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ABSTRACT 

 

Hardware-In-the-Loop (HIL) Simulation is a simulation approach in which a hardware embedded 

processor is connected to the simulation computer that simulates the electrical/mechanical devices 

controlled by the embedded processor. By using a real-time simulation computer and special-

purpose hardware for connecting to the embedded processor, this method of simulation can be very 

precise but is costly. We are proposing an alternative method, HIL simulation with a network link, 

in which the device under test (the embedded processor) communicates with the simulation 

computer over a network connection (in our case a serial line) instead of through special-purpose 

hardware. We present an abstraction layer that facilitates the simulation of external devices. An 

earlier prototype had been developed for a 16-bit TMS320LF2407A DSP from Texas Instruments. 

We generalized the approach to the more advanced 32-bit TMS320F28335 DSP. We have made 

the changes in the DSP abstraction layer to enable more features and provide more flexibility to 

the programmer. For example, we introduced a shadow interrupt vector to make the simulation 

layer more general. We developed various scenarios to measure the performance of the system. In 

particular, we measure round-trip time and through-put for the communication between the 

simulator and the DSP. Also we rewrote the serial line drivers on the DSP to incorporate different 

working scenarios and to invoke the timers on the DSP for measuring the execution time. Our 

work helps to judge the performance of the system and to identify the application domains for this 

approach. 
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CHAPTER 1. INTRODUCTION 

An embedded system is a computer system that performs a task using dedicated hardware 

in real-time. An embedded system repeatedly communicates with its surroundings through sensors 

and then responds to the surrounding using actuators. For example, in a temperature control 

application an embedded system reads the temperature sensor and then decides whether to turn on 

the air conditioner or not. An embedded system has either a Microcontroller or higher power 

Digital Signal Processor (DSP) as a processing core based on the application the embedded system 

is supposed to perform. For example, an embedded system designed to control an elevator will 

have a DSP, as it has to process large amount of data to control the motor driving the elevator; on 

the other hand an embedded system designed to control lights will have a Microcontroller since it 

just has to read the sensor and activate the actuator to turn on the lights. Figure 1 shows the block 

diagram of a general embedded system.    

 

 

 

 

 

 

 

 

 

Fig 1: Basic Block Diagram Embedded System [19] 
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Today, embedded systems are rapidly becoming ubiquitous and more complex in nature. 

We can find applications for an embedded system in almost every field. Embedded systems can be 

found in the operation room in the form of a patient monitoring system to assist the surgeon in the 

surgery.  They are also used to remotely control certain toys, such as cars or helicopters. Some 

interesting statistics state that the average consumer now interacts with embedded microprocessors 

up to 300 times per day and today, on an average, we have as many as 50 embedded processors in 

an automobile. However, the development of embedded systems is a tedious job, as they have a 

number of constraints. Some of these constraints include real-time operation, processing power, 

size, weight, power consumption, reliability and cost. Also, experts from various fields of 

electrical and computer engineering are needed to design electrical and computation parameters of 

the system as well as experts from mechanical engineering are required to design the enclosure and 

internal arrangement of various parts of the system. Using simulation will be a great help in 

embedded system design. 

Simulation is used in every field to aid the process of development. For example it is used 

to simulate flight, automobiles, and bridges in civil engineering; it is also used to train pilots. 

Simulation is used when the system under development is complicated to design, hazardous and/or 

difficult to test, or expensive. Simulation is also used to study various parameters of the system, to 

check the performance of the system, to understand operation of the system and to train various 

personnel. Simulation can also help lower the development cost and lead time.  

Several simulation approaches have been proposed for the development of embedded 

system software such as, Hardware-In-the-Loop Simulation (HIL), Instruction-Set-Simulation 

(ISS) and Software-In-the-Loop Simulation (SIL). In her thesis, Jing Liu has described a hardware 

in-the-loop simulation approach with a network link. The prototype had been developed with a 
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TMS320LF2407A DSP from Texas Instruments that simulates external electrical and mechanical 

signals that are controlled by the embedded processor. She had developed device drivers that 

allowed to access either the hardware or to communicate with the simulator. This system was 

developed to provide a design and development environment for embedded software that would be 

as realistic as possible [15]. 

Liu’s design of the device drivers was not general enough to work for all device registers.  

Medavarapu [6] generalized this approach for all device registers and developed abstraction layers 

for both DSP and the PC side of the system. These abstraction layers helped test both the real and 

simulated hardware connected to the DSP. He modified the serial line driver to utilize the serial 

line bandwidth to allow using the system in an application that requires signal processing and 

voice [6]. 

This thesis is based on the work done by both Liu and Medavarapu. We have ported the 

software to a more advanced embedded processor.  The system was originally developed on the 

TMS320LF2407A DSP, which is a 16-bit processor. We ported the system to the 32-bit 

TMS320F28335 DSP, which provides more functionality but also makes it more challenging to 

design the network communication between the DSP and the simulator. We also wrote shadow 

interrupts to enhance the simulation and invoked the timers on the embedded processor/DSP to 

measure different attributes of the system.  The logic for serial line has also been changed to allow 

measurements for different cases. Also, we made the software more users friendly. For example, 

we added generic SET/GET functions to write to and read from the low-level device drivers, 

developed logic to select and determine the mode of operation, (for example, hardware, simulation 

and hardware and simulation mode), developed the logic to write either to the physical registers or 

shadow registers based on the mode of operation. Also, we introduced various test cases to 
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measure the performance of the system. The work we have done is intended to help determine the 

performance of the system for different cases and to identify the area where this system can be 

used to enhance the process of development and to enhance the productivity and lead time for 

development. 

This approach can be useful for teaching embedded systems and is more cost effective than 

the traditional teaching methods, as it does not require actual hardware devices but only a 

conventional PC and a DSP evaluation board. Also, a course based on the virtual testbed can be 

scaled to a larger number of students because it is not necessary to have a supervisor monitor the 

students in the as there is no danger of damage to the laboratory property because of the faulty 

software. This approach will also be useful in rapid prototyping since the software engineer can 

start the software development even if the hardware is not ready. This will help to develop both the 

software and the hardware simultaneously. For example, a company developing a washing 

machine can have the simulation library ready for almost all components of the washing machine. 

When they want to develop a new advanced washing machine, they can use the simulation library 

to develop the washing machine simulator in less time and start the development process thereby 

considerably reducing the development time. 

Another useful application area is unit testing. In unit testing, the different components of a 

system are tested independently allowing the testing to be more rapid and less complicated. The 

simulator we are proposing can be used as a test harness, simulating some of the components of a 

larger system that communicate with the hardware under test. For example, the engineer testing the 

safety features of an automobile can simulate components such as the anti-braking system or 

steering control system of the automobile and connect the simulator to the actual hardware for 
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safety features. This allows individual testing and development of the entire system making the 

development process faster. 

