –

(index) x 8] x 2 - 2

Yes

index = (reg. ID / 8)

NO

Get the reg. ID

31

sim_mode mode(register_code reg)
 {
 int index = 0;
 int offset = 0;
 int mode = 0;
 int mask = 0, result = 0;
 if(reg <= 8)
 {
 index = 1;
 offset = reg;
 offset = (offset*2) – 2;
 mask = (3<<(offset);
 mode = (modes[index] & mask) >> ((offset);

return (sim_mode)mode;
 }
 else
 {
 result = reg & 0x07;

 if(result == 0)//reg = 40
 {

 index = reg / 8; // index = 5
 index = index - 1; // index = 4

 offset = index * 8; // offset = 32
 offset = reg - offset; // offset = 40 – 32
 offset = (offset*2) – 2;

 mask = (3<<(offset);
 mode = (modes[index] & mask) >> offset;
 return (sim_mode)mode;
 }

 else
 {
 index = reg / 8;

 offset = index * 8;
 offset = reg - offset;

 mask = (3<<offset);
 mode = (modes[index+1] & mask)>> offset;

 return (sim_mode)mode;
 }
 }
 }

Figure 22: Program showing the “sim_mode” Function

32

c. Timer Drivers

Figure 23: CPU-Timer Interrupt Signals and Output Signal [33]

As stated in Chapter 3, the embedded processor TMS320F28335 has three 32-bit timers.

Figure 23 shows the block diagram for CPU-Timer interrupt signals and output Signal. We are

using these timers to measure the performance of the system. We are using the timer count and the

timer interrupt to calculate the elapsed time. Figure 21 shows different CPU-timer interrupt

signals. The 32-bit period register has the period value which is loaded to the counter register when

the timer starts. The counter decrements by one after every timer divides down plus one timer

clock source cycle and an interrupt is generated once the timer count decrements to zero. We have

configured the timer to get the maximum granularity; to achieve this we are setting the pre-scaler

to one. This allows the timer clock frequency to be the same as that of the system clock frequency,

which is 150 MHz in our case. With this clock frequency we are able to get a clock tick of 6.67 ns.

The maximum time period we can get with this clock configuration is approximately 29 sec.

33

 Figure 24 shows the C code for timer initialization. This function initializes the address

pointers to their respective timer register; it also loads the timers period register with the maximum

possible value and sets the pre-scaler value to one. It also sets the time stop status bit to one to

make sure that the timer is not running and reloads the counter register with the period value. It

also clears the interrupt count bit to reset the interrupt counter. The interrupt count is used to

calculate the time if the time required by the process is more than the maximum possible time with

our present timer configuration. Figure 25 shows the interrupt service routine for the timer. In this

routine we are incrementing the variable cpuTimer0.InterruptCount upon every interrupt generated

by the timer.

 void InitCpuTimers(void)

 {

 CpuTimer0.RegsAddr = &CpuTimer0Regs;

 CpuTimer0Regs.PRD.all = 0xFFFFFFFF;

 CpuTimer0Regs.TPR.all = 0;

 CpuTimer0Regs.TPRH.all = 0;

 CpuTimer0Regs.TCR.bit.TSS = 1;

 CpuTimer0Regs.TCR.bit.TRB = 1;

 CpuTimer0.InterruptCount = 0;

 }

 Figure 24: C code to Initialize the Timer

 interrupt void cpu_timer0_isr(void)
 {
 CpuTimer0.InterruptCount++;
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
 }

 Figure 25: C code for Timer Interrupt Service Routine

34

The timer interrupt routine measures the number of the timer overflows and also acknowledges the

interrupt to allow receiving more interrupts. The number of interrupt counts is used to calculate the

time needed to send data over the serial line. In the interrupt servicing routine, we start the timer to

measure the time taken by the DSP to react to the external event. The time is then sent to the

simulator over the serial link, which then writes it to a text file.

