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Abstract

The applications of wireless communications and digital signal processing have dra-

matically changed the way we live, work, and learn over decades. The requirement

of higher throughput and ubiquitous connectivity for wireless communication sys-

tems has become prevalent nowadays. Signal sensing, detection and estimation have

been prevalent in signal processing and communications for many years. The relevant

studies deal with the processing of information-bearing signals for the purpose of in-

formation extraction. Nevertheless, new robust and efficient signal sensing, detection

and estimation techniques are still in demand since there emerge more and more

practical applications which rely on them. In this dissertation work, several novel

signal sensing, detection and estimation schemes are proposed for wireless communi-

cations applications, such as spectrum sensing, symbol-detection/channel-estimation,

and encoder identification. The associated theories and practice in robustness, com-

putational complexity, and overall system performance evaluation are also provided.
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1 Introduction to Sensing, Detec-

tion and Estimation

In Chapter 1, the motivation of the research topic is represented, which is originated

from the idea that a better statistical feature extraction will result in a more efficient

and robust system design. Besides, a comprehensive literature review is also provided

in this chapter. In Chapters 2 to 4, novel statistical signal processing techniques

are proposed and presented for different communication system designs, namely the

spectrum sensing scheme, the symbol-detection/channel-estimation approach, and

the blind encoder identification technique.

1.1 Research Motivation and Applications

The applications of wireless communications and digital signal processing have dra-

matically changed the way we live, work, and learn over decades. The requirement of

higher throughput and ubiquitous connectivity for wireless communication systems

has become prevalent nowadays. When designing wireless communication networks,

not only is it important to establish the desired functionalities for new applications,

but also it is crucial to investigate how to achieve the optimal bandwidth, energy ef-

ficiency, etc., due to the scarcity of the respective resources. This investigation relies

on interdisciplinary effort that encompasses areas of signal processing, telecommu-

nications, control, and information theory. In order to improve the performance of

modern communication networks, one may ask whether the current design of the
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wireless network is optimal or not. If not, what is the fundamental limit on the

performance improvement that can be achieved? And, how can this be achieved at

minimum cost?

Statistical signal processing is an area of applied mathematics and algorithm design

that treats signals as stochastic processes, dealing with their statistical properties. If

these statistical properties can be properly utilized, the efficiency of the communi-

cation systems can be greatly improved. My previous research has been focusing on

statistical signal processing for wireless communications, which provides promising

answers to the above questions. Specifically, I have studied a number of fundamental

statistical signal processing approaches from different aspects which have be demon-

strated to improve the performances of the communication systems. The primary

objective of my research is to investigate how new statistical signal properties can

be extracted more effectively over different network models and scenarios and ben-

efit wireless communication quality-of-service. In this dissertation, I will address a

specific statistic signal feature, discussing its properties, and numerous applications,

which include cognitive radios, pilot detections, channel estimations, encoder identi-

fication, and so on.

1.2 Literature Review

1.2.1 Spectrum Sensing

Cognitive radio (CR) is a promising solution to combat the scarcity of electromag-

netic radio spectrum resource [1, 2, 3]. Traditionally, a large amount of spectrum

bands have already been assigned to different users, (primary users or PUs), who

have the exclusive right to use these bands. However, these licensed bands are actu-

ally not fully used either temporally or spatially. Thus, unlike the traditional spec-

trum allocation policy, cognitive radio allows any unauthorized user, (secondary user

2



or SU), to use the licensed bands whenever these bands are not occupied by PUs.

Therefore, CR can effectively enhance the spectrum efficiency.

Spectrum sensing is the essential front-end mechanism for CR. The detection meth-

ods often used for single-reception spectrum sensing arematched filtering approach [4,

5], feature detection approach [6, 7], and energy detection approach [8, 9, 4, 10, 11, 12].

The matched filtering method can maximize the signal-to-noise ratio (SNR) inher-

ently. However it is difficult to carry out the detection without signal information

regarding the pilots and the frame structure. The feature detection method is pri-

marily based on cyclostationarity, and it also relies on the given crucial statistical

information about the PU signals. The energy detection method is the most pop-

ular one since it does not need any statistical information about the signal to be

detected. Nevertheless, when the signal energy fluctuates substantially in time or

noise power is large, it becomes quite difficult to distinguish between the absence

and the presence of the PU signal(s) [4, 5]. In our previous work, we proposed a local

spectrum-sensing method based on the Jarque-Bera (JB) statistics [13]. In this dis-

sertation, we propose to extend this promising single-reception detection method to

cooperative spectrum-sensing in both stationary and time-varying environments. As

exhibited by our Monte Carlo simulation results, the performance of the JB statistics

based spectrum-sensing technique is superior to that of the energy-detection based

spectrum-sensing scheme.

In [9, 8], two optimal cooperative spectrum-sensing schemes were proposed subject

to single-reception energy detection. In [9], the received signal energy estimates of all

local detectors need to be sent to the fusion center (FC). Besides, the precise estima-

tor is indispensable at each local detector to estimate the PU signal’s strength and

the noise variance. These information need to be sent to the FC as well. Thus, the

FC can apply the criterion of the deflection coefficient maximization to determine

3



the optimal fusion weights. However, a large signal bandwidth is required for com-

munications between the SUs and the FC, which is impractical. In [8], the square-law

combined scalar of the signal energy experienced at each local detector is sent to the

FC; then the PU signal power estimate can be established at the FC. Although the

technique proposed in [8] does not require a large transmission bandwidth as [9], the

underlying assumption that the actual noise power is given is not realistic. There-

fore, in order to save transmission bandwidth and facilitate a novel totally blind

cooperative spectrum-sensing scheme, in this dissertation, we assume that only local

detection decisions are sent to the FC and no a priori knowledge of signals and noises

at the local detectors is known to the FC. The optimal weights are obtained by simple

counting without complicated PU signal strength or noise variance estimations.

Although the optimal data-fusion rule was first proposed in [14] for cooperative

spectrum-sensing, the difficulty arises as the probabilities of miss detection and false

alarm for each sensing node are required to be known prior to final decision (global de-

tection). The existing estimators need to store all of the local decisions for a while to

build the reliable ensemble averages as the aforementioned probabilities [1, 15, 16, 17].

They are obviously impractical, especially when the time-varying characteristics of

the signal and the environment are conspicuous. In addition, the optimal data fusion

rule cannot be implemented on-line if it relies on these ensemble-average probability

estimators. In other words, they need large memory spaces to store the historical

local decisions and they cannot adapt to fast time-variance emerging in the system.

To tackle this problem, in this dissertation, we propose a novel on-line recursive esti-

mator built upon a temporal discount factor so that one can adaptively estimate the

essential parameters involved in the optimal data-fusion rule, based on our previous

work [13, 17]. Thus, only four parameters are needed to be stored and updated at

every sample time instant for each sensing node. Furthermore, by using this tem-
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poral discount factor, the cooperative spectrum-sensing scheme can react and tack

the time-varying environment more quickly. With this new mechanism, we establish

a new on-line implementation scheme for the optimal fusion rule and facilitate a

novel cooperative spectrum-sensing system using JB statistics, which can be applied

to time-varying environment effectively. The theoretical analysis to demonstrate the

advantage of our proposed system and to numerically determine the optimal discount

factor is also provided in this dissertation. Simulation results also demonstrate that

our new method is much more robust than other existing approaches [18, 17, 19].

1.2.2 Symbol Detection and Channel Estimation

Orthogonal frequency-division multiplexing (OFDM) is a prevalent modulation tech-

nology for carrying digital data on a large number of closely-spaced orthogonal sub-

carriers. The major advantage of OFDM over traditional single-carrier technologies

is its capability of coping with severe channel conditions, such as attenuation of high-

frequency components in the frequency spectrum of a long copper wire, narrowband

interference and/or frequency-selective fading due to multipath medium, etc., in the

absence of sophisticated equalizers. Therefore, recently, OFDM has become a very

popular modulation technology for wideband wired and wireless communications,

including digital television, digital audio broadcast, digital subscriber line (DSL),

wireless networks, powerline networks, and fourth-generation (4G) mobile communi-

cations.

On the other hand, pilot-symbol-assisted scheme is commonly employed to help

acquire the channel information, where training pilots and data symbols are placed

on different subcarriers prior to OFDM modulation [20, 21, 22, 23]. However, these

training pilots consume valuable bandwidth and thus reduce the data rate (spectral

efficiency) as well. Instead, an alternative emerged as the superimposed training (ST )

scheme in [24], where training pilots are added on top of data symbols prior to OFDM
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modulation. The major advantage of the ST scheme is no loss in data rate. However,

in addition to sacrificing useful transmission power for carrying superimposed pilots,

there is another disadvantage due to the interference from data symbols to pilots,

which would severely impair the later channel estimation at the receiver.

To combat the aforementioned problems, a novel data-dependent superimposed-

training (DDST) technique for single-carrier communication systems was introduced

in [25], where the (unknown) data-induced interference during channel estimation

was eliminated by nulling some frequency tones of the information data at the trans-

mitter. According to the simulation results in [25], the DDST technique can lead to

a much better channel-estimation accuracy than the previous ST scheme.

Furthermore, the DDST scheme was extended to renovate OFDM systems in [26].

To avoid the permanent loss of certain data symbols due to the nulling operation

on the corresponding subcarriers, the information data is first precoded and then a

subset of the precoded data are nulled on the fixed, equal-spaced subcarriers where

the training pilots can be inserted (placed) afterwards [26]. The precoder is used

to spread each information symbol over all the subcarriers (with different weights)

so as to increase the transmission diversity and mitigate the impairment caused by

the above-stated nulling operation at the transmitter. This technique in [26] avoids

any data-rate loss resulting from the insertion of the frequency-division multiplexed

pilots at the cost of the transmitted signal distortion to some extent.

To further lessen the above-mentioned signal distortion, in this dissertation, we

propose a new pilot insertion technique (PIT) incorporated with three pilot de-

tection techniques (PDTs) to blindly and accurately detect the pilot positions for

future OFDM systems [27, 28]. Considering the impact of the pilot positions on the

time-domain signal waveform variations, at the transmitter, we propose to select the

optimal pilot positions to minimize the distortion of the original transmitted sig-
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nal, which is caused by the subcarrier-removal (nulling operation) in the frequency

domain. Later, our proposed new OFDM receiver structure will be introduced in

this dissertation, where three different blind pilot-detection techniques are designed

without any a priori knowledge of the pilot positions dynamically selected by the

transmitter. After the pilot positions are blindly detected, channel equalization will

then be performed and information symbols can be recovered iteratively thereupon.

Besides, rigorous theoretical analysis and Monte Carlo simulation results for various

OFDM systems over multipath fading channels will also be presented.

1.2.3 Blind Encoder Identification

Adaptive modulation and coding (AMC) or link adaptation is broadly used in wire-

less communications to adapt the modulation, coding, or other signal/protocol pa-

rameters to the time-varying channel quality, such as the path-loss, the interference

due to signals coming from other transmitters, the sensitivity of the receiver ampli-

fier, the available transmitter power margin, and etc. AMC systems really improve

the rate of transmission and/or the bit error rate, by exploiting the channel state

information and selecting the best modulation and coding combination accordingly

from the predefined modulation/coding candidate sets [29, 30, 31, 32]. Especially over

fading channels, AMC systems exhibit great performance enhancements compared

to the communication systems using fixed modulation/coding schemes [33].

However, in order to synchronously adapt the corresponding demodulation and

decoding mechanisms at the receiver to the changes occurred at the transmitter,

a monitor or similar mechanisms need to be undertaken to communicate between

the transmitter and the receiver, which would obviously reduce the energy and spec-

trum efficiency. Lately, the blind identification approaches for the AMC systems have

drawn tremendous research interest [30, 31, 34]. In [30] and [31], the blind channel-

encoder identification methods (classification among a predefined candidate scheme

7



set) were proposed for binary low-density parity-check (LDPC) codes and binary

convolutional codes, respectively. The mathematical formulae for the log-likelihood

ratios (LLRs) of the syndrome a posteriori probabilities were also established over

the binary Galois field or GF(2). However, the definition and the calculation of the

log-likelihood ratio vectors (LLRVs) of the syndrome a posteriori probabilities over

non-binary Galois fields are quite different from those over GF(2) in two ways. First,

the LLRVs for the syndrome a posteriori probabilities over GF(q) are defined as

(q−1)-dimensional vectors in contrast to real-valued scalars for the binary case [35].

Second, the calculation procedure for the LLRVs of the syndrome a posteriori prob-

abilities is a recursion involving all the LLRVs of the received symbols’ a posteriori

probabilities and the parity-check relations (which will be introduced in the later

context), while it only requires single-step (non-recursive) calculation for the binary

case. Therefore, further study for the blind non-binary channel-encoder identifica-

tion is needed. In [34], a blind channel-encoder identification scheme for non-binary

convolutional codes was proposed in the absence of noise, which cannot be deemed

realistically in practice.

In this dissertation, we propose a new blind non-binary channel-encoder identi-

fication method over GF(q) [36]. This new scheme will focus on the identification

of Reed-Solomon (RS) codes over GF(q). However, it could also be easily extended

to any other non-binary channel-encoder identification as long as there exist similar

parity-check relations for the channel codes to be used. Our proposed blind encoder

identification system involves a parameter estimator built upon the expectation-

maximization (EM) algorithm followed by the blind identifier of the channel encoder

subject to a predefined encoder candidate set. Besides, we also decrease the compu-

tational complexity for calculating the LLRVs of the syndrome a posteriori probabil-

ities by simplifying the procedure in conjunction with a small-size look-up table. The
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computational complexity comparison will be facilitated and the effectiveness of our

proposed new scheme evaluated via Monte Carlo simulations will be demonstrated

finally.

1.3 Notations

The statistical expectation is denoted by E{ }. A k-combination of an n-element set

is denoted by C
n
k = n!

k!(n−k)!
, where n! is an n factorial. For an arbitrary set S, |S|

is the size of S. The event � can denote either the occurrence of miss detection or

the occurrence of false alarm in this dissertation. A vector is denoted by ~a and a

matrix is denoted by Ã. A zero vector ~0 is a column vector whose entries are all zero.