This approach can also be used for monitoring purposes to log all the events on the 

boundary between the embedded processor and the outside world. For example, if the whole 

system is ready and running, a device driver can be developed that will send the data over the 

serial link to the simulator to be recorded for maintenance purposes. This stored data can be 

helpful to study the system behavior for improving the performance of the system or for 

identifying potential hazards and implement measures to avoid them.  It will also be helpful for 

education purposes. 

The thesis is structured as follows. In Chapter 2, we discuss the existing work done in this 

area. We mention several simulation approaches proposed and used in industry and compare the 

advantages and disadvantages. After that, we provide details of Jing Liu’s approach and compare it 

with other existing methods. Also, we will talk about the work done by Medavarapu to make the 

system more realistic and user friendly. Then, we will talk about our work and how it is helpful to 

measure the performance of the system to determine its advantages and disadvantages over the 

others. In Chapter 3, we discuss the overall design of the system and provide the details of the 

protocol used in the system. In Chapter 4, we present the implementation details. In Chapter 5, we 

provide the measurements for different test cases to evaluate the performance of the system. 

Chapter 6 concludes our work and discusses future work. 
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CHAPTER 2. RELATED WORK 

2.1 Hardware-In-the-Loop (HIL) Simulation  

 

Over time, several methods for simulating embedded systems have been proposed. HIL 

simulators are one of the most used simulators in the industry. A HIL simulation has the embedded 

system under consideration connected to the hardware simulation computer. A HIL simulation can 

be very costly as it often requires dedicated hardware. Figure 2 shows the basic block diagram of a 

typical HIL simulator.  

 

            Figure 2: Block Diagram of a HIL Simulation [6] 

A HIL simulation can be very useful in measuring the timing aspects of the electrical signals as the 

actual hardware is being used [18], [26]. A HIL simulation can be used only when the embedded 

hardware is ready; hence, it can be the last stage in the development process when checking the 

performance of the system. A HIL simulation is very precise but tedious to implement. P. Baracos 



7 
 

et al. are using PC based HIL simulation for automotive applications [27]. M. D. Jokie and et al. 

are developing “Tethered Satellite System Models” to be used in HIL simulations [20]. Refer to 

[2], [4], [7], [12], [13], [17], [18], [21], [26], [28] for some more applications of HIL simulation.  

2.2 Software-In-the-Loop (SIL) Simulation 

 

SIL is one of the most used and reliable methods for testing real time embedded systems.  

As the name suggests, the embedded software is executed on a processor different than the target 

processor, in close loop with the model of the plant. Normally, a PC is used to run both the 

embedded software and the plant model. A SIL is achieved by running an abstraction of the 

targeted embedded processor on the host computer. A SIL simulation is easy to implement and 

cost effective, as it can be executed on a regular PC and does not require any dedicated hardware. 

Figure 3, shows the basic block diagram of Software-In-the-Loop Simulation.  

 

Figure 3: Block Diagram Software-In-the-Loop Simulation [6] 
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A SIL does not represent the timing of an actual embedded processor; hence, it is less 

precise [15]. The abstraction can be very basic, simply to check the functionality of the software, 

or full-fledged to simulate the actual embedded processor.  

2.3 Instruction-Set-Simulation (ISS) 

 

In this approach, the behavior of the targeted embedded processor is simulated on the host 

computer [5]. As the name implies this simulation simulates the computations corresponding to 

each instruction of the processor. The precision of the simulation can be either cycle-level-accurate 

or function-level-accurate. In the function-level-accurate simulation the main focus is to evaluate 

the functional capability of the processor. In this case, the instruction pipeline of the processor is 

coarsely modeled. This type of ISS is fast but not accurate. In cycle-level-accurate simulation, the 

instruction pipeline and data path of the processor is closely modeled. This type of simulation is 

very precise but has the limitation of slow simulation speed [1].  An ISS could be implemented in 

several ways. Figure 4 shows the general sequence of ISS.  

 

             Figure 4: ISS Software Flow [1] 
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a. Interpretive Simulation: 

  These simulators interpret the targeted processor instructions. Each instruction is 

fetched from the memory of the host machine. The instruction is then decoded and 

executed. Figure 5 shows the sequence of operation.  

 

Figure 5: Interpretive Simulation [5] 

This kind of simulation module is easy to implement and flexible, but has the drawback of 

slow speed. This slowness is caused, by the time taken to decode and execute the 

instructions. The speed can be enhanced by storing the decoded instructions in the decode 

buffer, similar to cache in computers, so that they do not have to be decoded again if they 

are reused. Refer to GDB [10] and TRAP [34]. 

b. Compiled Simulation/Static Translation: 

  In these simulations, the application program is translated into a new program for 

the host machine at the preliminary stage of compilation. This is done in order to save time 

spent fetching, decoding and executing operations. This simulation has a disadvantage of 

not simulating the processor conceptually. This simulation is also not as flexible since the 

entire program has to be known at compile time. This simulation also does not allow the 
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program to be changed at run time. Hence this method is not suitable for applications 

which require dynamic modification of the program. Figure 6 shows the block diagram for 

compiled simulation. Refer to [3], [24] and [25] for techniques to improve compiled 

simulation. 

 

Figure 6: Compiled Simulation [5] 

c. Dynamic Translation:  

This simulation overcomes the disadvantage of not being allowed to change the 

program at run time that plagues compilation based simulation. Like interpretive 

simulation, the targeted instruction is fetched from the memory at run time. The 

instructions are then decoded on their first execution. Once the instruction is decoded, the 

simulator translates the instruction into a different representation and stores it in cache.  If 

the instruction needs to be executed again, it is fetched from cache. If the program is 

modified at run time, the cache is discarded and the changes are incorporated [5]. In 

interpretive simulation, the slowness is caused by fetch, decode and execution operations 

for each instruction. This is overcome in dynamic simulation by using cache for repeated 

instructions. This type of ISS combines the advantages of both interpretive and compiled 

simulation. Figure 7 shows the general block diagram for dynamic simulation. 
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Figure 7: Dynamic Simulation [5] 

2.4 Validator Simulation 

 

 The validator simulation engine is a discrete event simulator that models the operations of 

the system under test as discrete events in time and also takes the platform specifications into 

account. The platform specifications, such as operating system (OS), timers and the 

communication bus are the plug-ins of the validator simulation. As in SIL simulation, the validator 

also does not require a target platform for execution of the embedded software. It also keeps the 

simulation of the embedded system that is run on a dedicated hardware in HIL and the controller 

task that is run on actual embedded system in HIL simulation, separate. This simulation fills the 

gap between SIL simulation and HIL simulation by offering accuracy as good as that of a HIL 

simulation and cost and speed advantages of a SIL simulation [15]. Both of the simulations can 

either run on the same computer or on different cores or on different computers.  