4.3 Simulator

 As previously stated, the simulator runs on the host PC and has software abstractions of

hardware devices [6]. The simulator for the virtual testbed has two components as shown in Figure

26, the simulation core and a Microsoft .Net framework component. The Microsoft .Net

framework has three sub-components, processor abstraction, protocol encoder/decoder and the

serial port communication component and the simulation core contains the control logic for the

simulator. A number of specialized programming languages and environments along with their

respective libraries, has been proposed over the years for simulation development. We have

developed the simulator using Microsoft Visual #C for .Net [14], [22]. Microsoft .Net framework

is a platform for the development of various applications on Windows operating systems. The .Net

framework provides a comprehensive and consistent programming model for building applications

along with seamless and secure communication. The class library of .Net framework is called the

Framework Class Library (FCL) which is nothing but a collection of a number of classes and most

of the classes are wrappers for Windows APIs.

 Liu [15] used Windows’ file abstraction to read and write from the serial port. However, its

limitation was identified by [6]. To overcome this Medavarapu [6] used a .Net SerialPort

component that is present in the System.IO.Ports namespace, which contains classes for

35

controlling serial ports. This SerialPort component provides a framework for synchronous and

event-driven I/O, access to pin and break states and access to serial driver properties [23]. An

event-driven framework for the processor abstraction is developed by [6] with these properties of

the Serial Port component. This event-driven handler is invoked when the value of a register in the

processor abstraction changes.

Figure 26: Simulation Components [6]

36

 The synchronization mechanisms of the simulation device are used for accurate timing, the

simulation frame is one such mechanism. The simulation frame can be defined as the interval of

time of one pass from reading the input, running the control logic, to sending the output. The

simulation frame of HIL simulation is shown in figure 27. It is better if the simulation frame is

short to have accurate simulation, but it should be long enough to tolerate the worst-case time

needed to complete all necessary operations in the simulation. A shorter simulation frame can be

achieved by simplifying the simulation calculations. As the simulation frame is lengthened the

simulation accuracy worsens.

Figure 27: Program Flow of a HIL Simulation Frame [15]

37

 We further developed the simulator to add more functionality and to make it more user

friendly. For example, we improved the logic that updates the light making it easier to understand.

Also, we implemented an Update function to update the registers with the new value. This function

takes the register ID and value as arguments, which are then passed from the decode function. We

invoked the system timer to measure the performance of the simulator. The System.Timers namespace

provides the timer component, which allows the raising of an event on a specified interval. We also

added the logic to facilitate different measurements. Figure 28 shows a piece of a program in C#

demonstrating the calculation of time and the writing of that time to a text file. We are using the

StreamWriter class within the System.IO namespace to write the time to the specified text file. We

also developed a method SendByte, which sends the desired number of bytes over the serial line.

This function is used to check the round trip time of the system. Figure 29 shows the method for

updating the traffic lights. This function is explained in section 4.2.a. Figure 30 shows the code in C#

for the method “SendByte”.

 string path = @"c:\Shri\Shri_MS\thesis\test2.txt";

 StreamWriter sw = File.AppendText(path);

 double ts = stopwatch.ElapsedMilliseconds;

 long ticks = stopwatch.ElapsedTicks;

 double ns = 1000000000 * (double)ticks / Stopwatch.Frequency;

 MessageBox.Show("ns.RunTime " + ns);

 stopwatch.Reset();

 sw.WriteLine(ns);

 sw.Close();

Figure 28: C# Code for Time Calculation

38

 private void dsp_RegisterUpdatedEvent(DSPEventArgs e)

 {

 int Recvdata = (dsp.GetValue(Registers.GPBDAT));

 byte result = (byte) (Recvdata & 0xff);

 clearLights();

 if (contains(result, IOPortBit.MAIN_RED))

 setLight(Street.MAIN, TrafficLightColor.RED);

 if(contains(result, IOPortBit.MAIN_GREEN))

 setLight(Street.MAIN, TrafficLightColor.GREEN);

 if (contains(result, IOPortBit.MAIN_YELLOW))

 setLight(Street.MAIN, TrafficLightColor.YELLOW);

 if (contains(result, IOPortBit.SIDE_RED))

 setLight(Street.SIDE, TrafficLightColor.RED);

 if (contains(result, IOPortBit.SIDE_GREEN))

 setLight(Street.SIDE, TrafficLightColor.GREEN);

 if (contains(result, IOPortBit.SIDE_YELLOW))

 setLight(Street.SIDE, TrafficLightColor.YELLOW);

 // force a repaint

 Invalidate();