The transpose and the Hermitian adjoint of a matrix Ã are denoted by ÃT and ÃH ,

respectively. ĨN represents the identity matrix of size N × N . An N × N diagonal

matrix is represented by diag(a0, a1, . . . , aN−1) such that the arguments inside the

parentheses denote the diagonal elements in the corresponding order. The set of all

positive integers, real numbers, and complex numbers are denoted by Z+, R, and

C, respectively. The symbol j
def
=

√
−1 is reserved throughout this dissertation. The

operators Re{ } and Im{ } indicate the real and imaginary parts of the complex

number inside the braces, respectively. ⌊b⌋ is the largest integer which is smaller

than or equal to b, where b ∈ R. N(a, b) stands for the Gaussian process with mean

a and variance b. Pr{A} and p(A) represent the cumulative distribution function

(CDF) and the probability density function (PDF) of an event A, respectively. The

Galois field of size q is denoted by GF(q), while ⊕q, ⊙q, and ⊗q denote the addition,

multiplication, and element-wise multiplication over GF(q), respectively.
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2 Spectrum Sensing

2.1 Single-Reception Spectrum Sensing

In this section, the local (single reception) signal detection model for spectrum sens-

ing will be introduced. The JB statistic feature is adopted in the proposed spectrum

sensing system. The details are presented in the following subsections.

2.1.1 Signal Model for Spectrum Sensing

Denote the continuous-time received signal by rc(t) during the sensing period. The

underlying signal from the primary users is denoted by sc(t) and wc(t) is the additive

white Gaussian noise (AWGN). Hence, we obtain

rc(t)
def
= sc(t) + ωc(t). (2.1)

Assume that we are interested in the frequency band with the central frequency fc

and the bandwidth W . We sample the received signal at a sampling rate fs, where

fs ≥ 2(fc +W ). Let Ts =
1
fs

be the sampling period and N be the sample size. For

notational convenience, we denote

r(n)
def
= rc(nTs), n = 1, . . . , N,

s(n)
def
= sc(nTs), n = 1, . . . , N, (2.2)

ω(n)
def
= ωc(nTs), n = 1, . . . , N.

According to [37], for the signal detection (local spectrum sensing) problem, there

involve two hypotheses, namely H0: signal is absent and H1: signal is present. The
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discrete-time received signals under these two hypotheses are given by

H0 : r(n) = ω(n),

H1 : r(n) = s(n) + ω(n),

(2.3)

where r(n) denotes the received signal samples, perhaps enduring the effects of path

loss, multipath fading, and time dispersion, and ω(n) is the discrete-time AWGN with

zero mean and variance σ2. Here s(n) can be considered as the superposition of the

signals emitted from multiple primary users. When the received signal r(n) consists

of multiple sources (from either multiple independent sources or a single source signal

traveling through multiple paths), it is usually modeled as the correlated signal [37].

It is assumed that signal and noise are uncorrelated with each other. The local

spectrum sensing (or signal detection) problem is therefore to determine whether the

signal s(n) exists or not, based on the received signal samples r(n) [37, 3].

2.1.2 Energy Based Sensing Algorithm

The energy detector senses spectrum holes by determining whether the primary sig-

nal is absent or present in a given frequency slot. The energy detector typically

operates without prior knowledge of the primary signal parameters. Its key param-

eters, including detection threshold, number of samples, and estimated noise power,

determine the detection performance. More specifically, the energy detector mea-

sures the energy associated with the received signal over a specified time duration

and bandwidth. The measured value is then compared with an appropriately selected

threshold to determine the presence or the absence of the primary signal.
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Assume that the predetermined threshold is θ0. Therefore, the energy based sensing

algorithm can be given by

H0 : if
N∑

n=1

|r(n)|2 < θ0; (2.4)

H1 : if

N∑

n=1

|r(n)|2 ≥ θ0. (2.5)

2.1.3 Jarqur-Bera (JB) Statistic Based Sensing Algorithm

The JB statistic based detection algorithm is used in this dissertation as an efficient

single reception method. It involves three major aspects, namely (i) pre-processing,

and (ii) JB-statistic based detection. They are summarized as follows.

Pre-Processing

The pre-processing step for transforming the received signal r(n) into the frequency

domain is the same as the HOS detection method [38]. The block diagram of the new

spectrum sensing method is depicted in Fig. 2.1. When the signal r(n) is received,

first we multiply r(n) by e−j2πfcnTs to down-convert it to the baseband. Then, this

baseband signal is sent through a digital image rejection low-pass (LP) filter with

bandwidth BWr = 8 × 106 × 2π
fs

radians. The image rejection filter is placed in

the receiver so that the image frequencies along with other unwanted signals are

filtered out to enhance the signal quality. Next, the enhanced signal r2(n) is further

multiplied by e−j2πfvnTs. Then, the resulted signal r3(n) goes through the operations

consisting of a down-sampler following a digital anti-aliasing filter whose bandwidth

is given by BWa =
NFFT

Tsensing
× 2π

fs
,where NFFT is the FFT window size, and Tsensing =

n
fs

is the sensing time. The down-sampling rate fd is given by fd = floor
(

2π
BWa

)
, where

the function “floor” is the operation to round 2π
BWa

to the nearest integer less than

or equal to 2π
BWa

. The down-sampled signal r5(n) is sent to a serial-to-parallel port

12



Figure 2.1. The (single-reception) spectrum sensing system diagram.

and then the NFFT-point FFT will be taken to result in a half-period FFT-sequence

Rout(k), k = 0, 1, . . . , NFFT

2
− 1.

JB-Statistic Based Detection

In statistics, the Jarque-Bera test is a goodness-of-fit measure of departure from

normality, based on the sample kurtosis and the sample skewness. The test statistic,

JB, is defined as

JB
def
=
ns
6

(
S2 +

(K − 3)2

4

)
, (2.6)
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where ns is the number of observations (or degrees of freedom in general); S is the

sample skewness and K is the sample kurtosis. They are defined as

S def
=

µ̂3

σ̂3
=

1
ns

∑ns
l=1 (xl − x̄)3

(
1
ns

∑ns
l=1 (xl − x̄)2

)3/2 , (2.7)

K def
=

µ̂4

σ̂4
=

1
ns

∑ns
l=1 (xl − x̄)4

(
1
ns

∑ns
l=1 (xl − x̄)2

)2 , (2.8)

where µ̂3 and µ̂4 are the estimates of the third and fourth central moments, respec-

tively; xl, l = 1, . . . , ns are the observations; x̄ is the sample mean and σ̂2 is the

estimate of the second central moment or the variance.

Since Rout(k), k = 0, 1, . . . , NFFT

2
− 1 are complex-valued, the absolute values of

Rout(k), k = 0, 1, . . . , NFFT

2
−1 are used instead [39]. That is, invoke Eqs. (2.6), (2.7),

and (2.8) to calculate the JB statistic of |Rout(k)| and compare it with the threshold

rs to decide if there exists the signal s(n). If JB > rs, it infers that the signal

exists; otherwise (JB ≤ rs), the signal is absent. The next subsection will present the

theoretical analysis regarding how to select the appropriate threshold rs.

2.1.4 Simulation Results: Energy Detector vs. JB Detector

In this simulation, we use the commonly-used microphone signal (as the PU signal) to

benchmark the spectrum-sensing methods, whose details can be found in [13, 40]. The

details of the single-reception spectrum sensing simulation set-up are in compliance

with the IEEE 802.22 standard, which can also refer to [13, 40]. In the following,

we will present the simulation results to compare our proposed JB-statistic-based

spectrum-sensing method and the energy-based spectrum-sensing scheme in the low

SNR scenario. We carry out the statistical averages over 2,000 Monte Carlo trials

to quantify the detection performances. Figures 2.2, 2.3, 2.4, 2.5, and 2.6 delineate

the corresponding ROC (receiver-operating characteristic) curves for the SNR values

of -10, -15, -20, -25 dB and -27dB, respectively. According to Figures 2.2-2.6, it

14



is clear that when noise is large, our proposed JB-statistic-based spectrum-sensing

technique (denoted by “JB based detector” in these figures) always outperforms the

commonly-used energy-based spectrum-sensing technique (denoted by “Energy based

detector” in the figures). Obviously, the performance margin is very large especially

for very low SNR conditions. Since our proposed JB-statistic-based spectrum-sensing

technique achieves the better local detection performance, we use this detector for

all cooperative spectrum-sensing methods in comparison later on.
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Figure 2.2. ROC curves for our proposed JB-statistic-based detector and the energy-based
detector (SNR = -10 dB).

2.1.5 Conclusion

In this section, we propose to use the JB statistic as a feature in the single reception

and proposed a novel robust spectrum sensing scheme. According to our Monte

Carlo simulation results for the wireless microphone signals, the JB-statistics based

detection method is more robust than the commonly used energy-detection based

spectrum-sensing scheme in a very broad SNR range.
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Figure 2.3. ROC curves for our proposed JB-statistic-based detector and the energy-based
detector (SNR = -15 dB).
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Figure 2.4. ROC curves for our proposed JB-statistic-based detector and the energy-based
detector (SNR = -20 dB).

2.2 Cooperative Spectrum Sensing

When multiple receivers are available, the cooperative spectrum sensing methods are

feasible for more reliable performance than local spectrum sensing schemes. In coop-
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Figure 2.5. ROC curves for our proposed JB-statistic-based detector and the energy-based
detector (SNR = -25 dB).
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Figure 2.6. ROC curves for our proposed JB-statistic-based detector and the energy-based
detector (SNR = -27 dB).

erative spectrum sensing, the data fusion mechanism is crucial. Usually, transmitting

additional data, such as the likelihood ratio, credibility or raw detection data, to the

center node can increase the reliability of the global decisions. However, this is not
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feasible in practice since it requires transmission of sensor information in real time

and a large communication bandwidth [14]. Thus, signal processing mechanisms are

preferred to be performed at the local sensing nodes. Here, we consider that all the

signal processing procedures are done at the local sensors and only the local decisions

are transmitted to the center node to make a global decision. In such a condition,

the optimal data fusion rule of the distributed detection system is given by [14].

Under this rule, the detection statistics can be formulated as the weighted sum of

the local decisions, and the weights are the functions of the miss detection probabil-

ities and the false alarm probabilities experienced at the local sensing nodes. This

weighted-sum data-fusion rule can be summarized in the following subsections.

2.2.1 Optimal Data Fusion for Cooperative Spectrum Sensing

Consider a binary hypothesis test as follows:

H0 : PU signal is absent,

H1 : PU signal is present.

(2.9)

The a priori probabilities of the two hypotheses are P (H0) = P0, and P (H1) = P1.

Assume that there are M local sensing nodes, and the decisions are denoted by ui,

i = 1, 2, . . . ,M , where

ui =





−1, if H0 is true,

+1, if H1 is true.

(2.10)

Also, we denote the false alarm probabilities and the miss detection probabilities by

PFi and PMi
, respectively, where i = 1, 2, · · · ,M .

At the center node, the optimal (global) decision rule is actually subject to the

likelihood ratio test such that

P (u1, · · · , uM |H1)

P (u1, · · · , uM |H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
, (2.11)
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where C00, C01, C10, and C11 are the decision costs. The minimum probability of

error criterion here is set as [41], namely, C00 = C11 = 0 and C01 = C10 = 1. Define

−→
u

def
= [u1 u2 · · · uM ]. Thus, Eq. (2.11) becomes

P (−→u |H1)

P (−→u |H0)

H1

≷
H0

P0

P1
, (2.12)

and the corresponding log-likelihood ratio test is

log

(
P (−→u |H1)

P (−→u |H0)

)
+ log

(
P1

P0

)
H1

≷
H0

0. (2.13)

Assume that the decisions of different local sensing detectors are independent. We

get

P (−→u |H1) =

M∏

i=1

P (ui|H1)

=
∏

S+

(1− PMi
) ·
∏

S−

PMi
,

(2.14)

where S+ is the set of all i such that ui = +1 and S− is the set of all i such that

ui = −1. Similarly, we have

P (−→u |H0) =

M∏

i=1

P (ui|H0)

=


∏

i∈S+

PFi


×


∏

i∈S−

(1− PFi)


 .

(2.15)

Substituting Eqs. (2.14) and (2.15) into Eq. (2.13), we have

log

(
P1

P0

)
+
∑

i∈S+

log

(
1− PMi

PFi

)
+
∑

i∈S−

log

(
PMi

1− PFi

)
H1

≷
H0

0, (2.16)

which can also be expressed as

w0 +

M∑

i=1

wiui
H1

≷
H0

0, (2.17)

where wi (i = 1, . . . ,M) is the weight of the ith local sensing detector and w0 is a

function of the a priori probabilities. They can be given by

w0 = log

(
P1

P0

)
, (2.18)
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and

wi =





log
(

1−PMi
PFi

)
, if ui = +1,

log
(

1−PFi
PMi

)
, if ui = −1,

i = 1, 2, · · · ,M. (2.19)

To implement this optimal data fusion rule given by Eq. (2.15), one must know

the weights in Eq. (2.17), which are determined by P0, P1, PMi
, and PFi. However,

these probabilities are not given in practice. Thus, we need to estimate these weights

from the detection information (local decisions) we can get from the local sensing

detectors.

2.2.2 Estimation of the Weights

The cooperative spectrum sensing is more reliable than the single-reception spectrum

sensing. Therefore, we often use the global decision from the cooperative spectrum

sensing as the ground truth, u0, to estimate the probabilities of miss detection and

false alarm. By continuously comparing the local decisions with the ground truth,

the local probabilities of miss detection and false alarm can be estimated, so the

weights in Eq. (2.17) can be adaptively updated.

For the ith local sensing detector at the mth moment, εi(m) denotes the outcome,

and εi(m) ∈ {ε1, ε2, ε3, ε4}, where they are specified as four states below:

ε1 : u0 = +1 and ui = +1,

ε2 : u0 = −1 and ui = −1, (2.20)

ε3 : u0 = +1 and ui = −1,

ε4 : u0 = −1 and ui = +1.
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Thus, we can get the cumulative state Ci(m) of the ith local sensing detector at the

mth detection time slot. It is given by

Ci(m)
def
=

m∑

k=1

εi(k) (2.21)

= α1i(m)ε1 + α2i(m)ε2 + α3i(m)ε3 + α4i(m)ε4,

where α1i, α2i, α3i, and α4i are the cumulative times that ε1, ε2, ε3, and ε4 have

occurred, respectively. Thus, we obtain

P̂Mi
(m) =

α3i(m)

α1i(m) + α3i(m)
,

P̂Fi(m) =
α4i(m)

α2i(m) + α4i(m)
,

(2.22)

and

P̂1(m)

P̂0(m)
=
α1i(m) + α3i(m)

α2i(m) + α4i(m)
, (2.23)

where P̂Mi
(m), P̂Fi(m), P̂1(m), and P̂0(m) are the estimates for PMi

, PFi, P1, and

P0, respectively at the mth detection time slot. The estimated weights in Eq. (2.17)

at the mth detection time slot can be determined as

ŵ0(m) = log

(
P̂1(m)

P̂0(m)

)
= log

(
α1i(m) + α3i(m)

α2i(m) + α4i(m)

)
, (2.24)

and

ŵi(m) =





log
(

1−P̂Mi(m)

P̂Fi(m)

)
= log

(
α1i(m)
α4i(m)

)
− ŵ0(m),

if ui = +1,

log
(

1−P̂Fi(m)

P̂Mi(m)

)
= log

(
α2i(m)
α3i(m)

)
+ ŵ0(m),

if ui = −1,

(2.25)

where i = 1, 2, · · · ,M .