The Validator tool performs time-functional simulation of control software and its 

execution platform in closed-loop with Simulink plant models. This tool is based on a discrete 

event simulator, it executes the application software on a host platform simulating the passage of 

time according to execution times of the application code and communication times pertaining to a 
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given embedded processor. It also simulates the functional behavior of the operating system and 

hardware components to the level of abstraction this enables capturing significant timing aspects 

without executing detailed hardware models. Figure 8 shows the architecture of the Validator 

simulator. 

 

Figure 8: Architecture of the Validator Simulator [29] 

2.5 Full System Simulation 

 

Full system simulation is valuable to product developers since it is capable of running the 

exact binary embedded software, including the operating system, on a fully simulated hardware 

platform. Most simulation environments do not provide full system simulation nor do they support 

hardware simulation. Full system simulation helps to get rid of cycle accurate simulation, which is 

very slow. SimSoC is a simulation software tool developed on the concept for full system 

simulation [5]. It makes use of SystemC to model different hardware components in the targeted 

hardware and Transaction Level Modeling (TLM) abstractions to model the communications. 

Refer to [30] and [8] for SystemC and TLM. Figure 9 shows the architecture for SimSoc 

Simulation. 
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Figure 9: SimSoc Architecture [5] 

2.6 Hardware-In-the-Loop with Network Link Simulation (Our Approach) 

 

This approach fills in the gap between the HIL and SIL simulation. This approach is 

cheaper than traditional HIL simulation and ISS simulation, while being significantly more 

accurate than SIL simulation and the Validator approach. We are using a serial line communication 

between the embedded processor and host PC as a network link. The application code runs on the 

actual embedded processor and the simulation of the peripheral electrical/mechanical devices runs 

on the host PC. 

A virtual testbed approach was proposed by A. Keyhani for the design of a permanent 

magnet machine. The software uses a combination of lecture notes and computer aided design 

(CAD) [2]. G. Baumgartner and A. Keyhani proposed a virtual testbed for the instruction and 

design of embedded systems [9]. The prototype was developed by Jing Liu [15] and consisted of a 
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PC running on Windows XP and Texas Instrument’s DSP TMS320LF2407A. She had developed 

two HIL simulators for teaching purposes, one for a traffic light and one for an answering 

machine. The simulators talked to the DSP over a serial line. Medavarapu [6] further developed the 

protocol and the software to make it easier to use by developing more sophisticated device drivers 

for all devices on the DSP. For example, Medavarapu improved the communication between the 

PC and the DSP.  Our thesis is an extension of Liu and Medavarapu’s work. We ported the 

existing software over to a more advanced DSP from Texas Instruments to take advantage of the 

improved hardware. The earlier processor was 16-bit DSP, while we are now using a 32-fbit 

floating-point DSP. We provided more features and took measurements to demonstrate the 

performance of the system. 
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CHAPTER 3. DESIGN 

3.1 System Setup 

 

Figure 10: Block Diagram of System Setup (modified from [6]) 

As shown in the above figure, the system consists of a PC running on Windows 7 and 

evaluation module (ezDSP) for TMS320F28335 from Spectrum Digital Inc. This module allows 

developers to evaluate the performance of the DSP for their application. This module facilitates 

interfacing various devices to the DSP. This module has an onboard JTAG connector to provide 

the interface to emulators with assembly language and ‘C’ language. A Mini USB to USB cable is 

used to connect the evaluation module to the PC. The Serial port on the DSP is connected to the 
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PC’s COM port 1 using a serial cable. Code Composer Studio (CCS) of Texas Instruments is used 

to program the DSP and to debug the software. The simulator, which is a GUI application, is 

developed using C# and runs on the PC. Figure 11 shows the actual set up of the virtual testbed 

system. 

 

Figure 11: System Setup for Virtual Testbed 

3.2 Architecture of the Embedded Processor 

 

The embedded processor TMS320F28335 is a 32-bit floating point DSP. It offers highly 

integrated, high-performance solutions for demanding control applications.  It can operate up to 

150 MHz and has 88 general purposes input/output. This DSP has three 32-bit timers with pre-

settable periods and with 16-bit clock pre-scaling. Also, it has two serial line interfaces with 64K 

programmable baud rates. The DSP has eight masked external interrupts; this enables it to address 

multiple asynchronous events. The fast interrupt response with automatic context saving of critical 
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registers reduces the latency for asynchronous events [31]. The DSP features 68K bytes of on-chip 

RAM and 512K bytes of on-chip Flash Memory. The code module security (CSM) feature 

prevents access/visibility to on-chip memory to unauthorized persons. The DSP uses multiple 

buses to move data between memory and peripherals and the CPU. The multiple bus architecture 

allows the DSP to fetch an instruction, read a data value and write a data value in a single cycle 

[31]. Figure 12 shows the functional block diagram for TMS320F28335 DSP. 

  

Figure 12: Functional Block Diagram of TMS320F28335 [31] 
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3.3 Architecture of the System 

 

As previously stated, the system is analogous to HIL with an addition of a network link. 

Here the hardware is the evaluation module (EVM) for the embedded processor. The EVM is 

connected to the conventional PC using a serial cable. The embedded processor does not run any 

operating system, whereas the PC runs an operating system. Code Composer Studio and the 

simulator that simulates the external devices connected to the DSP runs on the PC. The status of 

the simulated devices is sent to the DSP over the serial line. The DSP then runs the control logic 

and sends the updated values for the simulated devices to the simulator running on the host PC. 

Users can set the mode of operation to hardware or simulation mode or both. If simulation mode is 

enabled, the DSP updates the values of the shadow registers; if hardware mode is enabled it 

updates the physical registers on the DSP. Figure 13 shows the layered architecture of virtual 

testbed.  

 

Figure 13: Layered Architecture of Virtual Testbed   
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As the embedded processor does not run any operating system and the host PC does run an 

operating system (Windows), this system is a cross platform network system. We have organized 

the network link between the embedded processor and the host PC into a layered hierarchy. We 

have two layers: the physical link layer and the device register communication layer. Ideally, to 

check the real time performance of an HIL simulation, we should use a high performance 

computer system. However, due to the limited availability of equipment we used a conventional 

PC running a non-real-time operating system. Such a system has a low cost; it is relatively easy 

and quick to build and run a valid and useful HIL simulation for embedded system with low I/O 

rates with a less complicated simulation environment. 

The access of the external devices by the embedded processor is intercepted and forwarded 

to the simulator running on the PC to make the programming of the embedded processor as 

realistic as possible. To achieve this, we developed a library of device drivers instead of accessing 

the device registers directly. The drivers then can be configured to either access the devices on the 

physical embedded processor or to communicate with the simulator running on the host computer. 

Other approaches such as running simple device simulators directly on the embedded processor or 

using the debug mode on the embedded processor can be used to intercept the direct access to the 

device registers. However, these solutions are not easily portable to other embedded processors 

and limit the system to a specific application. 