 }

Figure 29: C# Code for Register Update

39

 public void SendByte(int No_Bytes)

 {

 byte[] bytearry1 = new byte[10];

 bytearry1[0] = (byte)'V';

 bytearry1[1] = (byte)'I';

 bytearry1[2] = (byte)'R';

 bytearry1[3] = (byte)'T';

 bytearry1[4] = (byte)'U';

 bytearry1[5] = (byte)'A';

 bytearry1[6] = (byte)'L';

 bytearry1[No_Bytes-1] = (byte)'E';

 int i = 0;

 stopwatch.Start();

 for (i = 0; i <= No_Bytes-1; i++)

 {

 try

 {

 serialPort.Write(bytearry1, i, 1);

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 throw;

 }

 }

 }

Figure 30: C# Code of a Method for Sending Bytes over Serial Line

40

CHAPTER 5. MEASUREMENTS

5.1 Different Test Cases

a. Round-trip Time

 We are measuring the round trip time for one, two, four and six bytes. To measure the

round trip time we are making use of the system timer. The desired number of bytes is sent to the

embedded processor and the timer is started. The embedded processor then responds by

acknowledging the receipt of the packet. Upon receiving this acknowledgement from the

embedded processor the timer is stopped and the time is written to a text file. The time granularity

is in nanoseconds.

b. Simulation Mode Measurements

 To measure the performance of the system in simulation mode, we are making use of

system timers, which are invoked by the simulator. The time is measured in nanoseconds. In this

case we are pressing a switch in the simulator that simulates the street sensor in one of the streets.

Then in the simulator we decode the location of the switch, start the timer and send the packet over

the serial line to the embedded processor. As stated in Chapter 4, the packet contains the register

ID and the value to be written to the register. On the EVM we decode the packet updates the

register and send the next light sequence if it is time for the light to change. Once the packet is

received over the serial line on the simulator side, the packet is decoded and the lights are updated

if required and the timer is stopped. The time is then written to a text file for reference. Figure 31

shows the flowchart for the simulation measurements.

41

Figure 31: Flowchart for Simulation Measurements

IS any

Street

Switch

Pressed?

Start

Start Timer

Yes

Identify Switch and Send the

Reg. ID & value to the EVM

Stop the Timer

Send the next light sequence

to the Simulator

Recv. & decode the packet

Update the Reg. with new

Value

Recv. the packet and update

light

No

42

c. Hardware mode Measurements

Here we are using the timer to check the performance of a real embedded system that has

hardware attached to it. Our embedded system simply a traffic light controller. We have connected

an external switch to the embedded processer to emulate the street sensors of a real traffic light.

When the switch is pressed, to indicate the passing of a vehicle, an interrupt is generated and the

timer is started in the interrupt service routine. We update the number of vehicles on either the

main street or on the side street based on the source of interrupt. Then we read the parallel port to

check the status of the lights and decide whether or not to update the light. If we need to update the

lights, we send the next sequence of lights to the parallel port and stop the timer. Then the time

taken by the process is calculated using the “Cal_Send_Time” function and transmitted over the

serial line to the simulator. On the simulator the time value received is written to a text file. Figure

32 shows the flowchart for hardware mode measurements.

d. Throughput

 To measure the throughput of the system we are sending a thousand bytes from the

simulator to the DSP. Upon transmitting the packet to the embedded processor the system timer

that is invoked in the simulator is started. The embedded processor acknowledges the receipt of the

packet by sending a packet containing an “A”. The timer is stopped upon receipt of this timer and

the time is written to a text file.

43

 Figure 32: Flowchart for Hardware Mode Measurements

44

5.2 Measurements

 The measurements are a very important part of any system to verify its behavior. The

measurements also help to identify the areas where the system can be used effectively. The

measurements also help the engineer to judge the usefulness of the system in his or her application.

Measurements also highlight the drawbacks of the system and the areas of improvements. It is very

important for any measurements to be as realistic as possible to judge the performance of the

system under consideration, and when the measurement involves a non-real time operating system

we need to take care to minimize the effect of the operating system on the measurements.