2.2.3 Temporal Discount Factor

It is obvious that the estimated probabilities of miss detection and false alarm given

by Eq. (2.22) will converge eventually when the environment is stationary with a
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fixed SNR. However, this assumption is often unrealistic. When the environment of

a certain local detector is time-varying, the cumulative states, which would have been

misled by the history, could slow the convergence speeds of the estimated parameters.

For example, if the noise of the ith local sensing detector is time varying, the received

signal in Eq. (2.3) should be modified as

H0 : r
(m)
i (n) = υ

(m)
i ω̄i(n),

H1 : r
(m)
i (n) = s

(m)
i (n) + υ

(m)
i ω̄i(n),

(2.26)

where ω̄i(n) ∝ N (0, 1), ∀i are normalized AWGN with zero mean and unity variance,

and υ
(m)
i is a factor varying with respect to m, m = 1, 2, . . .. Thus, the SNR of the

ith local sensing detector at the mth sensing interval can be written as

SNR(m)
i

def
=

N∑
n=1

∣∣∣s(m)
i (n)

∣∣∣
2

N∑
n=1

∣∣∣υ(m)
i ω̄i(n)

∣∣∣
2
, i = 1, 2, . . . ,M. (2.27)

Therefore, a sudden SNR change at the mth sensing interval at a certain local sensing

node i could be formulated as a sudden change in the value of υ
(m)
i . Assume that

SNR is constant within a sensing interval, and sudden changes in SNR only occur

between different sensing intervals.

When the environment is time-varying, the convergence speed (from the original

probability of miss detection or false alarm to the new probability of miss detection

or false alarm) of the algorithm in Section 2.2.2 would be quite slow. Especially when

the cumulative states have been aggregated for a long time, any abrupt SNR change

would make the system trackability fail.

A window of fixed length γ was used in [42] to retain the latest γ local decisions at

each local detector and discard all the decisions in the past. Although this method can

mitigate the time-varying problem to some extent, it treats all the γ recent decisions

equally and the corresponding trackability would still be in concern. In order for
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our proposed scheme to react promptly and accommodate the abrupt environmental

changes, we adopt a temporal discount factor, ζ , from the reinforcement learning

in [43] to pose a discount on the influence of the past cumulative states. Consequently,

the influence of all local decisions will be discounted exponentially with time.

Hence, the cumulative state C(m)
i can be rewritten as

C(m)
i

def
= α′

1i(m)ε1 + α′
2i(m)ε2 + α′

3i(m)ε3 + α′
4i(m)ε4

=

µ∑

k=1

(
ξ
(S+
k
)

i

)
ζµ−k +

ν∑

k=1

(
ξ
(S−

k
)

i

)
ζν−k (2.28)

where the discount factor ζ satisfies 0 < ζ ≤ 1. Note that S+ and S− denote the sets

of time slots corresponding to global decisions H1 and H0, respectively. They are

S+ def
=

{
m
∣∣u(m)

0 = 1
}
, (2.29)

S− def
=

{
m
∣∣u(m)

0 = 0
}
, (2.30)

and µ, ν are the sizes of S+, S−, respectively, such that µ =
∣∣∣{m|u(m)

0 = 1}
∣∣∣ and

ν =
∣∣∣{m|u(m)

0 = 0}
∣∣∣, where µ+ ν = m. We sort the elements of S+ and S− both in

ascending order. Thus, S+
k and S−

k stand for the kth elements of the ordered sets S+

and S−, respectively. Thus, for ρ=1 or 3, α′
ρi(m) is given by

α′
ρi(m) =





ζ × α′
ρi(m− 1) + 1, if u

(m)
0 = 1 and ξ

(m)
i = ερ

ζ × α′
ρi(m− 1), if u

(m)
0 = 1 and ξ

(m)
i = ε4−ρ

(2.31)

for ρ=2 or 4, α′
ρi(m) is given by

α′
ρi(m) =





ζ × α′
ρi(m− 1) + 1, if u

(m)
0 = 0 and ξ

(m)
i = ερ

ζ × α′
ρi(m− 1), if u

(m)
0 = 0 and ξ

(m)
i = ε6−ρ

(2.32)

Consequently, the estimated probabilities and the corresponding estimated weights

specified by Eqs. (2.24)-(2.25) can be modified easily by substituting αρi(m) with

α′
ρi(m), where ρ = 1, 2, 3, 4.

23



Here ζ is used to control the relative influence of the past local decisions. In

particular, a local decision received by the center node in the past is discounted

exponentially. As we set ζ → 1, the past local decisions are emphasized more and

more. When ζ = 1, the adaptive algorithm here degenerates into the sample-average

based estimation method in Section 2.2.2. Thus, by properly choosing the discount

factor ζ , one may make the cooperative spectrum-sensing algorithm to adapt swiftly

to different environmental changes.

2.2.4 Discount Factor Analysis

According to Eq. (2.22) in conjunction with the substitution of all αρi(m)’s with

α′
ρi(m)’s, probability estimators for miss detection and false alarm at the center

node are similar to each other. Therefore, in this section, we use � to denote either

one of these two events. In other words, H� denotes H1 for miss detection analysis

and H� denotes H0 for false alarm analysis.

Lemma 1: When the discount factor ζ (0 < ζ < 1) is involved, the statistical

expectation of the estimated probability of � in the mth time slot for the ith local

detector is the true probability of � if the environment of the ith local detector is

stationary (i.e., υ
(m)
i is constant for all m).

Proof: Among the previous m successive time slots, there are N1 time slots corre-

sponding to H�. For the i
th local detector, there are K1 time slots of � by the local

spectrum sensing among these N1 time slots. Thus, the true probability of � at the

mth time slot for the ith local detector is K1

N1
. The estimated probability of �, P̂�i(m),

at the mth time slot is given by

P̂�i(m) =





K1

N1
, ζ = 1

ψ(K1,ζ,N1)

1+ζ+ζ2+···+ζN1−1 , 0 < ζ < 1

(2.33)
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where ψ(K1, ζ, N1) is a polynomial consisting of K1 terms. These K1 terms can be

randomly chosen from K1 elements in Ψ
def
=
{
1, ζ, ζ2, . . . , ζN1−1

}
. The probability of

each element in Ψ to contribute to ψ(K1, ζ, N1) is

P =
C
N1−1
K1−1

C
N1
K1

=
(N1 − 1)!

(K1 − 1)!(N1 −K1)!
× K1!(N1 −K1)!

N1!

=
K1

N1
. (2.34)

Thus, the statistical expectation of the estimated probability of � at the mth time

slot for the ith local detector is given by

E

{
P̂�i(m)

}
=

K1

N1
× 1 + K1

N1
× ζ + · · ·+ K1

N1
× ζN1−1

1 + ζ + ζ2 + · · ·+ ζN1−1

=
K1

N1
. (2.35)

2

Lemma 2: When the environment of the ith local detector is stationary, the es-

timated probability of local �, P̂�i(m), can be upper- and lower-bounded. When

ζ → 1, both bounds approach the true probability of local � and they get tighter as

ζ gets closer to 1.

Proof: From the proof of Lemma 1, we know that P̂�i(m) = ψ(K1,ζ,N1)

1+ζ+ζ2+···+ζN1−1 .

Obviously, if we choose the largestK1 elements from Ψ and constitute the polynomial

ψ(K1, ζ, N1), the upper bound for P̂�i(m) is obtained thereby. Similarly, if we choose

the smallest K1 elements from Ψ and constitute the polynomial ψ(K1, ζ, N1), the

lower bound for P̂�i(m) can be acquired instead. Thus, we have

ζN1−K1(1− ζK1)

1− ζN1
≤ P̂�i(m) ≤ 1− ζK1

1− ζN1
. (2.36)

We know that the true probability of local � at the mth time slot is P�i(m) = K1

N1
.

Next, we will prove

ζN1−K1(1− ζK1)

1− ζN1
≤ K1

N1
≤ 1− ζK1

1− ζN1
. (2.37)
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Moreover, the difference between the upper and lower bounds decreases as ζ → 1.

First, we will prove ζN1−K1 (1−ζK1 )

1−ζN1
is a monotonically increasing function of ζ over

0 < ζ < 1. Taking the derivative of ζN1−K1(1−ζK1 )

1−ζN1
with respect to ζ , we get

∂
[
ζN1−K1(1−ζK1 )

1−ζN1

]

∂ζ
=
ζN1−K1−1

[
N1 −K1 −N1ζ

K1 +K1ζ
N1
]

(1− ζN1)2
, (2.38)

where the derivative of N1 −K1 −N1ζ
K1 +K1ζ

N1 with respect to ζ is

∂
[
N1 −K1 −N1ζ

K1 +K1ζ
N1
]

∂ζ
= N1K1ζ

N1−1 −N1K1ζ
K1−1 ≤ 0, (2.39)

over 0 < ζ ≤ 1. Therefore, N1 −K1 −N1ζ
K1 +K1ζ

N1 is a monotonically decreasing

function of ζ over 0 < ζ ≤ 1. Obviously,

[
N1 −K1 −N1ζ

K1 +K1ζ
N1
] ∣∣∣
ζ=1

= 0, (2.40)

which indicates that N1 −K1 −N1ζ
K1 +K1ζ

N1 ≥ 0 and ζN1−K1(1−ζK1 )

1−ζN1
is a monoton-

ically increasing function of ζ over 0 < ζ ≤ 1.

According to the L’Hospital’s rule,

lim
ζ→1

ζN1−K1(1− ζK1)

1− ζN1
= lim

ζ→1

(N1 −K1)ζ
N1−K1−1 −N1ζ

N1−1

−N1ζN1−1
=
K1

N1

. (2.41)

Therefore, ζN1−K1 (1−ζK1 )

1−ζN1
− K1

N1
≤ 0.

A similar procedure can be performed to prove that 1−ζK1

1−ζN1
≥ K1

N1
and 1−ζK1

1−ζN1
is a

monotonically decreasing function of ζ over 0 < ζ < 1 and

lim
ζ→1

1− ζK1

1− ζN1
= lim

ζ→1

−K1 ζ
K1−1

−N1 ζN1−1
=
K1

N1
. (2.42)

2

Lemma 3: When the environment of the ith local detector is time-varying, the

probability estimator for � given by Eq. (2.22) with ζ = 1 becomes biased on average.

Proof: Suppose that after N1 time slots corresponding to H�, the local environ-

ment of the ith detector changes, and its probability of � changes accordingly. After
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the environment changes until the mth time slot, we collect N2 time slots correspond-

ing to H� and K2 time slots of � at the ith local detector. Hence, the probability of

� at the ith local detector changes from K1

N1
to K2

N2
due to this environment variation.

However, the estimated probability of � at the mth time slot is given by

P̂�i(m) =





K1+K2

N1+N2
, ζ = 1

ψ1(K1,ζ,N1,N2)+ψ2(K2,ζ,N2)

1+ζ+ζ2+···+ζN1+N2−1 , 0 < ζ < 1

(2.43)

where ψ1(K1, ζ, N1, N2) is a polynomial consisting of K1 terms. These K1 terms are

randomly chosen from the set Ψ1
def
=
{
ζN2, ζN2+1, . . . , ζN1+N2−1

}
. Similarly, ψ2(K2, ζ, N2)

is a polynomial consisting of K2 terms, which are randomly drawn from the set

Ψ2
def
=
{
1, ζ, . . . , ζN2−1

}
. Similar to the proof of Lemma 1, E

{
P̂�i(m)

}
is given by

E

{
P̂�i(m)

}

=
K1

N1
× (ζN1+N2−1 + ζN1+N2−2 + · · ·+ ζN2) + K2

N2
× (ζN2−1 + ζN2−2 + · · ·+ 1)

1 + ζ + ζ2 + · · ·+ ζN1+N2−1
(2.44)

and





lim
ζ→1

E

{
P̂�i(m)

}
= K1+K2

N1+N2
,

lim
ζ→0

E

{
P̂�i(m)

}
= K2

N2
.

(2.45)

When ζ = 1, E
{
P̂�i(m)

}
is biased. When ζ = 0, E

{
P̂�i(m)

}
is the same as the

true probability of local � at the mth time slot.

Eqs. (2.44) and (2.45) can be extended to several successive environmental changes

as well. Assume that a local detector endures L − 1 SNR changes in series, and

the corresponding probabilities of local � are K1

N1
, K2

N2
, . . ., KL

NL
, respectively. In this

scenario, the true probability of local � is KL
NL

at this time. The expectation of the

estimated probability of � for the ith local detector at the mth time slot, E
{
P̂�i(m)

}
,
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becomes

E

{
P̂�i(m)

}

=
K1

N1
× (ζN1+···+NL−1 + · · ·+ ζN2+···+NL) + · · ·+ KL

NL
× (ζNL−1 + ζNL−2 + · · ·+ 1)

1 + ζ + ζ2 + · · ·+ ζN1+···+NL−1
(2.46)

and




lim
ζ→1

E

{
P̂�i(m)

}
= K1+···+KL

N1+···+NL
,

lim
ζ→0

E

{
P̂�i(m)

}
= KL

NL
.

(2.47)

When ζ = 1, E
{
P̂�i(m)

}
is biased. When ζ = 0, E

{
P̂�i(m)

}
is the same as the

true probability of local � at the mth time slot. 2

Lemma 4: Assume that the environment of the ith local detector is time-varying.

Since E

{
P̂�i(m)

}
is a monotonic function with respect to ζ over 0 < ζ ≤ 1, the

probability estimator for � with 0 < ζ < 1 is more reliable (i.e., leading to a more

accurate probability estimate) than that with ζ = 1 given by Eq. (2.22) on statistical

average.