The easiest way to communicate with the host computer is through a serial port. Each 

access to the device is encapsulated in a packet mentioning the address of the device and operation 

to be performed on that device. This packet is then sent over the serial line to the host computer, 

which forwards it to the pertinent device simulator. Similarly, if an interrupt is generated by any 

device simulator, the DSP control engine on the host computer sends a packet over the serial line 
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mentioning the source of interrupt. The interrupt handler on the DSP then decodes the packet and 

forwards the interrupt to the user defined interrupt handler. 

To facilitate the use of the virtual testbed in a laboratory environment, we provide a 

mechanism for controlling the device drivers while the user code is running on the DSP.  This is 

done by allowing the user to switch between accessing actual hardware devices and forwarding 

requests to the simulators. This will help debug the device simulators by running the simulation in 

parallel with external hardware devices and comparing the result of the simulation with the results 

obtained from the hardware devices. The processor abstraction of the simulator is simply an 

abstraction of the registers and other devices that are present on the embedded processor. This 

abstraction provides easy access to various devices and their data on the embedded processor for 

the simulation core. The updates of the values sent to processor abstraction from the EVM are 

transparent to the simulation core. Figure 14 shows the hardware and software layers on the 

embedded processor. 

 

Figure 14: Hardware and Software Layers on the Embedded Processor (modified from [9]) 
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Figure 15 shows the detailed architecture of a virtual testbed. Underlying Windows serial 

port drivers are not shown to make the diagram less complex. The simulator is connected to the 

EVM using a serial cable. We can disconnect the simulator and the EVM; in this case the EVM 

can only be connected to the physical external devices. This system can no longer be called HIL 

simulation, since we do not have a computer connected to the system. If we disconnect external 

devices from the EVM as well, then the system resembles a rapid prototyping system. If we have 

both simulator and the external devices connected to the system then the system can be used to 

monitor the output on the simulator. This will help to understand the system behavior and can be 

used for study purposes.  

 

Figure 15: Detailed Architecture of Virtual Testbed [6] 

 



22 
 

3.4 System Behavior 

 

 This section explains the general behavior of the system. As explained earlier the simulator 

has two components, an EVM and a host PC that runs the simulator. The simulator runs the code 

that simulates the traffic, displays the traffic light, simulates the street sensors and sends messages 

to the EVM over the serial line based on the events. The simulator simulates two streets named 

Main Street and Side Street. The traffic on Main Street is simulated by entering a numeric value 

into a textbox that is treated as the number of vehicles per minute, for Main Street. The traffic for 

Side Street traffic is generated by pressing one of the Side Street buttons. The simulator listens 

over the serial line using a .NET component. We used Code Composer Studio to write the code in 

C, to compile the code and to load the code into the embedded processor. The EVM has a built-in 

IEEE JTAG emulation mini-USB connector, which is used to download the compiled program into 

the embedded processor and to run, halt and debug the program.  

 Once the program in the embedded processor is running, it transmits the packets over the 

serial line. The format of the packet and the protocol of this communication are discussed in detail 

in the next section. Upon receiving a packet over the serial line, the simulator decodes the packet 

and updates the traffic light as per the data in the packet. We have developed different cases to test 

the system. The test case “TrafficLightCycler” keeps updating the traffic lights after a pre-

programed time. The test case “TestNetLink”, is used to check if the communication between the 

EVM and simulator is working. The other test cases are explained in detail in Chapter 6, which 

helps measure the performance of the system under different conditions. Figure 16 shows the 

interface of the traffic light simulator.  
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Figure 16: The Interface of the Traffic Light Simulator   
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CHAPTER 4. IMPLEMENTATION 

4.1 Porting Software onto a 32-bit DSP 

 

 In the early phase of development we were using a 16-bit DSP, TMS320LF2407A. To 

facilitate more features we changed to a more advanced 32-bit DSP, TMS320F28335. One of the 

main tasks for us was to make the existing software compatible with the new DSP. Since the new 

DSP is 32-bit, most of the registers on the DSP are also 32-bit; therefore, their structure is very 

different from the previous DSP. For example, the new DSP has separate registers to set the 

direction of the device and to read/write to the device, whereas, the previous DSP had a single 

register to set the direction and to read/write to the device. Hence, we have to rewrite the device 

drivers, taking the 32-bit structure of the registers in to account. Also, the hardware addresses and 

the names of the device registers were different. For example, in the previous DSP the multiplexer 

register for port A is named as MCRA, whereas in the present DSP it is divided into two registers, 

each 16-bit and named GPAMUX1 and GPAMUX2. Also, the hardware address for the port A 

data and direction register in the previous DSP is 7098(H) whereas in the present DSP, ths 

hardware address is split into 6F8A for direction and 6FC0 (H) for data.   

 The program is arranged in modular form to select the task to be performed. This is 

achieved by developing different test cases. To make the program more users friendly, different 

tasks are defined as variables, for example the test case to measure the round trip time is named 

RTT, which is an abbreviation for round trip time. We also developed Get and Set functions to 

receive and send data over the serial line. A function is developed to set the mode of operation for 

all registers. The timers and external interrupts on the embedded processor were initialized to 

facilitate the measurements. All of these are explained in detail in section 4.3.  
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4.2 Device Drivers 

 

a. Serial Communication Interface Drivers 

 

 

Figure 17: SCI CPU Interface [32] 

 The above figure shows the interface between the CPU and the serial device. The serial 

communication interface (SCI) is a two-wire asynchronous serial port commonly known as UART 

which supports the digital communication between the CPU and other asynchronous peripherals. 

The baud rate is programmable to 64K different speeds through a 16-bit baud-rate-select register. 

The baud rate is determined by a low-speed peripheral clock (LSPCLK) and the baud-select 

registers. The SCI asynchronous baud rate is given by the formula 

                                                                                                   LSPCLK 

                                           SCI Asynchronous Baud =  

                                                                                               (Baud Rate + 1) X 8 
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Where the LSPCLK can be set equal to the system clock or can be pre-scaled with respect to the 

system clock. The maximum pre-scale value is 14. If we use a LSPCLK which has been made the 

same as the system clock, then the maximum baud rate we can get is 18.7 Mbps and the minimum 

baud rate is 20 bps. We are using 115 Kbps since this is the maximum that the serial device on the 

host computer can handle. However, we were able to test the baud rate of 921.6 Kbps with the help 

of a USB2SERIAL converter. We used HyperTeminal to receive the data transmitted by the DSP 

over the serial line. Each frame has one STOP bit and one START bit. 