 Since we used a non-real-time operating system, most of the measurements were run 100

times after warming up the cache to minimize the effect of the operating system. Once we had the

readings we calculated the average of the readings. From the average we calculated the standard

deviation for the readings. The standard deviation helps to identify the variation of readings from

the average. To make the readings more pertinent we discarded the readings four standard

deviations away from the mean. This process of discarding outliers was repeated twice to eliminate

any influence of operating system interrupts. The readings were taken with a serial cable, which

connected the embedded system and the serial port of the host PC and with a USB2SERIAL

converter. The baud rate for the communication was 115 Kbps since this is the maximum possible

baud rate with the PC serial port. As mentioned earlier in Chapter 4 each frame consists of a STOP

and START bit and no parity bit. Table 1 and 2 shows the reading for performance of the system

with different sizes of data flow over the serial line.

45

Table 1: Measurements with Serial Cable (115Kbps)

 File
Valid

Readings

Avg. Run

Time (ms)

Std. Dev.

(ms)
Min. (ms) Max. (ms) Error (ms)

RTTByte1 95 1.13 0.02 1.068 1.206 0.004

RTTByte2 98 1.36 0.39 1.015 2.852 0.78

RTTByte4 98 1.68 0.42 1.406 3.455 0.08

RTTByte6 95 1.91 0.83 1.740 2.212 0.01

Throughput 99 97.1 1.51 95.291 102.355 0.30

Table 2: Measurements with USB-to-Serial Converter (115Kbps)

File
Valid

Readings

Avg. Run

Time (ms)

Std. Dev.

(ms)
Min. (ms) Max. (ms) Error (ms)

RTTByte1 98 1.0 0.63 8.183 1.272 0.012

RTTByte2 95 1.4 0.45 1.147 3.204 0.092

RTTByte4 96 2.04 0.10 1.582 2.364 0.021

RTTByte6 98 2.68 0.14 2.155 3.031 0.029

Throughput 100 186.38 21.73 139.269 242.846 4.318

 The column “File” contains the number of bytes send over the serial line, for example, the

“RTTByte1”, means the reading is for a round-trip time of one byte. The last entry “Throughput”,

is the round-trip time for a thousand bytes. The column “# Valid Readings” shows the actual

number of readings used to calculate the average run time out of a given hundred readings after

discarding readings that were four standard deviations from the mean. In case of “RTTByte3” the

number of valid readings is ninety eight this means we had two readings, which were more than

four standard deviations away from the mean. The “Min” column shows the minimum value

among the readings and the “Max” column shows the maximum value among the readings. The

column “Error” shows the error bar for each reading.

 It can be seen in the table that the average run time increases steadily as the number of

transmitted bytes increases. This holds with the fact that a greater number of bytes takes more time

46

to be transmitted and also proves the validity of the system. Also, if we compare the readings

between the serial cable and the USB2SERIAL converter, we can see that the time taken by the

latter is more. This can be due to the hardware in the USB2SERIAL converter. However, the

USB2SERIAL converter can help us test the system with higher baud rates. As stated in Chapter 4

the maximum possible baud rate with the DSP is 18.7 Mbps, which is slightly more than USB1

speed, and cannot be tested with conventional serial ports. From Table 1 and Table 2, it takes

approximately ninety eight milli-seconds and one hundred and eighty seven milli-seconds to send

one thousand bytes (Throughput) at the speed of 115 Kbps with a serial cable and with a

USB2SERIAL converter. Whereas the expected time is,

 1000

 115000

 187

 Hence, the effective baud rate for USB2SERIAL is,

 1000

 187 ms

Similarly,

 97

 Hence, the effective baud rate for serial cable is,

 1000

 97 ms

 Expected Time = X 1000 = 86.97~ 87 ms

Actual Time To Expected time Ration For USB2SERIAL =

87

= 2.14

X 1000 = 5.34 Kpbs

Actual Time to Expected time Ration For Serial Cable =

87

= 1.11

X 1000 = 10.30 Kpbs

- - - 1

47

If the embedded processor is set to the maximum baud rate, 18.7 Mbps, which is approximately 19

Mbps, the average time for the Throughput for USB2SERIAL will be,

 1000

 19 Mbps

From 1, Expected time will be,

 52 ms X 2.14 = 111.28 ~ 111 ms

The effective baud rate for USB2SERIAL is,

 1000

 111 ms

 We also took the measurements to test the performance of the system under simulation and

hardware mode. These readings were taken with a serial cable and a USB2SERIAL converter to

see the effect of the converter. Studying the effect of the converter is useful in judging the

application domain of the system. All the fields in the table are similar to those in Tables 1 and 2.