Proof: The proof can be considered in two cases. First, consider one environmental

change at the ith local detector such that the probability of local � varies from K1

N1

to K2

N2
. We will prove that E

{
P̂�i(m)

}
given by Eq. (2.44) is a monotonic function

with respect to ζ over 0 < ζ ≤ 1. Suppose x
def
= ζN2(1+ ζ+ · · ·+ ζN1−1) = ζN2−ζN1+N2

1−ζ

and y
def
= 1 + ζ + · · ·+ ζN2 = 1−ζN2

1−ζ
. The derivatives of x and y with respect to ζ are

∂x

∂ζ
=

N2ζ
N2−1 − (N1 +N2)ζ

N1+N2−1 − (N2 − 1)ζN2 + (N1 +N2 − 1)ζN1+N2

(1− ζ)2
,(2.48)

∂y

∂ζ
=

−N2ζ
N2−1 + (N2 − 1)ζN2 + 1

(1− ζ)2
. (2.49)

Thus, the expectation of the estimated probability of local � at the mth time slot

becomes

E

{
P̂�i(m)

}
=

K1

N1
x+ K2

N2
y

x+ y
. (2.50)
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Taking the derivative of E
{
P̂�i(m)

}
in Eq. (2.50) with respect to ζ , we get

∂
[
E

{
P̂�i(m)

}]

∂ζ
=

(
K2

N2
− K1

N1

)(
x∂y
∂ζ

− ∂x
∂ζ
y
)

(x+ y)2
. (2.51)

Substitute the formulae of x, y, ∂x
∂ζ
, and ∂y

∂ζ
into x∂y

∂ζ
− ∂x

∂ζ
y to obtain

x
∂y

∂ζ
− ∂x

∂ζ
y

=
ζN2−1(ζ − 1)

(
N2 +N1ζ

N1+N2 − (N1 +N2)ζ
N1
)

(1− ζ)3
. (2.52)

Taking the derivative of N2 +N1ζ
N1+N2 − (N1+N2)ζ

N1 with respect to ζ , we obtain

∂
[
N2 +N1ζ

N1+N2 − (N1 +N2)ζ
N1
]

∂ζ

= N1(N1 +N2)ζ
N1+N2−1 −N1(N1 +N2)ζ

N1−1

≤ 0. (2.53)

Thus, N2 + N1ζ
N1+N2 − (N1 + N2)ζ

N1 is a monotonically decreasing function with

respect to ζ over 0 < ζ ≤ 1. Besides,

[
N2 +N1ζ

N1+N2 − (N1 +N2)ζ
N1
] ∣∣∣
ζ=1

= 0. (2.54)

According to Eqs. (2.53) and (2.54), N2+N1ζ
N1+N2−(N1+N2)ζ

N1 ≥ 0 for 0 < ζ ≤ 1,

which means x∂y
∂ζ

− ∂x
∂ζ
y ≤ 0 for 0 < ζ ≤ 1.

Now we consider Eq. (2.51). When K1

N1
< K2

N2
, it is obvious that K1+K2

N1+N2
< K2

N2
. Thus,

according to Eq. (2.45), E
{
P̂�i(m)

}
becomes a decreasing function with respect

to ζ over 0 < ζ ≤ 1, and it decreases from K2

N2
(for ζ = 0) to K1+K2

N1+N2
(for ζ = 1)

monotonically. Similar results can be drawn for K1

N1
> K2

N2
. Therefore, the performance

of the probability estimator with the discount factor 0 < ζ < 1 is better than the

sample-average estimator given by Eq. (2.22) with ζ = 1.

Second, assume that the ith local detector endures L − 1 environmental changes,

say L > 2, with the corresponding probabilities of local � as K1

N1
, K2

N2
, . . ., KL

NL
, respec-

tively. In this scenario, it would be very complicated to study the monotonicity of
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E

{
P̂�i(m)

}
given by Eq. (2.46). However, we may further assume that prior to the

(L − 1)th (most recent) environmental change, the estimated probability of local �

has already converged to K ′

N ′
(not necessarily the true probability). Thus, Eqs. (2.46)

and (2.47) can be rewritten as

E

{
P̂�i(m)

}

=
K ′

N ′
× (ζN

′+NL−1 + · · ·+ ζNL) + KL
NL

× (ζNL−1 + ζNL−2 + · · ·+ 1)

1 + ζ + ζ2 + · · ·+ ζN ′+NL−1
(2.55)

and




lim
ζ→1

E

{
P̂�i(m)

}
= K ′+KL

N ′+NL
,

lim
ζ→0

E

{
P̂�i(m)

}
= KL

NL
.

(2.56)

Consequently, following exactly the identical proof for the case considering only one

environmental change, the monotonicity of Eq. (2.55) over 0 < ζ ≤ 1 can be justified

accordingly. When K ′

N ′
< KL

NL
, it is obvious that K ′+KL

N ′+NL
< KL

NL
. Thus, according to

Eq. (2.56), E
{
P̂�i(m)

}
becomes a decreasing function with respect to ζ over 0 < ζ ≤

1, and it decreases from KL
NL

(for ζ = 0) to K ′+KL
N ′+NL

(for ζ = 1) monotonically. Similar

results can be drawn for K ′

N ′
> KL

NL
. Therefore, the performance of the probability

estimator with the discount factor 0 < ζ < 1 is better than the sample-average

estimator given by Eq. (2.22) with ζ = 1. 2

From all the aforementioned lemmas, the summary is provided as follows. When

the optimal data fusion rule stated in Section 2.2.2 is used, one needs to know

the exact probabilities of miss detection and false alarm at the moment, or K2,

N2 as mentioned above. However, in practice, these probabilities are not known

since no one knows when and how the local SNR changes. Therefore, we propose

to use the probability estimators in conjunction with a discount factor ζ . Lemmas

1-4 facilitate the theoretical analysis that how the choice of ζ will influence the
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probability estimation accuracies. When the environment of the ith local detector

is stationary, as ζ → 1, the probability estimate of local � will get close to the

true probability. When the environment is time-varying, on statistical average, the

probability estimate of local � will approach the true probability as ζ → 0, while that

of local � will be biased as ζ → 1. In other words, the smaller the discount factor

ζ , the better trackability the spectrum-sensing system. Therefore, the appropriate

choice of ζ should be related to the tradeoff between the estimation accuracy and

the system trackability.

Lemma 5: When one tries to minimize the mean square error with respect to the

discount factor ζ subject to the tradeoff between estimation accuracy and system

trackability, a proper choice of ζ is within the interval (0.99, 1).

Proof: From the proof of Lemma 4, E
{
P̂�i(m)

}
is a monotonically decreasing

function of ζ , and it changes from the true probability of local �, K2

N2
(for ζ = 0), to a

biased value K1+K2

N1+K2
(for ζ = 1). In summary, there occurs an interesting phenomenon:

when ζ → 0, E
{
P̂�i(m)

}
is more accurate, but the probability estimates spread

over a broader range; when ζ → 1, E
{
P̂�i(m)

}
is less accurate, but the probability

estimates spread over a narrower range. Thus, we may investigate the mean square

error (MSE) performance of this probability estimator with respect to ζ to determine

the appropriate discount factor.

Consider a temporal environmental change at the ith local detector such that the

probability of local � varies from K1

N1
to K2

N2
. The MSE of P̂�i(m) subject to a discount

factor ζ is given by

MSE(ζ) def
= E

{(
P̂�i(m)− K2

N2

)2
}
. (2.57)

It is easy to derive from Eq. (2.44) that

E

{
P̂ 2
�i
(m)

}
=

ψ3(
1−ζN1+N2

1−ζ

)2 , (2.58)
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where ψ3
def
= K1(N1−K1)

N1(N1−1)
ζ2N2

(
1−ζ2N1

1−ζ2

)
+ K1(K1−1)

N1(N1−1)
ζ2N2

(
1−ζN1

1−ζ

)2
+ K2(N2−K2)

N2(N2−1)

(
1−ζ2N2

1−ζ2

)
+

K2(K2−1)
N2(N2−1)

(
1−ζN2

1−ζ

)2
+ 2K1K2

N1N2
ζN2

(
(1−ζN1 )(1−ζN2 )

(1−ζ)2

)
, for 0 < ζ < 1. The variance of P̂�i(m)

is given by

E
{
σ2
�i

}
def
= E

{
P̂ 2
�i
(m)

}
− E

2
{
P̂�i(m)

}
= ψ4

/(
1− ζN1+N2

1− ζ

)2

, (2.59)

where

ψ4
def
=
K1(N1 −K1)

N2
1 (N1 − 1)

ζ2N2

[
N1

1− ζ2N1

1− ζ2
−
(
1− ζN1

1− ζ

)2
]

+
K2(N2 −K2)

N2
2 (N2 − 1)

[
N2

1− ζ2N2

1− ζ2
−
(
1− ζN2

1− ζ

)2
]
. (2.60)

Therefore, the MSE defined by Eq. (2.57) becomesMSE(ζ) = E
{
σ2
�i

}
+
[
E

{
P̂�i(m)

}
− K2

N2

]2
,

which is

MSE(ζ) = ψ4(1− ζ)2

(1− ζN1+N2)2
+

[(
K1

N1
− K2

N2

)
ζN2(1− ζN1)

(1− ζN1+N2)

]2
, (2.61)

where ψ4 is defined in Eq. (2.60).

In order to analyze the monotonicity of this complex expression of MSE, we assume

N1 = N2 = N . Denote χ
def
=
(
E

{
P̂�i(m)

}
− K2

N2

)2
, and ∂χ

∂ζ
is given by

∂χ

∂ζ
=

(
K1 −K2

N

)2
2Nζ2N−1

(1 + ζN)3
. (2.62)

Thus, Eq. (2.59) can be reformulated as

E
{
σ2
�i

}
=

K1(N −K1)ζ
2N +K2(N −K2)

N2(N − 1)

×N(1 + ζ2 + · · ·+ ζ2N−2)− (1 + ζ + · · ·+ ζN − 1)2

(1 + ζ + · · ·+ ζ2N−1)2
. (2.63)

Therefore,
∂E{σ2�i}

∂ζ

∣∣∣∣
ζ=0

= −2K2(N−K2)
N(N−1)

, and
∂E{σ2�i}

∂ζ

∣∣∣∣
ζ=1

= 0. Besides, ∂χ
∂ζ

∣∣∣∣
ζ=0

= 0, and

∂χ
∂ζ

∣∣∣∣
ζ=1

= (K1−K2)2

8N
. Furthermore, N is a large integer, which means ∂χ

∂ζ
will increase

very abruptly when ζ gets very close to 1. Since both ∂χ
∂ζ

and
∂E{σ2�i}

∂ζ
are continuous
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functions over 0 < ζ < 1, there exists ζ , which is very close to 1, yielding the

minimum MSE. In other words, MSE(ζ) is a “bowl-shape” function over 0 < ζ < 1.

A typical example is illustrated by Figure 2.7. Figure 2.7 (a) exhibits the MSE curves

versus ζ for N1 = 1000, N2 = 1000, and different K1, K2 values. Figure 2.7 (b) is a

zoom-in version of Figure 2.7 (a) around ζ → 1. From Figure 2.7, one may observe

that MSE(ζ) is a “bowl-shape” function over 0 < ζ < 1. When ζ is small, the mean

square error drops down as ζ increases. When ζ → 1 and
∣∣∣K1

N1
− K2

N2

∣∣∣ 6= 0, MSE(ζ)

abruptly rises at a discount factor very close to ζ = 1. This turning point appears

closer to 1 when the true probability change
∣∣∣K1

N1
− K2

N2

∣∣∣ becomes smaller. On the other

hand, it can also be found that when
∣∣∣K1

N1
− K2

N2

∣∣∣ is fixed and N1, N2 become larger,

this turning point will appear closer to 1. Obviously, the discount factor ζ = 1 is not a

good choice in the minimum MSE sense. Of course, one can undertake an exhaustive

search within a small interval around ζ = 1 to find the optimal choice of ζ . However,

the optimal discount factor depends on N1, N2,K1, and K2 but they are not available

in practice. Empirically speaking, to approximately guarantee MSE(ζ) ≤ MSE(0)
10

, ζ

should be selected from the interval (0.99, 1). 2
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Figure 2.7. Mean square error with respect to ζ.
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In order to justify the validity of the aforementioned MSE analysis, another typical

example is illustrated by Figure 2.8. In Figure 2.8, we compare the simulated MSEs

of the estimated probabilities of local miss detection resulting from Monte Carlo

experiments with the theoretical MSEs by use of different temporal discount factors

ζ . Suppose that the SNR at a certain local detector changes from -25 dB to -30 dB

after 1000 sensing intervals (N1 = 1000), and the probability of local miss detection

is estimated after another 1000 sensing intervals (N2 = 1000). Since the true values

of K1 and K2 are unavailable in practice, we use the statistical mean values ofK1 and

K2 when the local SNR is -25dB and -30dB, respectively. We carry out one hundred

Monte Carlo trials to calculate the the average simulated MSEs. It is obvious that

the MSEs we obtain from the simulation results are very close to the theoretical

MSEs according to Figure 2.8.
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Figure 2.8. Comparison between the simulated and theoretical mean square errors.

2.2.5 Simulation Results

In the stationary environment, the average risk R is well known as a standard mea-

sure to compare the performances of signal detectors in the classical Bayesian hy-

34



pothesis theory. It is given by

R def
= P (H0)

[
P (u0 = −1|H0)C00 + P (u0 = +1|H0)C10

]

+P (H1)
[
P (u0 = +1|H1)C11 + P (u0 = −1|H1)C01

]
. (2.64)

Besides, we assume C00 = C11 = 0 and C10 = C01 = 1. Thus, Eq. (2.64) becomes

R = P (H0)P (u0 = +1|H0) + P (H1)P (u0 = −1|H1)

= P0PF + P1PM ,

(2.65)

where PF and PM denote the global false alarm probability and the global miss-

detection probability, respectively.

In the existing literature, the most commonly-used data fusion rules are the “OR”

and “AND” rules [44]. We depict the average riskR (given by Eq. (2.65)) with respect

to the global false alarm probability PF in Figure 2.9 for three different mechanisms

based on the “OR”, “AND”, and optimal data-fusion rules for the SNR value of

-20 dB. According to Figure 2.9, our proposed cooperative spectrum-sensing method

based on the optimal data-fusion rule leads to the superior performance compared to

the two other schemes across all PF conditions. Similar trends can also be observed

for other SNR values.

In Section 2.2.3, we have introduced a new adaptive cooperative spectrum-sensing

algorithm for the time-varying environments. In order to illustrate the influence of

the proposed temporal discount factor, we compare the estimated local detection

performances by use of different temporal discount factors (ζ= 0.9985, 0.999, 0.9995,

and 1). The time-varying environment is established as follows. Suppose that the

SNR value at a certain local detector suddenly changes from -25 dB to -30 dB at

a certain time point (say, at iteration number 2,000), the estimated correct detec-

tion probabilities of this local detector by use of different temporal discount factors

ζ are plotted in Figure 2.10. The new probability of detection for SNR = −30 is
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Figure 2.9. The average risks R versus the global false alarm probabilities PF for the
cooperative spectrum-sensing methods using the “OR”, “AND”, and optimal data-fusion
rules.

approximately 59%. One can observe that the local detector with a temporal dis-

count factor 0 < ζ < 1 will converge to the new probability of detection eventually,

while the one with ζ = 1 will converge to a biased value, as stated by Lemma 3.