 We developed two functions to handle the communication over the serial line namely Get 

and Set. As the names suggest the get function is used to receive the packet over the serial line and 

the set function is used to transmit data over the serial line. We have developed two types of 

packets that take different measurements to test the performance of the system. For example, to 

test round trip time (RTT) for different numbers of bytes, we send the word ‘VIRTUAL’, over the 

serial line and replace a character with ‘E’ that makes the desired number of bytes. Let’s say we 

want to measure the RTT for 6 bytes then we send ‘VIRTU’ and ‘E’ over the serial line as shown 

in figure 18a. ‘E’ marks the end of the packet to stop the timer. To measure the simulation speed 

we send a packet containing the register identifier (ID) and a value to be written to the register as 

shown in figure 18b. 

                     

                                                                            a                                                   

 

b 

Figure 18: Packet Formats       

End of the Frame 
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 The following is how we are assigning the ID’s to the registers. The general purpose 

input/output registers (GPIO) are located starting from the address 6F80 (H) to 6FE8 (H); 

however, not all registers are adjacent. For example, the hardware address for GPIO A Pull UP 

Disable Register (GPAPUD) is 0x6F8C and the next register, GPIO B Control Register 

(GPBCTRL) has an address 0x6F90, that is the three addresses 0x6F8D, 0x6F8E and 0x6F8F are 

not used.  Also, some registers are 32-bit and some are 16-bit; hence, we are classifying the 

register based on their size. We are using the distance of the register from the first GPIO register 

and its size to calculate the ID of the register. For example, the ID for the GPBCTRL register will 

be given by subtracting the address of the first GPIO register from the address of GPBCTRL 

register (0x6F90 – 0x6F80 = 0x10 i.e. decimal 16). Now, as these registers are 32-bit, we divide 

the subtraction by two to get the ID for the register GPBCTRL (16/2 = 8). If the register is 16-bit 

then the ID is simply its distance from first GPIO register, for example, the ID of XINT2 GPIO 

Input Select Register (GPIOXINT1SEL) is 97 ( 0x6FE1 - 0x6F80 = 0x61 that is decimal 97).  

Upon receiving the packet from the serial line, action is taken depending upon the packet. 

If the packet is to update a register then the register ID and value are forwarded to a function called 

set to calculate the physical address of the register, if the mode of operation is hardware mode 

then the contents are updated.  As shown in figure 19, upon receiving the register and ID and 

value, it first checks if the mode of operation is hardware or simulation mode. If the mode of 

operation is hardware mode, the size of the register is checked. If the size of the register is 32-bit 

then the register ID is multiplied by two and then ORed with 0x6F00 to get the memory address. A 

pointer is then assigned to this address and the value is written to it.  Let’s say the register ID is 32 

then the hardware ID for this register will be 6FC0 ((32*2) + 128 = 192 = 0xC0 ORed 0x6F00 = 

6FC0). 
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void set(register_code reg, long value) 
             { 
                  int memory_add; 
                  int *memory_ptr; 
                  sim_mode reg_mode = mode(reg); 
                  if (reg_mode & HW_MODE) 
                  { 
                      if(reg_size == 32) 
                      { 
                         reg_size = 0; 

             memory_add = (2 * reg) + 128; 
                      } 
                      else  
                      { 
                         reg_size = 0; 
                         memory_add = reg + 128;       
                      } 

           memory_add = memory_add | 0x6F00; 
        memory_ptr = (int*)memory_add; 

                      *memory_ptr = value; 
                  } 
                  if (reg_mode & SIM_MODE) 
                  { 
                      sim_write(reg, value); 
                  } 

 
               } 
 

Figure 19 Sample code to calculate the address for a register 

 

b. Determining Mode of Operation for a Register 

 We developed two functions, set_mode and sim_mode, to set and determine the mode 

of operation for a register. We are using an integer array to store the mode of operation for each 

register. The integer variable is 16-bit hence; each element of the array will hold the mode of 

operation for eight registers if we assign two bits, one bit each for the two modes of operation, to 

each registers. The first bit for a register is set if the mode of operation for that register is 

simulation mode, similarly the second bit is set if the mode of operation is hardware mode.  Figure 

21 shows the flowchart for the sim_mode function. The register ID is passed to this function as 
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an argument and the function then returns the mode of operation. The variable index points to the 

array element which has the mode of operation stored for the register. The variable offset, 

points to the bits of the array element that stores the mode of operation. For example, if the register 

ID is 40 then the index will be four and the offset will be eight, as the array index starts from 

zero. The variable mask is also a 16-bit integer; we are using this variable to AND with the array 

element that stores the mode of operation. Figure 20 shows a sample element of the mode array. 

Figure 22 shows a piece of program demonstrating the function sim_mode.

 

 

Figure 20: Sample Mode Integer 
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Figure 21 Flowchart for “sim_mode” Function 
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sim_mode mode(register_code reg) 
                    { 
                        int index = 0; 
                        int offset = 0; 
                    int mode = 0; 
                    int mask = 0, result = 0; 
                    if(reg <= 8) 
                        { 
                       index = 1; 
                       offset = reg; 
                       offset = (offset*2) – 2; 
                       mask = (3<<(offset); 
                     mode = (modes[index] & mask) >> ((offset); 

return (sim_mode)mode; 
                    } 
                        else 
                    { 
                      result = reg & 0x07; 

   if(result == 0)//reg = 40 
                      { 

           index = reg / 8; // index = 5 
             index = index - 1; // index = 4 

                offset = index * 8; // offset = 32 
                        offset = reg - offset; // offset = 40 – 32 
                        offset = (offset*2) – 2; 

  mask = (3<<(offset); 
                        mode = (modes[index] & mask) >> offset; 
                        return (sim_mode)mode; 
                     } 
 
                         else 
                     { 
                        index = reg / 8; 

 offset = index * 8; 
    offset = reg - offset; 

 mask = (3<<offset); 
                      mode = (modes[index+1] & mask)>> offset; 

    return (sim_mode)mode; 
                     } 
                   } 
                } 

Figure 22: Program showing the “sim_mode” Function 
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c. Timer Drivers 

 

Figure 23: CPU-Timer Interrupt Signals and Output Signal [33] 

As stated in Chapter 3, the embedded processor TMS320F28335 has three 32-bit timers. 

Figure 23 shows the block diagram for CPU-Timer interrupt signals and output Signal. We are 

using these timers to measure the performance of the system. We are using the timer count and the 

timer interrupt to calculate the elapsed time. Figure 21 shows different CPU-timer interrupt 

signals. The 32-bit period register has the period value which is loaded to the counter register when 

the timer starts. The counter decrements by one after every timer divides down plus one timer 

clock source cycle and an interrupt is generated once the timer count decrements to zero. We have 

configured the timer to get the maximum granularity; to achieve this we are setting the pre-scaler 

to one. This allows the timer clock frequency to be the same as that of the system clock frequency, 

which is 150 MHz in our case. With this clock frequency we are able to get a clock tick of 6.67 ns. 