Here, it is also evident that the converter takes some time for the conversion and hence takes more

time for receiving the data. We can also note that the time taken in hardware mode is less than the

time taken in the simulation mode. This again holds true as the simulation is not running on a real-

time operating system and has several factors affecting the performance of the system. As shown

below, Table 4 shows the reading taken with serial cable and Table 5 shows the readings taken

with the USB2SERIAL converter.

X 1000 = 52.63 ~ 52 ms

X 1000 = 9 Mbps

48

Table 4: Measurements with Serial Cable (115Kbps)

 Table 5: Measurements with USB-to-Serial Converter (115Kbps)

File

Valid

Readings

Avg. Run

Time (ms)
Std. Dev. (ms) Min. (ns) Max. (ns) Error (ns)

Simulation

Mode
99 0.643 0.115 0.318 1.00 0.023

Hardware

Mode
100 0.039 0.109 0.257 0.50 0.015

File

Valid

Readings

Avg. Run

Time (ms)
Std. Dev. (ms) Min. (ms) Max. (ms) Error (ms)

Simulation

Mode
96 1.09 0.093 0.323 1.40 0.018

Hardware

Mode
100 0.04 0.012 0.03 0.06 0.010

49

CHAPTER 6. CONCLUSION AND FUTURE WORK

 A simulation will be helpful if and only if it depicts the real-time behavior of the system

under testing, which can be achieved only when the real-time operating system is used for

simulation. As stated in Chapter 4, we are using a non-real operating system, Windows, to run the

simulator. Hence the simulator is not suited for complex applications. Also, the communication

speed is limited by the hardware on the PC to 115 Kbps. Hence, the performance of the system for

high baud rates cannot be evaluated with the existing setup. However, the set is capable of running

a valid simulation for an embedded system with slow I/O rate and simulation environment that is

not very complex [6]. A system can be developed with the existing setup for audio signal

processing as the maximum baud rate is more than what is required for audio signal processing.

Traffic light simulation, as well as simulating the traffic, can also be implemented with this setup.

However, the setup is not capable of simulating the hardware de-bounces for the electrical

switches under testing.

• More tests cases to check the performance: The reading now involves just four test

cases, two to measure the communication speed and two to check system performance in

different scenarios. However, further test cases can be developed to test the performance of

the system under different circumstances. This will help to understand the characteristics of

the system and we can classify the application domain where this system can be helpful.

• More precise readings: The reading can be improved by minimizing the load on the

operating system. For example, we can use make use of the keyboard to take measurements

instead of the mouse and tune the performance of the operating system using “Performance

Options” settings. Additional options can be explored to optimize the performance of the

operating system.

50

• Time synchronization: In the current system the simulator and the embedded system use

two separate clocks. It will be helpful if they both run using the same clock. This can be

achieved by time synchronization. One approach for this is having the simulator dictate the

time to the embedded system. In this approach the DSP will wait for the simulator to finish

the simulation. Once the simulation is done the simulator will send a packet to the DSP

telling it to respond to the event. This will make sure that the embedded system does not go

ahead of the simulator. Another approach can be, using the independent clock for both the

embedded system as well as for the simulator. If an interrupt is generated then the

embedded system will send a packet to the simulator informing it about the interrupt and

asking it if it can respond to it. If the simulator is not ready it will send a wait packet to the

embedded system. Once the simulation is done the embedded system will be updated to

respond to the interrupt.

• Simple application to test the limits of the simulator: A simpler application can be

developed to explore the technological limits of the simulator; if the application is simple

enough, we can run various tests to examine the technological competency of the simulator.

A simple application will be easy to simulate and can be developed in less time. One

example is an application on a temperature controller, which involves just a sensor; the

processor reads the input from sensor and runs the control logic to determine whether or

not to turn on the air-conditioner.

• Web based interface: Another interesting application can be to interface the simulator to

the web. This can be done by running the simulator in a web browser. Here the hardware

can be connected to a remote computer. This will provide remote connectivity to the

simulator extending the accessibility to a number of users to test the system remotely. A

51

prototype was developed by Joel Bonnette and Joseph Hamilton as a part of a class project

that can be interfaced with this simulator to check its performance.