It is obvious that the local detector with a temporal discount factor 0 < ζ < 1

reacts more quickly to the environmental changes than the detector simply using

the sample-average estimators (or ζ = 1), and the estimates of the former detector

converge to the new stable correct detection probability faster than the estimates

of the latter scheme. Besides, the smaller this temporal discount factor, the better

the corresponding trackability. In addition, the scheme using a fixed-length window

is also simulated for comparison. The window lengths used in Figure 2.11 are γ =

400, 600, 800, and 1000 samples. According to Figure 2.11, the fluctuations (misad-

justments) of the estimated probabilities are very conspicuous even if large window

sizes are used. The choice of an appropriate window length highly depends on how

often the local SNR changes but in reality, no one can predict when the local SNR
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changes. Hence the fixed-length window scheme is not robust at all in practice. Fur-
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Figure 2.10. The convergence trends of the estimated (local) correct detection probabilities
using different discount factors for an arbitrary sensing node.
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Figure 2.11. The convergence trends of the estimated (local) correct detection probabilities
using different window sizes for an arbitrary sensing node.

thermore, we compare the cooperative spectrum-sensing performances in terms of

receiver operating characteristics (ROC) curves subject to different discount factors,
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namely ζ = 0.991 and ζ = 1. Three local detectors are used. Suppose that the source

is at the origin point. The coordinates of the three local detectors are randomly

generated by the computer at (10, 10), (6, 8) and (6, 9), respectively. We assume

that the signal energies received at the local detectors, Ei (i = 1, 2, 3), are inversely

proportional to the squared distance, d2i . In other words, Ei
Ej

=
d2j
d2i

(i, j = 1, 2, 3).

Here we arbitrarily choose N1 = N2 = 1000, and the SNR changes (denoted by

∆SNR(m)
i

def
= SNR(m)

i − SNR(m−1)
i ) across all local detectors are ∆SNR(m)

i =−10

dB and ∆SNR(m)
i =−12 dB, ∀i, where the original average SNR are −20 dB, −17.16

dB, and −17.67 dB, respectively. The ROC curves are delineated in Figure 2.12. It

is obvious that the cooperative spectrum-sensing scheme using the discount factor

ζ = 0.991 outperforms that using the sample-average estimators or ζ = 1 when the

false alarm probability is not large. Finally, in Figure 2.13, we compare the coop-
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Figure 2.12. The ROC curves of the cooperative spectrum-sensing performances for (i) an

SNR decrement by 12 dB (∆SNR(m)
i =−12 dB, i = 1, 2, 3) and ζ = 1, (ii) an SNR decre-

ment by 12 dB (∆SNR(m)
i =−12 dB, i = 1, 2, 3) and ζ = 0.991, (iii) an SNR decrement

by 10 dB (∆SNR(m)
i =−10 dB, i = 1, 2, 3) and ζ = 1, and (iv) an SNR decrement by 10

dB (∆SNR(m)
i =−10 dB, i = 1, 2, 3) and ζ = 0.991.
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erative spectrum-sensing performances in terms of receiver operating characteristics

(ROC) curves subject to discount factors, fixed-length windows, and the exact knowl-

edge of K1, N1, K2, N2. Note that the best ROC performance can be achieved when

the exact knowledge of K1, N1, K2, N2 is available. The simulation setup is the same

as above with ∆SNR(m)
i =−12 dB, ∀i. It is obvious that the ROC curves subject to

different fixed-window sizes greatly overlap with each other, and they fall below the

ROC curve subject to a discount factor ζ = 0.991 (it means that the latter ROC

performance is better). If we know the exact values of K1, N1, K2, N2, the actual

optimal data-fusion rule can thus be undertaken, which yields a slightly better ROC

performance than that subject to the discount factor ζ = 0.991.
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Figure 2.13. The ROC curves of the cooperative spectrum-sensing performances for an SNR

decrement by 12 dB (∆SNR(m)
i =−12 dB, i = 1, 2, 3) subject to (i) a discount factor ζ = 1,

(ii) a discount factor ζ = 0.991, (iii) a fixed-window length γ = 400, (iv) a fixed-window
length γ = 600, (v) a fixed-window length γ = 800, (vi) a fixed-window length γ = 1000,
and (vii) the complete knowledge of K1, K2, N1, N2.
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2.2.6 Conclusion

In this chapter, a novel adaptive cooperative spectrum-sensing technique was pro-

posed based on JB-statistics and the optimal data-fusion rule. By adopting a proper

temporal discount factor, this new cooperative spectrum-sensing scheme can also

adapt to time-varying environments effectively. The advantage of the new discount

factor based probabilistic estimators is also theoretically investigated and the opti-

mal discount factor value is facilitated. According to Monte Carlo simulation results

for wireless microphone signals, our JB-statistic-based detection method is more ro-

bust than the commonly-used energy-based spectrum-sensing scheme over a broad

variety of SNR conditions. Besides, our proposed new cooperative spectrum-sensing

scheme can achieve a much lower average risk than other existing spectrum-sensing

methods using “OR” and “AND” data fusion rules. In addition, this new coopera-

tive spectrum-sensing scheme can greatly outperform the conventional cooperative

spectrum-sensing method using sample-average estimators when any local detector

suffers from an abrupt signal-to-noise ratio change. Therefore, this new coopera-

tive spectrum-sensing mechanism would be a very promising solution to the future

cognitive radio technology.
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3 Symbol Detection and Channel

Estimation for OFDM Systems

3.1 Problem Definition

The baseband OFDM transmitter (for generating digital OFDM modulated signal

vectors) involving the proposed novel frequency-domain optimal pilot multiplexing

scheme is shown by the block diagram in Figure 3.1. Assume that there are N

subcarriers, Np pilots, and N = M × Np, where M ∈ Z+, is the spacing between

two adjacent pilots. According to Figure 3.1, the information bits are first mapped

onto a normalized q-QAM (quadrature amplitude modulation) signal constellation

Θ, where Θ
def
= {α1, α2, . . . , αq}, and then multiplexed onto N orthogonal subcarriers

to constitute an (unfiltered) OFDM symbol vector ~Su = [Su
0 , S

u
1 , . . . , S

u
N−1]

T , where

E{|Su
k |2} = σ2

s = 1, for k = 0, 1, . . . , N − 1 (k is the subcarrier index). An N × N

unitary Walsh Hadamard matrix W̃ is then used to pre-code the signal vector ~Su,

resulting in a “filtered” signal vector ~S = [S0, S1, . . . , SN−1]
T . It is

~S = W̃ ~Su, (3.1)

where

W̃HW̃ = ĨN . (3.2)

According to [26], when the conventional frequency-domain pilot multiplexing tech-

nique (FDPMT) is used, pilots are inserted into the signal vector ~S in the equal-

spaced manner after the original subcarrier data at these positions are removed.
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Figure 3.1. The new OFDM baseband transmitter using our proposed optimal dynamical
pilot insertion technique.

Therefore, the actually transmitted OFDM signal in the frequency domain, ~X
def
=

[X0, X1, . . . , XN−1]
T , is given by

~X = [C0, S1, . . . , SM−1, C1, SM+1, . . . , SN−1]
T , (3.3)

or

Xk =





C⌊k/M⌋, if k (mod M) = 0

Sk, otherwise
(3.4)

Denote ~ζ
def
= [C0, C1, . . . , CNp−1]

T , which is composed by the Chu sequence of length

Np (refer to [45]). Its elements are used as the pilots such that

Ct =





exp
(
jπςt2/Np

)
, if Np is even

exp
(
jπςt(t + 1)/Np

)
, if Np is odd

(3.5)

where t = 0, 1, . . . , Np − 1, and ς is relatively prime to Np. An N -point inverse

discrete Fourier transform (IDFT) is then operated on ~X, resulting in the time-

domain transmitted signal ~χ
def
= [x0, x1, . . . , xN−1]

T where

xi =
1√
N

N−1∑

k=0

Xk e
j 2πik
N , (3.6)

for i = 0, 1, . . . , N − 1.

It is obvious that the OFDM subcarrier symbols S0, SM , . . ., S(NP−1)M are elimi-

nated from the signal vector ~S for the further insertion of training pilots, which will

definitely cause distortion to the time-domain transmitted signal.
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3.2 New OFDM Transmitter

In order to minimize the aforementioned signal distortion caused by the FDPMT,

we propose a novel robust pilot insertion technique here. First, we define

~Xm def
= [Xm

0 , X
m
1 , . . . , X

m
N−1]

T , (3.7)

~χm
def
= [xm0 , x

m
1 , . . . , x

m
N−1]

T , (3.8)

~Φm
def
= [Sm, SM+m, S2M+m, . . . , S(NP−1)M+m]

T , (3.9)

~Ψm
def
= [m,M +m, 2M +m, . . . , (NP − 1)M +m]T ,

(3.10)

where

Xm
k

def
=





Sk, if k (mod M) 6= m

0, if k (mod M) = m

(3.11)

for k = 0, 1, . . . , N − 1, and

xmi
def
=

1√
N

N−1∑

k=0

Xm
k e

j 2πik
N , (3.12)

for i = 0, 1, . . . , N − 1. Note that m = 0, 1, . . . ,M − 1. Next, we define the distortion

due to the subcarrier-removal at the positions indexed by the vector ~Ψm, which is

Ξm
def
=

N−1∑

i=0

|xi − xmi |2

=

N−1∑

i=0

∣∣∣∣∣∣
1√
N

∑

k∈~Ψm

Ske
j 2πik
N

∣∣∣∣∣∣

2

=
∑

k∈~Ψm

|Sk|2

+
1

N

N−1∑

i=0

∑

k∈~Ψm

∑

l∈~Ψm,l 6=k

SkS
∗
l e
j
2πi(k−l)

N , (3.13)
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where S∗
l is the complex conjugate of Sl. Note that

1

N

N−1∑

i=0

∑

k∈~Ψm

∑

l∈~Ψm,l 6=k

SkS
∗
l e
j
2πi(k−l)

N

=
1

N

∑

k∈~Ψm

∑

l∈~Ψm,l 6=k

SkS
∗
l

N−1∑

i=0

ej
2πi(k−l)

N

= 0. (3.14)

According to Eqs. (3.13) and (3.14), we have Ξm =
∑

k∈~Ψm
|Sk|2. Therefore, the

minimization of Ξm leads to

d0 = argmin
m

Ξm

= argmin
m

∑

k∈~Ψm

|Sk|2

= argmin
m

~ΦHm
~Φm, (3.15)

where d0 is called the optimal pilot offset. After d0 is picked to minimize Ξm according

to Eq. (3.15), one can construct the pilot-position vector ~Ψd0 and the frequency-

domain pilot-assisted OFDM symbol vector ~X. They are given by

~Ψd0
def
=
[
d0,M + d0, . . . , (NP − 1)M + d0

]T
, (3.16)

and

~X = [X0, X1, . . . , XN−1]
T , (3.17)

where

Xk =





C⌊k/M⌋, if k (mod M) = d0,

Sk, otherwise.
(3.18)

Note that ~X given by Eq. (3.3) is a special case of Eq. (3.17) for d0 = 0.

After an N -point IDFT is invoked for the signal vector ~X given by Eq. (3.17),

the resultant time-domain signal vector ~χ will be further appended by a cyclic pre-

fix (CP) of length Ncp. Thus the digital OFDM signal sequence in the baseband
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can be constructed. The subsequent standard operations including lowpass filtering,

digital-to-analog conversion, and frequency-up conversion in OFDM systems will be

neglected here since they stay the same as usual. Assume that the medium is a mul-

tipath channel with the maximum delay spread up to L sampling (symbol) periods.

We further assume Np ≥ Ncp ≥ L so that the interblock interference is absent [46].

It is easy to discover that if d0 is always set to be 0 and this information is

known to the receiver, the pilot insertion/detection scheme would be simplified to

a special case, as suggested by [26], when no optimization is undertaken. When

our proposed PIT highlighted by Eqs. (3.15)-(3.18) is considered, new blind pilot-

detection methods and the corresponding new receiver structure need to be designed.

Details are referred to Section 3.3.

3.3 New OFDM Receiver

The block diagram for the baseband OFDM receiver (dealing with digital signals)

is illustrated in Figure 3.2 where our proposed blind pilot-detection mechanism is

incorporated. Generally speaking, this receiver structure is composed by two major

components: one is the channel estimator assisted by blind PDT (details will be

discussed in Section 3.3.1); the other is the channel equalization incorporated with

the iterative symbol reconstruction (details are referred to Section 3.3.2).

Received OFDM Signal

CP 

Deletion
DFT

Channel 

Estimation

PDT

Channel 

Equalization
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Demapper

W
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1
0}ˆ{ −

=
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0
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=

N
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p
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Figure 3.2. The new OFDM receiver using blind pilot detection techniques (corresponding
to the transmitter given by Figure 3.1).
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3.3.1 Channel Estimation aided by Different Blind Pilot Detection Techniques

At the receiver, the CP is first removed and then an N -point DFT is taken to

reconstruct the received signal samples Rk in the frequency domain such that

Rk =
1√
N

N−1∑

i=0

ri e
−j 2πik

N , k = 0, 1, . . . , N − 1, (3.19)

where ~γ
def
= [r0, r1, . . . , rN−1]

T is the received signal vector after the CP is removed, and

the frequency-domain received signal vector is represented by ~Υ
def
= [R0, R1, . . . , RN−1]

T .

Since Ncp ≥ L, it is obvious that

Rk =





HkCt + Ωk, if k (mod M) = d0

Hk Sk + Ωk, otherwise
(3.20)

where t
def
= k−d0

M
, Hk is the kth element of the channel frequency response (CFR)

sequence vector, which is given by ~H def
= [H0, H1, . . . , HN−1]

T ∈ CN×1, and Ωk is the

kth element of the complex additive white Gaussian noise (AWGN) sequence vector

~Ω
def
= [Ω0,Ω1, . . . ,ΩN−1]

T ∈ CN×1, each of whose entries has zero mean and variance

σ2
Ω. Consequently, the signal-to-noise ratio (SNR) is given by

ξ = 10 log10

(
σ2
s

σ2
Ω

)
. (3.21)

We assume that both M and ~ζ are fixed and known to the receiver. However, the

pilot-position offset d0 needs to be blindly located. In order to combat this problem,

we first define a matrix Γ̃ as

Γ̃
def
=
[
~Λ0, ~Λ1, · · · , ~Λm, . . . , ~ΛM−1

]
∈ CNp×M , (3.22)

where

~Λm
def
=

[
Rm

C0
, · · · , RtM+m

Ct
, · · · , R(Np−1)M+m

CNp−1

]T

∈ CNp×1, (3.23)

46



for m = 0, 1, . . . ,M − 1 and t = 0, 1, . . . , Np− 1. Then, an Np-point IDFT is invoked

for each ~Λm, m = 0, 1, . . . ,M − 1, such that

λm,n =
1√
Np

Np−1∑

t=0

Λm,t e
j 2πnt
Np , (3.24)

where Λm,t is the t
th element of ~Λm, for t = 0, 1, . . . , Np − 1.