The maximum time period we can get with this clock configuration is approximately 29 sec.  
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 Figure 24 shows the C code for timer initialization. This function initializes the address 

pointers to their respective timer register; it also loads the timers period register with the maximum 

possible value and sets the pre-scaler value to one. It also sets the time stop status bit to one to 

make sure that the timer is not running and reloads the counter register with the period value. It 

also clears the interrupt count bit to reset the interrupt counter. The interrupt count is used to 

calculate the time if the time required by the process is more than the maximum possible time with 

our present timer configuration. Figure 25 shows the interrupt service routine for the timer. In this 

routine we are incrementing the variable cpuTimer0.InterruptCount upon every interrupt generated 

by the timer. 

               void InitCpuTimers(void) 

                    { 

             CpuTimer0.RegsAddr = &CpuTimer0Regs; 

             CpuTimer0Regs.PRD.all  = 0xFFFFFFFF; 

    CpuTimer0Regs.TPR.all  = 0; 

    CpuTimer0Regs.TPRH.all = 0; 

       CpuTimer0Regs.TCR.bit.TSS = 1; 

       CpuTimer0Regs.TCR.bit.TRB = 1; 

      CpuTimer0.InterruptCount = 0; 

               } 

                Figure 24: C code to Initialize the Timer 

 

                     interrupt void cpu_timer0_isr(void) 
                    { 
                       CpuTimer0.InterruptCount++;    
                       PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 
                    } 
 

                 Figure 25: C code for Timer Interrupt Service Routine 
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The timer interrupt routine measures the number of the timer overflows and also acknowledges the 

interrupt to allow receiving more interrupts. The number of interrupt counts is used to calculate the 

time needed to send data over the serial line. In the interrupt servicing routine, we start the timer to 

measure the time taken by the DSP to react to the external event. The time is then sent to the 

simulator over the serial link, which then writes it to a text file.  

4.3 Simulator 

 

 As previously stated, the simulator runs on the host PC and has software abstractions of 

hardware devices [6]. The simulator for the virtual testbed has two components as shown in Figure 

26, the simulation core and a Microsoft .Net framework component. The Microsoft .Net 

framework has three sub-components, processor abstraction, protocol encoder/decoder and the 

serial port communication component and the simulation core contains the control logic for the 

simulator. A number of specialized programming languages and environments along with their 

respective libraries, has been proposed over the years for simulation development. We have 

developed the simulator using Microsoft Visual #C for .Net [14], [22].  Microsoft .Net framework 

is a platform for the development of various applications on Windows operating systems. The .Net 

framework provides a comprehensive and consistent programming model for building applications 

along with seamless and secure communication. The class library of .Net framework is called the 

Framework Class Library (FCL) which is nothing but a collection of a number of classes and most 

of the classes are wrappers for Windows APIs. 

 Liu [15] used Windows’ file abstraction to read and write from the serial port. However, its 

limitation was identified by [6]. To overcome this Medavarapu [6] used a .Net SerialPort 

component that is present in the System.IO.Ports namespace, which contains classes for 
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controlling serial ports.  This SerialPort component provides a framework for synchronous and 

event-driven I/O, access to pin and break states and access to serial driver properties [23]. An 

event-driven framework for the processor abstraction is developed by [6] with these properties of 

the Serial Port component. This event-driven handler is invoked when the value of a register in the 

processor abstraction changes.  

 

Figure 26: Simulation Components [6] 



36 
 

 The synchronization mechanisms of the simulation device are used for accurate timing, the 

simulation frame is one such mechanism. The simulation frame can be defined as the interval of 

time of one pass from reading the input, running the control logic, to sending the output. The 

simulation frame of HIL simulation is shown in figure 27. It is better if the simulation frame is 

short to have accurate simulation, but it should be long enough to tolerate the worst-case time 

needed to complete all necessary operations in the simulation. A shorter simulation frame can be 

achieved by simplifying the simulation calculations. As the simulation frame is lengthened the 

simulation accuracy worsens.  

 

Figure 27: Program Flow of a HIL Simulation Frame [15] 
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 We further developed the simulator to add more functionality and to make it more user 

friendly. For example, we improved the logic that updates the light making it easier to understand. 

Also, we implemented an Update function to update the registers with the new value. This function 

takes the register ID and value as arguments, which are then passed from the decode function. We 

invoked the system timer to measure the performance of the simulator. The System.Timers namespace 

provides the timer component, which allows the raising of an event on a specified interval. We also 

added the logic to facilitate different measurements. Figure 28 shows a piece of a program in C# 

demonstrating the calculation of time and the writing of that time to a text file. We are using the 

StreamWriter class within the System.IO namespace to write the time to the specified text file. We 

also developed a method SendByte, which sends the desired number of bytes over the serial line. 

This function is used to check the round trip time of the system. Figure 29 shows the method for 

updating the traffic lights. This function is explained in section 4.2.a. Figure 30 shows the code in C# 

for the method “SendByte”. 

     string path = @"c:\Shri\Shri_MS\thesis\test2.txt";             

 StreamWriter sw = File.AppendText(path); 

 double ts = stopwatch.ElapsedMilliseconds; 

 long ticks = stopwatch.ElapsedTicks; 

   double ns = 1000000000 * (double)ticks / Stopwatch.Frequency; 

   MessageBox.Show("ns.RunTime " + ns); 

   stopwatch.Reset(); 

  sw.WriteLine(ns); 

   sw.Close(); 

Figure 28: C# Code for Time Calculation 
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      private void dsp_RegisterUpdatedEvent(DSPEventArgs e) 

     {                   

            int Recvdata = (dsp.GetValue(Registers.GPBDAT));             

            byte result = (byte) (Recvdata & 0xff); 

            clearLights(); 

            if (contains(result, IOPortBit.MAIN_RED)) 

                setLight(Street.MAIN, TrafficLightColor.RED); 

            if(contains(result, IOPortBit.MAIN_GREEN)) 

                setLight(Street.MAIN, TrafficLightColor.GREEN); 

            if (contains(result, IOPortBit.MAIN_YELLOW)) 

                setLight(Street.MAIN, TrafficLightColor.YELLOW); 

            if (contains(result, IOPortBit.SIDE_RED)) 

                setLight(Street.SIDE, TrafficLightColor.RED); 

            if (contains(result, IOPortBit.SIDE_GREEN)) 

                setLight(Street.SIDE, TrafficLightColor.GREEN); 

            if (contains(result, IOPortBit.SIDE_YELLOW)) 

                setLight(Street.SIDE, TrafficLightColor.YELLOW); 

            // force a repaint 

            Invalidate(); 

        } 

Figure 29: C# Code for Register Update 
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   public void SendByte(int No_Bytes) 

             {                        

               byte[] bytearry1 = new byte[10]; 

                 bytearry1[0] = (byte)'V'; 

               bytearry1[1] = (byte)'I'; 

                 bytearry1[2] = (byte)'R'; 

                 bytearry1[3] = (byte)'T'; 

                 bytearry1[4] = (byte)'U'; 

                 bytearry1[5] = (byte)'A'; 

                 bytearry1[6] = (byte)'L'; 

                 bytearry1[No_Bytes-1] = (byte)'E'; 

                 int i = 0;             

                 stopwatch.Start(); 

                 for (i = 0; i <= No_Bytes-1; i++) 