• Timed automaton: The term timed automaton is used to describe a system specification of

an embedded system that helps to simplify the testing and development of embedded

systems. Deng [11] proposed the use of a state diagram, which is simpler to use and cleaner

than the timed automaton [11]. In the state diagram each edge is labeled with a regular

expression instead of a single symbol. Our system can be used to test this approach. A

prototype was developed by Deng for a HIL virtual testbed that can be incorporated in our

simulator to evaluate the usefulness of the state diagram to specify the specifications of an

embedded system.

52

REFERENCES

[1] A. Agarwal. 2013. “Integrating instruction set simulation into a system level design environment.”

Dept. of Electrical and Computer Engineering: Northeastern University.

[2] A. Keyhani and A.B. Proca. 1999. “A virtual testbed for instruction and design of permanent

magnet machines.” IEEE Transaction on Power Systems, vol. 14, 795-801.

[3] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr and A. Hoffmann. 2002. “A universal

technique for fast and flexible instruction-set architecture simulation.” New York, NY, USA:

ACM, 22-27.

[4] A. A. Reyes, A.P. Narayananaswamy and A.Dogan. 2003. “Simulation-based development of real-

time, embedded software for cooperative, autonomous aerial vehicles.” 22nd Digital Avionics

Systems Conference. Proceedings. Vol. 2: 8.A.3-1-11.

[5] C. Helmstetter, V. Joloboff and H. Xiao. 2009. “SimSoc: A full system simulation software for

embedded systems.” International Workshop on Open-source Software for Scientific Computation.

Guiyang, China.

[6] C. Medavarapu. 2007. “An Architecture for Embedded System Sommunication.” M.S. Thesis,

Dept. of Computer Science: Louisiana State University.

[7] D. Bullock and T. Urbanik. 2000. “Hardware-in-the-loop evaluation of traffic signal systems.”

Tenth International Conference on Road Transport Information and Control. 177-181.

[8] F. Ghenassia, Ed. 2005. “Transaction-level modeling with systemC. TLM concepts and

applications for embedded systems.” Springer.

[9] G. Baumgartner and A. Keyhani. 2000. “A virtual embedded system testbed for instruction and

design.” Digital Signal Processing (DSPS) Fest,Texas Instruments. Houston, Texas.

[10] Gnu debugger iss. http://www.gnu.org/software/gdb/.

53

[11] G. Deng. 2007. “Generating embedded system analyzer.” M.S. project report, Dept. of Computer

Science, Louisiana State University.

[12] “Hardware in the Loop Traffic Simulation Final Report.” 2005. Transport Research Centre,

University of Florida.

[13] H.-J. Herpel, M. Glesner, H. Eggert, W. Suss, M. Gorges-Schleuter and W. Jakob. 1995. “Rapid

Prototypig in Microsystems Development.” Sixth IEEE International Workshop on Rapid System

Prototyping. 10-15.

[14] J. Lapalme, E. M. Aboulhamid, G. Nicolescu, L. Charest, F.R. Boyer, J.P. David and G. Bois.

2002. “.Net Framework – a Solution for the next Generation Tolls for System-level Modeling and

Simulation.” Proceedings of the International Conference on Programming Language Design and

Implementation (PLDI.) 315-326.

[15] J. Liu. 2004. “A Virtual Testbed for Embedded Systems Development and Instruction.” M.S.

Thesis, Dept. of Computer and Information Science Columbus: The Ohio State University.

[16] K. Butts, W. Pree and S. Resmerita. 2012. “Chrona’s validator tool suite: filling the gap between

conventional software-in-the-loop and hardware-in-the-loop simulation environments.” Salzburg,

Austria.

[17] L. Chung and N. Subramanian. 2001. “Architecture-Based Semantic Evolution: A Study of

Remotely Controlled Embedded Systems.” IEEE International Conference on Software

Maintenance Proceedings, 663-666.

[18] M.A.A. Sanvido, V. Cechticky and W. Schaufelberger. 2002. “Testing embedded control systems

Using Hardware-in-the-Loop Simulation and Temporal Logic.” in 15th IFAC World Congress on

Automatic Control. Barcelona, Spain.