It is not hard to prove that when m = d0 and Np > L, λd0,n ≈
√
Np/N hn e

−j
2πnd0
N

for high SNR, where hn is the nth coefficient of the channel impulse response (CIR).

On the other hand, when m 6= d0, ~Λm is just the sequence vector {Hk Sk}N−1
k=0

divided by the Chu sequence vector ~ζ given by Eq. (3.5) and then plus the AWGN,

element-by-element. We assume that E[|Hk|2] = 1, ∀k, and the entries in ~Su are

independently and identically distributed (i.i.d.). Therefore, as the inter-pilot spacing

M increases, λm,n approaches a zero-mean complex Gaussian process with variance

σ2
s + σ2

Ω according to the sampling theorem and the central limit theorem.

Note that we have to blindly estimate the actual pilot offset m = d0 used by the

transmitter. Consequently, we need to classify d0 from {λ0,n}Np−1
n=0 , {λ1,n}Np−1

n=0 , . . . ,

{λM−1,n}Np−1
n=0 based on the fact that

λm,n ≈





√
Np
N
hn e

−j
2πnd0
N + N(0, σ2

Ω), if m = d0

N(0, σ2
Ω + σ2

s), otherwise
(3.25)

According to Eq. (3.25), we propose three different pilot-detection techniques to

estimate the pilot offset d0. The effectiveness evaluation and more insightful investi-

gation will be presented in Section 3.3.3.

Variance Based Pilot Detection

According to Eq. (3.25), when m 6= d0, {λm,n}Np−1
n=0 is approximately a complex

Gaussian process with a larger variance σ2
Ω + σ2

s than the case for m = d0 (the

variance is σ2
Ω instead). Therefore, we propose to use the amplitude variances of

47



{λm,n}Np−1
n=0 to estimate the pilot offset d0. It yields

d̂0 = argmax
m∈{0,1,...,M−1}

1

Np

Np−1∑

n=0

(
|λm,n| − λ̄m

)2
, (3.26)

where λ̄m is the mean of the sequence {|λm,n|}Np−1
n=0 such that

λ̄m
def
=

1

Np

Np−1∑

n=0

|λm,n|. (3.27)

Subspace Based Pilot Detection

Intuitively speaking, according to Eq. (3.25), the samples λm,n involving the channel

gain hn form the signal subspace while other samples λm,n span the noise subspace.

In practice, however, the time-support for hn is unknown at the receiver (a blind

channel-filter length estimation method can be found in [47], though). We may simply

define the space spanned by the last Np − Ncp samples of {λd0,n}Np−1
n=0 as the noise

subspace. Thus, the pilot offset d0 can be blindly spotted as

d̂0 = argmin
m∈{0,1,...,M−1}

Np−1∑

n=Ncp

|λm,n|2. (3.28)

Jarqur-Bera Statistics Based Pilot Detection

By carefully observing the two processes given by Eq. (3.25), when m = d0, since

Np > L, {|λd0,n|}n∈{n′|hn′ 6=0} constitutes a Gaussian-mixture process with L cluster

means
√
Np/N hn e

−j
2πnd0
N , while {|λm,n|}n∈{n′|hn′=0} constitutes a zero-mean complex

Gaussian process with variance σ2
Ω, for n

′ = 0, 1, . . . , Np−1. When m 6= d0, as stated

by Eq. (3.25), the entire series {λm,n}Np−1
n=0 is approximately a complex Gaussian

process with variance σ2
Ω+σ

2
s . Therefore, we can classify theM sequences, {λm,n}Np−1

n=0

associated with different pilot offsetsm, form = 0, 1, . . . ,M−1, into these two classes

(channel fading coefficients bearing series and noise-only series) by utilizing their

distinguishable statistical characteristics.
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In the literature [18, 48], the Jarqur-Bera (JB) statistic test is a goodness-of-fit

measure of departure from normality, based on the sample kurtosis and the sample

skewness. Since the larger the sample size, the more reliable this test will be, we

propose to use both real and imaginary parts of the data samples independently to

double the data amount and then carry out the JB-statistic test as follows:

d̂0 = argmax
m∈{0,1,...,M−1}

JB
{
{λm,n}Np−1

n=0

}
, (3.29)

where JB{ } is the JB-statistic operator on a complex sample sequence inside the

braces. More specifically, we denote ~ηm
def
=
[
Re{λm,0}, . . . ,Re{λm,Np−1}, Im{λm,0}, . . . ,

Im{λm,Np−1}
]T

∈ R2Np×1, and the nth element of ~ηm is λ′m,n, for n = 0, 1, . . . , 2Np−1.

Thus, JB
{
{λm,n}Np−1

n=0

}
in Eq. (3.29) can be expressed as

JB
{
{λm,n}Np−1

n=0

}

def
=
Np

3

(
S2{~ηm}+

(K{~ηm} − 3)2

4

)
, (3.30)

where S2{~ηm} and K{~ηm} denote the sample skewness and the sample kurtosis of

the data sequence vector ~ηm. They are

S2{~ηm} def
=

µ̂3

σ̂3
=

1
2Np

∑2Np
n=0(λ

′
m,n − ˆ̄ηm)

3

(
1

2Np

∑2Np
n=0(λ

′
m,n − ˆ̄ηm)2

)3/2 , (3.31)

K2{~ηm} def
=

µ̂4

σ̂4
=

1
2Np

∑2Np
n=0(λ

′
m,n − ˆ̄ηm)

4

(
1

2Np

∑2Np
n=0(λ

′
m,n − ˆ̄ηm)2

)2 , (3.32)

where µ̂3, µ̂4, ˆ̄ηm, and σ̂
2 are the sample estimates of the third central moment, the

fourth central moment, the mean, and the variance of all entries in the vector ~ηm,

respectively. Note that since only L elements of {λd0,n}Np−1
n=0 are not drawn from a

Gaussian process (unlike the other Np − L elements), our proposed classifier using

JB-statistic will appear to be more accurate if the channel length L is relatively large.

If d̂0 = d0, the CFR {Ĥk}N−1
k=0 is estimated by performing an N -point DFT on

{√
N
Np
λd̂0,ne

j
2πnd̂0
N

}Np−1

n=0
padded with N −Np zeros at the very end. Using our pro-
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posed PDTs in this section, we can blindly detect the pilot positions at the receiver

without any a priori information, so a novel dynamical PIT can be established to

provide much more flexibility than the conventional FDPMT in [26]. Although we

have considered DFT/IDFT-based interpolation technique for each data block, our

proposed scheme can also be easily realized in the employment of other types of inter-

polation techniques such as Wiener interpolation, linear interpolation, or high-order

interpolation methods (see [22, 23]).

3.3.2 Channel Equalization aided Iterative Symbol Reconstruction

After the pilot offset d̂0 and the CFR {Ĥk}N−1
k=0 are estimated, with the estimated pilot

positions and the CFRs, the minimum-mean-square-error (MMSE) equalization of

the symbols in the non-pilot frequency bins is performed. By nulling the subcarriers

at the detected pilot positions, we can construct the received signal samples in the

frequency domain such that

R̆k
def
=





0, if k (mod M) = d̂0

Rk, otherwise
(3.33)

Denote the MMSE equalizer matrix by

G̃
def
= diag(g0, g1, . . . , gN−1), (3.34)

where

gk
def
=
(
Ĥ∗
k σ

2
s

)/(
|Ĥk|2σ2

s + σ2
Ω

)
(3.35)

and

~̆Υ
def
= [R̆0, . . . , R̆N−1]

T . (3.36)

Therefore, the initial raw-data estimation directly from the received signal is given

by

~̆S(0) = W̃H G̃ ~̆Υ, (3.37)
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and the corresponding initial symbol estimation is carried out as

Ŝ
(p)
k = argmin

α∈Θ

∣∣∣S̆(p)
k − α

∣∣∣ , k = 0, 1, . . . , N − 1, (3.38)

where Ŝ
(p)
k is the kth information symbol estimate (Ŝ

(p)
k is also the kth element of the

vector ~̂S(p)), and its superscript (p) represents the iteration number p starting with

p = 0; S̆
(p)
k denotes the kth element of ~̆S(p) (the iteration number p starts from 0 as

well). Applying the iterative amplitude reconstruction (IAR) procedure for OFDM

systems [49], we can iteratively reconstruct the information symbols as follows:

S̆
(p)
k

def
=





S̆
(p−1)
k , if k (mod M) = d̂0

S̆
(0)
k , otherwise

(3.39)

where ~̆S(p−1) = W̃ ~̂S(p−1). Then
{
Ŝ
(p)
k

}N−1

k=0
is obtained according to Eq. (3.38). Repeat

Eqs. (3.38) and (3.39) for more iterations (p = 1, 2, 3, . . .). Heuristically speaking,

only a few iterations (p = 1 or p = 2) are required for a reasonable convergence.

3.3.3 Simulation Comparisons for Different Schemes

In our Monte Carlo experiments, a block of 512 QPSK (quadrature phase-shift key-

ing) information symbols are randomly generated in each trial. The pilot sequence

length is chosen to be Np = 32 (the pilot overhead ratio is thus 6.25% ), the cyclic

prefix length is Ncp = 26, and Doppler effect is absent. We will compare the OFDM

systems involving our proposed three PIT/PDT schemes with the OFDM system

using the conventional FDPMT suggested in [26], in terms of correct pilot detection

rate and symbol error rate.

First, the CIR coefficients are randomly generated in accordance with an uncorre-

lated fading model such that they are characterized by the exponential power delay

profile, i.e., σ2
l = exp(−4 l/L), l = 0, 1, . . . , L − 1, where l is the channel-tap index.

A thousand Monte Carlo trials are taken for statistical averages. In Figure 3.3, the
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average correct (pilot) detection rates (for accurately spotting the true pilot offset

d0) versus different SNRs (ranging from -10 dB to 20 dB) are depicted for our pro-

posed three different PDTs (denoted by “JB Detector”, “Variance Detector”, and

“Subspace Detector” in the figures) subject to the channel length L = 6. It is clear

that the JB-statistic based PDT leads to the best performance over the entire SNR

range, while the subspace based PDT leads to the worst performance.
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Figure 3.3. Average correct pilot-detection rates versus signal-to-noise ratios (SNRs) for
the underlying OFDM transceiver depicted in Figures 3.1 and 3.2 subject to the channel
length L = 6.

Then we keep all the simulation parameters except that the channel length is

enlarged to L = 26 to redo Monte Carlo trials. The results are depicted in Figure 3.4.

According to Figure 3.4, the JB-statistic based pilot detector still leads to the superior

performance to the other two schemes. However, the variance based detector gives

the worst performance for this scenario. The reason is that when the channel length

gets large, the sample variances for the two conditions specified by Eq. (3.25) would

become less and less distinguishable. On the other hand, the channel length would

pose little impact on the subspace based detector.
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Figure 3.4. Average correct pilot-detection rates versus signal-to-noise ratios (SNRs) for
the underlying OFDM transceiver depicted in Figures 3.1 and 3.2 subject to the channel
length L = 26.

Note that only the last Np − Ncp elements in each sequence {λm,n}Np−1
n=0 are used

to form the noise subspace, as stated by Section 3.3.1. If the CP length is equal to

the number of pilots Ncp = Np, the noise subspace has to diminish and no subspace

based PDT is viable. Nevertheless, since most multipath channels in reality comply

with an exponential power delay profile, the magnitudes of the last CIR coefficients

are often quite small [50, 51]. Regardless of the mathematical restriction, a fixed

small number of elements at the tail of {λm,n}Np−1
n=0 can still be used to form the noise

subspace for detecting the pilot positions.

According to numerous simulations, it seems that the JB-statistic based pilot de-

tector almost always leads to the highest correct detection rates. It is important

to note that the JB-statistic involves the estimation of high-order central moments,

which would not be so reliable when the sample size (Np) is very small.

Moreover, the corresponding symbol error rates (SERs) to the above-mentioned

OFDM systems are also compared in Figure 3.5. We also delineate the SER perfor-

53



mances for the OFDM receivers using the true dynamical pilot-position information

(no PDT is necessary, denoted by “Ground Truth”) and the conventional FDPMT

with pilot insertion at the fixed positions (no pilot detection at the receiver, denoted

by “Conventional FDPMT”) [26], respectively. If there is no iterative symbol recon-

struction, we write “(p = 0)”, while only one iteration of symbol reconstruction is

denoted by “(p = 1)”. According to Figure 3.5, our proposed blind PDTs really

can help the OFDM system to get very close to the performance resulting from

the true pilot-position information. Besides, by minimizing the distortion caused by

frequency-domain pilot-insertion, the SER performance of our proposed scheme is

much better than that of the conventional FDPMT method. We have also found

that the SER performances stay almost the same whether the total iteration number

is selected as p = 1 or p > 1. It indicates that the iterative symbol reconstruction

scheme is very effective even though very few iterations are executed.
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Figure 3.5. Symbol error rates versus signal-to-noise ratios (SNRs) for different OFDM
systems where Np = 32 is used in all OFDM transceivers.
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In Figure 3.6, we also depict the SER performances for all of the aforementioned

schemes as we demonstrated in Figure 3.5. We use exactly the same simulation set-up

as before except that Np = 64 is used here instead. In this scenario, twice informa-

tion data are deleted in the frequency domain for pilot insertion. Intuitively, the

more pilots, the more accurate pilot detection can be expected. However, although

our proposed schemes using dynamical pilot insertion still lead to better SER per-

formances than the conventional FDPMT method, the SER performances are worse

than those resulting from Np = 32 as shown in Figure 3.5. As a matter of fact, the

more pilots are inserted, the more information symbols (deleted symbols due to pilot

insertion) need to be reconstructed at the receiver; therefore the SER performances

floor as the SNR gets large. This phenomenon clearly shows a tradeoff between the

SER performance and the pilot-detection accuracy in our proposed schemes.
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Figure 3.6. Symbol error rates versus signal-to-noise ratios (SNRs) for different OFDM
systems where Np = 64 is used in all OFDM transceivers.
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3.3.4 Conclusion

In this chapter, a novel robust pilot insertion technique (PIT) and three correspond-

ing blind pilot detection techniques (PDTs) were proposed for orthogonal frequency-

division multiplexing systems. The proposed pilot insertion technique is optimal

in the sense of minimum time-domain signal distortion caused by the subcarrier-

removal in the frequency domain for pilot insertion. Furthermore, we design a new

OFDM receiver structure including PDT assisted channel-estimation, channel equal-

ization, and iterative symbol reconstruction. Numerous Monte Carlo simulation re-

sults demonstrate that our proposed new OFDM system using dynamical PIT and

blind PDTs can achieve better symbol-error-rate performance than the conventional

FDPMT (frequency-domain pilot-multiplexing technique) based OFDM system.
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4 Blind Encoder Identification

4.1 AMC Transceiver with Blind Encoder Identification

The system diagram of an AMC transceiver involving our proposed new blind encoder

identification mechanism is illustrated in Figure 4.1. Without loss of generality, we

only consider the baseband signaling.