                { 

                   try 

                   {                     

                       serialPort.Write(bytearry1, i, 1);                   

                   } 

                   catch (Exception ex) 

                   { 

                       MessageBox.Show(ex.ToString()); 

                       throw; 

                   } 

               } 

                                     } 

Figure 30: C# Code of a Method for Sending Bytes over Serial Line 
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CHAPTER 5. MEASUREMENTS 

5.1 Different Test Cases 

 

a. Round-trip Time 

 We are measuring the round trip time for one, two, four and six bytes. To measure the 

round trip time we are making use of the system timer. The desired number of bytes is sent to the 

embedded processor and the timer is started. The embedded processor then responds by 

acknowledging the receipt of the packet. Upon receiving this acknowledgement from the 

embedded processor the timer is stopped and the time is written to a text file. The time granularity 

is in nanoseconds.  

b. Simulation Mode Measurements 

 To measure the performance of the system in simulation mode, we are making use of 

system timers, which are invoked by the simulator. The time is measured in nanoseconds. In this 

case we are pressing a switch in the simulator that simulates the street sensor in one of the streets. 

Then in the simulator we decode the location of the switch, start the timer and send the packet over 

the serial line to the embedded processor. As stated in Chapter 4, the packet contains the register 

ID and the value to be written to the register. On the EVM we decode the packet updates the 

register and send the next light sequence if it is time for the light to change. Once the packet is 

received over the serial line on the simulator side, the packet is decoded and the lights are updated 

if required and the timer is stopped. The time is then written to a text file for reference. Figure 31 

shows the flowchart for the simulation measurements.  
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Figure 31: Flowchart for Simulation Measurements 

 

IS any 

Street 

Switch 

Pressed? 

Start 

Start Timer 

Yes 

Identify Switch and Send the 

Reg. ID & value to the EVM  

Stop the Timer 

Send the next light sequence 

to the Simulator 

Recv. & decode the packet 

Update the Reg. with new 

Value 

Recv. the packet and update 

light 

No 



42 
 

c. Hardware mode Measurements 

Here we are using the timer to check the performance of a real embedded system that has 

hardware attached to it. Our embedded system simply a traffic light controller. We have connected 

an external switch to the embedded processer to emulate the street sensors of a real traffic light. 

When the switch is pressed, to indicate the passing of a vehicle, an interrupt is generated and the 

timer is started in the interrupt service routine. We update the number of vehicles on either the 

main street or on the side street based on the source of interrupt. Then we read the parallel port to 

check the status of the lights and decide whether or not to update the light. If we need to update the 

lights, we send the next sequence of lights to the parallel port and stop the timer. Then the time 

taken by the process is calculated using the “Cal_Send_Time” function and transmitted over the 

serial line to the simulator. On the simulator the time value received is written to a text file. Figure 

32 shows the flowchart for hardware mode measurements. 

d. Throughput 

 To measure the throughput of the system we are sending a thousand bytes from the 

simulator to the DSP. Upon transmitting the packet to the embedded processor the system timer 

that is invoked in the simulator is started. The embedded processor acknowledges the receipt of the 

packet by sending a packet containing an “A”. The timer is stopped upon receipt of this timer and 

the time is written to a text file. 
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               Figure 32: Flowchart for Hardware Mode Measurements 
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5.2 Measurements 

 

 The measurements are a very important part of any system to verify its behavior. The 

measurements also help to identify the areas where the system can be used effectively. The 

measurements also help the engineer to judge the usefulness of the system in his or her application. 

Measurements also highlight the drawbacks of the system and the areas of improvements. It is very 

important for any measurements to be as realistic as possible to judge the performance of the 

system under consideration, and when the measurement involves a non-real time operating system 

we need to take care to minimize the effect of the operating system on the measurements.  

 Since we used a non-real-time operating system, most of the measurements were run 100 

times after warming up the cache to minimize the effect of the operating system. Once we had the 

readings we calculated the average of the readings. From the average we calculated the standard 

deviation for the readings. The standard deviation helps to identify the variation of readings from 

the average. To make the readings more pertinent we discarded the readings four standard 

deviations away from the mean. This process of discarding outliers was repeated twice to eliminate 

any influence of operating system interrupts. The readings were taken with a serial cable, which 

connected the embedded system and the serial port of the host PC and with a USB2SERIAL 

converter. The baud rate for the communication was 115 Kbps since this is the maximum possible 

baud rate with the PC serial port. As mentioned earlier in Chapter 4 each frame consists of a STOP 

and START bit and no parity bit. Table 1 and 2 shows the reading for performance of the system 

with different sizes of data flow over the serial line. 
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Table 1: Measurements with Serial Cable (115Kbps) 

 File 
# Valid 

Readings 

Avg. Run 

Time (ms) 

Std. Dev. 

(ms) 
Min. (ms) Max. (ms) Error (ms) 

RTTByte1 95 1.13 0.02 1.068 1.206 0.004 

RTTByte2 98 1.36 0.39 1.015 2.852 0.78 

RTTByte4 98 1.68 0.42 1.406 3.455 0.08 

RTTByte6 95 1.91 0.83 1.740 2.212 0.01 

Throughput 99 97.1 1.51  95.291 102.355 0.30 

 

Table 2: Measurements with USB-to-Serial Converter (115Kbps) 

File 
# Valid 

Readings 

Avg. Run 

Time (ms) 

Std. Dev. 

(ms) 
Min. (ms) Max. (ms) Error (ms) 

RTTByte1 98  1.0 0.63 8.183 1.272 0.012 

RTTByte2 95 1.4 0.45 1.147 3.204 0.092 

RTTByte4 96 2.04 0.10 1.582 2.364 0.021 

RTTByte6 98 2.68 0.14 2.155 3.031 0.029 

Throughput 100 186.38 21.73 139.269 242.846 4.318 

 

 The column “File” contains the number of bytes send over the serial line, for example, the 

“RTTByte1”, means the reading is for a round-trip time of one byte. The last entry “Throughput”, 

is the round-trip time for a thousand bytes. The column “# Valid Readings” shows the actual 

number of readings used to calculate the average run time out of a given hundred readings after 

discarding readings that were four standard deviations from the mean. In case of “RTTByte3” the 

number of valid readings is ninety eight this means we had two readings, which were more than 

four standard deviations away from the mean. The “Min” column shows the minimum value 

among the readings and the “Max” column shows the maximum value among the readings. The 

column “Error” shows the error bar for each reading.  