[19] M. Barr. 1999. “Programming Embedded Systems in C and C++.” Sebasopol,

California:O’Reilly.

54

[20] M.D. Jokic and S.F. Aspkanthan. 2001. “Tethered Satellite System Models for Use in Hardware-

in-the-Loop Simulation.” 42nd AIAA/ASME/AsCE/AHS/ASC Structures, Sturctural Dynamics, and

Materials Conference and Exhibit. Seattle, WA.

[21] M. Gomez. 2001. “Hardware-in-the-Loop Simulation.” from

http://www.eetindia.co.in/STATIC/PDF/200112/EEIOL_2001DEC02_EMS_TEST_SIG_TA.pdf?

SOURCES=DOWNLOAD.

[22] Microsoft, “.Net Framework” from http://msdn.microsoft.com/en-us/vstudio/aa496123.

[23] Microsoft, “.Net Framework” from http://msdn.microsoft.com/en-

us/library/system.io.ports.serialport(v=vs.110).aspx.

[24] M. K. Chung and C.M. Kyung. 2004. “Improvement of compiled instruction set simulator by

increasing flexibility and reducing compile time.” RSP’04: Proceeding of of the 15th IEEE

International Workshop on Rapid System Prototyping. Washington, DC, USA: IEEE Computer

Society 38-44.

[25] M. Reshadi, P. Mishra and N. Dutt. 2003. “Instruction set compiled simulation: a technique for fast

and flexible instruction set simulation.” Design Automation Conference, Proceedings 758-763.

[26] M. Sanvido. 2002. “Hardware-in-the-loop simulation framework.” Automatic Control Laboratory,

ETH Zurich.

[27] P. Baracos, G. Murere, C.A. Rabbath and W. Jin. 2001. “Enabling PC-based HIL simulatoin for

automotive applications.” IEEE International Electric Machines and Drives Conference (IEMDC

‘01), 721-729.

[28] P. Yi, N. Abe, K. Tanaka, J. Sun and Z. Pan. 2004. “The virtual debugging system for the

embedded software development.” Fourth International conference on virtual reality and its

applications in industry, vol. 5444, 357-364.

55

[29] S. Resmerita and W. Pree. 2012. “Verification of embedded control systems by simulation and

program execution control.” American Control Conference. Montreal, Canada.

[30] SystemC. 2005. v2.2 Language reference manual (IEEE Std 1666-2005). Open SystemC Initiative.

http://www.systemc.org/.

[31] Texas Instruments, TMS320F28335 Data sheet, from www.ti.com/product/tms320f28335.

[32] Texas Instruments, TMS320F28335 Serial communications interface from

www.ti.com/lit/pdf/sprufz5.

[33] Texas Instruments, TMS320F28335 System control and interrupts from

www.ti.com/litv/pdf/sprufb0d.

[34] Trap-gen. http://code.google.com/p/trap-gen/.

56

VITA

Shrikant D Labade was born in Pune in 1983 to Dagadu Labade and Gangubai Labade. He

graduated from Abasaheb Garware College, Pune, in 2002 completing his intermediate education.

He then joined Fergusson College, Pune to pursue Bachelors of Science (B.Sc.) in Electronics

Science. He graduated from Fergusson College in 2003. He joined Master of Science at Pune

University in Department Instrumentation Science in 2005. He graduated from Pune University in

2007 and joined Electronica Machine Tools Pvt. Ltd. as a “Project Engineer.” He joined Center for

Development of Advanced Computing (C-DAC), Hyderabad, in Feb 2009 to pursue a “Diploma in

Embedded System Design.” Upon completion of his diploma he joined Evincere Software

Solutions in pune in January 2010. In spring 2012 he joined Department of Electrical and

Computer Engineering at Louisiana State University to pursue his Master of Science in Electrical

Engineering. At present he is working with Dr. Baumgartner and Dr. Ramanujam. His hobbies are

hiking, reading history, autobiographies and listening to music.

	Louisiana State University
	LSU Digital Commons
	2014

	A Virtual Testbed for Embedded Systems
	Shrikant Labade
	Recommended Citation

	Microsoft Word - Thesis_typeset_done_v3