RS Encoder

Over GF(q)

q-QAM

Modulator

AWGN 

Channel

Channel

Parameter

Estimator

Blind 

Encoder

Identification

RS decoder

Over GF(q)

Transmitter                              Receiver

q-QAM

Demodulator

Figure 4.1. The system diagram of an AMC transceiver using our proposed new blind
encoder identification mechanism.

4.1.1 Transmitter Model

At the transmitter, the information symbol sequences are encoded to generate RS

codes over GF(q), whose encoder is selected from a predefined encoder candidate set

to adapt to the current channel condition. The coded symbols are then modulated

by q-QAM (quadrature amplitude modulation), and the modulated signal is trans-

mitted through an additive white Gaussian noise (AWGN) channel. In this work,

we only consider the RS codes over the binary extension fields, namely GF(2µ) (µ

can be an arbitrary positive integer, or µ ∈ Z+), although our proposed encoder
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identification scheme could be applied to other general fields as well. There are two

different approaches to encode the RS codes. The first approach can be carried out

in the time domain through the calculation of parity-check symbols, while the second

approach can be carried out in the frequency domain through inverse Fourier trans-

form. Throughout this section, we will focus on the inverse Fourier transform method

(the second approach) to implement the RS encoder due to its low complexity. The

details of the transmitter in Figure 4.1 are given as follows.

An i.i.d. (independently identically distributed) information sequence~bkψ = [b1, . . . ,

bkψ ]
T of length kψ over GF(q) is zero-padded at the end to construct an augmented

sequence of length q − 1, namely ~bq,ψ = [b1, . . . , bkψ , 0, . . . , 0]
T , where ψ is the in-

dex of a certain RS encoder drawn from the candidate set Ψ. It is obvious that

the code rate of the encoder ψ is Rψ = kψ/(q − 1). A (q − 1) × (q − 1) generator

matrix G̃q defined over GF(q) is then used to encode ~bq,ψ, resulting in a codeword

~cψ = [c1,ψ, . . . , cq−1,ψ]
T ∈ Cψ, where Cψ denotes the set of codewords. Thus, Cψ is a

subset of [GF(2µ)](q−1) where q = 2µ. This encoding process can also be expressed by

~cψ = G̃q ⊙q
~bq,ψ. (4.1)

It is trivial to derive

~cψ ∈ Cψ ⇐⇒ Ξ̃ψ ⊙q ~cψ = ~0, (4.2)

where Ξ̃q,ψ consists of the last (q − 1− kψ) rows of the matrix F̃q, where

F̃q ⊗q G̃q =




1 1 · · · 1

1 1 · · · 1

...
... · · · ...

1 1 · · · 1



(q−1)×(q−1)

. (4.3)
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In fact, when we encode the information sequence using an RS encoder over a binary

extension field GF(2µ) in the frequency domain, the matrices F̃q and G̃q are inverse

Fourier transform matrix and Fourier transform matrix, respectively.

Now the codeword ~cψ will be mapped to a normalized q-QAM signalling con-

stellation Ω, resulting in a modulated vector ~tψ = [t1,ψ, t2,ψ, . . ., tq−1,ψ]
T , where

E{|ti,ψ|2} = 1 for i = 1, 2, . . . , q − 1. Suppose that the elements of GF(q) are α0, α1,

α2, . . ., αq−1, where α0 = 0 and s0, s1, s2, . . ., sq−1 ∈ C are the corresponding signaling

constellations. Thus, Ω = {s0, s1, . . ., sq−1}, and ti,ψ ∈ Ω, ∀i. Moreover, we assume

that the received signal undergoes perfect time- and frequency-synchronization.

4.1.2 AWGN Channel

In this section, we assume that the modulated q-QAM signal will undergo the AWGN

channel. The received base-band sequence within a code block as defined in the

previous subsection is denoted by ~rψ = [r1,ψ, r2,ψ, . . . , rq−1,ψ]
T , such that

~rψ = hejφ~tψ + ~n, (4.4)

where h is the unknown channel gain (assume that the channel coherence time is

larger than a code block period here), φ is the unknown phase offset, and ~n is the

zero-mean complex AWGN vector of length q − 1 with a variance σ2 for its both

real and imaginary parts. Consequently, the signal-to-noise ratio (SNR) per coded

symbol of the modulated signal is given by

̟ =
h2

2σ2
. (4.5)

In order to evaluate the effect of different coding rates Rψ over the same candidate

set Ψ, the SNR per uncoded symbol of the modulated signal is given by

ζψ
def
=

̟

Rψ
=

h2

2Rψ σ2
. (4.6)
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On the other hand, in order to evaluate the effect of different coding rates and

different modulation orders, the SNR per uncoded symbol of the unmodulated signal

is given by

ξψ,µ
def
=
̟/µ

Rψ
=

h2

2µRψ σ2
. (4.7)

4.1.3 Receiver Model

At a non-AMC receiver, the down-converted base-band signal will be fed into a

q-QAM demodulator and then an appropriate RS decoder. However, in an AMC

system, the encoder information is unknown to the receiver if no control channel is

available. Therefore, according to Figure 4.1, we will pass ~rψ into our proposed blind

encoder identification subsystem, which involves a channel parameter estimator and

an encoder identifier. After the blind identification of the encoder information from

the predefined candidate set has been accomplished, the corresponding RS decoder

will be established accordingly. Meanwhile, ~rψ will also be passed into a q-QAM

demodulator and then the decoder will be used to decode the demodulated symbols,

resulting in the estimated information sequence ~̂bkψ = [b̂1, . . . , b̂kψ ]
T .

First, the unknown channel parameters including the channel gain h, noise variance

σ2, and phase offset φ are blindly estimated using the EM algorithm according to [52]

and [53], resulting in the estimated parameters, ĥ, σ̂2, and φ̂.

Blind Channel Encoder Identification

The LLRV of each received symbol’s a posteriori probabilities is then calculated,

and the LLRVs of the syndrome a posteriori probabilities are computed according

to different RS parity-check relations. The RS encoder ψ̂ subject to the maximum

average LLR in the predefined candidate set Ψ will be selected as the one used at

the transmitter and the corresponding decoder will be prepared accordingly. Our

proposed new scheme will be manifested in details in Section 4.2.
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Li(y) def
= Li(ι⊙q x1 ⊕q κ⊙q x2) = ln

Pr{y = 0}
Pr{y = αi}

= ln

∑
β∈GF(q) exp {−L(x1 = β)− L(x2 = κ−1 ⊙q ι⊙q β)}

∑
β∈GF(q) exp

{
−L(x1 = β)− L

(
x2 = κ−1 ⊗q (ι⊙q β ⊕q αi)

)} . (4.11)

4.2 Our Proposed New Blind Channel Encoder Identification Method

Reed Solomon codes are a special family of the BCH (Bose, Ray-Chaudhuri and

Hocquenghem) codes. The length of the RS code is one less than the size of the

field where the symbols are defined [54]. Since the calculations have to be performed

over the same Galois field, all the RS codes within the same predefined candidate

set should be of the same length. The difference among the RS encoders in the same

candidate set is the code rate, Rψ = kψ/(q − 1). In order to formulate the LLRVs

of the syndrome a posteriori probabilities from the parity-check relations and the

LLRVs of the received base-band symbols ~rψ, the basic log-likelihood algebra over

GF(q) is introduced as follows.

4.2.1 Log-Likelihood over GF(q)

Suppose that GF(q) = {α0, α1, α2, . . . , αq−1}, where α0 = 0. Unlike the binary case

in which the LLR of a random variable (RV) is defined as a scaler, the LLRV of an

RV over GF(q) is defined as a vector of length q − 1, which is

~L(x) def
= [L(x = α1),L(x = α2), . . . ,L(x = αq−1)], (4.8)

where

L (x = αi)
def
= ln

Pr{x = 0}
Pr{x = αi}

, i = 1, . . . , q − 1. (4.9)

Eq. (4.9) is the natural logarithm of the ratio between the probabilities of x taking

values 0 and αi. From now on, we will denote the ith element of ~L(x) by Li(x), i =

1, 2, . . . , q − 1 for notational convenience.
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~L(γψ,i) def
= ⊞

(
~L(c1,ψ|r1,ψ), ~L(c2,ψ|r2,ψ), . . . , ~L(cq,ψ|rq,ψ), fi,1, fi,2, . . . , fi,q−1

)
.(4.20)

Suppose that there are two RVs x1 and x2, and two elements ι and κ, all of which

are defined over GF(q). Besides, the LLRVs of x1 and x2 are denoted by ~L(x1) and
~L(x1), respectively. We can thus define a new operator ⊞ over GF(q) as

⊞
(
~L(x1), ~L(x2), ι, κ

)
def
= ~L(ι⊙q x1 ⊕q κ⊙q x2). (4.10)

The ith component of the right-hand-side (RHS) of Eq. (4.10) can be derived by

Eq. (4.11) on top of next page, and L(x1 = β) is defined as

L(x1 = β)
def
= Li(x1), (4.12)

where αi = β, for i = 1, . . . , q − 1.

4.2.2 Blind Reed-Solomon Encoder Identification

Assume that the candidate set Ψ consists of M RS codes with code rates Rψ =

kψ/(q − 1), where ψ = 1, 2, . . . ,M . We sort these M codes according to their code

rates in an ascending order, namely 0 < R1 < R2 < · · · < RM < 1. Obviously,

~ςψ
def
= Ξ̃q,1 ⊙q ~cψ = [δ1, . . . , δkψ−k1 , 0, . . . , 0]

T , (4.13)

where Ξ̃q,1 consists of the last q−1−k1 rows of the Galois field Fourier transform ma-

trix F̃q, δi 6= 0, for i = 1, 2, . . . , kψ−k1, the elements of ~ςψ, namely ςψ,1, . . . , ςψ,q−1−k1 ,

are defined as code-checks, or c-checks in short, and the number of zeros at the end

of ~ςψ is ν. Therefore, the encoder identification problem becomes how to determine

the number of zeros at the end of the c-check vector ~ςψ such that

ψ̂ = i, subject to ν = q − 1− ki. (4.14)

We can also construct an index set Pψ for each RS code ψ ∈ Ψ, which consists

of all the indices corresponding to the last q − 1 − kψ rows of F̃q. It yields Pψ
def
=
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{kψ + 1, kψ + 2, . . . , q − 1}. Suppose that the ith row of F̃q is denoted by ~Fi,ψ
def
=

[fi,1, fi,2, . . . , fi,q−1]. Thus, we have

i ∈ Pψ ⇐⇒ ~Fi,ψ ⊙q ~cψ = 0, (4.15)

where ~Fi,ψ ⊙q ~cψ can be expanded as

fi,1 ⊙q c1,ψ ⊕q fi,2 ⊙q c2,ψ ⊕q · · · ⊕q fi,q−1 ⊙q cq−1,ψ = 0, (4.16)

for i ∈ Pψ.

Given a received base-band symbol rj,ψ, j = 1, . . . , q − 1, the ith element of the

LLRV for rj,ψ’s a posteriori probability can be formulated according to the Bayes’s

theorem as follows:

Li(cj,ψ|rj,ψ) = L (cj,ψ = αi|rj,ψ)

= ln
Pr{cj,ψ = 0|rj,ψ}
Pr{cj,ψ = αi |rj,ψ}

= ln
Pr{rj,ψ |cj,ψ = 0}
Pr{rj,ψ |cj,ψ = αi}

+ ln
Pr{cj,ψ = 0}
Pr{cj,ψ = αi}

= L(rj,ψ |cj,ψ = αi) + L(cj,ψ = αi)

= Li(rj,ψ |cj,ψ) + Li(cj,ψ), (4.17)

where Li(cj,ψ) = 0 because each symbol in any RS codeword is assumed to have

equal probabilities of taking values αi, for i = 0, 1, . . . , q − 1. Note that Li(rj,ψ |cj,ψ)

can be calculated using the estimated channel parameters according to Section ??.

It is

Li(rj,ψ |cj,ψ) = ln
exp

{
− ||rj,ψ−ĥe

jφ̂s0||2

2σ̂2

}

exp
{
− ||rj,ψ−ĥejφ̂si||2

2σ̂2

} , (4.18)

where sj is the modulated phaser corresponding to the coded symbol αj ∈ GF(q).

Define the “check” γψ,i as the symbol which equals the linear combination of the

ith row of F̃q and the received base-band sequence ~rψ over GF(q). It is

γψ,i
def
= fi,1 ⊙q r1,ψ ⊕q fi,2 ⊙q r2,ψ ⊕q · · · ⊕q fi,q−1 ⊙q rq−1,ψ, (4.19)
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for i = k1 +1, . . . , q− 1. If one wants to calculate the LLRV ~L(γψ,i) of the syndrome

a posteriori probability for a certain check, say γψ,i in Eq. (4.19), the formula can

be obtained using Eq. (4.11) in a recursive manner, which is given by Eq. (4.20) on

top of this page.

Heuristically speaking, according to the LLRV definition given by Eq. (4.8) and

the parity-check relations given by Eq. (4.19), each element of ~L(γψ,i) is expected to

be a positive value for i ∈ Pψ. Therefore, we define the average LLR, Υψ,i, by taking

average of Lj(γψ,i) over j = 1, 2, . . . , q − 1, such that

Υψ,i
def
=

1

q − 1

q−1∑

j=1

Lj(γψ,i). (4.21)

Note that Υψ,i > Υψ,i′, for i ∈ Pψ and i′ /∈ Pψ. Furthermore, the elements of ~L(γψ,i′),

for i′ /∈ Pψ would be sometimes positive and sometimes negative to result in a small

magnitude or |Υψ,i′ | → 0.