 It can be seen in the table that the average run time increases steadily as the number of 

transmitted bytes increases. This holds with the fact that a greater number of bytes takes more time 
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to be transmitted and also proves the validity of the system. Also, if we compare the readings 

between the serial cable and the USB2SERIAL converter, we can see that the time taken by the 

latter is more. This can be due to the hardware in the USB2SERIAL converter. However, the 

USB2SERIAL converter can help us test the system with higher baud rates. As stated in Chapter 4 

the maximum possible baud rate with the DSP is 18.7 Mbps, which is slightly more than USB1 

speed, and cannot be tested with conventional serial ports. From Table 1 and Table 2, it takes 

approximately ninety eight milli-seconds and one hundred and eighty seven milli-seconds to send 

one thousand bytes (Throughput) at the speed of 115 Kbps with a serial cable and with a 

USB2SERIAL converter. Whereas the expected time is, 

                                        1000 

                                     115000 

                                                                                                  187 

      

    Hence, the effective baud rate for USB2SERIAL is,  

      1000 

      187 ms 

 

Similarly,  

                                                                                                       97 

 

 Hence, the effective baud rate for serial cable is, 

     1000 

     97 ms 

 

   Expected Time = X 1000  =  86.97~ 87 ms 

Actual Time To Expected time Ration For USB2SERIAL =   

87  

=  2.14 

X 1000  =  5.34 Kpbs 

Actual Time to Expected time Ration For Serial Cable =   

87  

=  1.11 

X 1000  =  10.30 Kpbs 

- - -  1 
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If the embedded processor is set to the maximum baud rate, 18.7 Mbps, which is approximately 19 

Mbps, the average time for the Throughput for USB2SERIAL will be, 

       1000 

    19 Mbps 

From 1, Expected time will be, 

 

 52 ms   X   2.14   =   111.28   ~   111 ms 

 

The effective baud rate for USB2SERIAL is, 

 

    1000 

    111 ms 

 

 We also took the measurements to test the performance of the system under simulation and 

hardware mode. These readings were taken with a serial cable and a USB2SERIAL converter to 

see the effect of the converter. Studying the effect of the converter is useful in judging the 

application domain of the system. All the fields in the table are similar to those in Tables 1 and 2. 

Here, it is also evident that the converter takes some time for the conversion and hence takes more 

time for receiving the data. We can also note that the time taken in hardware mode is less than the 

time taken in the simulation mode. This again holds true as the simulation is not running on a real-

time operating system and has several factors affecting the performance of the system. As shown 

below, Table 4 shows the reading taken with serial cable and Table 5 shows the readings taken 

with the USB2SERIAL converter. 

 

X 1000  =  52.63 ~ 52 ms 

X 1000  =  9 Mbps 
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Table 4: Measurements with Serial Cable (115Kbps) 

 

                                  Table 5: Measurements with USB-to-Serial Converter (115Kbps) 

  

File 

 

# Valid 

Readings 

Avg. Run 

Time (ms) 
Std. Dev. (ms) Min. (ns) Max. (ns) Error (ns) 

Simulation 

Mode 
99 0.643 0.115 0.318 1.00 0.023 

Hardware 

Mode 
100 0.039 0.109 0.257 0.50 0.015 

File 

 

# Valid 

Readings 

Avg. Run 

Time (ms) 
Std. Dev. (ms) Min. (ms) Max. (ms) Error (ms) 

Simulation 

Mode 
96 1.09 0.093 0.323 1.40 0.018 

Hardware 

Mode 
100 0.04 0.012 0.03 0.06 0.010 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

 A simulation will be helpful if and only if it depicts the real-time behavior of the system 

under testing, which can be achieved only when the real-time operating system is used for 

simulation. As stated in Chapter 4, we are using a non-real operating system, Windows, to run the 

simulator. Hence the simulator is not suited for complex applications. Also, the communication 

speed is limited by the hardware on the PC to 115 Kbps. Hence, the performance of the system for 

high baud rates cannot be evaluated with the existing setup. However, the set is capable of running 

a valid simulation for an embedded system with slow I/O rate and simulation environment that is 

not very complex [6]. A system can be developed with the existing setup for audio signal 

processing as the maximum baud rate is more than what is required for audio signal processing. 

Traffic light simulation, as well as simulating the traffic, can also be implemented with this setup. 

However, the setup is not capable of simulating the hardware de-bounces for the electrical 

switches under testing. 

• More tests cases to check the performance: The reading now involves just four test 

cases, two to measure the communication speed and two to check system performance in 

different scenarios. However, further test cases can be developed to test the performance of 

the system under different circumstances. This will help to understand the characteristics of 

the system and we can classify the application domain where this system can be helpful. 

• More precise readings: The reading can be improved by minimizing the load on the 

operating system. For example, we can use make use of the keyboard to take measurements 

instead of the mouse and tune the performance of the operating system using “Performance 

Options” settings. Additional options can be explored to optimize the performance of the 

operating system. 
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• Time synchronization: In the current system the simulator and the embedded system use 

two separate clocks. It will be helpful if they both run using the same clock. This can be 

achieved by time synchronization. One approach for this is having the simulator dictate the 

time to the embedded system. In this approach the DSP will wait for the simulator to finish 

the simulation. Once the simulation is done the simulator will send a packet to the DSP 

telling it to respond to the event. This will make sure that the embedded system does not go 

ahead of the simulator. Another approach can be, using the independent clock for both the 

embedded system as well as for the simulator. If an interrupt is generated then the 

embedded system will send a packet to the simulator informing it about the interrupt and 

asking it if it can respond to it. If the simulator is not ready it will send a wait packet to the 

embedded system. Once the simulation is done the embedded system will be updated to 

respond to the interrupt.  

• Simple application to test the limits of the simulator: A simpler application can be 

developed to explore the technological limits of the simulator; if the application is simple 

enough, we can run various tests to examine the technological competency of the simulator. 

A simple application will be easy to simulate and can be developed in less time. One 

example is an application on a temperature controller, which involves just a sensor; the 

processor reads the input from sensor and runs the control logic to determine whether or 

not to turn on the air-conditioner.  

• Web based interface: Another interesting application can be to interface the simulator to 

the web. This can be done by running the simulator in a web browser. Here the hardware 

can be connected to a remote computer. This will provide remote connectivity to the 

simulator extending the accessibility to a number of users to test the system remotely. A 
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prototype was developed by Joel Bonnette and Joseph Hamilton as a part of a class project 

that can be interfaced with this simulator to check its performance.  

• Timed automaton: The term timed automaton is used to describe a system specification of 

an embedded system that helps to simplify the testing and development of embedded 

systems. Deng [11] proposed the use of a state diagram, which is simpler to use and cleaner 

than the timed automaton [11]. In the state diagram each edge is labeled with a regular 

expression instead of a single symbol. Our system can be used to test this approach. A 

prototype was developed by Deng for a HIL virtual testbed that can be incorporated in our 

simulator to evaluate the usefulness of the state diagram to specify the specifications of an 

embedded system.  
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