The next step is to determine the set of i-indices for which Υψ,i take large values. A

straightforward approach would be employing a predefined threshold. However, this

approach is not robust since different modulation/coding strategies and noise levels

would significantly change the appropriate thresholds. Consequently, we propose to

use a statistical test to tackle this problem. Suppose that the average LLR vector

we obtain at the receiver is ~Υψ
def
= [Υψ,k1+1, Υψ,k1+2, . . ., Υψ,q−1]. Assume that the

distributions of Υψ,i are two different Gaussian functions with different means and

variances under the two hypotheses, namely H1: i ∈ Pψ and H0: i /∈ Pψ. Therefore,

we have two conditional probability density functions:

pΥψ,i|H0(Υψ,i|H0) =
1√
2πσ1

exp

(
−(Υψ,i − ̺1)

2

2σ2
1

)
, (4.22)

pΥψ,i|H1
(Υψ,i|H1) =

1√
2πσ2

exp

(
−(Υψ,i − ̺2)

2

2σ2
2

)
, (4.23)

where ̺1, ̺2, σ1, and σ2 can be easily estimated from Υψ,i defined in Eq. (4.21)

(details are omitted due to page limit). Hence we can obtain the likelihood ratio
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Λ(Υψ,i) as given by

Λ(Υψ,i)
def
=
pΥψ,i|H0

(Υψ,i|H0)

pΥψ,i|H1
(Υψ,i|H1)

. (4.24)

It yields

γψ,i = 0, if Λ(Υψ,i) < 1 (H1 is true), (4.25)

γψ,i 6= 0, if Λ(Υψ,i) ≥ 1 (H0 is true). (4.26)

4.2.3 Computational Complexity Reduction

In this subsection, we will introduce how the calculation of the LLRVs for the syn-

drome a posteriori probabilities, namely the calculation of Eqs. (4.11) and (4.20),

can be simplified, since the computational complexity of our proposed new blind

encoder identification scheme is mainly caused by this. First, the Jacobi logarithm

operator between two real numbers τ1 and τ2, where τ1, τ2 ∈ R, can be defined as

τ1 ⋆ τ2
def
= ln (eτ1 + eτ2) . (4.27)

It is easy to discover that the Jacobi logarithm operator satisfies the associative law,

that is

τ1 ⋆ τ2 ⋆ τ3 = ln (eτ1 + eτ2 + eτ3)

= (τ1 ⋆ τ2) ⋆ τ3. (4.28)

Thus, the summations in the numerator and the denominator of Eq. (4.11) both can

be undertaken recursively. Generally speaking, the calculation of ~L(ι⊙qx1⊕qκ⊙qx2)

requires 2(q−1)2 real-valued additions, 2(q−1)2 Jacobi logarithm operations, 4q(q−1)

multiplications over GF(q), and q(q − 1) additions over GF(q).

The Jacobi logarithm operator can also be formulated as

τ1 ⋆ τ2 = max(τ1, τ2) + ln
(
1 + e−|τ1−τ2|

)
, (4.29)
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where ln
(
1 + e−|τ1−τ2|

)
∈ (0, ln 2] is a relatively small number. When we use the

Jacobi logarithm operation recursion to calculate the numerator and the denominator

of Eq. (4.11), namely τ1 ⋆ τ2 ⋆ · · · τq = (· · · ((τ1 ⋆ τ2) ⋆ τ3) · · · ⋆ τq), some τi’s, i =

1, 2, . . . , q will take large positive values. Therefore, τ1 ⋆ τ2 ⋆ · · · τq can be further

simplified by

τ1 ⋆ τ2 ⋆ · · · τq ≈ max(τ1, τ2, . . . , τq). (4.30)

According to Eqs. (4.29) and (4.30), the computational complexity of ~L(ι ⊙q x1 ⊕q

κ⊙qx2) becomes 2(q−1)2 real-valued additions, 4q(q−1) multiplications over GF(q),

and q(q − 1) additions over GF(q).

Moreover, the multiplications/additions over the Galois field GF(q) can be easily

implemented by two corresponding pre-calculated look-up tables over GF(q), respec-

tively [55]. However, if we sort the elements of GF(q) such that α0 = 0, α1 = α0,

α2 = α1, . . ., αq−1 = αq−2, where α is the primitive of GF(q), the computational

complexity may be further reduced.

Since the first column of the Galois field Fourier transform matrix F̃q consists of

all 1’s, we have ι1 = 1 (the subscript denotes the recursion number). Thus, in the

first recursion, we need to compute Li(fi,1 ⊙q r1,ψ ⊕q fi,2 ⊙q r2,ψ) where ι1 = fi,1 = 1,

κ1 = fi,2, and ιj , κj are actually the coefficients ι, κ defined in Eq. (4.11) (their

additional subscript j indicates the jth recursion). For the second recursion, we need

to calculate Li(fi,1 ⊙q r1,ψ ⊕q fi,2 ⊙q r2,ψ ⊕q fi,3 ⊙q r3,ψ) as given by

Li(fi,1 ⊙q r1,ψ ⊕q fi,2 ⊙q r2,ψ ⊕q fi,3 ⊙q r3,ψ)

= Li
(
1⊙q (fi,1 ⊙q r1,ψ ⊕q fi,2 ⊙q r2,ψ)

⊕q fi,3 ⊙q r3,ψ

)
, (4.31)

where ι2 = 1. Similar results can be found for the subsequent recursions as well.

Consequently, we have ιi = 1 for i = 1, 2, . . . , q − 2. Suppose that κ−1 = αǫ, where
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ǫ ∈ {0, 1, . . . , q − 2}, and ~L(xi) =
[
Pr{xi=0}
Pr{xi=α0}

, . . . , Pr{xi=0}
Pr{xi=αq−2}

]
for i = 1, 2. Thus, the

numerator of Eq. (4.11) becomes

ln
∑

β∈GF(q)

exp
{
−L(x1 = β)− L(x2 = κ−1 ⊙q β)

}

= −2 ⋆

(
− Pr{x1=0}

Pr{x1=α0}
− Pr{x2=0}

Pr{x2=αǫ}

)
⋆ · · ·

⋆

(
− Pr{x1=0}

Pr{x1=αq−2}
− Pr{x2=0}

Pr{x2=αǫ−1}

)
. (4.32)

Therefore, we can construct another LLRV for x2 with κ−1 = αǫ such that

~Lǫ(x2) =
[
Pr{x2 = 0}
Pr{x2 = αǫ} , . . . ,

Pr{x2 = 0}
Pr{x2 = αǫ−1}

]
, (4.33)

which is a circularly right shift of ~L(x2) by a step size ǫ. According to Eq. (4.33),

Eq. (4.32) can be reformulated as

ln
∑

β∈GF(q)

exp
{
−L(x1 = β)− L(x2 = κ−1 ⊙q β)

}

= −2 ⋆ ~L(x1)⋆ ~Lǫ(x2), (4.34)

where ⋆ is the element-wise Jacobi logarithm operator between two vectors. A simi-

lar approach can be taken to calculate the denominator of Eq. (4.11) as well. Hence,

actually no look-up table for the multiplications over GF(q) is necessary.

Consequently, when one tries to directly calculate the LLRV of the syndrome a

posteriori probabilities of a certain check, namely ~L(γψ,i) in Eq. (4.20), it requires

2(q − 1)3 real-valued additions, 2(q − 1)3 Jacobi logarithm operations, 4q(q − 1)2

multiplications over GF(q), and q(q − 1)2 additions over GF(q). Nevertheless, when

the simplified method in Section 4.2.3 is used, the total computational complexity is

reduced to 2(q − 1)3 real-valued additions in conjunction with the storage of a q × q

look-up table.
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4.3 Simulation Results and Conclusion

The performance of our proposed novel blind channel encoder identification scheme is

evaluated by Monte Carlo simulations, in terms of the probability that the receiver

can correctly identify the encoder from a predefined candidate set given only one

codeword block of received base-band sequence. Specifically, four encoders RS(15, 5),

RS(15, 7), RS(15, 9), RS(15, 11) in GF(16), four encoders RS(31, 15), RS(31, 19),

RS(31, 23), RS(31, 27) inGF(32), and four encoders RS(63, 43), RS(63, 47), RS(63, 51),

RS(63, 55) in GF(64) are adopted here because they are popular. For each Galois

field, all the four RS codes are used to form the candidate set Ψ. The phase offset

φ is randomly generated within (−π/4, π/4) restricted by the quadrature symmetry.

The probabilities of correct identification are attained by taking average over five

hundred Monte Carlo trials.

Figure 4.2 illustrates the correct identification rate versus the SNR per uncoded

symbol of the modulated signals, ζψ defined in Eq. (4.6), among the aforementioned

four different RS codes over GF(16). The results indicate that the correct identifi-

cation rate can approach 100% for each encoder as ζψ ≥ 20 dB. Similar trends can

also be found from Monte Carlo simulations using other RS codes over GF(32) and

GF(64), which are delineated in Figures 4.3 and 4.4, respectively.

According to Figures 4.2-4.4, when SNR is fairly low, we can identify the RS

encoder with the lowest code rate very well. In this situation, the likelihood ratio test

facilitated by Eqs. (4.22)-(4.26) would almost always choose H1 because ̺1 ≈ ̺2 ≈ 0

and σ1 > σ2 when ζψ is relatively small. Thus, Λ(Υψ,i) < 1, which means all checks

tend to be classified as 0. In other words, if the encoder with the lowest code rate

is used at the transmitter, it will almost always be identified correctly when SNR

is low. It actually makes sense in practice since when the channel SNR is low, the

AMC system would very probably choose the encoder with a low code rate from the

68



5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

ζψ (dB)

C
or

re
ct

 Id
en

tif
ic

at
io

n 
R

at
e 

(%
)

 

 

RS(15, 5)
RS(15, 7)
RS(15, 9)
RS(15, 11)

Figure 4.2. The correct identification rate with respect to ζψ defined in Eq. (4.6) for four
different RS codes over GF(16).
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Figure 4.3. The correct identification rate with respect to ζψ defined in Eq. (4.6) for four
different RS codes over GF(32).

candidate set. Figure 4.5 depicts the correct identification rate versus the SNR per

uncoded symbol of the unmodulated signals, ξψ,µ defined in Eq. (4.7), for RS(15, 9),

RS(31, 23), RS(63, 51), RS(127, 111), and RS(255, 223). As a result, if one wants
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Figure 4.4. The correct identification rate with respect to ζψ defined in Eq. (4.6) for four
different RS codes over GF(64).

to achieve the same correct identification rate using our proposed new scheme, the

required SNR is larger for the RS encoder over a larger Galois field.
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Figure 4.5. The correct identification rate with respect to ξψ,µ defined in Eq. (4.7) for
different RS codes over different Galois fields.
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In this chapter, a novel blind identification scheme with low computational com-

plexity was proposed for Reed-Solomon encoders over GF(q). The proposed new

scheme is based on the average log-likelihood ratio of syndrome a posteriori proba-

bilities, which is calculated from the LLRVs of the received base-band sequence and

the corresponding parity-check relations, and the likelihood ratio test to determine

the values of the checks. In addition, the needed calculation was also simplified to

come up with a new fast computational procedure. The new method is very promising

for the future cognitive radio technology or the next generation adaptive modulation

and coding systems.
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5 Conclusions

In this dissertation, we discussed the methodology of designing robust and efficient

statistical signal sensing, detection and estimation algorithms which could be applied

in wireless communication systems. The field of signal sensing, detection and esti-

mation is concerned with the analysis of received signals to determine the presence

or absence of signals of interest, to classify the useful statistical information, and to

extract information either purposefully or inadvertently included in these signals.

Three novel and robust statistical signal processing algorithms are proposed for dif-

ferent communication applications, namely spectrum sensing, symbol-reconstruction/

channel-estimation and blind encoder identification. First, we proposed a novel adap-

tive cooperative spectrum-sensing scheme based on JB statistic single-reception spectrum-

sensing technique. We also found that the commonly-used sample-average estimator

for the cumulative weights in the data-fusion rule becomes unreliable in time-varying

environments. To overcome this drawback, we adopt a temporal discount factor,

which is crucial to the probability estimators. New theoretical analysis to justify the

advantage of our proposed new estimators over the conventional sample-average esti-

mators and to determine the optimal numerical value of the proposed discount factor

is presented. The Monte Carlo simulation results are also provided to demonstrate

the superiority of our proposed adaptive cooperative spectrum-sensing method in

both stationary and time-varying environments.
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Second, we proposed the frequency-domain pilot multiplexing techniques (FDPMTs)

for the channel estimation and equalization in OFDM systems. A robust and effec-

tive pilot insertion and detection scheme is devised thereby. The information signal

sequence resulting from the constellation mapper is spread over all subcarriers by

a precoder and certain subcarriers can be nulled for the insertion of training pilots.

These pilot positions are optimally selected to minimize the distortion of the trans-

mitted time-domain signal (OFDM modulated signal) caused by the aforementioned

subcarrier-removal at the corresponding pilot positions. The associated new receiver

structure is also presented, where three different blind pilot-detection techniques

are designed without any a priori knowledge of the pilot positions (based on sample

variance, subspace decomposition, and Jarqur-Bera (JB) statistics, respectively), and

the distorted data symbols can thus be iteratively reconstructed. Besides, rigorous

theoretical analysis and Monte Carlo simulation results both demonstrate that our

proposed new OFDM system using dynamical pilot positions is more robust than

the conventional OFDM system using the fixed pilot positions over multipath fading

channels.

Third, we proposed a novel blind channel-encoder identification scheme with low

computational complexity for Reed-Solomon (RS) codes over Galois field GF(q),

which could also be applied to other similar non-binary channel codes as well. Our

proposed new scheme involves the estimation of the channel parameters using the

expectation-maximization (EM) algorithm, the calculation of the log-likelihood ratio

vectors (LLRVs) of the syndrome a posteriori probabilities over GF(q), and the

identification of the non-binary RS encoder in use subject to the maximum average

log-likelihood ratio (LLR) over the pre-selected candidate encoder set. Simulation

results justify the effectiveness of this new mechanism.
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In summary, we proposed different statistical signal processing methods for dif-

ferent wireless communication applications in this dissertation. It can be seen that

when proper statistical signal processing schemes are adopted, the corresponding de-

sign of the wireless communication systems can be greatly simplified. However, it is

obvious that more studies for different signal sensing, detection and estimation prob-

lems are needed in the future. Moreover, to evaluate each technique, more precise

and more diversified criteria can be foreseen preferable by researchers. Moreover, for

different signal sensing detection and estimation problems, more effective and reli-

able techniques are also in urgent need. Consequently, how to propose more robust,

efficient and reliable signal sensing detection and estimation techniques would remain

challenging in the scientific and engineering communities.
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